
Foundations for the Security
Analysis of Distributed

Blockchain Applications

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Clara Schneidewind, BSc
Registration Number 01652950

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Matteo Maffei

External reviewers:
Arthur Gervais. Imperial College London, United Kingdom.
Bernhard Scholz. The University of Sydney, Australia.

Vienna, 8th March, 2021
Clara Schneidewind Matteo Maffei

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Clara Schneidewind, BSc

I hereby declare that I have written this Doctoral Thesis independently, that I have completely
specified the utilized sources and resources and that I have definitely marked all parts of the work
- including tables, maps and figures - which belong to other works or to the internet, literally or
extracted, by referencing the source as borrowed.

Vienna, 8th March, 2021
Clara Schneidewind

iii

Acknowledgements

I want to sincerely thank my advisor Matteo Maffei for guiding me through this Ph.D. Over and
above the valuable academic guidance, his optimism and enthusiasm for research always was a
source of motivation and cheerfulness to me and helped me overcome the desperate phases of my
Ph.D. life. On top of that, I am deeply grateful that he never stopped trusting and promoting me.
Having him as my ‘PR person’ was the luckiest find of my Ph.D.

I would also like to thank my collaborators, and foremostly my group in Saarbrücken and then
Vienna. Starting from my first day in the group, I was welcomed with that amazing mix of warmth
and humor that withstood the relocation to Vienna and all changes in the group. Thank you all
for the fun lunches, parties, and, of course, cake o’clock gatherings. Despite thanking everyone
for being so incredibly funny, helpful, and good-hearted, I would like to put on record that this
group comes with an extraordinarily high average level of baking and cooking skills. I cannot
fully extend this compliment to the dancing skills, but I would still like to wholeheartedly thank
my beloved ’Swing Coast West Whatever’ dancing crew: Mauro, Pedro, and Barbara. Similarly
funny (but in equal measure also devastating) experiences I was lucky to share with Ilya and
Markus on our crazy eThor journey where we experienced the spirit of HoRSt. Big thanks also
to Niklas for suffering from and with me through that Ph.D., and for – depending on what the
situation required – being either a bastion of calm or showing off with his balloon animal tying
skills for cheering me up. Further, I would like to thank Pedro, without whom the quality of my
life in Vienna would have tremendously dropped. Thank you for all the breakfasts that prepared
me for exhausting days at work and the dinners that saved me afterward. On top of that, I cannot
thank him enough for all the support with my application and thesis and for always being such a
great friend. Also, I am more than grateful to Francisco for accompanying me on my next steps
and, in this way, laying the perfect foundation for bringing our group’s spirit to Bochum.

I also want to thank Prof. Smolka for being my mentor over all these years. The confidence that I
gained from his experienced and considered advice helped me through difficult times during my
Ph.D., and thanks to him, the 5th floor of E1.3 always stayed my safe shelter.

On top of all the support from my professional environment, I was incredibly lucky to have always
been backed by great friends and my loving and inspiring family. I am particularly grateful to my
friends in Saarbrücken, who made the city a home for me. A ,fettes Merci’ to Noemi, Norine,
Yannick, Chris, Jana, Kathrin, Fabian, Caro, and all the others. Special thanks go to Sebastian,
who always kept being there for me despite all the burdens that this Ph.D. brought to both of us.
Finally, I would like to thank Sophia, Jacob, my parents, and my grandparents. I consider myself

v

highly privileged to have a family of strong and independent individuals who can challenge and
push you when needed, and that is still the place that I would always return to in the midst of a
pandemic.

Kurzfassung

Kryptowährungen ermöglichen nicht nur Geldtransfers in Abwesenheit eines vertrauenswürdigen
Dritten, sondern auch die Ausführung verteilter Anwendungen. Aufgrund der rasanten Entwick-
lung von Kryptowährungen wurden die theoretischen Grundlagen solcher Anwendungen bisher
nicht gründlich untersucht. Dies ist besonders problematisch, da diese Anwendungen Geldflüsse
kontrollieren und Sicherheitslücken regelmäßig schwere finanzielle Verluste verursachen.

In dieser Arbeit stellen wir zwei systematische Ansätze zur zuverlässigen und therotisch fundierten
Verifikation verteilter Blockchain-Anwendungen vor. Dazu betrachten wir die Kryptowährungen
mit der höchsten Marktkapitalisierung, Bitcoin und Ethereum. In Ethereum werden verteilte
Anwendungen als Smart Contracts realisiert. Das sind reaktive Programme, die in Ethereums
mächtiger Skriptsprache geschrieben sind. Bitcoin hingegen unterstützt nur eine simple Skriptspra-
che, und komplizierte Anwendungen werden als kryptographische Protokolle realisiert, die die
gewünschte Funktionalität letztendlich auf die Ausführung mehrerer einfacher Smart Contracts
zurückführen. Daher liegt die Herausforderung bei der Verifizierung verteilter Anwendungen in
Ethereum in der Charakterisierung und Abstraktion der Semantik von Ethereums Skriptsprache,
während dies in Bitcoin eine systematische Analyse kryptographischer Protokolle erfordert.

In dieser Dissertation formalisieren wir zunächst die vormals unterspezifizierte Semantik von Ethe-
reums Skriptsprache EVM-Bytecode und implementieren die Semantik in dem Beweisassistenten
F . In diesem Zusammenhang charakterisieren wir relevante generische Sicherheitseigenschaften
von Smart Contracts, welche reale Angriffsszenarien ausschließen.

Anschließend geben wir einen Überblick über automatisierte statische Analysetools für Ethereum
Smart Contracts, und diskutieren Schwachstellen in den semantischen Grundlagen dieser Tools,
sowie deren praktische Auswirkungen auf die Analyseergebnisse. Davon motiviert präsentieren
wir unser eigenes Analysetool, welches beweisbare Sicherheitsgarantien liefert und gleichzeitig
eine konkurrenzfähige Performance zeigt. In diesem Zuge entwickeln wir auch ein allgemeines
Framework für die modulare Entwicklung automatischer statischer Analysetools.

Abschließend untersuchen wir die Sicherheit von Payment Channel Networks für Bitcoin. Pay-
ment Channel Networks sind Protokolle für effiziente und kostengünstige Zahlungen zwischen
Bitcoin-Nutzern und damit ein vielversprechender Lösungsansatz für die Skalierbarkeitsprobleme
von Bitcoin. Wir beschreiben ein Sicherheitsproblem der bestehenden Implementierung dieser
Protokolle in Bitcoin und geben eine formale Charakterisierung relevanter Sicherheits- und
Anonymitätskonzepte. Zum Abschluss entwickeln wir ein kryptographisches Primitiv für die
Konstruktion von Payment Channel Networks mit formalen Sicherheitsgarantien.

vii

Abstract

Cryptocurrencies do not only allow for money transfers in the absence of a trusted third party but
also enable the execution of distributed applications. Due to the rapid pace of development of
cryptocurrencies, the foundations of such applications have not been rigorously studied. This is
particularly problematic since in these applications, real money is at stake, and security breaches
regularly cause severe financial losses.

In this thesis, we present two systematic approaches to reliably verify the security of distributed
blockchain applications based on formal foundations. To this end, we focus on the cryptocur-
rencies with the highest market capitalization, Bitcoin and Ethereum. In Ethereum, distributed
applications are realized as smart contracts, reactive programs written in Ethereum’s expressive
scripting language. In contrast, Bitcoin supports only a basic scripting language, and advanced
applications are realized as peer-to-peer cryptographic protocols that resort to the execution of
simple smart contracts in case of disputes among peers. As a result, the challenge in verifying
distributed applications on the Ethereum blockchain lies in the study and abstraction of the
semantics of Ethereum’s evolved scripting language, whereas Bitcoin, the study of distributed
applications, requires a systematic analysis of the cryptographic protocols.

In the thesis, we first formalize the formerly under-specified semantics of Ethereum’s native smart
contract language EVM bytecode and implement the semantics in the proof assistant F . In this
context, we formally characterize relevant generic properties for smart contract security, which
capture real-world attack scenarios.

We then survey existing automated static analyzers for Ethereum smart contracts unveiling the
weaknesses in the semantic foundations of these tools and the practical impact of these weaknesses
on the analysis results. Based on these findings, we propose our own automatic static analysis tool
for Ethereum smart contracts, which comes with a rigorous soundness proof while still showing
competitive performance. In this course, we also propose a general framework for the modular
and semantic-driven development of automatic static analyzers.

Finally, we study the security of payment channel networks for Bitcoin. Payment channel
networks are distributed protocols that allow for efficient and cheap payments between Bitcoin
users and offer a promising solution to Bitcoin’s scalability problems. We unveil a security issue
in Bitcoin’s existing payment channel network implementation and formally characterize the
relevant security and privacy notions in this context. We further develop a cryptographic primitive
for the construction of payment channel networks with formal security guarantees.

ix

List of Publications

[GMS18b] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A Semantic Frame-
work for the Security Analysis of Ethereum Smart Contracts. In International
Conference on Principles of Security and Trust - 7th International Conference,
POST 2018, pages 243-269. Springer, 2018.

[GMS18a] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. Foundations
and Tools for the Static Analysis of Ethereum Smart Contracts. In 30th
International Conference on Computer Aided Verification, CAV 2018, pages
51-78. Springer, 2018.

[MMSS+19] Giulio Malavolta, Pedro Moreno Sanchez, Clara Schneidewind, Aniket Kate,
and Matteo Maffei. Anonymous Multi-Hop Locks for Blockchain Scalability
and Interoperability. In The Network and Distributed Systems Symposium,
NDSS 2019. 2019.

[SSM20] Clara Schneidewind, Markus Scherer, and Matteo Maffei. The Good, The Bad
and The Ugly: Pitfalls and Best Practices in Automated Sound Static Analysis
of Ethereum Smart Contracts. In International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, pages 212-231. Springer, 2020.

[SGSM20] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei.
eThor: Practical and Provably Sound Static Analysis of Ethereum Smart Con-
tracts. In 27th ACM Conference on Computer and Communications Security,
CCS 2020. ACM 2020.

xi

Contents

Kurzfassung vii

Abstract ix

List of Publications xi

Contents xiii

1 Introduction 1
1.1 Security Issues in Distributed Blockchain Applications 2
1.2 Methodology . 9
1.3 Contributions . 10

2 Semantic Foundations for Ethereum Smart contracts 13
2.1 Introduction . 14
2.2 Background on Ethereum . 16
2.3 Small-Step Semantics . 18
2.4 Security Definitions . 28
2.5 Conclusions . 38

3 Trends and Challenges in the Security Analysis of Ethereum Smart Contracts 39
3.1 Introduction . 40
3.2 Trends in Security-enhancing Tools for Ethereum Smart Contracts 41
3.3 State of the Art in Automated Sound Static Analysis of Ethereum Smart Contracts 46
3.4 Challenges in Sound Smart Contract Verification 47
3.5 Conclusion . 54

4 eThor: Practical and Provably Sound Static Analysis of Ethereum Smart Con-
tracts 57
4.1 Introduction . 58
4.2 Static Analysis of EVM Bytecode . 60
4.3 HoRSt: A Static Analysis Language . 69
4.4 Implementation & Evaluation . 71
4.5 Discussion . 76

xiii

4.6 Conclusion . 77

5 Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability 79
5.1 Introduction . 80
5.2 Context: Payment Channel Networks . 82
5.3 Wormhole Attack in Existing PCNs . 84
5.4 Definition . 86
5.5 Constructions . 90
5.6 Performance Analysis . 95
5.7 Applications . 97
5.8 Related Work . 99
5.9 Conclusion . 100

6 Conclusion and Directions for Future Research 103
6.1 Conclusion . 103
6.2 Application to Recent Trends in Decentralized Finance 104
6.3 Directions for Future Work . 106

List of Figures 109

List of Tables 111

Bibliography 113

A Appendix to Chapter 2 127
A.1 Formalization . 127
A.2 Small-step Semantics . 131
A.3 EVM Changes . 157
A.4 Auxiliary Definitions . 167
A.5 Transaction Execution . 168
A.6 Properties of the Small-step Semantics . 171
A.7 Proof Technique for Call Integrity . 193

B Appendix to Chapter 3 201
B.1 Soundness Issues in Related Work . 201

C Appendix to Chapter 4 217
C.1 HoRSt . 217
C.2 Theoretical Foundations of eThor . 223
C.3 Checking Security Properties with eThor . 244

D Appendix to Chapter 5 255
D.1 Wormhole Attack . 255
D.2 AMHLs Correctness . 259
D.3 Schnorr-based Scriptless Construction . 261

D.4 Comparison of Privacy Notions and Guarantees 262
D.5 Security Analysis . 262
D.6 PCNs from Multi-Hop Locks . 276

CHAPTER 1
Introduction

Cryptocurrencies emerged in the last ten years as a new, groundbreaking technology that enables
distributed consensus in the presence of financial incentives. Cryptocurrencies1 promise openly
accessible systems for fully distributed money transfers and computation whose correctness
can be publicly verified. Starting with the release of Bitcoin [Nak08] in 2008, cryptocurrencies
currently have a market capitalization of over 300 billion dollars2.

This economic interest in cryptocurrencies has been driving the development of many new
applications. However, this fast-paced development has, in most cases, been lacking solid
theoretical foundations. As a result, many deployed applications show severe security issues,
which in the context of cryptocurrencies can immediately lead to monetary losses or a loss in
the privacy of the users. Such security issues do not only constitute a threat to the affected
parties but, beyond that, generally undermine the users’ trust in the individual application and
also in cryptocurrencies as a whole. An example of this is the famous DAO hack [the16] in the
cryptocurrency Ethereum, which caused a 20% decrease in the currency’s value.

To counter this trend, it is crucial to develop solid theoretical foundations for cryptocurrencies
and to use these foundations to analyze the security of existing systems, enhance the security of
these systems and create new systems that are secure by design.

In this thesis, we will focus on two main challenges in the domain of cryptocurrencies, 1) the
security of Ethereum smart contracts and 2) the security of off-chain protocols:

1. The blockchain consensus mechanism lays the ground for arbitrary, distributed computation.
This, in particular, allows users to implement advanced distributed applications in the form
of reactive programs, so-called smart contracts when supported by the underlying system.

1We in this thesis focus on such cryptocurrencies built on permissionless blockchains and hence will refer with
the term cryptocurrency to such systems.

2As of October 25th, 2020. Numbers are taken from https://coinmarketcap.com.

1

https://coinmarketcap.com

1. INTRODUCTION

Ethereum [Woo14a] was the first cryptocurrency to come with a (quasi3) Turing complete
language to support the development of such smart contracts. As a consequence, a versatile
environment of applications emerged ranging from trading platforms [NGW17, MM17],
over elections [MSH17] to auctions [HSLC17, GY18], just to mention a few examples.
Using Ethereum as an openly accessible distributed computation platform, however, also
comes with high-security risks. The integrity of Ethereum smart contracts is enforced as
part of the consensus that makes applications immutable once deployed on the blockchain
and their execution effects (which involve money transfers) irreversible. This does not
only amplify the effects of programming bugs but also incentivizes attackers to develop
malicious smart contracts to deceive honest users. It is the subject of ongoing research
efforts in the community to answer the question of how to create an environment for jointly
executed smart contracts that at the same time satisfies the practical security needs of the
users.

2. The consensus mechanism of Ethereum and Bitcoin [Nak08] suffers from substantial
performance problems. This manifests in a low transaction throughput which stays way
behind banking systems such as Visa4. In addition to that, Bitcoin and Ethereum require
the consensus parties to store the full transaction history of the system what makes the
extensive use of these systems in the long run increasingly costly for their users in terms
of storage consumption. One way to approach these issues is to reduce the usage of the
blockchain-based consensus mechanism in favor of light-weight cryptographic peer-to-peer
protocols that only rely on the blockchain as a safe fallback mechanism. In this way, the
transaction load can be substantially reduced since the blockchain is (after an initial set-up)
only used in case of a dispute. However, such layer-two or off-chain approaches introduce
another layer of complexity and, with that, new security risks. For maintaining the security
as given by the on-chain enforcement, the replacing off-chain protocols need to be carefully
designed and proven correct.

1.1 Security Issues in Distributed Blockchain Applications

In the following, we will discuss concrete security issues that arise in distributed blockchain
applications. We overview the cases of Ethereum smart contracts, where security issues mainly
arise from the semantic subtleties of Ethereum’s built-in program execution engine and of
off-chain protocols (in Bitcoin), where security vulnerabilities are introduced at the level of
cryptographic protocols built on top of the blockchain.

3Supporting a Turing complete instruction set, Ethereum enforces termination by bounding the number of
computation steps based on a prespecified resource limit.

4Visa supports peaks of up to 47,000 transactions per second[vis] as compared to 7 transactions per second in
Bitcoin and 13 transactions per second in Ethereum (Information is taken from https://ycharts.com).

2

https://ycharts.com

1.1. Security Issues in Distributed Blockchain Applications

1.1.1 Ethereum Smart Contracts

The joint execution of Ethereum smart contracts is subject to the so-called Code is law principle5:
Once a smart contract is deployed (which corresponds to a transaction that creates a contract
being appended to the blockchain), its code will be executed according to the Ethereum Virtual
Machine (EVM), a priorly agreed execution environment that is part of the consensus. Since
the execution rules of the EVM are unambiguous, the execution behavior of a smart contract is
well-defined, and hence it is expected to show the behavior as intended by the creator.

However, in practice, the behavior of smart contracts often deviates from the programmers’
intentions what can be traced back to several peculiarities in the smart contract execution behavior
and the way that smart contracts are developed. Smart contracts do not behave like sequential
programs but need to be considered agents that interact with a largely unknown and potentially
hostile environment with which they share state. To support environment interaction, EVM
bytecode, the native low-level programming language of Ethereum smart constructs, supports
special instructions, e.g., accessing blockchain data or calling other contracts. However, due to
its low-level Assembly-like nature, smart contracts are usually not developed in EVM bytecode,
but in other high-level languages (most prominently Solidity [sol19]) and then compiled to
the bytecode format. These high-level languages aim at mimicking well-known programming
languages from the sequential domain (such as JavaScript, Java™, or Python) in order to make
smart contract programming accessible to a wide range of users. This obfuscates the complex,
interactive nature of smart contracts and hence makes it even harder for developers to create
correct contracts. As a result, in practice, one can observe significant gaps between the users’
intuitions about smart contract semantics and the real behavior that a contract shows during
execution on the blockchain.

In conjunction with the trend towards the development of more evolved smart contracts, this
results in a toxic situation for the security of the users of the Ethereum system:

• Ethereum smart contracts are particularly security-critical since they control real money flows.

• Ethereum smart contracts are particularly prone to errors since they are usually complex and
developed in languages that do not assist the design of secure smart contracts.

• Ethereum smart contract bugs are persistent since they cannot be patched once a program is
deployed on the blockchain.

These are not only theoretical threats but practical problems, as demonstrated by infamous hacks,
such as the DAO hack [the16] or the Parity hacks [par17a, par17b] which caused losses of several
millions of dollars. To illustrate how the previously described factors facilitate real-work attacks,
we will in the following describe the essence of the DAO hack where an attacker in 2016 stole

5The term ’code-is-law’ was initially introduced by the law professor Lawrence Lessing [Les99] for characterizing
the rules of cyberspace and their social implications. Nowadays, it is heavily adopted by the blockchain community to
characterize the self-enforcing and immutable character of smart contracts.

3

1. INTRODUCTION

1
x

2
4

x

3
5

Figure 1.1: Simplified DAO contract.

more than 60 Million dollars, and that resulted in a hard fork - a change in consensus - on the
Ethereum blockchain.

The DAO Hack. The DAO (short for decentralized autonomous organization) contract was a
smart contract implementing a form of venture capital fund that allowed users to invest money and
later retrieve back their investments. Due to a programming bug in the withdrawal functionality
of the contract, an attacker could retrieve all investments made by other users. We illustrate the
main workings of this attack with a simplified example in Figure 1.1. The depicted contracts are
written in the high-level language Solidity. Solidity is developed by the Ethereum foundation and
features a syntax that is inspired by JavaScript. Following the paradigm of object orientation,
Solidity uses the concept of a contract analogously to the notion of a class in object-oriented
programming. Contracts in Ethereum are entities that hold code and persistent storage containing
the content of global contract fields such as the bal field of the DAO contract. This field here is a
mapping from entity addresses to respective investments made by these entities. In Ethereum, all
entities (users as well as smart contracts) are identified by 160-bit addresses that, in the case of
users, correspond to cryptographic public keys. Apart from that, no explicit distinction between
users and contracts is made, but users are considered entities without contract code. Consequently,
users can (using their private key) initiate and authorize transactions to other entities. Such
transactions also trigger the execution of the entity’s code – which will have no effect in users’
case but will initiate code execution in the case of smart contracts. To this end, transactions can
also specify an input that is accessible by the triggered smart contract code. In Solidity this input
is used to encode the distinct function to be executed and the arguments to the function.

It is important to note that one consequence of this architecture is that in Ethereum there is no
clear distinction between the invocation of a contract function and the transfer of money. In
particular, every contract invocation can potentially transfer money, and every money transfer can
potentially trigger the execution of code. To this end Solidity supports the concept of a fallback
function, a function without names or arguments (as present in the contract Mallory). This
function contains the code that will get executed if the invocation of a contract (potentially due to
a money transfer) does not specify a valid contract function to be executed. To further control the
way that contracts can be invoked, Solidity provides modifiers that restrict the accessibility of
functions: The modifier public indicates that the function can be invoked by any other user

4

1.1. Security Issues in Distributed Blockchain Applications

or contract (as opposed to private functions that can only be invoked by the contract itself).
The modifier payable denotes that money can be transferred along with the invocation of the
function. Functions that are not explicitly marked to be payable will immediately throw an
exception when being invoked with a positive amount of money.

The simple DAO contract depicted in Figure 1.1 supports two main functionalitiies: Users
can invest money (invest()) and withdraw previously invested money (withdraw()). To
this end, whenever the invest() function is invoked, the money transferred along with the
invocation (accessible by the special variable msg.value) is recorded in the mapping bal
for the investing entity (identified by the address of the sender as accessible by msg.sender).
When a user calls the withdraw() function, the money as recorded in the bal mapping will
be transferred back to the sender, and the bal mapping will be updated accordingly. To initiate
the money transfer Solidity’s call construct is used. This construct reflects the basic contract
interaction mechanism as supported by the low-level EVM bytecode. This mechanism does not
distinguish between contract invocation and money transfer but simply initiates a transaction to
the entity identified by the address msg.sender with the amount bal[a].

This semantic subtlety can be exploited by an attacker that deploys a malicious contract Mallory
to first make a small investment to the DAO contract (1) that they later withdraw (2). When the
withdraw() function of the DAO contract calls back to the sender (Mallory, 3), not only
the corresponding amount of Ether is transferred, but also the fallback function of Mallory is
executed. Mallory implements this function to call the DAO’s withdraw() function (4),
thereby reentering the DAO contract. Since at this point the balance of Mallory in the bal
mapping has not been updated yet, another value transfer to Mallory will be initiated (5). By
proceeding in this way, Mallory can drain all funds of the DAO contract.

The depicted attack is an example of how standard intuitions from (sequential) programming
do not apply to smart contracts: In Ethereum, one needs to consider that a contract invocation
hands over the control to a (partly) unknown environment that can potentially schedule arbitrary
contract invocations – even before the original contract execution was completed. This is since
smart contracts are system entities that can be referenced by their addresses and hence are not
necessarily known at the point of contract creation. This non-standard feature is particularly
hard to handle for programmers since Ethereum smart contracts lack a clear distinction between
money transfers and code invocation. While this can be considered a questionable decision in the
design of the Ethereum virtual machine, the resulting issues are aggravated by the fact that the
Solidity language does not properly reflect these particularities of the semantics but instead tries
to employ standard intuitions from sequential programming.

The example of the DAO illustrates well how the combination of programmers with lacking
domain knowledge, a non-standard execution model, and non-suitable programming languages
can lead to severe security flaws that have, in the context of cryptocurrencies, far-reaching
consequences. Following the consensus mechanism and the resultant Code is law principle, the
extensive money theft conducted during the DAO attack should have been irreversible. However,
this incident initiated a heated discussion in the Ethereum community and finally resulted in
a hard fork of the Ethereum blockchain [har16]: A majority of the users agreed to change the
consensus rules such that the effects of the DAO attack were ignored. This technically led to

5

1. INTRODUCTION

a split of Ethereum into two currencies, one following the old consensus rules (including the
effects of the DAO), called today Ethereum Classic, and another currency (that is still called
Ethereum) that follows the new consensus rules. Such hard forks sustainably erode the trust in
systems like Ethereum because they undermine the main security promise of blockchain-based
cryptocurrencies to enforce upfront agreed consensus rules.

To prevent such incidents, it is hence of paramount importance to provide the users of Ethereum
with infrastructure and tools that allow them to ensure that the smart contracts that they create and
that they interact with show the behavior that they expect. To this end, it is crucial to generically
characterize the dangerous behavior of smart contracts that users might want to prevent and to
enable the users to automatically and reliably check for the absence of such behavior.

1.1.2 Off-chain Protocols

In contrast to Ethereum, the focus of Bitcoin is on implementing a distributed monetary system. To
this end, Bitcoin supports a very limited scripting language that is used to express conditions on the
validity of a financial transaction. This focus on financial transactions urges the comparison with
centralized payment systems, such as Visa. However, this comparison highlights the scalability
issues of Bitcoin (and other cryptocurrencies that rely on similar consensus mechanisms): The
transaction throughput of Bitcoin is limited to approximately 7 transactions per second, as
opposed to Visa that can handle peaks up to 47,000 transactions per second6.

This is an inherent limitation to Bitcoin’s proof of work (PoW) consensus mechanism that relies
on users to solve computationally hard puzzles to include new transactions and thereby advance
the system. This procedure is not only time-consuming as such but adds an additional time
overhead since the system requires some time before converging towards a stable state in which a
transaction can be considered complete.

Further, cryptocurrencies such as Bitcoin require that all users of the system save the whole
transaction history in order to verify the validity of new transactions. With a growing number of
transactions, this becomes a non-negligible and constantly deteriorating burden for the users that
hinders the accessibility of such cryptocurrencies.

These problems limit the potential of Bitcoin (and similar cryptocurrencies) to scale to a large
number of users and transactions in the long run. To still enable the large-scale deployment of
such cryptocurrencies, it is crucial to find principled solutions to these problems that ideally do
not require changes to the consensus of the deployed systems to avoid hard forks. In contrast to
several proposals that rely on a change in the consensus [LNZ+16, BGM16] (so called layer-one
solutions), payment channel networks (PCNs) promise to alleviate scalability issues while staying
compatible with existing cryptocurrencies. 7

6See Footnote 4 This limititation, however, only affects the transaction throughput, not the the transaction volume.
7Even though PCNs allow for an enormous increase in the transaction throughput, they come with other limitations.

In particular, they require users to (temporarily) lock funds on-chain and by this hinder large transaction volumes.
For a short comparison with a recently proposed layer-two solution, so-called rollups, that does not come with this
limitation, we refer the reader to Section 6.2.

6

1.1. Security Issues in Distributed Blockchain Applications

 Owned by AliceOwned by
Bob

Blockchain

Payment Channel

Deposit Deposit

...

Off-chain renegotiation of balance distribution

Bob Alice

Figure 1.2: Illustration of the workings of payment channel networks

Payment Channel Networks. The general idea of PCNs is that it should be possible to perform
simple payments between honest users in a peer-to-peer manner without recording each of these
transactions individually on the blockchain. Instead, the blockchain should only be leveraged to
resolve conflicts in the case of a dispute. This would significantly lower the transaction load on
the blockchain and hence mitigate the scalability problems.

The key concept of PCNs is two-party payment channels which allow for such simple money
transfers between the involved parties. We illustrate the main workings of payment channels
in Fig. 1.2: The parties (here Alice and Bob) deposit a certain amount of money on the blockchain
and then negotiate in a peer-to-peer protocol the ownership distribution of the deposited money.
Payments between the parties then correspond to the renegotiation of the ownership distribution.
In the process of renegotiation, the involved parties exchange information that makes the outcome
of the negotiation enforceable on the blockchain so that in case that a party stops collaborating, the
other party can publish a transaction that pays out the deposits according to the last agreed-upon
distribution.

Since payment channels require deposits and temporarily lock the money of users, it is not
feasible for users to maintain payment channels with all other users with whom they (potentially)
want to exchange money. In order to solve this problem, payment channels are extended to PCNs
in which payments can be routed through intermediate users that connect the sender and the
receiver via (two-party) payment channels.

However, performing such multi-hop payments in a PCN, requires to use an involved multi-party
protocol: It needs to be ensured that intermediate users 1) cannot steal the transferred money 2)
cannot lose money, and 3) have an incentive to participate in the payment. This is particularly
challenging since it always needs to be taken into account that users may stop collaborating (or
simply go offline).

To illustrate the security issues that can arise in PCNs, we in the following describe the wormhole
attack on Bitcoin’s Lightning Network [PD] that we recently discovered.

Wormhole Attack. For performing atomic multi-hop payments in the Lightning Network, the

7

1. INTRODUCTION

1

235

$1.3 $1.2 $1.1 $1

$1$1.3

A B C ED

$1.1

4

$1.2

Figure 1.3: Illustration of an honest payment in the Lightning Network

1

234

$1.3 $1.2 $1.1 $1

$1$1.3

A B C ED

Figure 1.4: Wormhole attack on the Lightning Network

intermediate users along a payment path first lock the amount to be transferred in their respective
pairwise payment channels. Locking in this context means that the channel parties renegotiate
the channel balance in a way that only is enforceable once a specific secret (the key) is learned.
In the Lightning Network, the key corresponds to the preimage of a hash value that is chosen by
the sender of the payment. Fig. 1.3 illustrates such a multi-hop payment from A to E using the
parties B, C, and D as intermediaries. Once all parties along the path locked their corresponding
coins, the sender (here A) releases the key to the receiver (here E) of the payment (step 1). With
the knowledge of the key, the receiver E can unlock the conditional payment from D (step 2).
In this process, D learns the key that enables them to unlock them payment from C, and so on,
until the payment from A to B is unlocked (step 5), which concludes the payment.

In order to account for network failures and malicious parties, the payments in the channels are
only temporarily locked and will be released after a predefined timeout. Consequently, if, e.g.,
the intermediate user C does not collaborate in the unlocking phase, the payment to D can still
be enforced on the blockchain, resulting in a payment from D to E, while the payment from A to
C will be rolled back due to the timeout.

To incentivize the participation of intermediate users, payment senders add small payment fees to
the payments that can be kept by the intermediaries when performing the payment. As shown
in Fig. 1.3, A conducts a payment of 1.3 coins, out of which 1 coin will be transferred to E while
the remaining 0.3 coins stay with the intermediate users when forwarding the coins.

The wormhole attack enables malicious intermediate users to steal these payment fees from other

8

1.2. Methodology

users on the path. We illustrate this in Fig. 1.4 where the parties B and D collude in order to
steal the payment fees of C. To this end, D in the unlocking phase, instead of unlocking the
payment from C, forwards the key that they learned from E in step 2 to party B (step 3) who
will conclude the payment with A (step 4). For party C, the payment will timeout, resulting in
C rolling back the forwarded payment and not obtaining any fee, as it would happen in the case
of a failed payment. However, the payment was successful, and B and D in sum gained 0.3 coins
corresponding to their own and the payment fees meant for C.

As a consequence of this attack, honest intermediate users lose their incentive to participate in
multi-hop payments. Since they can be potentially deprived of their payment fee, there is no
reason for honest users to participate as intermediaries in a payment that requires them to lock
some of their coins for a certain amount of time and hence comes with collateral costs. The
wormhole attack is particularly problematic as a victim of the attack cannot distinguish between
the attack scenario and the scenario where the payment failed for legitimate reasons (e.g., because
the receiver went offline). Consequently, there is no way of holding malicious parties accountable
for the attack.

Attacks as the wormhole attack are particularly problematic since they undermine the effectiveness
of PCNs that rely on the broad participation of the users of the cryptocurrency to create a well-
connected network graph and on the willingness of the users to forward payments in this graph.

1.2 Methodology

The presented challenges illustrate the variety of distributed applications in the context of cryp-
tocurrencies. While smart contracts in Ethereum allow for the encoding of arbitrary functionality
that is immediately enforced as part of the consensus mechanism, the example of PCNs motivates
the significance of building applications in the form of cryptographic protocols which only rely
indirectly on the blockchain’s enforcement mechanism. Both forms of applications have in
common that reliable security guarantees are of paramount importance to enable the safe partici-
pation of the application’s users. Simultaneously, the distributed blockchain environment brings
particular challenges to the safe implementation of these applications and increases the potential
for security-critical mistakes. Still, principled theoretical foundations for these applications are in
large parts missing, and in particular, this applies to well-defined security notions. For solving
this situation, it is required to

• Rigorously formalize the workings of distributed applications in cryptocurrencies.

• Formally characterize relevant security properties for distributed applications.

• Design distributed applications that satisfy the formal security properties.

• Give formal proofs for the security of distributed applications.

• Design tools to analyze the security of distributed applications.

9

1. INTRODUCTION

1.3 Contributions

This thesis aims at providing theoretical foundations for the security of distributed blockchain
applications in order to tackle the previously described challenges. To this end, we formalize the
workings of distributed applications and define formal security and privacy properties for them.
We use the developed security notions to pinpoint issues in existing applications and show how
to systematically enhance their security by fixing existing problems, designing tools for formal
security proofs, and finally conducting such formal proofs.

1.3.1 Semantic Foundations for Ethereum Smart Contracts

In Chapter 2 we lay the semantic foundations for Ethereum smart contracts by introducing a
complete small-step semantics for EVM bytecode that is accompanied by a formalization in the
proof assistant F .

The F implementation allows us (via prior compilation to OCaml) to validate the presented
semantics against the official Ethereum test suite and hence to reliably link our formal semantics
to the existing client implementations of the EVM, which constitute the consensus rules of
Ethereum.

Further, with the F implementation, we provide a framework for machine-checked proofs that
can be used to prove properties of individual smart contracts or to reason about the correctness of
analysis techniques for smart contract verification.

Based on the introduced semantics, we give the first formal definitions of crucial security
properties for smart contracts. In particular, we introduce the notion of call integrity that
characterizes the robustness of a contract’s call behavior against the influence of unknown
contracts. This generic property also rules out reentrancy attacks such as the one on the DAO
contract. We further devise a dedicated proof technique for call integrity, and in this course,
formulate the notion of single-entrancy that more specifically characterizes the restrictions on
reentering execution behavior needed to avoid reentrancy attacks. Further, we introduce the
notions of atomicity, and independence from miner controlled parameters, properties that are all
motivated by real-world attacks on Ethereum smart contracts.

1.3.2 Trends and Challenges in the Security Analysis of Ethereum Smart
Contracts

In Chapter 3 we overview the existing approaches taken towards formal verification of Ethereum
smart contracts.

For this purpose, we survey recent theories and tools for formal verification of Ethereum smart
contracts, including a systematization of existing work with an overview of the open problems
and future challenges in the smart contract realm.

Specifically, we discuss the domain-specific challenges that arise in the design of automated
sound static analysis that so far hindered the development of such analyzers. These challenges
can be mainly attributed to the particular language design of EVM bytecode (such as a statically

10

1.3. Contributions

unknown control graph and a non-standard memory layout) and the peculiarities of the distributed
blockchain execution environment (which features many statically unknown components, in
particular, other interacting contracts).

To illustrate the difficulties and pitfalls in this domain, we overview existing automated analyzers
that aim at giving soundness guarantees. We highlight the individual difficulties by giving
examples of unsoundness introduced by these tools in the different stages of the analysis process.

1.3.3 eThor: Practical and Provably Sound Static Analysis of Ethereum Smart
Contracts

In Chapter 4 we present eThor, the first provably sound static analyzer for EVM bytecode.

The core of eThor is a static reachability analysis that soundly abstracts the small-step semantics
of EVM bytecode as Horn clauses. We show this reachability analysis to be sufficient to
verify relevant generic security properties, in particular the single-entrancy property presented
in Chapter 2 that ensures robustness against reentrancy attacks. Further, we illustrate how to
use eThor for verifying contract-specific functional properties that can be expressed in the form
of pre- and postconditions. We highlight how eThor overcomes the domain-specific challenges
discussed in Chapter 3, in particular how eThor soundly abstracts the interaction with statically
unknown contracts while still maintaining reasonable precision.

We provide a formal soundness proof that shows the static reachability analysis of eThor to
approximate the formal semantics of EVM bytecode presented in Chapter 2 soundly. Further, we
show how single-entrancy and other relevant properties can be soundly abstracted in terms of the
reachability analysis.

For developing a robust and practical analyzer that closely follows the reachability analysis as
covered by the soundness proof, we introduce HoRSt, a general framework to specify static
analyses based on Horn clauses and to automatically generate performant analysis tools from
these high-level specifications. For this purpose, HoRSt, on input of the high-level analysis
specification, produces an optimized smt-lib [smt20] encoding suitable for z3 [HB12].

We show how to use HoRSt for implementing the static analysis tool eThor. To systematically eval-
uate eThor, we first experimentally confirm its soundness and assess its precision on the official
EVM tests that we can automatically encode as functional contract properties. Next, we showcase
eThor’s performance by evaluating it against the state-of-the-art analyzer ZEUS [KGDS18a] on
the data set of real-world contracts presented in [KGDS18a]. Even though ZEUS claims to be
sound, in our evaluation, ZEUS shows a striking specificity (i.e., completeness) of 99.8%, but a
recall of only 11.4% – which empirically refutes ZEUS’ soundness claim. In contrast, eThor still
achieves a specificity of 80.4% while being sound (hence having a recall of 100%). Consequently,
eThor with an F-measure of 89.1%, shows a significantly better overall performance than ZEUS
with an F-measure of 20.4%.

11

1. INTRODUCTION

1.3.4 Anonymous Multi-Hop Locks for Blockchain Scalability and
Interoperability

In Chapter 5 we analyze the security of existing PCNs and devise a novel cryptographic primitive
that captures the core security and privacy requirements for safe payments in PCNs.

In particular, we report a new attack on PCNs (the wormhole attack), enabling attackers to steal
payment fees from honest users in a multi-hop payment. Since payment fees serve as an incentive
for users to participate as intermediate users in multi-hop payments, this attack undermines
the motivation of honest users to take part in payments in the first place. We could show this
attack not only to apply to Bitcoin’s Lightning Network but to be an inherent limitation of PCNs
(following the definition in [MMSK+17]) where the sender does not know the intermediate users
along the path to the receiver.

To systematically overcome this security limitation, we introduce a new cryptographic primitive
called anonymous multi-hop lock (AMHL). We give a concise characterization of the primitive’s
security requirements in the UC framework [Can01] and show how this allows for using AMHL
as a building block in the construction of secure PCNs based on blockchains.

The AMHL primitive assumes the sender’s knowledge of the payment path and an initial commu-
nication phase between the sender and the intermediate users. We prove this additional round of
communication necessary for avoiding the wormhole attack by establishing a lower bound on the
communication complexity of secure PCNs that follow the definition from [MMSK+17].

Finally, we show how to realize the AMHL primitive in practice. To this end, we demonstrate
that a AMHL can be realized in any cryptocurrency whose scripting language supports (linearly)
homomorphic one-way functions. Further, we show that AMHLs can also be realized in scriptless
settings – without making use of a specific scripting language, but by encoding into the transaction
signatures. This approach is of special interest because it reduces the transaction size and,
consequently, the blockchain load and at the same time ensures the fungibility of the currency,
making payment channel transactions indistinguishable from other transactions. We present a
concrete construction for realizing AMHLs with the ECDSA signature scheme. Since this scheme
is used for transaction signatures in most prominent cryptocurrencies, this construction makes
AMHLs compatible with the vast majority of cryptocurrencies (including Bitcoin and Ethereum).

As a consequence, AMHLs have already been implemented and tested in Bitcoin’s Lightning
Network [Froa, Frob].

12

CHAPTER 2
Semantic Foundations for Ethereum

Smart contracts

Abstract

Smart contracts are programs running on cryptocurrency (e.g., Ethereum) blockchains, whose
popularity stems from the possibility to perform financial transactions, such as payments and
auctions, in a distributed environment without the need for any trusted third party. Given their
financial nature, bugs or vulnerabilities in these programs may lead to catastrophic consequences,
as witnessed by recent attacks. Unfortunately, programming smart contracts is a delicate task that
requires strong expertise: Ethereum smart contracts are written in Solidity, a dedicated language
resembling JavaScript, and shipped over the blockchain in the EVM bytecode format. In order to
rigorously verify the security of smart contracts, it is of paramount importance to formalize their
semantics as well as the security properties of interest, in particular at the level of the bytecode
being executed.

In this chapter, we present the first complete small-step semantics of EVM bytecode, which we
formalize in the F proof assistant, obtaining executable code that we successfully validate against
the official Ethereum test suite. Furthermore, we formally define for the first time central security
properties for smart contracts, such as call integrity, atomicity, and independence from miner-
controlled parameters. This formalization relies on a combination of hyper- and safety properties.
Along with this work, we identified various mistakes and imprecisions in existing semantics and
verification tools for Ethereum smart contracts, thereby demonstrating once more the importance
of rigorous semantic foundations for the design of security verification techniques.

This chapter presents the first result of the collaboration with Ilya Grishchenko and Matteo
Maffei and was published at the 7th International Conference on Principles of Security and Trust
(POST’18) under the title ‘A Semantic Framework for the Security Analysis of Ethereum Smart
Contracts’ [GMS18b]. It received the EAPLS best paper award of the umbrella conference ETAPS.

13

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

I am responsible for the formalization of the small-step semantics and the security properties, as
well as the corresponding proofs. The F implementation was mostly done by Ilya Grishchenko.
For better illustration of the semantics, figures, and explanations from our invited contribution
‘Foundations and Tools for the Static Analysis of Ethereum Smart Contracts’ [GMS18a] to the
30th International Conference on Computer Aided Verification (CAV 2018) were added to the
background sections. The accompanying appendix contains extended versions of the formalism
and proofs, as well as an updated version of the semantics that accounts for recent changes in the
Ethereum smart contract semantics that were introduced after the publication of the paper.

2.1 Introduction

One of the determining factors for the growing interest in blockchain technologies is the ground-
breaking promise of secure distributed computations, even in the absence of trusted third parties.
Building on a distributed ledger that keeps track of previous transactions and the state of each
account, whose functionality and security is ensured by a delicate combination of incentives and
cryptography, software developers can implement sophisticated distributed, transaction-based
computations by leveraging the scripting language offered by the underlying cryptocurrency.
While many of these cryptocurrencies have an intentionally limited scripting language (e.g.,
Bitcoin [Nak08]), Ethereum was designed from the ground up with a quasi Turing complete
language1. Ethereum programs, called smart contracts, have thus found a variety of appealing
use cases, such as financial contracts [BKT17], auctions [HSLC17], elections [MFSH17], data
management systems [Adh17], trading platforms [NGW17, MM17], permission management
[AEVL16] and verifiable cloud computing [DWA+17], just to mention a few. Given their finan-
cial nature, bugs and vulnerabilities in smart contracts may lead to catastrophic consequences.
For instance, the infamous DAO vulnerability [the16] recently led to a 60M$ financial loss,
and similar vulnerabilities occur on a regular basis [par17a, par17b]. Furthermore, many smart
contracts in the wild are intentionally fraudulent, as highlighted in a recent survey [ABC17].

A rigorous security analysis of smart contracts is thus crucial for the trust of the society in
blockchain technologies and their widespread deployment. Unfortunately, this task is quite
challenging for various reasons. First, Ethereum smart contracts are developed in an ad-hoc
language, called Solidity, which resembles JavaScript but features specific transaction-oriented
mechanisms and a number of non-standard semantic behaviors, as further described in this chapter.
Second, smart contracts are uploaded on the blockchain in the form of Ethereum Virtual Machine
(EVM) bytecode, a stack-based low-level code featuring dynamic code creation and invocation
and, in general, very little static information, which makes it extremely difficult to analyze.

Related Work Recognizing the importance of solid semantic foundations for smart contracts,
the Ethereum foundation published a yellow paper [Woo14b] to describe the intended behavior
of smart contracts. This semantics, however, exhibits several under-specifications and does not
follow any standard approach for the specification of program semantics, thereby hindering

1While the language itself is Turing complete, computations are associated with a bounded computational budget
(called gas), which gets consumed by each instruction thereby enforcing termination.

14

2.1. Introduction

program verification. In order to provide a more precise characterization, Hirai formalizes the
EVM semantics in the proof assistant Isabelle/HOL and uses it for manually proving safety
properties for concrete programs [Hir17a]. This semantics, however, constitutes just a sound
over-approximation of the original semantics [Woo14b]. More specifically, once a contract
performs a call that is not a self-call, it is assumed that arbitrary code gets executed. Consequently,
arbitrary changes to the account’s state and to the global state can be performed. Consequently,
this semantics can not serve as a general-purpose basis for static analysis techniques that might
not rely on the same over-approximation.

Hildebrandt et al. [HSR+18] define the EVM semantics in the K framework [SPY+16] – a
language-independent verification framework based on reachability logics. The authors leverage
the power of the K framework in order to automatically derive analysis tools for the specified
semantics, presenting as an example a gas analysis tool, a semantic debugger, and a program
verifier based on reachability logics. The underlying semantics relies on local rewriting rules
on the system configuration. Since parts of the execution are treated in separation, such as the
exception behavior and the gas calculations, one small-step consists of several rewriting steps,
which makes this semantics harder to use as a basis for new static analysis techniques. This
is relevant whenever the static analysis tools derivable by the K framework are not sufficient
for the desired purposes: for instance, their analysis requires the user to manually specify loop
invariants, which is hardly doable for EVM bytecode and clearly does not scale to large programs.
In recent work [PZS+18], the proposed K semantics is leveraged to generate a deductive verifier
that incorporates domain-specific abstractions for EVM bytecode in order to give improved
performance. Still, all these works concentrate on the semantics of EVM bytecode but do not
study security properties for smart contracts.

Sergey et al. [SH17] compare smart contracts on the blockchain with concurrent objects using
shared memory and use this analogy to explain typical problems that arise when programming
smart contracts in terms of concepts known from concurrency theory. They encourage the
application of state-of-the -rt verification techniques for concurrent programs to smart contracts
but do not describe any specific analysis method applied to smart contracts themselves. Mavridou
et al. [ML18] define a high-level semantics for smart contracts that is based on finite state
machines and aims at simplifying the development of smart contracts. They provide a translation
of their state machine specification language to Solidity, a higher-order language for writing
Ethereum smart contracts, and present design patterns that should help users to improve the
security of their contracts. The translation to Solidity is not backed up by a correctness proof, and
the design patterns are not claimed to provide any security guarantees.

Bhargavan et al. [BDLF+16b] introduce a framework to analyze Ethereum contracts by a trans-
lation into F , a functional programming language aimed at program verification and equipped
with an interactive proof assistant. The translation supports only a fragment of the EVM bytecode
and does not come with a justifying semantic argument.

Luu et al. have recently presented Oyente [LCO+16a], a state-of-the-art static analysis tool for
EVM bytecode that relies on symbolic execution. Oyente comes with a semantics of a simplified
fragment of the EVM bytecode and, in particular, misses several important commands related
to contract calls and contract creation. Furthermore, it is affected by a major bug related to

15

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

calls as well as several other minor ones, which we discovered while formalizing our semantics,
which is inspired by theirs. Oyente supports a variety of security properties, such as transaction
order dependency, timestamp dependency, and reentrancy, but the security definitions are rather
syntactic and described informally. As we show in this chapter, the lack of solid semantic
foundations causes several sources of unsoundness in Oyente.

Our Contributions This chapter lays the semantic foundations for Ethereum smart contracts.
Specifically, we introduce

• The first complete small-step semantics for EVM bytecode;

• A formalization in F of a large fragment of our semantics, which can serve as a foundation for
verification techniques based on encoding into this language [BDLF+16b] as well as machine-
checked proofs for other analysis techniques (e.g., [LCO+16a]). By compiling F to OCaml,
we could successfully validate our semantics against the official Ethereum test suite;

• The first formal definitions of crucial security properties for smart contracts, such as call
integrity, for which we devise a dedicated proof technique, atomicity, and independence
from miner-controlled parameters. Interestingly enough, the formalization of these properties
requires hyperproperties, while existing static analysis techniques for smart contracts rely on
reachability properties and syntactic conditions;

• A collection of examples showing how the syntactic conditions employed in current analysis
techniques are imprecise and, in several cases, unsound, thereby further motivating the need for
solid semantic foundations and rigorous security definitions for smart contracts.

The complete semantics, as well as the formalization in F , are publicly available [GMS18c].

Outline The remainder of this chapter is organized as follows. Section 2.2 briefly overviews the
Ethereum architecture, Section 2.3 introduces the Ethereum semantics and our formalization in
F , Section 2.4 formally defines various security properties for Ethereum smart contracts, and
Section 2.5 concludes highlighting interesting research directions.

2.2 Background on Ethereum

Ethereum

Ethereum is a cryptographic currency system built on top of a blockchain. Similar to Bitcoin,
network participants publish transactions to the network that are then grouped into blocks by
distinct nodes (the so-called miners) and appended to the blockchain using a proof of work
(PoW) consensus mechanism. The state of the system – that we will also refer to as global
state – consists of the state of the different accounts populating it. An account can be either an
external account (belonging to a user of the system) that carries information on its current balance

16

2.2. Background on Ethereum

or a contract account that additionally obtains persistent storage and the contract’s code. The
account’s balances are given in the subunit wei of the virtual currency Ether.2

Transactions can alter the system’s state by either creating new contract accounts or by calling
an existing account. Calls to external accounts can only transfer Ether to this account, but calls
to contract accounts additionally execute the code associated with the contract. The contract
execution might alter the storage of the account or might again perform transactions – we talk
about internal transactions in this case.

The execution model underlying the execution of contract code is described by a virtual state
machine, the Ethereum Virtual Machine (EVM). This is quasi Turing complete as the otherwise
Turing complete execution is restricted by the upfront defined resource gas that effectively limits
the number of execution steps. The originator of the transaction can specify the maximal gas that
should be spent for the contract execution and also determines the gas price (the amount of wei to
pay for a unit of gas). Upfront, the originator pays for the gas limit according to the gas price,
and in case of successful contract execution that did not spend the whole amount of gas dedicated
to it, the originator gets reimbursed with gas that is left. The remaining wei paid for the used gas
is given as a fee to a beneficiary address specified by the miner.

EVM Bytecode

The code of contracts is written in EVM bytecode – an Assembler-like bytecode language. As
the core of the EVM is a stack-based machine, the set of instructions in EVM bytecode consists
mainly of standard instructions for stack operations, arithmetics, jumps, and local memory access.
The classical set of instructions is enriched with an opcode for the SHA3 hash and several opcodes
for accessing the environment that the contract was called in. In addition, there are opcodes
for accessing and modifying the storage of the account currently running the code and distinct
opcodes for performing internal call and create transactions. Another instruction particular to the
blockchain setting is the SELFDESTRUCT code that deletes the currently executed contract -
but only after the successful execution of the external transaction.

Gas and Exceptions The execution of each instruction consumes a positive amount of gas.
There is a gas limit set by the sender of the transaction. Exceeding the gas limit results in an
exception that reverts the effects of the current transaction on the global state. In the case of
nested transactions, the occurrence of an exception only reverts its own effects, but not those of
the calling transaction. Instead, the failure of an internal transaction is only indicated by writing
zero to the caller’s stack.

Solidity

In practice, most Ethereum smart contracts are not written in EVM bytecode directly, but in
the high-level language Solidity, which is developed by the Ethereum Foundation [sol19]. For
understanding the typical problems that arise when writing smart contracts, it is important to
consider the design of this high-level language.

2One Ether is equivalent to 1018 wei.

17

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

Solidity is a so-called “contract-oriented" programming language that uses the concept of class
from object-oriented languages for the representation of contracts. Similar to classes in object-
oriented programming, contracts specify fields and methods for contract instances. Fields can
be seen as persistent storage of a contract (instance), and contract methods can, by default, be
invoked by any internal or external transaction. This can be restricted modifiers, most prominently
public and private that cause an exception upon invocation if certain preconditions are not
met. Functions with a private modifier do so whenever invoked from the outside. Functions
that are not explicitly marked as private default to public and hence do not impose any
restrictions. For interacting with another contract, one either needs to create a new instance of this
contract (in which case a new contract account with the functionality described in the contract
class is created), or one can directly make transactions to a known contract address holding
a contract of the required shape. The syntax of Solidity resembles JavaScript, enriched with
additional primitives accounting for the distributed setting of Ethereum. In particular, Solidity
provides primitives for accessing the transaction and the block information, like msg.sender
for accessing the address of the account invoking the method or msg.value for accessing the
amount of wei transferred by the transaction that invoked the method.

Solidity shows some particularities when it comes to transferring money to another contract
especially using the provided low-level functions send and call. A value transfer initiated
using these functions is finally translated to an internal call transaction which implies that calling
a contract might also execute code and, in particular, it can fail because the available gas is not
sufficient for executing the code. In addition – as in the EVM – these kinds of calls do not enable
exception propagation so that the caller manually needs to check for the return result. Another
special feature of Solidity is that it allows for defining so-called fallback functions for contracts
that get executed when a call via the send function was performed or (using the call function)
an address is called that, however, does not properly specify the concrete function of the contract
to be called.

2.3 Small-Step Semantics

We introduce a small-step semantics covering the full EVM bytecode, inspired by the one
presented by Luu et al. [LCO+16a], which we substantially revise in order to handle the missing
instructions, in particular contract calls and call creation. In addition, while formalizing our
semantics, we found a major flaw related to calls and several minor ones (cf. Section 2.3.7), which
we fixed and reported to the authors. We refer the reader to Appendix A.1 and Appendix A.2 for
a formal account of the semantic rules and present below the most significant ones.

2.3.1 Preliminaries

In the following, we will use B to denote the set {0, 1} of bits and accordingly Bx for sets of
bitstrings of size x. We further let Nx denote the set of non-negative integers representable by x
bits and allow for implicit conversion between those two representations. In addition, we will use
the notation [X] (resp. L(X)) for arrays (resp. lists) of elements from the set X . We use standard
notations for operations on arrays and lists.

18

2.3. Small-Step Semantics

2.3.2 Global state

As mentioned before, the global state is a (partial) mapping from account addresses (that are
bitstrings of size 160) to accounts. In the case that an account does not exist, we assume it to
map to ⊥. Accounts, irrespectively of their type, are tuples of the form (n, b, stor, code), with
n ∈ N256 being the account’s nonce that is incremented with every other account that the account
creates, b ∈ N256 being the account’s balance in wei, stor ∈ B256 → B256 being the accounts
persistent storage that is represented as a mapping from 256-bit words to 256-bit words and finally
code ∈ [B8] being the contract that is an array of bytes. In contrast to contract accounts, external
accounts have the empty byte array as code. As only the execution of code in the context of the
account can access and modify the account’s storage, the fact that formally external accounts have
persistent storage does not have any effect. In the following, we will denote the set of addresses
with A and the set of global states with Σ, and we will assume that σ ∈ Σ.

2.3.3 Small-Step Relation

In order to define the small-step semantics, we give a small-step relation Γ S → S that
specifies how a call stack S ∈ S representing the state of the execution evolves within one step
under the transaction environment Γ ∈ Tenv.

In Figure 2.1 we give a full grammar for call stacks and transaction environments:

Call stacks S S := EXC :: Splain | HALT(σ, g, d, η) :: Splain | Splain

Plain call stacks Splain Splain := (µ, ι, σ, η) :: Splain

Machine states M µ := (gas, pc, m, i, s)
Execution environments I ι := (actor, input, sender, value, code)

Global states Σ σ
Account states A acc := (n, b, code, stor) | ⊥

Transaction effects N η := (b, L, S†)
Transaction environments Tenv Γ := (o, price, H)

Notations: d ∈ [B8], g ∈ N256, η ∈ N , o ∈ A, price ∈ N256, H ∈ H
gas ∈ N256, pc ∈ N256, m ∈ B256, → B8 i ∈ N256, s ∈ L(B256)

sender ∈ A input ∈ [B8] sender ∈ A value ∈ N256 code ∈ [B8]
b ∈ N256 L ∈ L(Evlog) S† ⊆ A Σ = A → A

Figure 2.1: Grammar for call stacks and transaction environments

Transaction Environments

The transaction environment represents the static information of the block that the transaction
is executed in and the immutable parameters given to the transaction as the gas price or the gas
limit. More specifically, the transaction environment Γ ∈ Tenv = A × N256 × H is a tuple of
the form (o, price, H) with o ∈ A being the address of the account that made the transaction,
price ∈ N256 denoting amount of wei that needs to paid for a unit of gas in this transaction and

19

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

H ∈ H being the header of the block that the transaction is part of. We do not specify the format
of block headers here but assume a set H of block headers.

Call Stacks

A call stack S is a stack of execution states which represents the state of the execution within one
internal transaction. We give a formal definition of the set of possible call stacks S as follows:

S := {EXC :: Splain, HALT(σ, gas, d, η) :: Splain, Splain

| σ ∈ Σ, gas ∈ N, d ∈ [B8], η ∈ N , Splain ∈ L(M × I × Σ × N)}

Syntactically, a call stack is a stack of regular execution states of the form (µ, ι, σ, η) that can
optionally be topped with a halting state HALT(σ, gas, d, η) or an exception state EXC. We
summarize these three types of states as execution states S . Semantically, halting states indicate
regular halting of an internal transaction, exception states indicate exceptional halting, and regular
execution states describe the state of internal transactions in progress. Halting and exception states
can only occur as top elements of the call stack as they represent terminated internal transactions.
Exception states of the form EXC do not carry any information as in the case of an exception,
all effects of the terminated internal transaction are reverted, and the caller state, therefore,
stays unaffected, except for the gas. Halting states instead are of the form HALT(σ, gas, d, η)
specifying the global state σ the execution halted in, the gas gas ∈ N256 remaining from the
execution, the return data d ∈ [B8] and the additional transaction effects η ∈ N of the internal
transaction. The additional transaction effects carry information accumulated during execution
but not influencing the small-step execution itself. Formally, the additional transaction effects are
a triple of the form (b, L, S†) ∈ N = N256 × L(Evlog) × P(A) with b ∈ N256 being the refund
balance that is increased by account storage operations and will finally be paid to the transaction’s
beneficiary, L ∈ L(Evlog) being the sequence of log events that the bytecode execution invoked
during execution and S† ⊆ A being the so-called suicide set – the set of account addresses that
executed the SELFDESTRUCT command and therefore registered their account for deletion.
The information held by the halting state is carried over to the calling state.

The state of a non-terminated internal transaction is described by a regular execution state of
the form (µ, ι, σ, η). The state is determined by the current global state σ of the system as
well as the execution environment ι ∈ I that specifies the parameters of the current transaction
(including inputs and the code to be executed), the local state µ ∈ M of the stack machine, and
the transaction effects η ∈ N collected during execution so far.

Execution Environment

The execution environment ι of an internal transaction specifies the static parameters of the
transaction. It is a tuple of the form (actor, input, sender, value, code) ∈ I = A × [B8] × A ×
N256 × [B8] with the following components:

• actor ∈ A is the address of the account currently executing;

• input ∈ [B8] is the data given as an input to the internal transaction;

20

2.3. Small-Step Semantics

• sender ∈ A is the address of the account that initiated the internal transaction;

• value ∈ N256 is the value transferred by the internal transaction;

• code ∈ [B8] is the code currently executed.

This information is determined at the beginning of an internal transaction execution and it can be
accessed, but not altered during the execution.

Machine State

The local machine state µ represents the state of the underlying state machine used for execution
and is a tuple of the form (gas, pc, m, i, s) where

• gas ∈ N256 is the current amount of gas still available for execution;

• pc ∈ N256 is the current program counter;

• m ∈ B256 → B8 is a mapping from 256-bit words to bytes that represents the local memory;

• i ∈ N256 is the current number of active words in memory;

• s ∈ L(B256) is the local 256-bit word stack of the stack machine.

The execution of each internal transaction starts in a fresh machine state, with an empty stack,
memory initialized to all zeros, and program counter and active words in-memory set to zero.
Only the gas is instantiated with the gas value available for the execution.

2.3.4 Small-Step Rules

In the following, we will present a selection of interesting small-step rules in order to illustrate
the most important features of the semantics.

For demonstrating the overall design of the semantics, we start with the example of the arithmetic
expression ADD performing addition of two values on the machine stack. Note that as the word
size of the stack machine is 256, all arithmetic operations are performed modulo 2256.

ι.code [µ.pc] = ADD
µ.s = a :: b :: s µ.gas ≥ 3 µ = µ[s → (a + b) :: s][pc += 1][gas −= 3]

Γ (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

ι.code [µ.pc] = ADD (|µ.s| < 2 ∨ µ.gas < 3)
Γ (µ, ι, σ, η) :: S → EXC :: S

We use a dot notation to access components of the different state parameters. We name the
components with the variable names introduced for these components in the last section, written
in sans-serif-style. In addition, we use the usual notation for updating components: t[c → v]

21

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

denotes that the component c of tuple t is updated with value v. For expressing incremental
updates in a simpler way, we additionally use the notation t[c += v] to denote that the (numerical)
component of c is incremented by v and similarly t[c −= v] for decrementing a component c of
t.

The execution of the arithmetic instruction ADD only performs local changes in the machine state,
affecting the local stack, the program counter, and the gas budget. For deciding upon the correct
instruction to execute, the currently executed code (that is part of the execution environment)
is accessed at the position of the current program counter. The cost of an ADD instruction is
constantly three units of gas that get subtracted from the gas budget in the machine state. As every
other instruction, ADD can fail due to lacking gas or due to underflows on the machine stack. In
this case, the exception state is entered, and the execution of the current internal transaction is
terminated. For better readability, we use here the slightly sloppy ∨ notation for combining the
two error cases in one inference rule.

A more interesting example of a semantic rule is the one of the CALL instruction that initiates
an internal call transaction. In the case of calling, several corner cases need to be treated, which
results in several inference rules for this case. Here, we only present one rule for illustrating the
main functionality. More precisely, we present the case in that the account that should be called
exists, the call stack limit of 1024 is not reached yet, and the account initiating the transaction
has a sufficiently large balance for sending the specified amount of wei to the called account.

ι.code [µ.pc] = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s
σ(to) = ⊥ |A| + 1 < 1024 σ(ι.actor).b ≥ va aw = M (M (µ.i, io, is), oo, os)

ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

µ.gas ≥ c σ = σ to → σ(to)[b += va] ι.actor → σ(ι.actor)[b −= va]
d = µ.m [io, io + is − 1] µ = (ccall, 0, λx. 0, 0,)

ι = ι[sender → ι.actor][actor → to][value → va][input → d][code → σ(to).code]
Γ (µ, ι, σ, η) :: S → (µ , ι , σ , η) :: (µ, ι, σ, η) :: S

For performing a call, the parameters to this call need to be specified on the machine stack. These
are the amount of gas g that should be given as budget to the call, the recipient to of the call and
the amount va of wei to be transferred with the call. In addition, the caller needs to specify the
input data that should be given to the transaction and the place in memory where the return data of
the call should be written after successful execution. To this end, the remaining arguments specify
the offset and size of the memory fragment that input data should be read from (determined by io
and is), and return data should be written to (determined by oo and os).

Calculating the cost in terms of gas for the execution is quite complicated in the case of CALL
as it is influenced by several factors, including the arguments given to the call and the current
machine state. First of all, the gas that should be given to the call (here denoted by ccall) needs to
be determined. This value is not necessarily equal to the value g specified on the stack but also
depends on the value va transferred by the call and the currently available gas. In addition, as
the memory needs to be accessed for reading the input value and writing the return value, the
number of active words in memory might be increased. This effect is captured by the memory
extension function M . As accessing additional words in memory costs gas, this cost needs to

22

2.3. Small-Step Semantics

be taken into account in the overall cost. The costs resulting from an increase in the number of
active words are calculated by the function Cmem. Finally, there is also a base cost charged for the
call that depends on the value va. As the cost also depends on the specific case for calling that is
considered, the cost calculation functions receive a flag (here 1) as arguments. These technical
details are spelled out in Appendix A.2.

The call itself then has several effects: First, it transfers the balance from the executing account
(actor in the execution environment) to the recipient (to). To this end, the global state is updated.
Here we use a special notation for the functional update on the global state using instead
of []. Second, for initializing the execution of the initiated internal transaction, a new regular
execution state is placed on top of the execution stack. The internal transaction starts in a fresh
machine state at program counter zero. This means that the initial memory is initialized to all
zeros. Consequently, the number of active words in memory is zero as well, and the initial stack is
empty. The gas budget given to the internal transaction is ccall calculated before. The transaction
environment of the new call records the call parameters. This includes the sender that is the
currently executing account actor, the new active account that is now the called account to as well
as the value va sent, and the input data given to the call. To this end, the input data is extracted
from the memory using the offset io and the size is. We use an interval notation here to denote
that a part of the memory is extracted. Finally, the code in the execution environment of the new
internal transaction is the code of the called account.

Note that the execution state of the caller stays completely unaffected at this stage of the execution.
This is a conscious design decision in order to simplify the expression of security properties and
to make the semantics more suitable to abstractions.

Besides CALL there are two different instructions for initiating internal call transactions that im-
plement slight variations of the simple CALL instruction. These variations are called CALLCODE
and DELEGATECALL, which both allow for executing another’s account code in the context of
the caller.

In the case of CALLCODE, the actor of the internal transaction is set to be the caller, which
results in the callee’s code modifying the caller’s state when being executed. This behavior was
intended for using library functionalities implemented in a separate library contract that, e.g.,
transfer money on behalf of the caller.

This idea is pushed even further in the DELEGATECALL instruction. This call type does not
allow for transferring money and executes the callee’s code not only in the caller’s context but
even preserves part of the execution environment of the previous call (in particular, the call
value and the sender information). Intuitively, this instruction resembles adding the callee’s code
to the caller as an internal function so that calling it does not cause a new internal transaction
(even though it formally does). By now, the usage of CALLCODE is deprecated in favor of
DELEGATECALL.

Figure 2.2 summarizes the behavior of the different call instructions in EVM bytecode. The
executed code of the respective account is highlighted in orange, while the accessible account
state is depicted in green. The remaining internal transaction information (as specified in the
execution environment) on the sender of the internal transaction and the transferred value are

23

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

marked in violet. In addition, the picture relates the corresponding changes to the small-step
semantics: the execution of a call transaction adds a new execution state to the call stack while
preserving the old one. The new global state σ records the changes in the accounts’ balances,
while the new execution environment ι determines the accessible account (by setting the actor of
the internal transaction correspondingly), the code to be executed (by setting code) and further
accessible transaction information as the sender, value and input (by setting sender, value and
input respectively). In the case of CALLCODE and DELEGATECALL the global state in the new
execution state stays unchanged due to the absence of money transfers.

caller calleecallercallee (inp)

old caller: caller:

caller calleecallercallee (inp)

old caller: caller:

caller calleecallercallee (inp)

old caller: old caller:

Figure 2.2: Illustration of of the semantics of different call types

Analogously to the instructions for initiating internal call transactions, there is also one instruction
CREATE that allows for the creation of a new account. The semantics of this instruction is similar
to the one of CALL, with the exception that a fresh account is created, which gets the specified

24

2.3. Small-Step Semantics

caller
?

newcaller ()

old caller: caller: ()

Figure 2.3: Illustration of the semantics of the CREATE instruction

transferred value, and that the input provided to this internal transaction, which is again specified
in the local memory, is interpreted as the initialization code to be executed in order to produce the
newly created account’s code as output. In contrast to the call transaction, a create transaction
does not await a return value but only an indication of success or failure.

Figure 2.3 depicts the semantics of the CREATE instruction in a similar fashion as it is done for
the call instructions before. It is notable that the input to the CREATE instruction is interpreted as
code and executed (therefore highlighted in orange) in the context of the newly created contract
(highlighted in green). During this execution, the newly created contract does not have any
contract code itself (therefore depicted in gray), but only after completing the internal transaction
the return value of the transaction will be set as code for the freshly created contract.

For discussing how to return from an internal transaction, we show the rule for returning from a
successful internal call transaction.

ι.code [µ.pc] = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s
flag = σ(to) = ⊥ ? 0 : 1 aw = M (M (µ.i, io, is), oo, os)

ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 1 :: s][pc += 1][gas += gas − c][m → µ.m[[oo, oo + s − 1] → d]]
Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → (µ , ι, σ , η) :: S

Leaving the caller state unchanged at the point of calling has the negative side effect that the cost
calculation needs to be redone at this point in order to determine the new gas value of the caller
state. But besides this, the rule is straightforward: the program counter is incremented as usual,
and the number of active words in memory is adjusted as memory accesses for reading the input
and return data have been made. The gas is decreased, meaning that the overall amount of gas c
allocated for the execution is subtracted. However, as this cost already includes the gas budget
given to the internal transaction, the gas gas that is left after the execution is refunded again. In
addition, the return data d is written to the local memory of the caller at the place specified by oo
and os. Finally, the value one is written to the caller’s stack in order to indicate the success of the
internal call transaction. As the execution was successful, as indicated by the halting state, the
global state and the transaction effects of the callee are adopted by the caller.

25

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

EVM bytecode offers several instructions for explicitly halting (internal) transaction execution.
Besides the standard instructions STOP and RETURN, there is the SELFDESTRUCT instruction
that is very particular to the blockchain setting. The STOP instruction causes regular halting of
the internal transaction without returning data to the caller. In contrast, the RETURN instruction
allows one to specify the memory fragment containing the return data that will be handed to the
caller.

Finally, the SELFDESTRUCT instruction halts the execution and lists the currently executing
account for later deletion. More precisely, this means that this account will be deleted when
finalizing the external transaction, but its behavior during the ongoing small-step execution is not
affected. Additionally, the whole balance of the deleted account is transferred to some beneficiary
specified on the machine stack.

We show the small-step rules depicting the main functionality of SELFDESTRUCT. As for
CALL, capturing the whole functionality of SELFDESTRUCT would require considering several
corner cases. Here we consider the case where the beneficiary exists, the stack does not underflow
and the available amount of gas is sufficient.

ωµ,ι = SELFDESTRUCT
µ.s = aben :: s a = aben mod 2160 σ(a) = ⊥ µ.gas ≥ 5000 g = µ.gas − 5000

σ = σ a → σ(a)[balance += σ.(ι.actor).balance] ι.actor → σ(ι.actor)[balance → 0]
r = (ι.actor ∈ Γ.S†) ? 0 : 24000 η = η[S† → η.S† ∪ {ι.actor}][balance += r]

Γ (µ, ι, σ, η) :: S → HALT(σ , g, , η) :: S

The SELFDESTRUCT command takes one argument aben from the stack specifying the address
of the beneficiary that should get the balance of the account that is destructed. If all preconditions
are satisfied, the balance of the executing account (ι.actor) is transferred to the beneficiary
address, and the current internal transaction execution enters a halting state. Additionally, the
transaction effects are extended by adding ι.actor to the suicide set and by possibly increasing the
refund balance. The refund balance is only increased in case that ι.actor is not already scheduled
for deletion. The halting state captures the global state σ after the money transfer, the remaining
gas g after executing the SELFDESTRUCT and the updated transaction effects η . As no return
data is handed to the caller, the empty byte array is specified as return data in the halting state.

Note that SELFDESTRUCT deletes the currently executing account ι.actor which is not neces-
sarily the same account as the one owning the code ι.code. This might be due to the previous
execution of DELEGATECALL or CALLCODE.

2.3.5 Transaction Execution

The outcome of an external transaction execution does not only consist of the result of the
EVM bytecode execution. Before executing the bytecode, the transaction environment and the
execution environment are determined from the transaction information and the block header. In
the following, we assume T to denote the set of transactions. An (external) transaction T ∈ T ,
similar to the internal transactions, specifies a gas limit, a recipient, and a value to be transferred.

26

2.3. Small-Step Semantics

In addition, it also contains the originator and the gas price that will be recorded in the transaction
environment. Finally, it specifies an input to the transaction and the transaction type that can
either be a call or a create transaction. The transaction type determines whether the input will be
interpreted as input data to a call transaction or as an initialization code for a create transaction.
In addition to the transaction of the environment initialization, some initial changes on the global
state and validity checks are performed. For the sake of presentation we assume in the following
a function initialize (·, ·, ·) ∈ T × H × Σ → (Tenv × S) ∪ {⊥} performing the initialization
phase and returning a transaction environment and initial execution state in the case of a valid
transaction and ⊥ otherwise. Similarly, we assume a function finalize (·, ·, ·) ∈ T × S × N × Σ
that given the final global state of the execution, the accumulated transaction effects and the
transaction, computes the final effects on the global state. These include the deletion of the
contracts from the suicide set and the payout to the beneficiary of the transaction.

Formally we can define the execution of a transaction T ∈ T in a block with header H ∈ H as
follows:

(Γ, s) = initialize (T , H, σ) Γ s :: →∗ s :: final (s) σ = finalize (s , η , T)

σ
T ,H−−−→ σ

where →∗ denotes the reflexive and transitive closure of the small-step relation and the predicate
final (·) characterizes a state that cannot be further reduced using the small-step relation. Note
that to highlight here the overall workings of transaction execution, we omitted some details. In
particular, the execution of an individual transaction cannot be considered in full isolation since
also every block comes with a gas limit that the transactions consume in order of their execution.
For the full formal details we refer to Appendix A.5.

2.3.6 Formalization in F

We provide a formalization of a large fragment of our small-step semantics in the proof assistant
F [fst]. F is an ML-dialect that is optimized for program verification and allows for performing
manual proofs as well as automated proofs leveraging the power of SMT solvers.

Our formalization strictly follows the small-step semantics as presented in this chapter. The
core functionality is implemented by the function step that describes how an execution stack
evolves within one execution state. To this end, it has two possible outcomes: either it performs
an execution step and returns the new call stack or – in the case that a final configuration is
reached (which is a stack containing only one element that is either a halting or an exception
state) – it reports the final state. In order to provide a total function for the step relation, we
needed to introduce a third execution outcome that signalizes that a problem occurred due to
an inconsistent state. When running the semantics from a valid initial configuration, this result,
however, should never be produced. For running the semantics, the function execution is
defined that subsequently performs execution steps using step until reaching the final state and
reports it.

The current implementation encompasses approximately a thousand lines of code. Since F code
can be compiled into OCaml, we validate our semantics against the official EVM test suite [evm].

27

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

Our semantics passes 304 out of 624 tests, failing only in those involving any of the missing
functionalities.

We make the formalization in F publicly available [GMS18c] in order to facilitate the design of
static analysis techniques for EVM bytecode as well as their soundness proofs.

2.3.7 Comparison with the Semantics by Luu et al. [LCO+16a]

The small-step semantics defined by Luu et al. [LCO+16a] encompasses only a variation of
a subset of EVM bytecode instructions (called EtherLite) and assumes a heavily simplified
execution configuration. The instructions covered span simple stack operations for pushing and
popping values, conditional branches, binary operations, instructions for accessing and altering
local memory and account storage, as well as as the ones for calling, returning, and destructing
the account. Essential instructions as CREATE and those for accessing the transaction and block
information are omitted. The authors represent a configuration as a tuple of a call stack of
activation records and the global state. An activation record contains the code to be executed,
the program counter, the local memory, and the machine stack. The global state is modeled as a
mapping from addresses to accounts, with the latter consisting of code, balance, and persistent
storage.

The overall abstraction contains a conceptual flaw, as not including the global state in the
activation records of the call stack does not allow for modeling that, in the case of an exception
in the execution of the callee, the global state is rolled back to the one of the caller at the point
of calling. In addition, the model cannot be easily extended with further instructions – such as
further call instructions or instructions accessing the environment – without major changes in
the abstraction as a lot of information, e.g., the one captured in our small-step semantics in the
transaction and the execution environment, are missing.

2.4 Security Definitions

In the following, we introduce the semantic characterization of the most significant security
properties for smart contracts, motivating them with typical vulnerabilities recurring in the wild.

For selecting those properties, we inspected the classification of bugs performed in [LCO+16a]
and [ABC17].

For the presented bugs, we synthesized the semantic security properties that were violated. In
this process, we realized that some bugs share the same underlying property violation and that
other bugs can not be captured by such generic properties – either because they are of a purely
syntactic nature or because they constitute a derivation from the desired behavior that is particular
to a specific contract.

Preliminary Notations Formally, we represent a contract as a tuple of the form (a, code) where
a ∈ A denotes the address of the contract and code ∈ [B] denotes the contract’s code. We denote
the set of contracts by C and assume functions address (·) and code (·) that extract the contract
address and code respectively.

28

2.4. Security Definitions

As we will argue about contracts being called in an arbitrary setting, we additionally introduce
the notion of reachable configuration. Intuitively, a pair (Γ, S) of a transaction environment Γ
and a call stack S is reachable if there exists a state s such that S, s are the result of initialize (T ,
H , σ), for some transaction T , block header H , a global state σ, and S is reachable from s.

Definition 1 (Reachable Configuration). The pair (Γ, A) ∈ Tenv × S is a reachable configuration
if for some transaction T ∈ T , some block header H ∈ H and some global state σ ∈ A → A of
the blockchain it holds that

(Γ, s) = initialize (T , H, σ) ∧ Γ s :: →∗ S

In order to give concise security definitions, we further introduce and assume throughout the
chapter, an annotation to the small step semantics in order to highlight the contract c that is
currently executed. Specifically, we let

Sn := {EXCc :: Splain, HALT(σ, gas, d, η)c :: Splain, Splain

| σ ∈ Σ, gas ∈ N, d ∈ [B8], η ∈ N , Splain ∈ L((M × I × Σ × N) × C)}

Next, we introduce the notion of execution trace for smart contract execution. Intuitively, a trace
is a sequence of actions. In our setting, the actions to be recorded are composed of an opcode,
the address of the executing contract, and a sequence of arguments to the opcode. We denote
the set of actions with Act. Accordingly, every small step produces a trace consisting of a single
action. Again, we lift the resulting trace semantics to multiple execution steps that then produce
sequences of actions π ∈ L(Act). We only report the trace semantics definition for the CALL
case here, referring to Appendix A.2 for further details.

ι.code [µ.pc] = CALL
µ.s = g :: to :: va :: io :: is :: oo :: os :: s · · · µ = · · · ι = · · · σ = · · ·

Γ (µ, ι, σ)c :: S
CALLc(g,to,io,is,oo,os)−−−−−−−−−−−−−→ (µ , ι , σ)(to,σ(to).code) :: (µ, ι, σ)c :: S

We will write π ↓callsc to denote the projection of π to calls performed by contract c, i.e., actions
of the form CALLc(g, to, va, io, is, oo, os), CREATEc(va, io, is),
CALLCODEc(g, to, va, io, is, oo, os), and DELEGATECALLc(g, to, io, is, oo, os).

2.4.1 Call Integrity

Dependency on Attacker Code One of the most famous bugs of Ethereum’s history is the so-
called DAO bug that led to a loss of 60 million dollars in June 2016 [the16] and that we overviewed
in Chapter 1. This bug is in the literature classified as reentrancy bug [ABC17, LCO+16a] as
the affected contract was drained out of money by subsequently reentering it and performing
transactions to the attacker on behalf of the contract. More generally, the problem of this contract

29

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

was that malicious code was able to affect the outgoing money flows of the contract. The cause
of such bugs mostly roots in the developer’s misunderstanding of the semantics of Solidity’s call
primitives. In general, calling a contract can invoke two kinds of actions: Transferring Ether to
the contract’s account or Executing (parts of) a contract’s code. In particular, the call construct
invokes the called contract’s fallback function when no particular function of the contract is
specified (Section 2.2). Consequently, the developer may expect an atomic value transfer where
potentially another contract’s code is executed.

Call Integrity In order to protect from this class of bugs, it is crucial to secure the code against
being reentered before regaining control over the control flow. From a security perspective, the
fundamental problem is that the contract behavior depends on untrusted code, even though this
was not intended by the developer. We capture this intuition through a hyperproperty, which we
name call integrity. The idea is that no matter how the attacker can schedule c (call stacks S and
S in the definition), the calls of c (traces π ↓callsc , π ↓callsc) cannot be controlled by the attacker,
even if c hands over the control to the attacker.

Definition 2 (Call Integrity). A contract c ∈ C satisfies call integrity for a set of trusted addresses
AT ⊆ A if for all reachable configurations (Γ, sc :: S), (Γ, s c :: S) with s, s differing only in
the code with address in A/AT , it holds that for all t, t

Γ sc :: S
π−→∗

tc :: S ∧ final (tc) ∧ Γ s c :: S
π−→

∗
t c :: S ∧ final (t c)

=⇒ π ↓callsc= π ↓callsc

2.4.2 Proof Technique for Call Integrity

We now establish a proof technique for call integrity based on local properties that are arguably
easier to verify and that we show to imply call integrity. As a first observation, we identify the
different ways in which external contracts can influence the execution of a smart contract c and
introduce corresponding security properties :

Code Dependency The contract c might access (information on) the code of the untrusted con-
tract via the EXTCODECOPY or the EXTCODESIZE instructions and make his behavior
depend on those values;

Effect Dependency The contract c might call the untrusted contract and might depend on its
execution effects and return value;

Reentrancy The contract c might call the untrusted contract, with the latter influencing the
behavior of the former by performing changes to the global state itself or “on behalf” of c
by reentering it and thereby potentially decreasing the balance of c.

The first two of these properties can be seen as value dependencies and, therefore, can be
formalized as hyperproperties. The first property says that the calls performed by a contract
should not be affected by the effects on the execution state produced by adversarial contracts.

30

2.4. Security Definitions

Technically, we consider a contract c calling an adversarial contract c (captured as Γ sc :: S →
s c :: sc :: S in the premise), which we let terminate in two arbitrary states s , t : we require that
c’s continuation code performs the same calls in both states.

Definition 3 (AT -effect Independence). A contract c ∈ C is AT -effect independent of for a
set of trusted addresses AT ⊆ A if for all reachable configurations (Γ, sc :: S) such that
Γ sc :: S → s c :: sc :: S for some s and address (c) ∈ A/AT , it holds that for all final
states s , t whose global state might differ in all components but the code from the global state of
s,

Γinit s c :: sc :: S
π−→∗

s c :: S ∧ final (s)

∧ Γinit t c :: sc :: S
π−→

∗
t c :: S ∧ final (t)

=⇒ π ↓callsc= π ↓callsc

The second property says that the calls of a contract should not be affected by the code read from
the blockchain (e.g., the code does not branch on code read from the blockchain). To this end
we introduce the notation Γ s :: S

π−→
f

∗
s :: S to denote that the local small-step execution of

state s on stack S under Γ results in several steps in state s producing trace π given that in the
local execution steps of EXTCODECOPY and EXTCODESIZE, which are the operations used
to access the code on the global state, the code returned by these functions is determined by the
partial function f ∈ A → [B] as opposed to the global state. In other words, we consider in the
premise a contract c reading two different codes from the blockchain and terminating in both

runs (captured as Γ sc :: S
π−→
f

∗
s c :: S and Γ sc :: S

π−→
f

∗
s c :: S), and we require that c

performs the same calls in both runs.

Definition 4 (AT -code Independence). A contract c ∈ C is AT -code independent for a set of
trusted addresses AT ⊆ A if for all reachable configurations (Γ, sc :: S) it holds for all local
code updates f , f ∈ A → [B] on A/AT that

Γ sc :: S
π−→
f

∗
s c :: S ∧ final (s) ∧ Γ sc :: S

π−→
f

∗
s c :: S ∧ final (s)

=⇒ π ↓callsc= π ↓callsc

Both these independence properties can be overapproximated by static analysis techniques
based on program dependence graphs [HS09], as done by Joana to verify non-interference in
Java™ [SGG+14]. The idea is to traverse the dependence graph in order to detect dependencies
between the sensitive sources, in our case, the data controlled by the adversary and returned to
the contract, and the observable sinks, in our case, the local contract calls.

The last property constitutes a safety property. Specifically, single-entrancy states that it cannot
happen that when reentering the contract c another call is performed before returning (i.e., after
reentrancy, which we capture in the call stack as two distinct states with the same running contract
c, the call stack cannot further increase).

31

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

Definition 5 (Single-entrancy). A contract c ∈ C is single-entrant if for all reachable configura-
tions (Γ, sc :: S), it holds for all s , s , S that

Γ sc :: S →∗ s c :: S ++ sc :: S

=⇒ ¬∃s ∈ S, c ∈ C. Γ s c :: S ++ sc :: S →∗ s c :: s c :: S ++ sc :: S

The property expresses that after reentering a contract c (in state sc) while executing a call initiated
by the very same contract, it is not possible anymore to perform another internal transaction
(which would result in adding another element sc to the call stack). Note that the call stack
records the sequence of calling states. Hence the suffix sc :: S indicates a pending call initiated
by the execution s of contract c.

This safety property can be approximated by syntactic conditions, for instance, done in the
Oyente analyzer [LCO+16a]. However, a sound approximation proved to be challenging as will
be discussed in Chapter 3.

Finally, the next theorem proves the soundness of our proof technique, i.e., the two independence
properties and the single-entrancy property together entail call integrity.

Theorem 1. [Proof Technique for Call Integrity (Simplified)] Let c ∈ C be a contract and
AT ⊆ A be a set of trusted addresses. If c is AT -code independent, c is AT -effect independent,
and c is single-entrant then c provides call integrity for AT .

Proof Sketch. Let (Γ, sc :: S), (Γ, s c :: S) be reachable configurations such that s, s differ only
in the code with address in AC . We now compare the two small-step runs of those configurations.
Due to AC-code independence, the execution until the first call to an address a ∈ AC produces
the same partial trace until the call to a. Indeed, we can express the runs under different address
mappings through the code update from the AC-code independence property, as long as no call
to one of the updated addresses is performed. When the first call to a ∈ AC is performed, we
know due to single-entrancy that the following call cannot produce any partial execution trace for
any of the runs as this would imply that contract c is reentered and a call out of the contract is
performed. Due to AC-code independence and AC-effect independence, the traces after returning
must coincide till the next call to an address in AC . This argument can be iteratively applied until
reaching the final state of the execution of c.

For the sake of presentation, we slightly simplified the theorem here. For a full statement of the
theorem as well as its detailed proof, we refer the reader to Appendix A.7.

2.4.3 Atomicity

Exception Handling

As discussed in section 2.2, the way exceptions are propagated varies with the way contracts are
called. In particular, in the case of call and send, exceptions are not propagated, but a manual
check for the successful completion of the called function’s execution is required. This behavior
reflects the way exceptions are reported during bytecode execution: Instead of propagating up

32

2.4. Security Definitions

through the call stack, the callee reports the exception to the caller by writing zero to the stack.
In the context of Ethereum, the issue of exception handling is particularly delicate as due to the
gas restriction, it might always happen that a call fails because it ran out of gas. Intuitively, a
user would expect a contract not to depend on the concrete gas value that is given to it, with the
exception that a contract might always fail completely (and consequently does not perform any
changes on the global state). Such behavior would prevent contracts from entering an inconsistent
state as the one presented in the following excerpt of a simple banking contract:

1 contract SimpleBank{mapping(address => uint) balances;
2 function withdraw(){ msg.sender.send(balances[msg.sender]));
3 balances[msg.sender] = 0;}}

The contract keeps a record of the user balances and provides a function that allows a user to
withdraw its own balance – which results in an update of the record. A developer might not expect
that the send might fail, but as it is on the bytecode level represented by a CALL instruction, in
addition to the Ether transfer, code might be executed that runs out of gas. As a consequence, the
contract would end up in a state where the money was not transferred (as all effects of the call are
reverted in case of an exception). However, the internal balance record of the contract was still
updated; consequently, the money cannot be withdrawn by the owner anymore.

Inspired by such situations where an inconsistent state is entered by a contract due to mishandled
gas exceptions, we introduce the notion of atomicity of a contract. Intuitively, atomicity requires
that the effects of the execution on the global state do not depend on the amount of gas available –
except when an exception is triggered, in which case the overall execution should have no effect
at all. The last condition is captured by requiring that the final global state is the same as the
initial one for at least one of the two executions (intuitively, the one causing the exception).

Definition 6. A contract c ∈ C satisfies atomicity if for all reachable configurations (Γ, S) such
that Γ S → sc :: S, it holds for all gas values g, g ∈ N256 that

Γ sc[µ.gas → g] :: S →∗ s c :: S ∧ final (s)
∧ Γ sc[µ.gas → g] :: S →∗ s c :: S ∧ final (s)

=⇒ s .σ = s .σ ∨ s.σ = s .σ ∨ s.σ = s .σ

2.4.4 Independence of Miner controlled Parameters

Another particularity of the distributed blockchain environment is that users, while performing
transactions, cannot make assumptions on large parts of the context in which their transaction
will be executed. A part of this is due to the asynchronous nature of the system: it can always
be that another transaction that alters the context was performed first. Actually, the situation is
even more delicate as transactions are not processed in a first-come-first-serve manner, but miners
have a big influence on the execution context of transactions. They can decide upon the order of
the transactions in a block (and also sneak their own transactions in first), and in addition, they
can even control some parameters as the block timestamp within a certain range. Consequently,
contracts whose (outgoing) money flows depend either on miner-controlled block information or
on state information (as the state of their storage or their balance) that might be changed by other

33

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

transactions are prone to manipulations by miners. A typical example adduced in the literature is
the use of block timestamps as a source of randomness [ABC17, LCO+16a]. In a classical lottery
implementation that randomly pays out to one of the participants and uses the block timestamp as
a source of randomness, a malicious miner can easily influence the result in his favor by selecting
a beneficial timestamp.

We capture the absence of the miner’s influence by two definitions, one saying that the outgoing
Ether flows of a contract should not be influenced by components of the transaction environment
that can be (within a certain range) set by miners and the other one saying that the Ether flows
should not depend on those parts of the contract state that might have been influenced by
previously executed transactions. The first definition rules out what is in the literature often
described as timestamp dependency [ABC17, LCO+16a].

First, we define independence of (parts of) the transaction environment. To this end, we assume
CΓ to be the set of components of the transaction environment and write Γ =/cΓ Γ to denote that
the transaction environments Γ, Γ are equal up to component cΓ.

Definition 7 (Independence of the Transaction Environment). A contract c ∈ C is independent of
a subset I ⊆ CΓ of components of the transaction environment if for all cΓ ∈ I and all reachable
configurations (Γ, sc :: S) it holds for all Γ that

cΓ(Γ) = cΓ(Γ) ∧ Γ =/cΓ Γ

∧ Γ sc :: S
π−→∗

s c :: S ∧ final (s) ∧ Γ sc :: S
π−→

∗
s c :: S ∧ final (s)

=⇒ π ↓callsc= π ↓callsc

Next, we define the notion of independence of the account state. Formally, we capture this
property by requiring that the outgoing Ether flows of the contract under consideration should
not be affected by those parameters of the contract that might have been changed by previous
executions, which are the balance, the account’s nonce, and the account’s persistent storage.

Definition 8 (Independence of Mutable Account State). A contract c ∈ C is independent of the
account state if for all reachable configurations (Γ, sc :: S), (Γ, sc :: S) with s, s differing only
in the nonce, balance and storage for address (c), it holds that

Γ sc :: S
π−→∗

s c :: S ∧ final (s c) ∧ Γ sc :: S
π−→

∗
s c :: S ∧ final (s c)

=⇒ π ↓callsc= π ↓callsc

As the other independence properties, both these properties can be statically verified using
program dependence graphs.

2.4.5 Classification of Bugs

The previously presented security definitions are motivated by the bugs that were observed in real
Ethereum smart contracts and studied in [LCO+16a] and [ABC17]. Table 2.1 gives an overview
of the bugs from the literature that are ruled out by our security properties.

34

2.4. Security Definitions

Our security properties do not cover all bugs described by Atzei et al. [ABC17], as some of the
bugs do not constitute violations of general security properties, i.e., properties that are not specific
to the particular contract implementation. There are two classes of bugs that we do not consider:
The first-class deals with the occurrence of unexpected exceptions (such as the Gasless Send
and the Call stack Limit bug), and the second class encompasses bugs caused by the Solidity
semantics deviating from the programmer’s intuitions (such as the Keeping Secrets, Type Cast,
and Exception Disorders bugs).

The first class of bugs encompasses runtime exceptions that are hard to predict for the developer
and that are consequently not handled correctly. Of course, it would be possible to formalize
the absence of those particular kinds of exceptions as simple reachability properties using the
small-step semantics. Still, such properties would not give any insight into the security of a
contract: the fact that a particular exception occurs can be unproblematic in the case that proper
exception handling is in place. In general, the notion of correct exception handling depends
highly on the specific contract’s intended behavior. For the special case of out-of-gas exceptions,
we could introduce the notion of atomicity in order to capture a generic goal of proper exception
handling. But such a notion is not necessarily sufficient for characterizing reasonable ways of
dealing with other kinds of runtime exceptions.

The second class of bugs are introduced on the Solidity level and are similarly hard to account for
by using generic security properties. Even though these bugs might all originate from similar
idiosyncrasies of the Solidity semantics, the impact of the bugs on the contract’s semantics might
deviate a lot. This might result in violations of the security properties discussed before, but also in
violating the contract’s functional correctness. Consequently, catching those bugs might require
the introduction of contract-specific correctness properties.

Finally, Atzei et al. [ABC17] discuss the Ether Lost in Transfer bug. This bug is introduced by
sending Ether to addresses that do not belong to any contract or user, so-called orphan addresses.

Table 2.1: Bugs from [LCO+16a] and [ABC17] ruled out by the security properties

Security Property Bug

Call Integrity Reentrancy [ABC17, LCO+16a]
Call to the Unknown [ABC17]

Atomicity Mishandled Exceptions [ABC17,
LCO+16a]

Independence of Mutable
Account State

Transaction Order Depen-
dency [LCO+16a]
Unpredictable State [ABC17]

Independence of
Transaction Environment

Timestamp Dependancy [LCO+16a]
Time Constraints [ABC17]
Generating Randomness [ABC17]

35

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

We could easily formalize a reachability property stating that no valid contract execution should
ever send Ether to such an address. We omit such a definition here as it is quite straightforward,
and at the same time, it is not a property that directly affects the security of an individual contract:
Sending Ether to such an orphan address might have negative impacts on the overall system as
money is effectively lost. For the specific contract sending this money, this bug can be seen as
a corner case of sending Ether to an unintended address which rather constitutes a correctness
violation.

2.4.6 Discussion

To highlight the general and semantic nature of the introduced security definitions, we compare
our definitions with the verification conditions used in Oyente [LCO+16a]. Our investigation
shows that the verification conditions adopted in this tool are neither sound nor complete.

For detecting mishandled exceptions, it is checked whether each CALL instruction in the contract
code is directly followed by the ISZERO instruction that checks whether the top element of the
stack is zero. Unfortunately, Oyente (although stated in the paper) does not implement this check,
so that we needed to manually inspect the bytecodes for determining the outcomes of the syntactic
check. As shown in Figure 2.4a a check for the caller returning zero does not necessarily imply
a proper exception handling and, therefore, atomicity of the contract. This excerpt of a simple
banking contract that keeps track of the users’ balances allows users to withdraw their balances
using the function withdraw checks for the success of the performed call but still does not react
accordingly. It only makes sure that the number of successes is updated consistently but does not
perform the update on the user’s balance record according to the call outcome.

On the other hand, not performing the desired check does not imply the absence of atomicity, as
illustrated in Figure 2.4b. Writing the outcome in some variable before checking it satisfies the
negative pattern, but correct exception handling is performed.

For detecting timestamp dependency, Oyente checks whether the contract has a symbolic execu-
tion path with the timestamp (that is represented as its own symbolic variable) being included in
one of its constraints. This definition however, does not capture the case shown in Figure 2.4c.

This contract is clearly timestamp-dependent as whether or not the function pay pays out some
money to the sender depends on the timestamp set when creating the contract. A malicious
miner could consequently manipulate the block timestamp for a transaction that creates such a
contract in a way that money is paid out and then subsequently query it for draining it out. This
is, however, not captured by the characterization of the property in Oyente as they only capture
the local execution paths of the contract.

On the other hand, using the block timestamp in path constraints does not imply a dependency as
can easily be seen by the example in Figure 2.4d.

For the transaction order dependency and the reentrancy property, we were unfortunately not
able to reconcile the property characterization provided in the paper with the implementation of
Oyente.

36

2.4. Security Definitions

1 contract SimpleBank{
2 mapping(address => uint) bal;
3 uint successes;
4 function withdraw(){
5 if (msg.sender.send(bal[msg.sender]))
6 { successes++; }
7 bal[msg.sender] = 0;}}

2.4.a: Exception handling: False negative

1 contract SimpleBank{
2 mapping(address => uint) bal;
3 function withdraw(){
4 bool b =
5 msg.sender.send(bal[msg.sender]);
6 if (b) bal[msg.sender] = 0;}}

2.4.b: Exception handling: False positive

1 contract Test{
2 uint time = block.timestamp;
3 function pay (){
4 if (time % 2 == 1){
5 msg.sender.send(100);}}}

2.4.c: Timestamp dependency: False negative

1 contract Test {
2 function pay (){
3 if (block.timestamp % 2 == 1 ||
4 block.timestamp % 2 == 0){
5 msg.sender.send(100);}}}

2.4.d: Timestamp dependency: False positive

1 contract Fund{
2 mapping(address => uint) shares;
3 function withdraw(){
4 if (msg.sender.send(shares[msg.sender]))
5 shares[msg.sender] = 0;}}

2.4.e: Reentrancy: False negative

1 contract Bob{
2 bool sent = false;
3 function ping(address c){
4 if (!sent) {
5 sent = true;
6 c.call.value(2)();}}}

2.4.f: Reentrancy: False positive

For checking reentrancy, according to the paper, it should be checked whether the constraints
on the path leading to a CALL instruction can still be satisfied after performing the updates on
the path (e.g., changing the storage). If so, the contract is flagged as reentrant. According to our
understanding, this approach should not flag contracts that correctly guard their calls as reentrant.
Still, by the version of Oyente provided with the paper, the contract in Figure 2.4f is tagged as
reentrant.

There exists an updated version of Oyente [LCO+] that is able to precisely tag this contract as not
reentrant, but we could not find any concrete information on the criteria used for checking this
property. Still, we found out that the underlying characterization can not be sufficient for detecting
reentrancy as the contract in Figure 2.4e is classified not to exhibit a reentrancy vulnerability
even though it should as the send command also executes the recipient’s callback function (even
though with limited gas). The example is taken from the Solidity documentation [sol19] where it
is listed as a negative example. In addition to these soundness issues, the reentrancy detection
suffers from issues similar to those of other analyzers, e.g., the ones of ZEUS [KGDS18a]. It
does not consider that a contract might reinvoked several times (modifying the storage but not
performing calls) before finally performing a problematic reentering call. In this way, reentrancy
protection can be disabled without being detected. A more detailed discussion of this issue and
other fallacies in the detection of reentrancies attack will be conducted in Chapter 3.

For transaction order dependency, Oyente should check whether execution traces exhibiting

37

2. SEMANTIC FOUNDATIONS FOR ETHEREUM SMART CONTRACTS

different Ether flows exist. But it turned out that not even a simple example of a transaction-order-
dependent contract can be detected by any of the versions of Oyente.

2.5 Conclusions

We presented the first complete small-step semantics of EVM bytecode and formalized a large
fragment thereof in the F proof assistant, successfully validating it against the official Ethereum
test suite. We further defined for the first time a number of salient security properties for smart
contracts, relying on a combination of hyper- and safety properties. Our framework is available
to the academic community in order to facilitate future research on rigorous security analysis of
smart contracts.

38

CHAPTER 3
Trends and Challenges in the Security

Analysis of Ethereum Smart Contracts

Abstract

Ethereum smart contracts are distributed programs running on top of the Ethereum blockchain.
Since program flaws can cause significant monetary losses and can hardly be fixed due to the
immutable nature of the blockchain, there is a strong need of tools that assist users in developing
secure smart contracts and in evaluating the security of existing smart contracts. We give a
systematic overview of the different trends in developing such security-enhancing tools and
particularly focus on such tools that are automated and at the same time give provable security
guarantees. These tools are of special importance since they are accessible to a wide range of
users while providing a high level of security. Designing such analyzers, however, proved to
be challenging and error-prone. We review the existing approaches to automated, sound, static
analysis of Ethereum smart contracts and highlight prevalent issues in state of the art.

This chapter presents a compilation of two invited contributions done in collaboration with
Ilya Grishchenko, Markus Scherer, and Matteo Maffei, respectively. The first contribution was
published under the title ‘Foundations and Tools for the Static Analysis of Ethereum Smart
Contracts’ [GMS18a] at the 30th International Conference on Computer Aided Verification (CAV
2018). From this paper, I included the systematization of existing approaches to Ethereum smart
contract analysis that I conducted. The second contribution was published under the title ‘The
Good, The Bad and The Ugly: Pitfalls and Best Practices in Automated Sound Static Analysis
of Ethereum Smart Contracts’ [SSM20] at the 9th International Symposium on Leveraging
Applications of Formal Methods (ISoLA 2020). From this paper, I included the survey on
challenges in the design of sound static analysis tools for Ethereum smart contracts and the
discussion of soundness issues in existing analyzers. The accompanying appendix of this chapter
contains detailed examples and discussions of the soundness issues in state of the art.

39

3. TRENDS AND CHALLENGES IN THE SECURITY ANALYSIS OF ETHEREUM SMART CONTRACTS

3.1 Introduction

Blockchain technologies are revolutionizing the distributed system landscape, providing an
innovative solution to the consensus problem leveraging probabilistic guarantees and incentives.
In particular, they allow for the secure execution of payments, and more in general, computations,
among mutually distrustful parties. While some cryptocurrencies, like Bitcoin [Nak08] provide
only a limited scripting language tailored to payments, others, like Ethereum [Woo14b], support
a quasi Turing complete1 smart contract language, allowing for advanced applications such
as trading platforms [NGW17, MM17], elections [MSH17], permission management [CKY18,
AEVL16], data management systems [PM18, Adh17], or auctions [HSLC17, GY18]. With
the growing complexity of smart contracts, however, also the attack surface grows. This is
particularly problematic as smart contracts control real money flows and hence constitute an
attractive target for attackers. In addition, due to the immutable nature of blockchains, smart
contracts cannot be modified once they are uploaded to the blockchain, which makes the effects
of security vulnerabilities permanent. This is not only a theoretical threat but a practical problem,
as demonstrated by infamous hacks, such as the DAO hack [the16] or the Parity hacks [par17a,
par17b] which caused losses of several millions of dollars. This state of affairs calls for the
development of tools that assist the users of the Ethereum system. This includes tools for
developers that help them to design secure smart contracts and to verify their contracts before
uploading them to the blockchain, but also tools for users interacting with existing smart contracts,
who need tool assistance to assess whether or not those contracts (which are published in human
unreadable bytecode format on the blockchain) are fraudulent.

In this chapter, we systematize different approaches to developing tool support for the users of
Ethereum smart contracts. We lay a special focus on tools that give provable guarantees on smart
contract security while at the same time being automated and hence accessible to a wide range
of users. For a proper classification of these tools, we first overview the different verification
approaches in the realm of Ethereum smart contracts and afterward discuss in detail those tools
that focus on automated and sound static analysis of Ethereum smart contracts. We critically
reflect the methodology and soundness claims of these tools and use the observed shortcomings to
characterize the particular challenges in the sound and static analysis of Ethereum smart contracts.

The remainder of the chapter is structured as follows: Section 3.2 surveys the recent developments
in the design of tools for enhancing Ethereum smart contract security and the open challenges in
this domain. Section 3.3 overviews the existing automated static analyzers for Ethereum smart
contracts that come with soundness claims. Section 3.4 works out the particular challenges in
the design of sound static analysis tools for Ethereum smart contracts taking as an example the
hurdles that the prior works stumbled upon.

1Supporting a Turing-complete instruction set, Ethereum enforces termination by bounding the number of
computation steps based on a prespecified resource limit.

40

3.2. Trends in Security-enhancing Tools for Ethereum Smart Contracts

3.2 Trends in Security-enhancing Tools for Ethereum Smart
Contracts

In the following, we give systematization of the approaches are taken so far in the direction of
securing (Ethereum) smart contracts. This systematization does not aim at giving an exhaustive
overview of all tools developed in this domain but wants to characterize the different trends
towards enhancing Ethereum smart contract security in the scientific community, illustrated by the
pioneering works in the corresponding categories. We distinguish between verification approaches
and design approaches. According to our terminology, the goal of verification approaches is to
check smart contracts written in existing languages (such as Solidity) for their compliance with a
security policy or specification. In contrast, design approaches aim at facilitating the creation
of secure smart contracts by providing frameworks for their development: These approaches
encompass new languages which are more amenable to verification, provide a clear and simple
semantics that is understandable by smart contract developers or allow for direct encoding of
desired security policies. In addition, we count works that aim at providing design patterns for
secure smart contracts to this category.

3.2.1 Verification

In the field of smart contract verification, we categorize the existing approaches along the
following dimensions: target language (bytecode vs. high-level language), point of verification
(static vs. dynamic analysis methods), provided guarantees (bug-finding vs. formal soundness
guarantees), checked properties (generic contract properties vs. contract specific properties),
degree of automation (automated verification vs. assisted analysis vs. manual inspection). From
the current spectrum of analysis tools, we can find solutions in the following clusters:

Static Analysis Tools for Automated Bug-finding

The bug-finding tool Oyente [LCO+16b] (published in 2016) pioneered the (automatic) static
analysis of Ethereum smart contracts. This work highlighted, for the first time, generic types of
bugs that typically affect smart contracts and proposed a tool based on symbolic execution for
the detection of contracts vulnerable to these bugs. A particularly compelling feature of Oyente
is that it is a push-button tool that does not expect any interaction or a deeper knowledge of the
contract semantics from the user. Oyente supports a variety of predefined security properties, such
as transaction order dependency, time-stamp dependency, and reentrancy, that can be checked
automatically. However, Oyente does not provide any guarantees on the reported results, being
neither sound (absence of false negatives) nor complete (absence of false positives) and, thereby,
yielding only a heuristic indication of contract security. This is on the one hand due to the
simplified semantics that serves as foundation of the analysis, as discussed in Section 2.3.7. On
the other hand, as detailed out in Section 2.4.6, the security properties are rather syntactic or
pattern-based and are lacking a semantic characterization. Recently, Zhou et al. proposed the
static analysis tool SASC [ZHP+18] that extends Oyente by additional patterns and provides a
visualization of detected risks in the topology diagram of the original Solidity code.

41

3. TRENDS AND CHALLENGES IN THE SECURITY ANALYSIS OF ETHEREUM SMART CONTRACTS

Majan [NKS+18] extends the approach taken in Oyente to trace properties that consider multiple
invocations of one smart contract. As Oyente, it relies on symbolic execution that follows a
simplified version of the semantics used in Oyente and uses a pattern-based approach for defining
the concrete properties to be checked. The tool covers safety properties (such as prodigality and
suicidality) and liveness properties (greediness). As for Oyente, the authors do not make any
security claims but consider their tool a ’bug-catching approach’.

Aside from works that build on the symbolic execution approach of Oyente, a broad variety
of other automatic analysis tools have emerged in the last years. These tools base on different
analysis techniques, such as the usage of high-performance datalog engines (like Soufflé [JSS16])
to reason about information and data flow dependencies in smart contracts [LGTS, BGL+20],
the usage of bounded model checkers [FAH20, WZS19], or of existing verification tools for
other programming languages [ACG+19]. Further, they target different forms of vulnerabilities.
Next to tools that allow for encoding arbitrary properties out of certain property classes, such
as [BGL+20] which presents a generic information flow framework, there exists a variety of
other bug-finding tools targeting particular bug classes. Examples are the tool Osiris [TS+18]
which focuses on the detection of integer bugs, or the tool NPChecker [WZS19] which focuses
on the detection of non-deterministic payment bugs. We omit a more detailed discussion of these
tools and refer the interested reader to recent surveys [DAS19, LL19] for more details.

Another approach towards bug finding in Ethereum smart contracts is taken by works that
apply testing, fuzzing, or machine learning techniques to smart contracts [LLC+18, LWX+19,
WSX+20, AMJC20]

Static Analysis Tools for Automated Verification of Generic Properties

In contrast to the aforementioned class of tools, this line of work focuses on providing formal
guarantees for the analysis results while still performing an automated verification to ensure
usability and broad adaption. Despite four years of intense research, however, only four works on
such sound and fully automatic static analysis of Ethereum smart contracts have been published.
Upon close investigation, it turns out that all of these works exhibit shortcomings that ultimately
undermine the security guarantees that they aim to provide. We defer the detailed discussion of
these tools to Section 3.3.

Frameworks for Semi-automated Proofs for Contract Specific Properties

Hirai [Hir17b] formalizes the EVM semantics in the proof assistant Isabelle/HOL and uses
it for manually proving safety properties for concrete contracts. This semantics, however,
constitutes a sound over-approximation of the original semantics [Woo14b]. Building on top of
this work, Amani et al. propose a sound program logic for EVM bytecode based on separation
logics [ABBS18]. This logic allows for semi-automatically reasoning about correctness properties
of EVM bytecode using the proof assistant Isabelle/HOL.

Hildebrandt et al. [HSR+18] define the EVM semantics in the K framework [Rc10] – a language-
independent verification framework based on reachability logics. The authors leverage the power
of the K framework in order to automatically derive analysis tools for the specified semantics,

42

3.2. Trends in Security-enhancing Tools for Ethereum Smart Contracts

presenting as an example a gas analysis tool, a semantic debugger, and a program verifier based
on reachability logics. The derived program verifier still requires the user to manually specify
loop invariants on the bytecode level.

Bhargavan et al. [BDLF+16a] introduce a framework to analyze Ethereum contracts by a trans-
lation into F , a functional programming language aimed at program verification and equipped
with an interactive proof assistant. The translation supports only a fragment of the EVM bytecode
and does not come with a justifying semantic argument.

Dynamic Monitoring for Predefined Security Properties

Grossman et al. [GAGG+17] propose the notion of effectively callback-free executions and
identify the absence of this property in smart contract executions as the source of common
bugs such as reentrancy. They propose an efficient online algorithm for discovering executions
violating effectively callback freeness. Implementing a corresponding monitor in the EVM would
guarantee the absence of the potentially dangerous smart contract executions but is not compatible
with the current Ethereum version and would require a hard fork.

A dynamic monitoring solution compatible with Ethereum is offered by the tool DappGuard [CLL].
The tool actively monitors the incoming transactions to a smart contract and leverages the tool
Oyente [LCO+16b], an own analysis engine and a simulation of the transaction on the testnet
for judging whether the incoming transaction might cause a (generic) security violation (such
as transaction order dependency). If a transaction is considered harmful, a counter transaction
(killing the contract or performing some other fixes) is made. The authors claim that this transac-
tion will be mined with high probability before the problematic one. Due to this uncertainty and
the bug-finding tools used for the evaluation of incoming transactions, this approach does not
provide any guarantees.

Recently, also other approaches to runtime verification of Ethereum smart contracts are explored,
which either rely on inlining monitors into smart contracts [AEP18] or explore possibilities to
enhance Ethereum’s virtual machine to support monitoring [Ell20].

3.2.2 Design

The research on secure smart contract design focuses on the following four areas: high-level
programming languages, intermediate languages (for verification), security patterns for existing
languages, and visual tools for designing smart contracts.

High-level Languages

One line of research on high-level smart contract languages concentrates on the facilitation of
secure smart contract design by limiting the language expressiveness and enforcing strong static
typing discipline. Simplicity [O’C17] is a typed functional programming language for smart
contracts that disallows loops and recursion. It is a general-purpose language for smart contracts
and not tailored to the Ethereum setting. Simplicity comes with a denotional semantics specified
in Coq that allows for formally reasoning about Simplicity contracts. As there is no (verified)

43

3. TRENDS AND CHALLENGES IN THE SECURITY ANALYSIS OF ETHEREUM SMART CONTRACTS

compiler to EVM bytecode so far, such results do not carry over to Etherum smart contracts. In
the same realm, Pettersson and Edström [PE], propose a library for the programming language
Idris that allows for the development of secure smart contracts using dependent and polymorphic
types. They extend the existing Idris compiler with a generator for Serpent code (a Python-like
high-level language for Ethereum smart contracts). This compiler is a proof of concept and
fails in compiling more advanced contracts (as it cannot handle recursion). In preliminary work,
Coblenz et al. [Cob17] propose Obsidian, an object-oriented programming language that pursues
the goal of preventing common bugs in smart contracts such as reentrancy. To this end, Obsidian
makes states explicit and uses a linear type system for quantities of money.

Another line of research focuses on designing languages that allow for encoding security policies
that are dynamically enforced at runtime. The first step in this direction is sketched in the
preliminary work on Flint [SED], a type-safe, capabilities-secure, contract-oriented programming
language for smart contracts that is compiled to EVM bytecode. Flint allows for defining caller
capabilities restricting access to security-sensitive functions. These capabilities shall be enforced
by the EVM bytecode created during compilation.

In addition to these approaches from academia, the Ethereum foundation currently develops the
high-level languages Viper [vip] and Bamboo [bam]. Furthermore, the Solidity compiler used
to support a limited export functionality to the intermediate language WhyML [why] allowing
for a pre-/postcondition style reasoning on Solidity code by leveraging the deductive program
verification platform Why3 [FP13]. In more recent efforts [MOA+20] this approach was replaced
by an extension of the Solidity compiler to directly model relevant parts of the Solidity smart
contract semantics as Constrained Horn clauses to reason about them using SMT solvers.

Intermediate Languages

The intermediate language Scilla [SKH18] comes with a semantics formalized in the proof
assistant Coq and therefore allows for a mechanized verification of Scilla contracts. In addition,
Scilla makes some interesting design choices that might inspire the development of future
high level languages for smart contracts: Scilla provides a strict separation not only between
computation and communication but also between pure and effectful computations. Also, the
analysis tool Slither [FGG19] makes use of a custom intermediate representation to reason about
smart contracts. Further, the intermediate languages IELE [KGM+19] and Elle [ALV] were
introduced.

Security Patterns

Wöhrer [WZ18] describes programming patterns in Solidity that should be adopted by smart
contract programmers for avoiding common bugs. These patterns encompass best coding practices
such as performing calls at the end of a function, but also off-the-shelf solutions for common
security bugs such as locking a contract for avoiding reentrancy or the integration of a mechanism
that allows the contract owner to disable sensitive functionalities in the case of a bug.

44

3.2. Trends in Security-enhancing Tools for Ethereum Smart Contracts

Tools

Mavridou and Laszka [ML18] introduce a framework for designing smart contracts in terms
of finite state machines. They provide a tool with a graphical editor for defining contract
specifications as automata and give a translation of the constructed finite state machines to
Solidity. In addition, they present some security extensions and patterns that can be used as
off-the-shelf solutions for preventing reentrancy and implementing common security challenges
such as time constraints and authorization. However, the approach lacks formal foundations as
neither the correctness of the translation is proven correct nor are the security patterns shown to
meet the desired security goals.

3.2.3 Open Challenges

Even though the previous section highlights the wide range of steps taken towards the analysis of
Ethereum smart contracts, there are still a lot of open challenges left.

Provably sound automated analysis tools for EVM bytecode

For ensuring the security of smart contracts whose source code is not public or that got manually
optimized on the bytecode level, providing tools that operate on bytecode is crucial. Furthermore,
due to contracts being immutable once published on the blockchain, the reliability of analysis
results is of outstanding importance. For these reasons, developing provably sound analysis
tools for different classes of properties relevant to smart contract security (such as reachability
properties or value dependency properties) constitutes an immediate challenge in the realm of
smart contract verification.

Up to now, all automated tools that aimed at providing provable guarantees failed to live up
to these soundness claims. We will review these tools and the concrete difficulties that they
encounter in Section 3.4 and finally show in Chapter 4 how we managed to overcome these issues
with the sound static analyzer eThor.

Secure Compilation of High-level Languages

Even though there are several proposals made for new high-level languages that facilitate the
design of secure smart contracts and that are more amenable to verification, none of them comes
so far with a verified compiler to EVM bytecode. This particularly applies to the compilation
from Solidity, which is still lacking a complete formal semantics, as described in a recent
survey [Ari19]. However, such a secure compilation is the requirement for the results shown
on high-level language programs to carry over to the actual smart contracts published on the
blockchain.

Specification Languages for Smart Contracts

So far, most approaches to verifying contract-specific properties focus on either ad-hoc spec-
ifications in the used verification framework [Hir17b, HSR+18, BDLF+16a, ABBS18] or the
insertion of assertions into existing contract code [why]. For leveraging the power of existing

45

3. TRENDS AND CHALLENGES IN THE SECURITY ANALYSIS OF ETHEREUM SMART CONTRACTS

model checking techniques for program verification, the design of a general-purpose specification
language for Ethereum smart contracts would be needed.

Study of Security Policies

There has been no fundamental research made so far on the classes of security policies that might
be interesting to enforce in the setting of smart contracts. In particular, it would be compelling
to characterize the class of security policies that can be enforced by smart contracts within the
existing EVM.

Compositional Reasoning about Smart Contracts

Most research on smart contract verification focuses on reasoning about individual contracts or,
at most, a bunch of contracts whose bytecode is fully available. Even though there has been work
observing the similarities between smart contracts and concurrent programs [SH17], there has
been no rigorous study on compositional reasoning for smart contracts so far, even though first
steps in this direction have been explored [QHC+18].

3.3 State of the Art in Automated Sound Static Analysis of
Ethereum Smart Contracts

In the following, we focus on the automated and sound static analysis of Ethereum smart
contracts. So far, there have been works on four static analyzers published that come with (explicit
or implicit) soundness claims: the dependency analysis tool Securify [TDDC+18] for EVM
bytecode, the static analyzer ZEUS [KGDS18b] for Solidity, the syntax-guided Solidity analyzer
NeuCheck [LWZ+19], and the bytecode-based reachability analysis tool EtherTrust [GMS18a].
By implicit soundness claim, we mean that the tool claims that a positive analysis result guarantees
the contract’s security (i.e., absence of false negatives with respect to a specific security property).
While Securify, ZEUS, and EtherTrust implement semantic-based analysis approaches, NeuCheck
is purely syntax-driven.

Securify supports data and control flow analysis on the EVM bytecode level. To this end, it recon-
structs the control-flow graph (CFG) from the contract bytecode and transforms it into SSA-form.
Based on this structured format, it models immediate data and control flow dependencies using
logical predicates and establishes datalog-style logical rules for deriving transitive dependen-
cies, which are automatically computed using the enhanced datalog engine Soufflé [JSS16]. For
checking different security properties, Securify specifies patterns based on the derived predicates,
which shall be sufficient for either proving a property (compliance patterns) or for showing a
property to be broken (violation patterns).

ZEUS analyzes Solidity contracts by first translating them into the intermediate language LLVM
bitcode and then using off-the-shelf model checkers to verify different security properties. In
the course of the translation, ZEUS uses another intermediate layer for the Solidity language,
which introduces abstractions and that allows for the insertion of assumptions and assertions into

46

3.4. Challenges in Sound Smart Contract Verification

the program code, which express security requirements on the contract. The security properties
supported by ZEUS are translated to such assertion checks, possibly in conjunction with additional
property-specific contract transformations.

NeuCheck analyzes Solidity contracts by pattern matching on the contract syntax graph. To this
end, it translates Solidity source code into an XML parse tree. Security properties are expressed
as patterns on this parse tree and are matched by custom algorithms traversing the tree.

EtherTrust implements a reachability analysis on EVM bytecode by abstracting the bytecode
execution semantics into (particular) logical implications, so-called Horn clauses, over logical
predicates representing the execution state of a contract. Security properties are expressed as
reachability queries on logical predicates and solved by the SMT solver z3 [DMB08]. EtherTrust
was the first prototype that later evolved into the eThor analyzer, which we will discuss in Chap-
ter 4.

All presented tools focus on generic (contract-independent) security properties for smart contracts.
However, the underlying architectures allow for extending the frameworks with further properties.
For the soundness considerations in this chapter, we put the focus on the abstractions of generic
security properties.

3.4 Challenges in Sound Smart Contract Verification

EVM bytecode exposes several domain-specific subtleties that turn out to be challenging for static
analysis. Furthermore, characterizing relevant generic security properties for smart contracts is
highly non-trivial and subject to ongoing research. We will examine both of these problems in
the following.

3.4.1 Analysis Design

We summarize below the main challenges that arise when designing a performant and still sound
analysis for Ethereum smart contracts:

• Dynamic jump destinations: Jump destinations are statically unknown and computed during
execution. They might be influenced by the blockchain environment as well as the contract
state. As a consequence, the control flow graph of a contract is not necessarily determinable at
analysis time.

• Mismatch between memory and stack layout: The EVM has a (stack) word size of 256 bits
while the memory (heap) is fragmented into bytes and addressed accordingly. Loading words
from memory to the stack, and conversely, writing stack values to memory, requires (potentially
costly) conversions between these two value formats.

• Exception propagation and global state revocation: If an internal transaction (as, e.g., initiated
by a CALL) fails, all effects of this transaction, including those on the global state (e.g., writes
to global storage), are reverted. However, such a failure is not propagated to the callee, who can

47

3. TRENDS AND CHALLENGES IN THE SECURITY ANALYSIS OF ETHEREUM SMART CONTRACTS

continue execution in the original global state. Modeling calls must thus save the state before
calling in order to account for global state revocation.

• Native support for low-level cryptography: The EVM supports a designated SHA3 instruction
to compute the hash of some memory fraction. As a consequence, hashing finds broad adaption
in Ethereum smart contracts, and the Solidity compiler bases its storage layout on a hash-based
allocation scheme.

• Dynamic calls: The recipient of an (inter-contract) call is specified on the stack and hence
subject to prior computation. Consequently, the recipient is not necessarily derivable at analysis
time, resulting in uncertainty about the behavior of the callee and the resulting effects on the
environment.

• Dynamic code creation: Ethereum supports the generation of new smart contracts during
transaction execution: A smart contract can deploy another one at runtime. To do so, the
creating smart contract reads the deployment code for the new contract from the heap. The
newly created contract may hence be subject to prior computation and even to the state of the
blockchain.

In order to effectively tackle these challenges, several contributions of independent interest are
required, such as domain-specific abstractions (e.g., suitable over-approximations of unknown
environment behavior); the preprocessing of the contract to reconstruct its control flow or call
graph; (easily checkable) assumptions that restrict the analysis scope (e.g., restriction to some
language fragment); and optimizations or simplifications in intermediate processing steps (e.g,
contract transformations to intermediate representations). Altogether, these analysis steps enlarge
the semantic gap between the original contract semantics and the analysis, making it harder to
reliably ensure the soundness of the latter. In the following, we will review in more detail the
tension between soundness and performance of the analysis, and how past works stumbled in this
minefield.

Soundness

Ensuring the soundness of the analysis requires a rigorous specification of the semantics of
EVM bytecode. The original semantics was written in the Yellow Paper [Woo14b]. This paper
however, from the beginning exhibited flaws(e.g., those pointed out in Chapter 2 as well as
in other works [Hir17b, HSR+18]) and underspecified several aspects of bytecode execution.
The ultimate truth of smart contract semantics could therefore only be extracted from the client
implementations provided by the Ethereum foundation. In the course of time, in addition to the
semantics presented in Chapter 2, several formal specifications of the EVM semantics have been
proposed by the scientific community [HSR+18, Hir17b], leading to the Yellow paper being
replaced by an executable semantics in the K framework [HSR+18]2.

For the high-level language Solidity, despite first efforts within the scientific community [CDPZ19,
Zak18, BGM19, YL18, JKL+18], there exists at present no full and generally accepted formal

2Also called the Jello paper: https://jellopaper.org

48

https://jellopaper.org

3.4. Challenges in Sound Smart Contract Verification

1 contract Test {
2 bool test = false;
3 function flipper () { if (msg.sender != 0){flip();} }
4 function flip () internal {test = !test;} }

Figure 3.1: Simple contract highlighting an unsoundness in Securify’s dependency analysis.

semantics. Consequently, the semantics of Solidity is only defined by its compilation to EVM
bytecode. Since the compiler is subject to constant changes, Solidity constitutes a moving target.

The complexity and uncertainty about the concrete semantics made most works build on ad-hoc
simplified versions of the semantics, which do not cover all language features and disregard
essential aspects of the EVM’s execution model.

ZEUS [KGDS18b], for instance, defines an intermediate goto language for capturing the core of
Solidity. The semantics of this language, however, is inspired by the (ad-hoc) semantic modeling
used in Oyente [LCO+16b], inheriting an essential flaw concerning global state revocation: In
case that an internal transaction returns with an exception, the effects on the global state are
not reverted as they would be in real EVM (and Solidity) executions. Since the translation
to the intermediate language is part of the analysis pipeline of [KGDS18b], such a semantic
flaw compromises the soundness of the whole analysis. A more detailed discussion is provided
in Appendix B.1.5.

Also Securify [TDDC+18] introduces an ad-hoc formalism for EVM bytecode semantics. This
is not, however, related to the dependency predicates used for the analysis but just serves for
expressing security properties. It is hence unclear to which extent the dependency predicates
faithfully reflect the control flow and value dependencies induced by the EVM semantics. As-
sessing the correctness of this approach is difficult since no full logical specification of the
dependency analysis is provided3. Indeed we found empirical indication for the unsoundness
of the dependency analysis in the presence of complicated control flow. Consider the example
contract depicted in Figure 3.1. The depicted contract Test has a global boolean field test
which will be saved in the persistent storage of the contract and hence constitutes the contract
state. The public function flipper() allows every account but the one with address 0 to flip
the value of the test field: For checking the restriction on the calling account, the flipper()
function accesses the address of the caller using Solidity’s msg.sender construct. For writing
the test field, the internal function flip() is called. Internal functions are not exposed to the
public but are only accessible by the contract itself, and calls to such functions are compiled to
local jumps. The use of internal functions consequently substantially complicates the control flow
of a contract.

We identified a correctness issue that affects both the soundness and completeness of Securify.
This incorrectness becomes evident in the violation pattern that checks for unrestricted writes. An
unrestricted write is a write access to the global storage that any caller can perform. The violation

3Only an excerpt is presented in [TDDC+18], and the public implementation at https://github.com/
eth-sri/securify intermingles specification and implementation.

49

https://github.com/eth-sri/securify
https://github.com/eth-sri/securify

3. TRENDS AND CHALLENGES IN THE SECURITY ANALYSIS OF ETHEREUM SMART CONTRACTS

pattern states that such an unrestricted write is guaranteed to happen if there is a SSTORE
instruction whose reachability does not depend on the caller of the contract. This pattern should
not be matched by the Test contract since the only write access to the Test’s sole variable
test in function flip() is only reachable via the function flipper where it is conditioned
on the caller (msg.sender). Hence not every contract can write the test variable, but the
write access depends on the caller. Still, Securify reports this contract to match the violation
pattern, consequently proving the wrong statement that there is no dependency between writing
the test field and the account calling the contract. Note that even though showing up in a
violation pattern (hence technically producing false positives), the underlying issue also affects
the soundness of the core dependency analysis4. Securify specifies a may dependency relation to
capture (potential) abstract dependencies between program locations. For correctly (i.e., soundly)
abstracting the dependencies in real programs, the absence of a may dependency should imply
corresponding independence in the real program. Since the may dependency relation is used
in both compliance and violation patterns, without such a guarantee Securify can be neither
sound nor complete. The example refutes this guarantee and thereby illustrates the importance of
providing clear formal correctness (i.e., soundness) statements for the analysis.

These two examples show how the missing semantic foundations of the presented analysis
approaches can lead to soundness issues in the core analysis design itself. These problems
are further aggravated once additional stages are added to the analysis pipeline for increasing
performance since such additional stages are often not part of the correctness considerations.

Performance

For performance reasons, it is often unavoidable to leverage well-established and optimized
analysis frameworks or solvers. This leaves analysis designers with the challenge to transform
their analysis problem into a format that is expressible and efficiently solvable within the targeted
framework while preserving the semantics of the original problem.

ZEUS [KGDS18b] makes use of off-the-shelf model checkers for LLVM bitcode and hence
requires a transformation of smart contracts to LLVM bitcode. The authors describe this step to
be a ‘faithful expression-to-expression translation’ that is semantics preserving but omit a proof
for this property. The paper itself later contradicts this statement: The authors report on LLVM’s
optimizer impacting the desired semantics. This indicates that the semantics of the LLVM bitcode
translation does not coincide with the one of the intermediate language, since it would otherwise
not be influenced by (semantics-preserving) optimizations.

The Securify tool [TDDC+18] makes use of several preprocessing steps in order to make EVM
bytecode amenable to dependency analysis: First, it reconstructs the control flow graph of a
contract and, based on that, transforms the contract to SSA form. The correctness of these steps
is never discussed. Indeed we found Securify’s algorithm for control flow reconstruction to be
unsound: The algorithm fails when encountering jump destinations that depend on blockchain
information. In such a case, the control flow should be considered to be non-reconstructable

4We illustrate the issue with a violation pattern for easier presentation and since the affected compliance pattern
turned out not to be implemented in Securify.

50

3.4. Challenges in Sound Smart Contract Verification

since a jump to such a destination may result in a valid jump at runtime or simply fail due to
a non-existing jump destination. Securify’s algorithm, however, does not report an error on
such a contract but returns a (modified) contract that does not contain jumps. Such an unsound
preprocessing step again impacts the soundness of the whole analysis tool since it breaks the
assumption that the contract semantics is preserved by preprocessing.

3.4.2 Security Properties

The Ethereum blockchain environment opens up several new attack vectors which are not present
in standard (distributed) program execution environments. This is in particular due to the contracts’
interaction with the blockchain, which is in general controlled by unknown parties and hence
needs to be considered hostile. It is a (partly) still open research question of what characterizes
a contract that is robust in such an environment. A well-studied property in this domain is
robustness against reentrancy attacks, such as the DAO attack discussed in Chapter 1. We will
focus on this property in the following to illustrate the challenges and pitfalls in proving a contract
to be safe.

Formalizing Security Properties

While bug-finding tools typically make use of heuristics to detect vulnerable contracts, there have
been two systematic studies that aim at giving a semantic characterization of what it means for
a contract to be resistant against reentrancy attacks: The resulting security definitions are call
integrity (defined in Section 2.4) and effective callback freedom [GAGG+17].

Call integrity follows non-interference-style integrity definitions from the security community.
It states that two runs of a contract in which the codes of the environment accounts may differ
should result in the same sequences of observable events (in this case, outgoing transactions). In
simpler words, another contract should not be able to influence how a secure contract spends its
money. Intuitively, this property is violated by the DAO contract presented in Fig. 1.1, since an
attacker contract can make the contract send out more money than in an honest invocation.

In contrast, effective callback freedom is inspired by the concept of linearizability from con-
currency theory: It should be possible to mimic every (recursive) execution of a contract by a
sequence of non-recursive executions. The DAO contract violates this property since the attack is
only possible when making use of recursion (or callbacks, respectively). After each callback-free
execution, the investments mapping will be updated so that a subsequent execution will
prevent further withdraws by the same party.

While we show in Section 2.4 how to over-approximate the hyperproperty call integrity by
three simpler properties (the reachability property single-entrancy and two dependence proper-
ties), [GAGG+17] does not indicate a way of statically verifying effective callback freedom, but
proves this property to be undecidable. This leaves sound and (efficiently) verifiable approxima-
tions an open research question.

51

3. TRENDS AND CHALLENGES IN THE SECURITY ANALYSIS OF ETHEREUM SMART CONTRACTS

1 library Lib {
2 struct Data { mapping (address => uint) map;}
3 function write(Data storage self, address a, uint v) { self.map[a] = v;}
4 function get(Data storage self, address a) returns (uint) {
5 return (self.map[a]);} }
6
7 contract DAO {
8 Lib.Data bal;
9 function invest() public payable {

10 Lib.write(bal, msg.sender, Lib.get(bal, msg.sender) + msg.value);}
11 function withdraw () public {
12 address a = msg.sender;
13 if (Lib.get(bal, a) > 0){
14 a.call.value(Lib.get(bal, a));
15 Lib.write(bal, a, 0);}} }

Figure 3.2: Simplified DAO contract using a library

Checking Security Properties

The state-of-the-art sound analyzers discussed so far do not build on prior efforts of semantically
characterizing robustness against reentrancy attacks but come up instead with their own ad-hoc
definitions.

Securify Securify expresses the security properties of smart contracts in terms of compliance
and violation patterns over data flow and control flow dependency predicates. In [TDDC+18] it is
stated that Securify supports the analysis of a property called ‘no writes after call’ (NW), which
is different from (robustness against) reentrancy, but still aims at detecting bugs similar to the
one in the DAO. The NW property is defined using an ad-hoc semantic formalism, and it states
that for any contract execution trace, the contract storage shall not be subject to modifications
after performing a CALL instruction. Intuitively, this property should exclude reentrancy attacks
by preventing that the guards of problematic money transfers are updated only after performing
the money transferring call. However, this criterion is not sufficient, e.g., since reentrancies can
also be triggered by instructions other than CALL. For proving the NW property, the compliance
pattern demands that a CALL instruction may not be followed by any SSTORE instruction.
We found this pattern not to be sufficient for ensuring compliance with the NW property (nor
robustness against reentrancy). We will illustrate this using a variation of the DAO contract
in Figure 3.2. This contract implements the exact same functionality as the one in Figure 1.1. The
only difference is that the access to the balance mapping is handled via the library contract Lib.
Ethereum actively supports the use of library contracts by the DELEGATECALL instruction that
executes another contract’s code in the environment of the caller. When calling Lib.write
in the withdraw function, such a delegated call to the (external) library contract is executed.
Executing write in the context of contract DAO will then modify DAO’s storage (instead of the
one of the Lib contract). In order to let the write and the get functionality access the right
storage position (where DAO stores the bal mapping), these functions take as first argument the
reference to the corresponding storage location. Same as the version in Figure 1.1, this contract is
vulnerable to a reentrancy bug. Also, it violates the NW property: The storage of the contract

52

3.4. Challenges in Sound Smart Contract Verification

1 contract DAO{
2 mapping (address => uint) bal;
3 uint lock = 0;
4 function withdraw () public {
5 if(lock ==1){throw;}
6 lock=1;
7 address a = msg.sender;
8 a.call.value(bal[a]);
9 bal[a] = 0;

10 lock=0;}
11 function switchLock () {
12 lock = 1-lock;} }

1 contract DAO{
2 mapping (address => uint) bal;
3 uint lock = 0;
4 function withdraw () public {
5 if(lock ==1){throw;}
6 lock=1;
7 address a = msg.sender;
8 a.call.value(bal[a]);
9 bal[a] = 0;

10 lock=0;}

Figure 3.3: Simple versions of the DAO contract with reentrancy protection.

can be changed after executing the call (when writing the bal) mapping. Still, this contract
matches the compliance pattern (which should, according to [TDDC+18] guarantee the contract
to satisfy the NW property) since it does not contain any explicit SSTORE instruction. This
example illustrates how without a proven connection between a property and its approximation,
the soundness of an analyzer can be undermined. This issue does not only constitute a singular
case but is a structural problem: There are counterexamples for the soundness of 13 out of the 17
patterns presented in [TDDC+18], as we detail out in Appendix B.1.

ZEUS In [KGDS18b], the property to rule out reentrancy attacks is only specified in prose
as a function being vulnerable ‘if it can be interrupted while in the midst of its execution and
safely re-invoked even before its previous invocations complete execution.’ This definition
works on the level of functions, a concept which is only present on the Solidity level and leaves
open the question of what it means for a contract to be robust against reentrancy attacks. The
authors distinguish between ‘same-function-reentrancy’ and ‘cross-function-reentrancy’ attacks
but do not consider cross-function reentrancy (where a function reenters another function of the
same contract) in the analyzer. We found that without excluding cross-function reentrancy also
single-function reentrancy cannot be prevented.

Consider the versions of the DAO contract depicted in Figure 3.3 that aim to prevent reentrancy
using a locking mechanism. The global lock field tracks whether the withdraw function
was already entered (indicated by value 1). In that case, the execution of withdraw throws
an exception. Otherwise, the lock is set and only released when concluding the execution of
withdraw. While the two depicted contracts implement the exact same withdraw function,
the first contract’s function is vulnerable to a reentrancy attack, while the second one is safe. This
is as the first contract implements a public switchLock() function that can be used by anyone
to change the lock value. An attacker could hence mount the standard attack with the only
difference that they would need to invoke the switchLock() function once before reentering
to disable the reentrancy protection in line 5. Without exposing such functionality, the second
contract is safe, since every reentering execution will be stopped in line 5. This example shows
that ZEUS’ approach of analyzing functions in isolation to exclude ‘same-function-reentrancy’ is
not sound.

53

3. TRENDS AND CHALLENGES IN THE SECURITY ANALYSIS OF ETHEREUM SMART CONTRACTS

Another issue in the reentrancy checking of ZEUS is caused by the reentrancy property exceeding
the scope of the analysis framework. For proving a function resistant against reentrancy attacks,
ZEUS checks whether it is ever possible to reach a call when a function is recursively invoked by
itself. However, the presented translation to LLVM bitcode only models non-recursive executions
of a function. Consequently, the reentrancy property cannot be expressed as a policy (which
could be translated to assertions in the program code) but requires rewriting the contract under
analysis to contain duplicate functions that mimic reentering function invocations. This contract
transformation is not part of any soundness considerations. As a result, not only the previously
discussed unsoundness due to the lacking treatment of cross-function reentrancies is missed, but
it is also disregarded that Solidity’s call construct is not the only way to reinvoke a function.
Indeed there are several other mechanisms (e.g., direct function calls) that allow for the same
functionality. Still, ZEUS classifies contracts that do not contain an explicit invocation of the
call construct to be safe by default. More details are provided in Appendix B.1.5.

NeuCheck The NeuCheck tool formulates a syntactic pattern for detecting robustness against
reentrancy attacks. The pattern checks for all occurrences of the call function whether they
are followed by the assignment of a state variable. As discussed for Securify, the absence of
explicit writes to the storage does not imply that the storage stays unchanged. Hence the example
in Figure 3.2 would also serve as a counterexample for the soundness claim of NeuCheck. Also,
as discussed for ZEUS, call is not the only way of invoking another contract, revealing another
source of unsoundness in this definition. Furthermore, the authors neither specify the targeted
security properties nor provide justifications for this syntactic analysis approach’s soundness. For
further details, we refer to Appendix B.1.3.

We summarize the soundness properties of the presented tools in Fig. 3.4. Note that we already
include the tool eThor in this comparison which we will discuss in detail in Chapter 4. We report
the soundness issues based on their occurrence in the analysis pipeline, distinguishing between
the preprocessing, the core analysis, and the encoding of security properties.

3.5 Conclusion

We presented a systematization of the state of the art in Ethereum smart contract verification
and outlined the open challenges in this field. In particular, we focused on the challenge of
designing automated and sound static analyzers for EVM bytecode. To this end, we highlighted
the peculiarities of the EVM bytecode language design and execution model that complicate
the creation of such analyzers by showing how state-of-the-art analyzers fall short of providing
reliable soundness guarantees. To show how to overcome these challenges in a principled fashion,
in the next chapter, we will present eThor, the first automated and provable sound static analyzer
for smart contracts written in EVM bytecode.

54

3.5. Conclusion

Securify
[TDDC+18]

ZEUS
[KGDS18a]

NeuCheck
[LWZ+19]

eThor
[SGSM20]

Targeted
Language

EVM Bytecode Solidity Solidity EVM Bytecode

Preprocessing Unsound CFG
Reconstruction
An example of a

wrongly

reconstructed CFG

is given

in Appendix B.1.1

Unsound
program
transformation
Discussed

in Section 3.4.1

and Ap-

pendix B.1.5

No
preprocessing

Sound CFG
reconstruction
Formally proven

in [Gri21]

Core
Analysis

Indication for
unsoundness in
dependence
analysis
See example

in Fig. 3.1

Unsound
modelling of
reentering
executions
Discussed

in Section 3.4.1

and Ap-

pendix B.1.5

No core
analysis

Sound
abstraction
Proven in Ap-
pendix C.2.4

Security
Properties

Non-sufficient
dependence
patterns
Counter examples

for 13 out of 17

patterns are

provided

in Appendix B.1.2

Non-sufficient
(reachability)
criteria
Discussed

in Section 3.4.2

and Ap-

pendix B.1.5

Non-sufficient
syntactic
patterns
Discussed

in Section 3.4.2

and Ap-

pendix B.1.3

Sound
reachability
criterion for
single-entrancy
Proven

in Appendix C.3.1

Figure 3.4: Overview on the soundness guarantees and issues of the tools Securify, ZEUS,
NeuCheck, and eThor broken down to the different phases of the analysis pipeline.

55

CHAPTER 4
eThor: Practical and Provably Sound

Static Analysis of Ethereum Smart
Contracts

Abstract

Ethereum has emerged as the most popular smart contract platform, with hundreds of thousands
of contracts stored on the blockchain and covering diverse application scenarios, such as auctions,
trading platforms, or elections. Given the financial nature of smart contracts, security vulner-
abilities may lead to catastrophic consequences and, even worse, can hardly be fixed as data
stored on the blockchain, including the smart contract code itself, are immutable. An automated
security analysis of these contracts is thus of utmost interest but at the same time technically
challenging. This is as, e.g., Ethereum’s transaction-oriented programming mechanisms feature
subtle semantics, and since the blockchain data at execution time, including the code of callers
and callees, are not statically known.

In this work, we present eThor, the first sound and automated static analyzer for EVM bytecode,
which is based on an abstraction of the EVM bytecode semantics based on Horn clauses. In
particular, our static analysis supports reachability properties, which we show to be sufficient
for capturing interesting security properties for smart contracts (e.g., single-entrancy) as well as
contract-specific functional properties. Our analysis is proven sound against the EVM bytecode
semantics presented in Chapter 2, and a large-scale experimental evaluation on real-world
contracts demonstrates that eThor is practical and outperforms the state-of-the-art static analyzers:
specifically, eThor is the only one to provide soundness guarantees, terminates on 94% of a
representative set of real-world contracts, and achieves an F -measure (which combines sensitivity
and specificity) of 89%.

This chapter presents the result of a collaboration with Ilya Grishchenko, Markus Scherer,

57

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

and Matteo Maffei and was published at the 27th The ACM Conference on Computer and
Communications Security (CCS’20) under the title ‘eThor: Practical and Provably Sound Static
Analysis of Ethereum Smart Contracts’ [SGSM20]. I am responsible for the formal development
of the paper, including the analysis specification, the domain-specific abstractions, and proofs.
Further, I conducted the case study and the investigation of the related work. In addition,
I contributed to the design of the specification language HoRSt, as well as the design of the
experimental setup. The implementation of eThor, as well as the compiler for the HoRSt language,
was primarily done by Markus Scherer. The same applies to the experimental evaluation of eThor.
The implementation of the control flow reconstruction pre-processing step was conducted by Ilya
Grishchenko, who also contributed to the experimental evaluation. The accompanying appendix
contains extended versions of the formalism and proofs.

4.1 Introduction

Smart contracts introduced a radical paradigm shift in distributed computation, promising security
in an adversarial setting thanks to the underlying consensus algorithm. Software developers can
implement sophisticated distributed, transaction-based computations by leveraging the scripting
language offered by the underlying blockchain technology. While many cryptocurrencies have
an intentionally limited scripting language (e.g., Bitcoin [Nak08]), Ethereum was designed
from the ground up with a quasi Turing-complete language1. Ethereum smart contracts have
thus found a variety of appealing use cases, such as auctions [HSLC17], data management
systems [Adh17], financial contracts [BKT17], elections [MFSH17], trading platforms [NGW17,
MM17], permission management [AEVL16] and verifiable cloud computing [DWA+17], just to
mention a few. Given their financial nature, bugs and vulnerabilities in smart contracts may lead
to catastrophic consequences. For instance, the infamous DAO vulnerability [the16] recently led
to a 60M$ financial loss, and similar vulnerabilities occur on a regular basis [par17a, par17b].
Furthermore, many smart contracts in the wild are intentionally fraudulent, as highlighted in a
recent survey [ABC17]. Even worse, due to the unmodifiable nature of blockchains, bugs or
vulnerabilities in deployed smart contracts cannot be fixed.

A rigorous security analysis of smart contracts is thus crucial for the trust of the society in
blockchain technologies and their widespread deployment. Unfortunately, this task is quite chal-
lenging for various reasons. First, Ethereum smart contracts are developed in an ad-hoc language,
called Solidity, which resembles JavaScript but features non-standard semantic behaviors and
transaction-oriented mechanisms, which complicate smart contract development and verification.
Second, smart contracts are uploaded to the blockchain in the form of Ethereum Virtual Machine
(EVM) bytecode, a stack-based low-level code featuring very little static information, which
makes it extremely difficult to analyze. Finally, most of the data available at runtime on the
blockchain, including the contracts that the contract under analysis may interact with, may not
be known statically, which requires ad-hoc abstraction techniques. As a result, while effective
bug-finding tools for smart contracts have been recently presented, there exists at present no

1While the language itself is Turing complete, computations are bounded by a resource budget (called gas),
consumed by each instruction thereby enforcing termination.

58

4.1. Introduction

automated security analysis for EVM bytecode that provides formal security guarantees (i.e.,
absence of false negatives, as proven against a formal semantics of EVM bytecode) as detailed
out in Chapter 3. Inspired by the prevalent issues in state of the art, we introduce a principled
approach to the design and implementation of a sound yet performant, a static analysis tool for
EVM bytecode.

4.1.1 Our Contributions

The contributions presented in this chapter can be summarized as follows:

• We design the first provably sound static analyzer for EVM bytecode, which builds on top
of a Horn-clause-based reachability analysis. We show that reachability analysis suffices to
verify interesting security properties for smart contracts as well as contract-specific functional
properties via an encoding into Hoare-style reasoning. The design of such static analysis
is technically challenging since it requires careful abstractions of various EVM components
(e.g., the stack-based execution model, the gas bounding the smart contract execution, and the
memory model) as well as a dedicated over-approximation of blockchain data, which are not
statically known and yet affect contract execution (e.g., the code of other contracts which may
act both as callers and callees);

• We prove our static analysis technique sound against the formal semantics of EVM bytecode
presented in Chapter 2;

• In order to facilitate future refinements of our analysis, as well as the design of similar static
analyses for other languages, we design and implement HoRSt, a framework for the specification
and implementation of static analyses based on Horn clause resolution. Specifically, HoRSt
takes as input a (mathematical) specification of the Horn clauses defining the static analysis
and produces an smt-lib [smt20] encoding suitable for z3 [HB12], which includes various
optimizations such as Horn clause and constant folding;

• We use HoRSt to implement the static analyzer eThor. To gain confidence in the resulting
implementation, we encode the relevant semantic tests (604 in total) of the official EVM suite
as reachability properties, against which we successfully test the soundness and precision of
eThor;

• We conduct a large-scale experimental evaluation on real-world contracts comparing eThor to
the state-of-the-art analyzer ZEUS [KGDS18a] which claims to provide soundness guarantees.
While ZEUS shows a striking specificity (i.e., completeness) of 99.8%, eThor clearly outper-
forms ZEUS in terms of recall (i.e., soundness) – 100% vs. 11.4% – which empirically refutes
ZEUS’ soundness claim. With a specificity of 80.4%, eThor shows overall performance of
89.1% (according to the F-measure) as compared to ZEUS’ F-measure of 20.4%.

The remainder of this chapter is organized as follows. Section 4.2 introduces our static reachability
analysis, specifies its soundness guarantee and discusses relevant smart contract properties in

59

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

scope of the analysis. Section 4.3 introduces the specification language HoRSt. Section 4.4
presents eThor and our experimental evaluation. Section 4.5 discusses how eThor overcomes
the challenges discussed in Chapter 3. Section 4.6 concludes by discussing interesting future
research directions. The source code of eThor and HoRSt with the data set used in the experimental
evaluation are available online [ext20].

4.2 Static Analysis of EVM Bytecode

Starting from the small-step semantics presented in Chapter 2, we design a sound reachability
analysis that supports (among others) the validation of the single-entrancy property. We follow the
verification chain depicted in Figure 4.1: For showing the executions of a contract to satisfy some
property Φ, we formulate a Horn-clause-based abstraction that abstracts the contract execution
behavior and argue about an abstracted property over abstract executions instead. This reasoning
is sound given that all concrete small-step executions are modeled by some abstract execution
and given that the abstracted property over-approximates Φ.

A Horn-clause-based abstraction for a small-step semantics → is characterized by an abstraction
function α that translates concrete configurations (here) into abstract configurations (here

). Abstract configurations are sets of predicate applications where predicates (formally char-
acterized by their signature S) range over the values from abstract domains. These abstract
arguments are equipped with an order ≤ that can be canonically lifted to predicates and further
to abstract configurations, hence establishing a notion of precision on the latter. Intuitively, α
translates a concrete configuration into its most precise abstraction. The abstract semantics
is specified by a set of Constrained Horn clauses Λ over the predicates from S and describes
how abstract configurations evolve during abstract execution. A Constrained Horn clause is a
logical implication that can be interpreted as an inference rule for a predicate. Consequently,
an abstract execution consists of logical derivations from an abstract configuration using Λ. A
Horn-clause-based abstraction constitutes a sound approximation of small-step semantics →
if every concrete (multi-step) execution →∗ can be simulated by an abstract execution:
More precisely, from the abstract configuration α() one can logically derive using Λ an abstract
configuration that constitutes an over-approximation of (so is at least as abstract as α()). A
formal presentation of the soundness statement is given in Section 4.2.4 while a characterization
in abstract interpretation terminology is deferred to Appendix C.2.2. A sound abstraction allows
for the provable analysis of reachability properties: Such properties can be expressed as sets of
problematic configurations (here). Correspondingly, a sound abstraction for such a property is
a set of bad abstract configurations (here) that contains all possible over-approximations of
the bad concrete states. The soundness of the abstract semantics then guarantees that if no bad
abstract configuration from this set can be entered, also no bad configuration can be reached in
the concrete execution.

4.2.1 Main Abstractions

Our analysis abstracts from several details of the original small-step semantics. In the following,
we overview the main abstractions:

60

4.2. Static Analysis of EVM Bytecode

?

Small-step Semantics

Abstract Semantics

concrete execution

abstract execution

...

...

Soundness

Reachability Property
bad concrete

states

Reachability Query
bad abstract

states

Soundness

contract execution
behavior property abstraction?

...

Figure 4.1: Formal verification chain of eThor. Δ Λ Δ denotes that the abstract configuration
Δ can be logically derived from Δ (within one step) using the Horn clauses in Λ.

Blockchain environment. The analysis describes the invocation of a contract (in the following
denoted as c∗) in an arbitrary blockchain environment, hence is not modeling the execution
environment as well as large fractions of the global state. Indeed, most of this information is
not statically known as the state of the blockchain at the time of contract execution cannot be
reliably predicted. As a consequence, the analysis has to deal with a high number of unknown
environment inputs in the abstract semantics. Most prominently, the behavior of other contracts
needs to be appropriately over-approximated, which turns out to be particularly challenging since
such contracts can interact with c∗ in multitudinous ways.

Gas modeling. The contract gas consumption is not modeled. The gas resource bounding the
contract execution is set by the transaction initiator and hence not necessarily known at analysis
time. Thus, our analysis assumes contract executions to halt exceptionally at any point due to an
out-of-gas exception. This does not affect the precision of the analysis for security properties that
consider arbitrary contract invocations (and hence arbitrary gas limits).

Memory model. In the EVM the local memory is byte-indexed, while the machine stack holds
words (encompassing 32 bytes). Consequently, loading a machine word from memory requires
assembling the byte values from 32 consecutive memory cells. However, as already described
in [PZS+18], in practice, reasoning about this conversion between words and bytes is hard.
Therefore, we model memory in our abstraction as a word array: this enables very cheap accesses
in case that memory is accessed at the start of a new memory word and otherwise just requires
the combination of two memory words.

Call Stack. The call stack is captured by a two-level abstraction distinguishing only between
the original execution of c∗ (call level 0) and reentrancies of c∗ ultimately originating from the
original execution (call level 1). This abstraction reflects that given the unknown blockchain
environment, the state of the call stack when reentering is obscure: it is unknown who initiated
the reentering call and which other internal transactions have been executed before.

61

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

Sc∗ p :=
| MStatepc : (N × (N → D̂)) × (N → D̂) × (N → D̂) × B → B
| Exc : B → B
| Halt : (N → D̂) × B → B

pc ∈ {0, . . . , |c∗.code| − 1}
D̂ := N ∪ { }

Figure 4.2: Definition of the predicate signature Sc∗ and the abstract domain D̂.

4.2.2 Analysis Definition

In the following we formally specify our analysis by defining the underlying Horn-clause-based
abstraction. An abstract configuration is a set of predicate applications representing one or
several concrete configurations. Since we are interested in analyzing executions of the contract
c∗, we consider EVM configurations representing such executions which are call stacks having
an execution state of contract c∗ as a bottom element. We abstract such a call stack by the set of
all its elements that describe executions of c∗, reflecting the stack structure only by indicating
whether a relevant execution state represents the original execution of c∗ (call level 0) or a
reentering execution that hence appears higher on the call stack (call level 1). The individual
execution states are abstracted as predicate applications using the predicates listed in Figure 4.2:
A predicate application of the form MStatepc((size, s), m, stor, c) describes a regular execution
of c∗ at program counter pc that has a local stack of size size with elements as described by the
mapping s (from stack positions to elements) and a local memory m, and the global storage of
contract c∗ at this point being stor. Accordingly, the predicate application Exc(c) denotes that
an execution of c∗ halted exceptionally at call level c and Halt(stor, c) represents an execution
that regularly halted at call level c with the global storage of c∗ being stor. Since during the
abstract execution, precise modeling of all the described state components is not always possible,
the argument domains of the predicates encompass the abstract domain D̂ that enriches N with
the join element over-approximating any natural number. Formally, the described abstractions
of EVM configurations are captured by the abstraction function α in Figure 4.3 that maps call
stacks into the corresponding sets of predicates, yielding an abstract configuration.

Note that α is parametrized by c∗ and that only the call stack elements modeling executions of c∗

are translated.

The transitions between abstract configurations (as yielded by α) are described by an abstract
semantics in the form of Constrained Horn clauses. The abstract semantics is also specific to
the contract c∗: Depending on the EVM instructions that appear in c∗, it contains Horn clauses
that over-approximate the execution steps enabled by the corresponding instructions. We hence
formulate the abstract semantics as a function δ that maps a contract c∗ to the union of Horn
clauses that model the individual instructions in the contract:

62

4.2. Static Analysis of EVM Bytecode

αc∗(S) :=

∅ S =
αs(s, c∗.addr, c) ∪ αc∗(S) S = sc∗ :: S ∧ c = (S =) ? 0 : 1
αc∗(S) S = sc :: S ∧ c = c∗

αs(s, a, c) :=

{MStatepc((|s|,
stackToArray(s)),
toWordMem(m),
σ(a).stor, c)} s = ((gas, pc, m, i, s), ι, σ, η)

{Exc(c)} s = EXC
{Halt(σ(a).stor, c)} s = HALT(σ, gas, data, η)
∅ otherwise

stackToArray(s) :=
λx. 0 s =
(stackToArray(s))|s |

x s = x :: s

toWordMem(m) := λx. m[x · 32]||1m[x · 32 + 1] · · · ||1m[x · 32 + 31]

Figure 4.3: Configuration abstraction function. Here v||nw denotes the value obtained by
concatenating v’s and w’s byte representation, assuming that w is represented by n bytes.

δ(c∗) :=
0≤i<|c∗.code|

c∗.code[i] i

The core of the abstract semantics is defined by the instruction abstraction function · i that
maps a contract instruction at position i to a set of Horn clauses over-approximating the semantics
of the corresponding instruction. We will discuss the translation of the ADD, the MLOAD, and
CALL instruction depicted in Figure 4.4 to illustrate the main features of the abstract semantics.

Addition. The abstract semantics of the addition instruction (ADD) encompasses two Horn
clauses describing the successful execution and the failure case. A prerequisite for a successful
addition is the existence of a sufficient amount of arguments on the machine stack. In this case,
the top stack values are extracted, and the stack at the next program counter (modeled by the
predicate MStatepc+1) is updated with their sum. As the stack elements, however, range over
the abstract value domain D̂, the addition operation on N needs to be lifted to D̂: Following
the general intuition of representing all potential values in N, the occurrence of as one
of the operands immediately declassifies the result to . Similar liftings are performed for all
unary, binary, and comparison operators in the instruction set. A precise definition is given
in Appendix C.2.3.

In accordance with the choice of not modeling gas consumption, the Horn clause modeling the
failure case – which is common to the abstract semantics of all instructions – does not have any
preconditions, but the instruction reachability. This rule subsumes all other possible failure cases
(such as stack over- and underflows).

63

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

ADD pc :=
{ MStatepc((size, s), m, stor, c) ∧ size > 1
∧ x̂ = s[size − 1] ∧ ŷ = s[size − 2]
=⇒ MStatepc+1((size − 1, s[size − 2 → x̂ + ŷ]), m, stor, c), (A1)

MStatepc((size, s), m, stor, c) =⇒ Exc(c) } (A2)
MLOAD pc :=

{ MStatepc((size, s), m, stor, c) ∧ size > 1
∧ ô = s[size − 1] ∧ v̂ = (ô ∈ N) ? getWord(m, ô) :
=⇒ MStatepc+1((size, s[size − 1 → v̂]), m, stor, c), . . . } (M1)

CALL pc :=
{ MStatepc((size, s), m, stor, c) ∧ size > 6
=⇒ MStatepc+1((size − 6, s[size − 7 →]), λx. , λx. , c), (C1)

MStatepc((size, s), m, stor, c) ∧ size > 6
=⇒ MState0((0, λx. 0), λx. 0, stor, 1), (C2)

MStatepc((size, s), m, stor, c) ∧ size > 6 ∧ Halt(storh, 1)
=⇒ MState0((0, λx. 0), λx. 0, storh, 1), . . .} (C3)

Figure 4.4: Partial definition of · pc: selection of abstract semantics rules. For CALL and
MLOAD the exception rule is omitted.

Memory Access. Memory access on the level of EVM bytecode is enabled by the MLOAD
instruction, which takes the memory offset to be accessed as the argument from the stack and
pushes the word from memory starting at this index. In our abstraction defined by the abstract
semantic rule depicted in Figure 4.4 either immediately is pushed to the stack (in case that
the offset ô is not a concrete value and hence the value to be loaded cannot be determined) or
the word from the concrete memory offset is extracted. The extraction needs to account for
the word-indexed memory abstraction that we chose and is formally defined by the function
getWord(·, ·) depicted in Figure 4.5. In case that the offset is a word address (divisible by 32), the
corresponding value can be accessed from the word memory m by converting the byte address to
the word address (p

32). Otherwise, the word at the next lower word address (p
32) and the word at

the next higher byte address (p
32) are accessed to combine their relevant parts to a full word.

Contract Calls. The abstraction for CALL is the most interesting. This instruction takes seven
arguments from the stack that specify parameters to the call, such as the target of the call or the
value to be transferred, as well as the memory addresses specifying the location of the input and
the return data. When returning from a successful contract call, the value 1 is written to the stack,
and the return value is written to the specified memory fragment. The persistent storage after
a successful call contains all changes that were performed during the execution of the called
contract. In the case of an exception, the storage is rolled back to the point of calling and the

64

4.2. Static Analysis of EVM Bytecode

getWord(m, p) :=
m[p

32] p mod 32 = 0
(m[p

32][p mod 32,31])||p mod 32(m[p
32][0,(p mod 32)−1]) otherwise

Figure 4.5: Function extracting the word at byte offset p from word-indexed memory m. Here
v[l,r] denotes the value represented by v’s lth byte till rth byte in big endian byte representation.

v||nw is defined as in Figure 4.3. We assume both operations to be lifted to D̂.

value 0 is written to the stack to indicate failure.

Since a contract call initiates the execution of another (unknown) contract, all its effects on the
executions of c∗ need to be modeled. More precisely, these effects are two-fold: the resuming
execution of c∗ on the current call level needs to be approximated, as well as the reentering
executions of c∗ (on a higher call level). For obtaining an analysis that is precise enough to detect
real-world contracts with reentrancy protection as secure, it is crucial to model c∗’s persistent
storage as accurately as possible in reentering executions. This makes it necessary to carefully
study how the storage at the point of reentering relates to the one in the previous executions of
c∗, taking into account that (in the absence of DELEGATECALL and CALLCODE instructions
in c∗) only c∗ can manipulate its own storage. Figure 4.6 overviews the storage propagation in
the case of a contract call: To this end it shows the sequence diagram of a concrete execution
of c∗ that calls a contract c which again triggers several reentrancies of c∗. In this course three
ways of storage propagation between executions of c∗ are exhibited: 1) The storage is forward
propagated from a calling execution to a reentering execution of c∗ (A , C) 2) The storage is cross
propagated from a finished reentering execution to another reentering execution of c∗ (B) 3) The
storage is back propagated from a finished reentering execution to a calling execution of c∗ (D ,
E) These three kinds of propagation are reflected in the three abstract rules for the call instruction
given in Figure 4.4 and correspondingly visualized in Figure 4.6.

Rule (C1) describes how the execution of c∗ (original and reentering alike) resumes after returning
from the call, and hence approximates storage backpropagation: For the sake of simplicity, storage
gets over-approximated in this case by λx. . The same applies to the local memory, and stack
top value as those are affected by the result of the computation of the unknown contract. Rule (C2)
captures the initiation of a reentering execution (at call level 1) with storage forward propagation:
As contract execution always starts at program counter 0 with empty stack and all-zero local
memory, only abstractions (instances of the MState0 predicate) of this shape are implied. The
forward propagation of storage is modeled by initializing the MState0 predicate with the storage
stor at call time. Rule (C3) models storage cross propagation: Similar to rule (C2), an abstract
reentering execution in a fresh machine state is triggered. However, the storage is not propagated
from the point of calling, but from a finished reentering execution whose results are abstracted
by the halting predicate Halt at call level 1. This rule is independent of the callee in that it is
only conditioned on the reachability of some CALL instruction, but it does not depend on the
callee’s state. Its cyclic structure requires extrapolating an invariant on the potential storage
modifications that are computable by c∗: Intuitively, when reentering c∗, it needs to be considered

65

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

RET

RET

CALL

RET

CALL

RET

Re-entering Executions

Call Level 0 Call Level 1

RET
RET

CALL
CALL

CALL
CALL

Initial Execution

RET

Tim
e

A

B

C

D

E

E D
C

A

B

C2 C2

C1C1 C3

Figure 4.6: Illustration of the different call abstractions.

that priorly the storage was modified by applying an arbitrary sequence of c∗’s public functions.
The significance of this abstraction is motivated by the example in Fig. 3.3 where for the DAO
contract that supports the switchLock() function, the attack is only enabled by calling this
function first to release the lock before reentering.

4.2.3 Scope of the Analysis

Before presenting the soundness result, we discuss the scope of the analysis. The analysis
targets contracts in a stand-alone setting, which means that the behavior of all contracts that c∗

might interact with is over-approximated. This abstraction is not merely a design choice but
rather a necessity as the state of the blockchain (including the code of the contracts residing
there) at execution time cannot be statically determined. Still, we could easily accommodate the
precise analysis of a set of known contracts, e.g., library contracts that are already present on the
blockchain. We omitted this straightforward extension in this work for the sake of clarity and
succinctness in the analysis definition and the soundness claim.

Following this line of argumentation, we assume c∗ not to contain DELEGATECALL and
CALLCODE instructions: these instructions enable the execution of another contract code in the
context of c∗, allowing for the modification of the persistent storage of c∗ and even of money

66

4.2. Static Analysis of EVM Bytecode

transfers on behalf of c∗. Using DELEGATECALL or CALLCODE to call an unknown con-
tract can, therefore, potentially result in the reachability of any execution states of contract c∗.
Consequently, every property relying on the non-reachability of certain problematic contract
states would be considered violated. In a setting of multiple known contracts, the restriction on
DELEGATECALL and CALLCODE instructions could be relaxed to allow for such calls that are
guaranteed to target known contracts.

We now briefly illustrate the key design choices behind our abstraction, which we carefully
crafted to find the sweet spot between accuracy and practicality. The analysis is value-sensitive in
that concrete stack, memory, and storage values are tracked until they get abstracted due to the
influence of unknown components. For local computations, the analysis is partly flow-sensitive
(considering the order of instructions but merging abstract configurations at the same program
counters) and path-sensitive (being sensitive to branch conditions). On the level of contract calls,
a partial context-sensitivity is given in that the storage at the time of calling influences the analysis
of the subsequent call, but no other inputs to the call are tracked. In particular (due to the lack
of knowledge on interactions with other contracts), all reentering calls are merged into a single
abstraction, accumulating all possible storage states at the point of reentering. For this reason, the
analysis of calls on level 1 is less precise than the one of the original execution at call level 0,
where only the restrictions of flow sensitivity apply.

4.2.4 Soundness Result

We prove, for each contract c∗, that the defined Horn-clause-based abstraction soundly over-
approximates the small-step semantics presented in Chapter 2. Formally, this property is stated as
follows:

Theorem 3 (Soundness). Let c∗ be a contract not containing DELEGATECALL or CALLCODE.
Let Γ be a transaction environment and let S and S be annotated call stacks such that |S | > 0.
Then for all execution states s that are strongly consistent with c∗ it holds that

Γ sc∗ :: S →∗ S ++ S =⇒ ∀ΔI . αc∗([sc∗]) ≤ ΔI

=⇒ ∃Δ. ΔI , δ(c∗) Δ ∧ αc∗(S) ≤ Δ

Note that the notion of strong consistency here simply ensures that the contract annotation
properly reflects the contract in the global state and in the execution environment. The formal
details are given in Appendix C.2.4.

The theorem states that every execution of contract c∗ (modeled by a multi-step execution starting
in state sc∗ on an arbitrary call stack S and ending in call stack S ++ S, indicating that the
original execution of c∗ yielded the state as modeled by the call stack S), can be mimicked
by an abstract execution. This means that from every abstract configuration ΔI that abstracts
sc∗ (so that it is more abstract than α([sc∗])) one can logically derive using the Horn clauses in
δ(c∗) some abstract configuration Δ abstracting S . As a consequence of this theorem, we can
soundly reason about arbitrary executions of a contract c∗: if we can show that from an abstract
configuration ΔI , that abstracts a set of initial execution states of c∗, it is impossible to derive

67

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

using δ(c∗) some other abstract configuration Δ, that abstracts a set of problematic execution
states of c∗, then this ensures that all these problematic states are not reachable with a small-step
execution from any of the initial states.

For the proof of Theorem 3 we refer the reader to Appendix C.2.4.

4.2.5 Reachability Properties for Contract Safety

As characterized by the soundness result, our abstraction allows for the sound analysis of
reachability properties. We will illustrate in the following how such a reachability analysis is
sufficient to express relevant smart contract security properties.

Single-entrancy. Some generic security properties of Ethereum smart contracts can be over-
approximated by reachability properties and thus checked automatically by our static analysis.
Consider, the single-entrancy property from Section 2.4 which can be proven to be approximated
by the following reachability property:

Definition 10 (Call unreachability). A contract c is call unreachable if for all regular execution
states (µ, ι, σ, η) that are strongly consistent with c and satisfy µ = (g, 0, λx. 0, 0,) for some
g ∈ N, it holds that for all transaction environments Γ and all call stacks S

¬∃s, S. Γ (µ, ι, σ, η)c :: S →∗ sc :: S ++ S

∧ |S | > 0 ∧ code (c) [s.µ.pc] ∈ Instcall

Where Instcall = {CALL, CALLCODE, DELEGATECALL, CREATE}

Intuitively, call unreachability is a valid over-approximation of single-entrancy as an internal
transaction can only be initiated by the execution of a call instruction. Consequently, for excluding
that an internal transaction was initiated after reentering, it is sufficient to ensure that no call
instruction is reachable at this point. In addition, as all contracts start their executions in a fresh
machine state (program counter and active words set to 0, empty stack, memory initialized to
0) when being initially called, it is sufficient to check all executions of contract c that started
in such a state. The formal proof for call unreachability implying single-entrancy is deferred
to Appendix C.3.1.

Static Assertion Checking. The Solidity language supports the insertion of assertions into
source code. Assertions shall function as pure sanity checks for developers and are enforced at
runtime by the compiler creating the corresponding checks on the bytecode level and throwing an
exception (using the INVALID opcode) in case of an assertion violation [Eth18]. However, adding
these additional checks creates a two-fold cost overhead: At create time, a longer bytecode needs
to be deployed (the longer the bytecode, the higher the gas cost for creation), and at call time, the
additional checks need to be executed, which results in additional gas consumption. With our
static analysis technique, assertions can be statically checked by querying the reachability of the
INVALID instruction. If no such instruction is reachable, by the soundness of the analysis, the
code is proven to give the same guarantees as with the assertion checks (up to gas), and those

68

4.3. HoRSt: A Static Analysis Language

checks can safely be removed from the code resulting in shorter and cheaper contracts.2 Formally,
we can characterize this property as the following reachability property:

Definition 11 (Static assertion checking). Let c be a contract and (µ, ι, σ, η) regular execution
states such that (µ, ι, σ, η) is strongly consistent with c and µ = (g, 0, λx. 0, 0,) for some g ∈ N.
Let Γ be an arbitrary transaction environment and S be an arbitrary call stack. Then a the static
assertion check for c is defined as follows:

¬∃s, S. Γ (µ, ι, σ, η)c :: S →∗ sc :: S ++ S ∧ code (c) [s.µ.pc] = INVALID

Intuitively this property says that during the execution of contract c, it should never be possible to
execute an INVALID instruction.

Semi-automated Verification of Contract-specific Properties. As demonstrated by Hilde-
brandt et al. [HSR+18], reachability analysis can be effectively used for Hoare-Logic-style
reasoning. This holds in particular for the analysis tool presented in this work: Let us consider
a Hoare triple {P}C{Q} where P is the precondition (operating on the execution state), C is
the contract code, and Q is the postcondition that should be satisfied after executing code C in
an execution state satisfying P . Then we can intuitively check this claim by checking that a
state satisfying ¬Q can never be reached when starting execution in a state satisfying P . More
formally, we can define Hoare triples as reachability properties as follows:

Definition 12 (Hoare triples). Let c∗ be a contract and let C be a code fragment of c∗. Let
P ∈ S → B be a predicate on execution states (strongly consistent with c∗) that models execution
right at the start of C and similarly let Q ∈ S → B be a predicate on execution states (strongly
consistent with c∗) that models execution right at the point after executing C. Then Hoare triples
{P}C{Q} can be characterized as follows:

{P }C{Q} := ∀s. P (s) =⇒ ¬∃s . Γ sc∗ :: S →∗ s c∗ :: S ∧ ¬Q(s)

Hoare-Logic style reasoning can be used for the semi-automated verification of smart contracts,
given that their behavior is specified in terms of pre- and postconditions. For now, it still requires
a non-negligible amount of expertise to insert the corresponding abstract conditions on the
bytecode-level, but by a proper integration into the Solidity compiler, the generation of the
initialization and reachability queries could be fully automated (cf. Appendix C.3.2). We want to
stress that in contrast to existing approaches, our analysis technique has the potential to provide
fully automated pre- and postcondition checking even in the presence of loops as it leverages the
fixed point engines of state-of-the-art SMT solvers [HBDM11].

4.3 HoRSt: A Static Analysis Language

To facilitate the principled and robust development of static analyzers based on Horn clause
resolution, we designed HoRSt – a framework consisting of a high-level specification language

2The Solidity Docs [Eth18] discuss exactly this future use of static analysis tools for assertion checking.

69

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

 Spec

Smart Contract

Internal Horn Clause
Representation

Horn Clause
Transformations

smt-lib
Output

Contract
Parser Compiler</>

Parameter
Interface

Figure 4.7: Utilization of HoRSt for static analysis

for defining Horn-clause-based abstractions and a compiler generating optimized smt-lib
encodings for SMT solvers. The objective of HoRSt is to assist analysis designers in developing
fast and robust static analyzers from clean and readable logical specifications.

Many existing practical analyzers are built on top of modern SMT solvers, such as z3 . These
solvers are highly optimized for performance. However, they show big performance deviations
on different problem instances, which are (due to the heavy use of heuristics) difficult to predict
for the users. Handcrafting logical specifications for such solvers in their low-level input format
smt-lib hence not only cumbersome, error-prone, and requires technical expertise, but is
also very inflexible, since the performance effects of different encodings may vary with the
concrete problem instance. For tackling this issue, HoRSt decouples the high-level analysis
design from the compilation to the input format: A high-level specification format allows for
clear, human-readable analysis definitions while the translation process is handled by a stable and
streamlined backend. On top, HoRSt allows for easily applying and experimenting with different
Horn-clause-level optimizations that we can show to enhance the performance of z3 substantially
in our problem domain. We will shortly illustrate the utilization of HoRSt in the design process
of our static analyzer and discuss the most interesting optimizations performed by the HoRSt
compiler. For an introduction to the HoRSt language, we refer the reader to Appendix C.1.1.

Designing Static Analyses using HoRSt The HoRSt language allows for writing math-like
specifications of Horn clauses such as those given in Figure 4.4. For parametrizing those clauses
(e.g., by the program counters of a specific contract), an interface with a Java™ back end can be
specified to handle the domain-specific infrastructure, such as contract parsing. We overview the
different steps of the analysis design process in Fig. 4.7.

The core of the analysis is the HoRSt specification. Using high-level programming constructs such
as algebraic data types, pattern matching, and bounded iteration, a HoRSt specification describes
Constrained Horn clauses over user-defined predicates. Horn clauses can be parametrized by
(families) of sets that are specified in the parameter interface (e.g., the sets of all program counters
containing a certain bytecode instruction in a specific contract). Given such a specification, the
analysis designer needs to provide infrastructure code written in Java™. In particular, this code
needs to exhibit an implementation of those sets (or functions) specified in the parameter interface.
In the case of our analysis, the environment code contains the infrastructure for contract parsing,

70

4.4. Implementation & Evaluation

and the parameter interface allows for accessing the assembled contract information (code length,
positions of opcodes, etc.) in the analysis specification. The HoRSt compiler itself is utilized to
generate (optimized) smt-lib output given a HoRSt specification and the parameter interface
implementation: It unfolds the high-level specification into separate Horn clauses over basic
data types, applying the interface implementation. To this end, it also resolves all high-level
constructs, ensuring that the resulting Horn clauses fall into the fragment that can be handled by
z3 . On top, the HoRSt compiler (optionally) performs different optimizations and transformations
on the resulting Horn clauses before translating them into the standardized SMT output format
smt-lib. The most important of these transformations are discussed in the following.

Low-level Optimizations One of the most effective optimizations performed by HoRSt is the
predicate elimination by unfolding Horn clauses. This satisfiability preserving transformation
has been long-studied in the literature [BD77, Tam84] and showed beneficial for solving Horn
clauses in certain settings [HBC+12, BGMR15]. In practice, however, the exhaustive application
of this transformation can lead to an exponential blow-up in the number of Horn clauses and
hence does not necessarily yield the best results. For this reason HoRSt implements different
strategies for the (partial) application of this transformation, which we call linear folding and
exhaustive folding.

Finally, HoRSt supports constant folding for minimizing the smt-lib output and value encoding
to map custom data types into primitive type encodings that are efficiently solvable by z3 . We
refer to Appendix C.1 for further details on HoRSt internals and functionalities.

4.4 Implementation & Evaluation

We use HoRSt to generate the analyzer eThor which implements the static analysis defined
in Section 4.2. In the following, we overview the design of eThor and illustrate how eThor can
enhance smart contract security in practice. To this end, we conduct a case study on a widely used
library contract, showing eThor’s capability of verifying functional correctness properties and
static assertion checks. Further, we validate eThor’s soundness and precision on the official EVM
test suite and run a large-scale evaluation for the single-entrancy property on a set of real-world
contracts from the Ethereum blockchain, comparing eThor with the state-of-the-art analyzer
ZEUS [KGDS18a].

4.4.1 Static Analysis Tool

The mechanics of eThor are outlined in Fig. 4.8: eThor takes as input the smart contract to
be analyzed in bytecode format and a HoRSt specification parametrized by the contract. To
enhance the tool’s performance and precision, eThor performs a multi-staged analysis: First, it
approximates the contract jump destinations. This step decouples the control flow reconstruction
(which can be performed more efficiently with a less precise abstract semantics as typically no
computations on jump destinations are performed, but just their flow during the stack needs
to be modeled) from the more evolved abstract semantics required for precisely analyzing the
properties discussed in Section 4.2.5. As both used semantics are sound, the soundness of the

71

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

Smart Contract

Spec

CFG Gen

Constant Analysis
Z3

ExhaustiveLinear

Spec

Horn Clause Gen

Figure 4.8: Analysis outline.

overall analysis is guaranteed. In a second preprocessing step, eThor performs a simple partial
execution of atomic program blocks in order to statically determine fixed stack values. This
can be beneficial in order to, e.g., precompute hash values and results of exponentiation which
would otherwise need to be over-approximated in the analysis due to the lacking support for such
operations by z3 . The results from the preanalysis steps are incorporated into the analysis by a
predefined interface in the HoRSt-specification. The HoRSt compiler then – given the interface
implementation and the specification – creates an internal Horn clause representation which,
after optionally performing different optimizations, is translated to an smt-lib file on which
the SMT solver z3 is invoked. The reconstructed control flow is obtained by a Soufflé [JSS16]
program, which was created by manually translating a HoRSt specification. Soufflé is a high
performance datalog engine, which we plan to support as a compilation target for (a subset
of) HoRSt in the near future.z Since the problem of control flow reconstruction falls into the
fragment supported by modern datalog solvers, we found Soufflé more performant than using
the general-purpose solver z3 in this context 3. However, for reasoning about more involved
properties, the expressiveness of z3 is required, as we will illustrate in Section 4.4.2.

4.4.2 Case Study: SafeMath Library

As a case study for functional correctness and assertion checking we chose Solidity’s SafeMath
library [saf19], a library implementing proper exception behavior for standard arithmetic opera-
tions. This particularly encompasses exceptions in case of overflows, underflows, and division or
modulo by 0. The SafeMath library is special in that it is not deployed as an own contract on
the blockchain, but its functions get inlined during the compilation of a contract that uses them4.
This specific behavior makes it particularly interesting to analyze the individual library functions
as their concrete implementations may vary with changes in the compiler.

3z3 implements a standard datalog engine which is restricted to work with predicates over finite domains. This
constraint ensures that the smt-lib-expressible Horn clauses do not leave the datalog-solvable fragment. Soufflé
overcomes this restriction in favor of a more liberal characterization of the solvable fragment, which could also be
integrated into the HoRSt language - allowing for compilation to Soufflé from this fragment.

4In Solidity, one always needs to provide definitions of the (library) contracts one is interacting with. In case that
a library is only containing pure internal functions, the Solidity compiler inlines this functions instead of compiling
them to DELEGATECALL call instructions to an address at which the user specified the library to reside.

72

4.4. Implementation & Evaluation

Functional Correctness. For our case study we compiled the functions of the SafeMath library
with a recent stable Solidity compiler version (0.5.0) and verified that they expose the desired
behavior. We showed that all functions 1) cannot return successfully in the problematic corner
cases. 2) can return successfully with the correct result in the absence of corner cases. 3)
if halting successfully in the absence of corner cases, they can return nothing but the correct
result. As these properties require to precisely relate different input values over the execution
(e.g., requiring that the sum of two input values exceeds 2256), we needed to slightly adapt our
analysis by adding a representation of the initial input (as word array) to the MState and the
Halt predicates. This array is accessed by the CALLDATALOAD operation which fetches the
input data. Additionally, we need to model return values by an own predicate. For more details,
we refer the reader to Appendix C.3.3. eThor manages to prove the corresponding functional
properties for each of the five functions within milliseconds, showcasing the tool’s efficiency.
Note that verifying meaningful functional correctness properties, like in this case study, requires
to universally quantify over potential inputs, hence making an analysis with a datalog engine
(such as Soufflé), which requires to explicitly list finite initial relations, infeasible.

Static Assertion Checking. The following code snippet shows the division function of the
SafeMath library:

1 function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns
(uint256) {

2 require(b > 0, errorMessage);
3 uint256 c = a / b;
4 // assert(a == b * c + a % b); // There is no case in which this doesn’t hold
5 return c; }

It testifies that the function used to contain an assertion which was deemed to be unnecessary and
hence removed (probably to save gas). We reinserted this assertion and indeed could prove that
the dynamic assertion check is superfluous as it can never be violated.

4.4.3 Large-scale Evaluation

We performed a series of experiments to assess the overall performance of our tool. In particular,
we systematically evaluated eThor’s correctness and precision on the official EVM test suite and
additionally conducted a large scale analysis for the single-entrancy property, comparing eThor
with the ZEUS [KGDS18a] static analyzer, using the real-world data set introduced with the
latter5.

Automated Testing. For a principled correctness assessment, we evaluated eThor against the
virtual machine test cases provided by the Ethereum Foundation6. Being formulated as pre- and
postconditions, these test cases fall in the class of properties characterized in Section 4.2.5, and
we could automatically translate them into queries in HoRSt. The test suite defines 609 test cases,

5We compare with [KGDS18a] as we found it the only (claimed) sound tool to support a property comparable to
single-entrancy. [TDDC+18] only supports a pattern (NW) which the authors claim to be different from reentrancy.
[LWZ+19] utilizes a similar pattern.

6https://github.com/ethereum/tests/

73

https://github.com/ethereum/tests/

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

604 of which specify properties relevant for a single contract setting (see Appendix C.3.4 for
details). Using a 1 second timeout, we were able to solve 85% (513) of the test cases precisely
with a termination rate of 99% (597).

Reentrancy. For the call unreachability property described in Definition 10, we evaluated eThor
against the set of real-world contracts presented in [KGDS18a]. The authors extracted 22493
contracts from the Ethereum blockchain over a period of three months and (after deduplication)
made available a list of 1524 contract addresses. Due to various problems of this data set (as
described in [ext20]), sanitization leaves us with 720 distinct bytecodes, out of which we label
100 contracts to be trivially non-reentrant (due to the absence of possibly reentering instructions)
and 2 were out of the analysis scope (containing at least one DELEGATECALL or CALLCODE
instruction) and hence immediately classified to be potentially vulnerable. We make the sanitized
benchmark available to the community, including bytecode and sources (where available) [ext20].
For 13 contracts, we failed to reconstruct the control-flow graph, leaving us with 605 distinct
contracts to run our experiments on.

We ran three different experiments for evaluating eThor’s performance for the single-entrancy
property, performing no folding, linear folding, and exhaustive Horn clause folding. This
experimental setup aims not only to conduct a comparison with ZEUS, but also to showcase
how eThor’s modular structure facilitates its performance in that eThor can flexibly benefit from
different optimization techniques of the HoRSt compiler. In comparison with ZEUS, we take
into account the combined result of the three different experiments (the contracts solvable using
any of the applied foldings). For the exhaustive folding, we omitted instances where the time for
smt-lib generation exceeded 15 minutes.7 All of the experiments were conducted on a virtual
machine with 64 Cores at 2 GHz and 128 GiB of RAM. At most 64 queries were executed at
once, each with a 10 minutes timeout. Combining the different experiments we obtained results
for all but 28 contracts.

We compared the results with [KGDS18a]. Because of the existing soundness concerns regard-
ing [KGDS18a] (as discussed in Section 3.4 and also reported in the literature [TS+18]), we
manually reassessed the ground truth for all contracts that were labeled insecure by at least one
of the tools. Since this is a challenging and time consuming task, especially in the case that no
Solidity source code is available, we excluded all contracts with more than 6000 bytecodes for
which we were not able to obtain the source code, which leaves us with 709 contracts for which
we assessed the ground truth.

Surprisingly, we found numerous contracts labeled non-reentrant by [KGDS18a] which, if ana-
lyzed in a single contract setting, definitely were reentrant according to the definition of reentrancy
given in Definition 5 and also according to the informal definition provided in [KGDS18a] itself8.
We assume this to be an artifact of [KGDS18a]’s syntactical treatment of the call directive on
the Solidity level, which is, however, insufficient to catch all possible reentrancies. As the work
excludes reentrancies introduced by the send directive (even though this is officially considered

7This timeout was chosen since it yielded a termination rate of > 95%.
8[KGDS18a] gives the following informal definition: ‘A function is reentrant if it can be interrupted while in the

midst of its execution, and safely re-invoked even before its previous invocations complete execution.’

74

4.4. Implementation & Evaluation

Measure Definition eThor [KGDS18a]
termination terminated/total 94.3 98.1
sensitivity tp/(tp + fn) 100 11.4
specificity tn/(tn + fp) 80.4 99.8
F-measure 2 ∗ (spec ∗ sens/(spec + sens)) 89.1 20.4

Table 4.1: Performance comparison of eThor and ZEUS [KGDS18a]. total/terminated denotes
the number of contracts in the data set/the number of contracts the respective tool terminated on.

tp/fp denotes the number of true/false positives and tn/fn the true/false negatives.

potentially insecure [Eth19]), for the sake of better comparability, we slightly updated our abstract
semantics to account for calls that can be deemed secure following the same argument (namely
that a small gas budget prevents reentrancy). We compare eThor against [KGDS18a] on our
manually established ground truth. The results are summarized in Table 4.1.

For achieving a termination rate comparable to [KGDS18a] (94.3% vs. 98.1%), we needed
to run our tool with a higher timeout (10 min. query timeout vs 1 min. contract time out for
ZEUS). This difference can be explained by the fact that our analysis works on little structured
bytecode in contrast to the simplified high-level representation used by [KGDS18a]. Additional
overhead needs to be attributed to the usage of sound abstractions on the bytecode level as well
as to our different experimental setup that did not allow for the same amount of parallelization.
The soundness claim of [KGDS18a] is challenged by the experimentally assessed sensitivity
of only 11.4%. One possible explanation for this low value, which deviates from the numbers
reported in [KGDS18a] on the same data set, is that the intuition guiding the manual investigation
performed by [KGDS18a] departed from the notion of single-entrancy and the intuitive definition
given by the authors. This highlights the importance of formalizing not only the analysis
technique but also the security properties to be verified. When interpreting the high specificity of
[KGDS18a] (almost 100%) one should consider that ZEUS labels only 25 contracts vulnerable in
total, out of which one is a false positive. Given that the data set is biased towards safe contracts
(513 safe as opposed to 196 unsafe ones), a high specificity can be the result of a tool’s tendency
to label contracts erroneously secure. Due to the proven soundness, for eThor such behavior is
excluded by design. This overall advantage of eThor over ZEUS in terms of accuracy is reflected
by eThor’s F-measure of 89.1% as opposed to 20.4% for ZEUS.

Horn Clause Folding. Our experimental evaluation shows that, while both forms of Horn
clause folding improve the termination rate, the results of the different foldings are not directly
comparable. This is illustrated by Fig. 4.9 which plots the (lowest) termination times for those
queries that terminated within 200 seconds during the large-scale experiment. The different
colors indicate the kind of optimization (no/linear/exhaustive folding) that was fastest to solve
the corresponding query. The distribution of the dots shows that in the range of low query times
(indicating structured contracts), exhaustive folding (depicted in blue) dominates. However, for
longer query times, the linear folding (depicted in green) often shows a better performance. One
possible explanation is that for more complex contracts, the blow-up in rules created by the
exhaustive folding exceeds the benefits of eliminating more predicates. Interestingly, for few

75

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

Figure 4.9: Query runtimes in ms for the combined approach itemized by queries. A
red/green/blue dot denotes a query solved fastest with no/linear/exhaustive folding.

instances, even applying no folding at all (indicated in red) led to the fastest termination. We can
only explain this behavior by special heuristics used inside z3 that helped these particular cases.
This shows the lacking predictability of z3 and thereby motivates the necessity of high-level tools
like HoRSt that allow users to easily combine different optimizations in order to obtain results
reliably.

4.5 Discussion

As discussed in Chapter 3, in the last years, there have been plenty of works on the automatic
analysis of Ethereum smart contractsspanning dynamic, as well as static analysis approaches.
However, due to their security-critical nature, and since smart contracts once published on the
blockchain are immutable, there is a particular need for static and sound analysis approaches.

Still, as detailed out in Section 3.4, so far all approaches to developing automated static analyzers
that aim at providing soundness guarantees foundered on the particular challenges that the
Ethereum environment poses to the performant verification of smart contracts.

For avoiding the pitfalls leading to unsoundness in the presented works, eThor follows a principled
design approach: Starting from the formal EVM semantics defined in Chapter 2, it formulates an
abstract semantics in the specification language HoRSt which is proven sound with respect to the
concrete semantics, hence covering all particularities of the EVM bytecode language. Based on
this abstract semantic specification, a streamlined compilation process creates an SMT encoding
which is again systematically tested for soundness against the official test suite to minimize the
effect of implementation bugs. The challenge of sound control flow reconstruction is solved
by basing a corresponding preanalysis on a proper relaxation of the provably sound abstract
semantics in the Soufflé format, ensuring that the original soundness guarantees are inherited9.
For a more robust development, it is planned to also streamline this process in the future by

9The soundness of the control flow reconstruction is formally proven in [Gri21].

76

4.6. Conclusion

making the HoRSt compiler support Soufflé as an additional output format for a restricted Horn
clause fragment. For providing end-to-end guarantees of the resulting static analyzer, we do not
only ensure the soundness of the core analysis by proofs and testing but also give provably sound
approximations for relevant formalized semantic security properties suitable for encoding in the
analysis framework. One should mention that eThor’s soundness guarantees only hold in the
absence of bugs in the implementations and the proofs. More precisely, this means that we need
to assume that

1. The Ethereum clients implement the semantics as defined in Chapter 2.

2. eThor implements the Horn-clause-based abstraction as used in the soundness proof.

3. eThor implements all pre-processing steps correctly.

4. The underlying SMT solver is sound.

5. The (paper) proofs are correct.

With the described tool generation and testing pipeline, we try to mitigate the effects of potential
bugs in implementations and proofs. In the future, we plan to add another assurance layer by
mechanizing the manual soundness proofs.

4.6 Conclusion

We presented eThor, the first automated tool implementing a sound static analysis technique
for EVM bytecode, showing how to abstract the semantics of EVM bytecode into a set of Horn
clauses and how to express security as well as functional properties in terms of reachability queries,
which are solved using z3 . In order to ensure the long-term maintenance of the static analyzer
and facilitate future refinements, we designed HoRSt, a development framework for Horn-clause-
based static analysis tools, which given a high-level specification of Horn clauses automatically
generates an optimized implementation in the smt-lib format. We successfully evaluated
eThor against the official Ethereum test suite to gain further confidence in our implementation and
conducted a large-scale evaluation, demonstrating the practicality of our approach. Within a large-
scale experiment, we compared eThor to the state-of-the-art analysis tool ZEUS, demonstrating
that eThor surpasses ZEUS in terms of overall performance (as quantified by the F-measure).

This work opens up several interesting research directions. For instance, we plan to extend our
analysis as well as HoRSt to relational properties, since some interesting security properties,
such as those presented in Section 2.4, for smart contracts can be defined in terms of 2-safety
properties. Furthermore, we intend to further refine the analysis in order to enhance its precision,
e.g., by extending the approach to a multi-contract setting, introducing abstractions for calls that
approximate the account’s persistent storage and local memory after calling more accurately.
Furthermore, we plan to extend the scope of HoRSt significantly. First, we intend to make the
specification of the static analysis accessible to proof assistants in order to mechanize soundness
proofs. Furthermore, we intend to explore the automated generation of static analysis patterns

77

4. eThor: PRACTICAL AND PROVABLY SOUND STATIC ANALYSIS OF ETHEREUM SMART

CONTRACTS

from the specification of the concrete semantics in order to further reduce the domain knowledge
required in the design of static analyzers.

78

CHAPTER 5
Anonymous Multi-Hop Locks for

Blockchain Scalability and
Interoperability

Abstract

The tremendous growth in cryptocurrency usage is exposing the inherent scalability issues with
permissionless blockchain technology. Payment-channel networks (PCNs) have emerged as the
most widely deployed solution to mitigate the scalability issues, allowing the bulk of payments
between two users to be carried out off-chain. Unfortunately, as reported in the literature and
further demonstrated in this chapter, current PCNs do not provide meaningful security and privacy
guarantees [GM17, MMSK+17].

In this chapter, we study and design secure and privacy-preserving PCNs. We start with a security
analysis of existing PCNs, reporting a new attack that applies to all major PCNs, including
the Lightning Network and allows an attacker to steal the fees from honest intermediaries in
the same payment path. We then formally define anonymous multi-hop locks (AMHLs), a
novel cryptographic primitive that serves as a cornerstone for the design of secure and privacy-
preserving PCNs. We present several provably secure cryptographic instantiations that make
AMHLs compatible with the vast majority of cryptocurrencies. In particular, we show that (linear)
homomorphic one-way functions suffice to construct AMHLs for PCNs supporting a scripting
language (e.g., Ethereum). We also propose a construction based on ECDSA signatures that does
not require scripts, thus solving a prominent open problem in the field.

AMHLs constitute a generic primitive whose usefulness goes beyond multi-hop payments in a
single PCN, and we show how to realize atomic swaps and interoperable PCNs from this primitive.
Finally, our performance evaluation on a commodity machine finds that AMHL operations can
be performed in less than 100 milliseconds and require less than 500 bytes of communication

79

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

overhead, even in the worst case. In fact, after acknowledging our attack, the Lightning Network
developers have implemented our ECDSA-based AMHLs into their PCN. This demonstrates the
practicality of our approach and its impact on the security, privacy, interoperability, and scalability
of today’s cryptocurrencies.

This chapter presents the result of a collaboration with Giulio Malavolta, Pedro Moreno Sanchez,
Aniket Kate, and Matteo Maffei and was published at the Network and Distributed System Security
Symposium (NDSS’19) under the title ‘Anonymous Multi-Hop Locks for Blockchain Scalability
and Interoperability’ [MMSS+19]. I am responsible for the proof of the impossibility result
that shows the inevitability of wormhole attacks in multi-hop payments with only two rounds of
communication. Further, I contributed to the formalization of the newly introduced primitive
and its security notion, and to the security proofs in the UC framework. Pedro Moreno Sanchez
discovered the wormhole attack and developed together with Giulio Malavolta the ECDSA based
construction and conducted the practical evaluation. Giulio Malavolta lead the development of
the security proofs in the UC framework and the formalization of the primitive and its security
notion. The accompanying appendix contains the detailed constructions and proofs.

5.1 Introduction

Cryptocurrencies are growing in popularity and are playing an increasing role in the worldwide
financial ecosystem. In fact, the number of Bitcoin transactions grew by approximately 30%
in 2017, reaching a peak of more than 420, 000 transactions per day in December 2017 [bit].
This striking increase in demand has given rise to scalability issues [CDE+16], which go well
beyond the rapidly increasing size of the blockchain. For instance, the permissionless nature of
the consensus algorithm used in Bitcoin today limits the transaction rate to tens of transactions per
second, whereas other payment networks such as Visa support peaks of up to 47,000 transactions
per second[vis].

Among the various proposals to solve the scalability issue [PD, DW15, LNZ+16, DRO], payment-
channels have emerged as the most widely deployed solution in practice. In a nutshell, two users
open a payment channel by committing a single transaction to the blockchain, which locks their
bitcoins in a deposit secured by a Bitcoin (smart) contract. These users can then perform several
payments between each other without the need for additional blockchain transactions by simply
locally agreeing on the new deposit balance. A transaction is required only at the end in order to
close the payment channel and unlock the final balances of the two parties, thereby drastically
reducing the transaction load on the blockchain. Further research has proposed the concept of
payment-channel network [PD] (PCN), where two users not sharing a payment channel can still
pay each other using a path of open channels between them. Unfortunately, current PCNs fall
short of providing adequate security, privacy, and interoperability guarantees.

5.1.1 State of the Art in PCNs

Several practical deployments of PCNs exist today [lnd, lig18, ecl] based on a common reference
description for the Lightning Network (LN) [ln-b]. Unfortunately, this proposal is neither privacy-

80

5.1. Introduction

preserving, as shown in recent works [GM17, MMSK+17], nor secure, which stays in contrast to
what until now was commonly believed, as we show in this work. In fact, we present a new attack,
the wormhole attack, which applies not only to the LN, the most widely deployed PCN, but also
other PCNs based on the same cryptographic lock mechanism, such as the Raiden Network [rai].

PCNs have attracted plenty of attention also from academia. Malavolta et al. [MMSK+17]
proposed a secure and privacy-preserving protocol for multi-hop payments. However, this
solution is expensive as it requires exchanging a non-trivial amount of data (i.e., around 5 MB)
between the users in the payment path, and it also hinders interoperability as it requires the Hash
Time-Lock Contract (HTLC) supported in the cryptocurrency.

Green and Miers presented BOLT, a hub-based privacy-preserving payment for PCNs [GM17].
BOLT requires cryptographic primitives only available in Zcash, and it cannot be seamlessly
deployed in Bitcoin. Moreover, this approach is limited to paths with a single intermediary, and
the extension to support paths of arbitrary length remains an open problem.

The rest of the existing PCN proposals suffer from similar drawbacks. Apart from not for-
malizing provable privacy guarantees, they are restricted to a setting with a trusted execution
environment [LNE+18] or with a Turing complete scripting language [DEFM17, DFH18, KG17,
MBKM19] so that they cannot seamlessly work with prominent cryptocurrencies today (except
for Ethereum).

Poelstra introduced the notion of scriptless scripts, a modified version of a digital signature
scheme so that a signature can only be created when faithfully fulfilling a cryptographic con-
dition [Poeb]. The resulting signature is verifiable following the unmodified digital signature
scheme. When applied to script-based systems like Bitcoin or Ethereum, they are accompanied by
core scripts (e.g., script to verify the signature itself). This approach reduces the space required for
cryptographic operations in the script, saving thus invaluable bytes on the blockchain. Moreover,
it improves upon the fungibility of the cryptocurrency as transactions from payment channels no
longer require a script different from other payments.

Although interesting, current proposals [Poeb] lack formal security and privacy treatment and are
based only on the Schnorr signature scheme, thus being incompatible with major cryptocurrencies
like Bitcoin. Although there exist early proposals for Schnorr adoption in Bitcoin [Wui], it is
unclear whether they will be realized.

In summary, existing proposals are neither generically applicable nor interoperable since they
rely on specific features (e.g., contracts) of individual cryptocurrencies or trusted hardware.
Furthermore, there seems to be a gap between the secure realization of PCNs and what is
developed in practice, as we demonstrate with our attack, which affects virtually all deployed
PCNs.

5.1.2 Our Contributions

In this work, we contribute to the rigorous understanding of PCNs and present the first interopera-
ble, secure, and privacy-preserving cryptographic construction for multi-hop locks (AMHLs).
Specifically,

81

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

• We analyze the security of existing PCNs, reporting a new attack (the wormhole attack) which
allows dishonest users to steal the payment fees from honest users along the path. This attack
applies to the LN, as well as any decentralized PCN (following the definition in [MMSK+17])
where the sender does not know in advance the intermediate users along the path to the receiver.
We communicated the attack to the LN developers, who acknowledged the issue.

• In order to construct secure and privacy-preserving PCNs, we introduce a novel cryptographic
primitive called anonymous multi-hop lock (AMHL). We model the security of such a primitive
in the UC framework [Can01] to inherit the underlying composability guarantees. Then we
show that AMHLs can be generically combined with any blockchain to construct a fully-fledged
PCN.

• As a theoretical insight emerging from the wormhole attack, we establish a lower bound
on the communication complexity of secure PCNs (Section 5.3) that follow the definition
from [MMSK+17]: Specifically, we show that an extra round of communication to determine
the path is necessary to have a secure transaction.

• We show how to realize AMHLs in different settings. In particular, we demonstrate that
(linearly) homomorphic operations suffice to build any script-based AMHL. Furthermore, we
show how to realize AMHLs in a scriptless setting. This approach is of special interest because
it reduces the transaction size and, consequently, the blockchain load. We give a concrete
construction based on the ECDSA signature scheme, solving a prominent problem in the
literature [Poeb]. This makes AMHLs compatible with the vast majority of cryptocurrencies
(including Bitcoin and Ethereum). In fact, AMHLs have been implemented and tested in the
LN [Froa, Frob].

• We implemented our cryptographic constructions and show that they require at most 60
milliseconds to be computed and communication overhead of fewer than 500 bytes in the worst
case. These results demonstrate that AMHLs are practical and ready to be deployed. In fact,
AMHLs can be leveraged to design atomic swaps and interoperable (cross-currency) PCNs.

Organization. Section 5.2 shows the background on PCNs. Section 5.3 describes the wormhole
attack. Section 5.4 formally defines AMHLs. Section 5.5 contains our protocols for AMHLs
and Section 5.6 analyzes their performance. Section 5.7 describes applications for AMHLs. Sec-
tion 5.8 discusses the related work and Section 5.9 concludes this chapter.

5.2 Context: Payment Channel Networks

5.2.1 Payment Channels

A payment channel allows two users to exchange bitcoin without committing every single
payment to the Bitcoin blockchain. For that, users first publish an on-chain transaction to deposit
bitcoin into a multi-signature address controlled by both users. Such deposit also guarantees that
all bitcoin are refunded at a possibly different but mutually agreed time if the channel expires.
Users can then perform off-chain payments by adjusting the distribution of the deposit (that we

82

5.2. Context: Payment Channel Networks

will refer to as balance) in favor of the payee. When no more off-chain payments are needed
(or the capacity of the payment channel is exhausted), the payment channel is closed with a
closing transaction included in the blockchain. This transaction sends the deposited bitcoin to
each user according to the most recent balance in the payment channel. We refer the reader
to [PD, DW15, MMSH16, DRO] for further details.

5.2.2 A Payment Channel Network (PCN)

A PCN can be represented as a directed graph G = (V,E), where the set V of vertices represents
the Bitcoin accounts, and the set E of weighted edges represents the payment channels. Every
vertex U ∈ V has associated a non-negative number that denotes the fee that it charges for
forwarding payments. The weight on a directed edge (U1, U2) ∈ E denotes the amount of
remaining bitcoin that U1 can pay to U2.

A PCN is used to perform off-chain payments between two users with no direct payment
channel between them but rather connected by a path of open payment channels. For that,
assume that S wants to pay α bitcoin to R, which is reachable through a path of the form
S → U1 → . . . → Un → R. For their payment to be successful, every link must have a capacity
γi ≥ αi, where αi = α − i−1

j=1 fee(Uj) (i.e., the initial payment value minus the fees charged
by intermediate users in the path). If the payment is successful, edges from S to R are decreased
by αi. Importantly, to ensure that R receives exactly α bitcoin, S must start the payment with a
value α∗ = α + n

j=1 fee(Uj). We refer the reader to [PD, MMSK+17, MMSH16, GM17] for
further details.

The concepts of payment channels and PCNs have already attracted considerable attention from
academia [HAB+17, LEPS16, DW15, GM17, MMSK+17, MMSH16, MBKM19]. In practice,
the Lightning Network (LN) [PD, ln-b] has emerged as the most prominent example. Currently,
there exist several independent implementations of the LN for Bitcoin [lnd, lig18, ecl]. Moreover,
the LN is also considered as a scalability solution in other blockchain-based payment systems
such as Ethereum [rai].

5.2.3 Multi-hop Payments Atomicity

A fundamental property for multi-hop payments is atomicity: Either the capacity of all channels in
the path is updated, or none of the channels is changed. Partial updates can lead to coin losses for
the users on the path. For instance, a user could pay a certain amount of bitcoin to the next user in
the path but never receive the corresponding bitcoin from the previous neighbor. The LN tackles
this challenge by relying on a smart contract called Hash Time-Lock Contract (HTLC) [PD].
This contract locks x bitcoin that can be released only if the contract’s condition is fulfilled. The
contract relies on a collision-resistant hash function H and it is defined in terms of a hash value
y := H(R), where R is chosen uniformly at random, the amount of bitcoin x, and a timeout t, as
follows: (i) If Bob produces the condition R∗ such that H(R∗) = y before t days, Alice pays
Bob x bitcoin; (ii) If t days elapse, Alice gets back x bitcoin.

Fig. 5.1 shows an example of the use of HTLC in a payment. For simplicity, we assume that
every user charges a fee of one bitcoin, and the payment amount is 10 bitcoin. In this payment,

83

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

Edward first sets up the payment by creating a random value R and sending H(R) to Alice. Then,
the commitment phase starts with Alice. She first sets on hold 13 bitcoin, and then successively,
every intermediate user sets on hold the received amount minus his/her own fee. After Dave sets
10 coins on hold with Edward, the latter knows that the corresponding payment amount is on
hold at each channel and he can start the releasing phase (depicted in green). For that, he reveals
the value R to Dave, allowing him to fulfill the HTLC contract and settle the new capacity at the
payment channel. The value R is then passed back along the path, allowing the settlement of the
payment channels.

Privacy Issues in PCNs. Recent works [MMSK+17, GM17] show that the current use of
HTLC leaks a common identifier along the payment path (i.e., the condition H(R)) that can
be used by an adversary to tell who pays to whom. Current solutions to this privacy issue are
expensive in terms of computation and communication [MMSK+17] or incompatible with major
cryptocurrencies [GM17]. This calls for an in-depth study of this cryptographic tool.

5.3 Wormhole Attack in Existing PCNs

In a nutshell, the wormhole attack allows two colliding users on a payment path to exclude
intermediate users from participating in the successful completion of a payment, thereby stealing
the payment fees which were intended for honest path nodes.

In more detail, assume a payment path (U0, . . . , Ui, . . . , Uj , . . . , Un) used by U0 to pay an
amount α + k γk to Un, where γk = fee(Uk) denotes the fee charged by the intermediate user
Uk as a reward for enabling the payment. Further assume that Ui and Uj are two adversarial users
that may deviate from the protocol if some economic benefit is at stake. The adversarial strategy
is as follows.

In the commitment phase, every user behaves honestly. This, in particular, implies that every
honest user has locked a certain amount of coins in the hope of getting rewarded for this. In the
releasing phase, honest users Uj+1, . . . , Un correctly fulfill their HTLC contracts and settle the
balances and rewards in their corresponding payment channels.

Alice Bob Carol Dave Edward

2. HTLC(A, B ,y ,13 ,4)

1. y := H(R)

6. R

3. HTLC(B, C, y, 12, 3) 4. HTLC(C, D, y, 11, 2) 5. HTLC(D, E, y, 10, 1)

7. R

9. R

20 / 7 50 / 50 12 / 12 15 / 5

8. R 7. R

38
50

1
12

8. R 6. R

7
7

5
5

Figure 5.1: Payment (with and without wormhole attack) from Alice to Edward for value 10
using HTLC contract. The honest (attacked) releasing phase is depicted in green (red). Non-bold
(bold) numbers show the capacity of payment channels before (after) the payment. We assume a

common fee of 1 coin.

84

5.3. Wormhole Attack in Existing PCNs

The user Uj behaves honestly with Uj+1 effectively settling the balance in their payment channel.
On the other hand, Uj waits until the timeout set in the HTLC with Uj−1 is about to expire and
then agrees with Uj−1 to cancel the HTLC and set the balance in their payment channel back to
the last agreed one. Note that from Uj−1’s point of view, this is a legitimate situation (e.g., there
might not be enough coins in a payment channel at some user after Uj and the payment had to be
canceled). Moreover, the channel between Uj−1 and Uj does not need to be closed, and it is just
rolled back to a previous balance, a feature present in the Lightning Network.

As Uj−1 believes that the payment did not go through, she also cancels the HTLC with Uj−2, who
in turn cancels the HTLC with Uj−3 and so on. This process continues until Ui is approached
by Ui+1. Here, Ui cancels the HTLC with Ui+1. However, Ui gets the releasing condition R
from Uj and can use it to fulfill the HTLC with Ui−1 and therefore settle the new balance in that
payment channel. Therefore, from the point of view of users U1, . . . , Ui−1, the payment has been
successfully carried out.

An illustrative example of this attack is shown in Fig. 5.1 with the attacked releasing phase
depicted in red.

Discussion. An adversary controlling users Ui and Uj in a payment path that carries out the
attack described in this section gets an overall benefit of j

k=i+1 γk bitcoins instead of only
γi + γj bitcoins in the case he behaves honestly. We make several observations here. First,
the impact of this attack grows with the number of intermediate users between Ui and Uj as
well as the number of payments that take both Ui and Uj in their path. While the Lightning
Network is at its infancy, other well-established networks such as Ripple use paths with multiple
intermediaries. For instance, in the Ripple network, more than 27% of the payments use more
than two intermediaries [MMS+18]. Actually, paths with three intermediaries (e.g., sender →
bank → currency-exchange → bank → receiver) are essential for currency exchanges, a key use
case in LN itself [ln-a]. When the LN grows to the scale of the Internet, routes may consist of
several intermediaries as on the Internet today. Given this evidence, we expect long paths in the
LN.

Second, honest intermediate users cannot trivially distinguish the situation in which they are
under attack from the situation where the payment is simply unsuccessful (e.g., there are not
enough coins in one of the channels or one of the users is offline). In both cases, the view for the
honest users is that the timeout established in the HTLC is reached, the payment failed, and they
get their initially committed coins reimbursed. In short, the wormhole attack allows an adversary
to steal the fees from intermediate honest users without leaving an inculpatory trace to them.

Third, fees are the main incentive for intermediary users. The wormhole attack takes away this
crucial benefit. In fact, this attack not only makes honest users lose their fees but also incur
collateral costs: Coins locked for the payment under attack cannot be used for another (possibly
successful) payment simultaneously.

Responsible Disclosure. We notified this attack to the LN developers and they have acknowl-
edged this issue. Additionally, they have implemented our ECDSA-based construction (see Sec-

85

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

tion 5.5.4) and tested it for its integration in the LN, having thereby a fix for the wormhole attack
and leveraging its privacy and practical benefits [Froa, Frob].

(In)evitability of the Wormhole Attack. The wormhole attack is not restricted to the LN but
generally applies to PCNs with multi-hop payments that involve only two rounds of communica-
tion. We assume a communication round to consist of traversing the payment path once, either
forth (e.g., for setting up the payment) or back (e.g., for releasing the coins). Additionally, we
assume that in PCNs the communication between nodes is restricted to their direct neighbors,
so in particular, there is no broadcast.1 Consequently, using two rounds of communication for
a payment implies that the payment is not preceded by a routing phase in which path-specific
information is sent to nodes in the path.

Under these assumptions, we state the lower bound informally in Theorem 1 and defer the formal
theorem and the proof to Appendix D.1.

Theorem 1 (Informal). For all two-round (without broadcast channels) multi-hop payment
protocols, there exists a path prone to the wormhole attack.

In this work, we show that adding an additional round of communication suffices to overcome this
impossibility result.2 In particular, with one additional round of communication, the sender of a
payment can communicate path-specific secret information to the intermediate nodes. This infor-
mation can then be used to make the release keys unforgeable for an attacker. The cryptographic
protocols we introduce in the remainder of this chapter adopt this approach.

5.4 Definition

Here we introduce a new cryptographic primitive called anonymous multi-hop lock (AMHL).
This primitive generalizes the locking mechanism used for payments in state-of-the-art PCNs
such as the LN. In Section 5.7 we show that AMHL is the main cryptographic component required
to construct fully-fledged PCNs. As motivated in the previous section, we model the primitive
such that it allows for an initial setup phase where the first node of the path provides the other
nodes with some secret (path-specific) state. Formally, an AMHL is defined with respect to a
universe of users U and it is a five-tuple of PPT algorithms and protocols L = (KGen, Setup,
Lock, Rel, Vf) defined as follows:

Definition 1. An AMHL L = (KGen, Setup, Lock, Rel, Vf) consists of the following efficient
algorithms:

{(ski, pk), (skj , pk)} ← KGenUi(1λ), KGenUj (1λ) : On input the security parameter 1λ the
key generation protocol returns a shared public key pk and a secret key ski (skj , respectively) to
Ui and Uj .

1This is the case in the setting of off-chain protocols where users not sharing a payment channel do not communi-
cate with each other.

2A malicious sender can still bypass intermediate nodes, but he has no incentive as it implies stealing coins from
himself.

86

5.4. Definition

{sI
0, . . . , (sI

n, kn)} ← SetupU0(1λ, U1, . . . , Un), SetupU1(1λ), . . . , SetupUn
(1λ) : On input a

vector of identities (U1, . . . , Un) and the security parameter 1λ, the setup protocol returns, for
i ∈ [0, n], a state sI

i to user Ui. The user Un additionally receives a key kn.

{(, sR
i), (, sL

i+1)} ← LockUi(sI
i , ski, pk), LockUi+1(sI

i+1, ski+1, pk) : On input two initial
states sI

i and sI
i+1, two secret keys ski and ski+1, and a public key pk, the locking protocol is

executed between two users (Ui, Ui+1) and returns a lock and a right state sR
i to Ui and the

same lock and a left state sL
i+1 to Ui+1.

k ← Rel(k, (sI , sL, sR)) : On the input of an opening key k and a triple of states (sI , sL, sR),
the release algorithm returns a new opening key k .

{0, 1} ← Vf(, k) : On input a lock and a key k the verification algorithm returns a bit
b ∈ {0, 1}.

⊥ sI0 sR0 sL1 sI1 sR1 sLn−1 sIn−1 sRn−1 sLn sIn ⊥

Lock ,U0 U1

ℓ0 ℓn−1

kn−1

ℓn−2

kn−2 Release Release

(,… ,)SetupU0
U1 Un

U1U0 Un−1 Un

ℓ1
⋯

Lock ,Un−1 Un
Lock ,U1 U2 Lock ,Un−2 Un−1

k1k0 Release kn

Figure 5.2: Usage of the AMHL primitive. It is assumed that links between the users on the path
have been created upfront (using KGen) and that the resulting public and secret keys are

implicitly given as argument to the corresponding executions of Lock. Otherwise, the inputs
(outputs) to (from) the Lock protocol and the Rel algorithm are indicated by blue (orange) arrows.

Correctness. An AMHL is correct if the verification algorithm Vf always accepts an honestly
generated lock-key pair. For a more detailed and formal correctness definition, we refer the reader
to Appendix D.2.

Key Ideas. Fig. 5.2 illustrates the usage of the different protocols underlying the AMHL
primitive. First, we assume an (interactive) KGen phase that emulates the opening of payment
channels that compose the PCN.

In the setup phase (green arrows), the introduction of the initial state at each intermediate user
is crucial for security and privacy. Intuitively, we can use this initial state as “rerandomization
factor” to ensure that locks in the same path are unlinkable for the adversary.

Next, in the locking phase, each pair of users jointly executes the Lock protocol to generate a
lock i. The creation of this lock represents the commitment from Ui to perform an application-
dependent action if a cryptographic problem is solved by Ui+1. In the case of LN, this operation
represents the commitment of Ui to pay a certain amount of coins to Ui+1 if Ui+1 solves the
cryptographic condition. Each user also learns some extra state sR

i (resp. sL
i+1) that will be

87

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

needed for releasing the lock later on. While these extra states are not present in the LN (i.e.,
every lock is based on the same cryptographic puzzle H(R)), they are crucial for security. They
make the releasing of different locks in the path independent and thus ensure that a lock i can
only be released if i+1 has been released before.

Finally, after the entire path is locked, the receiver Un can generate a key for releasing its left
lock. Then, each intermediate node can derive a valid key for its left lock from a valid key for
its right lock using the Rel algorithm. This last phase resembles the opening phase of the LN,
where each pair of users settles the new balances for their deposit at each payment channel in the
payment path.

5.4.1 Security and Privacy Definition

To model security and privacy in the presence of concurrent executions, we resort to the universal
composability framework from Canetti [Can01]. We allow thereby the composition of AMHLs
with other application-dependent protocols while maintaining security and privacy guarantees.

Attacker Model. We model the players in our protocol as interactive Turing machines that
communicate with a trusted functionality F via secure and authenticated channels. We model the
attacker A as a PPT machine that has access to an interface corrupt(·) that takes as input a user
identifier U and provides the attacker with the internal state of U . All the subsequent incoming
and outgoing communication of U are then routed through A. We consider the static corruption
model. That is, the attacker is required to commit to the identifiers of the users he wishes to
corrupt ahead of time.3

Communication Model. Communication happens through the secure message transmission
functionality Fsmt that informs the attacker whenever some communication happens between two
users and the attacker can delay the delivery of the message arbitrarily (for a concrete functionality
see [Can01]). We also assume the existence of a functionality Fanon (see [CL05] for an example),
which provides user with an anonymous communication channel. In its simplest form, Fanon is
identical to Fsmt, except that it omits the identifier of the sender from the message sent to the
receiver. We assume a synchronous communication network, where the execution of the protocol
happens in discrete rounds. The parties are always aware of the current round and if a message is
created at round i, then it is delivered at the beginning of the (i+1)-th round. Our model assumes
that computation is instantaneous. In the real world, this is justified by setting a maximum time
bound for message transmission, which is known by all users. If no message is delivered by the
expiration time, then the message is set to be ⊥. We remark that such an assumption is standard
in the literature [DEFM17] and for an example of the corresponding ideal functionality Fsyn we
refer the reader to [Can01, KMTZ13].

Universal Composability. Let EXECτ ,A,E be the ensemble of the outputs of the environment E
when interacting with the attacker A and users running protocol τ (over the random coins of all
the involved machines).

3Extending our protocol to support adaptive corruption queries is an interesting open problem.

88

5.4. Definition

Definition 2 (Universal Composability). A protocol τ UC-realizes an ideal functionality F if for
any PPT adversary A there exists a simulator S such that for any environment E the ensembles
EXECτ ,A,E and EXECF ,S,E are computationally indistinguishable.

KeyGen(sid, Uj , {L, R})

Upon invocation by Ui:

sends (sid, Ui, {L, R}) to Uj

receives (sid, b) from Uj

if b = ⊥ send ⊥ to Ui and abort

if L insert (Ui, Uj) into U and sends (sid, Ui, Uj) to Ui

if R insert (Uj , Ui) into U and sends (sid, Uj , Ui) to Ui

Lock(sid, lid)

Upon invocation by Ui:

if getStatus(lid) = Init or getLeft(lid) = Ui then abort

sends (sid, lid, Lock) to getRight(lid)
receives (sid, b) from getRight(lid)
if b = ⊥ send ⊥ to Ui and abort

updateStatus(lid, Lock)

sends (sid, lid, Lock) to Ui

GetStatus(sid, lid)

Upon invocation by Ui:

return (sid, lid, getStatus(lid)) to Ui

Setup(sid, U0, . . . , Un)

Upon invocation by U0:

if ∀i ∈ [0, n − 1] : (Ui, Ui+1) /∈ U then abort

∀i ∈ [0, n − 1]: lidi ←$ {0, 1}λ

insert (lid0, U0, U1, Init, lid1), (lidn−1, Un−1, Un, Init, ⊥)
into L
sendan (sid, ⊥, lid0, ⊥, U1, Init) to U0

sendan (sid, lidn−1, ⊥, Un−1, ⊥, Init) to Un

∀i ∈ [1, n − 1]: insert (lidi, Ui, Ui+1, Init, lidi+1) into L
sendan (sid, lidi−1, lidi, Ui−1, Ui+1, Init) to

Ui

Release(sid, lid)

Upon invocation by Ui:

if getRight(lid) = Ui or getStatus(lid) = Lock or

getStatus(getNextLock(lid)) = Rel
and getNextLock(lid) = ⊥ then abort

updateStatus(lid, Rel)
sends (sid, lid, Rel) to getLeft(lid)

Figure 5.3: Ideal functionality for cryptographic locks (AMHLs)

Ideal Functionality. We formally define the ideal world functionality F for AMHLs in the
following. For a more modular treatment, our UC definition models only the cryptographic lock
functionality, rather than aiming at a comprehensive characterization of PCNs. In Section 5.7
we show how one can construct a full PCN (e.g., as defined in [MMSK+17]) by composing this
functionality with time locks, balance updates, and on-chain channel management. For ease of
exposition, we assume that each pair of users establishes only a single link per direction. The
model can be easily extended to handle the more generic case. F works in interaction with a
universe of users U and initializes two empty lists (U , L) := ∅, which are used to track the users
and the locks, respectively. The list L represents a set of lock chains. The entries are of the
form (lidi, Ui, Ui+1, f , lidi+1) where lidi is a lock identifier that is unique even among other lock
chains in L, Ui and Ui+1 are the users connected by the lock, f ∈ {Init, Lock, Rel} is a flag that
represents the status of the lock, and lidi+1 is the identifier of the next lock in the path. For sake
of better readability, we define functions operating on L extracting lock-specific information
given the lock’s identifier, such as the lock’s status (getStatus(·)), the nodes it is connecting

89

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

(getLeft(·), getRight(·)), and the next lock’s identifier (getNextLock(·)). In addition we define an
update function updateStatus(·, ·) that changes the status of a lock to a new flag.

The interfaces of the functionality F are specified in Fig. 5.3. The KeyGen interface allows a user
to establish a link with another user (specifying whether it wants to be the left or the right part of
the link). The Setup interface allows a user U0 to set up a path (starting from U0) along previously
established links. The Lock interface allows a user to create a lock with its right neighbor on a
previously created path and the Release algorithm allows a user to release the lock with its left
neighbor, in case that the user is either the receiver or its right lock has been released before.
Finally, the GetStatus interface allows one to check the current status of a lock, i.e., whether it is
initialized, locked, or released. Internally, the locks are assigned identifiers that are unique across
all paths. We define the interfaces sends and receives to exchange messages through the Fsmt
functionality and the interface sendan to send messages via Fanon.

5.4.2 Discussion

We discuss how the security and privacy notions of interest for AMHLs are captured by function-
ality F .

Atomicity. Loosely speaking, atomicity means that every user in a path can release its left
lock in case his right lock was already released. This is enforced by F as i) it is keeping track
of the chain of locks and their current status in the list L and ii) the Release interface of F
allows one to release a lock lid (changing the flag to Rel) if lid is locked and the follow-up lock
(getNextLock(lid)) was already released.

Consistency. An AMHL is consistent if no attacker can release his left lock without its right lock
being released before. This prevents scenarios where some AMHL is released before the receiver
is reached and, more generically, the wormhole attack described in Section 5.3. To see why our
ideal functionality models this property, observe that the Release interface allows a user to release
the left lock only if the right lock has already been released or the user itself is the receiver. In
this context, no wormhole attack is possible as intermediate nodes cannot be bypassed.

Relationship Anonymity. Relationship anonymity [BKM+13] requires that each intermediate
node does not learn any information about the set of users in an AMHL beyond its direct neighbors.
This property is satisfied by F as the lock identifiers are sampled at random, and during the
locking phase, a user only learns the identifiers of its left and right lock as well as its left and
right neighbor. We discuss this further in Appendix D.4.

5.5 Constructions

5.5.1 Cryptographic Building Blocks

Throughout this work, we denote by 1λ ∈ N+ the security parameter. Given a set S, we denote by
x ←$ S the sampling of an element uniformly at random from S, and we denote by x ← A(in) the
output of the algorithm A on input in. We denote by min(a, b) the function that takes as input two

90

5.5. Constructions

integers and returns the smaller of the two. To favor readability, we omit session identifiers from
the description of the protocols. In the following, we briefly recall the cryptographic building
blocks of our schemes.

Homomorphic One-way Functions. A function g : D → R is one-way if, given a random
element x ∈ R, it is hard to compute a y ∈ D such that g(y) = x. We say that a function g is
homomorphic if D and R define two abelian groups and for each pair (a, b) ∈ D2 it holds that
g(a ◦ b) = g(a) ◦ g(b), where ◦ denotes the group operation. Throughout this work we denote
the corresponding arithmetic group additively.

Commitment Scheme. A commitment scheme COM consists of a commitment algorithm
(decom, com) ← Commit(1λ, m) and a verification algorithm {0, 1} ← Vcom(com, decom, m).
The commitment algorithm allows a prover to commit to a message m without revealing it. In a
second phase, the prover can convince a verifier that the message m was indeed committed by
showing the unveil information decom. The security of a commitment scheme is captured by the
standard ideal functionality Fcom [Can01].

Non-interactive Zero-knowledge. Let R be an NP relation and let L be the set of positive in-
stances, i.e., L := {x | ∃w s.t. R(x, w) = 1}. A non-interactive zero-knowledge proof [BFM88]
scheme NIZK consists of an efficient prover algorithm π ← PNIZK(w, x) and an efficient verifier
{0, 1} ← VNIZK(x, π). A NIZK scheme allows the prover to convince the verifier about the
existence of a witness w for a certain statement x without revealing any additional information.
The security of a NIZK scheme is modeled by the following ideal functionality FNIZK: On input
(prove, sid, x, w) by the prover, check if R(x, w) = 1 and send (proof, sid, x) to the verifier if
this is the case.

Homomorphic Encryption. One of the building blocks of our work is the additive homomorphic
encryption scheme HE := (KGenHE, EncHE, DecHE) from Paillier [Pai99]. The scheme supports
homomorphic operation over the ciphertexts of the form EncHE(pk, m) · EncHE(pk, m) =
EncHE(pk, m + m). We assume that Paillier’s encryption scheme satisfies the notion of ecCPA
security, as defined in the work of Lindell [Lin17].

ECDSA Signatures. Let G be an elliptic curve group of order q with base point G and let
H : {0, 1}∗ → {0, 1}|q| be a collision resistant hash function. The key generation algorithm
KGenECDSA(1λ) samples a private key as a random value x ←$Zq and sets the corresponding
public key as Q := x · G. To sign a message m, the signing algorithm SigECDSA(sk, m)
samples some k ←$Zq and computes e := H(m). Let (rx, ry) := R = k · G, then the signing
algorithm computes r := rx mod q and s := e+rx

k mod q. The signature consists of (r, s). The
verification algorithm VfECDSA(pk, σ, m) recomputes e = H(m) and returns 1 if and only if
(x, y) = e

s ·G+ r
s ·Q and r = x mod q. It is a well known fact that for every valid signature (r, s),

also the pair (r, −s) is a valid signature. To make the signature strongly unforgeable we augment
the verification equation with a check that s ≤ q−1

2 . We assume the existence of an interactive
protocol ΠECDSA

KGen executed between two users where the one receives (x0, Q, sk), where sk is a
Paillier secret key and Q = x0 · x1 · G, whereas the other obtains (x1, Q, EncHE(pk, x0)), where
pk is the corresponding Paillier public-key. For correctness, we require that the Paillier modulus

91

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

SetupUi
(1λ) SetupU0 (1λ, U1, . . . , Un) SetupUn

(1λ)

y0 ←$ D
Y0 := g(y0)
∀i ∈ [1, n − 1] : yi ←$ D

if Yi = Yi−1 + g(yi) then abort (Yi−1, Yi, yi)←−−−−−−−−− Yi := Yi−1 + g(yi) (Yn−1,kn:= n−1
i=0

yi)
−−−−−−−−−−−−−−−−→

return (Yi−1, Yi, yi) return y0 return ((Yn−1, 0, 0), kn)

LockUi
(sI

i , ski, pk) LockUi+1 (sI
i+1, ski+1, pk)

parse sI
i as (Yi , Yi, yi) Yi−−−−−−−−−→parse si+1 as (Yi+1, Yi+1, yi+1)

if Yi = Yi+1 then abort

return (Yi, ⊥) return (Yi, ⊥)

Rel(k, (sI , sL, sR))

parse sI as (Y , Y , y)
return k − y

Vf(, k)
return g(k) =

Figure 5.4: Algorithms and protocols for the generic construction

is N = O(q4). We assume that the parties have access to an ideal functionality FECDSA
kgen (refer

to Appendix D.5 for a precise definition) that securely computes the tuples for both parties. An
efficient protocol has been recently proposed by Lindell [Lin17].

Anonymous Communication. We assume an anonymous communication channel Πanon avail-
able among users in the network, which is modeled by the ideal functionality Fanon. It anony-
mously delivers messages to users in the network (e.g., see [CL05]).

5.5.2 Generic Construction

An interesting question related to AMHLs is under which class of hard problems such a primitive
exists. A generic construction using trapdoor permutations was given (implicitly) in [MMSK+17].
Here we propose a scheme from any homomorphic one-way function. Examples of homomorphic
one-way functions include discrete logarithm and the learning with errors problem [Reg09]. Let
g : D → R be a homomorphic one-way function, and let Fanon be the ideal functionality for an
anonymous communication channel. The algorithms of our construction are given in Fig. 5.4.
Note that KeyGen simply returns the users’ identities, and thus, it is omitted.

In the setup algorithm, the user U0 initializes the AMHL by sampling n values (y0, . . . , yn−1)
from the domain of g. Then it sends (via Fanon) a triple (g(i−1

j=0 yj), g(i
j=0 yj), yi) to each

intermediate user. The intermediate user Ui can then check that the triple is well formed using
the homomorphic properties of g. Two contiguous users Ui and Ui+1 can agree on the shared
value of i := Yi = g(i

j=0 yj) by simply comparing the second and first element of their triple,
respectively. Note that publishing a valid opening key k such that g(k) = corresponds to
inverting the one-way function g. The opening of the locks can be triggered by the last node in
the chain Un: The initial key kn := n−1

i=0 yi consists of a valid pre-image of n−1 := Yn−1. As
soon as the “right” lock is released, each intermediate user Ui has enough information to release

92

5.5. Constructions

its “left” lock. To see this, observe that g(ki+1 − yi) = g(i
j=0 yi − yi) = g(i−1

j=0 yi) = Yi−1.
For the security of the construction, we state the following theorem. Due to space constraints, the
proof is deferred to Appendix D.5.

Theorem 2. Let g be a homomorphic one-way function, then the construction in Fig. 5.4 UC-
realizes the ideal functionality F in the (Fsyn, Fsmt, Fanon)-hybrid model.

The generic construction presented here requires a cryptocurrency supporting scripts that define
(linearly) homomorphic operations. This construction is therefore of special interest in blockchain
technologies such as Ethereum [eth] and Hyperledger Fabric [ABB+18], where any user can
freely deploy a smart contract without restrictions in the cryptographic operations available. We
stress that any function with homomorphic properties is suitable to implement our construction.
For instance, lattice-based functions (e.g., from the learning with errors problem) can be used for
applications where post-quantum cryptography is required. However, many cryptocurrencies, led
by Bitcoin, do not support unrestricted scripts and the deployment of generic AMHLs requires
non-trivial changes (i.e., a hard fork). To overcome this challenge, we turn our attention to
scriptless AMHLs, where a signature scheme can simultaneously be used for authorization and
locking.

5.5.3 Scriptless Schnorr-based Construction

The crux of a scriptless locking mechanism is that the lock can consist only of a message m and
a public key pk of a given signature scheme and can be released only with a valid signature σ
of m under pk. Scriptless locks stem from an idea of Poelstra [Poea], who proposed a way to
embed contracts into Schnorr signatures. In this work, we cast Poelstra’s informal idea in our
framework, and we formally characterize its security and privacy guarantees. We further optimize
this scheme in order to save one round of communication.

Recall that a public key in a Schnorr signature consists of an element Q := x · G and a
signature σ := (k · G, s) on a message m is generated by sampling k ←$Zq, computing e :=
H(Q k · G m), and setting s := k − xe. On a very high level, the locking mechanism
consists of an “incomplete” distributed signing of some message m: Two users Ui and Ui+1
agree on a randomly chosen element R0 + R1 using a coin tossing protocol, then they set the
randomness of the signature to be R := R0 + R1 + Yi. Next they jointly compute the value
s := r0 + r1 + e · (x0 + x1) as if Yi was not part of the randomness, where e is the hash of the
transcript so far. The resulting (R, s) is not a valid signature on m, since the additive term y∗

(where y∗ · G = Yi) is missing from the computation of s. However, once the discrete logarithm
of Yi is revealed, a valid signature m can be computed by Ui+1. Leveraging this observation, we
can enforce an atomic opening: The subsequent locking (between Ui+1 and Ui+2) is conditioned
on some Yi+1 = Yi + yi+1 · G. This way, the opening of the right lock reveals the value y∗ + yi+1
and Ui+1 can immediately extract y∗ and open its left lock with a valid signature on m. We defer
the formal description and the analysis of the scheme to Appendix D.3.

93

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

5.5.4 Scriptless ECDSA-based Construction

The Schnorr-based scheme is limited to cryptocurrencies that use Schnorr signatures to authorize
transactions and thus is not compatible with those systems, prominently Bitcoin, that implement
ECDSA signatures. Therefore, an ECDSA-based scriptless AMHL is interesting both from a
practical and a theoretical perspective as to whether it can be done at all. Prior to our work, the
existence of such a construction was regarded as an open question [Poeb]. The core difficulty
is that the Schnorr-based construction exploits the linear structure of the signature, whereas the
ECDSA signing algorithm completely breaks this linearity feature (e.g., it requires to compute
multiplicative shares of a key and the inverse of elements within a group). In the following, we
show how to overcome these problems, introducing an ECDSA-based construction for AMHLs:
Locks are of the form (pk, m) and can only be opened with an ECDSA signature σ on m under
pk.

Let G be an elliptic curve group of order q with base point G and let H : {0, 1}∗ → {0, 1}|q|

be a hash function. The ECDSA-based construction is shown in Fig. 5.5. Each pair of users
(Ui, Uj) generates a shared ECDSA public key pk = (xi · xj) · G via the FECDSA

kgen functionality.
Additionally, Ui receives a Paillier secret key sk and his share xi, whereas and Uj receives the
share xj and the Paillier encryption c of xi. The key generation functionality is fully described in
Appendix D.5.

The setup here is very similar to the setup of the generic construction in Fig. 5.4 except that
the one-way function g is now instantiated with discrete logarithm over elliptic curves. Each
intermediate user Ui receives a triple (Yi−1, Yi, yi) such that Yi := Yi−1 + yi · G, from Fanon. For
technical reasons, the initiator of the AMHL also includes a proof of wellformedness for each Yi.

The locking algorithm is initiated by two users Ui and Ui+1 who agree on a message m (which
encodes a unique id) and on a value Yi := y∗ · G of unknown discrete logarithm. The two
parties then run a coin tossing protocol to agree on a randomness R = (r0 · r1) · Yi. When
compared to the Schnorr instance, the crucial technical challenge here is that the randomnesses
are composed multiplicatively due to the structure of the ECDSA signature and therefore, the
trick applied in the Schnorr construction no longer works here. R is computed through a Diffie-
Hellman-like protocol, where the parties exchange r0 · Yi and r1 · Yi and locally recompute R.
As before, the shared ECDSA signature is computed by “ignoring” the term Yi, since the parties
are unaware of its discrete logarithm. The corresponding tuple rx, s := rx·(x0·xi+1)+H(m)

r0·r1
is jointly computed using the encryption of x0 and the homomorphic properties of Paillier
encryption. This effectively means that (rx, s) = (rx, s∗ · y∗), where (rx, s∗) is a valid ECDSA
signature on m. In order to check the validity of s , the parties additionally need to exchange the
value R∗ := (r0 · r1) · G = (y∗)−1 · R. The computation of R∗ (together with the corresponding
consistency proof) is piggybacked in the coin tossing. Given R∗, the validity of s can be easily
verified by both parties by recomputing it “in the exponent”.

From the perspective of Ui+1, releasing his left lock without a key for his right lock implies
solving the discrete logarithm of Yi. On the converse, once the right lock is released, the value
y∗ + yi+1 is revealed (where yi+1 is part of the state of Ui+1) and a valid signature can be

94

5.6. Performance Analysis

computed as rx, s
y∗ . The security of the construction is established by the following theorem

(see Appendix D.5 for a full proof).

Theorem 3. Let COM be a secure commitment scheme and let NIZK be a non-interactive
zero knowledge proof. If ECDSA signatures are strongly existentially unforgeable and Paillier
encryption is ecCPA secure, then the construction in Fig. 5.5 UC-realizes the ideal functionality
F in the (FECDSA

kgen , Fsyn, Fsmt, Fanon)-hybrid model.

5.5.5 Hybrid AMHLs

We observe that, when instantiated over the same elliptic curve G, the setup protocols of the
Schnorr and ECDSA constructions are identical. This means that the initiator of the lock does
not need to know whether each intermediate lock is computed using the ECDSA or Schnorr
method. This opens the doors to hybrid AMHLs: Given a unified setup, the intermediate pair of
users can generate locks using an arbitrary locking protocol. The resulting AMHL is a chain of
(potentially) different locks, and the release algorithm needs to be adjusted accordingly. For the
case of ECDSA-Schnorr the user needs to extract the value y∗ from the right Schnorr signature
(R∗, s∗) and his state sR := s = s∗ − y∗ + yi+1 and sI := (Yi, Yi+1, yi+1). Given y∗, he can
factor it out of its left state sL = ((r, s · y∗), m, pk) and recover a valid ECDSA signature.

The complementary case (Schnorr-ECDSA) is handled mirroring this algorithm. Similar tech-
niques also apply to the generic construction when the one-way function is instantiated appropri-
ately (i.e., with discrete logarithm over the same curve). This flexibility enables atomic swaps and
cross-currency payments (see Section 5.7). The security for the hybrid AMHLs follows similar to
the standard case.

5.6 Performance Analysis

5.6.1 Implementation Details

We have developed a prototypical Python implementation to demonstrate the feasibility of our
construction and evaluate its performance. We have implemented the cryptographic operations
required by AMHLs as described in this work. We have used the Charm library [Cha] for the
cryptographic operations. We have instantiated ECDSA over the elliptic curve secp256k1 (the one
used in Bitcoin), and we have implemented the homomorphic one-way function as g(x) := x · G
over the same curve. Zero-knowledge protocols for discrete logarithms have been implemented
using Σ protocols [Dam02] and made non-interactive using the Fiat-Shamir heuristic [FS86]. For
a commitment scheme, we have used SHA-256 modeled as a random oracle [BR93].

5.6.2 Evaluation

Testbed. We conducted our experiments on a machine with an Intel Core i7, 3.1 GHz, and 8
GB RAM. We consider the Setup, Lock, Rel and Vf algorithms. We do not consider KGen as we
use off-the-shelf algorithms without modification. Moreover, the key generation is executed only
once upon creating a link and thus does not affect the online performance of AMHLs. We refer

95

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

to [Lin17] for a detailed performance evaluation of the ECDSA key generation. The results of
our performance evaluation are shown in Table 5.1.

Computation Time. We measure the computation time required by the users to perform the
different algorithms. For the case of two-party protocols (e.g., Setup and Lock), we consider
the time for the two users together. We make two main observations: First, the script-based
construction based on discrete logarithm is faster than scriptless AMHLs. Second, all the
algorithms require computation time of at most 60 milliseconds on commodity hardware.

Communication Overhead. We measure the communication overhead as the amount of infor-
mation that users need to exchange during the execution of interactive protocols, in particular,
Setup and Lock. As expected, the generic construction based on discrete logarithm requires
less communication overhead than scriptless constructions. The scriptless construction based on
ECDSA requires a higher communication overhead. This is mainly due to having the signing key
distributed multiplicatively and a more complex structure of the final signature when compared
to the Schnorr approach.

Computation Cost. We measure the computation cost in terms of the gas required by a smart
contract implementing the corresponding algorithm in Ethereum. Naturally, we consider this
cost only for the generic approach based on discrete logarithm. We observe that setting up the
corresponding contract requires 350849 units of gas per hop. At the time of writing, each AMHL,
therefore, costs considerably less than 0.01 USD.

Application Overhead. We measure the overhead incurred by the application in terms of the
memory required to handle application-dependent data, i.e., information defining the lock and
the opening. In tune with the rest of measurements, the generic construction based on discrete

Generic Schnorr ECDSA
Setup Time (ms) 0.3 · n 1 · n 1 · n

Comm (bytes) 96 · n 128 · n 128 · n

Lock Time (ms) – 2 60
Comm (bytes) 32 256 416

Rel Time (ms) – 0.002 0.02
Comm (bytes) 0 0 0

Vf Time (ms) – 0.6 0.06
Comm (bytes) 0 0 0

Comp Cost (gas) 350849 · n 0 0
Lock size (bytes) 32 32 + |m| 32 + |m|
Open size (bytes) 32 64 64

Table 5.1: Comparison of the resources required to execute the algorithms for the different
AMHLs. We denote by n the length of the path. We denote the negligible computation times by –
(e.g., single memory read). We denote the size of an application-dependent message by |m| (e.g.,

a transaction in a payment-channel network).

96

5.7. Applications

logarithms requires the smallest amount of memory, both for lock and opening information. The
different scriptless approaches require the same amount of memory from the application.

Scalability. We study the running time and communication overhead required by each of the
roles in a multi-hop lock protocol (i.e., sender, receiver, and intermediate user). We consider only
the generic approach and the ECDSA construction as representative of the scriptless approach. In
the absence of significant metrics from current PCNs, we consider a path length of ten hops as
suggested for similar payment networks such as the Ripple credit network [MMSKM17].

Regarding the computation time, the sender requires 3ms with the generic approach and 10ms
with the ECDSA scriptless approach. The computation time at intermediate users remains
below 1ms for ECDSA and negligible with the generic approach as they only have to check the
consistency of the locks with the predecessor and the successor, independently of the length of the
path. Similarly, the computation overhead of the receiver remains below 1ms as she only checks
if a given key is valid to open the lock according to the Vf algorithm. In summary, a non-private
payment over a path of 5 users takes over 600ms as reported in [MMSK+17]. Extending it
with the constructions presented in this work provides formal privacy guarantees at virtually no
overhead.

Regarding the communication overhead, the sender must send a message of about 960 bytes for
the generic approach while about 1280 bytes are required instead if ECDSA scriptless locks are
used. Since Sphinx, the anonymous communication network used in the LN requires padded
messages at each node to ensure anonymity, we foresee that every intermediate user must forward
a message of the same size.

Comparing these results with other multi-hop and privacy-preserving PCNs available in the
literature, we make the following observations. First, the overhead for the constructions presented
in this work are in tune with TeeChain [LNE+18], where the overhead per hop is about 0.4 ms in
a setting where cryptographic operations required for the multi-hop locks have been replaced by a
trusted execution environment. Second, our constructions significantly reduce the communication
and computation overhead required by multi-hop HTLC [MMSK+17]: While a payment using
multi-hop HTLC requires approximately 5 seconds and 17MB of communication, our approach
requires only a few milliseconds and less than 1MB.

In summary, the evaluation results show that even with an unoptimized implementation, our
constructions offer significant improvements on computation and communication overhead and
are ready to be deployed in practice.

5.7 Applications

5.7.1 Payment Channel Networks

AMHLs can be generically combined with a blockchain B to construct a fully-fledged PCN.
Loosely speaking, the transformation works as follows: In the first round, the sender sets up
the locks running the Setup algorithm, then each pair of intermediate users executes the Lock
protocol and establishes the following AMHL contract.

97

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

AMHL (Alice, Bob, , x, t):
1. If Bob produces the condition k such that Vf(, k) = 1 before t days, Alice pays Bob x coins.
2. If t days elapse, Alice gets back x coins.

Where is the output lock and x and t are chosen as specified in Section 5.2. Note that we have
to assume that B supports the Vf algorithm and time management in its script language. The
rest of the payment is unchanged except that the intermediate users execute the Rel algorithm to
extract a valid key k to claim the corresponding payment. In Appendix D.6, we provide the exact
description of the algorithms and we prove the following theorem.

Theorem 4 (Informal). Let B a secure blockchain and let L be a secure AMHL, then we can
construct a secure PCN (as defined in [MMSK+17]).

Note that even though we defined the security of AMHLs in the UC framework, the composition
of multiple AMHL instances in one protocol as needed for realizing PCNs does not come for free
if those instances have a shared state. Formally, such a shared state can arise from the use of a
shared KGen algorithm. Consequently, we need to show for the KGen algorithms of the presented
constructions that they behave independently over multiple invocations and finally make use of
the JUC theorem [CR03] to obtain the composability result.

This shows that AMHLs are the only cryptographic primitive (except for the blockchain) needed
to construct PCNs. The only limitation is that the blockchain needs to support the verification of
the corresponding contract in their scripting language (see the discussion above). For this reason,
the scriptless-construction are preferred for those blockchains where the scripting language does
not support the evaluation of a homomorphic one-way function (such as Bitcoin).

Application to the Lightning Network. When applied to the LN, the ECDSA AMHL construc-
tion conveys several advantages: First, it eliminates the security issues existing in the current LN
due to the use of the HTLC contract. Second, it reduces the transaction size as a single signa-
ture is required per transaction. This has the benefit of lowering the communication overhead,
the transaction fees, and the blockchain memory requirements for closing a payment channel.
In fact, we have received feedback from the LN community indicating the suitability of our
ECDSA-based construction. Moreover, results from the implementation and testing done by LN
developers are available [Froa, Frob].

The applicability of our proposals are not restricted to the LN or Bitcoin: There exist other PCNs
that could similarly take advantage of the scriptless AMHLs presented in this work. For instance,
the Raiden Network has been presented as a payment channel network for solving the scalability
issue in Ethereum. The adoption of our ECDSA scriptless AMHLs would bring the same benefits
to the Raiden Network.

5.7.2 Atomic Swaps

Assume two users U0 and U1 holding coins in two different cryptocurrencies and want to exchange
them. An atomic swap protocol ensures that either the coins are swapped, or the balances are

98

5.8. Related Work

untouched, i.e., the exchange must be performed atomically. The widely used protocol for atomic
swaps described in [BH] leverages the HTLC contract to perform the swap. In a nutshell, an
atomic swap can be seen as a multi-hop payment over a path of the form (U0, U1, U0). This
approach inherits the security concerns of the HTLC contract. Scriptless AMHLs also enhance
this application domain with formally proven security guarantees.

Additionally, our constructions contribute to the fungibility of the coins, a crucial aspect for any
available (crypto)currency. Current protocols rely on transactions that are clearly distinguishable
from regular payments (i.e., one-to-one payments). In particular, atomic swap transactions contain
the HTLC contract, in contrast to regular transactions. Scriptless AMHLs eliminate this issue
since even atomic swap transactions only require a single signature from a public key, making
them indistinguishable from regular payments. Similar arguments also apply for multi-hop
payments in PCNs.

5.7.3 Interoperable PCNs

Among the cryptocurrencies existing today, an interesting problem consists in performing a multi-
hop payment where each link represents a payment channel defined in a different cryptocurrency.
In this manner, a user with a payment channel funded in a given cryptocurrency can use it
to pay to another user with a payment channel in a different cryptocurrency. Currently, the
InterLedger protocol [ST] tackles this problem with a mechanism to perform cross-currency
multi-hop payments that rely on the HTLC contract, aiming to ensure the payment atomicity
across different hops.

However, apart from the already discussed issues associated with HTLC, the InterLedger protocol
mandates that all cryptocurrencies implement HTLC contracts. This obviously hinders the
deployment of this approach. Instead, it is possible to use the different AMHL constructions
presented in this work on a single path, as described in Section 5.5.5, therefore expanding the
domain of cross-currency multi-hop payments.

5.8 Related Work

A recent work [DKLas18] shows a protocol to compute an ECDSA signature using multi-party
computation. However, it is not as efficient as Lindell’s approach [Lin17].

There exists extensive literature proposing constructions for payment channels [LEPS16, DW15,
PD, DRO]. These works focus on a single payment channel and their extension to PCNs remain
an open challenge. TumbleBit [HAB+17] and Bolt [GM17] support off-chain payments while
achieving payment anonymity guarantees. However, the anonymity guarantees of these ap-
proaches are restricted to single-hop payments and their extension to support multi-hop payments
remains an open challenge.

State channels [DEFM17, MBKM19, KG17] and state channel networks [DFH18] cannot work
with prominent cryptocurrencies except Ethereum. TeeChain [LNE+18] requires the availability
of a trusted execution environment for each user. Instead, our proposal can be seamlessly deployed

99

5. ANONYMOUS MULTI-HOP LOCKS FOR BLOCKCHAIN SCALABILITY AND INTEROPERABILITY

today in virtually all cryptocurrencies, including Ethereum. In addition, AMHL enables operations
between different blockchains, which is clearly not the case for Ethereum-only solutions. If we
focus on the specific setting of payment channels in Ethereum, AMHL is more efficient (i.e.,
it requires less gas and bytes) as payment conditions are encoded in the signature and not in
additional scripts. Finally, [DEFM17, DFH18] provide a different privacy notion: two endpoints
can communicate privately, but the intermediate nodes know that a virtual channel is opened
between them. This information is instead concealed with AMHL. Formalizing this privacy
leakage and comparing it with our privacy definition is an interesting future work.

The LN has emerged as the most promising approach for PCN in practice. Its current de-
scription [ln-b] is being followed by several implementations [lnd, lig18, ecl]. However, these
implementations suffer from the security and privacy issues with PCNs as described in this work.
Instead, we provide several constructions for AMHLs that can be leveraged to have secure and
anonymous multi-hop payments.

Malavolta et al. [MMSK+17] propose a protocol for secure and anonymous multi-hop payments
compatible with the current LN. Their approach, however, imposes an overhead of around 5 MB
for the nodes in the network, therefore hindering its deployability. Here, we propose several
efficient constructions that require only a few bytes of communication.

In the recent literature, we can find proposals for secure and privacy-preserving atomic swaps.
Tesseract [BJZ+17] leverages trusted hardware to perform real-time cryptocurrency exchanges.
The Merkleized Abstract Syntax Trees (MAST) protocol has been proposed as a privacy solution
for atomic swaps [Lau]. However, MAST relies on scripts that are not available in the major
cryptocurrencies today. Moreover, specific contracts for atomic swaps hinder the fungibility of
the currency: An observer can easily differentiate between a regular payment and a payment
resulting from an atomic swap.

5.9 Conclusion

We rigorously study the cryptographic core functionality for security, privacy, and interoper-
ability guarantees in PCNs, presenting a new attack on today’s PCNs (the wormhole attack)
and proposing a novel cryptographic construction (AMHLs). We instantiate AMHLs in two
settings: script-based and scriptless. In the script-based setting, we demonstrate that AMHLs
can be realized from any (linear) homomorphic operation. In the scriptless setting, we propose a
construction based on ECDSA, thereby catering to the vast majority of cryptocurrencies deployed
today. Our performance evaluation shows that AMHLs are practical: All operations take less than
100 milliseconds to run and introduce a communication overhead of fewer than 500 bytes.

We show that AMHLs can be combined in a single path and are of interest in several applications
apart from PCNs, such as atomic swaps and interoperable PCNs. In fact, LN developers have im-
plemented and tested AMHL for LN. In the future, we plan to devise cryptographic instantiations
of PCNs for the few cryptocurrencies not yet covered, most notably Monero.

100

5.9. Conclusion

SetupUi
(1λ) SetupU0 (1λ, U1, . . . , Un) SetupUn

(1λ)

y0 ←$Zq ; Y0 = y0 · G

∀i ∈ [1, n − 1] : yi ←$Zq

Yi := Yi−1 + yi · G

stmti := {∃y. Yi = y · G} stmti := {∃y. Yi = y · G}

b ← VNIZK(stmti, πi) (Yi−1,Yi,πi)←−−−−−−−−− πi ← PNIZK
i

j=0 yj , stmti (Yn−1,kn:= n−1
i=0

yi)
−−−−−−−−−−−−−−−−→

if b = 0 then abort
Yi := Yi−1 + yi · G

return (Yi−1, Yi, yi) return y0 return ((Yn−1, 0, 0), kn)

LockUi
(sI

i , ski, pk) LockUi+1 (sI
i+1, ski+1, pk)

parse sI
i as (Y0 , Y0, y0) parse sI

i+1 as (Y1 , Y1, y1)
parse ski as (x0, skHE) parse ski+1 as (x1, c)
r0 ←$Zq ; R0 := r0 · G; R0 := r0 · Y0 r1 ←$Zq ; R1 := r1 · G; R1 := r1 · Y1
stmt0 := {∃r0. R0 = r0 · G and R0 = r0 · Y0} stmt1 := {∃r1. R1 = r1 · G and R1 = r1 · Y1}
π0 ← PNIZK(r0, stmt0) π1 ← PNIZK(r1, stmt1)

com←−−(decom, com) ← Commit(1λ, (R1, R1, π1))
(R0,R0,π0)−−−−−−−−→if VNIZK(stmt0, π0) = 1 then abort

(rx, ry) := R = r1 · R0; ρ ←$Zq2

(decom,R1,R1,π1,c)←−−−−−−−−−−−−−−c := crx(r1)−1x1 · EncHE(pk, H(m)(r1)−1 + ρq)
if Vcom(com, decom, (R1, R1π1)) = 1 then abort

if VNIZK(stmt1, π1) = 1 then abort

s ← DecHE(skHE, c)
(rx, ry) := R = r0 · R1

if s · R1 = rx · pk + H(m) · G then abort s :=s·r−1
0 mod q−−−−−−−−−−−→if s · r1 · R0 = rx · pk + H(m) · G then abort

return ((m, pk), (s , m, pk)) return ((m, pk), (rx, s))

Rel(k, (sI , sL, sR))

parse sI as (Y , Y , y), k as (r, s), sL as (w0, w1), sR as (s , m, pk)

t := w1 · (s
s

− y)−1; t := w1 · (− s
s

− y)−1

if VfECDSA(pk, (w0, min(t, −t)), m) = 1 return (r, min(t, −t))
if VfECDSA(pk, (w0, min(t , −t)), m) = 1 return (r, min(t , −t))

Vf(, k)

parse as (m, pk)
parse k as (r, s)

return 1 iff (r, ·) = H(m)
s

· G + r
s

· pk and
s ≤ q−1

2

Figure 5.5: Algorithms and protocols for the ECDSA-based construction.

101

CHAPTER 6
Conclusion and Directions for Future

Research

6.1 Conclusion

In this thesis, we have shown how principled theoretical foundations can enhance distributed
blockchain applications’ security. To this end, we focused on the security analysis of Ethereum
smart contracts and off-chain protocols.

First, we presented a formal small-step semantics for Ethereum Virtual Machine bytecode which
we also implemented in the proof assistant F . Using this small-step semantics, we formulated
generic security notions for Ethereum smart contracts, most prominently the call integrity property
for which we presented a designated proof strategy.

Next, we systematized the existing approaches to the analysis of Ethereum smart contracts,
focusing on automatic static tools that come with soundness guarantees. We highlighted the
specific challenges that emerged in the design and implementation of automated static analyzers
for Ethereum smart contracts and illustrated these challenges’ severeness by unveiling soundness
issues in existing automated static analysis tools that claim soundness.

We then presented the sound static analysis tool eThor that overcomes the presented challenges by
following a principled design and implementation approach. eThor relies on an abstract semantics
based on Constrained Horn clauses which devises several advanced domain-specific abstractions
and is proven sound against the previously introduced small-step semantics. For a modular design
and a reliable generation of a practical tool from the analysis specification, we introduced the
specification language HoRSt that automatically translates into the generic smt-lib format for
SMT-solvers. We conducted an empirical evaluation that not only confirms eThor’s soundness
but also shows that eThor outperforms the state-of-the-art analyzer ZEUS (in terms of F-measure)
on a real-world data set.

103

6. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

Finally, we showed how to improve the security and privacy in payment channel networks for
Bitcoin and other cryptocurrencies. To this end, we first presented a novel attack on the security of
Bitcoin’s Lightning Network. Next, developed a cryptographic primitive that allows for building
secure and anonymous payment channel networks in different cryptocurrencies. In particular, we
proved this primitive to be realizable by a construction based on the ECDSA signature scheme,
which Bitcoin uses. Further, we showed that different instances of the primitive securely compose
to secure multi-hop payments involving participants from other cryptocurrencies.

6.2 Application to Recent Trends in Decentralized Finance

Recently, Decentralized Finance (short DeFi) gained significant importance as an application area
of cryptocurrencies. Broadly, DeFi refers to all kinds of financial applications that are realized
using blockchain technologies and hence do not rely on a central authority. Canonical examples
are exchanges or banking services. The complexity of DeFi applications usually requires the
power of an expressive scripting language such as provided by Ethereum. This requirement
makes Ethereum the most important DeFi platform. As a consequence, the rise of DeFi came
with an increased transaction load on Ethereum [eth21b].

DeFi amplifies the prevalent issues of cryptocurrencies which are discussed in this thesis:

1. DeFi applications are implemented in the form of (interacting) smart contracts, which
are particularly security-critical. Bugs in these smart contracts can cause severe financial
losses and undermine the promise of DeFi to establish a fair and secure financial market
that is accessible for everyone. Known issues, such as the transaction order dependency
vulnerabilities (discussed in Section 2.4), gain new significance in the DeFi setting. E.g.,
one highly debated attack class is the so-called front running [Dil21] where attackers
take advantage of (already submitted) transactions of another user to preempt that user in
their action. But also involved reentrancy attacks, such as the one on UniSwap [Cim20],
Ethereum’s largest decentralized financial exchange application [Kha20], reoccur, making
the verification of smart contracts a predominant topic.

The results of this thesis present a starting point for the development of powerful, provably
sound analysis tools for DeFi applications that come with a high degree of automation.
The existing attack landscape shows both the verification of generic properties (such as
single-entrancy or independence of miner-controlled parameters), as well as the verification
of contract-specific properties (as described in Section 4.2.5) to be relevant. In particular,
for complex applications that involve multiple services (as many DeFi applications do), it
becomes essential to investigate the security of applications in the interplay with a complex
environment of other applications. This setting motivates the bulk verification of several
contracts (mentioned as possible extension in Section 4.6), but also the exploration of com-
positional reasoning techniques for smart contracts. A starting point for the development of
such compositional reasoning techniques is the contract invariant checking as enabled by
the functional correctness extension of eThor presented in Section 4.4.2. One could think
of developing high-level techniques (to argue about complex inter-contract properties) to

104

6.2. Application to Recent Trends in Decentralized Finance

be finally broken down to invariance checks on individual smart contracts automatically
discharged by eThor. This vision shows that eThor can be an important building block in
a future analysis pipeline for smart contracts. Future improvements of eThor as will be
discussed in Section 6.3.1 would benefit such development.

2. Due to the higher transaction load, scaling solutions such as PCNs discussed in Chapter 5
gain importance. For the DeFi use case, the focus of these solutions lies in the scaling of
transactions that invoke intricate smart contract executions. This goal stands in contrast with
the case of Bitcoin and many other cryptocurrencies, where (simple) financial transactions
between two parties represent a more common use case. For the latter, PCNs offering fast
financial peer-to-peer transactions constitute an adequate means of scaling. For scaling
contract executions in Ethereum, instead, the concept of state channel networks [DFH18]
was introduced. This concept, however, comes with the major drawback that (as in the
PCN case) two (or multiple) interacting parties need to agree on a setup upfront for (jointly)
executing a contract off-chain. This setting countermines the function of many DeFi
applications, which allow arbitrary users to interact with the application over time. E.g.,
a decentralized exchange such as UniSwap is open for any user to register and exchange
their funds.

For this reason, alternative scaling solutions for the case of Ethereum are investigated,
most prominently a concept called rollups [eth21a]. The idea of rollups is that (given a
suitably programmed smart contract) multiple transactions for that contract can be bundled
(off-chain) by certain entities (so-called relayers) that then only publish the overall result of
these transactions. The relayers to ensure the correctness of state updates either give a zero-
knowledge proof or provide enough data so that the update can be challenged and enforced
on-chain (in which case the relayer is charged a previously given security deposit). The
challenges for rollups differ substantially from those in PCNs. The (secure) implementation
of rollups relies on a smart contract applying the rolled-up changes and implementing the
security checks (either the check of zero-knowledge proofs or the challenge mechanism).
This use of a smart contract as the central enforcement mechanism moves the complexity
of rollups (compared to PCNs) from the cryptographic protocol layer to the design and
implementation of the contract. Critical questions are how to realize the full expressivity
of the EVM in the setting of rollups, how to minimize published data, and how relaying
transactions may open up room for new (mechanistic) attacks.

Even though these are fascinating and relevant research questions, and rollups offer promis-
ing solutions to shortcomings of PCNs (such as the need for locking collaterals, or the
requirement of users to stay online) the purpose of rollups is partly orthogonal to the one of
the PCNs discussed in Chapter 5. While rollups both enable and require computations in an
expressive language, the focus of Chapter 5 is a framework for secure off-chain payments in
settings with restricted scripting languages. Even though coming with the priorly discussed
limitations of payment channels, the proposed design offers a small common denominator
for an off-chain scaling solution in different existing cryptocurrencies. Hence, this solution
enables interoperable scaling across multiple currencies for one restricted functionality
(payments). It is an exciting challenge to add additional functionality to such a framework

105

6. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

without losing interoperability (so by putting minimal requirements on the underlying
scripting language). We aim to investigate this question in future research, as detailed out
in Section 6.3.4.

6.3 Directions for Future Work

With the automated static analysis tool eThor presented in Chapter 4 we do not only offer a
solution to the verification of specific security properties of Ethereum smart contracts. We also
introduce a generic and extensible framework for the design of static analyzers that facilitates the
reasoning about the resulting tools’ theoretical guarantees.

This framework calls for extensions along several dimensions:

6.3.1 Extensions of eThor

We plan to enlarge the scope of eThor itself by refining the abstractions to allow for more precise
analysis and by encoding other generic security properties.

One possible refinement of the analysis could be a domain-specific storage abstraction that
accounts for the hash-based allocation scheme used by the Solidity compiler to represent complex
data types in the persistent storage. This refinement would allow for a more precise analysis of
smart contracts compiled from Solidity and using maps or arrays. Further, we could improve the
analysis’s precision by adding support for the bulk-verification of several smart contracts to more
precisely analyze smart contracts that use (trusted) library contracts.

For expressing additional security properties within eThor– such as the atomicity property
in Section 2.4 – it is currently required to soundly approximate these notions as reachability
properties. This approximation, however, is still an interesting open research question since most
of these properties are hyperproperties that are hard to abstract in terms of reachability.

6.3.2 Extensions of HoRSt

In addition to extending the eThor tool, we want to expand the HoRSt framework to include new
features that allow for the generation of more expressive, more performant, and more reliable
analysis tools.

Additional Properties An alternative to finding reachability abstractions for relational proper-
ties is the extension of the analysis language HoRSt to a broader set of properties. An interesting
extension would be two-safety properties that would enable the reasoning about two execution
traces’ relation. One could realize this extension by an automatic generation of cross-product
constructions on the implemented abstract semantic rules. Such an extension would come with
the advantage that the transformation’s correctness could be covered by a universal proof and
would not charge further proof obligations to the analysis designer.

106

6.3. Directions for Future Work

New Backends To improve the overall performance of the generated analysis tools, we want
to extend HoRSt with other translation targets. Not all program classes require the full power
of SMT-solvers. As illustrated by the example of the control-flow reconstruction in Section 4.4,
some problems fall into more manageable categories and can be way more efficiently solved
using other solving strategies. For this reason, we want to specify translations from (well-defined
fragments of) HoRSt into different output formats such as Soufflé. This approach would allow
users to conveniently combine the powers of different solvers on their static analysis tasks.

Support for Mechanized Proofs To strengthen the theoretical guarantees of analysis tools
based on a HoRSt specification, we plan to extend HoRSt with an export functionality for proof
assistants such as F . This extension would enable analysis designers to conduct machine-checked
soundness proofs of the analysis, and as a consequence, strengthen the theoretical guarantees of
the analysis tools. Soundness proofs for the analysis of real-world languages are lengthy, tedious,
and hence error-prone when done on paper. Simultaneously, such proofs often share a similar
structure and contain an abundance of redundant cases. For this reason, using proof assistants
with high support for automation like F has the potential to automate large parts of such proofs,
in particular when carefully modeling and providing suitable proof infrastructure. A direct export
functionality would further come with the advantage that the same source would generate both
the tool and the formalization that serves as a basis for the proof. This would create a close
connection between the proof and the tool.

6.3.3 New Analysis Targets

The HoRSt framework is not bound to the use case of EVM bytecode analysis but can serve as a
basis for static analyzers for other languages. Consequently, all such tools would benefit from the
general improvements of the framework discussed in the last paragraphs. Immediate application
domains would be the new Ethereum smart contract language eWASM or smart contracts for the
rising EOSIO blockchain. Above that, the applicability of the HoRSt framework is by far not
limited to the blockchain context. It could also help develop reliable analysis tools for languages
from other domains such as WebAssembly, PHP, or RUST.

In addition to the presented research opportunities in the field of automated static analysis, another
exciting research direction would be to bridge the two different forms of distributed blockchain
applications discussed in this thesis. Building on the insights on smart contracts and off-chain
protocols, I plan to study off-chain smart contracts – off-chain protocols whose functionality
goes beyond payments.

6.3.4 Off-chain Smart Contracts

Recent works [DFH18] demonstrate how to develop off-chain smart contracts when relying on
expressive scripting languages (such as the one of Ethereum). However, it is still an open problem
to characterize the off-chain functionality achievable when building on more basic scripting
languages (such as supported by Bitcoin). Also, [BZ18, BMZ20] showed how to extend the
expressiveness of blockchain systems with limited scripting languages by adding an (on-chain)

107

6. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

protocol layer. These two results indicate that the expressiveness of blockchain scripting languages
should be considered in several dimensions: Their computational expressiveness, the class of
protocols that are expressible with smart contracts, as (well-behaved) protocol participants, as
well as the form of off-chain protocols that can be built from these languages. For this reason, it
would be interesting to explore which off-chain functionality can be realized depending on the
underlying scripting language and what could be suitable candidates for languages to capture such
off-chain functionality. The design of such off-chain languages and provably sound verification
tools would be an exciting line of research requiring the combination of static verification
techniques and cryptographical reasoning on the protocol level.

108

List of Figures

1.1 Simplified DAO contract. 4
1.2 Illustration of the workings of payment channel networks 7
1.3 Illustration of an honest payment in the Lightning Network 8
1.4 Wormhole attack on the Lightning Network . 8

2.1 Grammar for call stacks and transaction environments 19
2.2 Illustration of of the semantics of different call types 24
2.3 Illustration of the semantics of the CREATE instruction 25

3.1 Simple contract highlighting an unsoundness in Securify’s dependency analysis. . 49
3.2 Simplified DAO contract using a library . 52
3.3 Simple versions of the DAO contract with reentrancy protection. 53
3.4 Overview on the soundness guarantees and issues of the tools Securify, ZEUS,

NeuCheck, and eThor broken down to the different phases of the analysis pipeline. 55

4.1 Formal verification chain of eThor. Δ Λ Δ denotes that the abstract configuration
Δ can be logically derived from Δ (within one step) using the Horn clauses in Λ. 61

4.2 Definition of the predicate signature Sc∗ and the abstract domain D̂. 62
4.3 Configuration abstraction function. Here v||nw denotes the value obtained by con-

catenating v’s and w’s byte representation, assuming that w is represented by n bytes.
. 63

4.4 Partial definition of · pc: selection of abstract semantics rules. For CALL and
MLOAD the exception rule is omitted. 64

4.5 Function extracting the word at byte offset p from word-indexed memory m. Here
v[l,r] denotes the value represented by v’s lth byte till rth byte in big endian byte
representation. v||nw is defined as in Figure 4.3. We assume both operations to be
lifted to D̂. 65

4.6 Illustration of the different call abstractions. 66
4.7 Utilization of HoRSt for static analysis . 70
4.8 Analysis outline. 72
4.9 Query runtimes in ms for the combined approach itemized by queries. A red/-

green/blue dot denotes a query solved fastest with no/linear/exhaustive folding. . 76

109

LIST OF FIGURES

5.1 Payment (with and without wormhole attack) from Alice to Edward for value 10
using HTLC contract. The honest (attacked) releasing phase is depicted in green
(red). Non-bold (bold) numbers show the capacity of payment channels before (after)
the payment. We assume a common fee of 1 coin. 84

5.2 Usage of the AMHL primitive. It is assumed that links between the users on the path
have been created upfront (using KGen) and that the resulting public and secret keys
are implicitly given as argument to the corresponding executions of Lock. Otherwise,
the inputs (outputs) to (from) the Lock protocol and the Rel algorithm are indicated
by blue (orange) arrows. 87

5.3 Ideal functionality for cryptographic locks (AMHLs) 89
5.4 Algorithms and protocols for the generic construction 92
5.5 Algorithms and protocols for the ECDSA-based construction. 101

A.1 Grammar for calls stacks and transaction environments 129

B.1 Problematic Control Flow Example. 202

C.1 HoRSt rule describing the abstract semantics of local binary stack operations. . . 218
C.2 HoRSt rule describing the abstract semantics of the local memory write operation

MSTORE pc . 221
C.3 HoRSt-query for reeentrancy. 222
C.4 Unfolding of P2. 222
C.5 Example of linear and exhaustive folding. Transition system view of the abstract

semantics: States denote predicates and arrows denote Horn clauses having the start
predicate as premise and the goal predicate as conclusion. Initial (final) states are
colored green (red). Linearly used predicates are colored blue. 223

C.6 HoRSt-query for reentrancy. 247
C.7 Rule for CALLDATALOAD in the enhanced abstract semantics. 248
C.8 Rule for RETURN in the enhanced abstract semantics. 249
C.9 Correctness queries for SafeMath’s add function 251
C.10 Setup for automated testing. 252

D.1 Illustration of the abstract locking mechanism underlying payments in PCNs . . . 257
D.2 Algorithms and protocols for the Schnorr-based construction. The Setup protocol is

as defined in Fig. 5.5. 260

110

List of Tables

2.1 Bugs from [LCO+16a] and [ABC17] ruled out by the security properties 35

4.1 Performance comparison of eThor and ZEUS [KGDS18a]. total/terminated denotes
the number of contracts in the data set/the number of contracts the respective tool
terminated on. tp/fp denotes the number of true/false positives and tn/fn the true/false
negatives. 75

5.1 Comparison of the resources required to execute the algorithms for the different
AMHLs. We denote by n the length of the path. We denote the negligible computation
times by – (e.g., single memory read). We denote the size of an application-dependent
message by |m| (e.g., a transaction in a payment-channel network). 96

111

Bibliography

[ABB+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-
nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy, Binh
Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula
Stathakopoulou, Marko Vukolic, Sharon Weed Cocco, and Jason Yellick. Hyper-
ledger fabric: A distributed operating system for permissioned blockchains. In
EuroSys, pages 30:1–30:15, 2018.

[ABBS18] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. Towards
verifying ethereum smart contract bytecode in isabelle/hol. CPP. ACM. To appear,
2018.

[ABC17] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
ethereum smart contracts (sok). In International Conference on Principles of
Security and Trust, pages 164–186. Springer, 2017.

[ACG+19] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Albert
Rubio. Safevm: a safety verifier for ethereum smart contracts. In Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 386–389, 2019.

[Adh17] Chandra Adhikari. Secure framework for healthcare data management using
ethereum-based blockchain technology. 2017.

[AEP18] Shaun Azzopardi, Joshua Ellul, and Gordon J Pace. Monitoring smart contracts:
Contractlarva and open challenges beyond. In International Conference on
Runtime Verification, pages 113–137. Springer, 2018.

[AEVL16] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec:
Using blockchain for medical data access and permission management. In Open
and Big Data (OBD), International Conference on, pages 25–30. IEEE, 2016.

[ALV] MARIO M ALVAREZ. Elle: Foundationally verified compilation for ethereum.

[AMJC20] Imran Ashraf, Xiaoxue Ma, Bo Jiang, and WK Chan. Gasfuzzer: Fuzzing
ethereum smart contract binaries to expose gas-oriented exception security vul-
nerabilities. IEEE Access, 2020.

113

BIBLIOGRAPHY

[Ari19] Emilio Jesús Gallego Arias. Towards principled compilation of ethereum smart
contracts (sok). In 2019 10th IFIP International Conference on New Technologies,
Mobility and Security (NTMS), pages 1–5. IEEE, 2019.

[bam] Bamboo. Available at https://github.com/pirapira/bamboo.

[BB17] Alex Beregszaszi and Paweł Bylica. Eip-145: Bitwise shifting instructions in
evm. https://eips.ethereum.org/EIPS/eip-145, February 2017.
Ethereum Improvement Proposals, no. 145 [Online serial].

[BD77] Rod M Burstall and John Darlington. A transformation system for developing
recursive programs. Journal of the ACM (JACM), 24(1):44–67, 1977.

[BDLF+16a] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, et al. Formal verification of smart con-
tracts: Short paper. In Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security, pages 91–96. ACM, 2016.

[BDLF+16b] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. Formal
verification of smart contracts: Short paper. In Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for Security, pages 91–96.
ACM, 2016.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications. In Symposium on Theory of Computing, pages 103–112,
1988.

[BGL+20] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis
Smaragdakis. Ethainter: a smart contract security analyzer for composite vulnera-
bilities. In PLDI, pages 454–469, 2020.

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof
of work. In International conference on financial cryptography and data security,
pages 142–157. Springer, 2016.

[BGM19] Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. A minimal core
calculus for solidity contracts. In Data Privacy Management, Cryptocurrencies
and Blockchain Technology, pages 233–243. Springer, 2019.

[BGMR15] Nikolaj Bjørner, Arie Gurfinkel, Ken McMillan, and Andrey Rybalchenko. Horn
clause solvers for program verification. In Fields of Logic and Computation II,
pages 24–51. Springer, 2015.

114

https://github.com/pirapira/bamboo
https://eips.ethereum.org/EIPS/eip-145

Bibliography

[BH] Sean Bowe and Daira Hopwood. Hashed time-locked contract transactions.
Bitcoin Improvement Proposal. https://github.com/bitcoin/bips/
blob/master/bip-0199.mediawiki.

[bit] Blockchain explorer information. https://blockchain.info/.

[BJZ+17] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xueyuan Zhao, Lorenz Breidenbach,
Philip Daian, and Ari Juels. Tesseract: Real-time cryptocurrency exchange using
trusted hardware. In ePrint Archive, page 1153, 2017.

[BKM+13] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi. Anoa: A
framework for analyzing anonymous communication protocols. In CSF, pages
163–178, 2013.

[BKT17] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. Findel: Secure
derivative contracts for ethereum. In International Conference on Financial
Cryptography and Data Security, pages 453–467. Springer, 2017.

[BM17] Alex Beregszaszi and Nikolai Mushegian. Eip-140: Revert instruction. https:
//eips.ethereum.org/EIPS/eip-140, February 2017. Ethereum Im-
provement Proposals, no. 140 [Online serial].

[BMZ20] Massimo Bartoletti, Maurizio Murgia, and Roberto Zunino. Renegotiation and
recursion in bitcoin contracts. In International Conference on Coordination
Languages and Models, pages 261–278. Springer, 2020.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In CCS, 1993.

[BR17] Vitalik Buterin and Christian Reitwiessner. Eip-214: New opcode static-
call. https://eips.ethereum.org/EIPS/eip-214, February 2017.
Ethereum Improvement Proposals, no. 214 [Online serial].

[But16] Vitalik Buterin. Eip-170: Contract code size limit. https://
eips.ethereum.org/EIPS/eip-170, November 2016. Ethereum Im-
provement Proposals, no. 170 [Online serial].

[But18] Vitalik Buterin. Eip-1014: Skinny create2. https://
eips.ethereum.org/EIPS/eip-1014, April 2018. Ethereum Im-
provement Proposals, no. 1014 [Online serial].

[BZ18] Massimo Bartoletti and Roberto Zunino. Bitml: a calculus for bitcoin smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 83–100, 2018.

[Can01] R Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–, 2001.

115

https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://blockchain.info/
https://eips.ethereum.org/EIPS/eip-140
https://eips.ethereum.org/EIPS/eip-140
https://eips.ethereum.org/EIPS/eip-214
https://eips.ethereum.org/EIPS/eip-170
https://eips.ethereum.org/EIPS/eip-170
https://eips.ethereum.org/EIPS/eip-1014
https://eips.ethereum.org/EIPS/eip-1014

BIBLIOGRAPHY

[CC04] Patrick Cousot and Radhia Cousot. Basic concepts of abstract interpretation. In
Building the Information Society, pages 359–366. Springer, 2004.

[CDE+16] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song,
and Roger Wattenhofer. On Scaling Decentralized Blockchains. In FC, pages
106–125, 2016.

[CDPZ19] Silvia Crafa, Matteo Di Pirro, and Elena Zucca. Is solidity solid enough? In
International Conference on Financial Cryptography and Data Security, pages
138–153. Springer, 2019.

[cfg20] evm-cfg-builder. https://github.com/crytic/evm_cfg_builder, 2020.

[Cha] Charm: A framework for rapidly prototyping cryptosystems. https://
github.com/JHUISI/charm.

[Cim20] Catalin Cimpanu. Hackers steal $25 million worth of cryptocurrency
from lendf.me platform. https://www.zdnet.com/article/
hackers-steal-25-million-worth-of-cryptocurrency-
from-uniswap-and-lendf-me/, 2020.

[CKY18] Jason Paul Cruz, Yuichi Kaji, and Naoto Yanai. Rbac-sc: Role-based access
control using smart contract. Ieee Access, 6:12240–12251, 2018.

[CL05] Jan Camenisch and Anna Lysyanskaya. A formal treatment of onion routing. In
CRYPTO, 2005.

[CLL] Thomas Cook, Alex Latham, and Jae Hyung Lee. Dappguard: Active monitoring
and defense for solidity smart contracts.

[Cob17] Michael Coblenz. Obsidian: A safer blockchain programming language. In
Software Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th International
Conference on, pages 97–99. IEEE, 2017.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Annual
International Cryptology Conference, pages 265–281, 2003.

[Dam02] Ivan Damgård. On σ-protocols. Lecture Notes, University of Aarhus, Department
for Computer Science, 2002.

[DAS19] Monika Di Angelo and Gernot Salzer. A survey of tools for analyzing ethereum
smart contracts. In 2019 IEEE International Conference on Decentralized Appli-
cations and Infrastructures (DAPPCON), pages 69–78. IEEE, 2019.

[DEFM17] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun:
Virtual payment hubs over cryptocurrencies. In ePrint, 2017.

116

https://github.com/JHUISI/charm
https://github.com/JHUISI/charm
https://www.zdnet.com/article/hackers-steal-25-million-worth-of-cryptocurrency-from-uniswap-and-lendf-me/
https://www.zdnet.com/article/hackers-steal-25-million-worth-of-cryptocurrency-from-uniswap-and-lendf-me/
https://www.zdnet.com/article/hackers-steal-25-million-worth-of-cryptocurrency-from-uniswap-and-lendf-me/

Bibliography

[DFH18] Stefan Dziembowski, Sebastian Faust, and Kristina Hostakova. General state
channel networks. In CCS, 2018.

[Dil21] ConsenSys Diligence. Known attacks - front-running. https:
//consensys.github.io/smart-contract-best-practices/
known_attacks/#front-running, 2021.

[DKLas18] J. Doerner, Y. Kondi, E. Lee, and a. shelat. Secure two-party threshold ecdsa from
ecdsa assumptions. In S&P, 2018.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Interna-
tional conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[DRO] Christian Decker, Rusty Russel, and Olaoluwa Osuntokun. eltoo: A simple layer2
protocol for bitcoin. https://blockstream.com/eltoo.pdf.

[DW15] Christian Decker and Roger Wattenhofer. A fast and scalable payment network
with bitcoin duplex micropayment channels. In Stabilization, Safety, and Security
of Distributed Systems, 2015.

[DWA+17] Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and Aad van
Moorsel. Betrayal, distrust, and rationality: Smart counter-collusion contracts for
verifiable cloud computing. 2017.

[ecl] A scala implementation of the lightning network. https://github.com/
ACINQ/eclair.

[Ell20] Joshua Ellul. Towards configurable and efficient runtime verification of blockchain
based smart contracts at the virtual machine level. In International Symposium on
Leveraging Applications of Formal Methods, pages 131–145. Springer, 2020.

[eth] Ethereum website. https://www.ethereum.org/.

[Eth18] Ethereum. Solidity Docs, 2018.

[Eth19] Ethereum. Solidity Docs, 2019.

[eth21a] ethereum.org. Layer 2 scaling - rollups. https://ethereum.org/en/
developers/docs/layer-2-scaling/#rollups, 2021.

[eth21b] etherscan.io. Ethereum daily transactions chart. https://etherscan.io/
chart/tx, 2021.

[evm] Consensus test suite. Available at https://github.com/ethereum/
tests.

[ext20] eThor: extended version, source code, build, and evaluation artifacts.
https://secpriv.wien/ethor, 2020.

117

https://consensys.github.io/smart-contract-best-practices/known_attacks/#front-running
https://consensys.github.io/smart-contract-best-practices/known_attacks/#front-running
https://consensys.github.io/smart-contract-best-practices/known_attacks/#front-running
https://blockstream.com/eltoo.pdf
https://github.com/ACINQ/eclair
https://github.com/ACINQ/eclair
https://www.ethereum.org/
https://ethereum.org/en/developers/docs/layer-2-scaling/#rollups
https://ethereum.org/en/developers/docs/layer-2-scaling/#rollups
https://etherscan.io/chart/tx
https://etherscan.io/chart/tx
https://github.com/ethereum/tests
https://github.com/ethereum/tests

BIBLIOGRAPHY

[FAH20] Joel Frank, Cornelius Aschermann, and Thorsten Holz. {ETHBMC}: A bounded
model checker for smart contracts. In 29th {USENIX} Security Symposium
({USENIX} Security 20), 2020.

[FGG19] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis frame-
work for smart contracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB), pages 8–15.
IEEE, 2019.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. Why3—where programs meet
provers. In European Symposium on Programming, pages 125–128. Springer,
2013.

[Froa] Conner Fromknecht. Instantiating scriptless 2p-ecdsa: fungible
2-of-2 multisigs for bitcoin today. Talk at ScalingBitcoin 2018.
https://tokyo2018.scalingbitcoin.org/transcript/
tokyo2018/scriptless-ecdsa.

[Frob] Conner Fromknecht. tpec: 2p-ecdsa signatures. Github repository. https:
//github.com/cfromknecht/tpec.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Conference on the Theory and Application of
Cryptographic Techniques, 1986.

[fst] F*. Available at https://fstar-lang.org.

[GAGG+17] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam
Rinetzky, Mooly Sagiv, and Yoni Zohar. Online detection of effectively callback
free objects with applications to smart contracts. Proceedings of the ACM on
Programming Languages, 2(POPL):48, 2017.

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology, 20(1):51–83, 2007.

[GM17] Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentral-
ized currencies. In CCS, 2017.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[GMS18a] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. Foundations and tools
for the static analysis of ethereum smart contracts. In Proceedings of the 30th
International Conference on Computer-Aided Verification (CAV), pages 51–78.
Springer, 2018.

118

https://tokyo2018.scalingbitcoin.org/transcript/tokyo2018/scriptless-ecdsa
https://tokyo2018.scalingbitcoin.org/transcript/tokyo2018/scriptless-ecdsa
https://github.com/cfromknecht/tpec
https://github.com/cfromknecht/tpec
https://fstar-lang.org

Bibliography

[GMS18b] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic framework
for the security analysis of ethereum smart contracts. In Proceedings of the 7th
International Conference on Principles of Security and Trust (POST), pages
243–269. Springer, 2018.

[GMS18c] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic framework
for the security analysis of ethereum smart contracts - technical report, 2018. Avail-
able at https://secpriv.tuwien.ac.at/tools/ethsemantics.

[Gri21] Ilya Grishchenko. Static analysis of low-level code, 2021.

[GY18] Hisham S Galal and Amr M Youssef. Verifiable sealed-bid auction on the ethereum
blockchain. In International Conference on Financial Cryptography and Data
Security, pages 265–278. Springer, 2018.

[HAB+17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and
Sharon Goldberg. TumbleBit: An untrusted bitcoin-compatible anonymous
payment hub. In NDSS, 2017.

[har16] Hard fork after the DAO hack, 2016. Available
at https://blog.ethereum.org/2016/07/26/
onward_from_the_hard_fork/.

[HB12] Kryštof Hoder and Nikolaj Bjørner. Generalized property directed reachability.
In International Conference on Theory and Applications of Satisfiability Testing,
pages 157–171. Springer, 2012.

[HBC+12] Manuel V Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-García,
Edison Mera, José F Morales, and Germán Puebla. An overview of ciao and its
design philosophy. Theory and Practice of Logic Programming, 12(1-2):219–252,
2012.

[HBDM11] Kryštof Hoder, Nikolaj Bjørner, and Leonardo De Moura. µz–an efficient engine
for fixed points with constraints. In International Conference on Computer Aided
Verification, pages 457–462. Springer, 2011.

[Hir17a] Yoichi Hirai. Defining the ethereum virtual machine for interactive theorem
provers. In 1st Workshop on Trusted Smart Contracts, 2017.

[Hir17b] Yoichi Hirai. Defining the ethereum virtual machine for interactive theorem
provers. In International Conference on Financial Cryptography and Data Secu-
rity, pages 520–535. Springer, 2017.

[HS09] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence graphs.
International Journal on Information Security, 8(6):399–422, 2009.

119

https://secpriv.tuwien.ac.at/tools/ethsemantics
https://blog.ethereum.org/2016/07/26/onward_from_the_hard_fork/
https://blog.ethereum.org/2016/07/26/onward_from_the_hard_fork/

BIBLIOGRAPHY

[HSLC17] Adam Hahn, Rajveer Singh, Chen-Ching Liu, and Sijie Chen. Smart contract-
based campus demonstration of decentralized transactive energy auctions. In 2017
IEEE Power & Energy Society Innovative Smart Grid Technologies Conference
(ISGT), pages 1–5. IEEE, 2017.

[HSR+18] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip
Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, Andrei Stefanescu,
and Grigore Rosu. KEVM: A Complete Formal Semantics of the Ethereum
Virtual Machine. pages 204–217. IEEE, July 2018.

[JB18] Nick Johnson and Paweł Bylica. Eip-1052: Extcodehash opcode. https:
//eips.ethereum.org/EIPS/eip-1052, May 2018. Ethereum Im-
provement Proposals, no. 1052 [Online serial].

[JKL+18] Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanan, Yang Liu, and Jun Sun.
Executable operational semantics of solidity. arXiv preprint arXiv:1804.01295,
2018.

[JSS16] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On synthesis of
program analyzers. In International Conference on Computer Aided Verification,
pages 422–430. Springer, 2016.

[KG17] Rami Khalil and Arthur Gervais. Revive: Rebalancing off-blockchain payment
networks. In CCS, pages 439–453, 2017.

[KGDS18a] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus: Analyzing
safety of smart contracts. NDSS, 2018.

[KGDS18b] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS: Analyzing
Safety of Smart Contracts. Internet Society, 2018.

[KGM+19] Theodoros Kasampalis, Dwight Guth, Brandon Moore, Traian Florin S, erbănut, ă,
Yi Zhang, Daniele Filaretti, Virgil S, erbănut, ă, Ralph Johnson, and Grigore Roşu.
Iele: A rigorously designed language and tool ecosystem for the blockchain. In
International Symposium on Formal Methods, pages 593–610. Springer, 2019.

[Kha20] Olga Kharif. Defi boom makes uniswap most sought-after crypto exchange.
https://www.bloomberg.com/news/articles/2020-10-16/
defi-boom-makes-uniswap-most-sought-after-crypto-
exchange, 2020.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In Theory of cryptography, pages 477–498.
2013.

[Lau] Johnson Lau. Merkelized abstract syntax tree. Bitcoin Improvement Proposal.
https://tinyurl.com/yc9jh6lv.

120

https://eips.ethereum.org/EIPS/eip-1052
https://eips.ethereum.org/EIPS/eip-1052
https://www.bloomberg.com/news/articles/2020-10-16/defi-boom-makes-uniswap-most-sought-after-crypto-exchange
https://www.bloomberg.com/news/articles/2020-10-16/defi-boom-makes-uniswap-most-sought-after-crypto-exchange
https://www.bloomberg.com/news/articles/2020-10-16/defi-boom-makes-uniswap-most-sought-after-crypto-exchange
https://tinyurl.com/yc9jh6lv

Bibliography

[LCO+] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
An analysis tool for smart contracts. Available at https://github.com/
melonproject/oyente.

[LCO+16a] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 254–269. ACM,
2016.

[LCO+16b] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 254–269. ACM,
2016.

[LEPS16] Joshua Lind, Ittay Eyal, Peter R. Pietzuch, and Emin Gün Sirer. Teechan: Payment
channels using trusted execution environments. 2016. http://arxiv.org/
abs/1612.07766.

[Les99] Lawrence Lessig. Code is law. The Industry Standard, 18, 1999.

[LGTS] SIFIS LAGOUVARDOS, NEVILLE GRECH, ILIAS TSATIRIS, and YANNIS
SMARAGDAKIS. Precise static modeling of ethereum “memory”.

[lig18] c-lightning – a lightning network implementation in c. Acceses in May 2018.
https://github.com/ElementsProject/lightning.

[Lin17] Yehuda Lindell. Fast Secure Two-Party ECDSA Signing. In CRYPTO, pages
613–644, 2017.

[LL19] Jing Liu and Zhentian Liu. A survey on security verification of blockchain smart
contracts. IEEE Access, 7:77894–77904, 2019.

[LLC+18] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe.
Reguard: finding reentrancy bugs in smart contracts. In 2018 IEEE/ACM 40th In-
ternational Conference on Software Engineering: Companion (ICSE-Companion),
pages 65–68. IEEE, 2018.

[ln-a] 5 potential use cases for bitcoin’s lightning network. https://
tinyurl.com/y6u4tnda.

[ln-b] Lightning network specifications. https://github.com/
lightningnetwork/lightning-rfc.

[lnd] Lightning network daemon. https://github.com/
lightningnetwork/lnd.

[LNE+18] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Peter R. Pietzuch, and
Emin Gün Sirer. Teechain: Reducing storage costs on the blockchain with offline
payment channels. In Systems and Storage Conference, page 125, 2018.

121

https://github.com/melonproject/oyente
https://github.com/melonproject/oyente
http://arxiv.org/abs/1612.07766
http://arxiv.org/abs/1612.07766
https://github.com/ElementsProject/lightning
https://tinyurl.com/y6u4tnda
https://tinyurl.com/y6u4tnda
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lightning-rfc
https://github.com/lightningnetwork/lnd
https://github.com/lightningnetwork/lnd

BIBLIOGRAPHY

[LNZ+16] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In CCS, pages
17–30, 2016.

[LWX+19] Zixin Li, Haoran Wu, Jiehui Xu, Xingya Wang, Lingming Zhang, and Zhenyu
Chen. Musc: A tool for mutation testing of ethereum smart contract. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 1198–1201. IEEE, 2019.

[LWZ+19] Ning Lu, Bin Wang, Yongxin Zhang, Wenbo Shi, and Christian Esposito.
Neucheck: A more practical ethereum smart contract security analysis tool. Soft-
ware: Practice and Experience, 2019.

[MBKM19] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites:
Payment channels that go faster than lightning. In FC, 2019.

[MFSH17] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. A smart contract for
boardroom voting with maximum voter privacy. Proceedings of the Financial
Cryptography and Data Security Conference, 2017.

[ML18] Anastasia Mavridou and Aron Laszka. Designing secure ethereum smart contracts:
A finite state machine based approach. In International Conference on Financial
Cryptography and Data Security, pages 523–540. Springer, 2018.

[MM17] Florian Mathieu and Ryno Mathee. Blocktix: Decentralized event hosting and
ticket distribution network. 2017. Available at https://blocktix.io/
public/doc/blocktix-wp-draft.pdf.

[MMS+18] Pedro Moreno-Sanchez, Navin Modi, Raghuvir Songhela, Aniket Kate, and Sonia
Fahmy. Mind your credit: Assessing the health of the ripple credit network. In
WWW, pages 329–338, 2018.

[MMSH16] Patrick McCorry, Malte Möser, Siamak Fayyaz Shahandashti, and Feng Hao.
Towards bitcoin payment networks. In ACISP, 2016.

[MMSK+17] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and
Srivatsan Ravi. Concurrency and privacy with payment-channel networks. In
CCS, 2017.

[MMSKM17] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Silen-
tWhispers: Enforcing security and privacy in credit networks. In NDSS, 2017.

[MMSS+19] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate,
and Matteo Maffei. Anonymous multi-hop locks for blockchain scalability and
interoperability. In NDSS, 2019.

122

https://blocktix.io/public/doc/blocktix-wp-draft.pdf
https://blocktix.io/public/doc/blocktix-wp-draft.pdf

Bibliography

[MOA+20] Matteo Marescotti, Rodrigo Otoni, Leonardo Alt, Patrick Eugster, Antti EJ Hyväri-
nen, and Natasha Sharygina. Accurate smart contract verification through direct
modelling. In International Symposium on Leveraging Applications of Formal
Methods, pages 178–194. Springer, 2020.

[MSH17] Patrick McCorry, Siamak F Shahandashti, and Feng Hao. A smart contract for
boardroom voting with maximum voter privacy. In International Conference on
Financial Cryptography and Data Security, pages 357–375. Springer, 2017.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Avail-
able at http://bitcoin.org/bitcoin.pdf.

[NGW17] Benedikt Notheisen, Magnus Gödde, and Christof Weinhardt. Trading stocks on
blocks-engineering decentralized markets. In International Conference on Design
Science Research in Information Systems, pages 474–478. Springer, 2017.

[NKS+18] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
Finding the greedy, prodigal, and suicidal contracts at scale. arXiv preprint
arXiv:1802.06038, 2018.

[oB18] Trail of Bits. Manticore: Symbolic execution for humans. 2018.

[O’C17] Russell O’Connor. Simplicity: A new language for blockchains. arXiv preprint
arXiv:1711.03028, 2017.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 223–238, 1999.

[par17a] The parity wallet breach, 2017. Available at https://www.coindesk.com/
30-million-ether-reported-stolen-parity-wallet-
breach/.

[par17b] The parity wallet vulnerability, 2017. Available at https://
paritytech.io/blog/security-alert.html.

[PD] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-
chain instant payments. Technical Report. https://lightning.network/
lightning-network-paper.pdf.

[PE] Jack Pettersson and Robert Edström. Safer smart contracts through type-driven
development.

[PH10] Andreas Pfitzmann and Marit Hansen. A Terminology for Talking about Pri-
vacy by Data Minimization: Anonymity, Unlinkability, Undetectability, Un-
observability, Pseudonymity, and Identity Management. https://dud.inf.tu-
dresden.de/literatur/Anon_Terminology_v0.34.pdf, August 2010. v0.34.

123

http://bitcoin.org/bitcoin.pdf
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://www.coindesk.com/30-million-ether-reported-stolen-parity-wallet-breach/
https://paritytech.io/blog/security-alert.html
https://paritytech.io/blog/security-alert.html
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf

BIBLIOGRAPHY

[PM18] Adrian-Tudor Panescu and Vasile Manta. Smart contracts for research data rights
management over the ethereum blockchain network. Science & Technology
Libraries, 37(3):235–245, 2018.

[Poea] Andrew Poelstra. Lightning in scriptless scripts. Mailing list post. https:
//lists.launchpad.net/mimblewimble/msg00086.html.

[Poeb] Andrew Poelstra. Scriptless scripts. Presentation slides. https:
//download.wpsoftware.net/bitcoin/wizardry/mw-slides/
2017-05-milan-meetup/slides.pdf.

[PZS+18] Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Roşu. A
formal verification tool for ethereum vm bytecode. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 912–915. ACM,
2018.

[QHC+18] Meixun Qu, Xin Huang, Xu Chen, Yi Wang, Xiaofeng Ma, and Dawei Liu.
Formal verification of smart contracts from the perspective of concurrency. In
International Conference on Smart Blockchain, pages 32–43. Springer, 2018.

[rai] Raiden network. http://raiden.network/.

[Rc10] Grigore Roşu and Traian Florin Şerbănută. An overview of the k semantic
framework. The Journal of Logic and Algebraic Programming, 79(6):397–434,
2010.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. Journal of the ACM, 56(6):34, 2009.

[Rei17] Christian Reitwiessner. Eip-211: New opcodes: Returndatasize and returndata-
copy. https://eips.ethereum.org/EIPS/eip-211, February 2017.
Ethereum Improvement Proposals, no. 211 [Online serial].

[RMKG18] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Set-
tling payments fast and private: Efficient decentralized routing for path-based
transactions. In NDSS, 2018.

[saf19] SafeMath library source. https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/math/SafeMath.sol, 2019.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of
cryptology, 4(3):161–174, 1991.

[SED] Franklin Schrans, Susan Eisenbach, and Sophia Drossopoulou. Writing safe smart
contracts in flint.

124

https://lists.launchpad.net/mimblewimble/msg00086.html
https://lists.launchpad.net/mimblewimble/msg00086.html
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-05-milan-meetup/slides.pdf
http://raiden.network/
https://eips.ethereum.org/EIPS/eip-211

Bibliography

[SGG+14] Gregor Snelting, Dennis Giffhorn, Jürgen Graf, Christian Hammer, Martin Hecker,
Martin Mohr, and Daniel Wasserrab. Checking probabilistic noninterference using
joana. it - Information Technology, 56:280–287, November 2014.

[SGSM20] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. ethor:
Practical and provably sound static analysis of ethereum smart contracts. arXiv
preprint arXiv:2005.06227, 2020.

[SH17] Ilya Sergey and Aquinas Hobor. A concurrent perspective on smart contracts.
arXiv preprint arXiv:1702.05511, 2017.

[SKH18] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a smart contract
intermediate-level language. arXiv preprint arXiv:1801.00687, 2018.

[smt20] SMT-LIB, 2020. Available at http://smtlib.cs.uiowa.edu/
language.shtml.

[sol19] Solidity. https://solidity.readthedocs.io/, 2019.

[SPY+16] Andrei Stefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu.
Semantics-based program verifiers for all languages. In Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 74–91. ACM, 2016.

[SSM20] Clara Schneidewind, Markus Scherer, and Matteo Maffei. The good, the bad
and the ugly: Pitfalls and best practices in automated sound static analysis of
ethereum smart contracts. In International Symposium on Leveraging Applications
of Formal Methods (ISoLA). Springer, 2020.

[ST] Evan Schwartz Stefan Thomas. A Protocol for Interledger Payments. Whitepaper.
https://interledger.org/interledger.pdf.

[Tam84] Hisao Tamaki. Unfold/fold transformation of logic programs. Proc. of 2nd ILPC,
pages 127–138, 1984.

[TDDC+18] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Bünzli, and Martin Vechev. Securify: Practical Security Analysis of Smart
Contracts. pages 67–82. ACM, January 2018.

[the16] The DAO smart contract, 2016. Avail-
able at http://etherscan.io/address/
0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.

[TS+18] Christof Ferreira Torres, Julian Schütte, et al. Osiris: Hunting for integer bugs in
ethereum smart contracts. In Proceedings of the 34th Annual Computer Security
Applications Conference, SAC, pages 664–676. ACM, 2018.

[vip] Vyper. Available at https://github.com/ethereum/vyper.

125

http://smtlib.cs.uiowa.edu/language.shtml
http://smtlib.cs.uiowa.edu/language.shtml
https://interledger.org/interledger.pdf
http://etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
http://etherscan.io/address/ 0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code
https://github.com/ethereum/vyper

BIBLIOGRAPHY

[vis] Stress test prepares visanet for the most wonderful time of the year. Blog
entry. http://www.visa.com/blogarchives/us/2013/10/10/
stress-test-prepares-visanet-for-the-most-wonderful-
time-of-the-year/index.html.

[why] Formal verification for solidity contracts. available at https:
//forum.ethereum.org/discussion/3779/formal-
verification-for-solidity-contracts.

[Woo14a] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
2014.

[Woo14b] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151:1–32, 2014.

[Woo16] Gavin Wood. Eip-161: State trie clearing (invariant-preserving alterna-
tive). https://eips.ethereum.org/EIPS/eip-161, October 2016.
Ethereum Improvement Proposals, no. 161 [Online serial].

[WSX+20] Wei Wang, Jingjing Song, Guangquan Xu, Yidong Li, Hao Wang, and Chunhua
Su. Contractward: Automated vulnerability detection models for ethereum smart
contracts. IEEE Transactions on Network Science and Engineering, 2020.

[Wui] Peter Wuille. Schnorr Bitcoin Improvement Proposal. https:
//github.com/sipa/bips/blob/bip-schnorr/bip-
schnorr.mediawiki.

[WZ18] Maximilian Wöhrer and Uwe Zdun. Smart contracts: Security patterns in the
ethereum ecosystem and solidity. 2018.

[WZS19] Shuai Wang, Chengyu Zhang, and Zhendong Su. Detecting nondeterministic pay-
ment bugs in ethereum smart contracts. Proceedings of the ACM on Programming
Languages, 3(OOPSLA):1–29, 2019.

[YL18] Zheng Yang and Hang Lei. Lolisa: Formal syntax and semantics for a subset of
the solidity programming language. arXiv preprint arXiv:1803.09885, 2018.

[Zak18] Jakub Zakrzewski. Towards verification of ethereum smart contracts: a formaliza-
tion of core of solidity. In Working Conference on Verified Software: Theories,
Tools, and Experiments, pages 229–247. Springer, 2018.

[ZHP+18] Ence Zhou, Song Hua, Bingfeng Pi, Jun Sun, Yashihide Nomura, Kazuhiro
Yamashita, and Hidetoshi Kurihara. Security assurance for smart contract. In
New Technologies, Mobility and Security (NTMS), 2018 9th IFIP International
Conference on, pages 1–5. IEEE, 2018.

126

http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://eips.ethereum.org/EIPS/eip-161
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki
https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki

APPENDIX A
Appendix to Chapter 2

A.1 Formalization

A.1.1 Notations

In the following, we will use B to denote the set {0, 1} of bits and accordingly Bx for sets of
bitstrings of size x. We further let Nx denote the set of non-negative integers representable by x
bits and allow for implicit conversion between those two representations (assuming bitstrings to
represent a big-endian encoding of natural numbers). In addition, we will use the notation [X]
(resp. L(X)) for arrays (resp. lists) of elements from the set X . We use standard notations for
operations on arrays and lists. In particular we write a [pos] to access position pos ∈ [1, |a| − 1]
of array a ∈ [X] and a[down, up] to access the subarray of size up − down from position
down ∈ [1, |a| − 1] to up ∈ [1, |a| − 1]. In case that down > up this operation results in the
empty array . In addition, we write a1 · a2 for the concatenation of two arrays a1, a2 ∈ [X].

In the following formalization, we will make use of bytearrays b ∈ [B8]. To this end, we will
assume functions (·)[B8] ∈ Bx → [B8] and (·)B ∈ [B8] → Bx to chunk bitstrings with size
dividable by 8 to bytearrays and vice versa. To denote the zero byte, we write 08, and accordingly,
for an array of zero bytes of size n, we write 08·n.

For lists, we denote the empty list by and write x :: xs for placing element x ∈ X on top of list
xs ∈ L(X). In addition, we write xs ++ ys for concatenating lists xs, ys ∈ L(X).

We let A denote the set of 160-bit addresses (B160).

A.1.2 Configurations

The global state of the system is defined by the accounts that are existing and their current state,
including their balances and their codes. Formally, the global state is a (partial) mapping from

127

A. APPENDIX TO CHAPTER 2

account addresses to accounts:

σ ∈ Σ = A → (N256 × N256 × (B256 → B256) × [B8]) ∪ {⊥}

An account (nonce, balance, stor, code) is described by the account’s balance balance ∈ N256,
the state of its persistent storage stor ∈ B256 → B256, its nonce nonce ∈ N256 and the account’s
code code ∈ [B8].

A configuration S of the execution consists of the stack S of execution states. The call stack S
keeps track of the calls made during execution. To this end it consists of execution states of one
of the following forms:

• EXC denotes an exceptional halting state and can only occur as top element. It expresses that
the execution of the current call ended with an exception.

• HALT(σ, gas, d, η) denotes regular halting and can only occur as top element. It expresses that
the execution of the current call halted in global state σ ∈ Σ with transaction effects η ∈ N
and with an amount gas ∈ N256 of remaining gas and return data d ∈ [B8]

• REVERT(gas, d) denotes regular state reverting and can only occur as the top element. It
expresses that the execution of the current call was reverted with an amount gas ∈ N256 of
remaining gas and return data d ∈ [B8].

• (µ, ι, σ, η) denotes a regular execution state and represents the state of the execution of the
current call. A regular execution state includes the local state of the stack machine µ ∈ M ,
the execution environment ι ∈ I that contains the parameters given to the call and the current
global state σ ∈ Σ, and transaction effects η ∈ N .

The reason to make the global state part of the call stack is that it does not change linearly during
the execution. In the case of an exception, all effects of the call’s execution on the global state
are reverted, and the execution continues in the global state of the caller. The same holds for the
transaction effects.

In Figure A.1 we give a full grammar for call stacks:

Regular Execution States

In the following we give a detailed description of the components of regular executions state.

Local Machine State The local machine state µ ∈ M = N256 × N256 × (B256 → B8) ×
N256 × L(B256)×[B8] represents the state of the underlying state machine used for execution
consists of the following components:

• gas ∈ N256 is the current amount of gas still available for execution;

• pc ∈ N256 is the current program counter;

128

A.1. Formalization

Call stacks S S := EXC :: Splain | HALT(σ, g, d, η) :: Splain

| REVERT(g, d) :: Splain | Splain

Plain call stacks Splain Splain := (µ, ι, σ, η) :: Splain

Machine states M µ := (gas, pc, m, i, s, d)
Execution environments I ι := (actor, input, sender, value, code, fmod)

Global states Σ σ
Account states A acc := (n, b, code, stor) | ⊥

Transaction effects N η := (b, L, S†)
Transaction environments Tenv Γ := (o, price, H)

Notations: d ∈ [B8], g ∈ N256, η ∈ N , o ∈ A, price ∈ N256, H ∈ H
gas ∈ N256, pc ∈ N256, m ∈ B256, → B8 i ∈ N256, s ∈ L(B256)

sender ∈ A input ∈ [B8] sender ∈ A value ∈ N256 code ∈ [B8]
fmod ∈ B b ∈ N256 L ∈ L(Evlog) S† ⊆ A Σ = A → A

Figure A.1: Grammar for calls stacks and transaction environments

• m ∈ B256 → B8 is a mapping from 256-bit words to bytes that represents the local memory;

• i ∈ N256 is the current number of active words in memory;

• s ∈ L(B256) is the local 256-bit word stack of the stack machine;

• d ∈ [B8] is the return data array of the last call

The execution of each internal transaction starts in a fresh machine state, with an empty stack,
memory initialized to all zeros, and program counter and active words in memory set to zero.
Only the gas is instantiated with the gas value available for the execution.

Execution Environment The execution environment ι of an internal transaction specifies the
static parameters of the transaction. It is a tuple of the form (actor, input, sender, value, code, , fmod) ∈
I = A × [B8] × A × N256 × [B8]×B with the following components:

• actor ∈ A is the address of the account currently executing;

• input ∈ [B8] is the data given as an input to the internal transaction;

• sender ∈ A is the address of the account that initiated the internal transaction;

• value ∈ N256 is the value transferred by the internal transaction;

• code ∈ [B8] is the code currently executed;

• fmod ∈ B is the flag that indicates whether the current execution may modify the global state.

This information is determined at the beginning of an internal transaction execution, and it can be
accessed but not altered during the execution.

129

A. APPENDIX TO CHAPTER 2

Transaction Effects The transaction effects η ∈ N = N256 ×L(Evlog)×P(A)×P(A) collect
information on changes that will be applied to the global state after the transaction’s execution.
They do not effect the code execution itself. In particular, the transaction effects contain the
following components:

• balr ∈ N256 is the refund balance that is increased by memory operations and will finally be
paid to the transaction’s beneficiary

• L ∈ L(Evlog) is the sequence of log events performed during executions. A log event is a tuple
of the address of the currently executing a count, a tuple with zero to four components specified
when executing a logging instruction and finally a fraction of the local memory. Consequently,
Evlog = A × ({()} ∪ B256 ∪ (N256)2 ∪ (N256)3 ∪ (N256)4) × [B8].

• S† ⊆ A is the suicide set that keeps track of the contracts that destroyed themselves (using
the SELFDESTRUCT command) during the execution (of the external transaction). These
contracts are recorded in S† and only removed from the global state after the end of the
execution.

• S ⊆ A is the set of touched accounts that keeps track of the accounts that were involved in the
execution. These accounts are recorded in order to remove empty accounts after the execution.

A.1.3 Transaction Environment

The transaction environment represents the static information of the block that the transaction
is executed in and the immutable parameters given to the transaction as the gas price or the gas
limit. More specifically, the transaction environment Γ ∈ Tenv = A × N256 × H is a tuple of the
form (o, price, H) with the following components:

• o ∈ A is the address of the account that made the transaction

• price ∈ N256 denotes the amount of wei that needs to paid for a unit of gas in this transaction

• H ∈ H = N256 × A × N256 × N256 × N256 × N256 is the header of the block that the
transaction is part. A block header is of the form (parent, beneficiary, difficulty, number,
gaslimit, timestamp). Where parent ∈ N256 identifies the header of the block’s parent block,
beneficiary ∈ A is the address of the beneficiary of the transaction, difficulty ∈ N256 is a
measure of the difficulty of solving the proof of work puzzle required to mine the block,
number ∈ N256 is the number of ancestor blocks, gaslimit ∈ N256 is the maximum amount of
gas that might be consumed when executing the blocks transactions and timestamp ∈ N256 is
the Unix timestamp at the block’s inception. Note that this is a simplified version of the block
header described in the yellow paper [Woo14b] that only contains those components needed
for transaction execution.

130

A.2. Small-step Semantics

A.2 Small-step Semantics

We define a small step relation →. We write Γ S → S to denote that the call stack S ∈ S
evolves under the transaction environment Γ ∈ Tenv to the call stack S ∈ S. The transaction
environment contains information concerning the block or transaction the current code is executed
in, and that does not change over code execution.

A.2.1 Notations

In order to present the small-step rules concisely, we introduce some notations for accessing and
updating the state.

For the global state we use a slightly different notation for accessing and updating. As the global
state is a mapping from addresses to account, the account’s state can be accessed by applying the
address to the global state. For updating we introduce a simplifying notation:

σ addr → s := λa. a = addr ? s : σ(a)

For accessing memory fragments we use the following notation:

m [o, s] := [m(o), m(o + 1), . . . , m(o + s − 1)]

Correspondingly, we define updates for memory fragments. Let o, s ∈ N256 and v ∈ [B8]:

m[[o, s] → v] := λx. (x ≥ o ∧ x < o + min (s, |v|)) ? v [x − o] : m(x)

Similarly to accessing arrays, we write v[down, up] to extract the bitvector’s bits from position
down until position up (where we require down ≤ up). Additionally, we assume a concatenation
function for bitvectors and write b1 · b2 for concatenating bit vectors b1 and b2.

Most of the state components used in the formalization of the EVM execution configurations
consist of tuples. For the sake of better readability, instead of accessing tuple components using
projection, we name the components according to the variable names we used in the description
in Section A.1 and use a dot notation for accessing them. To differentiate component names from
variable names, we typeset components in sans serifs font. For example, given µ ∈ M , we write
µ.gas to access the first component of the tuple µ. Similarly, we use a simple update notation
for components. E.g., instead of writing let µ = (gas, pc, m, i, s) in (gas, pc + 1, m, i, s), we
write µ[pc → µ.pc + 1]. For the case of incrementing or decrementing numerical values we
use the usual short cuts += and −= and would for example write the example shown before as
µ[pc += 1].

As mentioned in section A.1.1, we use the notions of Bx and Nx interchangeably as we interpret
bitvectos usually as unsigned integers (interpreting the bitvector big-endian). As some operations
however are performed on the signed interpretation of the machine words, we assume functions
(·)− : Bx → Intx and (·)− : Nx → Intx that output the signed interpretation of a bitvector or
unsigned integer respectively. Note the that Intx denotes the set of signed integers representable
with x bits. Accordingly, we assume a functions (·)+ : Intx → Bx and (·)+ : Intx → Nx for
converting signed integers back to their unsigned interpretation.

131

A. APPENDIX TO CHAPTER 2

A.2.2 Auxiliary Definitions

Accessing bytecode For extracting the command that is currently executed, the instruction at
position µ.pc of the code code provided in the execution environment needs to be accessed. For
the sake of presentation, we define a function doing so:

Definition 10 (Currently executed command). The currently executed command in the machine
state µ and execution environment ι is denoted by ωµ,ι and defined as follows:

ωµ,ι := ι.code [µ.pc] µ.pc < |ι.code|
STOP otherwise

All EVM instructions have in common that running out of gas as well as over and underflows of the
local machine stack cause an exception. We define a function valid (·, ·, ·) : N256 ×N256 ×N → B
that given the available gas, the instruction cost and the new stack size determines whether one
of the conditions mentioned above is satisfied. We do not check for stack underflows as this is
realized by pattern matching in the individual small step rules.

valid (g, c, s) := 1 g ≥ c ∧ s < 1024
0 otherwise

We also write valid (g, c, s) for valid (g, c, s) = 1 and ¬valid (g, c, s) for valid (g, c, s) = 0.

In EVM bytecode potential jump destinations are explicitly marked by the distinct JUMPDEST
instruction. Jumps to other destination cause an exception. For simplifying this check, we define
the set of valid jump destinations as follows:

Definition 11. Valid jump destinations [Woo14b]. D (·) : [B8] → P(N) determines the set of
valid jump destinations given the code code ∈ [B8], that is being run. It is defined as any position
in the code occupied by a JUMPDEST instruction. Formally D (c) = DH (c, 0), where:

DH (·, ·) : [B8] × N → P(N)

DH (c, i) :=

∅ i ≥ |c|
{i} ∪ DH (c, N (i, c[i])) c [i] = JUMPDEST

DH (c, N (i, c [i])) otherwise

where N (·, ·) : N × B8 → N is the next valid instruction position in the code, skipping the data
of a PUSHn instruction, if any:

N (i, ω) := i + n + 1 ω = PUSHn

i + n otherwise

132

A.2. Small-step Semantics

Memory Consumption The execution tracks the number of active words in memory and
charges fees for the memory that is used. The active words in memory are those words that are
accessed either for reading or writing. If a command increases the number of active words, it
needs to pay accordingly to the number of words that became active.

To model the increasing number of active words in memory we define a memory expansion
function as done in [Woo14b] that determines the number of active words in memory given the
number of active memory words so far as well as the offset and the size of the memory fraction
accessed.

M (i, o, s) :=

i if s = 0
max(i, (o+s)

32) otherwise

According to the amount of additional words in memory that are used by the execution of an
instruction, additional execution costs are charged. For describing the cost that occur due to
memory consumption, we use a function Cmem (·, ·) : N×N → Z that given the number of active
words in memory before and after the command execution, outputs the corresponding costs.

Cmem (aw, aw) := 3 · (aw − aw) + aw 2

512 − aw2

512

Creating New Account Addresses We define a function newAddress (·, ·) : A × N → A that
given an address and a nonce provides a fresh address.

newAddress (a, n) = Keccak(rlp ((a, n − 1)))[96, 255]

where rlp (·) is the RLP encoding function. The RLP encoding is a canonical way of transforming
different structures such as tuples to a sequence of bytes. We will not comment on this in detail
but refer to the reader to the Ethereum yellow paper [Woo14b].

Note that the newAddress (·, ·) function is assumed to be collision-resistant.

A.2.3 Small-step rules

Binary Stack Operations We start by giving the rules for arithmetic operations. As all of these
instructions alter only the local stack and gas and their only difference consists of the operations
performed and the (constant) amount of gas computed, we assume a set Instbin of binary operations
and functions costbin(·) : Instbin → N256 and funbin(·) : Instbin → (B256 × B256 → B256) that
map the binary operations to their costs and functionality.

For all binary operations ibin ∈ Instbin, we create rules of the following form

ωµ,ι = ibin valid (µ.gas, costbin(ibin), |s| + 1)
µ.s = a :: b :: s µ = µ[s → (funbin(ibin)) :: s][pc += 1][gas −= costbin(ibin)]

c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
icbin(a,b)−−−−→ (µ , ι, σ, η) :: S

133

A. APPENDIX TO CHAPTER 2

ωµ,ι = ibin (¬valid (µ.gas, costbin(ibin), |s| + 1) ∨ |µ.s| < 2)
Γ (µ, ι, σ, η) :: S → EXC :: S

We define

Instbin := {ADD, SUB, LT, GT, EQ, AND, OR, XOR, SLT, SGT, MUL, DIV, SDIV,
MOD, SMOD, SIGNEXTEND, BYTE, SHL, SHR, SAR}

and

costbin(ibin) =

3 ibin ∈ {ADD, SUB, LT, GT, SLT, SGT, EQ, AND, OR, XOR, BYTE

SHL, SHR, SAR}
5 ibin ∈ {MUL, DIV, SDIV, MOD, SMOD, SIGNEXTEND}

and

funbin(ibin) =

λ(a, b). a + b mod 2256 ibin = ADD

λ(a, b). a − b mod 2256 ibin = SUB

λ(a, b). a < b ? 1 : 0 ibin = LT

λ(a, b). a > b ? 1 : 0 ibin = GT

λ(a, b). a− < b− ? 1 : 0 ibin = SLT

λ(a, b). a− > b− ? 1 : 0 ibin = SGT

λ(a, b). a = b ? 1 : 0 ibin = EQ

λ(a, b). a&b ibin = AND

λ(a, b). a b ibin = OR

λ(a, b). a ⊕ b ibin = XOR

λ(a, b). a · b mod 2256 ibin = MUL

λ(a, b). (b = 0) ? 0 : a ÷ b ibin = DIV

λ(a, b). (b = 0) ? 0 : a mod b ibin = MOD

λ(a, b). (b = 0)? 0 : (a = 2255 ∧ b− = −1)? 2256 :
let x = a− ÷ b− in (sign(x) · |x|)+ ibin = SDIV

λ(a, b). (b = 0) ? 0 : (sign(a) · |a| mod |b|)+ ibin = SMOD

λ(o, b). (o ≥ 32) ? 0 : b[8 · o, 8 · o + 7] · 0248 ibin = BYTE

λ(a, b). let x = 256 − 8(a + 1) in
let s = b [x] in sx · b[x, 255] ibin = SIGNEXTEND

λ(a, b).b ∗ 2a mod 2256 ibin = SHL

λ(a, b). b
2a ibin = SHR

λ(a, b). (b−
2a)

+
ibin = SAR

134

A.2. Small-step Semantics

where sign(·) : Intx → {−1, 1} is defined as

sign(x) = 1 x ≥ 0
−1 otherwise

and &, and ⊕ are bitwise and, or and xor, respectively.

Exceptions to the normal binary operations are the exponentiation (as this instruction uses
non-constant costs) and the computation of the Keccack-256 hash.

ωµ,ι = EXP valid (µ.gas, c, |s| + 1)
µ.s = a :: b :: s c = (b = 0) ? 10 : 10 + 10 ∗ (1 + log256 b) x = (ab) mod 2256

µ = µ[s → x :: s][pc += 1][gas −= c] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
EXPc(a,b)−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = EXP c = (b = 0) ? 10 : 10 + 10 ∗ (1 + log256 b)
µ.s = a :: b :: s ¬valid (µ.gas, c, |s| + 1)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = SHA3
valid (µ.gas, c, |s| + 1) µ.s = pos :: size :: s aw = M (µ.i, pos, size)

c = Cmem (µ.i, aw) + 30 + 6 · size
32 v = µ.m [pos, pos + size − 1] h = Keccak(v)

µ = µ[s → h :: s][pc += 1][gas −= c][i → aw] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
SHA3c(pos,size)−−−−−−−−−→ (µ , ι, σ, η) :: S

where Keccak(x) is the Keccak-256 hash of x.

ωµ,ι = SHA3 µ.s = pos :: size :: s µ.s = pos :: size :: s aw = M (µ.i, pos, size)
c = Cmem (µ.i, aw) + 30 + 6 · size

32 µ.s = a :: b :: s ¬valid (µ.gas, c, |s| + 1)

Γ (µ, ι, σ, η) :: S → EXC :: S

(ωµ,ι = EXP ∨ ωµ,ι = SHA3) |µ.s| < 2
Γ (µ, ι, σ, η) :: S → EXC :: S

135

A. APPENDIX TO CHAPTER 2

Unary Stack Operations

ωµ,ι = ISZERO valid (µ.gas, 3, |s| + 1) µ.s = a :: s x = (a = 0) ? 1 : 0
µ = µ[s → x :: s][pc += 1][gas −= 3] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
ISZEROc(a)−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = NOT valid (µ.gas, 3, |s| + 1) µ.s = a :: s
x = ¬a µ = µ[s → x :: s][pc += 1][gas −= 3] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
NOTc(a)−−−−−→ (µ , ι, σ, η) :: S

where ¬ is bitwise negation.

(ωµ,ι = ISZERO ∨ ωµ,ι = NOT) (¬valid (µ.gas, 3, |s| + 1) ∨ |µ.s| < 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

Ternary Stack Operations

ωµ,ι = ADDMOD
valid (µ.gas, 8, |s| + 1) µ.s = a :: b :: c :: s x = (c = 0) ? 0 : (a + b) mod c

µ = µ[s → x :: s][pc += 1][gas −= 8] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
ADDMODc (a,b,c)−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = MULMOD
valid (µ.gas, 8, |s| + 1) µ.s = a :: b :: c :: s x = (c = 0) ? 0 : (a · b) mod c

µ = µ[s → x :: s][pc += 1][gas −= 8] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
MULMODc (a,b,c)−−−−−−−−−−→ (µ , ι, σ, η) :: S

(ωµ,ι = ADDMOD ∨ ωµ,ι = MULMOD) (¬valid (µ.gas, 8, |µ.s| − 2) ∨ |µ.s| < 3)
Γ (µ, ι, σ, η) :: S → EXC :: S

Accessing the Execution Environment There are some simple access operations for accessing
parts of the execution environment, such as the addresses of the executing account and the caller,
the value given to the internal transaction and the sizes of the executed code, and the data given
as input to the call.

ωµ,ι = ADDRESS valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → ι.actor :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
ADDRESSc−−−−−−→ (µ , ι, σ, η) :: S

136

A.2. Small-step Semantics

ωµ,ι = CALLER valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → ι.sender :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CALLER−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = CALLVALUE valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → ι.value :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CALLVALUEc−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = CODESIZE valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → |ι.code| :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CODESIZEc−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = CALLDATASIZE valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → |ι.input| :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CALLDATASIZEc−−−−−−−−−→ (µ , ι, σ, η) :: S

(ωµ,ι = ADDRESS ∨ ωµ,ι = CALLER ∨ ωµ,ι = CALLVALUE
∨ωµ,ι = CODESIZE ∨ ωµ,ι = CALLDATASIZE) ¬valid (µ.gas, 2, |µ.s| + 1)

Γ (µ, ι, σ, η) :: S → EXC :: S

Accessing the code and the input data in the execution environment is more involved.

The CALLDATALOAD instruction writes the (first 256 bit of) data given as input to the current
call to the stack.

ωµ,ι = CALLDATALOAD µ.s = a :: s
valid (µ.gas, 3, |µ.s|) k = (|ι.input| − a < 0) ? 0 : min (|ι.input| − a, 32)

v = ι.input [a, a + k − 1] v = v · 0256−k·8

µ = µ[s → v :: s][pc += 1][gas −= 3] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CALLDATALOADc(a)−−−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = CALLDATALOAD ¬valid (µ.gas, 3, |µ.s|)
Γ (µ, ι, σ, η) :: S → EXC :: S

137

A. APPENDIX TO CHAPTER 2

The CALLDATACOPY instruction copies the data that was given as input to the current call to
the memory.

ωµ,ι = CALLDATACOPY µ.s = posm :: posd :: size :: s

aw = M (µ.i, posm, size) c = Cmem (µ.i, aw) + 3 + 3 · size
32

valid (µ.gas, c, |µ.s|) k = (|ι.input)| − posd < 0 ? 0 : min (|ι.input| − posd, size)
d = ι.input [posd, posd + k − 1] d = d · 08·(size−k)

µ = µ[s → s][pc += 1][gas −= c][m → m[[posm, posm + size − 1] → d]][i → aw]
c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CALLDATACOPYc (posm,posd,size)−−−−−−−−−−−−−−−−−−−→ (µ , ι, σ, η) :: S

The CODECOPY instruction copies a fraction of the code that is currently executed to the
memory.

ωµ,ι = CODECOPY µ.s = posm :: poscode :: size :: s

aw = M (µ.i, posm, size) c = Cmem (µ.i, aw) + 3 + 3 · size
32

valid (µ.gas, c, |µ.s|) k = (|ι.code)| − poscode < 0 ? 0 : min (|ι.code| − poscode, size)
d = ι.code [poscode, poscode + k − 1] d = d · STOPsize−k

µ = µ[s → s][pc += 1][gas −= c][m → m[[posm, posm + size − 1] → d]][i → aw]
c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CODECOPYc(posm,poscode,size)−−−−−−−−−−−−−−−−−−→ (µ , ι, σ, η) :: S

(ωµ,ι = CODECOPY ∨ ωµ,ι = CALLDATACOPY) |µ.s| < 3
Γ (µ, ι, σ, η) :: S → EXC :: S

(ωµ,ι = CODECOPY ∨ ωµ,ι = CALLDATACOPY)
µ.s = posm :: size :: poscode :: s aw = M (µ.i, posm, poscode)

c = Cmem (µ.i, aw) + 3 + 3 · poscode

32 ¬valid (µ.gas, c, |µ.s|)
Γ (µ, ι, σ, η) :: S → EXC :: S

Accessing the Transaction Environment

ωµ,ι = ORIGIN valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → Γ.o :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
ORIGINc−−−−−→ (µ , ι, σ, η) :: S

138

A.2. Small-step Semantics

ωµ,ι = GASPRICE valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → Γ.price :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
GASPRICEc−−−−−−−→ (µ , ι, σ, η) :: S

(ωµ,ι = ORIGIN ∨ ωµ,ι = GASPRICE) ¬valid (µ.gas, 2, |µ.s| + 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

The BLOCKHASH command writes the hash of one of the 256 most recently completed block
(that is specified on the stack) to the stack:

ωµ,ι = BLOCKHASH
valid (µ.gas, 20, |µ.s|) µ.s = n :: s h = P (ι.parent, n, 0)

µ = µ[s → h :: µ.s][pc += 1][gas −= 20] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
BLOCKHASHc(n)−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = BLOCKHASH (¬valid (µ.gas, 20, |µ.s|) ∨ |µ.s| < 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

where the function P (h, n, a) tries to access the block with number n by traversing the block
chain starting from h until the counter a reaches the limit of 256 or the genesis block is reached.

P (h, n, a) :=

0 n > h.number ∨ a = 256 ∨ h = 0
h n = h.number

P (h.parent, n, a + 1) otherwise

ωµ,ι = COINBASE
valid (µ.gas, 2, |µ.s| + 1) µ = µ[s → (Γ.H).beneficiary :: µ.s][pc += 1][gas −= 2]

c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
COINBASEc−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = TIMESTAMP
valid (µ.gas, 2, |µ.s| + 1) µ = µ[s → (Γ.H).timestamp :: µ.s][pc += 1][gas −= 2]

c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
TIMESTAMPc−−−−−−−−→ (µ , ι, σ, η) :: S

139

A. APPENDIX TO CHAPTER 2

ωµ,ι = NUMBER valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → (Γ.H).number :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
NUMBERc−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = DIFFICULTY valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → (Γ.H).difficulty :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
DIFFICULTYc−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = GASLIMIT valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → (Γ.H).gaslimit :: µ.s][pc += 1][gas −= 2]c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
GASLIMITc−−−−−−→ (µ , ι, σ, η) :: S

(ωµ,ι = COINBASE ∨ ωµ,ι = TIMESTAMP ∨ ωµ,ι = NUMBER
∨ωµ,ι = DIFFICULTY ∨ ωµ,ι = GASLIMIT) ¬valid (µ.gas, 2, |µ.s| + 1)

Γ (µ, ι, σ, η) :: S → EXC :: S

Accessing the global state

ωµ,ι = BALANCE µ.s = a :: s valid (µ.gas, 400, |s| + 1)
b = (σ(a mod 2160) = (nonce, balance, stor, code)) ? balance : 0

µ = µ[s → b :: µ.s][pc += 1][gas −= 400] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
BALANCEc(a)−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = BALANCE (¬valid (µ.gas, 400, |µ.s|) ∨ |µ.s| < 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = EXTCODESIZE µ.s = a :: s

valid (µ.gas, 700, |s| + 1) σ(a mod 2160) = ⊥ size = |σ(a mod 2160).code|
µ = µ[s → s :: µ.s][pc += 1][gas −= 700] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
EXTCODESIZEc(a)−−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = EXTCODESIZE
µ.s = a :: s valid (µ.gas, 700, |s| + 1) σ(a mod 2160) = ⊥ size = 0
µ = µ[s → s :: µ.s][pc += 1][gas −= 700] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
EXTCODESIZEc(a)−−−−−−−−−−−→ (µ , ι, σ, η) :: S

140

A.2. Small-step Semantics

ωµ,ι = EXTCODESIZE (¬valid (µ.gas, 700, |µ.s|) ∨ |µ.s| < 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = EXTCODECOPY µ.s = a :: posm :: poscode :: size :: s

code = σ(a mod 2160).code aw = M (µ.i, posm, size)
c = Cmem (µ.i, aw) + 700 + 3 · size

32 valid (µ.gas, c, |µ.s|)
σ(a mod 2160) = ⊥ k = (|code)| − poscode < 0 ? 0 : min (|code| − poscode, size)

d = code [poscode, poscode + k − 1] d = d · STOPsize−k

µ = µ[s → s][pc += 1][gas −= c][m → m[[posm, posm + size − 1] → d]][i → aw]
c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
EXTCODECOPYc (a,posm,poscode,size)−−−−−−−−−−−−−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = EXTCODECOPY µ.s = a :: posm :: poscode :: size :: s

aw = M (µ.i, posm, size) c = Cmem (µ.i, aw) + 700 + 3 · size
32

valid (µ.gas, c, |µ.s|) σ(a mod 2160) = ⊥ d = STOPsize

µ = µ[s → s][pc += 1][gas −= c][m → m[[posm, posm + size − 1] → d]][i → aw]
c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
EXTCODECOPYc (a,posm,poscode,size)−−−−−−−−−−−−−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = EXTCODECOPY |µ.s| < 4
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = EXTCODECOPY
µ.s = a :: posm :: size :: poscode :: s aw = M (µ.i, posm, poscode)
c = Cmem (µ.i, aw) + 700 + 3 · poscode

32 ¬valid (µ.gas, c, |µ.s|)
Γ (µ, ι, σ, η) :: S → EXC :: S

Stack Operations

ωµ,ι = POP valid (µ.gas, 2, |s|)
µ.s = a :: s µ = µ[s → s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
POPc−−−→ (µ , ι, σ, η) :: S

141

A. APPENDIX TO CHAPTER 2

ωµ,ι = POP (¬valid (µ.gas, 2, |s|) ∨ |µ.s| < 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

There are 32 instructions for pushing values to the stack. We summarize the behavior of all these
instructions with the following rules by parameterising the instruction with number of following
bytes that are pushed to the stack. The PUSHn (with m ∈ [1, 32]) command pushes the bytes at
the next n program counter position to the stack.

ωµ,ι = PUSHx k = min (|ι.code|, µ.pc + x)
valid (µ.gas, 3, |µ.s| + 1) d = ι.code [µ.pc + 1, k] d = d · 08·(32−(k−µ.pc))

µ = µ[s → d :: µ.s][pc += (x + 1)][gas −= 3] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
PUSHxc−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = PUSHx ¬valid (µ.gas, 3, |s| + 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

The DUPn instructions (with n ∈ [1, 16]) duplicate the nth stack element:

ωµ,ι = DUPn valid (µ.gas, 3, |µ.s| + 1) µ.s = s1 ++ (xn :: s2) |s1| = n − 1
µ = µ[s → xn :: µ.s][pc += 1][gas −= 3] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
DUPnc−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = DUPn (¬valid (µ.gas, 3, |µ.s| + 1) ∨ |µ.s| < n)
Γ (µ, ι, σ, η) :: S → EXC :: S

The SWAPn instructions (with n ∈ [1, 16]) swap the first and the (n − 1)st stack element:

ωµ,ι = SWAPn valid (µ.gas, 3, |µ.s|) µ.s = y :: (s1 ++ (xn :: s2)) |s1| = n − 1
µ = µ[s → xn :: (s1 ++ (y :: s2))][pc += 1][gas −= 3] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
SWAPnc−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = SWAPn (¬valid (µ.gas, 3, |µ.s|) ∨ |µ.s| < n + 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

142

A.2. Small-step Semantics

Jumps The JUMP command updates the program counter to i (specified in the stack) if i is a
valid jump destination.

ωµ,ι = JUMP valid (µ.gas, 8, |s|) µ.s = i :: s
i ∈ D (ι.code) µ = µ[s → s][pc → i][gas −= 8] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
JUMPc(i)−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = JUMP µ.s = i :: s (i ∈ D (ι.code) ∨ ¬valid (µ.gas, 8, |s|))
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = JUMP |µ.s| < 1
Γ (µ, ι, σ, η) :: S → EXC :: S

The conditional jump command JUMPI conditionally jumps to position i depending on b. Note
that here we corrected a bug in the yellow paper [Woo14b] where it is stated that in case of an
invalid jump destination, a conditional jump will always result in an exception. However, in the
client implementation, an exception only occurs if the condition on the stack is true. We adapted
the semantics here to be in accordance with the client implementations.

ωµ,ι = JUMPI valid (µ.gas, 10, |s|) µ.s = i :: b :: s i ∈ D (ι.code)
b > 0 µ = µ[s → s][pc → i][gas −= 10] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
JUMPIc(i,b)−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = JUMPI valid (µ.gas, 10, |s|) µ.s = i :: b :: s
b = 0 µ = µ[s → s][pc → µ.pc + 1][gas −= 10] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
JUMPIc(i,b)−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = JUMPI µ.s = i :: b :: s (b > 0 ∧ i ∈ D (ι.code) ∨ ¬valid (µ.gas, 10, |s|))
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = JUMPI |µ.s| < 2
Γ (µ, ι, σ, η) :: S → EXC :: S

143

A. APPENDIX TO CHAPTER 2

The JUMPDEST command marks a valid jump destination. It does not trigger any execution,
and consequently, the only effect of the command is the increase of the program counter and
charging the fee for the command execution.

ωµ,ι = JUMPDEST
valid (µ.gas, 1, |µ.s|) µ = µ[pc += 1][gas −= 1] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
JUMPDESTc−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = JUMPDEST ¬valid (µ.gas, 1, |µ.s|)
Γ (µ, ι, σ, η) :: S → EXC :: S

Local Memory Operations The MLOAD command reads a fraction of the local memory
specified by a and pushes it to the stack. Note that this increases the number of active words in
memory and therefore causes additional cost.

ωµ,ι = MLOAD c = Cmem (µ.i, aw) + 3
valid (µ.gas, c, |s| + 1) µ.s = a :: s v = µ.m[a, a + 31] aw = M (µ.i, a, 32)

µ = µ[i → aw][s → v :: s][pc += 1][gas −= c] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
MLOADc (a)−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = MLOAD |µ.s| < 1
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = MLOAD µ.s = a :: s
aw = M (µ.i, a, 32) c = Cmem (µ.i, aw) + 3 ¬valid (µ.gas, c, |s| + 1)

Γ (µ, ι, σ, η) :: S → EXC :: S

The MSTORE command writes a value b given at the stack to address a in the local memory. Note
that we abuse the update-notation here slightly to update whole intervals of the local memory.

ωµ,ι = MSTORE
c = Cmem (µ.i, aw) + 3 µ.s = a :: b :: s valid (µ.gas, c, |s|) aw = M (µ.i, a, 32)

µ = µ[m → µ.m[[a, a + 31] → b[B8]]][i → aw][s → s][pc += 1][gas −= c]
c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
MSTOREc (a,b)−−−−−−−−−→ (µ , ι, σ, η) :: S

144

A.2. Small-step Semantics

ωµ,ι = MSTORE µ.s = a :: b :: s
aw = M (µ.i, a, 32) c = Cmem (µ.i, aw) + 3 ¬valid (µ.gas, c, |s|)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = MSTORE8
c = Cmem (µ.i, aw) + 3 µ.s = a :: b :: s valid (µ.gas, c, |s|) aw = M (µ.i, a, 1)

µ = µ[m → µ.m[a → b mod 256]][i → aw][s → s][pc += 1][gas −= c]
c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
MSTORE8c (a,b)−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = MSTORE8
µ.s = a :: b :: s aw = M (µ.i, a, 1) c = Cmem (µ.i, aw) + 3 ¬valid (µ.gas, c, |s|)

Γ (µ, ι, σ, η) :: S → EXC :: S

(ωµ,ι = MSTORE ∨ ωµ,ι = MSTORE8) |µ.s| < 2
Γ (µ, ι, σ, η) :: S → EXC :: S

Persistent Storage Operations The SLOAD command reads the executing account’s persistent
storage at position a.

ωµ,ι = SLOAD valid (µ.gas, 200, |s| + 1)
µ.s = a :: s µ = µ[s → (σ(ι.addr).stor)(a) :: s][pc += 1][gas −= 200]

c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
SLOADc(a)−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = SLOAD (¬valid (µ.gas, 200, |s| + 1) ∨ |µ.s| < 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

The SSTORE command stores the value b in the executing account’s persistent storage at position
a.

ωµ,ι = SSTORE ι.fmod = 1 c = (b = 0 ∧ (σ(ι.addr).stor)(a) = 0) ? 20000 : 5000
valid (µ.gas, c, |s|) µ.s = a :: b :: s µ = µ[s → s][pc += 1][gas −= c]

σ = σ ι.addr → ι.addr[stor → σ(ι.addr).stor[a → b]]
r = (b = 0 ∧ (σ(ι.addr).stor)(a) = 0) ? 15000 : 0

η = η[balance += r] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
SSTOREc (a,b)−−−−−−−−−→ (µ , ι, σ , η) :: S

145

A. APPENDIX TO CHAPTER 2

ωµ,ι = SSTORE µ.s = a :: b :: s
c = (b = 0 ∧ (σ(ι.addr).stor)(a) = 0) ? 20000 : 5000 ¬valid (µ.gas, c, |s|)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = SSTORE (|µ.s| < 2 ∨ ι.fmod = 0)
Γ (µ, ι, σ, η) :: S → EXC :: S

Accessing the Machine State

ωµ,ι = PC valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → µ.pc :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
PCc−−→ (µ , ι, σ, η) :: S

ωµ,ι = MSIZE valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → 32 · µ.i :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
MSIZEc−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = GAS valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → µ.gas :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
GASc−−−→ (µ , ι, σ, η) :: S

(ωµ,ι = PC ∨ ωµ,ι = MSIZE ∨ ωµ,ι = GAS) ¬valid (µ.gas, 2, |µ.s| + 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

Logging Instructions The logging operation allows appending a new log entry to the log series.
The log series keeps track of archived and indexable ‘checkpoints’ in the execution of Ethereum
byte code. The motivation of the log series is to allow external observers to track the program
execution. A log entry consists of the address of the currently executing account, up to for ’topics’
(specified on the stack), and a fraction of the memory. There are four logging instructions, but as
seen before, we describe their effects using common rules parameterizing the instruction by the
amount of log information read from the stack.

ωµ,ι = LOGn
ι.fmod = 1 µ.s = posm :: size :: (s1 ++ s2) |s1| = n aw = M (µ.i, posm, size)

c = Cmem (µ.i, aw) + 375 + 8 · size + n · 375 valid (µ.gas, c, |µ.s|)
µ = µ[s → s][pc += 1][gas −= c][i → aw] d = µ.m[posm, posm + size − 1]

η = η[L → η.L ++ [(ι.actor, s1, d)]] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
LOGnc (s1)−−−−−−−→ (µ , ι, σ, η) :: S

146

A.2. Small-step Semantics

ωµ,ι = LOGn
µ.s = posm :: size :: (s1 ++ s2) |s1| = n aw = M (µ.i, posm, size)
c = Cmem (µ.i, aw) + 375 + 8 · size + n · 375 ¬valid (µ.gas, c, |µ.s|)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = LOGn (|µ.s| < n + 2 ∨ ι.fmod = 0)
Γ (µ, ι, σ, η) :: S → EXC :: S

Halting Instructions The execution of a RETURN command requires reading data from the
local memory. Consequently, the cost for memory consumption is charged. Additionally, the read
data is recorded in the halting state in order to potentially propagate it to the caller.

ωµ,ι = RETURN
µ.s = io :: is :: s aw = M (µ.i, io, is) c = Cmem (µ.i, aw) valid (µ.gas, c, |s|)

d = µ.m[io, io + is + 1] g = µ.gas − c c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
RETURNc (io,is)−−−−−−−−−→ HALT(σ, g, d, η) :: S

ωµ,ι = RETURN
µ.s = io :: is :: s aw = M (µ.i, io, is) c = Cmem (µ.i, aw) ¬valid (µ.gas, c, |s|)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = RETURN |µ.s| < 2
Γ (µ, ι, σ, η) :: S → EXC :: S

The execution of a STOP command halts execution without propagating any data to the caller.

ωµ,ι = STOP g = µ.gas c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
STOPc−−−−→ HALT(σ, g, , η) :: S

The SELFDESTRUCT instruction deletes the currently executing account. The SELFDESTRUCT
command takes one argument from the stack specifying aben the address of the beneficiary that
should get the balance of the suiciding account.

We distinguish the cases where the beneficiary is an existing account and where it still needs to
be created. In the latter, an additional fee is charged.

147

A. APPENDIX TO CHAPTER 2

ωµ,ι = SELFDESTRUCT ι.fmod = 1 µ.s = aben :: s a = aben mod 2160

σ(a) = ⊥ c = (isEmpty(σ(a)) ∧ σ(ι.actor).balance > 0) ? 37000 : 5000
valid (µ.gas, [5000] c, |s|) g = µ.gas − [5000] c

σ = σ a → σ(a)[balance += σ.(ι.actor).balance] ι.actor → σ(ι.actor)[balance → 0]
r = (ι.actor ∈ Γ.S†) ? 24000 : 0

η = η[S† → η.S† ∪ {ι.actor}][balance += r][S →η.S ∪ {ι.actor, a}]
c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
SELFDESTRUCTc (aben)−−−−−−−−−−−−−−→ HALT(σ , g, , η) :: S

Note in particular that due to the order of the update of the global state in case that a = ι.actor
the balance of the executing account will simply be set to 0.

ωµ,ι = SELFDESTRUCT ι.fmod = 1 µ.s = aben :: s a = aben mod 2160

σ(a) = ⊥ σ(ι.actor).balance > 0 valid (µ.gas, 37000, |s|) g = µ.gas − 37000
σ = σ ι.actor → σ(ι.actor)[balance → 0] a → (0, σ(actor).balance, λx. 0,)

r = (ι.actor ∈ Γ.S†) ? 0 : 24000
η = η[S† → η.S† ∪ {ι.actor}][balance += r][S →η.S ∪ {ι.actor, a}]

c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
SELFDESTRUCTc (aben)−−−−−−−−−−−−−−→ HALT(σ , g, , η) :: S

ωµ,ι = SELFDESTRUCT µ.s = aben :: s a = aben mod 2160

c = ((σ(a) = ⊥ ∨ isEmpty(σ(a))) ∧ σ(actor).balance > 0) ? 37000 : 5000
¬valid (µ.gas, c, |s|)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = SELFDESTRUCT (|µ.s| < 1 ∨ ι.fmod = 0)
Γ (µ, ι, σ, η) :: S → EXC :: S

There is a designated invalid instruction that always causes an exception

ωµ,ι = INVALID c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
INVALIDc−−−−−→ EXC :: S

148

A.2. Small-step Semantics

Calling The CALL command initiates the execution of a (potentially different) account’s code.
To this end, it gets as parameters the gas g to be spent on the execution, the address to of the
destination account, the value va to be transferred to the destination account. Additionally, a
fragment in the local memory containing input data for the called code is specified (by io and
is) and another fragment where the return values of the call are expected (specified by oo and
os). If the recipient to exists, the balance of the calling account ι.actor is sufficient to transfer
va and the call stack limit is not reached yet, the recipient to gets the value va transferred from
the calling account ι.actor. The input data input to the call are read from the local memory and
written to the execution environment. Additionally, the execution environment is updated with
the information on the originator sender, the owner of the currently executed code actor and the
code to be executed (that is the code of the called account). The execution of the called code then
starts in the updated execution environment and with an empty machine state.

We introduce some functions for simplifying the cost calculations. First, we introduce a function
that calculates the base costs for executing a CALL command (not including costs for memory
consumption and the amount of gas given to the callee).

Cbase (va, flag) = 700 + (va = 0 ? 0 : 6500) + (flag = 0 ? 25000 : 0)

The base costs include a fixed amount (700 wei) for calling and additional fees depending on
whether ether is transferred or a new account needs to get created.

Next, we introduce the function computing the amount of wei given to a call. This value depends
on the amount of ether transferred during the call, on the amount of gas specified on the stack
that should be given to the call as well as on the amount of local gas still available to the caller
and the fact whether a new contract needs to be created or not.

Cgascap (va, flag, g, gas) =
let cex = 700 + (va = 0 ? 0 : 9000) + (flag = 0 ? 25000 : 0)
in (cex > gas ? g : min (g, L (gas − cex))) + (va = 0 ? 0 : 2300)

The information on the transfer value and the existence of the called account influence the number
of fixed costs the caller needs to pay for the call independent of the execution of the callee
contract. The amount of gas specified on the stack should be given to the callee, but if the local
gas runs too low (namely, if the fixed amount to pay already uses too much of the callee’s local
gas) instead only a predefined fraction of the local gas is given to the call.

We distinguish the cases where a new account needs to get created as the called address does not
belong to an existing account and the one where the called account is existing.

149

A. APPENDIX TO CHAPTER 2

First we consider the case where the called account already exists:

ωµ,ι = CALL
µ.s = g :: to :: va :: io :: is :: oo :: os :: s (ι.fmod = 1 ∨ va = 0) toa = to mod 2160

σ(toa) = ⊥ |A| + 1 ≤ 1024 σ(ι.actor).b ≥ va aw = M (M (µ.i, io, is), oo, os)
flag = isEmpty(σ(toa)) ? 0 : 1 ccall = Cgascap (va, [1] flag, g, µ.gas)

c = Cbase (va, [1] flag) + Cmem (µ.i, aw) + ccall valid (µ.gas, c, |s| + 1)
σ = σ toa → σ(toa)[b += va] ι.actor → σ(ι.actor)[b −= va]

d = µ.m [io, io + is − 1] µ = (ccall, 0, λx. 0, 0, ,)
ι = ι[sender → ι.actor][actor → toa][value → va][input → d][code → σ(toa).code]

η = η[S → η.S ∪ {ι.actor, toa}] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CALLc (g,to,va,io,is,oo,os)−−−−−−−−−−−−−−−→ (µ , ι , σ , η) :: (µ, ι, σ, η) :: S

Next, we consider the case where the called account does not exist. In this case an account with
the called address (and the empty code) gets created in executed.

ωµ,ι = CALL
µ.s = g :: to :: va :: io :: is :: oo :: os :: s ι.fmod = 1 va > 0 toa = to mod 2160

σ(toa) = ⊥ |A| + 1 ≤ 1024 σ(ι.actor).b ≥ va aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, 0, g, µ.gas) c = Cbase (va, 0) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s| + 1) σ = σ toa → (0, va, λx. 0,) ι.actor → σ(ι.actor)[b −= va]
d = µ.m [io, io + is − 1] µ = (ccall, 0, λx. 0, 0, ,)

ι = ι[sender → ι.actor][actor → toa][value → va][input → d][code →]
η = η[S → η.S ∪ {ι.actor, toa}] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CALLc (g,to,va,io,is,oo,os)−−−−−−−−−−−−−−−→ (µ , ι , σ , η) :: (µ, ι, σ, η) :: S

If the executing account ι.actor does not hold the amount of wei specified to be transferred by
the CALL instruction (va) or if the call stack limit of 1024 would be reached by performing the
call, the call does not get executed. In the small-step semantics this is modeled by throwing an
exception on the callee level.

ωµ,ι = CALL
µ.s = g :: to :: va :: io :: is :: oo :: os :: s (ι.fmod = 1 ∨ va = 0) toa = to mod 2160

flag = (σ(toa) = ⊥ ∨ isEmpty(σ(toa))) ? 0 : 1 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s| + 1) (va > σ((ι.actor)).balance ∨ |A| + 1 ≥ 1024)
Γ (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

150

A.2. Small-step Semantics

If the execution runs out of gas or the stack limit is exceeded, an exception is thrown:

ωµ,ι = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160

flag = (σ(toa) = ⊥ ∨ isEmpty(σ(toa))) ? 0 : 1 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall

(¬valid (µ.gas, c, |µ.s| − 6) ∨ ι.fmod = 0 ∧ va > 0)
Γ (µ, ι, σ, η) :: S → EXC :: S

(ωµ,ι = CALL ∨ ωµ,ι = CALLCODE) |µ.s| < 7
Γ (µ, ι, σ, η) :: S → EXC :: S

For returning from a call, there are several options:

1. The execution of the called code ends with RETURN. In this case, the call was successful.
The current stack specifies the fragment of the local memory that contains the return value.
The return value is copied to the caller’s local memory as specified on the caller’s stack and
the execution proceeds in the global state left by the callee. The caller gets the remaining
gas of the caller’s execution refunded. To indicate success 1 is written to the caller’s stack.

2. The execution of the called code ends with STOP or SELFDESTRUCT. In this case, the
return value of the execution is the empty data that is written to the local memory. This
essentially means that nothing is written to the caller’s local memory.

3. The execution of the called code ends with an exception. In this case, the remaining
arguments are removed from the caller’s stack, and instead, 0 is written to the caller’s stack.
The caller does not get the remaining gas refunded

As the first two cases can be treated analogously, we just need two rules for returning from a call.

ωµ,ι = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160

flag = σ.toa = ⊥ ∨ isEmpty(σ(toa)) ? 0 : 1 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 1 :: s][pc += 1][gas += gas − c][m → µ.m[[oo, oo + s − 1] → d]][dr→d]
Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → (µ , ι, σ , η) :: S

ωµ,ι = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160

flag = σ(toa) = ⊥ ∨ isEmpty(σ(toa)) ? 0 : 1 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 0 :: s][pc += 1][gas −= c][dr→]
Γ EXC :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

151

A. APPENDIX TO CHAPTER 2

The two other instructions for calling (CALLCODE and DELEGATECALL) are similar to CALL.

The CALLCODE instruction only differs in the fact that the control flow is not handed over to
the called contract, but only its code is executed in the environment of the calling account. This
means that the amount of money transferred is only relevant as a guard for the call but does
not need to be actually transferred. In addition, in case that the account whose code should be
executed does not exist, this account is not created, but only the empty code is run. However, still,
the amount of Ether specified on the stack influences the execution cost.

ωµ,ι = CALLCODE µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160

σ(toa) = ⊥ |A| + 1 ≤ 1024 σ(ι.actor).b ≥ va aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s| + 1) d = µ.m [io, io + is − 1] µ = (ccall, 0, λx. 0, 0, ,)
ι = ι[sender → ι.actor][value → va][input → d][code → σ(toa).code]

c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CALLCODEc (g,to,va,io,is,oo,os)−−−−−−−−−−−−−−−−−−→ (µ , ι , σ, η) :: (µ, ι, σ, η) :: S

ωµ,ι = CALLCODE µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160

σ(toa) = ⊥ |A| + 1 ≤ 1024 σ(ι.actor).b ≥ va aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s| + 1) d = µ.m [io, io + is − 1]
µ = (ccall, 0, λx. 0, 0, ,) ι = ι[sender → ι.actor][value → va][input → d][code →]

c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CALLCODEc (g,to,va,io,is,oo,os)−−−−−−−−−−−−−−−−−−→ (µ , ι , σ, η) :: (µ, ι, σ, η) :: S

ωµ,ι = CALLCODE µ.s = g :: to :: va :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s| + 1) (va > σ((ι.actor)).balance ∨ |A| + 1 ≥ 1024)
Γ (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

ωµ,ι = CALLCODE µ.s = g :: to :: va :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os) ccall = Cgascap (va, 1, g, µ.gas)
c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall ¬valid (µ.gas, c, |µ.s| − 6)

Γ (µ, ι, σ, η) :: S → EXC :: S

152

A.2. Small-step Semantics

ωµ,ι = CALLCODE µ.s = g :: to :: va :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 1 :: s][pc += 1][gas += gas − c][m → µ.m[[oo, oo + s − 1] → d]][dr→d]
Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → (µ , ι, σ , η) :: S

ωµ,ι = CALLCODE µ.s = g :: to :: va :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 0 :: s][pc += 1][gas −= c][dr→]
Γ EXC :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

The DELEGATECALL instruction does not only keep the executing account of the current call but
also the transferred value and the sender information. For this reason, the value to be transferred
does not need to be specified in the argument in this case. For this reason and because the cost
calculation differs (not using the argument value, but the one from the environment), all rules
from CALL need to be replicated. Still, the general idea is very similar.

ωµ,ι = DELEGATECALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 σ(toa) = ⊥ |A| + 1 ≤ 1024 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s| + 1) d = µ.m [io, io + is − 1] µ = (ccall, 0, λx. 0, 0, ,)
ι = ι[input → d][code → σ(toa).code] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
DELEGATECALLc (g,to,io,is,oo,os)−−−−−−−−−−−−−−−−−−−−→ (µ , ι , σ, η) :: (µ, ι, σ, η) :: S

ωµ,ι = DELEGATECALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 σ(toa) = ⊥ |A| + 1 ≤ 1024 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s| + 1) d = µ.m [io, io + is − 1] µ = (ccall, 0, λx. 0, 0, ,)
ι = ι[input → d][code →] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
DELEGATECALLc (g,to,io,is,oo,os)−−−−−−−−−−−−−−−−−−−−→ (µ , ι , σ, η) :: (µ, ι, σ, η) :: S

ωµ,ι = DELEGATECALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os) ccall = Cgascap (0, 1, g, µ.gas)
c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall valid (µ.gas, c, |s| + 1) |A| + 1 ≥ 1024

Γ (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

153

A. APPENDIX TO CHAPTER 2

ωµ,ι = DELEGATECALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os) ccall = Cgascap (0, 1, g, µ.gas)
c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall ¬valid (µ.gas, c, |µ.s| − 6)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = DELEGATECALL |µ.s| < 6
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = DELEGATECALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 1 :: s][pc += 1][gas += gas − c][m → µ.m[[oo, oo + s − 1] → d]][dr→d]
Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → (µ , ι, σ , η) :: S

ωµ,ι = DELEGATECALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 0 :: s][pc += 1][gas −= c][dr→]
Γ EXC :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

Contract Creation The CREATE command initiates the creation of a new contract. The
creation of a new contract is initiated if the call stack limit is not reached yet and if the initial
balance va that should be initially transferred to the new account does not exceed the balance of
the sender (the account owning the currently executed code). In this case, address ρ of the new
account is created in dependence of the sender’s address ι.actor and the sender’s address’ current
nonce incremented by one. If there already exists an account with the address, the balance of this
account is transferred to the newly created one. Additionally, the new account gets the specified
amount va of ether transferred from the sender.

Finally, the execution of the contract starts by executing the initialization code i (i can be found
in the local memory µ.m, its location is specified by the arguments io and is on the stack). The
owner of the initialization code is the newly created account ρ. The owner ι.addr of the calling
code will be recorded as the initiator ι.sender of the initialization code execution. The value
va transferred to the new account is given in the environment parameter ι.value. The execution
starts in the empty machine state with the program counter and the number of active words set to
0, in the empty memory λx. 0 (the function mapping each number to 0256) and the empty stack .
The original global state σ is recorded in the caller state in order to be able to restore it in the
case of an exception in the initiation code execution.

154

A.2. Small-step Semantics

ωµ,ι = CREATE ι.fmod = 1 µ.s = va :: io :: is :: s aw = M (µ.i, io, is)
c = Cmem (µ.i, aw) + 32000 valid (µ.gas, c, |s| + 1) va ≤ σ(ι.actor).balance

|S| + 1 ≤ 1024 ρ = newAddress (ι.actor, σ(ι.actor).nonce) σ(ρ) = ⊥
σ = σ ρ → ([0] 1, va, λx. 0,) ι.actor → σ(ι.actor)[balance −= va][nonce += 1]

i = µ.m [io, io + is − 1]
ι = ι[sender → ι.actor][actor → ρ][value → va][code → i][input →]

µ = (L (µ.gas − c), 0, λx. 0, 0, ,)
η = η[S → η.S ∪ {ι.actor, ρ}] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CREATEc (va,io,is)−−−−−−−−−−−→ (µ , ι , σ)η :: (µ, ι, σ)η :: S

It should not happen that the newly created address ρ already exists. By making ρ dependent on
the active account’s address and its nonce (which can be seen as an internal counter on the number
of new accounts already created by this account), it should be ensured that the resulting address
is unique. However, in practice, the function newAddress (·, ·) is realized by a hash function that
requires dealing with collisions. For the cases where accidentally an existing address is created,
the balance of the corresponding account is saved in the newly created one.

ωµ,ι = CREATE ι.fmod = 1 µ.s = va :: io :: is :: s aw = M (µ.i, io, is)
c = Cmem (µ.i, aw) + 32000 valid (µ.gas, c, |s| + 1) va ≤ σ(ι.actor).balance

|S| + 1 ≤ 1024 ρ = newAddress (ι.actor, σ(ι.actor).nonce)
σ(ρ) = ⊥ σ(ρ).nonce = 0 σ(ρ).code = b = σ(ρ).balance + va

σ = σ ρ → ([0] 1, b, λx. 0,) ι.actor → σ(ι.actor)[balance −= va][nonce += 1]
i = µ.m [io, io + is − 1]

ι = ι[sender → ι.actor][actor → ρ][value → va][code → i][input →]
µ = (L (µ.gas − c), 0, λx. 0, 0, ,)

η = η[S → η.S ∪ {ι.actor, ρ}] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CREATEc (va,io,is)−−−−−−−−−−−→ (µ , ι , σ , η) :: (µ, ι, σ, η) :: S

Similarly to the CALL case, the execution of the CREATE instruction can fail at call time in the
case that either the value va to be transferred to the newly created account exceeds the calling
account’s balance or if the call stack limit is reached.

ωµ,ι = CREATE ι.fmod = 1
µ.s = va :: io :: is :: s aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000

valid (µ.gas, c, |s| + 1) (va > σ(ι.actor).balance ∨ |S| + 1 > 1024)
Γ (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

In addition the usual out-of-gas exception and violations of the stack limits need to be considered:

155

A. APPENDIX TO CHAPTER 2

ωµ,ι = CREATE µ.s = va :: io :: is :: s
aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000 ¬valid (µ.gas, c, |s| + 1)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = CREATE (µ.s < 3 ∨ ι.fmod = 0)
Γ (µ, ι, σ, η) :: S → EXC :: S

To return from contract creation we need to consider different cases:

1. The initialization code ends with a RETURN. In this case contract creation was successful.
The return value specifies the code of the new contract. This code will be executed when
the contract is called later on. To indicate success and to make the newly created contract
accessible to the caller, the address of the new contract account is written to the stack. The
caller of the contract creation needs to proceed with the remaining gas from the contract
creation and additionally needs to pay a final contract creation cost depending on the length
of the contract body code.

2. The initialization code ends with STOP or SELFDESTRUCT. In this case, contract
creation was theoretically successful, but no practical, usable contract was created as calls
to this contract do not cause code to be executed. Nevertheless, the final contract creation
cost needs to be paid.

3. The initialization code causes an exception. In this case, the contract creation was not
successful. The former global state is restored, and therefore, all side effects of the contract
creation are deleted. To indicate the contract creation’s failure, the number 0 is written to
the stack of the caller. Additionally, all gas of the caller state is deleted.

Cases number one and two result in regular halting of the callee. The command-specific changes
affecting the global state, the remaining gas, and the output data are recorded in the halting state.
In the case of contract creation, a final fee is charged that depends on the size of the return data.
If the gas remaining from the execution of the initialization code is not sufficient to pay the
additional fee, an exception occurs.

ωµ,ι = CREATE µ.s = va :: io :: is :: s
aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000 cfinal = 200 · |d|

|d| ≤ 24576 gas ≥ cfinal ρ = newAddress (ι.actor, σ(ι.actor).nonce) σ (ρ) = ⊥
¬isEmpty(σ (ρ)) µ = µ[s → ρ :: s][pc += 1][gas += gas − c − cfinal][i → aw][dr→]

σ = σ ρ → σ (ρ)[code → d]
Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → (µ , ι, σ , η) :: S

156

A.3. EVM Changes

ωµ,ι = CREATE cfinal = 200 · |d| (gas < cfinal ∨ |d| > 24576)
Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S :: S

In the case of exceptional halting of the callee, as in the CALL case, the remaining gas is not
refunded and the global state as well as the transaction effects are reverted.

ωµ,ι = CREATE
µ.s = va :: io :: is :: s aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000

µ = µ[s → 0 :: s][pc −= 1][gas += c][i → aw][dr→]
Γ EXC :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

A.3 EVM Changes

The semantics originally presented in this work refers to the semantics of smart contracts as
originally implemented and defined in the yellow paper [Woo14b] after the Homestead hard fork.
Since then, several hard forks of the Ethereum blockchain have been performed that also affected
the semantics of EVM bytecode. In the following, we will give a summary of these changes and
their implications for the semantics. We have marked the changes to the rules in the previous
section in blue. Since several of the described changes interfere with each other, we also mark
such inter-dependencies in the newly introduced rules in blue – even if the changes happened
consecutively.

A.3.1 Changed Behavior

Account Garbage Collection In the original version of the EVM semantics, whenever a non-
existent contract was accessed (e.g., being the target of a contract call), and it did not exist before,
it was created in an ad-hoc manner. While in some cases (i.e., when money was transferred to
such an account) such behavior was inevitable to prevent the loss of money in the system, in the
absence of money transfer, this behavior resulted in the creation of dummy accounts without
balance, code or storage value.

For this reason, it was decided to establish the invariant that non-existing accounts and such
accounts that actually have no code and a balance and a nonce of 0 should be considered the same.
The latters are also called empty accounts. Empty and non-existent accounts are summarized
under the notion of dead contracts.

We formally define the notion of emptiness by the following function isEmpty(·) that checks
whether an account is empty.

isEmpty(·) ∈ A → B

isEmpty(account) := 1 account.b = 0 ∧ account.n = 0 ∧ account.code =
0 otherwise

157

A. APPENDIX TO CHAPTER 2

For enforcing this invariant, it was decided that ad-hoc creation of empty accounts should be
prevented. In particular, this meant that whenever an empty contract would created it instead
should be changed to be non-existent.

By keeping the global state free from empty accounts, the global state of the Ethereum system
can be represented with less storage space which is an advantage for the users of the system.

Still, due to the old version of the semantics still many empty accounts are populating the system.
To mitigate this issue, another change to the semantics was introduced, namely that all accounts
that are involved in (potentially state changing) interactions of a contract are tracked and after a
transaction’s execution checked for being empty and, if so removed from the global state. In this
way, existing empty accounts (when still being involved in interactions) can be eliminated.

To account for these changes, several modifications need to be made:

1. All rules that potentially might create empty accounts need to be revised to prevent these
cases.

2. Whenever it is checked for the existence of the account, it should also be checked for its
non-emptiness (to ensure that these two account forms are treated equivalently)

3. Accounts involved in state-changing interactions need to be recorded. To this end, a set
of touched contracts is introduced in the transaction effects. The elements from this set
will then be checked for emptiness and (similarly to the accounts in the suicide set) deleted
after transaction execution.

These changes were implemented as part of the Spurious dragon hard fork and are described
in [Woo16].

We first devise the rules for preventing the creation of empty contracts.

In the case of the CREATE instruction, it needs to be checked whether the new contract to be
deployed would be such an empty contract. A contract is only created if it is not empty at the
point of finalizing the creation. Otherwise, it stays empty. This accounts for the case that the
contract was self-destructed during execution.

ωµ,ι = CREATE µ.s = va :: io :: is :: s aw = M (µ.i, io, is)
c = Cmem (µ.i, aw) + 32000 cfinal = 200 · |d| |d| ≤ 24576 gas ≥ cfinal

ρ = newAddress (ι.actor, σ(ι.actor).nonce) (σ (ρ) = ⊥ ∨ isEmpty(σ (ρ)))
µ = µ[s → ρ :: s][pc += 1][gas += gas − c − cfinal][i → aw][dr→]

σ = σ ρ → ⊥
Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → (µ , ι, σ , η) :: S

For the case of call instructions, it needs to be distinguished between the cases where the money
is transferred and those where this is not the case. In the case of (positive) money transfers, the
old semantics stays in place. However, in the alternative cases, no new account is created. We
present the corresponding rules here.

158

A.3. EVM Changes

ωµ,ι = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s va = 0
toa = to mod 2160 σ(toa) = ⊥ |A| + 1 ≤ 1024 aw = M (M (µ.i, io, is), oo, os)

ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s| + 1) d = µ.m [io, io + is − 1] µ = (ccall, 0, λx. 0, 0, ,)
ι = ι[sender → ι.actor][actor → toa][value → va][input → d][code →]

η = η[S → η.S ∪ {ι.actor, toa}] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CALLc (g,to,va,io,is,oo,os)−−−−−−−−−−−−−−−→ (µ , ι , σ, η) :: (µ, ι, σ, η) :: S

Note that CALLCODE and DELEGATECALL already had the right behavior before (not to create
non-existing accounts). This is as both these opcodes do not transfer money but only use the code
of the callee. In case that the callee should not exist, they simply execute the empty code. Due to
this, there was never a pressing reason to create new accounts (to transfer money to them), and
hence these opcodes already implemented the correct behavior.

When formulating the rules for calls, one needs to consider another subtlety: The gas cost charged
used to depend on the existence of accounts. Now the cases of non-existence need to be treated
the same and hence should charge the same gas cost. Since the idea is that in the case of 0-value
transfers to dead contracts, no contract should also be created no creation fee will be charged in
these cases. We needed to adapt this in the case where the recipient account exists: In case that
this account should be empty still the creation cost should be charged (even though the contract
will not be created).

The same argument used for calls also applies to the SELFDESTRUCT instruction. We introduce
the rule for the case that the beneficiary is a non-existent contract. This contract will then not be
created.

ωµ,ι = SELFDESTRUCT ι.fmod = 1
µ.s = aben :: s a = aben mod 2160 σ(a) = ⊥ σ(ι.actor).balance = 0

valid (µ.gas, 5000, |s|) g = µ.gas − 5000 r = (ι.actor ∈ Γ.S†) ? 0 : 24000
η = η[S† → η.S† ∪ {ι.actor}][balance += r][S →η.S ∪ {ι.actor, a}]

c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
SELFDESTRUCTc (aben)−−−−−−−−−−−−−−→ HALT(σ, g, , η) :: S

Together with these changes, also a limit on the account code size was introduced [But16]. This
change ensures that the creation of a contract with a size of more than 24576 fails before getting
deployed. We added and marked the corresponding change in the rules of the CREATE opcode.

Absence of Overwriting in Case of Hash Collisions In the original semantics, it was possible
that in the case of a hash collision, an existing contract would be overwritten when performing a
CREATE transaction. This behavior was changed to a contract creation failing in case that the
created address should belong to an account that already exists.

159

A. APPENDIX TO CHAPTER 2

ωµ,ι = CREATE ι.fmod = 1 ρ = newAddress (ι.actor, σ(ι.actor).nonce)
σ(ρ) = ⊥ (σ(ρ).nonce > 0 ∨ σ(ρ).code =)

Γ (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

Still, in cases where the account exists, but it is considered empty since it has no code and a nonce
of 0 then still the old behavior applies. We have marked this restriction in the original rule.

A.3.2 New Opcodes

STATICCALL In addition to CALL, CALLCODE, and DELEGATECALL, STATICCALL [BR17]
was introduced as part of the Byzantium hard fork as the fourth opcode for calling other contracts.
In contrast to the other call types, STATICCALL does not allow for money transfers and generally
requires that the global state is not changed during the execution of the initiated internal transac-
tion. Whenever during the internal transaction, an attempt to changing the state is made, then the
execution exceptionally halts. To model this behavior, we need to add an additional component to
the execution environment that indicates whether the current transaction is allowed to perform
state modifications. Testing this flag then needs to become a precondition for the successful
execution of the opcodes SSTORE, SELFDESTRUCT, LOGx and CALL (given that a positive
value is transferred with the calls). We marked these additional checks in the corresponding
small-step rules.

We give here the small-step rules for the STATICCALL instruction itself:

ωµ,ι = STATICCALL µ.s = g :: to :: io :: is :: oo :: os :: s toa = to mod 2160

σ(toa) = ⊥ |A| + 1 ≤ 1024 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s| + 1) d = µ.m [io, io + is − 1] µ = (ccall, 0, λx. 0, 0, ,)
ι = ι[sender → ι.actor][actor → toa][value → 0][input → d][code → σ(toa).code][fmod → 0]

c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
STATICCALLc (g,to,io,is,oo,os)−−−−−−−−−−−−−−−−−→ (µ , ι , σ, η) :: (µ, ι, σ, η) :: S

The following rule describes the case where the called account does not exist. In this case, an
account with the called address (and the empty code) gets created in executed.

ωµ,ι = STATICCALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 σ(toa) = ⊥ |A| + 1 ≤ 1024 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

valid (µ.gas, c, |s| + 1) d = µ.m [io, io + is − 1] µ = (ccall, 0, λx. 0, 0, ,)
ι = ι[sender → ι.actor][actor → toa][value → 0][input → d][code →][fmod → 0]

c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
STATICCALLc (g,to,io,is,oo,os)−−−−−−−−−−−−−−−−−→ (µ , ι , σ, η) :: (µ, ι, σ, η) :: S

160

A.3. EVM Changes

ωµ,ι = STATICCALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os) ccall = Cgascap (0, 1, g, µ.gas)
c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall valid (µ.gas, c, |s| + 1) |A| + 1 ≥ 1024

Γ (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

If the execution runs out of gas or the stack limit is exceeded, an exception is thrown:

ωµ,ι = STATICCALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os) ccall = Cgascap (0, 1, g, µ.gas)
c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall ¬valid (µ.gas, c, |µ.s| − 5)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = STATICCALL |µ.s| < 6
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = STATICCALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 1 :: s][pc += 1][gas += gas − c][m → µ.m[[oo, oo + s − 1] → d]][dr→d]
Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → (µ , ι, σ , η) :: S

ωµ,ι = STATICCALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 0 :: s][pc += 1][gas −= c][dr→]
Γ EXC :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

RETURNDATACOPY and RETURNDATASIZE The original implementation of the EVM had
the limitation that the return data needed to be copied to the local memory at the point of returning
to a predefined memory fragment hence not allowing for accessing arbitrary-sized return data.
To solve this, two new opcodes RETURNDATACOPY and RETURNDATASIZE [Rei17] were
introduced in the Byzantium hard fork to access the data returned by the last call. To realize
these opcodes, we need to add another element to the machine state that represents the return
data, and that is set upon returning from a transaction initiating instruction with the data given
in the halt state. The RETURNDATACOPY and RETURNDATASIZE instructions can then be
simply realized by accessing this component of the machine state as done by other data accessing
opcodes. We marked the changes needed to initialize and update the return data component in
the corresponding rules. Here we give the instructions for the execution of RETURNDATACOPY
and RETURNDATASIZE.

161

A. APPENDIX TO CHAPTER 2

ωµ,ι = RETURNDATASIZE valid (µ.gas, 2, |µ.s| + 1)
µ = µ[s → |µ.dr| :: µ.s][pc += 1][gas −= 2] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
RETURNDATASIZEc−−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = RETURNDATASIZE¬valid (µ.gas, 2, |µ.s| + 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = RETURNDATACOPY µ.s = posm :: posd :: size :: s aw = M (µ.i, posm, size)
c = Cmem (µ.i, aw) + 3 + 3 · size

32 valid (µ.gas, c, |µ.s|) posd + size ≤ |µ.dr)|
k = min (|µ.dr| − posd, size) d = µ.dr [posd, posd + k − 1] d = d · 08·(size−k)

µ = µ[s → s][pc += 1][gas −= c][m → m[[posm, posm + size − 1] → d]][i → aw]
c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
RETURNDATACOPYc (posm,posd,size)−−−−−−−−−−−−−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = RETURNDATACOPY |µ.s| < 3
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = RETURNDATACOPY
µ.s = posm :: size :: posd :: s aw = M (µ.i, posm, poscode)

c = Cmem (µ.i, aw) + 3 + 3 · poscode

32 (¬valid (µ.gas, c, |µ.s|) ∨ posd + size > |µ.dr)|)
Γ (µ, ι, σ, η) :: S → EXC :: S

REVERT The REVERT opcode [BM17] that was added in the Byzantium hard fork introduces
a third form of returning from an (internal) transaction instead of failing or regularly halting
the execution of the REVERT opcode allows for purposefully failing while still returning the
remaining gas and potentially return data. This, in particular, allows for communicating error
messages to the caller via the return data. We can model this in the small-step semantics by a new
kind of final state which, similar to the halt states, carries return data and the remaining gas from
the execution.

We give the rules for this new opcode here.

ωµ,ι = REVERT
µ.s = io :: is :: s aw = M (µ.i, io, is) c = Cmem (µ.i, aw) valid (µ.gas, c, |s|)

d = µ.m[io, io + is + 1] g = µ.gas − c c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
REVERTc (io,is)−−−−−−−−−→ REVERT(g, d) :: S

162

A.3. EVM Changes

ωµ,ι = REVERT
µ.s = io :: is :: s aw = M (µ.i, io, is) c = Cmem (µ.i, aw) ¬valid (µ.gas, c, |s|)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = REVERT |µ.s| < 2
Γ (µ, ι, σ, η) :: S → EXC :: S

We need to specify the corresponding rules for all transaction initiating instructions to complete
an internal transaction that ended up in a revert state.

ωµ,ι = CALL µ.s = g :: to :: va :: io :: is :: oo :: os :: s toa = to mod 2160

flag = σ.toa = ⊥ ∨ isEmpty(σ(toa)) ? 0 : 1 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, flag, g, µ.gas) c = Cbase (va, flag) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 0 :: s][pc += 1][gas += gas − c][m → µ.m[[oo, oo + s − 1] → d]][dr→d]
Γ REVERT(gas, d) :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

ωµ,ι = CALLCODE µ.s = g :: to :: va :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (va, 1, g, µ.gas) c = Cbase (va, 1) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 1 :: s][pc += 0][gas += gas − c][m → µ.m[[oo, oo + s − 1] → d]][dr→d]
Γ REVERT(gas, d) :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

ωµ,ι = DELEGATECALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, 1, g, µ.gas) c = Cbase (0, 1) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 0 :: s][pc += 1][gas += gas − c][m → µ.m[[oo, oo + s − 1] → d]][dr→d]
Γ REVERT(gas, d) :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

ωµ,ι = CREATE
µ.s = va :: io :: is :: s aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000

µ = µ[s → 0 :: s][pc += 1][gas += gas − c][i → aw][dr→d]
Γ REVERT(gas, d) :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

Note that this case is under-specified in the yellow paper. However, the improvement proposal
states that in the case of contract creation, the REVERT should not result in any change of the

163

A. APPENDIX TO CHAPTER 2

global storage, and the data should be made available in the return data buffer (for communicating
error codes). Note that this is different from returning from a contract creation with a halting state
where the data is interpreted as code and not made available in the return data buffer.

ωµ,ι = STATICCALL µ.s = g :: to :: io :: is :: oo :: os :: s

toa = to mod 2160 flag = σ.toa = ⊥ ? 0 : 1 aw = M (M (µ.i, io, is), oo, os)
ccall = Cgascap (0, flag, g, µ.gas) c = Cbase (0, flag) + Cmem (µ.i, aw) + ccall

µ = µ[i → aw][s → 0 :: s][pc += 1][gas += gas − c][m → µ.m[[oo, oo + s − 1] → d]][dr→d]
Γ REVERT(gas, d) :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

EXTCODEHASH The EXTCODEHASH opcode [JB18] (introduced in the Constantinople
hard fork) allows for accessing the Keccak hash of an external contract code. So far it was
possible to access the size of an external contract using EXTCODESIZE and its code using
EXTCODECOPY what would allow for computing the hash of another contract’s code. However,
this would be very expensive. For this reason it was decided to provide native support for this
functionality.

ωµ,ι = EXTCODEHASH µ.s = a :: s code = σ(a mod 2160).code
valid (µ.gas, 400, |µ.s|) σ(a mod 2160) = ⊥ h = Keccak(code)

µ = µ[s → h :: µ.s][pc += 1][gas −= 400] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
EXTCODEHASHc(a)−−−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = EXTCODEHASH µ.s = a :: s code = σ(a mod 2160).code
valid (µ.gas, 400, |µ.s|) (σ(a mod 2160) = ⊥ ∨ isEmpty(σ(a mod 2160)))

µ = µ[s → 0 :: µ.s][pc += 1][gas −= 400] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
EXTCODEHASHc(a)−−−−−−−−−−−−→ (µ , ι, σ, η) :: S

ωµ,ι = EXTCODEHASH (¬valid (µ.gas, 400, |µ.s|) ∨ |µ.s| < 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

Bitwise Shifting Instructions The instruction set was in the Constantinople hard fork extended
with binary operations for bitwise shifting [BB17]. These include arithmetic left shifts SHL,
arithmetic right shifts SHR, and logical right shifts SAR. Since those are simple binary operations,
their rules are analogous to the ones of other binary operations, and we added them to the general
rule for binary operations presented in the previous section.

164

A.3. EVM Changes

CREATE2 The new opcode CREATE2 (also called skinny CREATE) [But18] was introduced
as part of the Constantinople hard fork to allow for the creation of contracts at predetermined
addresses. It is similar to the CREATE opcode with the main difference that the address of the
new contract does not depend on the actor’s nonce but instead on the initialization code and a
user-defined salt. Another change affects the gas cost, which now consider the cost for hashing
the initialization code in the course of the address computation.

We give the small-step rules for this opcode:

ωµ,ι = CREATE2 ι.fmod = 1 µ.s = va :: io :: is :: salt :: s

aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000 + 6 ∗ is
32

valid (µ.gas, c, |s| + 1) va ≤ σ(ι.actor).balance |S| + 1 ≤ 1024
ρ = newAddressSkinny(ι.actor, salt, i) σ(ρ) = ⊥ b = σ(ρ).balance + va
σ = σ ρ → (1, b, λx. 0,) ι.actor → σ(ι.actor)[balance −= va][nonce += 1]

i = µ.m [io, io + is − 1]
ι = ι[sender → ι.actor][actor → ρ][value → va][code → i][input →]

µ = (L (µ.gas − c), 0, λx. 0, 0, ,)
η = η[S → η.S ∪ {ι.actor, ρ}] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CREATE2c (va,io,is,salt)−−−−−−−−−−−−−−→ (µ , ι , σ , η) :: (µ, ι, σ, η) :: S

ωµ,ι = CREATE2 ι.fmod = 1 µ.s = va :: io :: is :: salt :: s

aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000 + 6 ∗ is
32 valid (µ.gas, c, |s| + 1)

va ≤ σ(ι.actor).balance |S| + 1 ≤ 1024 ρ = newAddressSkinny(ι.actor, salt, i)
σ(ρ) = ⊥ σ(ρ).nonce = 0 σ(ρ).code = b = σ(ρ).balance + va

σ = σ ρ → (1, b, λx. 0,) ι.actor → σ(ι.actor)[balance −= va][nonce += 1]
i = µ.m [io, io + is − 1]

ι = ι[sender → ι.actor][actor → ρ][value → va][code → i][input →]
µ = (L (µ.gas − c), 0, λx. 0, 0, ,)

η = η[S → η.S ∪ {ι.actor, ρ}] c = (ι.actor, σ(ι.actor).code)

Γ (µ, ι, σ, η) :: S
CREATE2c (va,io,is,salt)−−−−−−−−−−−−−−→ (µ , ι , σ , η) :: (µ, ι, σ, η) :: S

Where newAddressSkinny ∈ A × N256 × [B8] → A is defined as follows:

newAddressSkinny(addr, salt, d) = Keccak(255concataddr · salt · Keccak(d))[96, 255]

The following rules describe failure at call time:

ωµ,ι = CREATE2 ι.fmod = 1 µ.s = va :: io :: is :: s
i = µ.m [io, io + is − 1] ρ = newAddressSkinny(ι.actor, salt, i)

σ(ρ) = ⊥ (σ(ρ).nonce > 0 ∨ σ(ρ).code =)
Γ (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

165

A. APPENDIX TO CHAPTER 2

ωµ,ι = CREATE2 ι.fmod = 1 µ.s = va :: io :: is :: salt :: s

aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000 + 6 ∗ is
32

valid (µ.gas, c, |s| + 1) (va > σ(ι.actor).balance ∨ |S| + 1 > 1024)
Γ (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S

In addition the usual out-of-gas exception and violations of the stack limits need to be considered:

ωµ,ι = CREATE2 µ.s = va :: io :: is :: salt :: s aw = M (µ.i, io, is)
c = Cmem (µ.i, aw) + 32000 + 6 ∗ is

32 ¬valid (µ.gas, c, |s| + 1)

Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = CREATE2 (µ.s < 4 ∨ ι.fmod = 1)
Γ (µ, ι, σ, η) :: S → EXC :: S

ωµ,ι = CREATE2 µ.s = va :: io :: is :: salt :: s

aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 320006 ∗ is
32

|d| ≤ 24576 cfinal = 200 · |d| gas ≥ cfinal ρ = newAddressSkinny(ι.actor, salt, i)
µ = µ[s → ρ :: s][pc += 1][gas += gas − c − cfinal][i → aw][dr→]

σ = σ ρ → σ (ρ)[code → d]
Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → (µ , ι, σ , η) :: S

ωµ,ι = CREATE2 cfinal = 200 · |d| (gas < cfinal ∨ |d| > 24576)
Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → EXC :: (µ, ι, σ, η) :: S :: S

ωµ,ι = CREATE2 µ.s = va :: io :: is :: salt :: s aw = M (µ.i, io, is)
c = Cmem (µ.i, aw) + 32000 + 6 ∗ is

32 cfinal = 200 · |d| |d| ≤ 24576
gas ≥ cfinal ρ = newAddressSkinny(ι.actor, salt, i) (σ (ρ) = ⊥ ∨ isEmpty(σ (ρ)))

µ = µ[s → ρ :: s][pc += 1][gas += gas − c − cfinal][i → aw][dr→]
σ = σ ρ → ⊥

Γ HALT(σ , gas, d, η) :: (µ, ι, σ, η) :: S → (µ , ι, σ , η) :: S

166

A.4. Auxiliary Definitions

ωµ,ι = CREATE2 µ.s = va :: io :: is :: salt :: s

aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000 + 6 ∗ is
32

µ = µ[s → 0 :: s][pc += 1][gas += gas − c][i → aw][dr→d]
Γ REVERT(gas, d) :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

ωµ,ι = CREATE2 µ.s = va :: io :: is :: salt :: s

aw = M (µ.i, io, is) c = Cmem (µ.i, aw) + 32000 + 6 ∗ is
32

µ = µ[s → 0 :: s][pc −= 1][gas += c][i → aw][dr→]
Γ EXC :: (µ, ι, σ, η) :: S → (µ , ι, σ, η) :: S

Note that additionally to the discussed changes, the concrete gas costs of the individual opcodes
are frequently changing. We do not overview these changes here since the concrete gas costs do
not impact the theoretical considerations discussed in this thesis.

A.4 Auxiliary Definitions

For defining the security notions, we consider parts of the traces produced by the execution. To
this end, we use projection functions that filter only specific actions of a trace that we define
formally in the following:

Definition 12 (Projection on Execution Traces). Let f ∈ Act → B be a filtering function. Then
the projection on traces is recursively defined as follows

π ↓f =

π =
a :: (π ↓f) π = a :: π ∧ f(a) = 1
π ↓f π = a :: π ∧ f(a) = 0

For projecting on the call events of a trace, we define callsc, the function filtering all call and
create actions of contract c:

callsc(a) =

1 a = CALLc(g, to, va, io, is, oo, os)
∨ a = CREATEc(va, io, is)
∨ a = CREATE2c(va, io, is, salt)
∨ a = CALLCODEc(g, to, va, io, is, oo, os)
∨ a = DELEGATECALLc(g, to, io, is, oo, os)
∨ a = STATICCALLc(g, to, io, is, oo, os)

for some g, to, va, io, is, oo, os, salt ∈ B256

0 otherwise

167

A. APPENDIX TO CHAPTER 2

Throughout the definitions, we use the notion of concatenation (++) for (plain annotated) call
stacks.

Definition 13 (Concatenation of Call Stacks).

++ ∈ S × S → S

S ++ U := U S =
s :: (S ++ U) S = s :: S

Note that we will usually not make a distinction between plain call stacks and call stacks. Also,
when writing s :: S we will assume s to potentially refer to a final execution state.

We will define the predicates final (·), isRegular(·) and isHalt(·) to determine whether the corre-
sponding execution state is a final, a regular or a halting execution state, respectively.

final (·) ∈ S+ter → B

final (s) :=

1 s = EXC ∨ ∃σ ∈ Σ, d ∈ [B8], g ∈ N, η ∈ N . s = HALT(σ, g, d, η)
∨ ∃d ∈ [B8], g ∈ N. s = REVERT(g, d)

0 otherwise

isRegular(·) ∈ S+ter → B
isRegular(s) := 1 − final (s)

isHalt(·) ∈ S+ter → B

isHalt(s) := 1 ∃σ ∈ Σ, d ∈ [B8], g ∈ N, η ∈ N . s = HALT(σ, g, d, η)
0 otherwise

Where

S+ter = S ∪ {EXC}
∪ {HALT(σ, g, d, η) | σ ∈ Σ ∧ d ∈ [B8] ∧ g ∈ N ∧ η ∈ N}
∪ {REVERT(g, d) | d ∈ [B8] ∧ g ∈ N}

A.5 Transaction Execution

In the following, we formally define transaction execution.

Formally, a transaction is a tuple (nonce, price, gaslimit, to, value, sender, input, sig) where

168

A.5. Transaction Execution

• nonce ∈ N256 is a number counting the number of transactions issued by the sender

• price ∈ N256 is the amount of wei to pay for one unit of gas when executing this transaction

• gaslimit ∈ N256 is the maximum amount of gas to be spent on the execution of the transaction

• to ∈ N160 ∪ {⊥} is the recipient of the the transaction. If the recipient is ⊥ then this indicates
a contract creating transaction.

• value ∈ N256 is the amount of wei transferred by the transaction

• sender ∈ N160 is the sender of the transaction

• input ∈ [B8] is the input given to the transaction. This might either be the arguments given to a
contract in case of a call transaction or the byte code that initializes the newly created contract
in the case of a create transaction

• sig is the signature of the transaction

Note that we here simplified some components, e.g., we assume the sender to be an explicit
field of the transaction while in the concrete Ethereum implementation, the sender address
would be recovered from the signature information. Accordingly we treat the signature of the
transaction in an abstract fashion, simply assuming that there is a function checkSig such that
checkSig(sig, T , sender) = 1 if and only Sig is a valid transaction of address (public key) sender
for the transaction T .

Technically for determining the validity of a transaction, it is not sufficient to consider one
transaction in isolation, but the previously executed transactions in a block need to be considered
as well. This is since a block (similarly to the individual transaction) specifies a gas limit that
may not be exceeded. For this reason, it is required to slightly update the initialization function to
take the remaining block gas budget into account. Further, the finalization function should return
the gas returned from the execution. For the sake of completeness, we also make the finalization
function return the logs of transaction execution (even though those do not influence the global
blockchain state).

initalizeGas(·) ∈ T → N256

initalizeGas(T) =
b∈T .input

1{0}(b) ∗ 4 + 1N8/{0}(b) ∗ 68 + 1{⊥}(T .to) ∗ 32000 + 21000

isValidT(·, ·, ·, ·) ∈ T × H × Σ × N256 → B
isValidT(T , H, σ, g) = checkSig(T .sig, T , sender) = 1

∧ σ(T .sender) = ⊥ ∧ T .nonce = σ(T .sender).n
∧ initalizeGas(T) ≤ T .gaslimit

∧ T .gaslimit ∗ T .price + T .value ≤ σ(T .sender).b
∧ T .gaslimit ≤ g

169

A. APPENDIX TO CHAPTER 2

initializeT(·, ·, ·, ·) ∈ T × H × Σ × N256 → (Tenv × Sannotated) ∪ {⊥}

initializeT(T , H, σ, g) =

(Γ, sc) isValidT(T , H, σ, g)
∧ T .to = ⊥
∧ Γ = (T .sender, T .price, H)
∧ s.µ = (T .gaslimit − initalizeGas(T), 0, λx. 0, 0, ,)
∧ s.ι = (T .to, T .input, T .sender, T .value, σ(T .to).code, 1)
∧ s.σ = σ T .sender → σ(T .sender)[b −= T .gaslimit ∗ T .price][n += 1]
∧ s.η = (0, , ∅, {T .sender, T .to, H.beneficiary})
∧c = (T .to, σ(T .to).code)

(Γ, sc) isValidT(T , H, σ, g)
∧ T .to = ⊥
∧ Γ = (T .sender, T .price, H)
∧ s.µ = (T .gaslimit − initalizeGas(T), 0, λx. 0, 0, ,)
∧ρ = newAddress (T .sender, T .nonce)
∧c = (ρ,)
∧ s.ι = (ρ, , T .sender, T .value, T .input, 1)
∧ s.σ = σ T .sender → σ(T .sender)[b −= T .gaslimit ∗ T .price][n += 1]
∧ s.η = (0, , ∅, {T .sender, ρ, H.beneficiary})

⊥ otherwise

One should note that the initialization depends on whether the transaction corresponds to a contract
creation or a contract call. If the recipient (T .to) of the transaction is ⊥, then the transaction is
interpreted as contract creation and the input T .input to the transaction is interpreted as contract
creation code. Otherwise, the input is considered to be the input to the contract call. When
initializing the transaction first, its validity is checked. This is done by the function isValidT.
For the validity, it is checked that the transaction has a valid signature, that the sender of the
transaction exists and that the nonce of its account state corresponds to the transaction nonce.
Further, it is checked that the gas needed to initialize the transaction (as calculated by initalizeGas)
does not exceed the transaction gas limit and that the sender has a sufficient balance to pay for the
gas potentially needed for the transaction (according to the gas limit). Finally, it is checked that
the allocated gas limit does not exceed the remaining gas that might be consumed by the block
(here given as extra argument g).

The initialization itself then closely resembles the initiation of internal call or create abstractions
as triggered by CALL, and CREATE instructions, respectively.

Next we formally define how a transaction is finalized based on the final execution state and the
transaction effects:

getGas(·) ∈ S → N256

getGas(s) =

µ.gas s = (µ, ι, σ, η)
g HALT(σ, g, d, η)
0 EXC

170

A.6. Properties of the Small-step Semantics

finalizeGas(·, ·, ·) ∈ S × N × T → N256

finalizeGas(s, η, T) = getGas(s) + min (T .gaslimit − getGas(s)
2 , η.balance + |η.S†| ∗ 24000)

finalizeT(·, ·, ·) ∈ S × N × T → Σ × N256 × L

finalizeT(s, η, T) = (σ T .sender → σ(T .sender)[b += finalizeGas(s, η, T) ∗ T .price]
H.beneficiary → σ(H.beneficiary)[b += (T .gaslimit − finalizeGas(s, η, T) ∗ T .price)]
a → ⊥ a∈η.S†∨a∈S ∧isEmpty(a),

T .gaslimit − finalizeGas(s, η, T),
η.L)

The function finalizeGas calculates the remaining gas after the execution. To this end, it does
not only consider the gas left in the final execution state s but also considers the refund balance
collected in the transaction effects. These components, however, are only refunded up to a cap of
half the difference between the remaining gas and the gas limit. Finally, the sender gets refunded
according to the remaining gas as calculated by the finalizeGas function, and the beneficiary of
the transaction receives the gas that is left after that from the prepaid fees that the sender paid
prior to the execution. Finally, all contracts recorded in the suicide set η.S† get deleted from the
global state. The finalizeT function additionally returns the gas that was paid to the beneficiary
(since this counts towards the block gas limit), and for the sake of completeness, the logs η.L
produced by the transaction.

In the following, we will use the defined functions to characterize the execution of a whole block.
We will assume the slightly simplified presentation of a block to be a pair of a block header and a
list of transactions.

σ
,H−−→ (σ, H.gaslimit,)

σ
ts,H−−→ (σ , g , ls) (Γ, sc) = initializeT(T , H, σ, g)

Γ sc :: →∗ s c :: final (s) (σ , g , L) = finalizeT(s , η , T)

σ
ts·[T],H−−−−→ (σ , g − g , ls · [L])

Note that the remaining gas g from the execution of the prior transactions in the block is used
to check the validity of the transaction in the initializeT function. This remaining gas is then
decreased according to the gas usage of the transaction.

A.6 Properties of the Small-step Semantics

We first state some general properties of the small-step semantics.

171

A. APPENDIX TO CHAPTER 2

Lemma 1 (Determinism). Let Γ S
a−→ S and Γ S

b−→ S then S = S and a = b.

Proof. By an exhaustive case analysis on the small-step rules. The small step relation is functional
(w.r.t. to the transaction environment and call stack).

Lemma 2 (Progress). Let Γ be a transaction environment and S be a call stack. Then either
S = [s] and final (s) or there is some S and a such that Γ S

a−→ S .

Proof. By an exhaustive case analysis of the small step rules.

The progress lemma implies that execution cannot get stuck.

We can also show the following local progress property:

Lemma 3 (Local Progress). Let Γ be a transaction environment and S be a call stack and s be
an execution state. Then either final (s) or there is some S with 1 ≤ |S| ≤ 2, and a such that
Γ s :: S

a−→ S ++ S.

Proof. By an exhaustive case analysis of the small step rules.

The following lemmas summarize some general properties of call stack evolution during the
execution. The small-step semantics is designed such that the call stack records the execution
state as at the point of calling. The corresponding states only get modified when returning from
an internal transaction. In this case, modification is guaranteed, since the gas for the execution is
subtracted. As a consequence, an unmodified (sub) call stack indicates that the execution of the
same internal transaction is still executed.

To reason about this behavior, we establish an order on call stacks that we will show to decrease
during execution.

Definition 14 (Call Stack Precedence). Let S1, S2 be (annotated) call stacks. We say that S1
precedes S2 (written S1 ≺ S2 iff the following condition holds:

∃ S S1 S2. |S1| > 0
∧ S1 = S1 ++ S

∧ S2 = S2 ++ S

∧ (|S2| > 0 ⇒ getGas−(last(S1)) < getGas−(last(S2)))

Recall that last(S) denotes the last element of a call stack (yielding ⊥ in case of an empty call
stack). Here getGas− denotes the following slightly modified version of the previously introduced
function getGas:

getGas−(·) ∈ S → N256

getGas−(s) =

µ.gas s = (µ, ι, σ, η)
g HALT(σ, g, d, η)
−1 EXC

172

A.6. Properties of the Small-step Semantics

Note that the decision to define the gas value of EXC to be −1 will facilitate later reasoning since
it ensures that the gas in local execution always strictly decreases since regular execution states
can have a gas value of 0 and then only run out of gas in the next step.

We show that ≺ is a strict partial order on call stacks.

Lemma 4. ≺ is a strict partial order on (annotated) call stacks.

Proof. We show that ≺ is irreflexive, transitive, and asymmetric.

• Irreflexivity. Let S be an (annotated) call stack. We show that S ≺ S. Towards contradiction
we assume that S ≺ S. Then by Definition 14, there exists S , S1, S2 s.t. (1) |S1| > 0, (2) S =
S1 ++ S , (3) S = S2 ++ S , and (4) |S2| > 0 ⇒ getGas−(last(S1)) < getGas−(last(S2)).
By (2) and (3) we know that S1 ++ S = S2 ++ S and hence S1 = S2. Since |S1| > 0 (1)
we can hence conclude by (4) that getGas−(last(S1)) < getGas−(last(S1)) which is a clear
contradiction.

• Transitivity. Let S1, S2, S3 be (annotated) call stacks. We show that S1 ≺ S2 ∧ S2 ≺
S3 ⇒ S1 ≺ S3. Assume that (A) S1 ≺ S2 and (B) S2 ≺ S3. Then by Definition 14,
there exist SA, S1, S2 s.t. (A1) |S1| > 0, (A2) S1 = S1 ++ SA, (A3) S2 = S2 ++ SA,
and (A4) |S2| > 0 ⇒ getGas−(last(S1)) < getGas−(last(S2)) and further there exist SB

S2 , S3 s.t. (B1) |S2 | > 0, (B2) S2 = S2 ++ SB , (B3) S3 = S3 ++ SB , and (B4) |S3| >
0 ⇒ getGas−(last(S2)) < getGas−(last(S3)). Then by (A3) and (B2) we get that (C1)
S2 ++ SA = S2 = S2 ++ SB . So then either SA = U ++ SB for some U or SB = U ++ SA

for some U . We make a case distinction.

1. Assume that SA = U ++ SB for some U with |U | > 0. Then S1 =
(S1 ++ U) ++ SB and S3 = S3 ++ SB . Now assume that |S3| > 0. We show
that getGas−(last(S1 ++ U)) < getGas−(last(S3)). Since |U | > 0 it is sufficient
to show that getGas−(last(U)) < getGas−(last(S3)). By (B4) we already know
that (C2) getGas−(last(S2)) < getGas−(last(S3)). From (C1) we can conclude
that S2 ++ U ++ SB = S2 ++ SB and hence S2 = S2 ++ U . So consequently
by (C2) getGas−(last(S2 ++ U)) < getGas−(last(S3)) and since |U | > 0 also
getGas−(last(U)) < getGas−(last(S3)) what closes the case.

2. Assume that SB = U ++ SA for some U . Then S1 = S1 ++ SA and S3 =
S3 ++ U ++ SA. Now assume that |S3| > 0. We show that getGas−(last(S1)) <
getGas−(last(S3 ++ U)). By (B4) we already know that (C2) getGas−(last(S2)) <
getGas−(last(S3)). From (C1) we can conclude that S2 ++ SA = S2 ++ U ++ SA and
hence S2 = S2 ++ U . Since |S2 | > 0 (B1) we know that also |S2| > 0 and hence by
(A4) we can conclude that getGas−(last(S1)) < getGas−(last(S2)) and consequently
(C3) getGas−(last(S1)) < getGas−(last(S2 ++ U)). We do a case distinction on |U |.
– if U = then the claim trivially holds by (C2) and (C3).
– if |U | > 0 then from (C3) we get that getGas−(last(S1)) < getGas−(last(U))

and at the same time the claim to be shown also reduces to getGas−(last(S1)) <
getGas−(last(U)) what concludes the case.

173

A. APPENDIX TO CHAPTER 2

• Asymmetry. Let S1, S2 be (annotated) call stacks. We show that S1 ≺ S2 ⇒ S2 ≺ S1.
Assume that S1 ≺ S2. Then by Definition 14, there exists S, S1, S2 s.t. (A1) |S1| > 0,
(A2) S1 = S1 ++ S, (A3) S2 = S2 ++ S, and (A4) |S2| > 0 ⇒ getGas−(last(S1)) <
getGas−(last(S2)). Further assume towards contradiction that S2 ≺ S1. Then by Definition 14,
there exists S , S1 , S2 s.t. (B1) |S2 | > 0, (B3) S1 = S1 ++ S , (B2) S2 = S2 ++ S , and (B4)
|S1 | > 0 ⇒ getGas−(last(S2)) < getGas−(last(S1)). By (A2) and (B3) we know that (C1)
S1 ++ S = S1 ++ S . So we know that either S = U ++ S for some U or S = U ++ S for
some U with |U | > 0. We distinguish the two cases.

1. Assume that S = U ++ S for some U . Then by (C1) we know that (C2) S1 ++ S =
S1 ++ U ++ S and hence S1 = S1 ++ U . By (A3) and (B2) we know that S2 ++ S =
S2 ++ S and consequently S2 ++ S = S2 ++ U ++ S and so S2 = S2 ++ U . We make
a case distinction on U .

– Assume that U = . Then S1 = S1 and S2 = S2 . Since |S1| > 0 (A1) we get from
(B4) that (C3) getGas−(last(S2)) < getGas−(last(S1). Similarly, since |S2 | > 0
(B1) we get from (A4) that getGas−(last(S1)) < getGas−(last(S2) which clearly
contradicts (C3).

– Assume that |U | > 0. Then clearly |S2| > 0 and by (A4) getGas−(last(S2)) <
getGas−(last(S1), and so getGas−(last(S2 ++ U)) < getGas−(last(S1 ++ U)). Since
|U | > 0, we get from this that getGas−(last(U)) < getGas−(last(U)) which clearly
gives a contradiction.

2. Assume S = U ++ S for some U with |U | > 0. Thene by (C1) we know that (C4)
S1 ++ U ++ S = S1 ++ S and hence S1 = S1 ++ U . Similarly from (A3) and (B2)
we know that S2 ++ S = S2 ++ S and hence S2 ++ U ++ S = S2 ++ S and so
S2 = S2 ++ U . Then clearly |S1 | > 0 and hence by (B4) getGas−(last(S2)) <
getGas−(last(S1)) and so getGas−(last(S2 ++ U)) < getGas−(last(S1 ++ U)) and
since |U | > 0 we get from this that getGas−(last(U)) < getGas−(last(U)) which
clearly gives a contradiction.

We can now use the notion of precedence to reason about how call stacks evolve. In particular we
show the following lemma:

Lemma 5. Let S1, S2, S, and U be (annotated) call stacks. If S1 ++ U S S2 ++ U then
there is some S3 such that |S3| > 0 and S = S3 ++ U .

Proof. Let S1, S2, S, and U be (annotated) call stacks and let (A) S1 ++ U S and (B)
S S2 ++ U . Towards contradiction we assume that for all call stacks S3 with |S3| it holds
that (*) S = S3 ++ U . From (A) we know that there are call stacks V1, S1, and S such
that (A1) |S | > 0, (A2) S1 ++ U = S1 ++ V1, (A3) S = S ++ V1, and (A4) |S1| > 0 ⇒
getGas−(last(S)) < getGas−(last(S1)). From (B) we get that there are call stacks V2, S2,

174

A.6. Properties of the Small-step Semantics

and S such that (B1) |S2| > 0, (B2) S2 ++ U = S2 ++ V2, (B3) S = S ++ V2, and (B4)
|S | > 0 ⇒ getGas−(last(S2)) < getGas−(last(S)).

From (A2) we know that either U = U1 ++ V1 for some U1 with |U1| > 0 or that V1 = U ++ U
for some U . We distinguish these cases:

1. If (C1) U = U1 ++ V1 for some U1 with |U1| > 0 then by (A2) S1 ++ U1 ++ V1 =
S1 ++ V1 and hence (C2) S1 = S1 ++ U1. Further, we know from (A3) and (B3) that
(C3) S ++ V1 = S ++ V2. So we know that either V1 = V ++ V2 for some V or that
V2 = V ++ V1 for some V . We distinguish these cases:

a) If V1 = V ++ V2 for some V . Then from (B2) we get S2 ++ U1 ++ V ++ V2 =
S2 ++ V2 and so (C4) S2 = S2 ++ U1 ++ V . Further we know from (C3) that
S ++ V ++ V2 = S ++ V2 and hence (C5) S = S ++ V . We make a case
distinction on |V |

i. If |V | = 0 then V = . So by (C4) we have (C6) S2 = S2 ++ U1 and by (C5)
we have (C7) S = S By (C2) and (A4) we know that getGas−(last(S)) <
getGas−(last(S1 ++ U1)) and since |U1| > 0 also (C8) getGas−(last(S)) <
getGas−(last(U1)). By (C6), (C7) and (B4) we have that getGas−(last(S2 ++ U1)) <
getGas−(last(S)) and since |U1| > 0 also getGas−(last(U1)) < getGas−(last(S))
what contradicts (C8).

ii. If |V | > 0 then by (B4) we get that getGas−(last(S2 ++ U1 ++ V)) <
getGas−(last(S ++ V)) and so also getGas−(last(V)) < getGas−(last(V))
which is a clear contradiction.

b) If V2 = V ++ V1 for some V with |V | > 0 then from (C3) we know that S ++ V1 =
S ++ V ++ V1 and hence (C9) S = S ++ V . By (B2) we know that either
V2 = U ++ U for some U with |U | > 0 or U = U2 ++ V2 for some U2. We
distinguish these cases

• If V2 = U ++ U for some U with |U | > 0 then by (B3) S = S ++ U ++ U .
However by (*) we can conclude that S = S ++ U ++ U what gives a clear
contradiction.

• If U = U2 ++ V2 for some U2. Then from (B2) we get that
S2 ++ U2 ++ V2 = S2 ++ V2 and hence (C10) S2 = S2 ++ U2. By
(A2) we get that S1 ++ U2 ++ V ++ V1 = S1 ++ V1 and hence S1 =
S1 ++ U2 ++ V . From this we get by (A4) and (C9) getGas−(last(S ++ V)) <
getGas−(last(S1 ++ U2 ++ V)) and since |V | > 0 also getGas−(last(V)) <
getGas−(last(V)) which clearly is a contradiction.

2. if (C2) V1 = U ++ U for some U then by (*) and, (C2) and (A3) we get that S ++ U ++ U =
S ++ U ++ U (since |S | > 0 and so also S ++ U > 0. This clearly gives a contradic-
tion.

175

A. APPENDIX TO CHAPTER 2

Note that in particular the following corollary follows:

Lemma 6. Let S1, S2, S, and U be (annotated) call stacks. Then the following statements hold

• If S1 ++ U S S2 ++ U then there is some S3 such that S = S3 ++ U .

• If S1 ++ U S S2 ++ U and |S1| > 0 then there is some S3 with |S3| > 0 such that
S = S3 ++ U .

• If S1 ++ U S S2 ++ U then there is some S3 with |S3| > 0 such that S = S3 ++ U .

Proof. We prove the cases separately.

• Assume that (1) S1 ++ U S and (2) S S2 ++ U . We make a case distinction based on (1)

1. Assume that (A) S1 ++ U S and (B) S S2 ++ U . Then we can make a case
distinction on (A)

– If S1 ++ U = S then the claim trivially holds.
– If S1 ++ U S then the statement trivially follows from Lemma 5.

2. Assume that (A) S1 ++ U S and and (B) S S2 ++ U and (C) |S1| > 0 Then we can
make a case distinction on (A)

– If S1 ++ U = S then the claim trivially holds.
– If S1 ++ U S then the statement trivially follows from Lemma 5.

3. Assume that (A) S1 ++ U S and (B) S S2 ++ U . Then we can make a case
distinction on (B)

– If S = S2 ++ U then we still need to show that |S2| > 0. We know that S1 ++ U
S2 ++ U and hence by Definition 14 we know that there are some S1, S2, V such
that (A1) |S2| > 0 (A2) S2 ++ U = S2 ++ V , (A3) S1 ++ U = S1 ++ V , (A4)
|S1| > 0 ⇒ getGas−(last(S2)) < getgas(last(S1)). We can conclude from (A2) and
(A3), and (A4) that V = U ++ U for some U , and hence by (A2) S2 = S2 ++ U .
Since by (A1) |S2| > 0. This concludes the case.

– If S S2 ++ U then the statement trivially follows from Lemma 5.

We show that the precedence of call stacks decreases during execution:

Lemma 7. Let Γ, S, S such that Γ S → S . Then S S .

Proof. By case distinction on the small step rules. We shortly summarize the relevant cases.

176

A.6. Properties of the Small-step Semantics

• In case of a local execution step Γ s :: U → s :: U the gas decreases while the underlying
call stack stays unchanged. This in particular also holds when entering an exception or halting
state since exception states have the gas value −1 by the getGas− function.

• In case of a transaction initiating execution step Γ s :: U → s :: s :: U , the callee state stays
unmodified. This results in S being a postfix of S which trivially satisfies S ≺ S.

• In case of a transaction concluding step Γ s :: s :: U → s :: U the callee state s is modified
in that its gas is decreased. This leaves U to be the common postfix and the gas decreases from
s to s .

Note that, in particular, we obtain the following corollary:

Corollary. If Γ S →n S then S S .

Proof. Trivially follows from Lemma 7 and the transitivity of ≺ (Lemma 4).

For proving the termination small-step execution, we will use the order ≺. More precisely, we
will perform a Noetherian induction on the ≺ relation. To this end, we will need to show that ≺ is
well-founded. This property, however, does not generally hold: Intuitively, ≺ can be considered a
lexicographical list ordering on reversed call stacks with the substantial difference that in the case
that one call stack is a postfix of the other, the bigger stack is considered smaller with respect to ≺.
This implies that there are infinite descending chains of the form S s :: S s :: s :: S
However, if we define ≺ on call stacks whose gas strictly decreases with each stack element, the
length of such chains is limited by the amount of gas. We hence define on such call stacks and
show that all relevant (reachable) call stacks satisfy this condition.

Definition 15 (Gas Descending Call Stacks). A call stack S is called gas descending if one of the
following conditions hold:

• |S| ≤ 1

• S = s :: s :: S then getGas−(s) < getGas−(s) and s :: S is gas descending

To prove reachable call stacks to be gas descending, we need to show a slightly stronger lemma
that takes into account the gas budget allocated by the caller state. To this end, we assume a
function Ccall ∈ S → N that given a caller’s state returns the gas budget given to the call (denoted
ccall in the corresponding rules).

Definition 16 (Respect for Gas Budget). A call stack S respects the gas budget if one of the
following conditions hold:

• |S| ≤ 1

177

A. APPENDIX TO CHAPTER 2

• If S = s :: s :: S then getGas−(s) ≤ Ccall(s) and s :: S respects the gas budget

We show the following lemma:

Lemma 8 (Gas Budget Respecting Call Stacks). Let Γ s :: S →n S ++ S then S respects
the gas budget.

Proof. By induction on n.

• If n = 0 then S = [s] and hence by Definition 15 S is respects the gas budget.

• If n > 0 then Γ s :: S →n−1 S∗ and Γ S∗ → S ++ S. Consequently it holds
that s :: S S∗ S ++ S . So by Lemma 6 we know that there is some S3 such that
S∗ = S3 ++ S and |S3| > 0. By the inductive hypothesis we know that S3 respects the
gas budget. We are hence left to show that also S respects the gas budget. If |S | ≤ 1 then
this trivially holds. So we consider the case where S = ŝ :: ŝ :: Ŝ. We perform a case
distinction on Γ S3 ++ S → ŝ :: ŝ :: Ŝ ++ S. We know that S3 = S :: S3 We distinguish
the following cases:

1. A local execution step is performed. Then S3 = ŝ∗ :: ŝ :: Ŝ and getGas−(s∗) >
getGas−(ŝ) (since every local execution step decreases the gas). Since S3 respects the
gas budget we know that getGas−(s∗) ≤ Ccall(ŝ) and that ŝ :: Ŝ respects the gas budget.
So we can conclude that getGas−(ŝ) < Ccall(ŝ) and so also S respects the gas budget.

2. An internal transaction is initiated. Then S3 = ŝ :: Ŝ and by the definition of the
small-step rules for internal transaction initiation getGas−(ŝ) ≤ Ccall(ŝ) since exactly
the gas budget ccall is given to the callee. From S3 respecting the gas budget we can
therefore conclude that also S respects the gas budget.

3. An internal transaction is completed. Then S3 = s∗ :: ŝ :: ŝ :: Ŝ and final (s∗).

– If s∗ = EXC then clearly getGas−(ŝ) > getGas−(ŝ) since the upfront-allocated
(non-zero) gas cost (ccall plus some additional cost) are removed from the callee state s
and no money is refunded. Since S3 respects the gas budget it is further known that
getGas−(ŝ) ≤ Ccall(ŝ) and that ŝ :: Ŝ respects the gas budget. So we know that
Ccall(ŝ) ≥ getGas−(ŝ) and hence also S respects the gas budget.

– if s∗ = HALT(σ, g, d, η) then the remaining gas g will get refunded after subtracting
the upfront-allocated (non-zero) gas cost (c = Ccall(ŝ) + x with x > 0). Since we
know that g ≤ Ccall(ŝ) we also know that c − g > 0 and consequently getGas−(ŝ) =
getGas−(ŝ) − c + g < getGas−(ŝ) ≤ Ccall(hats). The last inequality follows from
the inductive hypothesis, as well as that ŝ) :: Ŝ respects the gas budget and hence we
can conclude that S respects the gas budget.

Lemma 9 (Gas Descending Call Stacks). Let Γ s :: S →n S ++ S then S is gas descending.

178

A.6. Properties of the Small-step Semantics

Proof. By Lemma 8 we know that S respects the gas budget. Since we can easily check that
Ccall(s) < getGas−(s) for all call states s, the result follows from a simple induction on the size
of S .

Lemma 10 (Well-foundedness of Precedence). ≺ is a well-founded relation on gas descending
call stacks ({S ∈ S | |S| > 0 ∧ S is gas descending}.

Proof. We assume towards contradiction that there is an infinite descending chain S1 S2 · · · .
We show that from this we can construct an infinite descending chain of < on N what clearly
yields a contradiction since < on N is well-founded. We construct the following measure on gas
descending (non-empty) call stacks:

m ∈ L(N) → N

m (ns) =

0 ns = [0]
n! ns = [n] ∧ n > 0
(n − 1)! n + m (ns) = n :: ns ∧ |ns| > 0

m ∈ {S ∈ S ||S| > 0 ∧ S is gas descending} → N
m(S) = rev(map(λs. (getGas−(s) + 2) ∗ 2, S))

Note that here rev(·) and map(·, ·) denote the standard notions of reversing a list and applying
a function to each element of a list. We state some general properties about m that can be all
proven by simple induction:

• |ls| > 0 ⇒ m (l1 ++ l2) = m (l1 ++ [0]) + m (l2)

• m (n :: l) ≤ n!

• We first show that for each S ∈ {S ∈ S | S is gas descending} that m(S) ≥ 0. By induction
on the size of S.

1. Let S = [s]. Then m([s]) = ((getGas−(s) + 2) ∗ 2)! ≥ 0, since getGas−(s) ≥ −1.

2. Let S = S · [s] and |S | > 0. Let in the following be f = λs. (getGas−(s) + 2) ∗ 2 Then
m(S) = m (f(s) :: rev(map(f , S))) = (f(s) − 1)! + m (rev(map(f , S)) = (f(s) −
1)! + m(S) ≥ 0 since by the inductive hypothesis m(S) ≥ 0 and also (f(s) − 1)! ≥ 0
(since getGas−(s) ≥ −1).

• We now show that if S ≺ S then also m(S) < m(S). Let S ≺ S . By definition 14, hence
there are some S1, S , U such that (A1) |S1| > 0, (A2) S = S1 ++ U , (A3) S = S2 ++ U ,
(A4) |S2| > 0 ⇒ getGas−(last(S1)) < getGas−(last(S2)). We first perform a case distinction
on |S2|. Let in the following be f = λs. (getGas−(s) + 2) ∗ 2

179

A. APPENDIX TO CHAPTER 2

1. If |S2| = 0 then we know that |U | > 0 (since |S | > 0) and so U = u :: U for some u,
U . Further we know that

m(S) = m (rev(map(f , S1 ++ U)))
= m (rev(map(f , U) ++ rev(map(f , S1)))
= m (rev(map(f , U)) ++ [0]) + m (rev(map(f , S1)))
= m (rev(map(f , u :: U)) ++ [0]) + m (rev(map(f , S1)))
= m (rev(map(f , U)) ++ [f(u), 0]) + m (rev(map(f , S1)))
= m (rev(map(f , U)) ++ [0]) + m ([f(u), 0]) + m (rev(map(f , S1)))
= m (rev(map(f , U)) ++ [0]) + (f(u) − 1)! + m (rev(map(f , S1)))

Further we have

m(S) = m (rev(map(f , U)))
= m (rev(map(f , u :: U)))
= m (rev(map(f , U)) ++ [f(u)])
= m (rev(map(f , U)) ++ [0]) + m ([f(u)])
= m (rev(map(f , U)) ++ [0]) + (f(u))!

It is hence sufficient to show that (f(u) − 1)! + m (rev(map(f , S1))) < (f(u))! Since
all elements in map(f , S1) need to be smaller or equal than f(u) − 2, we also know that
m (rev(map(f , S1))) ≤ (f(u) − 2)!. Since we know that (n − 1)! + (n − 2)! < n! for
all n > 0 we can conclude that

(f(u) − 1)! + m (rev(map(f , S1))) ≤ (f(u) − 1)! + (f(u) − 2)!
< (f(u))!

2. If |S2| > 0 then we know that S1 = S1 ++ s1 for some S1 and s1 and S2 = S2 ++ s2 for
some S2, s2 and getGas−(s1) < getGas−(s2). Hence we know that

m(S) = m (rev(map(f , S1 ++ U)))
= m (rev(map(f , U) ++ rev(map(f , S1)))
= m (rev(map(f , U)) ++ [0]) + m (rev(map(f , S1)))
= m (rev(map(f , U)) ++ [0]) + m (f(s1) :: rev(map(f , S1)))

and

m(S) = m (rev(map(f , S2 ++ U)))
= m (rev(map(f , U) ++ rev(map(f , S2)))
= m (rev(map(f , U)) ++ [0]) + m (rev(map(f , S2)))
= m (rev(map(f , U)) ++ [0]) + m (f(s2) :: rev(map(f , S2)))

It is hence sufficient to show that m (f(s1) :: rev(map(f , S1))) < m (f(s2) :: rev(map(f , S2)))
We do another case distinction on the lengths of S1 and S2:

180

A.6. Properties of the Small-step Semantics

a) If |S1| = |S2| then

m (f(s1) :: rev(map(f , S1))) = m ([f(s1)])
= (f(s1))!
< (f(s2))!
= m ([f(s2)])
= m (f(s2) :: rev(map(f , S2)))

Note that (f(s1))! < (f(s2))! since f(s1) < f(s2) (since getGas−(s1) < getGas−(s2))
and f(s1) ≥ 2.

b) If |S1| = 0 and |S2| > 0 then

m (f(s1) :: rev(map(f , S1))) = m ([f(s1)])
= (f(s1))!
< (f(s2) − 1)!
≤ (f(s2) − 1)! + m (rev(map(f , S2)))
= m ([f(s2), 0]) + m (rev(map(f , S2)))
= m (f(s2) :: rev(map(f , S2)))

Note that (f(s1))! < (f(s2) − 1)! since f(s1) < f(s2) − 1 (and f(s1) ≥ 1). More
precisely:

f(s1) < f(s2) − 1
⇔ (getGas−(s1) + 2) ∗ 2 < (getGas−(s2) + 2) ∗ 2 − 1

⇔ 2 ∗ getGas−(s1) + 4 < 2 ∗ getGas−(s2) + 3
⇔ 2 ∗ getGas−(s1) + 1 < 2 ∗ getGas−(s2)
⇔ 2 ∗ getGas−(s1) + 2 ≤ 2 ∗ getGas−(s2)

⇔ 2 ∗ (getGas−(s1) + 1) ≤ 2 ∗ getGas−(s2)
⇔ getGas−(s1) + 1 ≤ getGas−(s2)

⇔ getGas−(s1) < getGas−(s2)

3. If |S1| > 0 and |S2| = 0 then

m (f(s1) :: rev(map(f , S1))) = m ([f(s1), 0]) + m (rev(map(f , S1)))
= (f(s1) − 1)! + m (rev(map(f , S1)))
≤ (f(s1) − 1)! + (f(s1))!
< (f(s1) + 1)!
≤ (f(s2))!
= m ([f(s2)])
= m (f(s2) :: rev(map(f , S2)))

181

A. APPENDIX TO CHAPTER 2

Note that (f(s1) + 1)! ≤ (f(s2))! since f(s1) + 1 ≤ f(s2). In particular:

f(s1) + 1 ≤ f(s2)
⇔ (getGas−(s1) + 2) ∗ 2 + 1 ≤ (getGas−(s2) + 2) ∗ 2

⇔ 2 ∗ getGas−(s1) + 5 ≤ 2 ∗ getGas−(s2) + 4
⇔ 2 ∗ getGas−(s1) + 1 ≤ 2 ∗ getGas−(s2)

⇔ 2 ∗ getGas−(s1) < 2 ∗ getGas−(s2)
⇔ getGas−(s1) < getGas−(s2)

4. If |S1| > 0 and |S2| > 0 then

m (f(s1) :: rev(map(f , S1))) = m ([f(s1), 0]) + m (rev(map(f , S1)))
= (f(s1) − 1)! + m (rev(map(f , S1)))
≤ (f(s1) − 1)! + (f(s1))!
< (f(s2) − 1)!
≤ (f(s2) − 1)! + m (rev(map(f , S2)))
= m ([f(s2), 0]) + m (rev(map(f , S2)))
= m (f(s2) :: rev(map(f , S2)))

Note that (f(s1) − 1)! + (f(s1))! < (f(s2) − 1)! since (f(s1) − 1)! + (f(s1))! <
(f(s1) + 1)! (and f(s1) + 1 ≤ 3) and (f(s1) + 1)! ≤ (f(s2) − 1)! which holds since
(f(s1) + 1)! < (f(s2) − 1)!. More precisely

(f(s1) + 1)! < (f(s2) − 1)!
⇔ (getGas−(s1) + 2) ∗ 2 + 1 ≤ (getGas−(s2) + 2) ∗ 2 − 1

⇔ 2 ∗ getGas−(s1) + 5 ≤ 2 ∗ getGas−(s2)3
⇔ 2 ∗ getGas−(s1) + 2 ≤ 2 ∗ getGas−(s2)

⇔ 2 ∗ (getGas−(s1) + 1) ≤ 2 ∗ getGas−(s2)
⇔ (getGas−(s1) + 1) ≤ getGas−(s2)

⇔ getGas−(s1) < getGas−(s2)

Lemma 11 (Termination). Let Γ be a transaction environment and S be a call stack. Then there
exists s and π such that final (s) and Γ S

π−→∗ [s].

Proof. By Noetherian induction on . By Lemma 2 we know that either

1. S = [s] and final (s). In this case the claim trivially holds.

182

A.6. Properties of the Small-step Semantics

2. Γ S
a−→ S . In this case we know by Lemma 7 that S S . Consequently we can

use the inductive hypothesis for S and hence know that Γ S
π−→∗ [s] and so also

Γ S
a·π−−→∗ [s].

Lemma 12 (Local Termination). Let Γ be a transaction environment, S be a call stack, and s an
execution state. Then there exists s and π such that final (s) and Γ s ++ S

π−→∗
s ++ S.

Proof. By Noetherian induction on . By Lemma 3 we know that either

1. final (s). In this case the claim trivially holds.

2. Γ s :: S
a−→ S ++ S for some S with 1 ≤ |S | ≤ 2. In this case we know by Lemma 7

that s :: S S ++ S. Further we know that either

a) S = [s]. In this case we can use the inductive hypothesis to conclude that Γ
s :: S

a·π−−→∗
s :: S for some s such that final (s).

b) S = [s1, s]. In this case we can use the inductive hypothesis to conclude that
Γ s1 :: s :: S

π1−→∗
s2 :: s :: S for some s2 such that final (s2). By the definition

of the small-step semantics we further know that Γ s2 :: s :: S → s3 :: S and
consequently also by Lemma 7 that s :: S s3 :: S so that we can use the inductive
hypothesis again to conclude that Γ s3 ++ S

π2−→∗
s ++ S for some s such that

final (s). This concludes the proof since in sum we have that Γ s ++ S
a·π1·π2−−−−→∗

s ++ S.

Using Lemma 5 we can formally characterize how call stacks are preserved during execution:

Lemma 13 (Call Stack Preservation during Execution). Let (Γ, S) be a configuration such that
Γ U ++ S →n U ++ S. Then the following properties hold:

• if U = then U =

• if U = and U = then there are s ∈ S, c ∈ C such that Γ S → sc :: S and
Γ sc :: S →n−1 U ++ S.

• if U = and U = and Γ U ++ S →m S and Γ S →n−m U ++ S for 0 ≤ m ≤ n
then there exists U such that |U | > 0 and S = U ++ S

Proof. We show the three properties in separation:

• We distinguish the cases n = 0 and n > 0.

183

A. APPENDIX TO CHAPTER 2

– If n = 0 then U = U and hence the property trivially holds.

– Let n > 0 and U = . By Lemma 7 we know that U ++ S S. Hence by Def-
inition 14 we have that there are some V , S1, S2 such that (A1) |S1| > 0, (A2)
U ++ S = S2 ++ V , (A3) S = S1 ++ V , and (A4) |S2| > 0 ⇒ getGas−(last(S1)) <
getGas−(last(S2)). By (A2) and (A3) we get that U ++ S1 ++ V = S2 ++ V and hence
S2 = U ++ S1. So from (A4) and (A1) we then know that |S2| > 0 and so also
getGas−(last(S1)) < getGas−(last(U ++ S1)) and as a consequence given (A1) also
getGas−(last(S1)) < getGas−(last(S1)) which gives a clear contradiction.

• To satisfy the premise, it needs to holds that n > 0. Let U = and U = . Then by the
assumption we know that Γ S → S and Γ S →n−1 U ++ S. So by Lemma 7, we know
that S S U ++ S and by Lemma 6 we have that there is some S3 with |S3| > 0 such
that S = S ++ S. Consequently we have that Γ S → S ++ S. By case distinction on the
small step rules we know that this means that S3 = [sc] for some annotated execution state sc.
This closes the case.

• Let U = , U = , and Γ U ++ S →m S and Γ S →n−m U ++ S for 0 ≤ m ≤ n.
Then we know by Lemma 7 that U ++ S S and S U ++ S. We distinguish two cases:

– Let (A) U ++ S = S . Then the property trivially holds since by assumption |U | > 0.

– If U ++ S S the property immediately follows from Lemma 6.

Another observation is that the influence of the call stack on the contract’s execution is limited to
the size of the call stack. Depending on the call stack size, an error in the top-level execution
might occur due to exceeding the call stack limit.

Formally, we capture this property in the following lemma:

Lemma 14 (Call Stack Indifference up to Size). Let s be an execution state, Γ a transaction
environment and let S, S and U be call stacks such that |S| = |U |. Then it holds for all n ∈ N
that

Γ s :: S →n S ++ S ⇔ Γ s :: U →n S ++ U

Proof. By induction on n. Since both directions are fully symmetric we only show one direction.

1. Let n = 0. Then S = [s] and hence the claim trivially holds.

2. Let n > 0. Then (A1) Γ s :: S →n−1 S∗ and (A2) Γ S∗ → S ++ S. Then
by Lemma 6 we know that there is some S3 such that |S3| > 0 and S∗ = S3 ++ S. By the
inductive hypothesis and (A1) we hence know that also Γ s :: S →n−1 S3 ++ U . Since
|S3| > 0 we know that S3 = s3 :: S3 for some s3 and S3. We perform a case distinction
on the execution step performed in (A2)

184

A.6. Properties of the Small-step Semantics

a) If a local execution step is performed then S = s4 :: S3 and correspondingly also
Γ s3 :: S3 ++ U → s4 :: S3 ++ U

b) If an internal transaction is initiated then S = s4 :: S3 and consequently also
Γ s3 :: S3 ++ U → s4 :: s3 :: S3 ++ U .

c) If an internal transaction is completed then we know that S3 = s4 :: S4 and S =
s5 :: S4. So consequently also Γ s3 :: s4 :: S4 ++ U → s5 :: S4 ++ U .

A.6.1 Forms of States

We introduce the notion of a call state for characterizing those states that invoke internal transac-
tions.

Definition 17 (Call States). A regular execution state s is a call state if for all Γ and S, such that
|S| < 1024, it holds that Γ s :: S → s :: s :: S for some s .

Intuitively, an execution state is a call state if it satisfies all preconditions for a transaction
initiating instruction.

Lemma 15. Let s be a call state. Then s.ι.code[s.µ.pc] ∈ Instcall.

Proof. Proof by simple case distinction on the small step rules.

Lemma 16 (Alternative Characterization of Call States). A regular execution state s is a call
state there exist Γ and S, such that |S| < 1024 and it holds that Γ s :: S → s :: s :: S for
some s .

Proof. To show the equivalence of the two characterizations, we show the two directions in
separation.

1. Let s be a call state Definition 17. Pick an arbitrary transaction environment and S = .
Then clearly Γ s :: S → s :: s :: S for some s by definition.

2. Let s be an execution state and Γ s :: S → s :: s :: S for some s for some Γ, S and s
such that |S| < 1024. Let now Γ and S be an arbitrary transaction environment and call
stack such that |S | < 1024. We show that also Γ s :: S → s :: s :: S . By Lemma 15
we know that s.ι.code[s.µ.pc] ∈ Instcall. By examination of the small-step rules we can
immediately see that all rules that apply in this case are independent from the transaction
environment and the call stack up to the fact that the call stack limit is reached. This case
however is excluded since |S| < 1024 and |S | < 1024. Hence we can conclude that the
very same internal transaction initiating small step can be performed for S and Γ as it can
for S and Γ.

185

A. APPENDIX TO CHAPTER 2

In a regular execution all elements of a call stack but its top element are call states.

Lemma 17. Let Γ s :: S →n s :: S ++ S, then every execution state s ∈ S is a call state.

Proof. By induction on n.

1. If n = 0 then s :: S = s :: S ++ S. In this case S = and hence the claim follows
trivially.

2. If n > 0 then (A1) Γ s :: S → S∗ and (A2) Γ S∗ →n−1 s :: S ++ S. In this case
we know due to Lemma 6 that there exists some S3 such that |S3| > 0 and S∗ = S3 ++ S.
We perform a case distinction on the small step in (A1)

• In case of a local execution step we have that S∗ = s :: S. Consequently the claim
immediately follows from the inductive hypothesis.

• In case of initiating an internal transaction we have have that S∗ = s :: s :: S and so by
definition s is a call state. By the inductive hypothesis we know that all s∗ ∈ S are call
states what shows the claim.

Note that we can exclude the case of an internal transaction completing a small step since
we know that S∗ = S3 ++ S and hence the underlying call stack can’t be modified as it
would happen in this case.

Whenever some configuration is reachable, the execution before stepped through the call states
on the call stacks. This property is formally captured by the following lemma:

Lemma 18. Let Γ S →n (S1 ++ S2) ++ S. Then there exists some m ∈ N such that
Γ S →m S2 ++ S and Γ S2 ++ S →n−m (S1 ++ S2) ++ S.

Proof. Note that if |S1| = 0 the claim trivially holds for m = n. We hence in the following
assume |S1| > 0, so S1 = exstate1 :: S1 for some s1 and S1. By induction on n:

1. If n = 0 then S = (S1 ++ S2) ++ S and hence S1 = S2 = . So the claim trivially
follows for m = 0.

2. if n > 0 then (A1) Γ S →n−1 S∗ and (A2) Γ S∗ → (S1 ++ S2) ++ S. By Lemma 6
we know that there is some S3 such that S∗ = S3 ++ S and |S3| > 0. So in particular we
know that S∗ = s3 :: S3 for some s and S3. We make a case distinction on the small step
performed in (A2)

186

A.6. Properties of the Small-step Semantics

a) In case of a local execution step we know that s1 :: S1 · S2 = s4 :: S3. And so also
S3 = (s3 :: S1) ++ S2. So we can apply the inductive hypothesis to conclude the
case.

b) In case of the initiation of an internal transaction we know that s1 :: S1 · S2 = s4 ::
s3 :: S3 and so also S3 = S1 ++ S2. So again the claim follows by the inductive
hypothesis

c) In case of completing an internal transaction we know that S3 = s4 :: S3 and
s1 :: S1 · S2 = s5 :: S3 . So we know that S3 = ([s3, s4] ++ S1) ++ S2 and hence
again the claim follows by the inductive hypothesis.

We introduce the notion of an initial execution state. Whenever a contract is called or created,
the execution of the contract or initialization codes starts in a fresh machine state at program
counter zero with the local memory initialized to all zeros, the machine stack being empty, and
the number of active words set to zero. We characterize execution states with machine states of
this form as initial:

Definition 18 (Initial Execution States). An execution state s ∈ S is called initial if it is of the
form ((g, 0, λx. 0, 0,), ι, σ) for some g ∈ N, ι ∈ I and σ ∈ Σ.

We can state the property that the execution of EVM bytecode always starts at an initial state. Or
more precisely: An execution of a contract c leading to a reachable execution state must have
passed an initial state of c before.

Lemma 19. Let Γ s :: S →n s :: S ++ S such that n > 0 and |S | > 0. Then either

• there is an initial execution si state such that Γ s :: S →m si :: S ++ S and Γ
si :: S ++ S →n−m s :: S ++ S for some 0 < m ≤ n, or

• s = EXC and Γ s :: S →n−1 S ++ S and Γ S ++ S → s :: S ++ S

Proof. By induction on n

1. If n = 1 then we know by a case distinction on the small step rules that S = [s] and that
either s = EXC (since the transaction initiation failed at call time) or s is an initial state.
This concludes the case.

2. If n > 1 then (A1) Γ s :: S →n−1 S∗ and (A2) Γ S∗ → s :: S ++ S by 6 we
know that S∗ = S3 ++ S for some S3 with |S3| > 0. Hence in particular we have that
S3 = s3 :: S3 for some s3 and S3. We make a case distinction on the size of S3:

a) If |S3| = 0 then we know from (A2) that S = [s3] and the claim follows by the the
same reasoning as done in the base case.

187

A. APPENDIX TO CHAPTER 2

b) If |S3| > 0 then we do a case distinction on the execution step performed in (A2)

• If a local execution step is performed then we have that S = S3 and s3. Hence
by the inductive hypothesis we know that Γ s :: S →m si :: S ++ S and Γ
si :: S ++ S →n−1−m s3 :: S ++ S for some m ≤ n − 1. and so consequently
the first case of the claim holds .

• If an internal transaction is initiated then we know that S = s3 :: S3 and s3 = EXC.
The claim hence follows by the same reasoning as performed in the base case.

• If an internal transaction is completed then we know that S3 = s4 :: S4 and S = S4
and so also |S4| > 0. By Lemma 18 we know that there is some m ≤ n − 1 such
that Γ s :: S →m s4 :: S4 ++ S We can hence apply the inductive hypothesis
for m and obtain two possible cases:

i. Γ s :: S →m si :: S4 ++ S and Γ si :: S4 · S →m −m s4 :: S4 ++ S
for some 0 < m ≤ m . This concludes the case.

ii. s4 = EXC. This case leads to a contradiction since by Lemma 17 we know
that s4 needs to be a call state and hence cannot be EXC.

This lemma states that each reachable execution state started in an initial state (unless it is one of
the special cases of a transaction-initiating transaction that failed at call time and for this reason
pushed EXC immediately to the stack.

Lemma 20. Let (Γ, s :: S) be a reachable configuration and s be a regular execution state. Then
there exists an initial execution state si such that (Γ, si :: S) is a reachable configuration and

Γ si :: S →∗ s :: S

Proof. Since (Γ, sc :: S) is reachable, we know that there exists some si, ci such that (Γ, si
ci) =

initializeT(T , σ, H, g) for some transaction T , global state σ, block header H and gas g and
Γ si

ci :: →∗ sc :: S. We do a case distinction on the call stack S.

• If S = then we are done, since by definition of initializeT, si is initial

• If S = s c :: S , then the claim immediately follows from Lemma 19.

A.6.2 Hash Collisions During Contract Creation

In the original EVM semantics it was possible that an already deployed contract was changed since
due to a hash collision, a new contract would be created at the very same address. Accounting
for this behavior would undermine all trust assumptions on existing contracts. However, hash
collisions only occur with a negligible probability what makes it a reasonable assumption to
exclude such collisions for a (small) fixed set of contracts.

188

A.6. Properties of the Small-step Semantics

Definition 19 (Contracts for Addresses). The contracts for a set of addresses AT in an execution
state s (written codesAT

(s)) are defined as follows:

codesAT
(s) ={(a, s.σ(a).code) | a ∈ AT ∧ s.σ(a) = ⊥ ∧ s = EXC}

∪ {(a, ⊥) | a ∈ AT ∧ s.σ(a) = ⊥ ∧ s = EXC}

Definition 20 (Collision-free Execution). A (n-step) execution Γ s :: S →n S ++ S is
collision-free for the set AT of addresses if for all m ≤ n and all call stacks S such that
Γ s :: S →m S ++ S it holds that for all s ∈ S that

codesAT
(s) = codesAT

(s)

Intuitively, in a collision-free execution for AT the code of trusted addresses does not change in
the course of the execution.

A.6.3 Annotations

As previously discussed, we assume execution states to be annotated with the contracts that they
are currently executing. We formally define contract annotations in the following.

Definition 21 (Contract Annotations). Let Γ s :: S →n s :: S ++ S be a small-step execution
starting from regular execution state s. Then execution state s is annotated with contract c
(written s c) if one of the following holds

1. isRegular(s) and a = s .ι.actor and c = (a, s.σ(a).code)

2. final (s) and Γ s :: S →n−1 s :: S ++ S and Γ s :: S ++ S → s :: S ++ S for
some regular execution state s such that s c

3. s = EXC and s = s :: S for some s and S such that s c , and Γ s :: S →n−1

s :: S ++ S and Γ s :: S ++ S → s :: s :: S ++ S

Note that by this definition, the annotation of every execution state is well-defined since the only
way of entering a final state is either to step there from a regular execution state or to fail at call
time when performing a transaction initiating instruction. These cases are covered by conditions
(2) and (3).

These annotations need to be consistent with the current execution state in the sense that they
correspond to the active account of the execution state and that they present a valid contract in
the global state.

Definition 22 (Annotation Consistency). An execution state s is consistent with contract annota-
tion c if the following two conditions hold

1. isRegular(s) =⇒ s.ι.actor = c.addr

189

A. APPENDIX TO CHAPTER 2

2. isRegular(s) ∨ isHalt(s) =⇒ s.σ(c.addr).code = c.code

The consistency of annotations is preserved over execution.

Lemma 21 (Preservation of Annotation Consistency). Let s be consistent with c and Γ
sc :: S →n S ++ S for some Γ, S, and S . Then for all s c ∈ S it holds that s is consistent
with c .

Proof. By induction on n.

1. If n = 0 then sc :: S = S ++ S and hence S = [sc]. Consequently the claim trivially
holds.

2. If n > 0 then (A1) Γ sc :: S →n−1 S∗, and (A2) Γ S∗ → S ++ S. By 6 we know
that there is some S3 such that |S3| > 0 and S∗ = S3 ++ S. By the inductive hypothesis
we hence know that for all s c ∈ S3 we have that s is consistent with c . Since |S3| > 0
we know that S3 = s3

c :: S3 for some s3 and S3. We make a case distinction on the small
step performed in (A2):

a) In case of a local execution step we know that S = s4
c :: S3 for some s4 that

has the same execution environment and account codes as s3. Hence from s3 being
consistent with c we can conclude that s4 is consistent with c what concludes the
case.

b) In case of the initiation of an internal transaction we know that S = s4
c :: s3

c :: S3.
By the definitions of the corresponding small step rules we know that in this case the
annotation is computed by looking up the code of the address being set as s4.ι.actor,
and hence trivially s4 is consistent with c . This concludes the case.

c) In case of completing an internal transaction we have that S3 = s4
c :: S3 and

S = s5
c :: S3 . We know that s5 is consistent with c since, in case of an

exception, the global state and the execution environment stay unchanged, and
otherwise, the annotation is updated according to the global state in the halting state.

Contract annotations reflect the active contract that is executed. The active account of an execution
state cannot be changed during execution. Formally, this is stated by the following lemma:

Lemma 22 (Execution Environment Persistence). Let Γ S1 ++ s :: S →n S2 ++ s :: S such
that s, s are regular execution states. Then it holds that s.ι = s .ι.

Proof. Proof by induction on the number n of small steps.

1. For n = 0 the property trivially holds since s = s .

190

A.6. Properties of the Small-step Semantics

2. For n > 0 we know that (A1) Γ S1 ++ s :: S →n−1 S∗ and (A2) Γ S∗ →
S2 ++ s :: S. By Lemma 6 we know that there is some S3 such that |S3| > 0 and
S∗ = S3 ++ S. Since |S3| > 0 we in particular know that S3 = S3 ++ [s3] for some S3
and s3. We do a case distinction on |S3|.

a) Let |S3| = 0. We do another case distinction on the execution step performed in (A2)

• In case of a local execution step we know that s3 is a regular execution state so we
can apply the inductive hypothesis on (A1) what gives us s.ι = s3.ι. Further we
have in this case that S2 = and either s is a terminal state or clearly s .ι = s3.ι
since local execution states do not affect the execution environment.

• In case of the initiation of an internal transaction we have that s3 is a regular
execution state and s = s3 and S2 = [s4] for some s4. Hence we can apply the
inductive hypothesis on (A1) what gives us s.ι = s3.ι. and concludes the case.

• The case of completing an internal transaction does not need to be considered since
this would alter the substack S.

b) If |S3| > 0 then we know by Lemma 17 that s3 is a call state and hence a regular
execution state. Hence we can apply the inductive hypothesis on (A1) yielding that
s.ι = s3.ι. We do another case distinction on the execution step performed in (A2)

• If it is a local execution step, or the initiation of an internal transaction, or the
completion of an internal transaction and |S3| > 1, then we have that s = s3 and
hence the claim immediately follows.

• If an internal transaction is completed and S3 = [s4] for some s4 then we know
that S2 = . Futher from Lemma 17 we know that s3 is a call state and hence also
a regular execution state, so we can apply the inductive hypothesis that give us
s.ι = s3.ι. Further we know that s .ι = s3.ι since applying return effects does not
alter the execution environment.

Note that as the execution environment also the address of the annotation is persistent. This is not
an immediate consequence of the persistence of the execution environment since also terminal
execution states carry annotations.

Lemma 23 (Annotation Address Persistence). Let Γ S1 ++ sc1 :: S →n S2 ++ s c2 :: S.
Then it holds that address (c1) = address (c2).

Proof. If s and s are regular execution state then the claim immediately follows from Lemma 22
since address (c1) = s.ι.actor and address (c2) = s .ι.actor. We make a case distinction:

1. If s is no regular execution state then S1 = (due to Lemma 17). Further we know
that n = 0 since otherwise we would have that (A1) Γ sc1 :: S → S∗ and (A2)
Γ S∗ →n−1 S2 ++ s c2 :: S. However if s is a terminal state, then the step in (A2)

191

A. APPENDIX TO CHAPTER 2

would complete an internal transaction and hence S = s1
c :: S for some s1

c and S and
S∗ = s2

c :: S for some s2 = s1. However by Lemma 6 we know that S∗ = S3 ++ S.
This clearly yields a contradiction since S∗ = S3 ++ S = S3 ++ s1

c :: S = s2
c :: S =

S∗.

2. If s is a regular execution state and s is no regular execution state then we know that n > 0
(since s = s) and (due to Lemma 17) that S2 = . Further one of the following would
need to hold

a) There must have been a regular execution state s1 such that Γ s1
c2 :: S → s c2 :: S.

Then by Lemma 22 we can show the claim since we know that address (c1) =
s.ι.actor and address (c2) = s1.ι.actor.

b) Γ sc1 :: S →n−1 S and Γ S → s c2 :: S and s = EXC. In this case however
by 6 we know that S = S3 ++ S for some S3 such that |S3| > 0 what is clearly
contradictory.

Even though the active account cannot be changed within the course of the execution, in case of a
hash collision, the contract annotation might differ in this code. However, in the absence of hash
collisions for the annotated contract, this is not possible:

Lemma 24 (Annotation Persistence). Let Γ S1 ++ sc1 :: S →∗ S2 ++ s c2 :: S be a collision-
free execution of AT and address (c1) ∈ AT . Then it holds that c1 = c2.

Proof. If s and s are regular execution states then the claim immediately follows from Lemma 22
and Definition 20 since address (c1) = s.ι.actor and address (c2) = s .ι.actor, and code (c1) =
s.σ(address (c1)).code and code (c2) = s .σ(address (c2)).code. So by Lemma 22 we have
that s.ι.actor = s .ι.actor and by Definition 20 we know that s.σ(address (c1)).code =
s .σ(address (c1)).code. We make a case distinction for the other shapes of s and s :

1. If s is no regular execution state then S1 = (due to Lemma 17). Further we know
that n = 0 since otherwise we would have that (A1) Γ sc1 :: S → S∗ and (A2)
Γ S∗ →n−1 S2 ++ s c2 :: S. However if s is a terminal state, then the step in (A2)
would complete an internal transaction and hence S = s1

c :: S for some s1
c and S and

S∗ = s2
c :: S for some s2 = s1. However by Lemma 6 we know that S∗ = S3 ++ S.

This clearly yields a contradiction since S∗ = S3 ++ S = S3 ++ s1
c :: S = s2

c :: S =
S∗. Given that n = 0 we have sc1 = s c1 what proves the claim.

2. If s is a regular execution state and s is no regular execution state then we know that n > 0
(since s = s) and (due to Lemma 17) that S2 = . Further one of the following would
need to hold

192

A.7. Proof Technique for Call Integrity

a) There must have been a regular execution state s1 such that Γ s1
c2 :: S →

s c2 :: S. Then by Lemma 22 and Definition 20 since address (c1) = s.ι.actor and
address (c2) = s1.ι.actor, and code (c1) = s.σ(address (c1)).code and code (c2) =
s1.σ(address (c2)).code. So by Lemma 22 we have that s.ι.actor = s1.ι.actor and
by Definition 20 we know that s.σ(address (c1)).code = s1.σ(address (c1)).code.

b) Γ sc1 :: S →n−1 S and Γ S → s c2 :: S and s = EXC. In this case however
by 6 we know that S = S3 ++ S for some S3 such that |S3| > 0 what is clearly
contradictory.

In order to justify the decision to take states that are consistent with their annotation c as an
over-approximation of reachable states, we observe that each reachable execution state satisfies
these properties.

Lemma 25 (Annotation Consistency of Reachable States). Let (Γ, sc :: S) be a reachable
configuration. Then s is consistent with c.

Proof. If (Γ, sc :: S) is reachable then there exists an initial state si such that (Γ, si
ci) =

initializeT(T , H, σ, g) for some T , H , σ and g, and Γ [si
ci] →∗ sc :: S. By the definition

of initializeT we know that si is consistent with ci and hence by Lemma 21 we know that s is
consistent with c.

A.7 Proof Technique for Call Integrity

In this section, we formalize the correctness proof for the proof strategy for call integrity Theo-
rem 1.

For proving that the three properties are sufficient for call integrity, we will need to show a
strengthened version of the original statement.

For formulating this statement, we will first need to define some basic notions.

Definition 23 (Local Execution Step). We say that an execution step Γ S → S is local if
S = s1

c :: S∗ and S = s2
c :: S∗ for some execution states s1

c, s2
c and some call stack S∗. We

write

Γ S → S

to denote a local execution step.

Lemma 26 (Preservation of Contract Codes by Local Execution). Let Γ s :: S → s :: S.
Then codesA(s) = codesA(s)

Proof. By an exhaustive case analysis on the small-step relation.

193

A. APPENDIX TO CHAPTER 2

Note that in particular this implies:

Lemma 27 (Preservation of Contract Codes by Local Multi-step Execution). Let Γ s :: S −→n

s :: S. Then codesA(s) = codesA(s)

Proof. By induction on n.

1. If n = 0 then s = s and the claim trivially holds.

2. If n > 0 then Let Γ s :: S −→n−1 s :: S. and Γ s :: S → s :: S. So the claim
follows from Lemma 26 and the inductive hypothesis.

For formulating the strengthened statement, we will define what it means for to execution state of
a contract c to agree on their call behavior with respect to c.

Definition 24 (Execution State Agreement on c-Call Behavior). We say that two execution states
s, t (that are consistent with c) have the same call behavior w.r.t c (written s ∼callsc t) if the
following holds for all Γ, S:

Γ sc :: S
π−→∗

sf
c :: S ∧ final (sf)

⇒ Γ tc :: S
ρ−→∗

tf
c :: S ∧ final (tf)

⇒ π ↓callsc= ρ ↓callsc

In the following we will write π =callsc ρ for π ↓callsc= ρ ↓callsc .

We introduce some other notions

• For two execution states s, t being equal up to the contract codes in some set of addresses AC

we write s =AC−codes t which is formally defined as

s = EXC ∧ t = EXC

∨ s = HALT(σ, g, d, η) ∧ t = HALT(σ , d, g, η) ∧ σ =AC−codes σ

∨ s = (µ, ι, σ, η) ∧ t = (µ, ι, σ , η) ∧ σ =AC−codes σ

where σ =AC−codes σ is defined as follows:

(∀a. a ∈ AC ⇒ σ(a) = σ (a))
∧ (∀a. a ∈ AC ⇒ σ(a).b = σ (a).b ∧ σ(a).stor = σ (a).stor ∧ σ(a).n = σ (a).n)

194

A.7. Proof Technique for Call Integrity

Code Independence We spell out in more detail the AT -code independence again. Technically,
we do not want to only allow for different static code updates, but also for such that change over
time. Consider e.g. the case where a contract reads the size of the code of an untrusted contract
a1, performs a call to another untrusted contract a2 and then afterward compares the previously
read code size of a1 with the new one. Now usually, the code sizes should be the same. However,
there is the possibility that new contracts are created and hence change their code. So if now a2
actually created the contract a1, then contract a2 could influence the call behavior of contract c
by creating contracts with different codes. This attack, however, is not relevant in practice since
the creator of a contract cannot choose the address at which the contract will be created. Still,
we should account for this scenario. By allowing for different code updates in the different local
execution, we capture this case.

We in the following characterize small step execution under local code updates. We will, to this
end, assume fs to be an infinite sequence of local code updates of the form f ∈ A → [B8]. Further
we will denote by Γ s :: S

π−→
f

n
sf :: S a local execution using the local code update f when

accessing (other) contract codes. Note that the only way for a local execution to access the codes
of other contracts is to use EXTCODESIZE and EXTCODECOPY, so only for these opcodes,
the local code update will be used. Further, note that these opcodes, in the case, that the contract
whose code is accessed does not exist return the same result as if the contract would have the
empty code. Hence it is easy to locally mimic with a code update the original execution behavior.

Γ s :: S
π−→
f

n
sf :: S

Γ s :: S
π−−→

f::fs

n
sf :: S

Γ s :: S
π1−→
f

n
s1 :: S

Γ s1 :: S
a−→ s2 :: s1 :: SΓ s2 :: s1 :: S

π2−→m
S ++ s1 :: S

Γ s :: S
f::fs−−−−→

π1·a·π2

n+m+1
S ++ s1 :: S

Γ s :: S
π1−→
f

n
s1 :: S

Γ s1 :: S
a−→ s2 :: s1 :: S Γ s2 :: s1 :: S

π2−→m
s3 :: s1 :: S

Γ s3 :: s1 :: S → s4 :: S Γ s4 :: S
π3−→
fs

k
S ++ S

Γ s :: S
π1·a·π2·π3−−−−−−→

f::fs

n+m+k+2
S ++ S

In particular, since the contract code in the global state is invariant over local executions, we can
from each execution state s derive a local update sequence fss such that

Γ s :: S
π−→n

S ++ S ⇔ Γ s :: S
π−→

fss

n
S ++ S

Effect Independence To reason more smoothly about effect independence, we define the
notion of return update. Intuitively a return update describes the effects that the completion of an
internal transaction has on the callee state.

195

A. APPENDIX TO CHAPTER 2

Definition 25 (Return Update). A function rt × S → S is called the return update induced by t
if the following condition holds:

rt(s) = s ⇔ ∃ΓS. Γ t :: s :: S → s :: S

Note that return updates are well-defined since the small step relation is functional on calls
tacks and indifferent towards the underlying call stacks (see Lemma 14). Further transaction
completing execution steps are also indifferent towards transaction environments.

Further we introduce the following definition:

Definition 26 (Code Update). We define the substitution of the codes in execution state s by those
in t (written s[codes(t)]) as follows:

s[codes(t)] :=

EXC s = EXC
s t = EXC
s[σ → s.σ a → s.σ(a)[code → t.σ(a).code] a∈A] otherwise

We now can use these notions to give an alternative characterization of AT -effect independence

Definition 27 (AT -effect Independence). A contract c ∈ C is AT -effect independent of for a set
of addresses AT ⊆ A if for all reachable configurations (Γ, sc :: S) such that Γ sc :: S →
s c :: sc :: S for some s and address (c) ∈ AT , it holds that for all final states s , t with
codesA(s) = codesA(s) = codesA(t) that

rs (s) ∼callsc rt (s)

Single-entrancy Single-entrancy gives that a reentering execution cannot perform another
call. In particular, this implies that the trace of an internal transaction execution initiated by an
execution of c cannot contain any call actions.

We capture this property in the following lemma:

Lemma 28. Let (Γ, sc) be a reachable configuration and let c be single-entrant. Further let
Γ sc :: S →∗ s1

c :: sc :: S and Γ s1
c :: sc :: S

π−→∗
s2

c :: sc :: S. Then π ↓callsc= .

Proof. Assume towards contradiction that π ↓callsc= a · πcall for some call action a and call
trace πcall. Then there must have been some execution such that Γ s1

c :: sc :: S
π1−→∗

S
and π1 ↓callsc= and Γ S

a−→ S , and Γ S
π2−→∗

s2
c :: sc :: S, and π1 ↓callsc= πcall

By the definition of the small-step rules for transaction initiating instructions we know that
S = s3

c :: S . Further by Lemma 6 we know that there needs to be some S3 such that
S = S3 ++ sc :: S and |S3| > 0. So consequently S3 = s3c :: S3 for some s3c and S3. Since
a is a call action of contract c we can conclude that c = c. This immediately contradicts the
single-entrancy of c given that (Γ, sc :: S) is reachable.

196

A.7. Proof Technique for Call Integrity

Trusted Contracts We define all independence notions with respect to a set AT of trusted
contract addresses. For call integrity to hold, we need to assume that these contracts do not
depend on non-trusted contracts themselves. Otherwise, call integrity could be trivially broken
by, e.g., calling a trusted contract cT that is performing some computations based on an untrusted
contract cU . If then contract c shows different behavior depending on the result of cT this would
break call integrity even though c itself would satisfy AT -effect independence (since it would
only depend on the effects of a trusted contract code).

We hence define an integrity notion for trusted contracts that we will assume in the call integrity
proof.

Definition 28 (Result Integrity). A contract c ∈ C satisfies result integrity for a set of addresses
AT ⊆ A if for all reachable configurations (Γ, sc :: S), (Γ, s c :: S) with s =A/AT −codes s , it
holds that for all t, t

Γ sc :: S
π−→∗

tc :: S ∧ final (tc) ∧ Γ s c :: S
π−→

∗
t c :: S ∧ final (t c)

=⇒ t =A/AT −codes t

In the following, we will assume all small step executions to be collision-free for the set of trusted
contracts and the contract c for which the corresponding security notion is defined.

We finally prove the following lemma that implies call integrity

Lemma 29 (Call Behavior Agreement Invariance). Let c be a contract and let AT be a set
of addresses. Let (Γ, sc) and (Γ, tc) be reachable configurations and s ∼callsc t. Further let
(Γ, ŝc) and t̂c be reachable configurations such that ŝ =A/AT −codes s and t̂ =A/AT −codes t.
Further let c be single-entrant, AT -effect independent, and AT -code independent. Further let all
cT ∈ {(a, s.σ(a).code) | a ∈ AT } satisfy result integrity. Then also ŝ ∼callsc t̂.

Proof. Let (A1) s ∼callsc t, (A2) ŝ =A/AT −codes s, (A3) t̂ =A/AT −codes t, (A4) c be single-
entrant, (A5) c be AT -effect independent, and (A6) c be AT -code independent, and (A7) all cT ∈
{(a, s.σ(a).code) | a ∈ AT } satisfy result integrity. To show that ŝ ∼callsc t̂ by Definition 24,

we assume that (B1) Γ ŝc :: S
π̂−→∗

ŝf
c :: S, (B2) final (ŝf), (B3) Γ t̂c :: S

ρ̂−→
∗

t̂f
c :: S, and

(B4) final (t̂f). And show that p̂i =callsc ρ̂. We proceed by induction on π̂ ↓callsc .

• Let π̂ ↓callsc= . Then the small step execution in (B1) did not perform any call, and so

it coincides with a local execution: Γ ŝc :: S
π̂−→∗

ŝf
c :: S. Since ŝ =A/AT −codes s, we

know that in a local execution (which only accesses the account codes in the global state
for the usage of EXTCODESIZE and EXTCODECOPY) that Γ sc :: S

π̂−→
fŝ

∗
s̃f

c :: S where

fŝ denotes the code mapping induced by ŝ and s̃f =A/AT −codes ŝf . By Lemma 12 we
know that Γ sc :: S

π−→∗
sf

c :: S for some sf such that final (sf). By (A6) we know that
π̂ ↓callsc= π ↓callsc= . Further we know by Lemma 12 that Γ tc :: S

ρ−→∗
tf

c :: S and
final (tf) for some tf . Hence by (A1), we get that π̂ ↓callsc= ρ ↓callsc= . Consequently the

197

A. APPENDIX TO CHAPTER 2

execution of t does not perform any calls and corresponds to a local execution: Γ tc :: S
ρ−→∗

tf
c :: S. Due to (A3) we know that this execution corresponds to Γ t̂c :: S

ft−→
ρ

∗
t̃f
c :: S

and t =A/AT −codes t̃, so also final (t̃). Then by (A6) and (B3) and (B4) we know that
ρ̂ ↓callsc= ρ̂ ↓callsc= what concludes the case.

• Let π̂ ↓callsc= â · π̂call. Then we know that the call â is the first to be performed by ŝ, so

in particular, we have (C1) Γ ŝc :: S
π̂1−→

∗
ŝ1

c :: S, (C2) Γ ŝ1
c :: S

â−→ ŝ2
c :: ŝ1

c :: S,

(C3)Γ ŝ2
c :: ŝ1

c :: S
π̂2−→

∗
ŝ3

c :: ŝ1
c :: S, (C4)Γ ŝ3

c :: ŝ1
c :: S −→ ŝ4

c :: S, and (C5) Γ
ŝ4

c :: S
π̂3−→

∗
ŝf

c :: S, and (C6) π̂call = (π̂2 · π̂3) ↓callsc . Due to single-entrancy of c we know
by Lemma 28 that π̂2 ↓callsc= , since otherwise a reentering execution of c would have
initiated another internal transaction. Following the reasoning of the base case, we know from

(C1) that (D1) Γ sc :: S
π̂1−→
fŝ

∗
s̃1

c :: S for some s̃1 such that s̃1 =A/AT −codes ŝ1. For this

reason, s̃1 will perform the same call â, albeit this call might result in calling another contract
than it does for ŝ1. So (D2) Γ s̃1

c :: S
â−→ s̃2

c :: s̃1
c :: S. Still, we know by Lemma 12 that

this execution will eventually end up in a terminal state of the initiated internal transaction,
so (D3) Γ s̃2

c :: s̃1
c :: S

π̃2−→∗
s̃3

c :: s̃1
c :: S and then will execute further till reaching

a final state of original the execution of c: (D4) Γ s̃3
c :: s̃1

c :: S −→ s̃4
c :: S, and (D5)

Γ s̃4
c :: S

π̃3−→∗
s̃f

c :: S, and (D6) final (s̃f). Again we know due to single-entrancy of c that
π̃2 ↓callsc= . We use the effect-independence (A5) and the inductive hypothesis to show that
s̃4 ∼callsc ŝ4. To this end we make a case distinction on the called address. Since the call action
â agrees in both executions we know that also the called address does. Let in the following be
to = address (c) = address (c)

1. If to ∈ AT then we know that c = (to, ŝ.σ(to).code) and c = (to, s.σ(to).code) and
hence since ŝ =A/AT −codes s we have that c = c and consequently also ŝ2 =A/AT −codes
s2 (since both execution states are initialized with the same call data). By (A7) we know
that c (and c) satisfy result integrity and hence we get that ŝ3 =A/AT −codes s3. So
consequently also ŝ4 =A/AT −codes s4 and so by the inductive hypothesis (since trivially
s4 ∼callsc s4 and s4 =A/AT −codes s4) also s4 ∼callsc ŝ4.

2. If to ∈ AT then by the small step rules we know that ŝ4 = rŝ3(ŝ1). Further, since
we assume a collision-free execution we know that codesAT

(ŝ3) = codesAT
(ŝ1)

and hence rŝ3(ŝ1) =A/AT −codes rŝ3[codes(ŝ1)](ŝ1). Now by (A5) we can conclude that
rŝ3[codes(ŝ1)](ŝ1) ∼callsc rs̃3[codes(ŝ1)](ŝ1). Now since ŝ1 =A/AT −codes s̃1 we know that
rs̃3[codes(ŝ1)](ŝ1) =A/AT −codes rs̃3[codes(ŝ1)](s̃1) (since either s̃3 = EXC in which case
the states stay unchanged or their code will be changed to the codes in ŝ1). And now
since codesAT

(ŝ1) = codesAT
(s̃1) (since ŝ1 =A/AT −codes s̃1) and codesAT

(s̃3) =
codesAT

(s̃1) (since we assume collission resistant executions), we also know that
rs̃3[codes(ŝ1)](s̃1) =A/AT −codes rs̃3[codes(s̃3)](s̃1) = s̃4. By the inductive hypothesis we
can hence conclude that s̃4 ∼callsc ŝ4 and consequently π̂3 ↓callsc= π̃3 ↓callsc .

Next we consider a (terminal) execution of s. Let (E) Γ sc :: S
π−→∗

sf
c :: S be the terminal

198

A.7. Proof Technique for Call Integrity

execution from s. Then we know that this corresponds to the execution under local updates
described by the update sequence fss induced by s: Γ sc :: S

π−→
fss

∗
sf

c :: S. Further we

know that Γ sc :: S
π̃−−−−→

fŝ::fss̃4

∗
sf

c :: S where π̃ = π̂1 · â · π̃2 · π̃3. Hence by (A6) we can

conclude that (E0) π ↓callsc= π̃ ↓callsc and hence also the first call action performed by s in the
terminal execution is â. Consequently we have that (E1) Γ sc :: S

π1−→∗
s1

c :: S for some s1

such that codesA(s1) = codesA(s) (since a local execution does not effect the codes of other
contracts, Lemma 27), (E2) Γ s1

c :: S
â−→ s2

c :: s1
c :: S. Still, we know by Lemma 12 that

this execution will eventually end up in a terminal state of the initiated internal transaction,
so (E3) Γ s2

c :: s1
c :: S

π2−→∗
s3

c :: s1
c :: S and then will execute further till reaching

a final state of original the execution of c: (E4) Γ s3
c :: s1

c :: S −→ s4
c :: S, and (E5)

Γ s4
c :: S

π3−→∗
sf

c :: S, and (E6) final (sf), and (E7) π = π1 · â · π2 · π3. Due to single-
entrancy we can again conclude that π2 ↓callsc= , and so by (E0) that π3 ↓callsc= π̃3 ↓callsc .
Next, we consider a (terminal execution) of t: Let (F) Γ tc :: S

ρ−→∗
tf

c :: S be the terminal
execution from t. Then by (A1) we know that (F0) π ↓callsc= ρ ↓callsc . Hence, in particular, we
know that â is the first call action performed by the execution of t and hence we have: (F1) Γ
tc :: S

ρ1−→∗
t1

c :: S for some t1 such that codesA(t1) = codesA(t) (since a local execution
does not effect the codes of other contracts, Lemma 27), (F2) Γ t1

c :: S
â−→ t2

c :: t1
c :: S.

Still, we know by Lemma 12 that this execution will eventually end up in a terminal state
of the initiated internal transaction, so (F3) Γ t2

c :: t1
c :: S

ρ2−→∗
t3

c :: t1
c :: S and

then will execute further till reaching a final state of original the execution of c: (F4) Γ
t3

c :: t1
c :: S −→ t4

c :: S, and (F5) Γ t4
c :: S

ρ3−→∗
tf

c :: S, and (F6) final (tf), and
(F7) π = ρ1 · â · ρ2 · ρ3. Due to single-entrancy we can again conclude that ρ2 ↓callsc= ,
and so by (F0) that ρ3 ↓callsc= π3 ↓callsc . Following the reasoning of the base case, we
know from (F1) that (G1) Γ t̂c :: S

ρ1−→
ft

∗
t̃1
c :: S for some t̃1 such that t̃1 =A/AT −codes t1.

For this reason t̃1 will perform the same call â as t1, albeit this call might result in calling
another contract than it does for t1. So (G2) Γ t̃1

c :: S
â−→ t̃2

c :: t̃1
c :: S. Still, we know

by Lemma 12 that this execution will eventually end up in a terminal state of the initiated

internal transaction, so (G3) Γ t̃2
c :: t̃1

c :: S
ρ̃2−→

∗
t̃3
c :: t̃1

c :: S and then will execute further
till reaching a final state of original the execution of c: (G4) Γ t̃3

c :: t̃1
c :: S −→ t̃4

c :: S, and

(G5) Γ t̃4
c :: S

ρ̃3−→
∗

t̃f
c :: S, and (G6) final (t̃f). Again we know due to single-entrancy of c

that ρ̃2 ↓callsc= . We use the effect-independence (A5) and the inductive hypothesis to show
that t̃4 ∼callsc t4. To this end we make a case distinction on the called address. Since the
call action â agrees in both executions we know that also the called address does. Let in the
following be to = address (c) = address (c)

1. If to ∈ AT then we know that c = (to, t.σ(to).code) and c = (to, t̂.σ(to).code) and
hence since s =A/AT −codes t̂ we have that c = c and consequently also t2 =A/AT −codes
t̃2 (since both execution states are initialized with the same data call data). By (A7) we
know that c (and c) satisfy result integrity and hence we get that t3 =A/AT −codes t̃3. So
consequently also t4 =A/AT −codes t̃4 and so by the inductive hypothesis (since trivially

199

A. APPENDIX TO CHAPTER 2

t̃4 ∼callsc t̃4 and t̃4 =A/AT −codes t̃4) also t̃4 ∼callsc t4.

2. If to ∈ AT then by the small step rules we know that t4 = rt3(t1). Further, since
we assume a collision-free execution we know that codesAT

(t3) = codesAT
(t1)

and hence rt3(t1) =A/AT −codes rt3[codes(t1)](t1). Now by (A5) we can conclude that
rt3[codes(t1)](t1) ∼callsc rt̃3[codes(t1)](t1). Now since t1 =A/AT −codes t̃1 we know
that rt̃3[codes(t1)](t1) =A/AT −codes rt̃3[codes(t1)](t̃1) (since either t̃3 = EXC in which
case the caller states stay unchanged or their code will be changed to the codes in
t1). And now since codesAT

(t1) = codesAT
(t̃1) (since t1 =A/AT −codes t̃1) and

codesAT
(t̃3) = codesAT

(t̃1) (since we assume collission resistant executions), we
also know that rt̃3[codes(t1)](t̃1) =A/AT −codes rt̃3[codes(t̃3)](t̃1) = t̃4. By the inductive hy-
pothesis we can hence conclude that t̃4 ∼callsc t4 and consequently ρ3 ↓callsc= ρ̃3 ↓callsc .

Next we consider the (terminal) execution of t̂ given in (B3). Then we know that this cor-
responds to the execution under local updates described by the update sequence fst̂ induced

by t̂: Γ t̂c :: S
ρ̂−→

fst̂

∗
t̂f
c :: S. Further we know that Γ t̂c :: S

ρ̃−−−−→
ft::fst̃4

∗
t̂f
c :: S where

ρ̃ = ρ1 · â · ρ̃2 · ρ̃3. Hence by (A6) we can conclude that (H0) ρ̂ ↓callsc= ρ̃ ↓callsc . This
concludes the proof since

π̂ ↓callsc = â · (π̂3 ↓callsc)

= â · (π̃3 ↓callsc) = π̃ ↓callsc

= â · (π3 ↓callsc) = π ↓callsc

= â · (ρ3 ↓callsc) = ρ ↓callsc

= â · (ρ̃3 ↓callsc) = ρ̃ ↓callsc

= ρ̂ ↓callsc

This lemma trivially implies the correctness of the proof strategy for call integrity:

Theorem 4 (Proof Strategy for Call Integrity). Let c ∈ C be a contract and let (Γ, sc) and (Γ, tc)
be reachable configurations of c such that s =A/AT −codes t. Further let AT ⊆ A a subset of
trusted addresses such that cT ∈ {(a, s.σ(a).code) | a ∈ AT }. If c is AT -code independent, c is
AT -effect independent, and c is single-entrant then it holds that s ∼callsc t.

Proof. It trivially holds that s =A/AT −codes s ∼callsc s. So since s =A/AT −codes t we can
immediately apply Lemma 29 to obtain s ∼callsc t.

200

APPENDIX B
Appendix to Chapter 3

B.1 Soundness Issues in Related Work

We review the soundness problems of other works on automated static smart contract analysis.
We thereby focus on those works that make soundness claims. We first overview soundness
problems in the reconstruction of smart contracts’ control flow graphs (which particularly affects
the Securify analyzer [TDDC+18]) and afterwards successively discuss the issues in the anal-
yses performed by [TDDC+18], [LWZ+19], [GMS18a], and [KGDS18a]. Where possible, we
provide reproducible evidence in form of concrete counter-examples for the spotted sources of
unsoundness.

B.1.1 Control Flow Reconstruction

Most of the tools that analyze Ethereum smart contracts at the level of bytecode base their analysis
on the contract’s control flow graph (CFG). However, the design of the EVM bytecode language
does not allow for an easy reconstruction of a contract’s control flow since jump destinations are
not statically fixed but might be dynamically computed. More precisely, in EVM, bytecode jump
destinations are read from the stack and hence can be subject to prior computations. Even though
the set of potential jump destinations is statically determined (since only such program counters
with a JUMPDEST instruction constitute valid jump destinations), the concrete destination of
a jump instruction might only be dispatched at runtime. The challenge hence lies in statically
narrowing down the set of possible jump destinations for each branch instruction (JUMP or
JUMPI). To this end, the state-of-the-art analyzer [TDDC+18] employs a custom algorithm,
another popular solution [oB18] uses an external open-source tool [cfg20] for control flow graph
reconstruction. While correctness for both of them has never been discussed, flaws in the CFG
reconstruction can lead to catastrophic consequences: An unsound reconstruction that erroneously
excludes possible jump destinations can deem parts of the contract code unreachable that carries
critical and potentially unsafe functionality (e.g., reentrant calls).

201

B. APPENDIX TO CHAPTER 3

When reviewing the algorithms used in [TDDC+18] and [cfg20], we found soundness issues in
both approaches, as we will discuss in the following. In Figure B.1 we show a compact example
of a smart contract’s control flow that is recovered incorrectly by [TDDC+18, cfg20] with no
errors reported. Intuitively, the control flow of this contract should not be fully recoverable

1

0 PUSH 0
2 PUSH 0
4 PUSH 1

6 LT

7 JUMPDEST
8 PUSH 20
10 ADD

11 JUMPI

12 PUSH 1
14 NUMBER

16 BLOCKHASH
17 PUSH 7
19 JUMP

20 JUMPDEST
21 STOP

22 JUMPDEST
... REENTRANT CALL

Jump target
depends

on dynamic info

2

4

3

Figure B.1: Problematic Control Flow Example.

because one of its jump destinations depends on some blockchain information (the block hash and
the block number) which cannot be statically predicted, but will only be fixed once the contract
has been published on the blockchain.

The smart contract is structured into five basic blocks. The first block (starting at program counter
0), initializes the local machine check with two 0 values and continues with the execution of the
second block starting at program counter 7 (1). The second block can be entered via a jump
(since it starts with a JUMPDEST instruction). It intuitively takes two stack values as arguments,
the first one functioning as jump offset and the second being the jump condition: it computes
the next jump destination as the sum of 20 and the top stack element and conditionally jumps to
this destination based on the second stack value. In the first iteration, since both of these values
are 0 (and so particularly the condition is 0), no jump is performed, but instead, the execution
proceeds with block three (starting at program counter 12) with the empty stack (2). This block
pushes the current block number and hash to the stack and jumps back to the second block (3).
Since, at this point, the input to the second block are values that are not statically determinable, it

202

B.1. Soundness Issues in Related Work

needs to be assumed that the jump condition, as well as the jump offset, could have any value. It
is hence possible during the real execution to jump to arbitrary jump destinations from program
counter 10 (4). This includes the block starting at program counter 20 where the execution
of the contract is stopped, and most importantly, the block starting at program counter 22 that
executes a reentrant call. Thus, if this jump destination is undiscovered, false correctness results
for reentrancy can be produced in subsequent analysis.

There are two sound approaches for handling the usage of unpredictable information in jump
destination reconstruction: Conservatively, a smart contract can be rejected by the analysis and
hence be considered potentially vulnerable in this case (which is our approach) or the analysis
could assume that all JUMPDEST instructions of the contract are potentially reachable. The tools
that we reviewed, however, did not follow any of these options but produced the following results:
[cfg20] correctly discovers the basic blocks, but cannot recover jumps to the targets 20 and 22
(4). The result of [TDDC+18] is even more surprising: the algorithm does not manage to
recover any of the blocks shown in Figure B.1, but reports as CFG of this contract a single block
consisting of a modulo instruction followed by the STOP opcode. Consequently, all analyses that
use either of these CFG reconstruction solutions will consider the reentrant call of the example
contract to be unreachable and will, based on that, label the contract as safe to reentrancy attacks.

B.1.2 Securify

The Securify tool [TDDC+18] encodes dependencies inferred from a contract’s control flow
graph as logical facts and specifies security properties in terms of compliance and violation
patterns using these facts. It is claimed that the satisfaction of a compliance pattern is sufficient
for proving a security property, while matching a violation pattern guarantees that a security
property is indeed violated. We will, in the following, review most of the provided patterns and
give counterexamples, showing that most of these patterns indeed are not sound. We validated
as far as possible the patterns reported in the paper with the provided online tool (https:
//securify.chainsecurity.com)1 . Unfortunately, some of the patterns introduced
in [TDDC+18] were changed or renamed in the online tool. We will note this when discussing
the corresponding pattern. Also, it should be noted that the online tool only reports security
problems. More precisely, an alarm (red) is produced if a violation pattern is matched, a warning
(orange) is produced if neither a violation nor a compliance pattern is matched. The lack of a
report for a certain security property indicates that the property’s compliance pattern was matched.

Ether Liquidity. The LQ (Ether liquidity) property ensures that a property cannot lock Ether
(for this reason, it is called Locked Ether in the online tool), meaning that for all the contract’s
executions either leave the contract’s balance unaffected or there is a trace that allows to reduce
the contract’s balance.

The property formulates three different compliance patterns. The first two compliance patterns
ensure that all halting instructions are preceded by a successful conditional check on the value
given to the call being 0. This ensures that only such executions can complete successfully,

1We accessed the website on January 19th and validated all properties with Solidity Compiler version 0.4.25.

203

https://securify.chainsecurity.com
https://securify.chainsecurity.com

B. APPENDIX TO CHAPTER 3

which have been guaranteed to have gotten no money transferred. These patterns are probably
sufficient to guarantee that a contract can never receive money and hence for showing the LQ
property. The third compliance pattern checks whether there is a call that is reachable while at
the same time (meaning that the call and an exception opcode are not reachable from the same
conditional branch) no exception is reachable, and this call transfers a non-zero value or a value
that is settable by the environment. This shall ensure that the contract has at least one way of
successfully transferring money.

This compliance pattern is not sufficient for ensuring Ether Liquidity. Despite the problem that
the corresponding Ether transferring call could be restricted to a certain address which can never
initiate such a call (as it belongs to a contract without functionality to call other contracts), the
pattern also does not consider that an exception that reverts the transaction might not only occur
conditionally.

Consider the following contract:

1 contract Bob {
2 function sendMoney(address c) {
3 c.send(2);
4 throw;
5 }
6 function receive() payable {
7 }
8 }

This contract is labeled not to lock Ether even though it can receive money (via the receive
function), and every Ether transfer to another contract (via sendMoney) will be reverted. Note
that the absence of Solidity’s payable will be translated to a conditional check on the call value,
and cause a revert once if the value given to the call is non-zero.

The violation pattern for LQ requires that there is no CALL instruction that transfers a non-zero
amount of Ether and that there is some halting instruction such that if its reachability is dependent
on a conditional branching, this condition can be determined by the transaction data, hence can
be enabled by the transaction initiator. This shall ensure that there is at least one execution trace
that does not halt exceptionally and hence reverts the execution effect.

However, the following contract is reported to lock Ether (matches the violation pattern):

1 contract Bob {
2 function receive(uint x) payable {
3 if (x > 0 || x <= 0) {
4 throw;
5 }
6 }
7 }

This contract clearly cannot lock Ether since it cannot receive any Ether. Its only function
receive throws an exception depending on a conditional, which is always true. Still, the
dependency analysis labels this condition to be determined by transaction data so that the
pattern is matched. This can also be considered as a soundness flaw in Securify’s definition of

204

B.1. Soundness Issues in Related Work

determinability since, in this case, clearly, for different values of transaction data, the value of the
condition is the same (which contradicts [TDDC+18]’s definition of determinability.)

No writes after calls. The NW (No writes after calls) property says that a contract’s storage
when terminating the execution should always be the same as at the point of a previous contract
call (so the contract shall not be altered between a CALL instruction and the contract’s successful
termination). The online tool does not implement a property with such a name but instead
implements similar patterns for a property called Gas-dependent Reentrancy. This property uses
the same intuition but puts an additional requirement that the amount of gas given to the call
shall depend on the remaining gas. One should note that it is very misleading that this property is
in the online tool called Gas-dependent Reentrancy, even though [TDDC+18] explicitly claims
that the NW property is different from reentrancy. We will detail out later why the NW property
indeed is not a sound or complete approximation of the single-entrancy property.

The corresponding compliance pattern requires that the CALL instruction may not be followed by
an SSTORE instruction. This pattern, however, does not consider that there are other ways of
modifying the storage than the SSTORE instruction, e.g., by using DELEGATECALL for calling
a library function that alters the storage.

Consider the following example:
1 library Lib {
2 struct Data { bool bvalue; }
3 function write(Data storage self, bool value) {
4 self.bvalue = value;
5 }
6 }
7
8 contract Bob {
9 Lib.Data sent;

10
11 constructor () {
12 sent.bvalue = false;
13 }
14
15 function ping(address c) {
16 if (!(sent.bvalue)) {
17 if (!c.call.value(2)()) {
18 throw;
19 }
20 Lib.write(sent, true);
21 }
22 }
23 }

This example clearly matches the compliance pattern (since the call to the library will be translated
to a DELEGATECALL instruction, hence no SSTORE instruction appears in the first place). This
can also be verified with the online tool, which does not report a violation of the Gas Dependent
Reentrancy property.

The violation pattern for the NW property requires that there is a CALL that must be proceeded
by an SSTORE instruction. This pattern is also not sufficient as illustrated by the following
example:

205

B. APPENDIX TO CHAPTER 3

1 contract Alice {
2 bool sent = false;
3
4 function ping(address c) {
5 if (!sent) {
6 sent = true;
7 c.call.value(2)();
8 sent = sent;
9 }

10 }
11 }

This contract clearly does not violate the property (since the contract storage at the point of
terminating is not altered as compared to the point of calling). Still, it matches the violation
pattern (and is reported by the online tool), indicating a guaranteed property violation.

Next, we shortly discuss why the NW property (independently of the fact that the patterns are not
sufficient) is neither sound nor complete for single-entrancy.

We will first give an example of a contract satisfying the NW property while still being reentrant.

1 contract Bank {
2 address a; address b;
3 uint balA; uint balB;
4
5 function setBalA (uint v) {
6 balA = v;
7 }
8
9 function drainA(address ben) {

10 if (msg.sender != a) { throw; }
11 if (balA > 0) {
12 uint v = balA;
13 setBalA(0);
14 ben.call.value(v)();
15 }
16 }
17 }

This contract implementing a simple bank functionality for two parties (identified by their
addresses a and b) is vulnerable to a reentrancy attack even though no writes after the call are
performed. Similar to the initial example in Figure 3.3, given that a is the address of a malicious
contract, this contract can use the public setBalA function in a reentering execution to disable
the guard (here balA) before reentering the contract’s drainA function to retransfer money
that a does not own.

For an example of a contract that does not satisfy the NW property but that is still safe, we give a
contract with a simple locking functionality (similar to the example in Figure 3.3).

1 contract Bank {
2 uint lock;
3 mapping (address => uint) bal;
4
5 function drain(address a) {
6 if (lock == 1) { throw; }

206

B.1. Soundness Issues in Related Work

7 lock = 1;
8 a.call.value(bal[msg.sender])();
9 bal[msg.sender] = 0;

10 lock = 0;
11 }
12 }

The locking ensures that whenever the function is reentered, an exception occurs, and hence
no further call can be performed. Still, since the lock needs to be released at the end of the
execution. Clearly, the NW property is violated.

Restricted write. The RW (restricted write) property requires that all write accesses are restricted,
meaning there is at least one address that, when initiating the call, cannot reach the corresponding
write access.

This property needs to be questioned in its semantic definition in that this definition explicitly
requires that SSTORE instructions are not reachable even though (as discussed before), the
SSTORE instruction is not the only way of manipulating storage.

So, for example, when analyzing the following contract, there is no RW violation or warning
produced for the Bob contract even though the ping functions allows to set contract’s data
filed containing the owner to be set to an arbitrary value by anyone.

1 library Lib {
2 struct Data { address owner; }
3 function write(Data storage self, address value) {
4 self.owner = value;
5 }
6 }
7
8 contract Bob {
9 Lib.Data data;

10
11 function ping(address c) {
12 Lib.write(data, c);
13 }
14 }

The given compliance pattern requires that the storage offset specified in a SSTORE instruction
needs to be determined by the caller of the contract. This pattern might indeed be sufficient for
the semantic property only considering SSTORE instructions.

The violation pattern requires that the reachability of SSTORE instructions as well as the offset
given to them may not depend on the caller of the contract.

However, in the following contract an unrestricted write is detected:

1 contract Test {
2 bool test = false;
3
4 function flipper () {
5 if (msg.sender != 0)
6 flip();
7 }
8 function flip () internal {

207

B. APPENDIX TO CHAPTER 3

9 test = !test;
10 }
11 }

This contract should be safe with respect to the semantic definition since flip, the only function
containing write access is an internal function, meaning that it can only be invoked within the
contract. Given that the only place where it is invoked (in the flipper function), this is done
with a restriction on the caller (msg.sender), also this storage access is restricted. However,
the contract is reported to match the violation pattern. A reason for that could be an unsoundness
in the underlying dependency analysis.

Restricted transfer. The RT (restricted transfer property) excludes that Ether transfers (via
CALL) cannot be invoked by any user. Again one could criticize that the property does not
consider other ways of transferring money (e.g., by CALLCODE). The following contract, for
example, is considered safe by this definition:

1 contract Bob {
2 function sendMoney(address c) {
3 c.callcode.value(5)();
4 }
5 }

The corresponding compliance pattern requires that all calls transfer 0 Ether. Given that the
property only considers CALL instructions, this pattern is probably sufficient.

There are two violation patterns for the RT property; the first one requires that there is a CALL
instruction transferring a non-zero amount and whose reachability may be dependent on the caller.
We can give a counterexample similar to the one for the RW violation pattern:

1 contract Test {
2 function sendMoney() {
3 if (msg.sender != 1)
4 sendM();
5 }
6 function sendM () internal {
7 msg.sender.send(1);
8 }
9 }

Again, the tool does not detect that effectively the money transfer is restricted since the internal
function sendM can only be invoked in a restricted fashion.

The second violation pattern for the RT property requires instead of the transferred value to be
non-zero that the value is determined by the input to the call while at the same point the input
might not affect the reachability of the CALL instruction.

We can again give a simple counterexample similar to the previous one:

1 contract Test {
2 function sendMoney(uint x) {
3 if (msg.sender != 1)
4 sendM(x);
5 }

208

B.1. Soundness Issues in Related Work

6 function sendM (uint y) internal {
7 msg.sender.send(y);
8 }
9 }

This example is detected as insecure while having only restricted money transfers.

Handled exception. The HE property (Handled exception) is not semantically defined but
intuitively shall ensure that exceptions that occurred in function calls shall be handled. Due
to the lack of a formal definition, it is hard to argue to which extend the given patterns really
are sufficient, but we give here examples of proper/problematic exception handling, which are
wrongly classified.

The compliance pattern requires that every call must be followed by some branching instruction
whose condition is determined by the call’s return value. Clearly, the following contract is
matched by this pattern even though it does not perform a proper exception handling.

1 contract SimpleBank {
2 mapping(address => uint) balances;
3 uint successes;
4
5 function withdraw() {
6 bool success = msg.sender.send(balances[msg.sender]);
7 if (success) { successes++; }
8 balances[msg.sender] = 0;
9 }

10 }

Even though this contract branches on the return value of the call, this branching does not
influence the critical instruction, namely the following storage update that assumes a successful
call.

The violation pattern for HE requires that all branching instructions following a CALL instruction
do not have a condition that depends on the outcome of the call. We give an example of a contract
matching this pattern that however implements a useful form of exception handling:

1 library Lib {
2 function toInt(bool b) returns (uint n) {
3 if (b)
4 return 1;
5 else
6 return 0;
7 }
8 }
9

10 contract SimpleBank {
11 mapping(address => uint) balances;
12
13 function withdraw() {
14 bool success = msg.sender.send(balances[msg.sender]);
15 balances[msg.sender] = Lib.toInt(success) * balances[msg.sender];
16 }
17 }

209

B. APPENDIX TO CHAPTER 3

This contract uses the return value of the call to update the callee’s balance after the call depending
on that. Since the branching on the return value is outsourced to the library function toInt, it
can not be captured by the corresponding pattern.

In general, it is hard to imagine how proper exception handling should be generically defined
since this is a property that depends in the end on the contract’s desired functionality.

Transaction ordering dependency. The TOD (Transaction ordering dependency) property is
again not formally defined but requires that the order of other transactions shall not influence
the calls of the contract. More precisely, calls shall not depend on a state that can be altered by
other transactions. The paper says that actually different types of dependency will be considered
distinguishing whether the amount to be transferred (TA), the receiver (TR), or the reachability of
the CALL as a whole are affected (TT). However, it seems that TT is not implemented since not
even the following straight forward TT violating contract is detected by the online tool:

1 contract SimpleGame {
2 uint counter = 0;
3
4 function play() {
5 counter = 10;
6 }
7
8 function getReward() {
9 if (counter > 0) {

10 msg.sender.send(10);
11 }
12 }
13 }

The compliance pattern for TOD requires that calls shall not depend on the contract’s storage or
balance. Again this property does not consider that there are different ways of calling, e.g., using
CALLCODE.

The following contract is considered secure:

1 contract Bob {
2 uint price;
3
4 function setPrice(uint v) {
5 price = v;
6 }
7
8 function sendMoney(address c) {
9 c.callcode.value(price)();

10 }
11 }

This contract transfers an amount of money (price) that it reads from the storage, and that could
have been modified by another transaction before. Still, no warning about a TOD violation is
triggered by the online tool.

The violation pattern requires that there is a CALL which depends on a read of a constant storage
cell that can be written.

210

B.1. Soundness Issues in Related Work

Consider the following example contract:

1 contract Bob {
2 uint price = 5;
3
4 function sendMoney(address c) {
5 price = price;
6 c.send(price);
7 }
8 }

This contract is labeled to be TOD even though the transferred amount is constantly 5 and cannot
be influenced by any other transaction.

Validated arguments. The VA (Validated arguments) property is again not semantically specified
but shall ensure that arguments to a function are checked for meeting desired preconditions.
Similarly to the HE property, it is unclear how such a goal should be captured by a generic
property.

The compliance pattern requires that such values that depend on input value may only be written
to the global storage if they have previously been checked, meaning that must have been a
conditional branching before whose condition depended on the argument.

The following contract is an easy example of a contract matching the compliance pattern while
not performing proper argument validation:

1 contract Test {
2 uint test;
3 uint count = 0;
4
5 function setTest (uint x) {
6 if (x < 10) {
7 count++;
8 }
9 test = x;

10 }
11 }

Even though the write to the storage of argument variable x is preceded by a corresponding
conditional branch, this check does not influence whether the variable is indeed written to storage.

The violation pattern for VA requires that there is a storage instruction writing a value dependent
on an argument that is not preceded by a corresponding conditional branch with a condition
dependent on the argument.

The following contract performs a proper argument validation but is still matched by the violation
pattern.

1 library Lib {
2 function validateArgument(uint i) {
3 if (!(i >= 0 && i < 100))
4 throw;
5 }
6 }
7

211

B. APPENDIX TO CHAPTER 3

8 contract Test {
9 uint test;

10
11 function setTest (uint x) {
12 Lib.validateArgument(x);
13 test = x;
14 }
15 }

Since the validation is performed by the library function validateArgument, the conditional
branch which performs the validation cannot be detected.

B.1.3 NeuCheck

The tool NeuCheck[LWZ+19] analyses Ethereum Smart contracts written in the Solidity by
checking the contract’s syntax graph for specific patterns. The tool is claimed to be sound even
though no concrete soundness claim is formulated.

The formulated patterns are purely syntactic and can be rather seen as a check for compliance
with certain style guidelines. Take as an example the access control pattern: this pattern checks
whether all functions have modifiers such as private or internal defined, which restrict
general access. It is unclear which semantic property should be implied by this pattern. Clearly,
there are safe usages of public functions as well as incorrect access control (e.g., due to a wrong
party being allowed to call a certain contract function) even though a contract function is restricted
by some modifier.

For illustrating the issues of this syntactic pattern-based approach further, we will, in the following,
review the reentrancy pattern as this is particularly interesting for our case: The reentrancy pattern
checks for the occurrences of Solidity’s call function that do not have a gas limit checks and
checks whether this occurrence is followed by the assignment of a state variable. First, the
absence of checking a gas limit does not ensure that reentrancy attacks are not possible. If not
gas limit is set, the gas given to the call is computed with respect to the remaining gas. So one
could easily set a high gas limit or even set all remaining gas of the execution as a gas limit
(if the amount specified exceeds the remaining gas, the same gas as in the case of a lacking
specification is given to the call). On top of this, as discussed for Securify, setting a variable
assignment is not the only way of changing the state (this can also be done via a library call). The
counterexample for Securify’s NW compliance pattern would also be a valid counterexample
for this case. Similarly, Securify’s NW violation pattern would serve as a counterexample for
the pattern’s completeness. As a consequence, matching the reentrancy pattern clearly does not
guarantee the absence of a reentrancy attack.

Unfortunately, we could not experimentally assess the unsoundness of the provided patterns since
we did not find a way to build the tool from the provided sources2. The assessment of the tool
is further aggravated by the fact that the paper gives the corresponding patterns in PseudoCode

2Sources are made available at https://github.com/Northeastern-University-Blockchain/
NeuCheck. We contacted the authors at the end of November for clarification of the building process but received no
reply as of January 20th, 2020.

212

https://github.com/Northeastern-University-Blockchain/NeuCheck
https://github.com/Northeastern-University-Blockchain/NeuCheck

B.1. Soundness Issues in Related Work

that leaves many crucial details (in particular how the dependency structure between syntactic
constructs is established) undefined.

B.1.4 EtherTrust

The approach to sound smart contract analysis presented in [GMS18a] exhibits an unsoundness
when it comes to modeling reentering executions. More precisely, the proposed abstraction
assumes that the contract’s storage at the point of reentering is the same as at the point of calling.
This is not necessarily the case since another (malicious) contract might, in the meanwhile,
manipulate the storage of the corresponding contract by invoking other state-changing functions
of it. An example is the DAO contract depicted in Fig. 3.3. This contract would be deemed secure
according to the abstraction presented in [GMS18a] since the described attack requires to change
the value of the contract’s lock variable by an invocation of the switchLock function prior to
reentering the withdraw function. If it is assumed that the storage at the point of reentering the
withdraw function is the same as at the point of invoking the call method, the contract would
be secure since the lock variable is always set to 1 when calling hence preventing to reach the
call method when reentering.

B.1.5 ZEUS

A recently published work is the analysis tool ZEUS [KGDS18a] that analyses smart contracts
written in Solidity using symbolic model checking. The analysis proceeds by translating Solidity
code to an abstract intermediate language that again is translated to LLVM bitcode. Finally,
existing symbolic model checking tools for LLVM bitcode are leveraged for performing the
analysis. The security properties are defined in terms of XACML style policies that are translated
to state reachability assertions in the intermediate language (and finally to assertions in LLVM
bitcode). The authors evaluate their tool for generic security properties (such as reentrancy),
which are not expressed in terms of policies (which are contract specific) but by an informal
description of how to add specific assertions to contracts of interest. For some properties, e.g.,
reentrancy, the insertion of assertions is not sufficient, and additional program modifications
need to be applied to the original contracts. The authors claim their tool to be sound which they
support by a proof sketch and empirical results. This claim, however, has several shortcomings:

• There is no formal soundness statement made. In particular, there is no formal relation between
the policy compliance of Solidity contracts and the analysis results established and also not
covered in the proof sketch.

• The proof is sketchy and exhibits several holes and at least two flaws: While there is an intuitive
argument why given the translation from Solidity to the abstract intermediate language are
correct and adding assertions does not influence semantics, there is no proof provided for
the statement that the translation from the intermediate language to LLVM bitcode preserves
soundness. That this property does not hold is (indirectly) admitted by the authors as they
discuss that the compiler optimizations on LLVM bitcode remove relevant contract behavior.
Consequently, assuming that compiler optimizations on LLVM bitcode are semantics preserving,

213

B. APPENDIX TO CHAPTER 3

this clearly contradicts that the translation from the intermediate language preserves semantics.
For one particular optimization, a fix is hardcoded, but there is no formal argument given that
this particular fix is sufficient for establishing soundness. Also the claim that the provided
translation from Solidity to the intermediate language is faithful can be clearly contradicted.
This is due to a clear deviation in the call semantics of the intermediate language from the
Solidity semantics. The mechanism underlying Solidity’s call functionalities is the one of the
CALL instructions in EVM bytecode. In particular, this mechanism determines that the failure
of a contract call causes the revocation of the global state to the point of calling. The proposed
semantics of the intermediate language, however does not allow for such a revocation (even
by design). This is similar to the issue in the semantics used in Oyente that we described
in Section 2.3.7.

• The final results for the predefined properties (such as reentrancy) are not covered by the sound-
ness claim as there is no (formal) argument made that the performed program modifications are
sound. In particular the presented method for detecting same-function reentrancies is faulty:
For detecting same-function reentrancy of a function f , f is replicated (resulting in f) and
the Solidity’s call construct in f is replaced by a call to f whose occurrence of call is
preceded by a false assertion for proving the unreachability of the corresponding call. This
treatment is problematic in several ways: First, the use of the call construct is not the only
way of calling another contract, indeed it is way more common to use direct calls. Second,
similar to the problem discussed for [GMS18a], such an abstraction fails to detect the example
of Figure 3.3, even though this is clearly a case of same-function reentrancy. The problem is
that for the used approach of replacing calls by invocations to f it is assumed that a call can at
most be preceded by a direct invocation of f without any other state-changing function calls
being happening in the meanwhile. Consequently, single-entrancy (and even same-function
single-entrancy) is a property that cannot be assessed by considering certain contract parts in
isolation. Consider the following to contracts:

1 contract Bank{
2 uint lock;
3 mapping (address => uint) bal;
4
5 function take () {
6 lock = 1;
7 }
8
9 function release () {

10 lock = 0;
11 }
12
13 function drain(address a) {
14 if (lock == 1) { throw; }
15 lock = 1;
16 a.call.value(bal[msg.sender])();
17 bal[msg.sender] = 0;
18 lock = 0;
19 }
20 }

1 contract Bank{
2 uint lock;

214

B.1. Soundness Issues in Related Work

3 mapping (address => uint) bal;
4
5 function drain(address a) {
6 if (lock == 1) { throw; }
7 lock = 1;
8 a.call.value(bal[msg.sender])();
9 bal[msg.sender] = 0;

10 lock = 0;
11 }
12 }

Even though the implementation of the drain function is identical in both contracts, the first
contract allows for a (same-function) reentrancy attack while the second does not. ZEUS,
however, would label both of these contracts to be safe.

Unfortunately, we were not able to conduct an empirical evaluation of the described issues since
no sources for ZEUS are made available. Our request to the authors of [KGDS18a] to provide
us with sources or binaries that would allow us to experimentally access ZEUS has been denied.
For this reason, we were forced to conduct our comparison with ZEUS on the publicly available
dataset for which [KGDS18a] reports numbers. We further discuss this dataset in the following.

Problems in the ZEUS dataset. While comparing HoRSt against the dataset used in [KGDS18a]3

we encountered several problems. The dataset is a list of 1524 contracts with the classification
provided by ZEUS and the assessment of whether the authors consider this classification correct.
No source or bytecode is provided.

Of these 1524 contracts, 21 have a name that does not resemble a Ethereum address (e.g.
Code_3_fdf6d_faucet). Of the remaining 1503, 397 actually have a truncated address (i.e.,
39 instead of 40 hexadecimal digits). The remaining 1106 addresses contain duplicates. After
removing them, we arrive at 1033 addresses. For 286 of these addresses, we were not able to
obtain the bytecode: 53 have been self-destructed according to https://etherscan.io
which makes retrieving their bytecode non-trivial, 232 have no recorded transaction (in particular
no transaction that created them) and 1 is an external account (i.e., an address with no code
deployed). This leaves us with 747 addresses. After removing contracts with the same bytecode,
we arrive at 720 contracts4. We contacted the authors of [KGDS18a] on July 16th, 2019, about
these problems and received no answer as of January 20th, 2020.

3https://docs.google.com/spreadsheets/d/12_g-pKsCtp3lUmT2AXngsqkBGSEoE6xNH51e-
of_Za8

4Note that the authors of [KGDS18a] deduplicated their dataset on the source level, therefore it may well be that
these same bytecodes were produced by different source codes

215

https://etherscan.io
https://docs.google.com/spreadsheets/d/12_g-pKsCtp3lUmT2AXngsqkBGSEoE6xNH51e-of_Za8
https://docs.google.com/spreadsheets/d/12_g-pKsCtp3lUmT2AXngsqkBGSEoE6xNH51e-of_Za8

APPENDIX C
Appendix to Chapter 4

The appendix is structured as follows: In section C.1 we overview the analysis specification
language HoRSt. In section C.2 we make the theoretical foundations of our work explicit, in
particular we define its relation to abstract interpretation and give the soundness proof. In
section C.3 gives details on how the security properties discussed in Chapter 4 are implemented
in eThor using the specification language HoRSt.

C.1 HoRSt

This section gives an introduction to the newly developed language HoRSt that allows for the
high-level specification of Horn-clause-based static analyses. We will first give a short primer
that illustrates the main functionality of HoRSt, followed by a more detailed discussion of the
optimizations performed by the HoRSt compiler.

C.1.1 HoRSt by Example

For illustrating the features of HoRSt we show how to express a general rule for binary stack
operations, subsuming the rule for addition presented in Section 4.2. Figure C.1 shows an excerpt
of the HoRSt-specification of the presented static analysis. The abstract domain of the analysis
is realized by the definition of the abstract data type AbsDom. Predicate signatures can be
specified by corresponding predicate declarations as done for the case of the MState predicate.
HoRSt allows for parametrizing predicates and thereby specifying whole predicate families: The
MState predicate is parametrized by two integer values (as specified in the curly braces) that
will intuitively correspond to the contract’s identifier and the program counter whose state it is
approximating. The arguments of the MState predicate family reflect exactly those specified
in section 4.2.

To facilitate modular specifications, HoRSt supports non-recursive operations over arbitrary types,
such as absadd which implements abstract addition. In the example, we show the flexibility of

217

C. APPENDIX TO CHAPTER 4

1 datatype AbsDom := @T | @V<int>; // Abstract Domain
2 datatype Opcode := @STOP | @ADD | ... | @INVALID | @SELFDESTRUCT // opcodes (

shortened)
3
4 pred MState{int*int}: int * array<AbsDom> * array<AbsDom> * array<AbsDom> * bool;
5
6 op absadd(a: AbsDom, b: AbsDom): AbsDom := match (a, b) with | (@V(x), @V(y)) => @V

((x + y) mod MAX) | _ => @T;
7 op binOp(c: Opcode, x: AbsDom, y: AbsDom): AbsDom := match c with | @ADD => absadd(

x, y) | ... | _ => @T;
8
9 sel ids: unit -> [int]; // contracts to be analyzed

10 sel binOps: unit -> [int]; // binary stack operations
11 sel pcsForIdAndOpcode: int * int -> [int]; // program counters at which a specific

opcode occurs in a specific contract
12 sel argumentsTwoForIdAndPc: int * int -> [int * int]; // results from the

preanalysis for a given contract and pc
13
14 op tryConcrete{!c:int}(val:AbsDom): AbsDom := (!c = ~1) ? (val) : (@V(!c));
15
16 rule opBin :=
17 for (!op: int) in binOps(), (!id: int) in ids(), (!pc: int) in pcsForIdAndOpcode

(!id, !op),
18 (!a:int, !b: int) in argumentsTwoForIdAndPc(!id, !pc)
19 clause [?x: AbsDom, ?y:AbsDom, ?size: int, ?sa: array<AbsDom>, ?mem: array<

AbsDom>, ?stor: array<AbsDom>, ?cl: bool]
20 MState{!id, !pc}(?size, ?sa, ?mem, ?stor, ?cl), ?size > 1,
21 ?x = tryConcrete{!a} (select ?sa (?size -1)), ?y = tryConcrete{!b} (select ?sa

(?size -2))
22 => MState{!id, !pc +1}(?size -1, store ?sa (?size -2) (binOp(intToOpCode(!op),

?x,?y)), ?mem, ?stor, ?cl);

Figure C.1: HoRSt rule describing the abstract semantics of local binary stack operations.

HoRSt by presenting a single rule template for generating rules for all binary stack operations. To
this end, we define a function binOp that, given an opcode c and two integer arguments, applies
the binary operation corresponding to the opcode to the provided arguments. This function is then
leveraged in the rule template opBin. Rule templates serve for generating the abstract semantics
given in the form of Horn clauses. As in our case, the abstract semantics is specified as a function
on a concrete contract, the generation of Horn clauses in HoRSt needs to be linked to a concrete
contract bytecode. In order to account for that in a generic fashion, given that HoRSt cannot
support facilities for reading files or parsing bytecodes, HoRSt provides an interface for interacting
with custom relations generated by Java™ code. This interface is specified upfront by so-called
selector functions (introduced with the keyword sel), which are declared, but not defined in the
HoRSt specification. In the example, we declare selector functions for accessing the identifiers
of the contracts to be analyzed (ids), the set of binary operations (binOps), and the program
counters in a contract that hold opcodes of a specific type (pcForIdAndOpcode). In addition
to that, selector functions also allow for more advanced functionalities such as incorporating
the results of a preanalysis in an elegant fashion: To this end, we declare the selector function
argumentsTwoForIdAndPc that returns arguments to the operation that could be statically
precomputed (returning −1 in case of failure). For generating Horn clauses, we can parametrize

218

C.1. HoRSt

the rule over the cross product of the result of (nested) selector function applications as done
in for the opBin rule. This then exactly generates Horn clauses abstracting the behavior of
a binary stack operation as discussed in section 4.2: A stack size check is performed, the two
arguments are selected from the stack, and finally, the MState predicate at the next program
counter is implied with an updated stack having the operation’s result as the top element. The
only derivation occurs due to the consideration of the preanalysis: the operation tryConcrete
tries to access the statically precomputed argument, and only in case of its absence performs
the (more expensive) stack access. This step, however, is not a necessity but just illustrates how
the interplay between different stages of a static analysis can be implemented for boosting the
performance.

C.1.2 HoRSt in Detail

In the following, we present a short overview of the features of HoRSt.

Types and Operations. For specifying the super domain D of the abstraction, HoRSt provides
in addition to the primitive types BOOLEAN and INTEGER, non-recursive sum types and arrays
over all types. The type of abstract values D̂ used in section 4.2 that consists of the unknown
value and concrete integer values, can be defined as follows:

1 datatype AbsDom = @T | @V<int>;

In addition, HoRSt allows us to define non-recursive operations over arbitrary types. These
operations are implemented as hygienic macros on the expression level. To work with sum types,
HoRSt provides match expressions. This mechanism can, e.g., be used to define the abstract
addition operation described in Figure 4.2.2 as follows:

1 op absadd(a: AbsDom, b: AbsDom): AbsDom :=
2 match (a, b) with
3 | (@V(x), @V(y)) => @V(x + y) // for two concrete values, return sum
4 | _ => @T; // else return top

Predicates. The abstraction’s predicate signature S is given in terms of predicate declarations.
A predicate declaration introduces a predicate symbol that ranges over arguments of arbitrary
types. HoRSt supports a mechanism for declaring a whole family of predicates with the same
argument types by allowing for the specification of compile-time constants that we will from now
on call parameters. We illustrate the syntax of predicate declarations with the predicate MStatepc

defined in Figure 4.2 that models an abstract execution state:

1 pred MState{int}: int * array<AbsDom> * array<AbsDom> * array<AbsDom> * bool;

The declared predicate has one parameter of type int and five arguments. The parameter
represents the program counter pc and should be considered part of the predicate name. The
distinction between parameters and arguments is supported by HoRSt for performance reasons:
different parameter instantiations are compiled to different predicate names in the underlying
SMT representation leading to speed-ups in practice and additionally facilitates the folding
optimization discussed in section 4.3. Selector Functions. HoRSt itself provides no facilities to

219

C. APPENDIX TO CHAPTER 4

read files, parse bytecode, etc. Instead, these tasks are handled by Java™ code. HoRSt interacts
with this Java™ code by an upfront-specified interface which is implemented by so-called selector
functions. The tasks performed by selector functions can be as easy as providing an integer
interval or as complicated as precomputing the results of certain bytecode operations, from a
HoRSt perspective, we only see the interface provided by selector function declarations that
associate selector function names with their type signature. Selector functions are restricted to
take a fixed number of arguments of primitive types and to return a sequence of tuples of primitive
types.

Examples of selector function declarations are given below:

1 sel interval: int -> [int]; // integers from 0 to (n-1)
2 sel pcsForOpcode: int -> [int]; // program counters for given opcode
3 sel pcsAndValuesForOpcode: int -> [int*int]; // program counters and precomputed

values

In general, selector functions can be seen as the bridge between the analysis specification and the
parts of the software stack responsible for preprocessing (parsing, etc.) real-world smart contracts.
For instance, as previously discussed, the predicate signature Sc∗ , the abstraction function αc∗

as well as the abstract semantics δ(c∗) are dependent on the concrete contract c∗ under analysis.
Selector functions allow us to implement such a parametrization (e.g., iterating over opcode
sequences in order to generate rules in δ(c∗) according to the opcode at each program counter).

The separation of concerns introduced by selector functions helps to keep the HoRSt specifications
declarative while the technical details of providing the actual values can be tested by unit tests.

Rules. The fundamental abstraction of HoRSt is the concept of rule, which essentially describes a
collection of Horn clauses. It, therefore, can be seen as the mechanism for specifying the abstract
semantics δ(c∗). A rule is either a singleton rule that is just instantiated once or may act as a
template for arbitrarily many instantiations – hence describing a family of rules. The second case
is enabled by the use of selector functions, which provide the sequence that the rule that family
ranges over. More technically, for each tuple returned by a selector function, the parameters of
the rule template will be instantiated according to the tuple values.

The rule shown in Figure C.2 for example will be instantiated for all program counters !pc at
which c∗ holds an MSTORE instruction. The sequence of these program counters is provided
by the selector function pcsForOpcode that maps opcodes to their corresponding set of
occurrences (identified by program counter) in c∗.

Within the body of rules, we can define (optionally hygienic) macros that we can use in the
subsequent clauses of the rule. The clauses themselves (declared with keyword clause),
describe a Horn clause consisting of a list of premises and a conclusion ranging over free
variables which need to be explicitly declared upfront. Premises are lists of predicate applications
and boolean HoRSt expressions, while the conclusion may only consist of a single predicate
application. The example in Figure C.2 defines three clauses that exactly correspond to the Horn
clauses defined for MSTORE pc in Figure 4.4.

220

C.1. HoRSt

1 op valToMemWord (v: AbsDom, mem: array<AbsDom>, o: int): array<AbsDom> :=
2 for (!a: int) in interval(32): x: array<AbsDom> -> store x (o + !a) (

absExtractByteL{!a}(v)), mem;
3 op isConcrete(a: AbsDom): bool := match a with | @T => false | _ => true;
4 op extractConcrete(a: AbsDom): int := match a with | @V(x) => x | _ => 0;
5
6 rule opMstore :=
7 for (!id: int) in ids(),
8 (!pc:int) in pcsForIdAndOpcode(!id, MSTORE),
9 (!p: int, !v: int) in argumentsTwoForIdAndPc(!id, !pc)

10 clause [?size: int, ?sa: array<AbsDom>, ?mem: array<AbsDom>, ?stor: array<
AbsDom>, ?cl: bool, ?offset: AbsDom, ?p: int, ?v: AbsDom]

11 MState{!id,!pc}(?size, ?sa, ?mem, ?stor, ?cl), ?size > 1,
12 !p != ~1,
13 ?v = tryConcrete{!v}(select ?sa (?size -2))
14 => MState{!id, !pc +1}(?size - 2, ?sa, writeWord{!p}(?v, ?mem), ?stor, ?cl),
15 clause [?size: int, ?sa: array<AbsDom>, ?mem: array<AbsDom>, ?stor: array<

AbsDom>, ?cl: bool, ?pos: AbsDom,
16 ?v: AbsDom, ?memn: array<AbsDom>]
17 MState{!id,!pc}(?size, ?sa, ?mem, ?stor, ?cl), ?size > 1,
18 !p = ~1,
19 ?pos = select ?sa (?size -1),
20 ?v = tryConcrete{!v}(select ?sa (?size -2)),
21 ?memn = (isConcrete(?pos)) ? (writeWordEven(extractConcrete(?pos), ?v, ?mem))

: ([@T])
22 => MState{!id, !pc +1}(?size - 2, ?sa, ?memn, ?stor, ?cl);

Figure C.2: HoRSt rule describing the abstract semantics of the local memory write operation
MSTORE pc

Sum Expressions. Selector functions can not only be used to generate rules but can also be used
at the expression level. So-called sum expressions exist in two different shapes: in the simple
case (shown later in Figure C.10), predefined associative operations (addition, multiplication,
disjunction, and conjunction) are used to join expressions that may make use of the values
returned by the selector function; the generalized case can be seen in line 2 of Figure C.2.
The operation valToMemWord updates 32 consecutive memory cells of mem with fractions
of the value v starting from position o — mem is the start value, store x (o + !a)(
absExtractByteL{!a}(v)) is the iterated expression (x acts as a placeholder for the last
iteration step’s result).

Queries. In order to check for reachability of abstract configurations, HoRSt allows for the
specification of (reachability) queries that can also be generated from selector functions. The
query that is shown in Figure C.6 for instance, checks for reentrancy by checking if any CALL
instruction is reachable with call level c = 1 (here encoded as bool). It, therefore, is an
implementation of the reachability property introduced in subsection 4.2.5.

Note that if there is a notion of an expected outcome, we can define queries with the keyword
test as seen in Figure C.10.

221

C. APPENDIX TO CHAPTER 4

1 query reentrancyCall
2 for (!id: int) in ids(),
3 (!pc:int) in pcsForIdAndOpcode(!id, CALL)
4 [?sa: array<AbsDom>, ?mem: array<AbsDom>,
5 ?stor: array<AbsDom>, ?size:int]
6 MState{!id, !pc}(?size, ?sa, ?mem, ?stor, true);

Figure C.3: HoRSt-query for reeentrancy.

P1(x) ∧ y = x + 1 ⇒ P2(y)
P2(y) ∧ z = y ∗ 3 ⇒ P3(z)

P1(x) ∧ y = x + 1 ∧ z = y ∗ 3 ⇒ P3(z)

Figure C.4: Unfolding of P2.

C.1.3 Compiler Optimizations

The HoRSt compiler features several transformations to generate optimized smt-lib output. It
first resolves high-level language constructs such as operations and datatypes and unfolds the
parametrization introduced by selector functions. The resulting basic Horn clause representation
is optimized by constant folding, and optionally, by performing different flavors of the unfolding
transformation to eliminate predicates that are not relevant for the queries. In the following, we
explain the unfolding transformation in more detail.

The idea behind the unfolding transformation is that a predicate p can be eliminated from a set of
Horn clauses Λ by unfolding the occurrences of p in the premises according to the clauses that
have p as conclusion. An example is given in Figure C.4. Here predicate P2 is eliminated by
merging the two single execution steps (modeled by the two clauses on the left) into a combined
clause (on the right) summarizing the steps.

This intuition serves as a starting point for the unfolding strategy of linear folding. In linear
folding, all clauses representing a basic block of sequential execution steps are merged into a
single clause. More precisely, the unfolding transformation is only applied to those predicates
that are used linearly in Λ, meaning that p occurs in the premises of exactly one clause in Λ and
in the conclusion of exactly one different clause in Λ. Linear folding has the advantage that it
runs linearly in the number of clauses in Λ and, as a result, yields a reduced set of clauses Λ such
that |Λ | ≤ |Λ|.
In contrast, applying the unfolding transformation exhaustively on all predicates (except those
that are recursively used) might yield an exponential blow-up in clauses (and hence also result in
exponential runtime). In practice, however, the set of clauses Λ resulting from such a exhaustive
folding is often of a reasonable size. For mitigating the runtime overhead, however, it is crucial to
avoid unnecessary blow-ups in the intermediate clause sets produced during the transformation:
To this end, for exhaustive folding HoRSt applies linear folding first and only afterward performs
the unfoldings that multiply existing clauses.

222

C.2. Theoretical Foundations of eThor

...

exhaustive folding
linear

 folding

Figure C.5: Example of linear and exhaustive folding. Transition system view of the abstract
semantics: States denote predicates and arrows denote Horn clauses having the start predicate as

premise and the goal predicate as conclusion. Initial (final) states are colored green (red).
Linearly used predicates are colored blue.

Figure C.5 shows the effects of linear and exhaustive folding for a simple contract with a loop.
Since the abstraction at each program counter is modeled by an own predicate (MState, here
M for short), the contract control flow is reflected by the logical dependencies between these
predicates, as defined in the Horn clauses of the abstract semantics. Therefore, we depict the
abstract semantics as a transition system, interpreting predicates as states and Horn clauses as
transitions. Linear folding collapses all sequences with linear control flow, while exhaustive
folding, in this case, reduces the state space even further without adding additional clauses.

C.2 Theoretical Foundations of eThor

In this section, we provide details on the theoretical foundations of eThor. We first formally
characterize the notion of Horn-clause-based abstractions as they can be implemented in HoRSt
and then relate this concept to the framework of abstract interpretation. Next, we provide missing
details on the definition of the static analysis underlying eThor and conclude with the proof of
the soundness statement for this analysis.

C.2.1 Horn-clause-based Abstractions

In this section, we more formally characterize the aim and scope of this work, as well as the
kind of static analyses that are realizable by HoRSt. Generally, we focus on the reachability
analysis of programs with a small-step semantics, which we over-approximate by an abstract
program semantics based on Horn clauses. More formally, we will assume a program’s small-step
semantics to be a binary relation Ss over program configurations c ∈ C. A Horn-clause-based
abstraction for such a small-step semantics Ss is then fully specified by a tuple (D, S, α, Λ) where
S defines the signature of predicates with arguments ranging over (partially) ordered subsets
of D. For a given predicate signature S, an abstraction function α : C → A maps concrete
program configurations c ∈ C to abstract program configurations Δ ∈ A consisting of instances
of predicates in S .

Formally, a predicate signature S ∈ N (P(D) × (P(D) × P(D))) is a partial function
from predicate names N to their argument types (formally written as a product over the subsets

223

C. APPENDIX TO CHAPTER 4

of some abstract superdomain D, equipped with a corresponding order). We require for all
n ∈ N that (D, ≤) ∈ S(n) such that (D, ≤) forms a partially ordered set. Correspondingly,
the set of abstract configurations AS over S can be defined as P({n(v) | n ∈ N ∧ ∀i ∈
{1, . . . , |S(n)|}. πi(S(n)) = (D, ≤) =⇒ πi(v) ∈ D}) where πi(·) denotes the usual projec-
tion operator. The abstraction of a small-step semantics is then a set of constrained Horn clauses
Λ ⊆ H(S) that approximates the small-step execution rules.

A constrained Horn clause is a first order formula of the form

∀X. Φ, P ⇒ c

Where X ⊆ Vars × P(D) is a (functional) set of typed variables, and Φ is a set of quantifier-free
constraints over the variables in X . Conclusions c are predicate applications n(z) ∈ PX :=
{n(x) | |x| = |S(n)| ∧ ∀i ∈ {1, . . . , |x|}. πi(x) = x ∧ πi(S(n)) = (D, ≤) =⇒ (x, D) ∈ X}
over variables in X that respect the variable type. Correspondingly, the premises P ⊆ PX , are a
set of predicate applications over variables in X .

We lift the suborders of S to an order on abstract configurations Δ1, Δ2 ∈ AS as follows:

n1(t1) ≤p n2(t2) := n1 = n2

∧ ∀i ∈ {1, . . . , |t1|}. πi(t1) ≤n1,i πi(t2)
given πi(S(n)) = (Dn,i, ≤n,i)

Δ1 ≤ Δ2 := ∀p1 ∈ Δ1. ∃p2 ∈ Δ2. p1 ≤p p2

Finally, we introduce the notion of soundness for a Horn-clause-based abstraction.

Definition 31. A Horn-clause-based abstraction (D, S, α, Λ) soundly approximates a small-step
semantics Ss if

∀(c, c) ∈ S∗
s . ∀Δ. α(c) ≤ Δ

⇒ ∃Δ . Δ, Λ Δ ∧ α(c) ≤ Δ (C.1)

This statement requires that, whenever a concrete configuration c is reachable from configuration
c (meaning that (c, c) is contained in the reflexive and transitive closure of Ss, denoted as
S∗

s), it shall hold that from all abstractions Δ of c, the Horn clause abstraction allows us to
logically derive () a valid abstraction Δ of c . Note that α intuitively yields the most concrete
abstraction of a configuration, hence to make the property hold for all possible abstractions of a
configuration, we strengthen the property to hold for all abstractions that are more abstract than
α(c). The soundness theorem implies that whenever we can show that from some abstraction
Δ of a configuration c there is no abstract configuration Δ derivable such that Δ abstracts c ,
then c is not reachable from c. Consequently, if it is possible to enumerate all abstractions of c ,
checking non-derivability (as it is supported by the fixed point engines of modern SMT solvers)
gives us a procedure for proving unreachability of program configurations.

224

C.2. Theoretical Foundations of eThor

C.2.2 Relation to Abstract Interpretation

It is possible to phrase the previous characterization in terms of classical abstract interpretation
notions. More precisely, we can define a Galois connection (α, γ) between sets of concrete
configurations P(C) (ordered by ⊆) and abstract configurations A (ordered by ≤). To this end,
we lift the abstraction function α to sets of configurations in a canonical fashion:

α(C) :=
c∈C

α(c) (C.2)

Next, we define the concretization function based on α:

γ(Δ) := {c ∈ C | α(c) ≤ Δ}

Lemma 31. The pair of functions (α, γ) forms a Galois connection between (P(C), ⊆) and
(A, ≤).

Proof. We need to show for all C and Δ that

α(C) ≤ Δ ⇔ C ⊆ γ(Δ)

⇒: Let α(C) ≤ Δ. Further let c ∈ C. We show that c ∈ γ(Δ). By the definition of γ it is
sufficient to show that α(c) ≤ Δ. Let p1 ∈ α(c). We show that there is some p2 ∈ Δ such that
p1 ≤ p2. Since p1 ∈ α(c) and c ∈ C, we know that p1 ∈ α(C) and since α(C) ≤ Δ also that
there needs to be some p2 ∈ Δ such that p1 ≤ p2 what concludes the proof.

⇐: Let C ⊆ γ(Δ). Further let p1 ∈ α(C). We show that there is some p2 ∈ Δ such that p1 ≤ p2.
Since p1 ∈ α(C) there must be some c ∈ C such that p1 ∈ α(c). And from C ⊆ γ(Δ) we
can conclude that c ∈ γ(Δ) which implies that α(c) ≤ Δ. Consequently there needs to be a
p2 ∈ Δ such that p1 ≤ p2 what concludes the proof.

Now, we can define reachability of concrete configurations and derivability of abstract configura-
tions as the least fixed points of step functions (FI for concrete configuration steps and FΔI

for
abstract configuration steps) which describe a collecting semantics (with respect to some initial
configuration).

FI(C) := {c | ∃c ∈ C. (c, c) ∈ Ss} ∪ I

FΔI
(Δ) := {p | Δ, Λ p} ∪ ΔI

225

C. APPENDIX TO CHAPTER 4

We obtain the following intuitive correspondences between the different characterizations:

(c, c) ∈ S∗
s ⇔ c ∈ lfp[F{c}] (C.3)

Δ, Λ Δ ⇔ Δ ⊆ lfp[FΔ] (C.4)

where lfp[f] denotes the least fixed point of a function f .

To ensure that the corresponding least fixed points exists, we need to ensure that the domains
P(C) and A of the Galois connection form a complete lattice and that both FI and FΔI

are
monotone. While P(C), ⊆, ∅, P(C), ∪, ∩ is the canonical power set lattice, we can easily show
A, ≤, ∅, Δ, ∪, ∩ to also form a complete lattice as ⊆ is a subrelation of ≤. While it is trivial to

show that FI is monotone, for FΔI
it becomes a proof obligation on Λ:

∀Δ, Δ . Δ ≤ Δ ∧ Δ, Λ p =⇒ ∃p . p ≤ p ∧ Δ , Λ p (C.5)

Using the step functions, we can characterize sound over-approximations as defined in Defini-
tion 31 in an alternative fashion. More precisely, we require our approximation to be a sound
upper approximation [CC04].

Lemma 32. A Horn-clause-based abstraction (D, {≤n,i}(n,i), S, α, Λ) soundly approximates a
small-step semantics Ss iff Λ satisfies Equation C.5 and for all c ∈ C and all Δ ≥ α(c)

α(lfp[F{c}]) ≤ lfp[FΔ]

Proof. "⇒": Assume Equation C.1 and f1 ∈ α(lfp[F{c}]) for some fact f1. We show that there
exists some fact f2 such that f2 ∈ lfp[FΔ] and f1 ≤ f2. By Equation C.2, we know that from
f1 ∈ α(lfp[F{c}]) we can conclude that there exists some c ∈ lfp[F{c}] such that f1 ∈ α(c).
By Equation C.3, we have that (c, c) ∈ S∗

s and hence by Equation C.1 we can conclude that
there exists some Δ such that Δ, Λ Δ and α(c) ≤ Δ . With f1 ∈ α(c) we get from this that
there exists some f2 ∈ Δ such that f1 ≤ f2. Since Δ, Λ Δ , we get from Equation C.4 that
Δ ⊆ lfp[FΔ] and hence also f2 ∈ lfp[FΔ] which concludes the proof.

"⇐": Assume α(lfp[F{c}]) ≤ lfp[FΔ] and let (c, c) ∈ S∗
s and α(c) ≤ Δ. We show that there

is some Δ such that Δ, Λ Δ and α(c) ≤ Δ . By Equation C.3, we get that c ∈ lfp[F{c}]
and hence also α(c) ⊆ α(lfp[F{c}]) (by Equation C.2). As α(lfp[F{c}]) ≤ lfp[FΔ] it follows
that also α(c) ≤ lfp[FΔ]. Additionally, it follows from Equation C.4 that Δ, Λ lfp[FΔ]. This
closes our proof.

Given that FΔ is monotonic, α(lfp[F{c}]) ≤ lfp[FΔ] can be shown to follow from the one-step
characterization below:

α ◦ F ≤ F ◦ α (C.6)

(where F = F∅ and F = F∅).

This is because α◦F ≤ F ◦α implies for all c ∈ C and all Δ ≥ α(c) that α◦F{c} ≤ FΔ ◦α and
by the fixed point transfer theorem [CC04] for Galois connections, this result can be lifted to least
fixed points. As a consequence for proving Theorem 3, it is sufficient to show that Equation C.5
and Equation C.6 hold.

226

C.2. Theoretical Foundations of eThor

C.2.3 Analysis Definition (continued)

We overview additional details of the analysis definition in Section 4.2.

The orders on the abstract argument domains of the predicates in Fig. 4.2 are formally defined as
follows:

≤D̂ := {(â, b̂) | b̂ = ∨ â = b̂}
≤N := {(m, n) | m = n}
≤B := {(a, b) | a = b}

≤N→D̂ := {(f , g) | ∀n ∈ N. f(n) ≤D̂ g(n)}
≤N×(N→D̂) := {((m, f), (n, g)) | m = n ∧ ∀i < m. f(i) ≤D̂ g(i)}

We assume that the same orders apply to the same argument domains of different predicates.

Some of the partially ordered sets described by the argument domains and their corresponding
order, have a supremum, as formally stated in the following lemma:

Lemma 33 (Suprema of argument domains). The following statements hold:

• ∀â ∈ D̂. â ≤D̂

• ∀f ∈ N → D̂. f ≤N→D̂ λx.

Proof. Both cases are immediate consequences of the definitions.

Abstract Operations. We formally define abstract operations on values from the abstract
argument domains, starting with binary operations on natural numbers: Let opbin ∈ N × N → N
be a binary operation. We define abstract binary operations as follows:

· ∈ (N × N → N) → D̂ × D̂ → D̂

opbin (x̂, ŷ) := opbin(x̂, ŷ) x̂, ŷ ∈ N
otherwise

Similarly, we can define abstract comparison operators. Let opcomp ∈ N×N → B be a comparison
operation on natural numbers. We define abstract comparison operations as follows:

· ∈ (N × N → B) → D̂ × D̂ → B

opcomp (x̂, ŷ) := opcomp(x̂, ŷ) x̂, ŷ ∈ N
1 otherwise

227

C. APPENDIX TO CHAPTER 4

We further define the abstract operations for array access used in Figure 4.3. First, we define the
function for extracting a specified fraction of an integer (interpreted as 32-byte word)

·[·,·] ∈ D̂ × N × N → D̂

v̂[l,r] :=

v̂

25631−r mod 256r−l+1 l ≤ r ∧ v̂ ∈ N
otherwise

Next, we define the append function:

||· ∈ D̂ × D̂ × N → D̂

v̂||nŵ := ŵ ∗ 256n + v̂ v̂, ŵ ∈ N
otherwise

We focused here only on those operations that were used in section 4.2. For a full account of all
abstract operations, we refer the reader to our HoRSt specification in [ext20].

C.2.4 Proof of Soundness

For proving Theorem 3, we will not make immediate use of the proof strategy presented in
subsection C.2.2. Even though we proof monotonicity (Eq. (C.5)) separately, since this facilitates
the reasoning in the individual cases, we will, in the end, go for a direct proof of the statement in
Theorem 3 proceeding by complete induction of the number of small steps. The reason for that is
that for proving our abstraction sound one-step reasoning is not sufficient as we need to argue
about execution steps that lie further ahead (hence the use of complete induction).

Auxiliary Notions. In order to prove soundness, we will need to require a stronger form of
consistency than the usual annotation consistency (Definition 22) for the execution states of c∗

that allows to relate the contract code to the currently executed code.

Definition 32 (Strong Annotation Consistency). An execution state s is strongly consistent with
contract annotation c if it is consistent with c and additionally

isRegular(s) =⇒ s.ι.code = c.code

In order to formally state soundness, we need to put the minor restriction on the executions that
we are considering to be collision-resistant for the contract c∗ under analysis. This is as in the
case of contract creations, it is theoretically possible (with negligible probability) that (due to a
hash collision in the Kec (·, ·) function) a contract with the same address as the contract c∗ under
analysis is created. In this case, the contract’s storage, as well as code, will be overwritten. If
such an over-write occurred in the execution of c∗ (after giving up the control flow due to the call
or by performing a CREATE instruction itself), this would mean that any following execution of
c∗ would resume in the altered storage, and (even more severely) following a new contract code.
Consequently, there is no way of faithfully abstracting the execution of c∗ once the control flow

228

C.2. Theoretical Foundations of eThor

was handed over. In practice, however, the occurrence of such a hash collision can be neglected
due to its low probability. Formally, we give a soundness guarantee only for those executions that
do not encompass a problematic hash collision.

Lemma 34. Let Γ sc :: S →n S ++ S be a collision-free execution for AT such
that address (c∗) ∈ AT , s be a regular execution state and c be consistent with s, and
s.σ(address (c∗)).code = code (c∗). Then it holds that

∀s c ∈ S . c .addr = c∗.addr ∨ c = c∗

Proof. By induction on the size of S .

1. Let |S | = 1. Then S = [s c]. If address (c) = address (c∗) the claim trivially holds. So we
assume in the following that address (c) = address (c∗). In this case we know by Lemma 24
that c = c. So in particular address (c) = address (c) = address (c∗). Since c is consistent
with s and also s.σ(address (c∗)).code = code (c∗) we know that c = c∗ and hence also
c∗ = c .

2. Let |S | > 1. Then S = s c :: S and |S | > 0. If address (c) = address (c∗) the claim
trivially holds. So we assume in the following that address (c) = address (c∗). We distinguish
two cases

a) If s = EXC then by Definition 20 we know that codes{address (c∗)}(s) =
codes{address (c)}(s) and hence c = c∗ what closes the case.

b) If s = EXC then we know by Lemma 19 that one of the following holds:

i. There exists some si such that Γ sc :: S →m si
c :: S ++ S and Γ

si
c :: S ++ S →n−m s c :: S ++ S for m ≤ n. Then we know that either

address (c) = address (c∗) in which case the claim trivially holds due to Lemma 23,
or by Definition 20 that c = c∗. By Lemma 24 we can then further conclude that
c∗ = c what closes the case.

ii. S = s3
c3 :: S3 and c = c3 (since s represents the initiation of a transaction that failed

at call time). The claim hence follows by the inductive hypothesis.

This lemma ensures that during the execution, the address of contract c∗ can never be attached to
a different code. Given that execution states of contract creation are annotated with (ρ,) (where
ρ is the address of the contract in creation), this definition in particular rules out that the creation
code of a contract with address c∗.addr is executed.

While the occurrences of such a colliding contract creation needs to be excluded on execu-
tions (since it could be performed by arbitrary contracts), exclusion of DELEGATECALL and
CALLCODE extractions only applies to the executions of c∗ and can therefore be syntacti-
cally enforced on c∗’s contract code. We establish the invariant that we obtain from excluding
DELEGATECALL and CALLCODE from c∗’s contract code.

229

C. APPENDIX TO CHAPTER 4

Lemma 35 (Strong Annotation Evolution). Let Γ sc :: S →n s c :: S ++ S be a collision-free
execution for AT such that c is strongly consistent with s and address (c) ∈ AT . Then one of
the following holds:

1. s is strongly consistent with c

2. S = s1
c :: S1 for some s1 and S1 and s1.ι.code[s1.µ.pc] ∈

{DELEGATECALL, CALLCODE}

Proof. Proof by case distinction on S .

• If S = then we know from annotation persistence (Definition 22) that c = c . Further
from execution environment persistence (Lemma 22) we also know that s.ι.code = s .ι.code.
Since the annotation consistency is anyway preserved by the execution (Lemma 21), we are
left to show that s .ι.code = c.code what immediately follows from the strong consistency of
s with c.

• If S = s1
c1 :: S1 for some s1 and S1 and c1, then we know by Lemma 17 that s1 is a call state

and that the execution stepped through that call state (Lemma 18). By the definition of call
states (Definition 17) we hence know that there is some s2, c2 such that Γ s1

c1 :: S1 ++ S →
s2

c2 :: s1
c1 :: S1 ++ S and Γ s2

c2 :: s1
c1 :: S1 ++ S →∗ s c :: s1

c1 :: S1 ++ S. Due to the an-
notation persistence (Lemma 24) we can conclude that c = c2. Further we know that
s1.ι .code[s1.µ.pc] ∈ Instcall (Lemma 15). Hence we can proceed by a case distinction on the
different call instructions. For CALL and CREATE it trivially follows from the definition of
the small-step rules that s1 is strongly consistent with c1. For the cases of DELEGATECALL
and CALLCODE it follows from the definition of the small-step rules that c1 = c2 and hence
c1 = c what concludes the proof.

Lemma 36 (Annotation Evolution). Let (Γ, sc :: S) be a configuration that is reachable via a
collision-free execution for AT with address (c) ∈ AT . Then one of the following holds:

1. s is strongly consistent with c

2. S = s c :: S for some s and S and s .ι.code[s .µ.pc] ∈ {DELEGATECALL, CALLCODE}

Proof. Since (Γ, sc :: S) is reachable, we know that there exists some si, ci such that (Γ, si
ci) =

initializeT(T , σ, H, g) for some transaction T , global state σ, block header H and gas g and
ι si

ci :: →∗ sc :: S. By definition of initializeT, si is strongly consistent with ci. The claim
hence immediately follows from Lemma 35.

Note that this lemma, in particular, states that strong consistency can only be broken by a contract
call involving a DELEGATECALL and CALLCODE instruction and that in this case, the contract
annotation of the caller executing this instruction persists.

230

C.2. Theoretical Foundations of eThor

Lemma 37 (Strong Consistency of Reachable States). Let c be a contract such that
{DELEGATECALL, CALLCODE} ∩ c.code = ∅. Further, let Γ s c :: S →n sc :: S ++ S be
a collision-free execution for AT such that s is strongly consistent with c and address (c) ∈ AT .
Then s is strongly consistent with c.

Proof. We proceed by induction on (the size of) the call stack S .

• If S = then by Lemma 35 we can immediately conclude that s is strongly consistent with c.

• If S = s1
c1 ::S1 for some s1, c1, S1 we know by Lemma 35 that either s1 is strongly consistent

with c1 or that c1 = c and s1.ι.code[s1.µ.pc] ∈ {DELEGATECALL, CALLCODE}. In
the first case, the statement trivially holds. For the second case by Lemma 18 we know
that Γ s c :: S →m s1

c1 :: S1 ++ S for some m and hence we can apply the inductive
hypothesis that gives us that s1 is strongly consistent with c1 and hence also with c. By the
definition of strong consistency we can conclude that s1.ι.code = c.code and hence that
c.code[s1.µ.pc] ∈ {DELEGATECALL, CALLCODE} what contradicts the assumption and
hence concludes the proof.

Lemma 38 (Strong Consistency of Reachable Configurations). Let c be a contract such that
{DELEGATECALL, CALLCODE} ∩ c.code = ∅. Further, let (Γ, sc :: S) be a configuration that
is reachable via a collision-free execution for AT with address (c) ∈ AT . Then s is strongly
consistent with c.

Proof. Since (Γ, sc :: S) is reachable, we know that there exists some si, ci such that (Γ, si
ci) =

initializeT(T , σ, H, g) for some transaction T , global state σ, block header H and gas g and
ι si

ci :: →∗ sc :: S. By definition of initializeT, si is strongly consistent with ci. The claim
hence immediately follows from Lemma 37.

Lemma 39 (Annotation Agreement for c∗). Let c be a contract such that
{DELEGATECALL, CALLCODE} ∩ c.code = ∅. Let further Γ sc :: S →n S ++ S be
a collision free execution for AT such that address (c) ∈ AT and let s be strongly consistent
with c. Then for all (regular) execution states s c ∈ S it holds that

1. If c.addr = s .ι.actor then c.code = s .ι.code

2. If c = c then s .ι.actor = c.addr

Proof. By induction on n

1. If n = 0 then S = [sc]. Since we know that s is strongly consistent with c we now that
c.code = s.ι.code. So conditions 1) and 2) hold.

231

C. APPENDIX TO CHAPTER 4

2. If n > 0 then (A1) Γ sc :: S →n−1 S∗ and (A1) Γ S∗ → S ++ S. By Lemma 6 we knot
that S∗ = S3 ++ S for some S3 with |S3| > 0. By the inductive hypothesis we can conclude
that conditions 1) and 2) hold for all s c ∈ S3. Since |S3| > 0 we know that S3 = s3

c3 :: S4
for some s3

c3 and S4. We make a case distinction on the small step execution step performed
in (A2)

• In case of a local execution execution step we know that S = s4
c3 :: S4 for some s4. Since

local execution steps do not effect the execution environment we know that conditions 1)
and 2) hold for s4

c3 since (by the inductive hypothesis) they hold for s3
c3

• In case of the initiation of an internal transaction we know that S = s4
c3 :: s3

c3 :: S4 for
some s4 and c4. By Lemma 35 we know that we have one of the following cases:

a) s4 is strongly consistent with c4. In this case, we know that (B1) s4.ι.code = c4.code,
(B2) s4.ι.actor = c4.a, and (B3) s4.σ(c4.a.code = c4.code. We first show condition
1) for s4

c4 : If c.a = s4.ι.actor then by (B4) also c.a = c4.a. Further by Lemma 34 we
have that also c = c4 and consequently s4.ι.code = c.code. We next show condition
2) for s4

c4 : Assume c4 = c then due to Lemma 34 we know that c4.a = c.a. By (B2)
we can hence conclude that s4.ι.actor = c.a

b) s3.ι.code[s3.µ.pc] ∈ {DELEGATECALL, CALLCODE}. In this case we in particular
know that s3.ι.code = c.code (since we know c not to contain DELEGATECALL and
CALLCODE instruction). By condition (1) of the inductive hypothesis we hence get
that c.a = s3.ι.actor. By Lemma 21 we know that c3.a = s3.ι.actor, so we can also
conclude that c3.a = c.a. By the semantics of DELEGATECALL and CALLCODE
we further know that s4.ι.actor = s3.ι.actor. So we can conclude that s4.ι.actor =
s3.ι.actor = c3.a = c.a.

3. In the case of the completion of an internal transaction we know that S4 = s4
c4 :: S5 for

some s4, c4 and S5 and S = s5
c5 :: S5 for some s5 ad c5. By Lemma 18 we know that Γ

s4
c4 :: S5 ++ S →∗ s5

c5 :: S5 ++ S and hence by Lemma 22 and Lemma 23 that s4.ι = s5.ι
and c4.a = c5.a. By the inductive hypothesis we know that conditions 1) and 2) hold for
s4

c4 . We first show condition (1) for s5
c5 : Assume that c.a = s5.ι.actor. Then we know that

c.a = s4.ι.actor and hence c.code = s4.ι.code = s5.ι.code what concludes the case. We
next show condition (2) for s5

c5 : Assume that c5 = c. We distinguish two cases:

a) Assume that c.a = c5.a Since c4.a = c5.a we also know that c.a = c4.a and hence (by
the inductive hypothesis) that s4.ι.actor = c.addr. And so also s5.ι.actor = c.addr

b) Assume that c.a = c5.a, but c.code = c5.code. Since c4.a = c5.a we know that then
also c.a = c4.a. Hence by Lemma 21 we can conclude that c4 = c5. By the inductive
hypothesis we know in this case however that s4.ι.actor = c.addr. So we also know that
s5.ι.actor = c.addr.

232

C.2. Theoretical Foundations of eThor

So, in a nutshell, for contracts not containing CALLCODE and DELEGATECALL, strong con-
sistency is preserved, and additionally, the contract code is persistent (cannot change over the
execution).

For arguing about the call abstraction, we show the following substantial lemma that allows us to
trace back the storage of a (contract) account to the (result of a) prior execution of this contract.

Lemma 40 (Storage Evolution). Let Γ, S, S , s, s , and c = c∗ be such that s is strongly
consistent with c∗ and

Γ sc∗ :: S →n s c :: S ++ S

is a collision-free execution for c∗. Then one of the following holds:

1. s = EXC

2. s = EXC ∧
∃s∗

c∗ ∈ S s .σ(c∗.addr).stor = s∗.σ(c∗.addr).stor

3. s = EXC ∧
∃ S∗ σ gas d η m. |S∗| > 0
∧ Γ sc∗ :: S →m HALT(σ, gas, d, η) :: S∗ ++ S

∧ Γ HALT(σ, gas, d, η) :: S∗ ++ S →n−m s c :: S ++ S

∧ s .σ(c∗.addr).stor = σ(c∗.addr).stor

This lemma allows for relating the storage of contract c∗ to prior executions of c∗ itself. More
precisely, the storage of c∗ (given that c∗ does not contain CALLCODE or DELEGATECALL
instructions) either needs to be as it was at the point of the last call originating from c∗ or the
result of some finished prior execution of c∗.

Proof. We proceed by complete induction on the number n ∈ N of small-steps.

• Case n = 0. In this case it holds that s c = sc∗ and S = . Hence the assumption that
c = c∗ is trivially violated.

• Case n > 0. In this case Γ sc∗ :: S →n−1 S and Γ S → s c :: S ++ S for some S .
We proceed by case analysis on the small-step rule being applied in the last step.

– ADD. (non exception case). Then S = (µ, ι, σ, η)c :: S ++ S for some µ, ι, σ, and η
and s = (µ , ι, σ, η) for some µ . By inductive hypothesis for n − 1 it follows that one
out of options 1 to 3 holds for (µ, ι, σ, η). As the global state σ stays unaffected, this
consequently also holds for (µ , ι, σ, η) hence closing the case. This reasoning applies to
all local rules that are not changing the contracts global storage (so except for SSTORE).

233

C. APPENDIX TO CHAPTER 4

– SSTORE. (non exception case). Then S = (µ, ι, σ, η)c :: S ++ S for some µ, ι, σ, and
η and s = (µ , ι, σ , η) for some µ , σ . Since SSTORE only modifies the storage of the
active account, we can conclude that for all addresses a such that a = ι.actor it holds that
σ(a) = σ (a). Since by Lemma 39 it holds that ι.actor = c∗.addr, it particularly follows
that σ(c∗.addr) = σ (c∗.addr). Hence the claim follows immediately from the application
of the inductive hypothesis for n − 1.

– CALL. (All preconditions satisfied, called account exists). Then S = s c :: S ++ S and
S = s c :: S for some regular execution state s , contract c and call stack S . We do a
case distinction on c :

c = c∗ In this case, condition 2 is satisfied since s c ∈ S and the call itself does not affect
the contract’s storage, so s .σ(c∗.addr).stor = s .σ(c∗.addr).stor.

c = c∗ In this case the inductive hypothesis is applicable for n − 1. Given again that the call
itself does not affect storage, so s .σ(c∗.addr).stor = s .σ(c∗.addr).stor, the claim
straightforwardly propagates to the case of n steps. Note that similar reasoning also
applies to the cases of STATICCALL, CALLCODE, and DELEGATECALL.

– Halt. (return from regular halting after CALL) Then S = HALT(σ, gas, d, η)ċ ::
s c :: S ++ S for some σ, gas, d, η, s , and c . Additionally, it holds that s .σ = σ.
We do a case distinction on ċ:

ċ = c∗ In this case, condition 3 is satisfied since Γ sc∗ :: S →n−1

HALT(σ, gas, d, η)ċ :: s c :: S ++ S, Γ HALT(σ, gas, d, η)ċ :: s c :: S ++ S →
s c :: S ++ S and as s .σ = σ, also s .σ(c∗.addr).stor = σ(c∗.addr).stor.

ċ = c∗ In this case again the inductive hypothesis can be applied for n − 1, and since s .σ = σ,
the claim trivially carries over to the case of n steps.

– Exc. (return from exceptional halting) Then S = EXCċ :: s c :: S ++ S and s .σ = s .σ
(as the global state is rolled back). By Lemma 18, we know that there exists some
m < n − 1 such that Γ sc∗ :: S →m s c :: S ++ S and Γ s c :: S ++ S →n−1−m

EXCċ :: s c :: S ++ S. By applying the inductive hypothesis for m (< n), the claim straight-
forwardly carries over to the case of n steps.

– CREATE. (All preconditions satisfied, created account does not exist (no hash collision).
Then S = s c ::S ++ S and S = s c ::S for some regular execution state s , contract
c and callstack S . The same reasoning as for the CALL case applies.

– CREATE. (All preconditions satisfied, created account exists (hash collision). Then
S = s c :: S ++ S and S = s c :: S for some regular execution state s , contract c
and call stack S . Additionally, we know that c = (ρ, ⊥) where ρ is the newly created
address. Here, we need to make use of the assumption that the newly created address ρ
is not colliding with the address of c∗ (ρ = c∗.addr). This is ensured as otherwise the
execution would not be collision-free (for ρ = c∗.addr the condition of Lemma 34 would
be violated for s c). We do a case distinction on c :

c = c∗ In this case, condition 2 is satisfied since s c ∈ S and the contract creation does
not affect the storage of address c∗.addr (but only the one of ρ, which is different by
assumption). So s .σ(c∗.addr).stor = s .σ(c∗.addr).stor.

234

C.2. Theoretical Foundations of eThor

c = c∗ In this case the inductive hypothesis is applicable for n − 1. Given again that the
contract creation does not affect the storage of address c∗.addr, so s .σ(c∗.addr).stor =
s .σ(c∗.addr).stor, the claim straightforwardly propagates to the case of n steps.

– Halt. (return from regular halting after CREATE) Similar to the halting case for CALL
with the only difference that instead of s .σ = σ it only holds that s .σ = σ ρ → acc for
some account state acc. However, as long as it is ensured that ρ = c∗.addr (which is the
case due to the collision-free execution) this does not affect the reasoning.

Monotonicity of Abstract Rules. We prove separately, that all rules in δ(c∗) are monotone (for
any c∗). This facilitates the reasoning in the individual cases of the main proof since it allows us
to argue about most concrete abstractions only.

Since monotoniticy is independent of the small-step semantics, we will in the following consider
an abstract semantics specified by (D, S, Λ). First, we define monotonicity for an abstract
semantics (D, S, Λ) as follows:

Definition 33 (Monotonicity of Abstract Semantics). An abstract semantics (D, S, Λ) is mono-
tone if for all abstract configurations ΔI , ΔI , ΔF ∈ AS such that ΔI ≤ ΔI it holds that

ΔI ∪ Λ ΔF =⇒ ∃ΔF . ΔI ∪ Λ ΔF ∧ ΔF ≤ ΔF

We will prove the following theorem:

Theorem 7 (Monotonicity of δ). For all contracts c it holds that (Devm, Sevm, δ(c)) is monotone.
(Where Devm is the super domain and Sevm is the signature induced by the definition in Figure 4.2.)

We prove this property by proving the (one-step) monotonicity of the individual rules in δ(c).

We define one-step derivations of a Horn clause H from some abstract configuration Δ. To this
end, we use the notion of a variable assignment V ∈ Vars → D that maps variables to values
of the corresponding abstract domain. We write V (n(z)) for n(V (z)) and V ({f1, . . . , fn}) for
{V (f1), . . . , V (fn)}. By V Φ we denote that replacing all variables in Φ according to V yields
a tautology.

Definition 34 (One-step Derivability from Horn Clause). Let (D, S, Λ) be an abstract semantics
and (∀X. Φ, P ⇒ c) ∈ Λ. Further let f ∈ AS Then the one-step derivability relation 1 on
abstract configurations is defined as follows:

Δ, (∀X. Φ, P ⇒ c) 1 f := ∃V . V (P) ⊆ Δ ∧ V Φ ∧ f = V (c)

Note that this intuition implicitly enforces that the valuation V respects the argument types of the
predicates.

We extend the notion of derivability to sets of horn clauses and abstract configurations:

235

C. APPENDIX TO CHAPTER 4

Definition 35 (One-step Derivability from Abstract Semantics). Let (D, S, Λ) be an abstract
semantics. Then the one-step derivability relation 1 on Λ is defined as follows

Δ, Λ 1 Δ := ∃f . Δ = Δ ∪ {f} ∧ ∃H ∈ Λ. Δ, H 1 f

Finally, we define to be the reflexive, transitive closure of 1.

We define the monotonicity of a Horn clause as follows:

Definition 36 (Monotonicity of Horn Clauses). Let (D, S, Λ) be an abstract semantics. A
constrained Horn clause H ∈ Λ is monotone if for all Δ ≥ Δ

Δ, H 1 f =⇒ ∃f . Δ , H 1 f ∧ f ≥ f

Evidently, the (one-step) monotonicity of all Horn clauses in an abstract semantics implies the
(multi-step) monotonicity of the abstract semantics

Lemma 41. Let (D, S, Λ) be an abstract semantics. If all constrained horn clauses H ∈ Λ are
monotone, then so is Λ.

Proof. Assume that all H ∈ Λ are monotone. Let ΔI ≥ ΔI and ΔI ∪ Λ ΔF . We show that
∃ΔF . ΔI ∪ Λ ΔF ∧ ΔF ≤ ΔF . From ΔI ∪ Λ ΔF we know that there exists an n step
derivation ΔI ∪ Λ n ΔF . We proceed by induction on n

1. If n = 0 then ΔF = ΔI . Hence the claim trivially holds since ΔI ∪ Λ ΔI and ΔI ≤ ΔI .

2. If n > 0 then ΔI ∪ Λ n−1 Δ and Δ ∪ Λ 1 ΔF . By the inductive hypothesis we know that
∃Δ . ΔI ∪ Λ Δ ∧ Δ ≤ Δ . Further we know that there is some f such that ΔF = Δ ∪ {f}
and there is some H ∈ Λ such that Δ, H 1 f . Since we know that H is monotone we know
that there is some f such that Δ , H 1 f and f ≥ f . Consequently we know that for
ΔF = Δ ∪ {f } we have that Δ ∪ Λ ΔF and hence also ΔI ∪ Λ ΔF . Further we know
that ΔF ≥ ΔF since Δ ≥ Δ and f ≥ f .

It is hence sufficient to prove the (one-step) monotonicity of all Horn clauses in (Devm, Sevm, δ(c))
(for arbitrary c).

For facilitating the proofs, we give a more syntactic characterization of Horn clause monotonicity:

Lemma 42. Let H = ∀X. Φ, P ⇒ c be a Horn clause. If for all variable assignments V , V
with (x, D) ∈ X =⇒ V (x) ∈ D ∧ V (x) ∈ D it holds that

V (P) ≥ V (P) ∧ V Φ
=⇒ ∃V ∗. V ∗(P) = V (P) ∧ V ∗(c) ≥ V (c) ∧ V ∗ Φ

then H is monotone.

236

C.2. Theoretical Foundations of eThor

Proof. Assume that (1)

V (P) ≥ V (P) ∧ V Φ
=⇒ ∃V ∗. V ∗(P) = V (P) ∧ V ∗(c) ≥ V (c) ∧ V ∗ Φ

holds for valuations as defined above. We show the monotonicity of H = ∀X. Φ, P ⇒ c. To
this end we assume some (2) Δ ≥ Δ and (3) Δ, H 1 f and show that there is some valuation
V such that V (P) ⊆ Δ , V Φ and V (c) ≥ f . From (3) it is known that there is some
valuation V such that V (P) ⊆ Δ, V Φ and f = V (c). From (2), we get that for every
p ∈ V (P) there exists a p ∈ Δ such that p ≤ p . Given that the variables of all premises
are distinct, we can easily construct a valuation V such that V (q) = p for some q ∈ P and
consequently V (P) ⊆ Δ and V (P) ≤ V (P). Using (1), we get that there is some V ∗ such that
V ∗(P) = V (P) and V ∗(c) ≥ V (c) and V ∗ Φ. Consequently, since V ∗(P) = V (P) ⊆ Δ
and V ∗(c) ≥ V (c) = f , V ∗ satisfies all required conditions.

This lemma reduces proving monotonicity of the constrained Horn clause to proving the mono-
tonicity of the clause’s constraints.

Abstract Operations. We exemplary show the monotonicity of the rules shown in Figure 4.4.
To this end, we will first establish some general monotonicity results on abstract operations.

Lemma 43 (Monotonicity of Abstract Binary Operations). Let x̂, x̂ , ŷ, ŷ such that x̂ ≤ x̂ and
ŷ ≤ ŷ . Then

opbin (x̂, ŷ) ≤D̂ opbin (x̂ , ŷ)

Proof. We perform a case distinction on x̂ ≤ x̂ .

• If x̂ = then opbin (x̂ , ŷ) = and consequently opbin (x̂, ŷ) ≤D̂ opbin (x̂ , ŷ)

• If x̂ = x ∈ N and x̂ = x then we do a case distinction on ŷ ≤ ŷ

– If ŷ = then opbin (x̂ , ŷ) = and consequently opbin (x̂, ŷ) ≤D̂ opbin (x̂ , ŷ).

– If ŷ = y ∈ N and ŷ = y then we know that opbin (x̂, ŷ) = opbin(x, y) = opbin (x̂ , ŷ)
and hence opbin (x̂, ŷ) ≤D̂ opbin (x̂ , ŷ).

Lemma 44 (Monotonicity of Abstract Comparison Operations). Let x̂, x̂ , ŷ, ŷ such that x̂ ≤D̂ x̂

and ŷ ≤D̂ ŷ . Then

opcomp (x̂, ŷ) = 1 =⇒ opcomp (x̂ , ŷ) = 1

Proof. We perform a case distinction on x̂ ≤ x̂ .

237

C. APPENDIX TO CHAPTER 4

• If x̂ = then opcomp (x̂ , ŷ) = 1 and consequently the implication trivially holds.

• If x̂ = x ∈ N and x̂ = x then we do a case distinction on ŷ ≤ ŷ

– If ŷ = then opcomp (x̂ , ŷ) = 1 and consequently the implication trivially holds.

– If ŷ = y ∈ N and ŷ = y then we know that opcomp (x̂ , ŷ) =
opcomp(x, y) = opcomp (x̂, ŷ) and hence the implication holds.

Lemma 45 (Monotonicity of Memory Access). Let m1, m2 ∈ N → D̂ such that m1 ≤N→D̂ m2
and let p ∈ N.

getWord(m1, p) ≤D̂ getWord(m2, p)

Proof. The claim immediately follows from the definition of ≤N→D̂.

We now illustrate how to prove Theorem 7, using Lemma 42.

Proof. For showing the monotonicity of δ(c∗) for arbitrary c∗ it is sufficient to show the one-step
derivability of all rules in inst pc for all instructions inst and an arbitrary program counter pc.
Hence, let pc ∈ N be arbitrary. The proof proceeds by case distinction on the instruction set.

• ADD. We now prove the monotonicity of the rules for addition in Figure 4.4. Recall the
definition of the clause for addition.

MStatepc((size, s), m, stor, c) ∧ size > 1
∧ x̂ = s[size − 1] ∧ ŷ = s[size − 2]
=⇒ MStatepc+1((size − 1, s[size − 2 → x̂ + ŷ]), m, stor, c)

We prove the monotonicity using Lemma 43. Assume that there is some variable assign-
ment satisfying the rule constraints, meaning that there are values (size, s), m, stor, c ,
x̂, ŷ satisfying size > 1, x̂ = s[size − 1] and ŷ = s[size − 2]. We show for any values
(size , s) ≥N×(N→D̂) (size, s), m ≥N→D̂ m, stor ≥N→D̂ stor, c ≥B c that there are x̂ ,

ŷ such that size > 1, x̂ = s [size − 1] and ŷ = s [size − 2], and (size − 1, s[size − 2 →
x̂ + ŷ]) ≤N×(N→D̂) (size −1, s [size − 2 → x̂ + ŷ]). First we observe that size = size and

(since (size, s) ≤N×(N→D̂) (size , s)). We pick x̂ = s [size − 1] and ŷ = s [size − 2]
and from (size, s) ≤N×(N→D̂) (size , s) we know that s[size − 1] ≤D̂ s [size − 1] and

s[size − 2] ≤D̂ s [size − 2], so consequently also x̂ ≤D̂ x̂ and ŷ ≤D̂ ŷ . So we are left
to show that (size − 1, s[size − 2 → x̂ + ŷ]) ≤N×(N→D̂) (size − 1, s [size − 2 → x̂ + ŷ]).

Since (size, s) ≤N×(N→D̂) (size , s), we only need to show that x̂ + ŷ ≤D̂ x̂ + ŷ which im-
mediately follows from Lemma 43. The same reasoning applies to all other binary operations
or comparison operations.

238

C.2. Theoretical Foundations of eThor

• MLOAD. Recall the definition of the rule for memory access:

MStatepc((size, s), m, stor, c) ∧ size > 1
∧ ô = s[size − 1] ∧ v̂ = (ô ∈ N) ? getWord(m, ô) :
=⇒ MStatepc+1((size, s[size − 1 → v̂]), m, stor, c)

We prove the monotonicity using Lemma 45. Assume that there is some variable assignment
satisfying the rule constraints, meaning that there are values (size, s), m, stor, c , ô, v̂
satisfying size > 0, ô = s[size − 1], and v̂ = (ô ∈ N) ? getWord(m, ô) : . We show for
any values (size , s) ≥N×(N→D̂) (size, s), m ≥N→D̂ m, stor ≥N→D̂ stor, c ≥B c that

there are ô , v̂ such that size > 1, ô = s [size − 1] and v̂ = (ô ∈ N) ? getWord(m, ô) : ,
and s[size − 1 → v̂] ≤N×(N→D̂) s [size − 1 → v̂]. First we observe size = size and

c = c . We pick ô = s [size − 1] and v̂ = (ô ∈ N) ? getWord(m , ô) : . We know that
s[size − 1] ≤D̂ s [size − 1] since (size , s) ≥N×(N→D̂) (size, s) and hence also ô ≤D̂ ô . For

showing that (size, s[size − 1 → v̂]) ≤N×(N→D̂) (size, s [size − 1 → v̂]) it is sufficient to

show that v̂ ≤D̂ v̂ . We make a case distinction on ô ∈ N

ô ∈ N In this case v̂ = getWord(m, ô). Since ô ≤D̂ ô we know that either ô = ô or ô = .

ô = ô In this case clearly ô ∈ N and hence v̂ = getWord(m , ô). Since m ≤N→D̂ m , we
know from Lemma 45 that getWord(m, ô) ≤D̂ getWord(m , ô) and hence v̂ ≤D̂ v̂ .

ô = In this case v̂ = . Since is the top element of D̂ (Lemma 33), trivially v̂ ≤D̂ v̂ .

ô = In this case v̂ = and since ô ≤D̂ ô also ô = and hence v̂ = and consequently
v̂ ≤D̂ v̂ .

The proof for all other cases is fully analogous. Note in particular that for those rules that
are independent of abstract values, monotonicity trivially holds. For example, in the rules for
transaction initiating instructions, the conclusions are independent of the (abstract) arguments in
the premise, and hence those are trivially monotone.

Soundness of Abstract Operations. In addition to their monotonicity, we are also interested in
the soundness of abstract operations. Intuitively, an abstract operation is sound, if its result is at
least as abstract as the result of the concrete operation We formally state soundness for binary
operations and comparison operations.

Lemma 46 (Soundness of Abstract Binary Operations). Let x, y ∈ N. Then

opbin(x, y) ≤D̂ opbin (x, y)

Proof. The claim trivially follows since opbin (x, y) = opbin(x, y) for x, y ∈ NN .

Lemma 47 (Soundness of Abstract Comparison Operations). Let x, y ∈ N. Then

opcomp(x, y) = 1 =⇒ opcomp (x, y) = 1

239

C. APPENDIX TO CHAPTER 4

Proof. The claim trivially follows since opcomp (x, y) = opcomp(x, y) for x, y ∈ NN .

That the memory access is sound, is captured by the following lemma:

Lemma 48 (Soundness of Memory Access). Let m ∈ N → N and p ∈ N.

m[p]||1m[p + 1]||1 · · · ||1m[p + 31] ≤D̂ getWord(toWordMem(m), p)

Proof. Let m ∈ N → N and p ∈ N. We distinguish two cases

1. If p mod 32 = 0 then we know that p = 32 · x for some x ∈ N. Consequently
we know that getWord(toWordMem(m), p) = toWordMem(m)[x]. By the definition of
toWordMem we know that this is m[x · 32]||1m[x · 32 + 1] · · · ||1m[x · 32 + 31] and hence
getWord(toWordMem(m), p) = m(p)||1m(p + 1)||1 · · · ||1m(p + 31) What shows the claim.

2. If p mod 32 = 0 then we know that p = 32 · x + k for some x, k ∈ N and k > 0. Then we
can show:

getWord(toWordMem(m), p)
= (toWordMem(m)[x][k,31])||k(toWordMem(m)[x + 1][0,k−1])
= (m[x · 32]||1m[x · 32 + 1] · · · ||1m[x · 32 + 31][k,31])

||k(m[(x + 1) · 32]||1m[(x + 1) · 32 + 1] · · · ||1m[(x + 1) · 32 + 31][0,k−1])
= (m[x · 32 + k]||1 · · · ||1m[x · 32 + 31])||k(m[(x + 1) · 32]||1 · · · ||1m[(x + 1) · 32 + k − 1])
= (m[p]||1 · · · ||1m[p + 31 − k])||k(m[p + 32 − k]||1 · · · ||1m[p + 31])
= m[p]||1 · · · ||1m[p + 31]

This concludes the proof.

Main Proof. We slightly refine Theorem 3 to consider collision-free executions of c∗, a detail
that we omitted in the original formulation for the sake of presentation.

Theorem (Soundness). Let c∗ be a contract whose code does not contain DELEGATECALL
or CALLCODE. Let Γ be a transaction environment and let S and S be annotated call stacks
such that |S | > 0. Then for all execution states s that are strongly consistent with c∗ such that
Γ sc∗ :: S →∗ S ++ S is a collision-free execution, it holds that

∀ΔI . αc∗([sc∗]) ≤ ΔI =⇒ ∃Δ. ΔI , δ(c∗) Δ ∧ αc∗(S) ≤ Δ

We will detail out the relevant cases of the soundness proof. The small-step semantics describes
rules for local executions, the initiation of internal transactions, and the completion of internal
transactions. For this reason, it suffices to reason about these categories of small-step rules. We
do so using the concrete examples of the ADD instruction and the CALL instruction. However,
the same reasoning follows for all other instructions of the EVM instruction set.

240

C.2. Theoretical Foundations of eThor

Proof. By complete induction on the number n of small-steps.

• Case n = 0. In the case of the empty reduction sequence, we have that S = [sc∗] and
consequently the claim trivially follows by the reflexivity of .

• Case n > 0. Let Γ sc∗ :: S →n−1 S and Γ S → S ++ S. By Lemma 13, it holds that
S = S∗ ++ S for some S∗ with |S∗| > 0. By the inductive hypothesis we know that for all
ΔI ≥ αc∗([sc∗]) there is some ΔS∗ ≥ αc∗(S∗) such that ΔI ∪ δ(c∗) ΔS∗ . Consequently,
for proving the claim, it is sufficient to show that there is some ΔS ≥ αc∗(S) such that
ΔS∗ ∪ δ(c∗) ΔS . As |S∗| > 0, we know that S∗ = s c :: S∗∗ for some execution state s ,
contract c and call stack S∗∗. The proof is by case analysis on the rule applied in the last
reduction step. We show here exemplary the cases for arithmetic operations as well as the rule
for calling.

– ADD (non exception case). Then s = (µ, ι, σ, η), ι.code [µ.pc] = ADD and S =
(µ , ι, σ, η)c :: S∗∗. We distinguish the two cases on whether the top stack element s c is
translated or not (c = c∗)

c = c∗ In this case αc∗(S∗) = αc∗(S∗∗). As ADD is a local instruction, we know that
S = s c :: S∗∗ and hence also αc∗(S) = αc∗(S∗∗). The claim hence follows trivially
from the reflexivity of . The same reasoning applies to all other local instructions.

c = c∗ In this case αc∗(S∗) = αs(s , c∗.addr, c) ∪ αc∗(S∗∗) for some c ∈ B. As s is
strongly consistent with c∗ (by Lemma 39), we know that ι.code = c∗.code and hence
δ(c∗) ⊇ ADD µ.pc. The claim then follows from the monotonicity of δ(c∗) (Theo-
rem 7) and the soundness of abstract addition (Lemma 46). The same argumentation
applies to all other local operations.

– CALL (all preconditions satisfied, called account exists). Then s = (µ, ι, σ, η),
ι.code [µ.pc] = CALL and S = (µ , ι , σ , η)ċ :: S∗ such that µ is initial, and σ(a).stor =
σ (a).stor for all addresses a. Again we distinguish the cases whether the newly pushed
call stack element (µ , ι , σ , η)ċ is abstracted by α or not.

ċ = c∗ Then αc∗(S) = αc∗(S∗) and the claim trivially holds.

ċ = c∗ We do another case distinction on whether c = c∗

c = c∗ In this case, we know that αs(s , addr.c∗, c) ≤ ΔS∗ (where
c = (S∗∗ =)). Since s is strongly consistent with c∗

(by Lemma 39), we have that ι.code = c∗.code and hence
CALL µ.pc ⊆ δ(c∗). Since s is a call state, we have that CALL µ.pc ∪

αs(s , addr.c∗, c) {MState0((0, λx. 0), λx. 0, σ(c∗.addr).stor, 1)}. As
µ is initial and σ(a).stor = σ (a).stor, we know additionally that
{MState0((0, λx. 0), λx. 0, σ(c∗.addr).stor, 1)} = αs((µ , ι , σ , η), c∗.addr, c)
(for c = (S∗ =)). By the monotonicity of δ(c∗) (Theorem 7), we know that
there is also some Δx ≥ αs((µ , ι , σ , η), c∗.addr, c) such that ΔS∗ , δ(c∗) Δx

241

C. APPENDIX TO CHAPTER 4

which concludes the proof since

ΔS∗ ∪ δ(c∗) Δx ∪ ΔS∗

≥ αs((µ , ι , σ , η), c∗.addr, c) ∪ α(S∗)
= α(S)

c = c∗ By Lemma 40, we know (since s is a regular execution state) that ei-
ther (1) there exists some s∗

c∗ ∈ S∗∗ such that s .σ(c∗.addr).stor =
s∗.σ(c∗.addr).stor or (2) there exist S†, σ∗, gas∗, d∗, η∗, and m < n
such that Γ sc∗ :: S →m HALT(σ∗, gas∗, d∗, η∗)c∗ :: S† ++ S and Γ
HALT(σ∗, gas∗, d∗, η∗)c∗ :: S† ++ S →n−1−m (µ , ι , σ , η)ċ :: s c :: S∗∗ ++ S and
s .σ(c∗.addr).stor = σ∗(c∗.addr).stor. Additionally, we know that then
σ∗(c∗.addr).stor = σ (c∗.addr).stor. We make a distinction on the previously
mentioned cases:
1. In this case we know that αs(s∗, c∗.addr, c ∗) ⊆ αc∗(S∗∗) = αc∗(S∗)

for some c ∗ ∈ B. Since, we know that s∗ is a call state (Lemma 17),
we know that s∗ = (µ∗, ι∗, σ∗, η∗) for some µ∗, ι∗, σ∗, and η∗ such
that the conditions in Definition 17 are satisfied. Since s∗ is a call state,
ι∗.code[µ∗.pc] = CALL1. As s∗ is strongly consistent with c∗ (by Lemma 39),
also ι∗.code = c∗.code and hence δ(c∗) ⊇ CALL pc∗ . In particular, the sec-
ond abstract CALL rule (C2) is applicable on αs(s∗, c∗.addr, c ∗) ⊆ αc∗(S∗∗)
and hence one can derive MState0((0, λx. 0), λx. 0, σ∗(c∗.addr).stor, 1).
Additionally, we have that αs((µ , ι , σ , η), c∗.addr, (S∗ =)) =
MState0((0, λx. 0), λx. 0, σ (c∗.addr).stor, 1) (since, µ is an initial ma-
chine state and S∗ is non-empty). Together with s .σ(c∗.addr).stor =
s∗.σ(c∗.addr).stor and σ(a).stor = σ (a).stor for all a (since the call rule
does not affect a contract’s storage), we can conclude that αs(s∗, c∗.addr, c ∗)∪
δ(c∗) αs((µ , ι , σ , η), c∗.addr, 1). Due to the monotonicity of δ(c∗) (The-
orem 7), we know that there is some Δi ≥ αs((µ , ι , σ , η), c∗.addr, 1), such
that ΔS∗ ∪ δ(c∗) Δi (since ΔS∗∗ ≥ α(S∗∗) ⊇ αs(s∗, c∗.addr, c ∗). Conse-
quently:

ΔS∗ ∪ δ(c∗) ΔS∗ ∪ Δi

≥ α(S∗) ∪ αs((µ , ι , σ , η), c∗.addr, 1)
= α((µ , ι , σ , η) :: S∗)
= α(S)

2. In this case, we get from the inductive hypothesis for m (since m < n)
that there exists some ΔH such that ΔH ≥ α(HALT(σ∗, gas∗, d∗, η∗)c∗ :: S†)
and ΔI ∪ δ(c∗) ΔH , and additionally |S†| > 0. Consequently also

1This is a simplifying assumption made here. Actually ι∗.code[µ∗.pc] ∈ {CALL, STATICCALL, CREATE}.
Since, the abstract semantics of these instructions have the same rules (up to minor differences in the preconditions of
calling), exactly the same argumentation applies as shown here for the case of CALL.

242

C.2. Theoretical Foundations of eThor

ΔH ≥ {Halt(σ∗(c∗.addr).stor, 1)} ∪ α(S†) Additionally we know that S∗∗ =
S1 ++ [s1

c∗] for some S1 and some s1 from Lemma 24 (since the first state
on top of S needs to be annotated with c∗). Additiofnally we can conclude
from Lemma 17 that s1 is a call state. From Lemma 39, we know that s1

is strongly consistent with c∗ and hence s1.ι.code = c∗.code. As s1 is a
call state, hence also c∗.code[s1.µ.pc] = CALL and consequently δ(c∗) ⊇
CALL s1.µ.pc

2. In addition we have that αs(s1, c∗.addr, 0) ≤ ΔS∗∗ and since
s1 is a call state all preconditions of rule C3 in CALL s1.µ.pc are satisfied. More
precisely αs(s1, c∗.addr, (S† =)) ∪ δ(c∗) ∪ {Halt(σ(c∗.addr).stor, 1)}
{MState0((0, λx. 0), λx. 0, σ∗(c∗.addr).stor, 1)} (since |S†| > 0). By the
monotonicity of δ(c∗) (Theorem 7) hence there is some Δx such that
Δx ≥ {MState0((0, λx. 0), λx. 0, σ(c∗.addr).stor, 1)} and ΔH ∪ ΔS∗ ∪
δ(c∗) Δx. Since σ∗(c∗.addr).stor = σ (c∗.addr).stor and as (µ , ι , σ , η)
is an initial state we know that αs((µ , ι , σ , η), c∗.addr, (S∗ =)) =
{MState0((0, λx. 0), λx. 0, σ∗(c∗.addr).stor, 1)} which concludes the proof
since

ΔS∗ ∪ δ(c∗) ΔS∗ ∪ ΔH ∪ δ(c∗)
ΔS∗ ∪ Δx

≥ α(S∗) ∪ αs((µ , ι , σ , η), c∗.addr, (S∗ =))
= α(S)

Halt (returning from regular halting). Then s = HALT(σ , gas , d , η), S∗∗ = s c :: S† and
S = s c :: S†. We make a case distinction on c = c∗:

c = c∗ In this case, clearly, α(S∗) ⊇ α(S†) and α(S) = α(S†) and consequently ΔS ≥
α(S) and hence the claim trivially follows by the reflexivity of .

c = c∗ In this case α(S∗) ⊇ αs(s , c∗.addr, c)∪α(S†) and α(S) = αs(s , c∗.addr, c)∪
α(S†). From Lemma 17, we know that s is a call state. With Lemma 39, we addition-
ally have that s .ι.code = c∗.code and hence also c∗.code[s .µ.pc] = CALL3. Conse-
quently δ(c∗) ⊇ CALL s .µ.pc. In addition we have that αs(s , c∗.addr, c) ≤ ΔS∗

and since s is a call state, all preconditions of rule Equation C1 in CALL s .µ.pc are
satisfied. More precisely αs(s , c∗.addr, c) ∪ δ(c∗) MStates .µ.pc+1 ((|s .µ.s| −
6, stackToArray(s .µ.s)[|s .µ.s| − 7 →]), λx. , λx.) = p. We know addition-
ally that αs(s , c∗.addr, c) = MStates .µ.pc ((|s .µ.s|, stackToArray(s .µ.s)),
toWordMem(s .µ.m), s .µ.σ(c∗.addr).stor) Since s .µ.pc = s .µ.pc + 1,
|s .µ.s| = |s .µ.s| − 6 and for all i ∈ {0, . . . , |s .µ.s| − 8} we have s .µ.s[i] =
s .µ.s[i], it holds that p ≥ αs(s , c∗.addr, c) (since λx. is the top element for
mappings f ∈ N → D̂ and ≥ s .µ.s[0], cf. Lemma 33). So since α(S∗)∪δ(c∗) p
there is by the monotonicity of δ(c∗) (Theorem 7) some Δp such that ΔS∗ ∪ δc∗ Δp

2See footnote 1
3See footnote 1

243

C. APPENDIX TO CHAPTER 4

and Δp ≥ p. Consequently we can conclude the proof:

ΔS∗ ∪ δ(c∗) Δp ∪ ΔS∗

≥ {p} ∪ α(S∗)
≥ αs(s , c∗.addr, c) ∪ α(S†)
= α(S)

The same arguments apply for returning from exceptional halting.

C.3 Checking Security Properties with eThor

In this section, we discuss how the security properties presented in subsection 4.2.5 are imple-
mented in eThor using HoRSt. In particular, we explain how reachability properties can be
abstracted as queries using the example of the call unreachability property. We then illustrate
the infrastructure for proving functional correctness properties as well as the one for automated
soundness and precision testing.

C.3.1 From Single-entrancy to Call Unreachability

We need to show that call unreachability is a sufficient criterion for showing single-entrancy.

Note that, in the following, we will implicitly assume that all executions are collision-resistant
for {address (c)}.

Theorem 8. If a contract c ∈ C is call unreachable and c’s code does not contain
DELEGATECALL and CALLCODE instruction then c is also single-entrant.

Proof. Assume towards contradiction c not to be single-entrant. Then there exists a reachable
configuration (Γ, sc ::S) and states s, s and a call stack S such that Γ sc :: S →∗ s c :: S ++ sc :: S
(*) and a state s and a contract c such that Γ s c :: S ++ sc :: S →∗ s c :: s c :: S ++ sc :: S
(**). We show that there is an initial execution state si that is strongly consistent with c, such
that Γ si

c :: S →∗ s c :: S ++ sc :: S And code (c)[s .µ.pc] ∈ Instcall. By (*) and Lemma 20 we
know that there exists a reachable initial execution state si such that Γ si

c :: S →∗ sc :: S and
hence also Γ si

c :: S →∗ s c :: S ++ sc :: S. Since each reachable configuration of a contract
not containing DELEGATECALL and CALLCODE is strongly consistent with its annotation
(Lemma 38), we know that also si is strongly consistent with c. By (*) and (**) we can conclude
that s c :: s c :: S ++ sc :: S is reachable and hence by Lemma 17 s is a call state. By Lemma 15
we hence know that s.ι.code[s .µ.pc] ∈ Instcall and since s is strongly consistent with c, we can
conclude that also code (c)[s .µ.pc] ∈ Instcall.

244

C.3. Checking Security Properties with eThor

C.3.2 From Reachability Properties to Queries

All reachability properties introduced in subsection 4.2.5 can be seen as instances of properties of
the following form:

R(P , R) := ∀s. P ([s]) =⇒ ¬∃S , Γ sc∗ :: S →∗ S ++ S ∧ R(S)

where s is assumed to be strongly consistent with c∗ and S is assumed to be non-empty. We will
refer to properties of this form in the following as unreachability properties.

For the sake of presentation, we will in the following interpret predicates P , R as the sets of
elements satisfying these predicates. Additionally, we will overload the abstraction function
α to operate on sets of configurations hence writing αc∗(R) for S ∈R αc∗(S) and αc∗(P) for

[sc∗]∈P αc∗([sc∗]).

Following Theorem 3 for proving such properties it is sufficient to give some set ΔP such that
ΔP ≥ αc∗(P) and to show, for any set Δr over-approximating αc∗(r) for some r ∈ R that
ΔP Δr. Instead of showing this property for all possible sets Δr, it is sufficient to find a query
set Δquery so that every Δr fully contains at least one element in this set. Then one can conclude
that not being able to derive any of the elements Q ∈ Δquery then also one cannot derive any valid
abstraction Δr of a configuration in R.

∀r ∈ R. Δr ≥ αc∗(r) =⇒ ∃Q ∈ Δquery. Q ⊆ Δr (C.7)

Proving ΔR, δ(c∗) Q for all Q ∈ Δquery then implies that R(P , R) holds.

Usually, such a set can be easily constructed from R as follows:

Δquery(R) := {P | ∃S P . S ∈ R ∧ P = αc∗(S) ∧ P ≤ P (C.8)
∧ (∀p ∈ P . ∃p ∈ P . p ≤p p) ∧ (∀p q ∈ P . p ≤p q =⇒ p = q)}

Intuitively, it is sufficient to query for the most concrete abstraction (as given by α∗
c) of the

concrete configurations in R and all predicate-wise (≤p) coarser abstractions of those.

We formally state this property in the following lemma:

Lemma 49. Let Ss ⊆ C × C be a small-step semantics and (D, S, α, Λ) a sound abstraction
thereof. Further, let P , R ⊆ C be predicates on configurations and ΔP be an abstract configura-
tion s.t. ΔP ≥ α(P). Then it holds that

(∀Q ∈ Δquery(R). ΔP , Λ Q) =⇒ R(P , R)

Proof. By contraposition. Assume that ¬R(P , R). Then ∃c.P (c) ∧ ∃c . (c, c) ∈ Ss ∧ R(c).
Since P (c) we have that c ∈ P and hence α(c) ⊆ α(P). So in particular ΔP ≥ α(c). By Theo-
rem 3 we know that ΔP , Λ Δc such that Δc ≥ α(c). By the construction of Δquery(R) we
know that there is some Q ∈ Δquery(R) such that Q ⊆ Δc . Consequently since ΔP , Λ Δc ,
then also ΔP , Λ Q.

245

C. APPENDIX TO CHAPTER 4

Thus, it is generally sufficient to query for the reachability of all elements in Δquery(R) in order
to prove an unreachability property R(P , R). Note that by the definition of derivability, the
empty set ∅ can always be derived from any abstract configuration and set of Horn clauses. Hence
if αc∗(S) is empty for some S ∈ R then by the non-reachability of the abstractions we cannot
make any conclusions about R(P , R). This is also reflected in the lemma since if αc∗(S) for
some S ∈ R then also ∅ ∈ Δquery(R) and hence the non-derivability of all Q ∈ Δquery(R) can
never be shown.

Further, note that a (reachability) query in an SMT-solver is of the form (Φ, P) as defined
in Appendix C.2.1, where Φ is a set of quantifier-free constraints over the variables in X and P
is a set of predicate applications over variables in X . The SMT solver then checks whether there
exists a variable assignment V such that V Φ and Δ, Λ V (P). In other words it checks that

∃Q ∈ {Q | ∃V . V Φ ∧ Q = V (P)}. Δ, Λ Q

Hence to show that ∀Q ∈ Δquery(R). Δ, Λ Q it is not required to individually query all elements
in Δquery(R), but it is sufficient to partition Δquery(R) into sets Δquery(R) = Δ1 ∪ · · · ∪ Δn such
that Δi = {Q | ∃V . V Φi ∧ Q = V (Pi)} for some Φi and Pi. Then it is sufficient to query
for the unreachability of all elements in Δi for all 0 < i ≤ n what can be done with a single
query for each Δi.

We will next show how this theoretical result can be used in practice and in particular at the level
of HoRSt.

Initialization. For checking an unreachability property R(P , R), we need to show the non-
derivability of a valid query set Δquery from some abstract configuration ΔP ≥ α(P). This
requires to axiomatize such an abstract configuration ΔP . This can be easily done in HoRSt by
providing rules having true as a single premise. For axiomatizing that the execution starts in an
initial machine state as required for the call unreachability property defined in Definition 10 we
can add the following rule to the analysis specification:

1 rule initOp :=
2 clause true => MState{0}(0, [@V(0)], [@V(0)], [@T], false);

As the precondition P of the call unreachability property requires the top state s (that also
serves as the zero-bar for the call level) to be initial, α(s) can contain only predicate ap-
plications of the form MState0((0, λx. 0), λx. 0, m, 0) where m is some memory mapping.
However, λx. ([@T] in HoRSt) over-approximates all memory arrays and hence ΔP =
{MState0((0, λx. 0), λx. 0, λx. , 0)} ≥ α(P).

Queries. In addition to the syntax for writing an analysis specification, HoRSt also provides
mechanisms for the interaction with the underlying SMT solver. More precisely it supports
syntax for specifying queries and tests. Syntactically, queries consist of a list of premises (as in
a clause). A query leads to the invocation of the SMT solver to test whether the conjunction of
those premises is derivable from the given initialization using the specified rules. The query will
result in SAT in case that all premises are derivable and in UNSAT in case that the conjunction of
premises can be proven to be non-derivable.

246

C.3. Checking Security Properties with eThor

1 query reentrancyCall
2 for (!id: int) in ids(),
3 (!pc:int) in pcsForIdAndOpcode(!id, CALL)
4 [?sa: array<AbsDom>, ?mem: array<AbsDom>,
5 ?stor: array<AbsDom>, ?size:int]
6 MState{!id, !pc}(?size, ?sa, ?mem, ?stor, true);

Figure C.6: HoRSt-query for reentrancy.

In order to check for reachability of abstract configurations, HoRSt allows for the specification
of (reachability) queries that can also be generated from selector functions. The query shown in
Figure C.6 for instance checks for reentrancy by checking if any CALL instruction is reachable
at call level 14. It therefore is an implementation of the reachability property introduced in
subsection 4.2.5. This query can be obtained from the call unreachability property defined in
Definition 10 which is of the form R(P , R) with R := {sc∗ :: S | |S | > 0 ∧ c∗.code[s, µ.pc] ∈
Instcall}. Intuitively, we can split this property into a set of different properties R(P , Ri) where
i ranges over the set of CALL instructions in c∗. More precisely, let Ri := {sc∗ :: S | |S | >
0 ∧ s, µ.pc = i} then it holds that

R(P , R) ⇔ ∀i ∈ {i | c∗.code[i] ∈ Instcall}. R(P , Ri)

Then each instance of the reentrancyCall query specifies one query set Δi
query that satisfies

Equation C.7 for Ri. Thus showing the underivability of all those sets from ΔP proves the claim.
Intuitively, Δi

query satisfies Equation C.7 for Ri because for each r ∈ Δi
query, α∗

c(r) contains an
application of a predicate MStatei with argument c = 1 and for each possible abstraction of
this predicate application, there is some Q ∈ Δi

query containing it.

C.3.3 Functional Correctness

For checking functional correctness, some modifications to the abstract semantics are necessary.
This is because the different contract executions need to be bound to the corresponding input
data of the call and to account for return data. We will in the following overview the relevant
changes and motivate that similar modifications can easily be incorporated for reasoning about
other dependencies with the execution or blockchain environment. We will present the relevant
modifications in HoRSt syntax so that the explanations serve as a guide to the enhanced version
of the semantics [ext20].

First, the relevant predicates need to be enriched with a corresponding representation of the call
data. We decided to represent call data as a word array with the particularity that the array’s
first element represents only 4 bytes. This is due to the call conventions enforced by the Solidity
compiler, which interpret the first 4 bytes of input data as the hash of the called function’s
signature to dispatch function calls properly. In addition to the call data, we introduce a new
predicate representing the return data of a call.

Formally, we arrive at the following predicate definitions:
4There are corresponding queries for other relevant transaction initiating instructions.

247

C. APPENDIX TO CHAPTER 4

1 rule opCallDataLoad :=
2 for (!id: int) in ids(), (!pc: int) in pcsForIdAndOpcode(!id, CALLDATALOAD), (!a:

int) in argumentsOneForIdAndPc(!id, !pc)
3 clause [?x: AbsDom, ?size: int, ?sa: array<AbsDom>, ?mem: array<AbsDom>, ?stor:

array<AbsDom>, ?cl: bool, ?p: int, ?v: AbsDom, ?cdata: CallData]
4 MState{!id, !pc}(?size, ?sa , ?mem, ?stor, ?cl, ?cdata), ?size > 0,
5 !a != ~1, // in case that the position could be pre-computed, use it for

accessing the position more precisely
6 ?v = accessWordCalldata{!a}(?cdata) // accesses word at the corresponding

position of the call data
7 => MState{!id, !pc +1}(?size, store ?sa (?size -1) (?v), ?mem, ?stor, ?cl, ?cdata

),
8 clause [?x: AbsDom, ?size: int, ?sa: array<AbsDom>, ?mem: array<AbsDom>, ?stor:

array<AbsDom>, ?cl: bool, ?cdata: CallData, ?p: int, ?v: AbsDom]
9 MState{!id, !pc}(?size, ?sa , ?mem, ?stor, ?cl, ?cdata), ?size > 0,

10 !a = ~1, // if the argument could not be preecomputed, extract the argument from
stack

11 ?x = select ?sa (?size - 1),
12 ?v = (isConcrete(?x)) ? (accessWordCalldataEven(extractConcrete(?x), ?cdata)) : (

@T) // if the offset is concrete, try to access the word at the given
position. This will only result in a concrete result if the value is a word
position

13 => MState{!id, !pc +1}(?size, store ?sa (?size -1) (?v), ?mem, ?stor, ?cl, ?cdata
);

Figure C.7: Rule for CALLDATALOAD in the enhanced abstract semantics.

1 datatype CallData := @D<int*array<AbsDom>>;
2 pred MState{int*int}: int * array<AbsDom> * array<AbsDom> * array<AbsDom> * bool *

CallData;
3 pred Exc{int}: bool;
4 pred Halt{int}: array<AbsDom> * AbsDom * bool * CallData;
5 pred ReturnData{int}: int * AbsDom * bool * CallData;

Note that we represent call data as a pair of its size and an array of abstract words. Also, we
added to the Halt predicate an argument representing the return data size. This argument is from
the abstract domain with @T indicating that the concrete size of the return data is unknown. The
ReturnData predicate maps the positions of the return data (word) array to the corresponding
values that it holds.

The existing rules simply propagate the call data array with the only addition that the
CALLDATALOAD instruction now accesses the call data array instead of over-approximating
the loaded value. The new rule for CALLDATALOAD is depicted in Figure C.7. The
CALLDATALOAD operation takes as an argument a value from the stack that specifies the position
in the byte array where a word should be accessed. The rule is split into two clauses to benefit
from the preanalysis. In case that the position of call data is known upfront, the call data array
?call can be accessed more precisely. Since we model the call data as a word instead of a byte
array (similar to our memory abstraction), either a word loaded from it consists of a full word in
the word array or needs to be composed out of two neighboring words. Composing two integers
(interpreting them as byte arrays), however, requires exponentiation as defined in the append
function in subsection C.2.3. z3 is not able to handle general exponentiation - for this reason,

248

C.3. Checking Security Properties with eThor

1 rule opHaltOnReturn :=
2 for (!id: int) in ids(), (!pc: int) in pcsForIdAndOpcode(!id, RETURN)
3 let
4 macro #StackSizeCheck := MState{!id,!pc}(?size, ?sa, ?mem, ?stor, ?cl, ?cdata

), ?size > 1
5 in
6 clause [?sa: array<AbsDom>, ?mem: array<AbsDom>, ?stor: array<AbsDom>, ?size:

int, ?cl: bool, ?cdata: CallData, ?length: AbsDom]
7 #StackSizeCheck, ?length = select ?sa (?size-2)
8 => Halt{!id}(?stor, ?length, ?cl, ?cdata),
9 clause [?sa: array<AbsDom>, ?mem: array<AbsDom>, ?stor: array<AbsDom>, ?size:

int, ?cl: bool, ?offset: AbsDom, ?length: AbsDom, ?o: int, ?l:int, ?p:int,
?v: AbsDom, ?cdata: CallData]

10 #StackSizeCheck, ?offset = select ?sa (?size-1), ?length = select ?sa (?
size-2), // select top values on the stack

11 isConcrete(?offset), isConcrete(?length),
12 ?o = extractConcrete(?offset), ?l = extractConcrete(?length),
13 ?p >= 0, (?p * 32) < ?l, // write all words that are still within the

length
14 ?v = accessWordMemoryEven(?o + ?p, ?mem)
15 => ReturnData{!id}(?p, ?v, ?cl, ?cdata), // careful: the Return data

predicate is also inhabited in words!
16 clause [?sa: array<AbsDom>, ?mem: array<AbsDom>, ?stor: array<AbsDom>, ?size:

int, ?cl: bool, ?offset: AbsDom, ?length: AbsDom, ?o: int, ?l:int, ?p:int,
?v: AbsDom, ?cdata: CallData]

17 #StackSizeCheck, ?offset = select ?sa (?size-1), ?length = select ?sa (?
size-2), // select top values on the stack

18 ~isConcrete(?offset), isConcrete(?length), // knowing only the length, we
write top at the places in the specified range

19 ?l = extractConcrete(?length), ?p >= 0, ?p * 32 < ?l
20 => ReturnData{!id}(?p, @T, ?cl, ?cdata),
21 clause [?sa: array<AbsDom>, ?mem: array<AbsDom>, ?stor: array<AbsDom>, ?size:

int, ?cl: bool, ?offset: AbsDom, ?length: AbsDom, ?o: int, ?l:int, ?p:int,
?v: AbsDom, ?cdata: CallData]

22 #StackSizeCheck, ?length = select ?sa (?size-2), ~isConcrete(?length), ?p
>= 0

23 => ReturnData{!id}(?p, @T, ?cl, ?cdata);

Figure C.8: Rule for RETURN in the enhanced abstract semantics.

we can only compute such exponentiations (by unfolding to multiplications) whose exponent is
known upfront. Thus, the first rule in Figure C.7 handles the case where the argument to the call
is known upfront: the accessWordCallData function expects the position as a parameter
and computes the accessed word precisely from the call data array by unrolling exponentiation.
The second rule handles the case where the argument to the call is not known upfront. In case
that during the analysis, it can be detected to be concrete (by the function isConcrete), the
accessWordCalldataEven function is used to access the call data at the corresponding
position. This function, however, only yields a precise result in the case that the provided position
corresponds to the beginning of a word in the call data array. Otherwise, it over-approximates the
result as T.

The ReturnData predicate is inhabited by the rules that model regular halting. We exemplarily
show the rule of the RETURN opcode depicted in Figure C.8. The RETURN instruction in EVM
reads the memory offset and the return data length from the stack and returns the corresponding

249

C. APPENDIX TO CHAPTER 4

memory fragment as a byte array. In our abstraction, the return data is modeled by an own
predicate that holds words instead of bytes. This design choice follows the one made for the
word-indexed memory and the call data array, which hold words instead of bytes as well for
performance reasons. The RETURN semantics is closely reflected in the abstract RETURN rule:
the first clause of the rule inhabits the Halt predicate, reading the size of the return data from the
stack. The next three clauses inhabit the ReturnData predicate, differentiating depending on
how much information on the return data (size and memory offset) are known: If both memory
offset and length of the data are known, for each word position ?p the corresponding memory
word is read from the memory array ?mem (using the function accesswordMemoryEven)
and written into the ReturnData predicate. The next clause describes the case where the
memory offset is unknown, but the size of the return data is known. In this case, we cannot know
which (concrete values) form the return data but can only approximate all possible return data
words (as determined by the size of the array) with @T. The last clause covers the case where
the length of the return data is unknown. Since it is unclear in this case whether data should be
returned in the first place (since the length could be 0), all potential positions of the return data
array are over-approximated by @T.

Finally, the functional correctness queries for the addition function of the SafeMath library are
depicted in Figure C.9. We first specify the call data for a call to the add function of the SafeMath
library as an operation callAdd returning an CallData element when being provided with
the arguments to the call. Since the add function expects 2 integer arguments the callAdd
function returns call data of size 68 (4 + 2 ∗ 32) bytes where the @T array is initialized with the
hash of the corresponding function signature as first element (which represents the first 4 bytes of
the call data) and the arguments x and y as following two elements. Note that the hash of the
function signature is provided by Solidity compilers via the so-called Ethereum Contract ABI
(Contract Application Binary Interface). We plan to automatically generate an infrastructure for
functional correctness queries on Solidity contracts from the contract ABI. The first functional
correctness test addOverflowNoHalt requires that it is impossible to reach a Halt state
(indicating regular halting) from a call to the add function in case that the addition of ?x and ?y
overflows.

The second functional correctness test (addNoOverflowCorrect) checks whether it is pos-
sible (in case that no overflow occurs) to compute the expected result (or an over-approximation
thereof) in the first place. Here abseq is the function implementing an equality test on the
abstract domain, hence considering every concrete element to be potentially equal to @T. By
the soundness of the analysis, if this query would turn out to be unsatisfiable, it would be im-
possible for the function to produce the correct result under any circumstances. This query, of
course, does not prove that the function will always provide a result: This indeed is and should
not be provable since any smart contract can always exceptionally halt when running out of
gas. This test case serves as a sanity check that only becomes meaningful in conjunction with
the following tests. The third and fourth functional correctness tests (addNoOverflowHalt
and addNoOverflowUnique) prove that given non-overflowing arguments, if the function
execution halts successfully, nothing but the correct result can be produced. In other words, it is
impossible to halt successfully without producing the correct result. This property is composed

250

C.3. Checking Security Properties with eThor

1 op callAdd(x: int, y: int): CallData :=
2 @D(68, store (store (store [@T] 0 @V(1997931255)) 1 (@V(x))) 2 (@V(y)));
3
4 test addOverflowNoHalt expect UNSAT
5 for (!id: int) in ids()
6 [?x:int, ?y: int, ?z:int, ?p:int, ?stor: array<AbsDom>, ?rdsize:AbsDom]
7 ?x >= 0, ?y >= 0, ?x < MAX, ?y < MAX, ?x + ?y >= MAX,
8 Halt{!id}(?stor, ?rdsize, false, callAdd(?x, ?y));
9

10 test addNoOverflowCorrect expect SAT
11 for (!id: int) in ids()
12 [?res: AbsDom, ?x:int, ?y: int, ?z:int, ?rdsize:AbsDom, ?stor: array<AbsDom>]
13 ?x >= 0, ?y >= 0, ?x + ?y < MAX,
14 ReturnData{!id}(0, ?res, false, callAdd(?x, ?y)),
15 Halt{!id}(?stor, ?rdsize, false, callAdd(?x, ?y)),
16 abseq(?rdsize, @V(32)), abseq(?res, @V(?x + ?y));
17
18 test addNoOverflowHalt expect UNSAT
19 for (!id: int) in ids()
20 [?res: AbsDom, ?x:int, ?y: int, ?z:int, ?rdsize: AbsDom, ?stor: array<AbsDom>]
21 ?x >= 0, ?y >= 0, ?x + ?y < MAX,
22 Halt{!id}(?stor, ?rdsize, false, callAdd(?x, ?y)),
23 ?rdsize != @V(32);
24
25 test addNoOverflowUnique expect UNSAT
26 for (!id: int) in ids()
27 [?res: AbsDom, ?x:int, ?y: int, ?z:int, ?rdsize: AbsDom, ?stor: array<AbsDom>]
28 ?x >= 0, ?y >= 0, ?x + ?y < MAX,
29 ReturnData{!id}(0, ?res, false, callAdd(?x, ?y)),
30 ?res != @V(?x + ?y);

Figure C.9: Correctness queries for SafeMath’s add function

of two queries since it needs to be shown that 1) It is impossible for the function to halt without
returning a result of length 32 (corresponding to one word) as recorded in the Halt predicate
and 2) It is impossible that the actual return value (as recorded in the ReturnData predicate)
differs from the sum of the arguments.

The functional correctness tests for the other functions of the SafeMath library follow the same
pattern.

C.3.4 Automated Testing in HoRSt

The setup for automated testing (see subsection 4.4.3) shown in Figure C.10 presents a use case
for the Hoare-Logic-style reasoning capabilities of eThor.

Test cases in the official test suite come in two flavors: the first group consists of 490 test cases
specifying a storage configuration as postcondition, the second group, consisting of 108 test cases,
lacks a postcondition (which we interpret as exceptional halting).

To account for this test structure we declare four additional selector functions:
The selector functions preStorageForId and postStorageForId provide tu-
ples of storage offsets and values which specify the storage contents before and af-

251

C. APPENDIX TO CHAPTER 4

1 sel preStorageForId: int -> [int*int];
2 sel postStorageForId: int -> [int*int];
3 sel emptyListIfNoPostConditionForId: int -> [bool];
4 sel dummyListIfNoPostConditionForId: int -> [bool];
5
6 rule initOp :=
7 for (!id:int) in ids()
8 clause
9 true

10 => MState{!id, 0}(0, [@V(0)], [@V(0)],
11 for (!offset: int, !value:int) in preStorageForId (!id):
12 x: array<AbsDom> -> store x !offset @V(!value), [@V(0)],
13 false);
14
15 test correctValues expect SAT
16 for (!id: int) in ids(),
17 (!b: bool) in emptyListIfNoPostConditionForId(!id)
18 [?stor: array<AbsDom>, ?i: int]
19 for (!offset: int, !value:int) in postStorageForId(!id):
20 && abseq(select ?stor !offset,@V(!value)),
21 (for (!offset: int, !value:int) in postStorageForId(!id):
22 || ?i = !offset) ? (true) : (abseq(select ?stor ?i,@V(0))),
23 Halt{!id}(?stor, false);
24
25 test uniqueValues expect UNSAT
26 for (!id: int) in ids(),
27 (!b: bool) in emptyListIfNoPostConditionForId(!id)
28 [?stor: array<AbsDom>]
29 for (!offset: int, !value:int) in postStorageForId(!id):
30 || absneq(select ?stor !offset,@V(!value)),
31 Halt{!id}(?stor, false);
32
33 test irregularHalt expect UNSAT
34 for (!id: int) in ids(),
35 (!b: bool) in dummyListIfNoPostConditionForId(!id)
36 [?stor: array<AbsDom>]
37 Halt{!id}(?stor, false);

Figure C.10: Setup for automated testing.

ter the execution of the contract. emptyListIfNoPostConditionForId and
dummyListIfNoPostConditionForId generate an empty list, respectively a list with
one element, depending on if there is a postcondition specified or not. Since rules are generated
for the cross product of their selector functions return values, we can use these functions to
generate different rules for different test cases while still using the same HoRSt inputs.

The rule for initialization, initOp, slightly differs from the definition used in the other experi-
ments. The analysis is initialized to start in a storage as specified by preStorageForId.

To check for the reachability of a certain storage configuration, we generate the two queries
correctValues and uniqueValues. correctValues is successful, if a Halt predi-
cate is reachable whose storage contains 1) values abstractly equal to the values returned by
postStorageForId at the offsets returned by postStorage and 2) a value abstractly equal
to 0 for all offsets not returned by postStorageForId. uniqueValues is successful, if no

252

C.3. Checking Security Properties with eThor

Halt predicate is reachable whose storage contains any value abstractly unequal to the values
returned by postStorageForId. This is only the case, if every value in the memory is
concrete. In sum, such a test case is considered to be solved correctly if correctValues is
successful and considered to be solved precisely if correctValues and uniqueValues are
successful. To check for exceptional halting, we just query for the unreachability of a regular
Halt predicate (see irregularHalt). Such a query is considered solved precisely on success
and imprecisely on failure, since reaching additional program states (Halt in this instance),
which are not reachable in the concrete execution, indicates over-approximation.

253

APPENDIX D
Appendix to Chapter 5

D.1 Wormhole Attack

In this section, we first generically describe the wormhole attack. We then formally prove that
no two-round multi-hop payment in a payment-channel network (without broadcasts) is robust
against this attack.

First, we give a model for such two-round multi-hop payments that is capturing existing two-round
constructions such as the standard HTLC-based construction as it is presented in [MMSK+17].
As we are only interested in the underlying locking mechanism of PCNs, we omit information on
channel capacities and fees and simply model PCNs as graphs of the form G = (V,E).

For arguing about the communication in protocols, we formally state the notions of a path in a
PCN as well as of a communication round along a path.

Definition 4 (Path in a PCN). Let G = (V,E) be a PCN. We call a vector (u1, . . . , un) of users
a path in G if it holds for all i ∈ [1, n − 1] that (ui, ui+1) ∈ E

In the following, we represent a message from u1 to u2 with content m as a tuple M =
u1, m, u2 . Intuitively, one round of communication in a PCN allows for the consecutive

execution of pairwise protocols along a path. This is formally captured by the following definition:

Definition 5 (Communication Round in PCNs). Let G = (V,E) be a PCN and let π =
(u1, . . . , un) be a path in G with length longer than one. We we call a vector of consecu-
tive messages (M1, . . . , Ml) a round of communication along π if the following conditions
hold:

1. M1 = u1, m, u2 for some message m

2. for all i ∈ [1; l] it holds that either

255

D. APPENDIX TO CHAPTER 5

a) Mi = uj , m, uj+1 or

b) Mi = uj+1, m, uj for some j ∈ [1; n − 1] and some message m

3. for all i ∈ [1; l − 1] it holds that if Mi = uj , mi, uk then either

a) Mi+1 = uk, m, uj or

b) Mi+1 = umax (j,k), m, umax (j,k)+1 for some message m

Here condition 1) ensures that a round always starts with a message of the first user in the path
to its right neighbor. Condition 2) makes sure that messages can only be exchanged between
neighbors in the path. Finally, condition 3) encodes that every message in a path can either be
followed by a message in the reversed direction (in case that a protocol between two neighbors is
performed) or alternatively a protocol between the next two neighboring nodes is initiated (by the
,right’ party in the former protocol now sending a message to its right neighbor). Together these
definitions ensure that only pairwise protocols can be performed, and once that, they need to be
carried out consecutively along the path.

For describing the essence of the wormhole attack, we use an abstract view on payments in PCNs
where we assume payments along a path π to consist of a commitment phase and a releasing
phase. In the commitment phase (which constitutes a communication round along π), pairwise
locks (e.g., HTLCs) between the parties along the payment path are created in pairwise locking
protocols between the neighboring nodes.

Definition 6 (Commitment Phase in a PCN). Let G = (V,E) be a PCN and let π = (u1, . . . , un)
be a path in G. A protocol encompassing one communication round along π is called a com-
mitment phase along π if as a result each user ui (for i ∈ [1; n]) learns some (shared) pieces of
commitment information i,i+1, i−1,i (with n,n+1 and 0,1 being empty). We call { i,i+1}i∈1,n−1
the output of the commitment phase.

In the releasing phase, starting from the payment’s receiver, keys for ’opening’ the locks are
released (as the condition R in the lightning network). The releasing phase thereby consists of a
communication round along rev(π) (the reversal of π). These keys should satisfy the property
that each path node can – given a valid key for an outgoing lock – derive a key for its incoming
lock.

Definition 7 (Releasing Phase in a PCN). Let G = (V,E) be a PCN and let π = (u1, . . . , un)
be a path in G. Further let C be a commitment phase along π and Vf be a boolean function
taking two arguments. Additionally, let π be a subpath of π. A protocol encompassing one
communication round along rev(π) is called a releasing phase for C along rev(π) if as a result,
each user ui in π learns some information ki−1,i such that Vf(i−1,i, ki−1,i) = 1.

With the notion of a subpath being defined as follows:

256

D.1. Wormhole Attack

Definition 8 (Subpath). Let G = (V,E) be a PCN and let π = (u1, . . . , un) be a path in G. A
path π = (u1, . . . , um) is considered a subpath of π if for all ui in π there are paths πi (for
i ∈ [0; m]) such that π = π0 · (u1) · π1 · (u2) · π2 ˙. . .π̇m−1 · (um) · πm (where · denotes path
concatenation).

Note that we assume communication to be restricted to nodes connected by a direct link in
the PCN (as ensured by Definition 5). This prevents that besides the specified messages in the
releasing phase, keys can be sent to previous nodes in the path (e.g., via broadcast).

Figure D.1 shows the payment from Alice to Edward in the abstract setting. Initially, Edwards
gives a trapdoor t to Alice. Using this, Alice starts the commitment phase by creating the lock

A,B with Bob. To this end, Alice and Bob might use their secret local states sA and sB . In the
same fashion, all following pairwise locks are created in the commitment phase till reaching
Edward. Edward then starts the releasing phase by using the trapdoor he initially sent to Alice
for creating the key kD,E for opening lock D,E . From this key (and the information learned in
the commitment phase), Dave can derive key kC,D. In this fashion, the whole lock chain can be
released.

Note that in the setting of only two rounds of communication (one along the payment path π and
one along the reversed payment path rev(π)), the initial secret local states of the users involved in
a payment are completely independent from π and consequently from the local states of the other
nodes in the path. This is as none of the users received any path-specific information upfront.

As a consequence, two nodes ui and uj (with 1 < i + 1 < j) on a payment path can exclude
intermediate nodes uk (with i < k < j) from taking part in the releasing phase as follows: After
completing the commitment phase in an honest fashion, the releasing phase proceeds honestly till
reaching uj . At this point uj can derive a key kj−1,j for releasing the lock j−1,j with (honest)
user uj−1. Instead of releasing this lock, uj forwards kj−1,j to ui which again can use this key
for producing a valid key for lock i−1,i with its predecessor ui−1. This is possible as no secret
information from the nodes {uk}i<k<j is required for generating a valid key for li−1,i. Otherwise
also opening the final lock would already require secret information from some intermediate
nodes. As these pieces of secret information from the intermediate nodes are, however, completely
unrelated to the path and consequently from the trapdoor t, even the receiver could not earn
the necessary knowledge from the trapdoor for opening the last lock. So finally, node ui can

Alice
) (sA

Bob
() sB

Carol
() sC

Dave
() sD

Edward
() sE

2. ℓA,B

1. t

9. kA,B 8. kB,C 7. kC,D 6. kD,E

3. ℓB,C 4. ℓC,D 5. ℓD,E

Figure D.1: Illustration of the abstract locking mechanism underlying payments in PCNs

257

D. APPENDIX TO CHAPTER 5

release lock i−1,i and consecutively all remaining locks can be released without contacting nodes
{uk}i<k<j at all. Together with the assumption that nodes {uk}i<k<j cannot receive information
through other channels than the direct communication with their immediate neighbors in the path
and the fact that keys for locks can only be derived from the initial key, there is no way for nodes
{uk}i<k<j to open the locks with their successors in the path.

D.1.1 Inevitability of Wormhole Attacks in Two-round Payment Protocols

In PCNS, payments that only encompass two rounds of communication are inevitably vulnerable
to wormhole attacks. 1 More specifically, this means that when no path-specific information was
communicated to the intermediate nodes of the payment path before performing the payment,
nodes located between two corrupted users in the path can always be bypassed in the releasing
phase. This situation occurs in cases where the path is not known upfront, but routing is performed
dynamically (e.g., [RMKG18]).

We formally prove the following theorem:

Theorem 6. Let G = (V,E) be a PCN and let π = (u1, . . . , un) be a path in G with length
longer than two. Further, let ui, uj be nodes in π for some 0 < i < j ≤ n and let π =
(u1, . . . , ui, uj , . . . , un) be the path omitting the nodes between ui and uj . Assume that u1
and un share initial common knowledge t while all other nodes do not have any initial shared
knowledge. Then each payment along π that is carried out by a protocol P consisting of a
commitment phase C along π and a releasing phase along rev(π) for C, can also be carried out
by a protocol P consisting of C and a releasing phase for C along rev(π) given that ui and uj

collude. Additionally, for all users uk with i < k < j, P is indistinguishable from the protocol
only consisting of C.

Proof. Let G = (V,E) be a PCN and let π = (u1, . . . , un) be a path in G with length
longer than two. Further, let ui, uj be nodes in π for some 0 < i < j ≤ n and let π =
(u1, . . . , ui, uj , . . . , un) be the path omitting the nodes between Ui and Uj . Assume a payment
along the path π with u1 being the sender and un being the receiver. Without loss of generality,
assume ui and uj to be controlled by the attacker and all other nodes on the path to be honest.
We show that the view of honest nodes ul with l < i or l > j in the scenario of ui and uj

performing a wormhole attack on a successful payment don’t differ from the view in the scenario
of a successful payment. More precisely, we show how to construct a one-round successful
releasing phase along rev(π), where successful means that each user in π can derive a valid key
for its outgoing locks.

In addition, we show that the view of honest nodes um with i < m < j in the scenario of the
wormhole attack do not differ from their view in the scenario of an unsuccessful payment. More
formally, we show that it is indistinguishable for those nodes whether the one-round releasing
phase was omitted or carried out along rev(π).

1Note that we assume here PCNs of the previously described structure hence requiring that payments encompass
a commitment and a revealing phase and communication to be restricted to direct neighbors.

258

D.2. AMHLs Correctness

To this end, we first show how an attacker can simulate the behavior of the nodes ui+1, . . . , uj−1
without changing the view of the honest nodes ul with l < i or l > j.

In the commitment phase, the locks along the path π have been created correctly. In the locking
protocol between ul and ui, ui behaves honestly, and consequently, ul’s view is the same as in
the honest case. In parallel to starting the locking protocol between ui and ui+1, the attacker
locally simulates the locking protocols for the user’s ui+1, . . . , uj and creates simulated locks

i+1, . . . , j . This is possible as by sampling random local states for those nodes, the attacker
can run the locking protocol locally. Finally, uj can continue the commitment phase in an honest
manner using as own local state, the one resulting from the simulated commitments. This cannot
be distinguished by node uj+1 as its own local state is unrelated to the local states of the other
intermediate nodes.

As we consider the case of a successful payment, the releasing phase will be performed honestly
by nodes un, . . . uj+1. When uj+1 releases the lock between uj and uj+1 with key kj , then
the attacker can simulate releasing the locks j−1, . . . , i locally without publishing the corre-
sponding keys. This is possible as the attacker can use the local states of the intermediate nodes
ui+1, . . . , uj−1 from the simulated commitment phase for deriving keys kj−1, . . . , ki−1. As ki−1
is hence also a valid key for the honestly created lock li−1, the releasing phase can from this point
be concluded in an honest manner.

Finally, we can observe that nodes ui+1, . . . , uj−1 are not contacted at all in the releasing phase
of the payment, which is the same as in the case that the payment was unsuccessful, i.e., the
releasing phase was not initiated by the receiver at all.

D.2 AMHLs Correctness

In this section, we define the notion of correctness for AMHLs.

Definition 9 (Correctness of AMHLs). Let L be a AMHL, λ ∈ N+ and n ∈ poly(λ). Let
(U0, . . . , Un) ∈ Un be a vector of users, (sk0, . . . , skn−1) and (sk∗

1, . . . , sk∗
n) two vectors of

private keys and (pk0, . . . , pkn−1) a vector of shared public keys such that for all 0 ≤ i < n, it
holds that

{(ski, pki), (sk∗
i+1, pki)} ← KGenUi(1λ), KGenUi+1(1λ) .

Let (sI
0, . . . , sI

n) be vector of initial states and kn be a key such that for all 0 ≤ i < n

{sI
0, . . . , (sI

n, kn)} ←
SetupU0(1λ, U1, . . . , Un)

. . .
SetupUn

(1λ)

Furthermore, let (0, . . . , n−1) be a vector of locks, (sL
1 , . . . , sL

n) and (sR
0 , . . . , sR

n−1) vectors of
states, and (k0, . . . , kn−1) a vector of keys such that for all 0 ≤ i < n, it holds that

{(i, sR
i), (i, sL

i+1)} ← LockUi(sI
i , ski, pki)

LockUi+1(sI
i+1, sk∗

i+1, pki)

259

D. APPENDIX TO CHAPTER 5

LockUi
(sI

i , ski, pk) LockUi+1(sI
i+1, ski+1, pk)

parse sI
i as (Y0 , Y0, y0) parse sI

i+1 as (Y1 , Y1, y1)
r0 ←$Zq r1 ←$Zq

R0 := r0 · G R1 := r1 · G

π0 ← PNIZK(r0, {∃r0 s.t. R0 = r0 · G}) π1 ← PNIZK(r1, {∃r1 s.t. R1 = r1 · G})
com←−−(decom, com) ← Commit(1λ, (R1, π1))

(R0,π0)−−−−−→b1 ← VNIZK({∃r0 s.t. R0 = r0 · G}, π0)
if b1 = 0 then abort
e := H(pk R0 + R1 + Y1 m)

if Vcom(com, decom, (R1, π1)) = 1 then abort (decom,R1,π1,s)←−−−−−−−−−−s := r1 + e · ski+1 mod q

b0 ← VNIZK({∃r1 s.t. R1 = r1 · G}, π1)
if b0 = 0 then abort
e := H(pk R0 + R1 + Y0 m)
if s · G = R1 + e · (pk − ski · G) then abort
s := s + r0 + e · ski mod q s−→if s · G = R0 + R1 + e · pk then abort
return ((m, pk), s) return ((m, pk), (R0 + R1 + Y1 , s))

Rel(k, (sI , sL, sR))
parse sI as (Y , Y , y)
parse k as (R, s)
parse sL as (W0, w1)
w := w1 +s−(sR +y)
mod q

return (W0, w)

Vf(, k)
parse as (m, pk)
parse k as (R, s)
e := H(pk R m)
return s ·G = R+e ·pk

Figure D.2: Algorithms and protocols for the Schnorr-based construction. The Setup protocol is
as defined in Fig. 5.5.

and

ki ← Rel(ki+1, (sI
i+1, sL

i+1, sR
i+1))

where sR
n is ⊥. We say that L is correct if there exists a negligible function negl such that for all

0 ≤ i < n it holds that

Pr [Vf(i, ki) = 1] ≥ 1 − negl(λ).

260

D.3. Schnorr-based Scriptless Construction

D.3 Schnorr-based Scriptless Construction

In the following, we cast the idea of Poelstra [Poea] in our framework.

Schnorr Signatures. Let G be an elliptic curve group of order q with base point G and let
H : {0, 1}∗ → {0, 1}|q| be a collision resistant hash function (modeled as a random oracle). The
key generation algorithm KGenschnorr(1λ) of a Schnorr signature [Sch91] samples some x ←$Zq

and sets the corresponding public key as Q := x · G. To sign a message m, the signing algorithm
Sigschnorr(sk, m) samples some k ←$Zq, computes e := H(Q k · G m), sets s := k − xe, and
returns σ := (R, s), where R := k · G. The verification Vfschnorr(pk, σ, m) returns 1 if and only
if s · G = R + H(Q R m) · Q. Schnorr signatures are known to be strongly unforgeable against
the discrete logarithm assumption [GMR88]. We assume the existence of a 2-party protocol
Πschnorr

KGen where the two players, on input x0 and x1, set a shared public key Q := (x0 + x1) · G.
Such a protocol can be implemented using standard techniques and we denote the corresponding
ideal functionality by F schnorr

kgen .

Description. Let G be an elliptic curve group of order q with base point G and let H : {0, 1}∗ →
{0, 1}|q| be a hash function. The Schnorr-based construction is formally described in Fig. D.2.
The key generation algorithm consists of a call to the F schnorr

kgen functionality. At the end of a
successful run, Ui receives (xi, pk) whereas Uj obtains (xj , pk), where pk := (xi + xj) · G. The
setup of a AMHL is identical to the ECDSA-based construction and can be found in Fig. 5.5.

Prior to the locking phase, two users Ui and Ui+1 (implicitly) agree on the value Yi and on a
message m to be signed. Each message is assumed to be unique for each session (e.g., contains
a transaction identifier). The locking algorithm consists of an “incomplete” distributed signing
of m. First, the two parties agree on a randomly chosen element R0 + R1 using a standard coin
tossing protocol, then they set the randomness of the signature to be R := R0 + R1 + Yi. Note
that at this point the parties cannot complete the signature since they do not know the discrete
logarithm of Yi. Instead, they jointly compute the value s := r0 + r1 + e · (x0 + x1) as if Yi was
not part of the randomness, where e is the hash of the transcript so far. The resulting (R, s) is
not a valid signature on m, since the additive term y∗ (where y∗ · G = Yi) is missing from the
computation of s. However, rearranging the terms, we have that (R, s + y∗) is a valid signature
on m. This implies that, once the discrete logarithm of Yi is revealed, a valid signature m can
be computed by Ui+1. Leveraging this observation, Ui+1 can enforce an atomic opening: The
subsequent locking (between Ui+1 and Ui+2) is conditioned on some Yi+1 = Yi + yi+1 · G. This
way, the opening of the right lock reveals the value y∗ + yi+1 and Ui+1 can immediately extract
y∗ and open its left lock with a valid signature on m. The security of the construction is shown
by the following theorem. We refer the reader to Appendix D.5 for a full proof.

Theorem 7. Let COM be a secure commitment scheme, and let NIZK be a non-interactive
zero knowledge proof. If Schnorr signatures are strongly existentially unforgeable, then the
construction in Fig. D.2 UC-realizes the ideal functionality F in the (F schnorr

kgen , Fsyn, Fsmt, Fanon)-
hybrid model.

261

D. APPENDIX TO CHAPTER 5

D.4 Comparison of Privacy Notions and Guarantees

In this section, we discuss our notion of relationship anonymity as the privacy notion of interest
for PCNs and compare it with other possible privacy notions described in the literature related to
PCN.

Our privacy model faithfully captures the reality of the currently deployed PCNs. In particular,
Malavolta et al. [MMSK+17] showed that it captures the well-established notion of relationship
anonymity. In a nutshell, relationship anonymity [PH10] requires that, given two simultaneous
successful payment operations between sender{0,1} and receiver{0,1} that share the same path with
at least one honest intermediate user, corrupted intermediate users cannot determine the correct
pair (senderb, receiverb) for a given payment with probability better than 1/2 (i.e., guessing).
Note that this holds only for payments of the same value since such information is trivially leaked
to intermediate users, i.e., each user can monitor how adjacent links evolve and infer the amount
that was transferred.

An alternative privacy notion is described in BOLT [GM17]. There, authors propose payment
anonymity. Intuitively, payment anonymity requires that the merchant, even in collaboration with
a set of malicious customers, learns nothing about a customer’s spending pattern beyond the
information available outside the payment protocol.

While this privacy notion additionally hides the value that is transacted, it is restricted to single-
hop payments and does not consider the crucial aspect of conditional payment required when
more than one intermediate user takes part in the payment. As discussed in Section 5.3, many
well-established networks use paths with multiple intermediaries, and it is reasonable to expect
long paths also in the LN. To obtain the best of both worlds, one could envision a protocol where
private one-hop payments are performed “at the edges” (i.e., between the sender and the first
hop as well as between last hop and the receiver) while the rest of intermediate users carry out a
multi-hop payment à la LN.

However, this approach raises several questions. First, it is unclear whether the hypothetical
resulting privacy guarantees are stronger or weaker than those presented in this work. It is possible
that the naïve combination of the two systems would completely break down the guarantees of
both schemes. Techniques presented in both works might be required to develop a new system.
Second, BOLT requires a blockchain supporting a rich scripting language, and it is therefore
not compatible with prominent cryptocurrencies (such as Bitcoin). Thus, making this system
Bitcoin-compatible would require fundamentally new techniques.

In summary, although it seems to be an interesting research direction; further work is required to
study this approach and its privacy properties.

D.5 Security Analysis

Throughout the analysis, we denote by poly(λ) any function that is bounded by a polynomial in
λ. We denote any function that is negligible in the security parameter by negl(λ). We say that

262

D.5. Security Analysis

an algorithm is PPT if it is modeled as a probabilistic Turing machine whose running time is
bounded by some function poly(λ).

In the following we recall the (non standard) ideal functionalities that our protocols build on
and we elaborate on the security analysis of our constructions. We stress that the copies of this
functionality that are invoked as subroutines are fresh independent instances and therefore, the
composition theorem [Can01] directly applies to our settings.

Key Generation Functionalities. Our ideal functionality for the key generation of Schnorr
signatures F schnorr

keygen provides the users with the interface described below. This essentially models
a distributed key generation for discrete logarithm-based schemes, which is a very well-studied
problem (see, e.g., [GJKR07]).

KeyGen(G, G, q)

Upon invocation by both U0 and U1 on input (G, G, q):
sample x ←$Zq and compute Q = x · G

set skU0,U1 = x

sample x0 and x1 randomly

sample a hash function H : {0, 1}∗ → {0, 1}|q|

send (x0, Q, H) to U0 and (x1, Q, H) to U1

ignore future calls by (U0, U1)

Our ideal functionality for the key generation of ECDSA FECDSA
keygen is taken almost in verbatim

from [Lin17], and it is given in the following.

KeyGen(G, G, q)

Upon invocation by both U0 and U1 on input (G, G, q):
sample x ←$Zq and compute Q = x · G

sample x0 and x1 randomly

sample a hash function H : {0, 1}∗ → {0, 1}|q|

sample a key pair (skU0,U1 , pkU0,U1) ← KGenHE(1λ)
compute c ← EncHE(pk, r̃) for a random r̃

send (x0, Q, H, sk) to U0 and (x1, Q, H, c) to U1

ignore future calls by (U0, U1)

Generic Construction. Here we elaborate on the proof of Theorem 2.

Proof. We define the following sequence of hybrids, where we gradually modify the initial
experiment.

H0 : Is identical to the protocol as described in Section 5.5.2.

263

D. APPENDIX TO CHAPTER 5

H1 : Consider the following ensemble of variables in the interaction with A: A honest user Ui, a
key pair (ski, pk), a state sI , a tuple (i, i+1, sL, sR) such that

{·, (i, sL)} ← ·, LockUi(sI , ski, pk)

and
{(i+1, sR), ·} ← LockUi(sI , ski, pk), · .

If, for any set of these variables, the adversary returns some k such that Vf(i+1, k) = 1 and
Vf(i, Rel(k, (sI , sL, sR))) = 1, then the experiment aborts.

H2 : Consider the following ensemble of variables in the interaction with A: A pair of honest
users (U0, Ui) a set of (possibly corrupted) users (U1, . . . , Un), a key pair (ski, pk), a set of initial
states

(sI
0 . . . , sI

n) ←
SetupU0(1λ, U1, . . . , Un),

. . . ,
SetupUn

(1λ)
,

and a pair of locks (i−1, i) such that

{·, (i−1, ·)} ← ·, LockUi(sI
i , ski, pk)

and
{(i, ·), ·} ← LockUi(sI

i , ski, pk), · .

If, for any set of these variables, the adversary returns some ki−1 such that Vf(i−1, ki−1) = 1
before the user Ui outputs a key ki such that Vf(i, ki) = 1, then the experiment aborts.

H3 : Let S = (U0, . . . , Um) be an ordered set of (possibly corrupted) users. We say that that an
ordered subset A = (U1, . . . , Uj) is adversarial if Ui is honest and (Ui+1, . . . , Uj) are corrupted.
Note that every set of users can be expressed as a concatenation of adversarial subsets, that is
S = (A1|| . . . ||Am), for some m ≤ m. Whenever a honest user is requested to set up a lock for
a certain set S = (A1|| . . . ||Am), it initializes an independent lock for each subset (Ai, A0

i+1),
where A0

i+1 is the first element of the (i + 1)-th set, if present. Whenever some A0
i+1 is requested

to release the key for the corresponding lock (recall that all A0
i+1 are honest nodes) it releases the

key for the fresh lock (Ai, A0
i+1) instead.

S : The interaction of the simulator is identical to H3 except that the actions of S are dictated by
the interaction with F . The simulator reads the communication of A with the honest users via
Fanon and is queried by F on the following set of inputs.

1. (·, ·, ·, ·, Init): The simulator reconstructs the adversarial set (defined above) from the ids
and sets up a fresh lock chain.

2. (·, Lock): The simulator initiates the locking procedure with the adversary and replies with
⊥ if the execution is not successful.

3. (·, Rel) The simulator releases the key of the corresponding lock and publishes it.

264

D.5. Security Analysis

If A interacts with an honest user (e.g., by releasing a lock), the simulator queries the correspond-
ing interface of F .

Note that the simulator is efficient and interacts as the adversary with the ideal world. Furthermore,
the simulation is always consistent with the ideal world, i.e., if the adversary’s action is not
supported by the interfaces of F , the simulation aborts. What is left to be shown is that the
neighboring hybrids are indistinguishable to the eyes of the environment E .

Lemma 1. For all PPT distinguishers E it holds that

EXECH0,A,E ≡ EXECH1,A,E .

Proof. Follows from the homomorphic property of the function g: Recall that a key-lock pair
(k,) is valid if and only if g(k) = . Let (ki, i) be the output of A, by construction we have
that i = i−1 + g(yi), for some (i−1, yi), which is part of the state of the honest node. Since
the release algorithm computes ki − yi we have that

g(ki − yi) = g(ki) − g(yi)
= i − g(yi)
= i−1 + g(yi) − g(yi)
= i−1

with probability 1, by the homomorphic property of g.

Lemma 2. For all PPT distinguishers E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof. Let q ∈ poly(λ) be a bound on the number of interactions. Recall that H1 and H2 differ
only for the case where the adversary outputs a key for a honestly generated lock before the
trapdoor is released. Assuming towards contradiction that the probability that this event happens
is non-negligible, we can construct the following reduction against the one-wayness of g: On
input some Y ∗ ∈ R, the reduction guesses a session j ∈ [1, q] and some index i ∈ [1, n].
The setup algorithm of the j-th session is modified as follows: Yi is set to be Y ∗. Then, for all
ι ∈ [i−1, 0], the setup samples some yι ∈ D and returns (Yι = Yι+1 −g(yι), Yι+1, yι). The setup
samples a random yi ∈ D and sets Yi+1 = g(yi). Then, for ι ∈ [i + 1, n − 1], the setup samples
yι ∈ D returns (Yι, Yι +g(yι), yι). The nodes (U1, . . . , Un−1) are given the corresponding output
(except for Ui) and Un is given (Yn−1, n−1

j=i yj). If the node Ui is requested to release the lock,
the reduction aborts. At some point of the execution the adversary A outputs some y∗, and the
reduction returns y∗ + yi−1.

The reduction is clearly efficient and, whenever j and i are guessed correctly, the reduction does
not abort. Since the group defined by g is abelian, the distribution induced by the modified setup
algorithm is identical to the original (except for the initial state of U1). Also note that, whenever
j and i are guessed correctly, the user Ui is honest and therefore the adversary does not not see

265

D. APPENDIX TO CHAPTER 5

the corresponding internal state. It follows that the reduction is identical to H1, to the eyes of the
adversary. Finally, whenever the adversary outputs some valid ki−1 for i−1, then it holds that
g(ki−1) = i−1. Substituting we have that

g(ki−1) = i−1

g(y∗) = Yi−1

g(y∗) = Y ∗ − g(yi−1)
g(y∗) + g(yi−1) = Y ∗

g(y∗ + yi−1) = Y ∗.

It follows that the reduction is successful with probability at least 1
q·n·poly(λ) . This proves our

statement.

Lemma 3. For all PPT distinguishers E it holds that

EXECH2,A,E ≡ EXECH3,A,E .

Proof. Recall that adversarial sets are always interleaved by a honest node. Therefore in H2
for each adversarial set starting at index i there exists a y such that Yi = Yi−1 + g(y) and A is
not given y. Since y is randomly sampled from D we have that Yi−1 + g(y) ≡ Y , for some Y
sampled uniformly from R, which corresponds to the view of A in H3.

Lemma 4. For all PPT distinguishers E it holds that

EXECH3,A,E ≡ EXECF ,S,E .

Proof. The changes between the two experiments are only conceptual and the equivalence of the
views follows.

This concludes our analysis.

Schnorr-based Construction. Here we prove Theorem 7.

Proof. We define the following sequence of hybrids, where we gradually modify the initial
experiment.

H0 : Is identical to the protocol as described in Appendix D.3.

H1 : All the calls to the commitment scheme are replaced with interactions with the ideal
functionality Fcom, defined in the following.

Commit(sid, m)

Upon invocation by Ui (for i ∈ {0, 1}):
record (sid, i, m) and send (com, sid) to U1−i

if some (sid, ·, ·) is already stored ignore the message

266

D.5. Security Analysis

Decommit(sid)

Upon invocation by Ui (for i ∈ {0, 1}):
if (sid, i, m) is recorded then send (decom, sid, m) to U1−i

Instead of calling the Commit algorithm on some message m, the parties sent a message of the
form Commit(sid, m) to the ideal functionality, and the decommitment algorithm is replaced
with a call to Decommit(sid). The verifying party simply records messages from Fcom.

H2 : All the calls to the NIZK scheme are replaced with interactions with the ideal functionality
FNIZK:

Prove(sid, x, w)

Upon invocation by Ui (for i ∈ {0, 1}):
if R(x, w) = 1 then send (proof, sid, x) to U1−i

Instead of running the proving algorithm in input (x, w), the proving party queries the functional-
ity on Prove(sid, x, w). The verifier records the messages from FNIZK.

H3, H4, H5, S : The subsequent hybrids are defined as H1, H2, H3, S, respectively, in Theo-
rem 2.

As argued before, the simulator is efficient, and the interaction is consistent with the inputs of
the ideal functionality. In the following, we prove the indistinguishability of the neighboring
experiments.

Lemma 5. For all PPT distinguishers E it holds that

EXECH0,A,E ≈ EXECH1,A,E .

Proof. Follows directly from the security of the commitments scheme COM.

Lemma 6. For all PPT distinguishers E it holds that

EXECH1,A,E ≈ EXECH2,A,E .

Proof. Follows directly from the security of the non-interactive zero-knowledge scheme NIZK.

Lemma 7. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. In order to show this claim, we introduce an intermediate experiment.

H∗
2 : The locking algorithms are substituted with the following ideal functionality. Such an

interface is called by both parties on input m and y = i
j=0 yj , where i is the position of the

267

D. APPENDIX TO CHAPTER 5

lock in the chains and the yj are defined as in the original protocol. Note that the key skU0,U1

refers to the previously established key in the call to the F schnorr
kgen .

Sign(m, y)

Upon invocation by both U0 and U1 on input (m, y):
compute (R, s) = Sigschnorr(skU0,U1 , m)
return (R, s − y)

We defer the indistinguishability proof to Lemma 8. Let cheat by the event that triggers an abort
of the experiment in H3, that is, the adversary returns some k such that Vf(i+1, k) = 1 and that
Vf(i, Rel(k, (sI , sL, sR))) = 1. Assume towards contradiction that Pr [cheat | H∗

2] ≥ 1
poly(λ) ,

then we can construct the following reduction against the strong-existential unforgeability of
Schnorr signatures: The reduction receives as input a public key pk and samples an index
j ∈ [1, q], where q ∈ poly(λ) is a bound on the total amount of interactions. Let Q be the
key generated in the j-th interaction, the reduction sets Q = pk. All the calls to the signing
algorithm are redirected to the signing oracle. If the event cheat happens, the reduction returns
corresponding (k∗, ∗) = (σ∗, (m∗, pk∗)), otherwise it aborts.

The reduction is clearly efficient. Assume for the moment that j is the index of the interaction
where cheat happens, and let i+1 be the index that identifies the lock ∗ in the corresponding chain.
Note that in case the guess of the reduction is correct we have that pk∗ = pk. Since cheat happens
we have that Vfschnorr(pk∗, m∗, σ∗) = 1 and the release fails, i.e., Vf(i, Rel(k, (sI

i , sL
i , sR

i)) = 1
(where i is the lock in the previous position as ∗ in the same chain). Recall that the release
algorithm parses sL

i as (Wi,0, wi,1) and σ∗ as (R∗, s∗) and returns (Wi,0, wi,1 + s∗ − (sR
i + yi)).

Substituting with the corresponding values

Wi,0, wi,1 + s∗ − (sR
i + yi)

=

Ri, si −
i−1

j=0
yj + s∗ − sj −

i

j=0
yj + yi

= (Ri, si + s∗ − sj) ,

where sj is the answer of the oracle on the j-th session on input mj . This implies that s∗ = sj ,
otherwise (Ri, si) would be a valid signature since it is an output of the signing oracle. Since each
message uniquely identifies a session (the same message is never queried twice to the interface
Sign(m,y)) this implies that (σ∗, (m∗, pk∗)) is a valid forgery. By assumption this happens with
probability at least 1

q·poly(λ) , which is a contradiction and proves that Pr [cheat | H∗
2] ≤ negl(λ).

Since the experiments H2 and H3 differ only when cheat happens (and H3 aborts), we are only
left with showing the indistinguishability of H2 and H∗

2.

Lemma 8. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH∗
2,A,E .

268

D.5. Security Analysis

Proof. The proof consists of the description of the simulator for the interactive lock algorithm.
We describe two simulators depending on whether the honest adversary is playing the role of the
”left" or ”right" party. For each proof, both the simulators implicitly check that the given witness
is valid and abort if this is not the case.

1. Left corrupted: Prior to the interaction the simulator is sent (Y , y, (prove, {∃y∗ s.t y∗ ·G =
Y }, y∗)), which is the state corresponding to the execution of the lock. After agreeing on
a message m, the simulator sends (com, sid) to A, for a random sid. The simulator also
queries the interface Sign on input m, y∗ and receives a signature σ = (R, s). At some
point of the execution A sends (R0, (prove, {∃r0 s.t r0 · G = R0}, r0)). The simulator
replies with

 decom, sid,

 R∗ = R − (R0 + Y),

proof, sid,
{∃r∗ s.t r∗ · G = R∗}

 ,

R∗, (s − r0 − e · x0)

where e = H(pk R∗ m) and x0 is the value returned by the key generation to A. The rest
of the execution is unchanged.

2. Right corrupted: Prior to the interaction the simulator is sent (Y , y, (prove, {∃y∗ s.t y∗·G =
Y }, y∗)), which is the state corresponding to the execution of the lock. After agreeing on a
message m, the simulator is given

com, sid, R1, prove, sid,
{∃r1 s.t r1 · G = R1}, r1

by A. The simulator then queries the interface Sign on input m, y∗ and receives a signature
σ = (R, s). The simulator sends (R∗ = R − (R1 + Y), (proof, sid, {∃r∗ s.t r∗ · G =
R∗})) to A and receives ((decom, sid), s∗) in response. The simulator checks whether
s∗ = r1 + e · x1, where e = H(pk R∗ m), and returns s if this is the case.

Both simulators are obviously efficient and the distributions induced by the simulated views are
identical to the ones of the original protocol.

This concludes the proof of Lemma 7.

Lemma 9. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. Let q ∈ poly(λ) be a bound on the number of interactions. Let cheat denote the events that
triggers an abort in H4 but not in H3. In the following we are going to show that Pr [cheat | H3] ≤
negl(λ), thus proving the indistinguishability of H3 and H4. Assume that the converse is true,
then we can construct the following reduction against the discrete logarithm problem (which
is implied by the sEUF of Schnorr): On input some Y ∗ ∈ G, the reduction guesses a session

269

D. APPENDIX TO CHAPTER 5

j ∈ [1, q] and some index i ∈ [1, n]. The setup algorithm of the j-th session is modified as
follows: Yi is set to be Y ∗. Then, for all ι ∈ [i − 1, 0], the setup samples some yι ∈ Zq

and returns (Yι = Yι+1 − yι · G, Yι+1, yι). The setup samples a random yi ∈ Zq and sets
Yi+1 = yi · G. Then, for ι ∈ [i + 1, n − 1], the setup samples yι ∈ Zq returns (Yι, Yι + yι · G, yι).
The nodes (U1, . . . , Un−1) are given the corresponding output (except for Ui) and Un is given
(Yn−1, n−1

j=i yj). If the node Ui is requested to release the lock, the reduction aborts. At some
point of the execution the adversary A outputs some k∗ = (R∗, s∗). The reduction parses sR as
the updated state of Ui and returns s∗ + yi−1 − sR.

The reduction is clearly efficient and, whenever j and i are guessed correctly, the reduction does
not abort. Since the group G is abelian and the Ui is honest, the distribution induced by the
modified setup algorithm is identical to the original to the eyes of the adversary. Recall that
cheat happens only in the case where k∗ is a valid opening for i and the release algorithm is
successful on input k∗ (if the last condition is not satisfied both H3 and H4 abort). Substituting,
we have that sR is of the form r0 + r1 + e · (x0 + x1) − y = s − y, for some y ∈ Zq. Since
the release is successful, then it must be the case that (R = (r0 + r1) · G + Yi−1, s) is a valid
Schnorr signature on the message mi−1 (agreed by the two parties in the locking algorithm for

i−1), which implies that y · G = Yi−1. As argued in the proof of Lemma 7, if s∗ = s , then we
have an attacker against the strong unforgeability of the signature scheme. It follows that s∗ = s
with all but negligible probability. Substituting we have

(s∗ + yi−1 − sR) · G = (s∗ + yi−1 − s + y) · G

= (yi−1 + y) · G

= yi−1 · G + y · G

= yi−1 · G + Yi−1

= yi−1 · G + (Y ∗ − yi−1 · G)
= Y ∗

as expected. Since, by assumption, this happens with probability at least 1
q·n·poly(λ) we have a

successful attacker against the discrete logarithm problem. This proves our statement.

Lemma 10. For all PPT distinguishers E it holds that

EXECH4,A,E ≡ EXECH5,A,E .

Proof. Recall that adversarial sets are always interleaved by a honest node. Therefore in H4 for
each adversarial set starting at index i there exists a y such that Yi = Yi−1 + y · G and A is not
given y. Since y is randomly sampled from Zq we have that Y + i − 1 + y · G ≡ Y , for some
Y sampled uniformly from G, which corresponds to the view of A in H5.

Lemma 11. For all PPT distinguishers E it holds that

EXECH5,A,E ≡ EXECF ,S,E .

270

D.5. Security Analysis

Proof. The change is only syntactical, and the indistinguishability follows.

This concludes our analysis.

ECDSA-based Construction. In the following we prove Theorem 3.

Proof. The sequence of hybrids that we define is identical to the one described in the proof
of Theorem 7. In the following, we prove the indistinguishability of neighboring experiments
only for the cases where the argument needs to be modified. If the argument is identical, the
proof is omitted.

Lemma 12. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH3,A,E .

Proof. In order to show this claim, we introduce an intermediate experiment.

H∗
2 : The locking algorithms is substituted with the interaction with the following ideal function-

ality. Recall that the key skU0,U1 here refers to the key established during the call of the same pair
of users to the key generation functionality. Also, note that the locking algorithm is called by
both parties on input m and y = i

j=0 yj , where i is the position of the lock in the chains and
the yj are defined as in the original protocol.

Sign(m, y)

Upon invocation by both U0 and U1 on input (m, y):
compute (r, s) = SigECDSA(skU0,U1 , m)
return (r, min(s · y, −s · y))

The indistinguishability proof of H2 and H∗
2 is formally shown in Lemma 13. Let cheat by

the event that triggers an abort of the experiment in H3, that is, the adversary returns some k
such that Vf(i+1, k) = 1 and Vf(i, Rel(k, (sI , sL, sR))) = 1. Assume towards contradiction
that Pr [cheat | H∗

2] ≥ 1
poly(λ) , then we can construct the following reduction against the strong-

existential unforgeability of ECDSA signatures: The reduction receives as input a public key pk
and samples an index j ∈ [1, q], where q ∈ poly(λ) is a bound on the total amount of interactions.
Let Q be the key generated in the j-th interaction, the reduction sets Q = pk. All the calls to the
signing algorithm are redirected to the signing oracle. If the event cheat happens, the reduction
returns corresponding (k∗, ∗) = (σ∗, (m∗, pk∗)), otherwise it aborts.

The reduction runs in polynomial time. Assume for the moment that j is the index of the
interaction where cheat happens, and let i + 1 be the index that identifies the lock ∗ in the
corresponding chain. Note that in case the guess of the reduction is correct we have that
pk∗ = pk. Since cheat happens we have that VfECDSA(pk∗, m∗, σ∗) = 1 and the release fails,
i.e., Vf(i, Rel(k∗, k∗, (sI

i , sL
i , sR

i))) = 1 (where i is the lock in the previous position as ∗ in
the same chain). Recall that the release algorithm parses sL

i as (wi,0, wi,1), σ∗ as (r∗, s∗), and

271

D. APPENDIX TO CHAPTER 5

sR
i as (s , m, pk) and computes t = w1 · (s

s∗ − y)−1 and t = w1 · (− s
s∗ − y)−1. Then it returns

either (wi,0, min(t, −t)) or (wi,0, min(t , −t)) depending on which verifies as a valid signature
on m under pk. Substituting with the corresponding values (for the case t is the lower term)

(wi,0, t) = ri, wi,1 · s

s∗ − y
−1

=

ri, si ·
i−1

j=0
yj · sj · i

j=0 yj

s∗ − yi

−1
where sj is the answer of the oracle on the j-th session on input the corresponding message mj .
If we set s∗ = sj then we have

(wi,0, t) =

ri, si ·

i−1

j=0
yj ·

 i

j=0
yj − yi

−1

= (ri, si)

which is a valid signature on mi (since it is the output of the signing oracle) and the release
would be successful. So this cannot happen and we can assume that s∗ = sj . A similar argument
(substituting t with t) can be used to show that it must be the case that s∗ = −sj . Since each
message uniquely identifies a session (the same message is never queried twice to the interface
Sign(m,y)) this implies that (σ∗, (m∗, pk∗)) is a valid forgery. By assumption this happens with
probability at least 1

q·poly(λ) , which is a contradiction and proves that Pr [cheat | H∗
2] ≤ negl(λ).

Since the experiments H2 and H3 differ only when cheat happens (and H3 aborts), we are only
left with showing the indistinguishability of H2 and H∗

2.

Lemma 13. For all PPT distinguishers E it holds that

EXECH2,A,E ≈ EXECH∗
2,A,E .

Proof. The proof consists of the description of the simulator for the interactive lock algorithm. In
the following, we describe the two simulators for the locking protocol depending on whether the
honest adversary is playing the role of the ”left" or ”right" party. For each zero-knowledge proof,
both the simulators implicitly check that the given witness is valid and abort if this is not the case.

1. Left corrupted: Prior to the interaction the simulator is sent (Y , y, (prove, {∃y∗ s.t y∗ ·
G = Y }, y∗)), which is the state corresponding to the execution of the lock. After
agreeing on a message m, the simulator sends (com, sid) to A, for a random sid. The
simulator also queries the interface Sign on input m, y∗ and receives a signature σ = (r, s).
The simulator sets R = H(m)

s · G + r
s · pk. At some point of the execution A sends

(R0, R0, (prove, {∃r0 s.t r0 · G = R0 and r0 · Y = R0}, r0)). Then the simulator samples

272

D.5. Security Analysis

a ρ ← Zq2 and computes c ← EncHE(pk, s · r0 + ρq). Then it provides the attacker with

decom, sid,

R∗ = (r0)−1 · R,
R1 = y−1 · R∗,
proof, sid,

∃r∗ s.t r∗ · G = R1
and r∗ · Y = R∗

 ,

R1, R∗, c .

The rest of the execution is unchanged.

The executions are identical except for the way c is computed. In order to show the statistical
proximity, we invoke the following helping lemma.

Lemma 14. [Lin17] For all (r, s, p) ∈ Zq and for a random ρ ∈ Zq2 , the distributions
EncHE(pk, r · s mod q + pq + ρq) and EncHE(pk, r · s mod q + ρq) are statistically close.

In the real world c is computed as EncHE(pk, r ·s mod q+pq+ρq), for some p which is bounded
by q since the only operation performed without modular reduction are one multiplication
and one addition, which cannot increase the result by more than q2. Since the distribution
EncHE(pk, r · s mod q + ρq) is identical to the simulation, the indistinguishability follows.

2. Right corrupted: Prior to the interaction the simulator is sent (Y , y, (prove, {∃y∗ s.t y∗·G =
Y }, y∗)), which is the state corresponding to the execution of the lock. After agreeing on a
message m, the simulator is given

com, sid,
R1, R1,

prove, sid,
∃r1 s.t r1 · G = R1 and

r1 · Y = R1
,

r1

by A. The simulator then queries the interface Sign on input m, y∗ and receives a signature
σ = (r, s). Then it sets R = H(m)

s · G + r
s · pk and R∗ = R − (R1 + Y) and sends

(R0 = y−1 · R∗, R∗, (proof, sid, {∃r∗ s.t r∗ · G = R0 and r∗ · Y = R∗})) to A. The
attacker sends ((decom, sid), c) in response. The simulator checks

DecHE(sk, c) = r̃ · r · (r1)−1 + H(m) · r−1
1 mod q,

where r̃ was sampled in the key generation algorithm. If the check holds true, the simulator
sends s to A.

The distribution induced by the simulator is identical to the real experiment except for the way c
is computed. Towards showing indistinguishability, consider the following modified simulator,

273

D. APPENDIX TO CHAPTER 5

that is given the oracle O(c , a, b) as defined in the following security experiment of the Paillier
encryption scheme.

Exp − ecCPAA
HE(λ) :

(sk, pk) ← KGenHE(1λ)
(w0, w1) ←$Zq

Q = w0 · G

b ←$ {0, 1}
c ← EncHE(pk, wb)
b ← A(pk, c, Q)O(·,·,·)

where O(c , a, b) returns 1 iff DecHE(sk, c) = a + b · wb

return 1 iff b = b

Instead of performing the last check, the simulator queries the oracle on input (c , a = H(m) ·
r−1

1 , b = r · (r1)−1). It is clear that the modified simulator accepts if and only if the simulator
described above accepts. Assume towards contradiction that the modified simulator can be
efficiently distinguished from the real-world experiment. Then we can reduce to the security of
Paillier as follows: On input (pk, c, Q), the reduction simulates the inputs of A as described in
the modified simulator using the input pk, Q, and c as the corresponding variables. It is easy to
see that the reduction is efficient. Note that if b = 0 then we have that c = EncHE(pk, w0) and
Q = w0 · G, which is identical to the real-world execution. On the other hand if b = 1 then it
holds that c = EncHE(pk, w1) and Q = w0 · G, where w1 is uniformly distributed in Zq, which
is identical to the (modified) simulated experiment. This implies that the modified simulation is
computationally indistinguishable from the real-world experiment. Since the modified simulation
and the simulation (as described above) are identical to the eyes of the adversary, the validity of
the lemma follows.

This concludes the proof of Lemma 12.

Lemma 15. For all PPT distinguishers E it holds that

EXECH3,A,E ≈ EXECH4,A,E .

Proof. Let q ∈ poly(λ) be a bound on the number of interactions. Let cheat denote the event that
triggers an abort in H4 but not in H3. In the following we are going to show that Pr [cheat | H3] ≤
negl(λ), thus proving the indistinguishability of H3 and H4. Assume that the converse is true,
then we can construct the following reduction against the discrete logarithm problem (which
is implied by the sEUF of ECDSA): On input some Y ∗ ∈ G, the reduction guesses a session
j ∈ [1, q] and some index i ∈ [1, n]. The setup algorithm of the j-th session is modified as
follows: Yi is set to be Y ∗. Then, for all ι ∈ [i − 1, 0], the setup samples some yι ∈ Zq

and returns (Yι = Yι+1 − (yι) · G, Yι+1, yι). The setup samples a random yi ∈ Zq and sets
Yi+1 = yi·G. Then, for ι ∈ [i+1, n−1], the setup samples yι ∈ Zq and returns (Yι, Yι+yι·G, yι).
The nodes (U1, . . . , Un−1) are given the corresponding output (except for Ui) and Un is given

274

D.5. Security Analysis

(Yn−1, n−1
j=i yj). If the node Ui is requested to release the lock, the reduction aborts. At some

point of the execution the adversary A outputs some k∗ = (r∗, s∗). The reduction parses
sR = (s , m, pk) as the updated state of Ui then checks the following:

1. s
s∗ + yi−1 · G = Y ∗

2. − s
s∗ + yi−1 · G = Y ∗

and returns the LHS term of the equation that satisfies the relation.

The reduction is clearly efficient and, whenever j and i are guessed correctly, the reduction does
not abort. Since the G is abelian and the Ui is honest, the distribution induced by the modified
setup algorithm is identical to the original to the eyes of the adversary. Recall that cheat happens
only in the case where k∗ is a valid opening for i and the release algorithm is successful on
input k∗ (if the last condition is not satisfied both H3 and H4 abort). Substituting, we have that
s is of the form x0·x1·rx+H(m)

r0·r1
= s̃ · y, where R = r0 · r1 · Yi−1 = (rx, ry), for some y ∈ Zq.

Since the release is successful, then it must be the case that (rx, s̃) is a valid ECDSA signature
on the message mi−1 (agreed by the two parties in the locking algorithm for i−1). This implies
that y · G = Yi−1. As argued in the proof of Lemma 12, if s∗ = s̃ and s∗ = s̃, then we have
an attacker against the strong unforgeability of the signature scheme. It follows that s∗ = s̃ or
s∗ = −s̃ with all but negligible probability. Substituting we have

s

s∗ + yi−1 · G = s̃ · y

s∗ + yi−1 · G

= s̃ · y

s∗ · G + yi−1 · G

= y · G + yi−1 · G

= Yi−1 + yi−1 · G

= (Y ∗ − yi−1 · G) + yi−1 · G

= Y ∗

which implies that condition (1) holds if s∗ = s̃. For the other case

− s

s∗ + yi−1 · G = − s̃ · y

s∗ + yi−1 · G

= − s̃ · y

s∗ · G + yi−1 · G

= y · G + yi−1 · G

= Yi−1 + yi−1 · G

= (Y ∗ − yi−1 · G) + yi−1 · G

= Y ∗

which means that condition (2) is satisfied if s∗ = −s̃. Since, by assumption, this happens
with probability at least 1

q·n·poly(λ) we have a successful attacker against the discrete logarithm
problem. This proves our statement.

275

D. APPENDIX TO CHAPTER 5

This concludes our proof.

D.6 PCNs from Multi-Hop Locks

In this section we show that AMHLs are sufficient to construct a full-fledged PCN that satisfy the
standard security definition from Malavolta et al. [MMSK+17].

Ideal Functionalities. We assume an ideal realization of AMHLs in the form of an ideal
functionality FL as described in Fig. 5.3. That is, all parties have oracle access to FL through the
specified interfaces.

Furthermore (same as it was done in [MMSK+17]), we assume the existence of a blockchain B
that we model as a trusted append-only bulletin board: The corresponding ideal functionality
FB maintains B locally and updates it according to the transactions between users. At any point
in the execution, anyone can send a distinguished message read to FB, who sends the whole
transcript of B to U . We denote the number of entries of B by |B|. We assume that users can
specify arbitrary contracts, i.e., transactions in B may be associated with arbitrary conditions
which require to be me in order to make the transaction effective. FB is entrusted to enforce that
a contract is fulfilled before the corresponding transaction is executed.

We model time as the number of entries of the blockchain B, i.e., time t is whenever |B| = t.
Note that we can artificially elapse time by adding dummy entries to B and that the current
time is available to all parties by simply reading B and counting the number of entries. As
discussed before, we assume synchronous communication between users, which is modeled by
the functionality Fsyn, and secure message transmission channels between users (modeled by
Fsmt).

Multi-session Extension. A subtlety in the application of the composition theorem is that each
call of each ideal functionality assumes to spawn an independent instance. However, the FL
functionality (described in Fig. 5.3) formally requires a joint state between sessions: The KGen
protocols that are used for establishing pairwise links (or channels, respectively) are shared
between multiple locking instances which might potentially result in shared keys between the
different instances of PrivMuLs that realize payment channels. Consequently, a study of the
concrete realization of those KGen protocols is required when arguing about the composition
of several locking instances. Composition with joint states is discussed in [CR03], where the
authors state a stronger version of the composition theorem (the so-called JUC theorem) which
accounts for joint state and randomness across protocol sessions.

In order to satisfy the conditions for the JUC theorem to apply, we must argue that our protocol
realizes a stronger ideal functionality F̃L that makes only independent calls to the underlying
interfaces (refer to [CR03] for a detailed description). More precisely, this means that we need to
argue for each of the previously presented concrete realizations of FL that a parallel composition
of those protocols – with all instances of the protocol sharing the same KGen protocols and
running independently otherwise – realizes the functionality F̃L. This is shown in the following
lemmas.

276

D.6. PCNs from Multi-Hop Locks

Lemma 16. Let g be a homomorphic one-way function, and let Lgeneric
KGen

be the multi-session

extension of the protocol described in Fig. 5.4 using a shared KGen algorithm. Then Lgeneric
KGen

UC-realizes the ideal functionality F̃L in the (Fsyn, Fsmt, Fanon)-hybrid model.

Proof. The proof trivially follows from Theorem 2 and the Composition Theorem [Can01] since
the KGen protocol never needs to be invoked for realizing FL and hence the different copies of

Lgeneric in Lgeneric
KGen

are fully independent. So the joint state is in fact empty.

Lemma 17. Let COM be a secure commitment scheme, let NIZK be a non-interactive zero
knowledge proof, and let Lschnorr

KGen
be the multi-session extension of the protocol described

in Fig. D.2 using a shared KGen algorithm realizing F schnorr
kgen . If Schnorr signatures are

strongly existentially unforgeable, then Lschnorr
KGen

UC-realizes the ideal functionality F̃L in the
(F schnorr

kgen , Fsyn, Fsmt, Fanon)-hybrid model.

Proof. It is easy to see that the F schnorr
kgen functionality itself is stateless and, therefore, consecu-

tive invocations of F schnorr
kgen are indistinguishable from the invocation of fresh instances of the

functionality. Hence, for multiple protocols, it is identical to query the same F schnorr
kgen instance

or to work on independent copies (and the same property carries over to protocols realizing

this functionality). As a consequence Lschnorr
KGen

is indistinguishable from the multi-session
extension of Lschnorr using independent KGen copies that realize F schnorr

kgen . So the claim trivially
follows from Theorem 7 and the Composition Theorem [Can01].

Lemma 18. Let COM be a secure commitment scheme and let NIZK be a non-interactive zero
knowledge proof, and let Lecdsa

KGen
be the multi-session extension of the protocol described

in Fig. 5.5 using a shared KGen algorithm realizing idealECDSA
kgen . If ECDSA signatures are

strongly existentially unforgeable and Paillier encryption is ecCPA secure, and KGen then the con-
struction in Fig. 5.5 UC-realizes the ideal functionality F̃L in the (FECDSA

kgen , Fsyn, Fsmt, Fanon)-
hybrid model.

Proof. As FECDSA
kgen satisfies the same independence property as F schnorr

kgen , the same argument as
for Lemma 17 applies.

System Assumptions. We assume that every user in the PCN is aware of the complete network
topology, that is, the set of all users and the existence of a payment channel between every pair of
users. We further assume that the sender of a payment chooses a payment path to the receiver
according to her own criteria.

The current value on each payment channel is not published but instead kept locally by the
users sharing a payment channel. The two users U0 and U1 are assumed to maintain locally the
capacity of their channel, denoted by cap(U0, U1). We further assume that every user is aware of
the payment fees charged by each other user in the PCN. For ease of exposition, we define the
predicate fee(Ui) to return the fee charged by the user Ui. We assume that pairs of users sharing a

277

D. APPENDIX TO CHAPTER 5

payment channel communicate through secure and authenticated channels (such as TLS), which
is easy to implement given that every user is uniquely identified by a public key.

Our System. In the following, we describe the three operations (open channel, close channel,
and payment) that constitute the core of our system. For the sake of simplicity, we restrict each
pair of users to at most one channel. However, our construction can be easily extended to support
multiple channels per pair.

OPEN CHANNEL. The open channel protocol generates a new payment channel between users
U1 and U2. The user U1 invokes FL on input (U2, L), depending on the direction of the channel,
which returns the users’ identifiers (U1, U2) if the operation was successful. Then the users
create an initial blockchain deposit that includes the following information: Their addresses, the
initial capacity of the channel, the channel timeout, and the fee charged to use the channel agreed
beforehand between both users. After the deposit has been successfully added to the blockchain,
the operation returns 1. If any of the previous steps is not carried out as defined, the operation
returns 0.

CLOSE CHANNEL. The close channel protocol is run by two users U1 and U2 sharing an open
payment channel to close it at the state defined by v and accordingly update their bitcoin balances
in the Bitcoin blockchain. From this point on, U1 and U2 ignore all the requests from FL relative
to their link.

PAYMENT. A payment operation transfers a value v from a sender (U0) to a receiver (Un+1)
through a path of open payment channels between them (U0, . . . , Un+1). The sender (Algorithm 1)
first computes the cost of sending v coins to the receiver as v1 := v + n

i=1 fee(Ui), and the
corresponding cost at each of the intermediate hops in the payment path. Then it setups up a
AMHL by calling the ideal functionality FL on the set of identifiers of the intermediate users.
Finally, it sends each user the corresponding value to be transferred and a timeout information ti.

Each intermediate user (Algorithm 3) checks whether the capacity of the channel is high enough
to support the transfer of the coins and whether the timeouts give by the sender are consistent,
i.e., ti+1 = ti − Δ for some fixed Δ. Starting from (U0, U1), each pair of users query the ideal
functionality FL on the Lock interface using the lid received in the previous phase. If the ideal
functionality signals to proceed, then the two users establish a contract specified in the following.

contract(Alice, Bob, lid, x, t)

1) If GetStatus(lid) = Rel before t days,
then Alice pays Bob x coins.

2) If t elapse, then Alice gets back x coins.

The contract is authenticated by both users and can be uploaded to B by either of them at any
time. If every user in the path locks the corresponding lid, eventually the receiver (Algorithm 2)
is reached. Un+1 checks whether the transacted value is what it expects and whether the latest
timeout tn+1 is well-formed. If both conditions hold, the receiver releases the lock lidn by

278

D.6. PCNs from Multi-Hop Locks

querying the ideal functionality. This triggers a cascade of release calls in the path from the
sender to the receiver, thereby enabling the left user in the link to pull the payment (using the
previously established contract). If for some reason, one of the intermediate links is not released,
then all of the previous contracts are voided after the corresponding timeout.

Algorithm 1: Payment routine for the sender
Input :(U0, . . . , Un+1, v)

1 v1 := v + n
i=1 fee(Ui)

2 if v1 ≤ cap(U0, U1) then
3 query FL on Setup(U0, . . . , Un+1)
4 FL returns (⊥, lid0, ⊥, U1, Init)
5 cap(U0, U1) := cap(U0, U1) − v1
6 t0 := tnow + Δ · n
7 forall i ∈ {1, . . . , n}
8 vi := v1 − i−1

j=1 fee(Uj)
9 ti := ti−1 − Δ

10 send ((Ui−1, Ui+1, vi+1, ti, ti+1), fwd) to Ui

11 end for
12 send (Un, vn+1, tn+1) to Un+1
13 query FL on Lock(lid0)
14 if FL returns (lid0, Lock)
15 contract(U0, U1, lid0, v1, t1)
16 else
17 abort
18 end if else
19 abort
20 end if

Algorithm 2: Payment routine for the receiver
Input :(Un, vn+1, tn+1, v)

1 FL returns (lidn, ⊥, Un, ⊥, Init)
2 if (tn+1 > tnow + Δ) ∧ (vn+1 = v) ∧ (GetStatus(lidn) = Lock) then
3 query FL on Release(lidn)
4 send ok to Un

5 else
6 send ⊥ to Un

7 end if

Analysis. In the following we argue that the system as described above ideally realizes the
functionality FP CN as defined in [MMSK+17], assuming oracle access to FL, FB, and Fsyn.

279

D. APPENDIX TO CHAPTER 5

Algorithm 3: Payment routine for the i-th intermediate user
Input :(m, decision)

1 if decision = fwd then
2 parse m as (Ui−1, Ui+1, vi+1, ti, ti+1)
3 FL returns (lidi−1, lidi, Ui−1, Ui+1, Init)
4 if (vi+1 ≤ cap(Ui, Ui+1)) ∧ (ti+1 = ti − Δ) ∧ (GetStatus(lidi−1) = Lock) then
5 cap(Ui, Ui+1) := cap(Ui, Ui+1) − vi+1
6 query FL on Lock(lidi)
7 if FL returns (lidi, Lock)
8 contract(Ui, Ui+1, lidi, vi+1, ti+1)
9 else

10 send ⊥ to Ui−1
11 end if
12 else
13 send ⊥ to Ui−1
14 else if decision = ⊥ then
15 cap(Ui, Ui+1) := cap(Ui, Ui+1) + vi+1
16 send ⊥ to Ui−1
17 else if (decision = ok) ∧ GetStatus(lidi) = Rel then
18 query FL on Release(lidi−1)
19 send ok to Ui−1
20 else
21 send ⊥ to Ui−1
22 end if

Theorem 8. The system described above UC-realizes FP CN (as defined in [MMSK+17]) in the
(FL, FB, Fsyn, Fsmt)-hybrid model.

Proof. The proof consists of the observation that the ideal functionality FL enforces balance
security and satisfies relationship anonymity (as defined in [MMSK+17]). A subtlety is that now
all users have access to a GetStatus interface, and they might be able to query the functionality
on a certain lid and learn its status even when they are not involved in the generation of such a
lock. However, one can easily show that this happens only with negligible probability since it
requires guessing lid, which is a string sampled uniformly at random. It is also easy to see that
FL does not allow one to perform wormhole attacks by construction. What is left to be shown is
that the rest of the information exchanged by the machines does not break any of these properties.
Note that the only information that is sent outside FL consists of user identifiers, timeouts, and
values to lock. The first identifiers are already known by the intermediate users, whereas the rest
of the items are precisely chosen as described in FP CN . Note that it is sufficient here to argue
about the individual copies of FL in isolation by the JUC theorem [CR03]. As we showed, the
multi-session extended ideal functionality F̃L is realized by our instantiations, and, therefore, the

280

D.6. PCNs from Multi-Hop Locks

JUC theorem allows us to complete the analysis assuming independent copies of FL running in
parallel.

281

	Kurzfassung
	Abstract
	List of Publications
	Contents
	Introduction
	Security Issues in Distributed Blockchain Applications
	Methodology
	Contributions

	Semantic Foundations for Ethereum Smart contracts
	Introduction
	Background on Ethereum
	Small-Step Semantics
	Security Definitions
	Conclusions

	Trends and Challenges in the Security Analysis of Ethereum Smart Contracts
	Introduction
	Trends in Security-enhancing Tools for Ethereum Smart Contracts
	State of the Art in Automated Sound Static Analysis of Ethereum Smart Contracts
	Challenges in Sound Smart Contract Verification
	Conclusion

	eThor: Practical and Provably Sound Static Analysis of Ethereum Smart Contracts
	Introduction
	Static Analysis of EVM Bytecode
	HoRSt: A Static Analysis Language
	Implementation & Evaluation
	Discussion
	Conclusion

	Anonymous Multi-Hop Locks for Blockchain Scalability and Interoperability
	Introduction
	Context: Payment Channel Networks
	Wormhole Attack in Existing PCNs
	Definition
	Constructions
	Performance Analysis
	Applications
	Related Work
	Conclusion

	Conclusion and Directions for Future Research
	Conclusion
	Application to Recent Trends in Decentralized Finance
	Directions for Future Work

	List of Figures
	List of Tables
	Bibliography
	Appendix to ch:sem-foundations
	Formalization
	Small-step Semantics
	EVM Changes
	Auxiliary Definitions
	Transaction Execution
	Properties of the Small-step Semantics
	Proof Technique for Call Integrity

	Appendix to ch:automated-analysis
	Soundness Issues in Related Work

	Appendix to ch:ethor
	HoRSt
	Theoretical Foundations of eThor
	Checking Security Properties with eThor

	Appendix to ch:amhl
	Wormhole Attack
	AMHLs Correctness
	Schnorr-based Scriptless Construction
	Comparison of Privacy Notions and Guarantees
	Security Analysis
	PCNs from Multi-Hop Locks

