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"Life is and will ever remain an equation incapable of solution,
but it contains certain known factors."

Nikola Tesla
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Abstract

Mobile telecommunication system is in constant development, as the num-
ber of users and applications is steadily increasing. Fifth generation of mo-
bile system (5G) is supposed to bring further improvements regarding data
rates, reliability, energy e�ciency and security. In this thesis we will focus
on increasing data rate by applying time division duplex (TDD). In attempt
to increase sum-rate, we propose a system where each cell is scheduled in
downlink (DL) or uplink (UL) based on the tra�c demand within the cell.
The �exibility of such a system requires deploying TDD instead of nowadays
commonly used frequency division duplex (FFD), because it allows dynami-
cal adaptation to asymmetric tra�c requirements.

Despite advantages of dynamic TDD, it introduces higher inter-channel
interference due to the fact that neighboring base stations are allowed to
transmit in opposite directions. Due to this, we propose a method to avoid
interference and maximize sum-rate. Two questions have to be answered,
how to �nd scheduling and how to allocate transmit powers, which opti-
mize a system in terms of maximal sum-rate. We will address these issues
from the point of view where exists an central unit which oversees the whole
system. Further, a decentralized method of optimization is proposed where
scheduling and power allocation is done locally based just on limited com-
munication with neighboring cells. Finally, we will do MATLAB simulation
of all proposed algorithms and compare their results.
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Chapter 1

Introduction

Over the years interest in launching the pre-standard of the �fth genera-
tion mobile network (5G) has increased. It is supposed to become reality by
2020 in several markets [1]. The improvement is driven by an increase in de-
mand of faster and better mobile broadband services (Fig. 1). Nevertheless,
the requirements of 5G are also forced by machine-type communication, or
the Internet-of-Things (IoT). As a result new cases will have to be served.
They are characterized by more users and more types of devices, some of
which with di�erent operating requirements. This leads to a system, where
the demand of downlink (DL) and uplink (UL) rates will be changing dy-
namically.

Figure 1.1: 5G requirements [1].

One of the main goals of 5G is increasing the rate, in order to meet
higher tra�c requirements. One of approaches of improving system capacity
is applying dynamic time division duplexing (TDD). TDD shows numerous
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2 CHAPTER 1. INTRODUCTION

advantage in comparison to frequency division duplexing (FDD), which is
nowadays more common. Frequency spectrum loss due to guard band pro-
viding an isolation between uplink and downlink and lower cost of hardware
[2] are just some of reasons to use TDD instead of FDD. Further, the fact
that by FDD, DL/UL capacity is determined by frequency allocation, which
is set out by the regulatory authorities, makes it unsuitable to match dy-
namic changes of DL/UL capacity. Because of all of this, there are various
proposals to use dynamic TDD, which is able to adopt to asymmetric tra�c
requirements.

Even though dynamic TDD promises higher capacity, the problem of
inter-channel interference is arising. The main reason for this behavior is the
fact that neighboring base stations can transmit in di�erent directions at the
same time. Therefore, the topics which have to be addressed are DL/UL
scheduling and power allocation so that the sum-rate is maximized. In this
thesis we will propose two approaches to optimize dynamic TDD:

• Centralized approach, which requires existence of a central unit which
oversees the whole system. Further, it is responsible for making deci-
sions about the scheduling and power allocation for all cells included
in the system.

• Decentralized approach, where base stations try to optimize tra�c lo-
cally. Each base station makes decision about its scheduling and power
allocation separately. These decisions are based on the information
available locally, within the cell, and by limited exchange of informa-
tion with the neighboring cells.

After discussing the problem and proposing solution algorithms, results
of simulations will be implemented in MATLAB.

The rest of the thesis is organized as follows:

• After a brief introduction o� the problem, Chapter 2 presents literature
review of the already existing work on the topic of dynamic TDD.

• In Chapter 3 we have provided a detailed description of the problem
arising by application of dynamic TDD. Furthermore, two approaches
for their optimization are proposed, namely centralized and decentral-
ized.

• Chapter 4 proposes a solution algorithm for the optimization of a cel-
lular system in a centralized manner.

• Chapter 5 presents an approach to solve the problems of dynamic TDD
optimization in a decentralized manner.
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• In Chapter 6 the di�erences between centralized and decentralized TDD
are discussed. Further, advantages and disadvantages of each are pre-
sented.

• Chapter 7 outlines the cellular system models used for simulations in
MATLAB. Furthermore, the obtained results are presented and com-
mented.

• Finally, Chapter 8 draws conclusions and propose topics of future work.
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Chapter 2

Literature review

Recent years are characterized by the rapid development of mobile Inter-
net. The main driver of the development, the demand for high quality video
streaming and multiple applications demanding high-speed Internet connec-
tion is constantly increasing. In the future decade further developments in
this �eld are predicted, which leads to drastic increase of the demand. The
mobile data tra�c has increased by 63% in 2016 and from 4,4 exabytes (EB)
per month at end of 2015 up to 7,2 EB per month at the end of 2016 (1 EB
= 10006 bytes = 1018 bytes). It is predicted that, by the end of 2021 the
monthly mobile data tra�c will reach 49 EB [3]. Thus, the 5G is to supposed
to provide an improvement of capacity by factor of 1000 until the 2020 [4].

One of the main characteristics of any radio system is the solution of
maintaining communication in both direction. Time division duplex (TDD)
indicate the method of downlink/uplink separation by allocation of time
slots within the same frequency range. Traditional TDD scheme allocates
time slots for uplink and downlink transmission in static or semi-static ratio.
To satisfy the requirements, discussed in the previous paragraph, multiple
improvements in TDD are considered.

In Long Term Evolution (LTE) seven di�erent TDD con�gurations are
de�ned in order to support di�erent downlink/uplink (DL/UL) ratio of traf-
�c (as shown in Table 2.1) [5]. Each of the de�ned con�gurations enables
di�erent DL/UL sub-frame allocation, what makes it possible to have �ex-
ible DL/UL recon�guration. Each frame is 10 ms long and consists of 10
sub-frames. In Table 2.1 D represents a DL sub-frame, S a special sub-frame
and U a UL sub-frame. These modes enable �exible DL/UP recon�gura-
tion based on tra�c rates. Seven DL/UL tra�c rates are supported, that
vary from UL favored con�guration, DL/UL = 40%/60%, for the set 0 up
to the DL favored con�guration, DL/UL = 90%/10%. The possibility to
maximize the system throughput, in the case where every cell can decide
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on one of the seven con�gurations is studied in [6]. The e�ectiveness of the
proposed approach is shown when an evolutionary stable strategy (ESS) is
applied. However this semi-static scheme is unable to support fast �uctua-
tions of DL/UL tra�c and to follow the dynamics of the tra�c. If DL/UL is
not dynamically changed, either the resources are wasted, the transmission
in the cell scheduled in the mode in which the queue lengths are lower, or
the requirements of the service can not be satis�ed. The reason for this is
that in the wireless data services, the tra�c is often asymmetric and changes
dynamically.

A simple example of such a behavior is that one user can stream a high
quality video, requiring high DL tra�c or may upload large amount of data
onto the server, requesting UL tra�c.

Table 2.1: Seven DL/UL con�gurations de�ned in LTE [5]

In order to solve the problem of dynamically changed asymmetric tra�c
rates and improve the system capacity, the new strategies of DL/UL �uctua-
tion are proposed. They are referred to as dynamic TDD, where the DL/UL
con�guration can be changed in every cell or cluster of cells on a per-subframe
basis, thus every 1 ms. First simulations of dynamic TDD, which have been
done on single-cell scenario have shown an improvement of packet through-
put performance [7]. Nonetheless, if a simulation of a system containing more
cells is considered, the issue of cross-subframe cochannel interference (CCI)
is noticed [8]. More precisely, due to the fact that the neighboring cells can
independently choose to transmit in DL or UL, CCI is introduced, meaning
that DL of a cell may interfere with UL transmissions of the neighboring cell
(DL-to-UL), and the other way around (UL-to-DL).

The performance bene�ts from deployment of dynamic TDD applied to
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outdor hotspot Pico cell is studied in [9]. A dynamic DL/UL con�guration
scheme, which aims at minimizing the overall DL and UL delay in an au-
tonomous manner in each cell is analyses in [10]. It is shown that relying only
on local observations of a cell, it is still possible to learn and estimate current
load and the interference from neighboring small cells in order to decrease
the overall DL and UL delay. Although the proposed scenario shows bene�ts
compared to the �xed scheduling scheme, by optimizing each cell separately,
the maximal potential of dynamic TDD cannot be achieved due to the fact
that the exact level of inter-channel interference cannot be calculated.

In [11] a cell recon�guration scheme, based on integer linear programming,
is proposed which considers both the user tra�c characteristics and the CCI
levels. A proposition of a long-term base station (BS) clustering scheme,
that groups BSs with the similar tra�c characteristics is given in [12]. A
central unit (CU) is introduced which would be in charge of managing the
whole network and selecting the candidates for the cluster. In order to avoid
the CCI between the BSs with similar tra�c pro�les the BSs are arranged to
the clusters depending on tra�c distance between them. The DL/UL recon-
�guration in the cells within one cell is done simultaneously. Even though
this approach mitigates the interference, by inducing clustering, the �exibil-
ity of DL/UL scheduling is reduced. The clustering distribution calculated
as optimal at one point of time, may not be the optimal solution at the next
frame as the tra�c is changed dynamically. This decreases the capability
of the system to follow dynamically changed tra�c rates. To oppose this
de�cit, the allocation of the cells to clusters should be done with a great fre-
quency. This would further increase computational e�ort needed to optimize
the system.

The important issue which has to be addressed when talking about dy-
namic TDD is power allocation. There is a possibility to allocate the powers
in centralized or decentralized manner. The probabilistic model for power
allocation, using the prior knowledge of channel state information (CSI) is
introduced in [13]. They considered the architecture of cloud radio access
networks (C-RANs). This optimization problem denotes solving a mixed-
integer non-linear non-convex problem.

Resource allocation scheme in Heterogeneous Cloud Radio Access Net-
works (HCRANs) is studied in [14]. The authors propose a green alloca-
tion scheme fowling online learning based centralized and decentralized ap-
proaches. In the centralized approach, a controller integrated with the base-
band processing unit is responsible for resource allocation, while in decen-
tralized macro base stations cooperate to reach a resource allocation strategy
which would be optimal for the given system. Based on the simulation re-
sults they argue that the centralized resource allocation scheme is able to
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achieve higher energy e�ciency as well as spectral e�ciency than decen-
tralized scheme. However, both schemes show better performance than the
standard resource allocation scheme. In di�erence to here described works,
in this thesis we will address the possibilities of solving the power allocation
problem applied in the scenario of dynamic TDD.



Chapter 3

Problem statement

3.1 General problem description

In attempt to increase sum-rate, we propose a system where each cell is
scheduled dynamically in downlink (DL) or uplink (UL) based on the tra�c
demand within the cell. Unfortunately, in the scenario where each cell can
freely adjust an individual DL/UL con�guration, an emerging problem of
CCI has to be considered. The main driver of high CCI, by dynamic TDD,
is the fact that the neighboring cells can be scheduled to transmit in opposite
directions, causing high interference levels. In Fig. 3.1 a scenario of two cell
CCI is shown. During the same sub-frame the reception quality of Base
Station b is decreased due to power leakage from the BSs which are in DL
mode at the same time (BS-BS CCI). On the other hand the UL from the
User equipment (UE) 3 would interfere with the DL from the BS a to the
UE 0 (UE-UE CCI). Here proposed CCI avoidance scheme will target BS-BS
as well as UE-UE CCI.

cell a cell b 

DL UL 

UE-UE interference 

BS-BS interference 

UE 0 
UE 3 

UE 1 

UE 2 
UE 4 

BS a BS b 

Figure 3.1: An example of CCI at two cell scenario.
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3.1.1 Centralized Dynamic TDD Scheme

In this paper we consider a multicell system composed of M cells. Each
cell contains one BS communicating with Km, m ∈ {1, · · ·M}, users. Fur-
ther we de�ne M as the set of cell indexes in the given system and K =
{K1,K2, · · · ,KM} as the set of user's indexes in each cell. We assume that
each user is served by exactly one BS. In centralized dynamic time division
duplex (dTDD) we consider that Mobility Management Entity (MME) is
provided, which schedules the transmissions. Each cell has to share the in-
formation about DL and UL queue lengths, L

(DL)
k,i , L

(UL)
k,i , meaning queue

lengths for the user i within the cell k, with MME. The goal is to maximize
the overall sum-rate. Because the bandwidth B is the same for all channels,
by maximizing spectral e�ciency the sum-rate reaches the maximal value as
well.

In order to de�ne spectral e�ciency, the following notation will be in-
troduced: P

(DL)
k,i is the DL transmit power of the user k, i, and P

(UL)
k,i is UL

allocated transmit power to the user k, i. Further, a notation for the channel
gain between i-th user and k-th base station, |Gk,i|, as well as σ2

k,i, represent-

ing the noise variance, are introduced. Finally the I
(DL)
k,i , I

(UL)
k,i are out of cell

interference power su�ered during the DL and UL mode respectively. The
signal to noise plus interference ratio (SINR) of the DL and UL for each user
is expressed by the equation

γ
(x)
k,i =

P
(x)
k,i |Gk,i|2

I
(x)
k,i + σ2

k

, (3.1)

where x ∈ {DL,UL}, k ∈M and i ∈ Km.

Further r
(x)
k,i represents weighted spectral e�ciency function of the user i

in the cell k,

r
(x)
k,i = w

(x)
k,i log2

(
1 + γ

(x)
k,i

)
, (3.2)

where the weight wk,i will be de�ned later based on the queue length. To
calculate the sum-rate of the whole system, it is to sum the weighted rates
of all the users in the cells, i.e.

R =
∑
k∈Ms

∑
i∈Kk

r
(x)
k,i , x ∈ {DL,UL}, (3.3)

whereMs is a subset ofM that contains the indexes of cells cooperating in
the interference avoidance scheme. In this case of overall centralized system,
where all the cells are included in one calculation scheme,Ms =M.
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In interest of de�ning the interference, let β be a vector of M elements
de�ning whether the the cell is transmitting DL or UL. Where each element
of the vector βk ∈ {0, 1}, 1 meaning the cell is transmitting DL and 0 UL.

Further the notation for channel gains is introduced:

• Q(m)
k,i : channel gain between the user i in cell k and the base station m

• C(m,j)
k,i : channel gain between the user i in cell k and the user j in cell

m

• H(m)
k : channel gain between the BS k and the base station m.

Now the DL interference power can be written in the form

I
(DL)
k,i =

∑
m∈M\k

βm
∑
j∈Km

P
(DL)
m,j |Q

(m)
k,i |

2 +
∑

m∈M\k

(1− βm)
∑
j∈Km

P
(UL)
m,j |C

(m,j)
k,i |

2.

(3.4)

cell a cell b 

cell c 

DL 

DL 

UL 

2 

1 

Figure 3.2: Interference for the cell transmitting in DL.

The �rst part of the equation (2.4) identi�es the interference coming from
the other cells also operating in DL, i.e. the BS-UE CCI as shown in the Fig.
3.2 (1). On the other hand the interference caused by UL transmissions in
remaining cells (UE-UE CCI) is described by the second part of the equation,
Fig. 3.2 (2). In a similar way the interference power su�ered by a cell
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transmitting in UL can be described as

I
(UL)
k,i =

∑
m∈M\k

(1− βm)
∑
j∈Km

P
(UL)
m,j |Q

(k)
m,j|2 +

∑
m∈M\k

βm
∑
j∈Km

P
(DL)
m,j |H

(m)
k |

2,

(3.5)
where the �rst sum represents the interference su�ered because of UL trans-
mission in other cells, Fig. 3.3 (1) and the second part of the equation marks
the CCI originating from the fact that some BSs in the system are transmit-
ting in DL (BS-BS CCI), Fig. 3.3 (2).

Nevertheless, in order to achieve the maximal weighted spectral e�ciency,
the optimal values of transmit powers, P

(DL)
(k,i) and P

(UL)
(k,i) , have to be calcu-

lated. Seeing that, the constrains regarding transmit power have to be in-
troduced. If P

(BS)
max is the maximal total DL transmit power of each BS and

P
(UE)
max maximal UL transmit power of each user, the following constrains have

to be satis�ed
0 ≤

∑
i∈Kk

P
(DL)
k,i ≤ P

(BS)
k,max , ∀k ∈M (3.6)

and
0 ≤ P

(UL)
k,i ≤ P (UE)

max , ∀k ∈M ∧ ∀i ∈ Km. (3.7)

Furthermore, the elements of the vector β, denoting whether during the
subframe, the cell transmits in downlink or in uplink, have to ful�ll the
following condition,

βk ∈ {0, 1} , ∀k ∈M. (3.8)

Now we focus on the objective of this thesis, maximizing the overall
weighted spectral e�ciency, i.e.

max
{β,P (DL),P (UL)}

R
(
β,P (DL),P (UL)

)
=

= max
{β,P (DL),P (UL)}

∑
k∈Ms

(
βk
∑
i∈Kk

w
(DL)
k,i log2

(
1 +

P
(DL)
k,i |Gk,i|2

I
(DL)
k,i + σ2

k,i

)

+ (1− βk)
∑
i∈Kk

w
(UL)
k,i log2

(
1 +

P
(UL)
k,i |Gk,i|2

I
(UL)
k,i + σ2

k,i

))
,

(3.9)

subject to 3.6, 3.7 and 3.8.

3.1.2 Decentralized Dynamic TDD Scheme

In this section we will consider the decentralized cell recon�guration
scheme, i.e. without a MME. That means that every cell independently
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cell a cell b 

cell c 

UL 

UL 

DL 2 

1 

Figure 3.3: Interference su�ered by a cell transmitting in UL.

calculates the maximal sum-rate and makes the recon�guration decision. In
the interest of avoiding signi�cant performance degradation, BSs share infor-
mation about the channel (transmit power and channel gain), between the
neighboring cells. Since the maximization of the weighted spectral e�ciency
in the centralized scenario requires solving 2M equations and, as it will be
shown later, decentralized only 2M , it is obvious that it leads to the decrease
in computation e�ort. However absence of central unit, which would contain
all the information about the system, in general causes decrease in achiev-
able e�ciency. The main cause of the decrease of the e�ciency when using
a decentralized scheduling is that even though the cell k communicate with
the neighboring cells it can not predict the behavior of the cells which are
outside of its surrounding cells.

This loss can be more precisely explained using an example system shown
in the Fig. 3.4. Because the most interference power is originating from the
transmissions of surrounding cells, at the time of making the DL/UL decision
each cell tries to predict the behavior of neighboring cells. For example the
cell 1 makes an prediction about the decision in the cell 7 based on the known
statistics of past transmissions. However due to the fact that the cell 7 takes
into account also the details of tra�c in the cells 8, 9 and 10, which are not
available to the cell 1 it is possible that the cell 7 makes di�erent decision
than the cell 1 has expected.
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cell 1 

cell 7 

cell 2 

cell 3 

cell 4 

cell 5 

cell 6 

cell 8 

cell 9 

cell 10 

Figure 3.4: An example of an cellular system.

3.1.2.1 Proposed scenario

Intending to decrease high computational e�ort required for maximization
of spectral e�ciency (3.9) we propose a new calculation scheme. The scheme
is proposed where a decision about transmitting in DL or UL, is made locally
in each cell. In order to optimize the system, cells try to predict whether
the transmission in DL or in UL will lead to higher spectral e�ciency. As
previously discussed, besides the a�nities of the users within the cell, the
achievable spectral e�ciency also depends on the inter-channel interference
caused by the transmission of the other cells. In this approach we will focus
just on the in�uence of the surrounding cells, since generally they are the
cause of the major part of the interference in each cell. Consequently, when
making the decision, besides the locally available data, cells exchange the
essential information with the surrounding cells.

We denote N as the number of cells neighboring one cell. Further, the
number of possible schedulings taken in one cell and its surroundings is equal
to 2N+1. In order to decrease computational e�ort, the cells consider achiev-
able spectral e�ciency in these scenarios, not directly taking into account
whatever the cells outside of of its neighboring are doing. We de�ne c as the
index of the scheduling set in a neighborhood. Accordingly, approximation
of the spectral e�ciency achievable in the case c for each cell k (R̂k,c, k ∈M
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and c ∈ [1, · · · , 2N+1]), is calculated. The calculation is done taking into
account the mean value of the spectral e�ciency in the cell during the past
transmissions with the same DL/UL scheduling. Cells share its preferences
of operating in DL/UL with the neighboring cells and based on that fact and
the level of spectral e�ciency which would be achieved in that case, each cell
makes the decision.

3.1.2.2 Power allocation

Once the optimal scheduling is determined, we calculate the transmit
powers which optimize the system. The calculation is again to be done in
decentralized manner. All the cells share the information about the channel
gains and the transmit powers with the neighboring cells. Firstly, the initial
values of the transmit powers are assumed. IfMk represents the subset ofM,
containing the indexes of the cells neighboring the cell k, each cell calculates
the level of inter-channel interference originating from the interference with
its surrounding cells.

When cell k is about to allocate the transmit powers assigned to the users
in the cell, the neighboring cells supply it with the necessary information
needed to calculate the interference, channel gains Qm

k,i, Q
k
m,j, C

m,j
k,i and Hm

k

as well as the transmit powers P
(DL)
m,j and P

(UL)
m,j , where m ∈ Mk, j ∈ Km.

If the cell is scheduled in DL the interference power su�ered by each of the
users communicating with the base station k, is calculated by,

Î
(DL)
k,i =

∑
m∈Mk

βm
∑
j∈Km

P
(DL)
m,j Q

(m)
k,i +

∑
m∈Mk

(1− βm)
∑
j∈Km

P
(UL)
m,j C

(k,i)
m,j , (3.10)

where i ∈ Kk. Further, in the case of the cell k transmitting in UL, the
interference originating from the surrounding cells is determined,

Î
(UL)
k,i =

∑
m∈Mk

(1− βm)
∑
j∈Km

P
(UL)
m,j Q

(m,i)
k +

∑
m∈Mk

βm
∑
j∈Km

P
(DL)
m,j H

(m)
k . (3.11)

So determined interference powers represent an approximation of the real
interference su�ered by the user in cell k since the interference originating
outside of the neighborhood Mk is not considered. Further, while keeping
all the other transmit powers constant, the transmit powers assigned to the
users in cell k are determined so they maximize the spectral e�ciency inside
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cell k and its neighborhood,

max
{Pk}

R̂ (Pk) = max
{Pk}

∑
m∈Mk,k

(
βm

∑
i∈Km

log2

(
1 +

P
(DL)
m,i Gm,i

I
(DL)
m,i + σ2

m,i

)

+ (1− βm)
∑
i∈Km

log2

(
1 +

P
(UL)
m,i Gm,i

I
(UL)
m,i + σ2

m,i

))
,

(3.12)

where Pk denotes the vector of DL or UL transmit powers assigned to the
users communicating with base station k. In addition the constrains con-
cerning the allocated power to each user have to satisfy the conditions (3.6),
(3.7) and (3.8).

In the same way the transmit powers assigned to the other cells in the
system are calculated. Once all transmit powers are calculated, they are
compared with the previously assumed values. If the di�erence between any
power level and the value, formerly assigned to the same user, is greater than
the small constant δ the process is iterated until the conditions de�ned as,

βk|P (DL)
k,i (n+ 1)− P (DL)

k,i (n)| < δ, ∀ k ∈M, i ∈ Kk (3.13)

and

(1− βk)|P (UL)
k,i (n+ 1)− P (UL)

k,i (n)| < δ, ∀ k ∈M, i ∈ Kk, (3.14)

are satis�ed.



Chapter 4

Optimization of the centralized

TDD

The problem of optimization the TDD, i.e. maximization of spectral
e�ciency, includes the allocation of transmit powers, as well as the DL/UL
scheduling. At the beginning, power allocation is determined, while the
optimal scheduling, β, is kept constant and optimized later.

We aim to solve the problem of maximization of the multivariable spectral
e�ciency function (3.9), considering power constrains, (3.6) and (3.7). This
can be e�ciently done using the method of Lagrange multipliers. For each
condition one Lagrange multiplier [15] has to be created, so λk, ξk,i and µk,i,
k ∈ M and i ∈ Km, will be de�ned. Furthermore the Lagrangian function
can be written written as

L
(
{P (DL)

k,i , P
(UL)
k,i , λk, ξk,i, µk,i}

)
= R

(
β,P (DL),P (UL)

)
+∑

k∈M

βkλk

(
P

(BS)
k,max −

∑
i∈Kk

P
(DL)
k,i

)
+
∑
k∈M

(1− βk)
∑
i∈Kk

ξk,i

(
P (UE)
max − P

(UL)
k,i

)
+∑

k∈M

βk
∑
i∈Kk

µk,iP
(DL)
k,i +

∑
k∈M

(1− βk)
∑
i∈Kk

µk,iP
(UL)
k,i .

(4.1)

Suppose that P
(DL)∗
k,i and P

(UL)∗
k,i are local solutions of (3.9). Than there

are Lagrange multipliers λ∗k, ξ
∗
k,i and µ

∗
k,i, such that the following conditions

are satis�ed at (P
(DL)∗
k,i , P

(UL)∗
k,i , λ∗k, ξ

∗
k,i, µ

∗
k,i)

∇
P

(DL)
k,i ,P

(UL)
k,i
L
(
{P (DL)∗

k,i , P
(UL)∗
k,i , λ∗k, ξ

∗
k,i, µ

∗
k,i}
)

= 0 (4.2)
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βkλ
∗
k

(
P

(BS)∗
k,max −

∑
i∈Kk

P
(DL)∗
k,i

)
= 0, ∀k ∈M (4.3)

(1− βk)ξ∗k,i

(
P (UE)∗
max − P (UL)∗

k,i

)
= 0, ∀k ∈M∧ ∀i ∈ Kk (4.4)

βkµ
∗
k,iP

(DL)∗
k,i = 0, ∀k ∈M∧ ∀i ∈ Kk (4.5)

(1− βk)µ∗k,iP
(UL)∗
k,i = 0, ∀k ∈M∧ ∀i ∈ Kk (4.6)

λ∗k ≥ 0, ∀k ∈M (4.7)

ξk,i∗ ≥ 0, ∀k ∈M∧ ∀i ∈ Kk (4.8)

µ∗k,i ≥ 0, ∀k ∈M∧ ∀i ∈ Kk. (4.9)

The conditions (4.2 �4.9) are known as the Karush�Kuhn�Tucker (KKT)
conditions [15]. Since 3.9 is not in general a convex function, this method
returns more solutions. More precisely all local maximum values, as well
as the local extremes laying on the interval bordering area are returned as
the solutions. Further it is to choose the solution which maximize the total
spectral e�ciency function (3.3).

Solving the previously described maximization problem (3.9) requires pro-
viding a solution for system of equations (4.2 �4.6) while taking intro account
the inequality constrains (4.7 �4.9). Furthermore, in order to describe the
system precisely the following notation is introduced: J is de�ned as a total
number of users in the system, d as a number of cells transmitting in DL
and p as number of users transmitting in UL. By derivations of Lagrange
function (4.1) J equations are obtained (4.2), further (4.3) provides d equa-
tions, (4.4) p and �nally (4.5) and (4.6) provide another J equations. On
the other hand solving the inequalities includes d inequalities 4.7, p from 4.8
and J inequalities 4.9. Therefore, the whole system consists in total out of
2J + d+ p equations and d+ p+ J inequalities.

Furthermore, for solving the system of equations, MATLAB Symbolic
Math Toolbox is used to create and solve equations with symbolic variables.
While numerical solution returns approximated solution, here applied sym-
bolic calculation gives the exact solution. Further it returns all the possible
solutions of the system of equations and in the case of in�nitive number
of solutions, parameterized solutions and their conditions are speci�ed. In
addition when system of equalities is solved, the solutions are checked, if
inequities constrains (4.7 �4.9) are satis�ed. The solutions which correspond
to all the previously de�ned constrains are than compered by evaluating the
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function of overall spectral e�ciency (3.3). Lastly, the solutions for the trans-
mit powers which provide the highest value of the function, are selected as
the optimal solution of the power allocation.

Besides the power allocation, we have to determine the optimal schedul-
ing. In order to calculate it, a search over all possible DL/UL schedulings is
done and the results are compared so that the one is found which leads to the
highest spectral e�ciency (3.3). Therefore, calculation over 2M schedulings
has to be done, where M is the total number of cells in the system.
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Chapter 5

Optimization of the decentralized

TDD

The centralized optimization scheme, discussed in the previous section
requires high computational cost. In order to solve this problem, here we
present a decentralized approach, which is supposed to decrease computa-
tional cost, but at the expense of drop of the total spectral e�ciency.

In di�erence to the centralized scheduling, in decentralized optimization
problem, each cell makes the DL/UL decision on its own, based on the locally
available data and limited information exchange with the surrounding cells.
Each cell k contains the pre-available information of the average spectral
e�ciency for a cell in each of the 2N+1 schedulings, R̂k,c, N being the number
of cells bordering one and where c denotes the speci�c scheduling.

Furthermore, during the decision making process each cell considers the
time interval of one sub-frame and de�nes a timing marker tk, k being index
of the cell. This marker divides the transmission time into the interval when
the cell would operate in DL and UL. The timing marker is normalized to
the time of the one transmission interval, and takes values between 0 and 1.
In this manner, the time markers represent a desire of a cell to transmit in
DL or UL. Time of one sub-frame is divided so that:

• 0 ≤ t ≤ tk cell k transmits in DL

• tk < t ≤ 1 cell k transmits in UL

It is obvious that tk = 0 indicates that during the whole period the cell is
operating in UL and tk = 1 in DL. The marker in each cell is moved iteratively
until one of the extremes is reached, and so one scheduling is chosen for the
whole period.

21
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To summarize, the timing markers, dividing the transmission interval
which are moved during the process of DL/UL allocation, are introduced,
but on the end of the process the scheduling is made in the manner that
every cell transmit in DL or UL during the whole sub-frame. The algorithm
responsible for moving the makers is explained in the following section.

At the beginning each cell randomly selects the position of its timing
marker by uniformly choosing the values tk ∈ (0, 1), k ∈M. Secondly, after
the initialization phase, the gradient descent algorithm is applied in order to
iteratively select optimal DL/UL choice. We assume that there is a token
which circles between the cells presented in the system. Having a token
denotes the right of the cell to calculate and set transmit powers to the users
within the cell.

One cell at the time has a token to change the position of its timing marker
with a desire to achieve higher spectral e�ciency. To do so we propose
three methods. Later we will compare three of them, by simulating their
performance.

5.1 Approach 1

When cell k has a token, it receives the information about position of the
timing markers of the surrounding cells. Knowing that for the t < tk the cell
k schedules DL and t > tk UL, it tends to determine the DL/UL scheduling
in the surrounding cells on the left and on the right side of the its marker,
tk. When tk,a, a ∈ [1, · · · , N ], denotes the values of the time markers of the
cells neighboring cell k, cell a, bordering k operates in:

if tk,a < tk, UL left and right from tk, (5.1a)

if tk,a = tk, DL left and in UL right from tk, (5.1b)

and

if tk,a > tk, DL left and right from tk. (5.1c)

Furthermore, the spectral e�ciency levels left (Rl,k) and right from tk (Rr,k)
are de�ned so that Rl,k = Rk,c, c corresponding to the scheduling left from
the time marker tk, and Rr,k taking average value of the scheduling right from
the marker. Therefore if the marker tk is decreased, the interval assigned for
the scheduling corresponding to Rr,k is enlarged.

Finally when Rl,k and Rr,k are determined, the step by which the time
marker tk moves is expressed as

∆t = ε∆R, (5.2)
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where
∆R = Rr,k −Rl,k, (5.3)

and the step size factor ε is de�ned,

ε =

∣∣∣∣ (t(n)− t(n− 1))

∆R(n)−∆R(n− 1)

∣∣∣∣ , (5.4)

n meaning the iteration number. Finally, the position of the timing marker
after the movement is calculated by

t(n+ 1) = t(n)− ε∆R. (5.5)

As the starting value of factor ε, ε = 0.01 is taken. In this manner after one
cell changes the position of its timing marker, the other cells also move their
markers to adopt to the new scheduling layout. The calculation is done for
each cell iteratively until all markers take either value 0 or 1.

The proposed algorithm is shown in Alg. 1.

cell 1 

cell 2 

cell 3 

cell 4 

t1 

t2 

t3 

t4 

Rl Rr 

t=0 t=1 

UL 

UL 

UL 

UL DL 

DL 

DL 

DL 

Figure 5.1: Visual representation of gradient descent in decentralized TDD.

The proposed algorithm is summarized on the model used for the simu-
lations. Fig. 5.1 shows the case when cell 1 has a token to make a move. It
owns the information about the times chosen by the surrounding cells (cells:
2,3 and 4) and the average spectral e�ciency achieved by all of the 16 com-
binations. The cell considers the spectral e�ciency on the left and on the
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Algorithm 1 Decentralized scheduling: Fist approach
Require: M > 0 . M is a number of cells
Require: K > 0 . K is a number of users per cell
Require: R ← RM×K . Matrix to hold the values of the average of the

previous spectral e�ciency

1: neighborhood . Matrix to hold the indexes of the neighbours of the

each cell

2: main

3: t(1,M)← [0, · · · , 1]1×M . vector to hold the values of the time markers
4: do

5: for k = 1 : M do

6: schLeft, schRight ← SchedulingRegardingTo-
ken(t, k, [m,neighborhood(k, :)])

7: Rleft, Rright ← values of R(k, :) corresp. schLeft, schRight

8: ∆R(k) ← Rright −Rleft

9: if ∆Rprevious(k) == 0 ∨ ∆R(k)−∆Rprevious(k) == 0 then

10: ε ← 0.01
11: else

12: ε ←
∣∣∣∣ t(k)− tprevious(k)
∆R(k)−∆Rprevious(k)

∣∣∣∣
13: ∆Rprevious(k) ← ∆R(k)
14: end if

15: t(k) ← t(k)− ε∆R(k)
16: tprevious(k) ← t(k)
17: end for

18: while all elements of t 6= 0 ∨ 1 . t(k) = 0 means the cell k in UL,
t(k) = 1 the cell k in DL
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Algorithm 2 Function to determine the scheduling in a neighbourhood left
and right of the timing marker belonging to the cell with the token

1: function SchedulingRegardingToken(t, k, surrounding) .
Function to determine the scheduling in the cells listed in surrounding,
left and right of the time marker belonging to the cell k

2: for m ∈ surrounding do
3: if t(m) < t(k) then
4: schedulingLeft(m) ← UL
5: schedulingRight(m) ← UL
6: else if t(m) == t(k) then
7: schedulingLeft(m) ← DL
8: schedulingRight(m) ← UL
9: else if t(m) > t(k) then

10: schedulingLeft(m) ← DL
11: schedulingRight(m) ← DL
12: end if

13: end for

14: return schedulingLeft, schedulingRight
15: end function

right side of the marker (Rl,k, respectively Rr,k). In this scenario Rl,k cor-
responds to the average level of spectral e�ciency achieved by cell 1 in the
case when the cells are transmitting in the following mode: cell 1: DL, cell
2: DL, cell 3: UL, cell 4: DL, and Rr,k: cell 1: UL, cell 2: DL, cell 3: UL,
cell 4: UL. Further marker tk is moved by ∆R and the token is given to each
cell c2, · · · , c10, one after the other. This procedure is than repeated until all
the markers reach the value 0 or 1. In the simulation model the values of
spectral e�ciency, Rk,c, are assigned uniformly so that Rk,c ∈ [0, 10], k ∈M
and c ∈ [0, · · · , 2N+1].

The results of the decentralized scheme will be compared with the solution
which would be optimal for the given values of average spectral e�ciency.
By optimal solution, here is meant the solution which maximizes the sum of
average spectral e�ciency for all the cell in the system. When selecting the
Rk,c it is to notice that each index c of the scheduling in the neighborhood,
besides the scheduling of the cell k implies the speci�c scheduling of the other
cells in the neighborhood. When maximizing the sum of average spectral
e�ciency in all the cells, attention has to be paid that the scheduling in each
cell is consistent with the scheduling of other cells,

R̂optimal = max
c=[1,··· ,2N+1]

∑
k∈M

Rk,c. (5.6)
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5.2 Modi�ed decentralized approach

In the previous section, when discussing approach 1 the disadvantage of
the sel�sh behavior of the cells is shown. More precisely, one of the reasons of
e�ciency decline is that every cell moves the timing marker entirely based on
the in�uence it will have on its own spectral e�ciency, and not considering
whether it has positive impact on the whole system.

Aiming to improve the decentralized scheme, we propose a new approach
which includes tighter collaboration between the cells. More speci�cally, a
new algorithm for calculating spectral e�ciency on the left Rl,k and on the
right side Rr,k of the cell's timing marker, what directly in�uence ∆R (5.3)
is introduced.

Further two approaches of achieving improvements in decentralized TDD
will be discussion, and the results will be compared.

5.2.1 Approach 2

When cell k has the token to make a move of its timing marker tk, �rstly
it calculates the spectral e�ciency achieved in the cell by determining the
scheduling on the right Rr,k and on the left Rl,k side of tk of the neighboring
cells as described in (5.1). Secondly every cell a, bordering cell k, determines
the scheduling of its neighbors left an right from tk. As explained before,
cell k operates in DL left and in UL right from its own time marker tk. The
scheduling in the other cells, surrounding cell a is done in the same manner.

Finally, as all the cells in the neighborhood have calculated their own
spectral e�ciency left Rl,a and right Rr,a from tk, cell k computes the total
spectral e�ciency in the neighborhood,

Rl,total = Rl,k +
∑

a∈[1,··· ,N ]

Rl,a, and (5.7a)

Rr,total = Rr,k +
∑

a∈[1,··· ,N ]

Rr,a, (5.7b)

whereN denotes the number of cells bordering one cell. Further the di�erence
between the spectral e�ciencies is calculated,

∆Rtotal = Rr,total −Rl,total, (5.8)

the step size factor, ε is determined by equation (5.4), the size of the step, ∆t
by (5.2) and �nally the position of the timing marker after the re-positioning
process by (5.5). The process is repeated until all the time markers reach
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the value 0 (meaning the cell transmitting in UL) or 1(the cell transmitting
in UL).

Here proposed algorithm for optimizing the DL/UL scheduling is shown
in Alg. 3.

Algorithm 3 Decentralized scheduling: Second approach
Require: M > 0 . M is a number of cells
Require: K > 0 . K is a number of users per cell
Require: R ← RM×K . Matrix to hold the values of the average of the

previous spectral e�ciency

1: neighborhood . Matrix to hold the indexes of the neighbors of the

each cell

2: main

3: t(1,M)← [0, · · · , 1]1×M . vector to hold the values of the time markers
4: ∆Rprevious = 01×M

5: do

6: for k = 1 : M do

7: Rleft, Rright ← LeftRightSpecEff(t, R, neighborhood)
8: ∆R(k) ← Rright −Rleft

9: if ∆Rprevious(k) == 0 ∨ ∆R(k)−∆Rprevious(k) == 0 then

10: ε ← 0.01
11: else

12: ε ←
∣∣∣∣ t(k)− tprevious(k)
∆R(k)−∆Rprevious(k)

∣∣∣∣
13: ∆Rprevious(k) ← ∆R(k)
14: end if

15: t(k) ← t(k)− ε∆R(k)
16: tprevious(k) ← t(k)
17: end for

18: while all elements of t 6= 0 ∨ 1 . t(k) = 0 means the cell k in UL,
t(k) = 1 the cell k in DL

5.2.2 Approach 3

In the proposed decentralized TDD optimization schemes, one neighbor-
hood is composed of N+1 cells, where N is the number of neighbors per cell.
Each cell is considering 2N+1 schedulings, possible to occur in the neighbor-
hood. Further when the time markers are deployed up to N + 2 schedulings
are visible on the interval t ∈ [0, 1]. Despite all of this, at each iteration,
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Algorithm 4 Function to calculate sum of spectral e�ciency in a neigh-
borhood left and right of the timing marker belonging to the cell with the
token
1: function LeftRightSpecEff(t, R, neighborhood)
2: for m ∈ neighborhood(k, :) do
3: schleft, schright ← SchedulingRegardingTo-
ken(t, k, [m,neighborhood(m, :)])

4: Rleft,temp, Rright,temp ← values of R corresp. schLeft, schRight

5: Rleft ← Rleft +Rleft,temp

6: Rright ← Rright +Rleft,temp

7: end for

8: return Rleft, Rright

9: end function

when cell k is about to make a move it has in sight just two schedulings,
right and left from timing marker tk.

We propose an optimizing scheme which enables a decision making cell
to consider all the schedulings within its neighborhood on the interval zero
to one. When cell k has a token, �rstly it calculates the spectral e�ciency
experienced inside the cell by summing all the spectral e�ciency levels left,
forming Rl,k,wholeInteval, and right,Rr,k,wholeInteval, from tk scaled by time each
scheduling is presented in the interval. Secondly, all cells a, bordering the
cell k, calculate in the same manner its spectral e�ciency left Rl,a,wholeInteval

and right Rr,a,wholeInteval from tk. Finally the calculated values are summed
up forming the levels by which the decision of moving the marker left or right
will be made,

Rl,wholeInterval = Rl,k,wholeInteval +
∑

a∈[1,··· ,N ]

Rl,a,wholeInteval, and (5.9a)

Rr,wholeInterval = Rr,k,wholeInteval +
∑

a∈[1,··· ,N ]

Rr,a,wholeInteval. (5.9b)

Further the timing marker is moved following (5.2 - 5.5).
We expect to achieve an improvement in optimization quality with respect

to the previously described approaches, due to the fact that more schedulings
will be considered in each iteration. The fact is that when cell k makes a
decision to move the timing marker left/right it is not just giving a greater
time interval to the scheduling directly right/left of the marker but also gives
bigger chances to all the other intervals right/left from tk to be increased
when the remaining cells move their markers. Consequentially, not only
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direct advantage of moving the marker is considered, but also the potential
bene�t which depends on the actions on other cells.

The algorithm of the approach 3 is to see in Alg. 5.

Algorithm 5 Decentralized scheduling: Third approach
Require: M > 0 . M is a number of cells
Require: K > 0 . K is a number of users per cell
Require: R ← RM×K . Matrix to hold the values of the average of the

previous spectral e�ciency

1: neighborhood . Matrix to hold the indexes of the neighbours of the

each cell

2: main

3: t(1,M)← [0, · · · , 1]1×M . vector to hold the values of the time markers
4: do

5: for k = 1 : M do

6: Rleft, Rright ← TotaScaledSpecEff(t, R, neighborhood)
7: ∆R(k) ← Rright −Rleft

8: if ∆Rprevious(k) == 0 ∨ ∆R(k)−∆Rprevious(k) == 0 then

9: ε ← 0.01
10: else

11: ε ←
∣∣∣∣ t(k)− tprevious(k)
∆R(k)−∆Rprevious(k)

∣∣∣∣
12: ∆Rprevious(k) ← ∆R(k)
13: end if

14: t(k) ← t(k)− ε∆R(k)
15: tprevious(k) ← t(k)
16: end for

17: while all elements of t 6= 0 ∨ 1 . t(k) = 0 means the cell k in UL,
t(k) = 1 the cell k in DL

5.2.3 Power allocation

Once the optimal scheduling is calculated, the transmit powers are al-
located in a distributed manner. In order to optimize the power allocation,
each cell separately decides about the powers assigned to the users in the cell.
While doing so, the base station k communicates just with the neighboring
base stations by exchanging the information about the channel gains Q

(m)
k,i ,

Q
(k)
m,i, C

m,j
(k,i) and H

(m)
k as well as the transmit powers P

(DL)
m,j and P

(UL)
m,j , where

m ∈Mk, j ∈ Km.
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Algorithm 6 Function to calculate total scaled spectral e�ciency in a neigh-
bourhood left and right of the timing marker belonging to the cell with the
token
1: function TotaScaledSpecEff(t, R, neighborhood)
2: for m ∈ neighborhood(k, :) do
3: Rleft,temp, Rright,temp ← SpecEffPer-
Cell(t, k, [m,neighborhood(m, :)])

4: Rleft ← Rleft +Rleft,temp

5: Rright ← Rright +Rleft,temp

6: end for

7: return Rleft, Rright

8: end function

Algorithm 7 Function to calculate total scaled spectral e�ciency per cell
left and right of the timing marker belonging to the cell with the token

1: function SpecEffPerCell(t, k, surrounding) . Function
to calculate the spectral e�ciency on the whole period left and right of
the time marker belonging to the cell with the token. Spectral e�ciency
is further scaled to the time interval the scheduling occurs.

2: tsurrounding← elements of t belonging to surrounding, sorted ascending
3: sortedsurr ← elements of surrounding sorted to corresp. tsurrounding
4: Rtemp ← 0
5: for m ∈ sortedsurr do
6: schleft, schright ← SchedulingRegardingTo-
ken(t,m, [m,neighborhood(m, :)])

7: Rtemp← value of Rtemp + R(k, :) corresp. schleft scaled by interval
of appearance

8: if t(m) == t(k) then
9: Rleft ← Rtemp

10: Rtemp ← 0
11: end if

12: end for

13: Rright ← Rtemp

14: return Rleft, Rright

15: end function
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Each cell k, when allocating the power levels to its users, aims to max-
imize the spectral e�ciency within the cell k and the cells surrounding it.
Consequentially the powers P

(DL)
k,i , P

(UL)
k,i , k ∈ M, i ∈ Kk are allocated so

that the spectral e�ciency is maximized (3.12). Further the variables have
to satisfy conditions (3.6) and (3.7), while keeping the power levels assigned
to the users outside of the cell k constant.

The presented optimization problem is solved using the method of La-
grange multipliers. Similarly to what we considered in Chapter 4 the La-
grange function is de�ned as

L̂ ({Pk, λk, ξk,i, µk,i}) = R̂ (Pk) +
∑

m∈Mk,k

βmλm

(
P (BS)
m,max −

∑
i∈Km

P
(DL)
m,i

)
+

∑
m∈Mk,k

(1− βm)
∑
i∈Km

ξm,i

(
P (UE)
max − P

(UL)
m,i

)
+

∑
m∈Mk,k

βm
∑
i∈Km

µm,iP
(DL)
m,i

+
∑

m∈Mk,k

(1− βm)
∑
i∈Km

µm,iP
(UL)
m,i ,

(5.10)

where R̂ (Pk) is the approximation in decentralized manner of the total spec-
tral e�ciency (3.12) and λk, ξk,i, µk,i are the Lagrange multipliers.

If we suppose that P
(DL)∗
k,i and P

(UL)∗
k,i are local solutions of (5.10) and the

corresponding Lagrange multipliers, λ∗k, ξ
∗
k,i and µ

∗
k,i, such that the conditions

(4.3 �4.9) are satis�ed at (P
(DL)∗
k,i , P

(UL)∗
k,i , λ∗k, ξ

∗
k,i, µ

∗
k,i) and

∇
P

(DL)
k,i ,P

(UL)
k,i
L̂
(
{P ∗k , λ∗k, ξ∗k,i, µ∗k,i}

)
= 0 (5.11)

is ful�lled. For solving the system of equations MATLAB Symbolic Math
Toolbox is used to solve equations with symbolic variables, which return
more solution sets. Further the sets of solutions are checked: if the Lagrange
multipliers do not satisfy inequities constrains (4.7 �4.9), the solution set is
ruled out. As the function of spectral e�ciency in a neighbourhood (3.12) is
not generally convex, by solving the Lagrange function (5.10) multiple local
maxima are returned. Lastly, the spectral e�ciency (3.12) is calculated, and
the set of solutions which maximizes it is found.

Firstly we assume that all the users are allocated with the transmit power
zero. Secondly the transmit powers are allocated using the method of La-
grange multipliers as described above. Because in the �st step was assumed
that transmit powers are equal zero, interference calculated during power al-
location in the second step are signi�cantly lower than the interference when



32 CHAPTER 5. OPTIMIZATION OF THE DECENTRALIZED TDD

the transmit powers take real values. In order to avoid the uncontrolled
increase of interference, the transmit powers are increased gradually.

We de�ne Pk,i,Lagrange(n) as the transmit powers calculated as optimal
at each iteration cycle n by the method of Lagrange multipliers. Than the
powers assigned to the users are calculated,

Pk,i(n+ 1) = Pk,i(n) + min(nΓ, 1)(Pk,i,Lagrange(n+ 1)− Pk,i(n)), (5.12)

where Γ is a constant which dictates the speed by which the transmit powers
are changing the values,

Γ > 0. (5.13)

In this manner, the transmit powers are changing gradually leaving the
space for all base stations to adapt to the new interference levels.

Further, the new power levels are compared with the previous if the con-
ditions (3.13) and (3.14) are satis�ed. If the constrains are not ful�lled the
process of power allocation is iteratively continued until the requirements are
met.

Algorithm 8 Decentralized method of power alocation
Require: M > 0 . M is a number of cells
Require: K > 0 . K is a number of users per cell
Require: Γ > 0

1: Pk,i ← 0 . k ∈M, i ∈ Kk

2: do

3: for k ∈M do

4: Pk,i,Lagrange(n+ 1) ← optimal solutions of 5.10
5: Pk,i(n+ 1) = Pk,i(n) + min(nΓ, 1) (Pk,i,Lagrange(n+ 1)− Pk,i(n))
6: end for

7: ∆Pmax ← 0
8: for k ∈M do

9: for i ∈ Kk do

10: ∆Pk,i ← Pk,i(n+ 1)− Pk,i(n)
11: if ∆Pk,i > ∆Pmax then

12: ∆Pmax ← ∆Pk,i

13: end if

14: end for

15: end for

16: while ∆Pmax > δ



Chapter 6

Centralized vs. Decentralized

While aiming to maximize total spectral e�ciency of a cellular system
in the case when dynamic TDD is applied, multiple obstacles have to be
considered. First of all, emerging problem of inter-channel interference has
to be solved. Further, allocation of optimal transmit powers is to be con-
sidered. In order to �nd a solution for these questions, we have proposed
two optimization methods, �rst centralized and than decentralized method.
Both approaches are explained in details in Chapter 4 and 5.

We have stated earlier that the centralized solution requires higher com-
putational e�ort. However, due to the fact that it has an insight in the
whole system, an optimal solution is found. Therefore, we assume that the
decentralized scheduling achieves lower total spectral e�ciency.

In order to determine which method is better to use and in which condi-
tions, we will analyze both approaches and compare them. The considered
criteria of comparison are the computation e�ort needed to optimize the sys-
tem and the performance of each method. While the �rst criterion will be
determined theoretically based on the algorithms presented in previous chap-
ters, performance will be compared after running simulations in MATLAB
and obtaining results of both approaches.

We will investigate complexity of the algorithms as a function of the input
size. In this way, the computational cost which does not depend neither on
the hardware nor on the software used to run the optimization process, will
be obtained. In the end, we will get a function of computational cost over
the size of the input. The input size in this case is the number of cells and
users within the cells.

To calculate computational e�ort we will examine the number of mathe-
matical operations and their complexity. At �rst we will concentrate on the
centralized approach.

In the centralized approach the Lagrange function L is computed. It

33
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consists of between 2MK +M and 3MK variables:

• MK variables representing the transmission powers, Pk,i.

• MK Lagrange multipliers, µk,i.

• maximal M multipliers λk depending on the number of cells transmit-
ting in DL.

• maximal 3MK multipliers ξk,i.

Now, in order to maximize the Lagrange function �rst, the derivatives of the
function over the transmit powers are calculated. Secondly, conditions (4.4)-
(4.9) have to be satis�ed. This leads to the system of equations that includes:

• MK equations deriving from setting the derivatives of Lagrange func-
tion to zero (4.2).

• MK equations deriving from the Lagrange multipliers conditions (4.5)
and (4.6).

• a maximum of M equations deriving from the condition limiting the
maximal power allocated to each BS operating in DL (4.3). The exact
number of equations is equal to the number of cells transmitting in DL.

• �nally, a maximum 3MK equalities determined by constrain (4.4).

Because in general this system provides multiple solutions, additional in-
equalities have to be solved:

• MK inequalities by constraint (4.9).

• between M and MK inequalities determined by (4.8) and (4.7).

When determining computational complexity we are interested in the worst
case scenario. This implies analysing the scenario where the optimization
algorithm is the most complex. Which occurs when all cells operate in UL,
leading to a system of 5MK equations.

The complexity of solving the system of n equation is O(n3). Because we
are solving the system of 5MK equations, we can state that the complex-
ity of allocating the powers in centralized manner is O((5MK)3). Further,
�nding a scheduling which maximizes spectral e�ciency, requires checking
all possible scheduling scenarios. Therefore, the above described process has
to be repeated 2M times. Finally, we can state that the total computational
cost as a function of input size is O(2M(5MK)3).
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On the other hand, about the decentralized method, �rst we have to
analyse scheduling optimization. Each cell determines its scheduling by per-
forming �xed number of basic arithmetic operations. Because the complexity
increases linearly when input is increasing we have O(M). Secondly power
allocation is done similarly to the centralized method but on local level.
Correspondingly, complexity of the method is lower. Analyzing the applied
algorithm as we have done for the centralized approach, we determine that
computation cost of one iteration cycle, calculating powers for all users once,
is O(M(5K)3). Due to the fact that powers are allocated gradually, com-
plexity of the whole process is O(nM(5K)3), where n is a constant denoting
number of iteration cycles. Consequently, the complexity of the decentral-
ized TDD is O(M) +O(nM(5K)3). Further, n is a constant and it does not
depend on the input and term O(M) becomes negligible as the size of the
model increases. Therefore, total computational cost of the centralized TDD
can be approximate as O(M(5K)3).

We may now summarize the results of this chapter. The computational
complexity of the analyzed methods, as a function of size of the used cellular
model, is:

• Centralized TDD: O(2M(5MK)3).

• Decentralized TDD: O(M(5K)3).

It is obvious that optimizing TDD in a centralized manner requires higher
computational e�ort. The di�erence becomes especially signi�cant as the
size of the cellular system grows. In order to have a wider representation of
advantages of both approaches, in next chapter we will analyze and compare
the performance of each method by performing MATLAB simulations.
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Chapter 7

Results

7.1 Centralized TDD

In this section the results of optimal power allocations and DL/UL schedul-
ing, applied on speci�c scenarios will be demonstrated and discussed. The
presented calculation model is suitable for scenarios where users are at the
minimum distance of 50 m from a BS, where the path loss model works.

The model is generated assuming that the BSs are placed 1000 m away
from each other. The users are positioned in the area between 50 and 500 m
away from the BS, they are communicating with. We introduce the following
notation:

• dk,i: distance between user i and its own base station k

• qmk,i: distance between user i, serviced by cell k, and the BS m

• cm,j
k,i : distance between user i in cell k and user j in cell m

• hmk : distance between BS k and BS m.

Furthermore, the channel gains are de�ned as:

• Dk,i =

(
500m

dk,i

)2

• Qm
k,i =

(
500m

qmk,i

)2

• Cm,j
k,i =

(
500m

cm,j
k,i

)2
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• Hm
k =

(
500m

hmk

)2

.

The transmit powers P
(DL)
k,i and P

(UL)
k,i are normalized to the value of

noise variance, σk,i = 1. The maximal DL transmit power per BS is set as

P
(BS)
k,max = 10Kk, where Kk denotes the number of users communicating with

base station k. On the other side, the maximal UL transmit power per UE
is Pmax = 10.
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Figure 7.1: Spectral e�ciency when weights denoting the queue length are
changing during the time.

The �rst simulation is done in order to test the behavior of the system
when the values of weighs, denoting the rate between the queue length in
DL and in UL, are changing during the time. If L

(DL)
k,i are downlink queue

lengths for the user i within the cell k and L
(UL)
k,i uplink, the weights are

calculated as,

w
(DL)
k,i =

L
(DL)
k,i

L
(DL)
k,i + L

(UL)
k,i

, (7.1a)

w
(UL)
k,i =

L
(UL)
k,i

L
(DL)
k,i + L

(UL)
k,i

. (7.1b)
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We consider the system of two cells, with one user each. The users are
positioned 200 m away from the own base stations. Furthermore, a simulation
is set so that the downlink weight of the user in the cell one is changing the
value from zero to one while the user in the cell two has the constant weight
of 0.5 in DL and UL. The level of spectral e�ciency over the w

(DL)
1,1 is shown

in the Fig. 7.1. Because the queue lengths in the cell two are the same for
DL and UL, the scheduling of the cell two does not play a signi�cant role.
We notice that when w(DL) = 0, i.e. the downlink queue has the length
zero, the scheduling BS1 : UL; BS2 : UL and BS1 : UL; BS2 : DL achieve
the highest total spectral e�ciency. Further, due to the lower level of inter-
channel interference if the cell are not scheduled to the same mode, slightly
higher spectral e�ciency is achieved in the case BS1 : UL; BS2 : UL than
BS1 : UL; BS2 : DL, and respectively for the case when both cells are
scheduled in DL. The di�erence in spectral e�ciency is small because the
system consists just of two users, positioned on the great distance from each
other, 600 m and as a consequence the inter-channel interference has a low
in�uence on the overall spectral e�ciency.

Further, by the rest of the simulation cases the DL/UL weights are set to

the value w
(DL)
k,i = 0.5 and w

(UL)
k,i = 0.5, denoting the equal values of queue

lengths in downlink and in uplink. The cases where the users are changing
the positions inside the cell are simulated. The simulations are done so the
assignment of the users to the base stations is �xed, i.e. the users do not
change the BSs during the simulation.

cell 1 cell 2 

UE 2 BS 1 BS 2 
UE 1 UE 1 

1000 m 

500 m 

50 m 100 m 

Starting 
position End position 

Figure 7.2: System representation for the centralized TDD: one user moves
towards another cell.

The �rst considered scenario includes two cells, where each cell has one
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Figure 7.3: Spectral e�ciency for the centralized TDD: one user moves to-
wards another cell.

user (see Fig. 7.2). Fig. 7.3 shows the total spectral e�ciency for the
optimized system as a function of the distance between BS1 and UE1, where
c1 denotes the cell 1. The user in cell 1 is moving from the distance of 50 m
to the distance of 500 m regarding its own base station. On the other side
the user in the cell 2 is �xed at 100 m away from BS2. At the beginning as
the distance between the users is large, almost the same spectral e�ciency
level is achieved with all DL/UL scheduling possibilities. The reason for
that is the low level of inter-channel interference due to the distance between
the users. On the other side by shifting the user 1 towards the cell 2 the
interference increases, and the decline of BS1-UE1 channel gain leads to the
decline of spectral e�ciency. It is noticeable that the scheduling c1 : UL, c2 :
DL achieves the lowest spectral e�ciency rate. The reason for this behavior
is the shortest distance between the transmitter (UE1) and receiver (UE2).
By reaching the distance of 500 m between BS1 and UE1, due to the high
interference, the power allocated to UE1 is brought down to 0. Further it
means that inter-channel inference is lowered to 0 and all scheduling schemes
reach the same level of spectral e�ciency.
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UE 2 BS 1 BS 2 
UE 1 UE 1 
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Starting 
position End position 

Figure 7.4: System representation for the centralized TDD: one user moves
away from the other cell.
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Figure 7.5: Spectral e�ciency for the centralized TDD: one user moves away
from the other cell.

The second considered case is the scenario of two cells with one user in
each, where the user in cell a is moving away from BS1. The user moves from
distance 50 to 500 m away from BS1, while the user in cell 2 is �xed 100 m
away from BS2 (see Fig. 7.4).

Observing the results of the described scenario ( see Fig. 7.5) we notice
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that, as expected, when UE1 moves away, the spectral e�ciency drops be-
cause of the smaller channel gain between BS1 and UE1. In di�erence to the
previous scenario, now as the the users are getting away from each other,
interference is not increasing and the maximum power is allocated for both
users during the whole interval. It is noticeable that by choosing the allo-
cation c1: DL, c2: UL the smallest spectral e�ciency is achieved and the
scheduling c1: UL, c2: UL leads to the optimization of the system. Indeed,
the �rst case corresponds to having the receiver and the transmitter at the
smallest distance from each other. On the other hand, by the scheduling c1:
UL and c2: UL, the only inter-channel interference is occurring between UE1

and UE2, which are at the great distance from each other. In particular,
when d = 500 m, they are 1600 m away from each other.

cell 1 cell 2 

UE 3 BS 1 BS 2 
UE 1 UE 1 

1000 m 

500 m 

200 m 

Starting 
position End position 

UE 2 

500 m 

200 m 

Figure 7.6: System representation for the centralized TDD: two users in cell
1, one UE moves towards BS2.

The last considered scenario includes two cells where one cell has two
users and the other one one user (see Fig. 7.6). While UE2 and UE3 are
�xed at 200 m from their own base stations, UE1 moves from 500 m on the
opposite side of BS2 to 500 m towards BS2, regarding the BS1. It should be
noted again that the model is not suitable to calculate the spectral e�ciency
on the interval 50 m around the BS.

Notice that scheduling c1: DL, c2: DL gives the highest spectral e�ciency
as UE1 is on the opposite side of BS1 (see Fig. 7.7). As UE1 comes closer to
BS2 scheduling c1: UL, c2: UL maximizes the function up to around 350 m
when power allocated to user in cell 2 reaches maximum again, interference
increases and scheduling c1: DL, c2: DL takes again the lead in optimizing
the system.
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Figure 7.7: Spectral e�ciency for the centralized TDD: two users in cell 1,
one UE moves towards BS2.

In Fig. 7.8 we see power allocation for the four schedulings. When BS1
is transmitting in UL (schedulings c1: UL, c2: UL and c1: UL, c2: DL)
for UE1 and UE2 is allocated the maximum power except when UE1 comes
close to BS2 which is transmitting in DL (c1: UL, c2: DL). In that scenario
power allocated to UE1 is lowered because it causes strong interference with
receiving signal at user in BS2. Furthermore, when both cells are in UL (c1:
UL, c2: DL), the power allocated to the user in cell 2 is lower as the UE1 is
closer than 200 m to the BS1, in order to decrease inter-channel interference.
Further, by the schedulings c1: DL, c2:UL and c1: DL, c2:UL it is to notice
the power distribution between UE1 and UE2. As the UE1 moves away from
BS1, its power is decreased in favor of UE2 because it has a higher channel
gain. On the other side, UE1 getting closer to the other base station has a
greater in�uence on its allocated power. As the distance UE1-BS1 exceeds
the distance of 200 m not only the channel gain of UE2 is getting higher
compared to UE1 but getting closer to BS2 increases also the inter-channel
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Figure 7.8: Power allocation for the centralized TDD: two users in cell 1, one
UE moves towards BS2.

interference.

7.2 Decentralized TDD

7.2.1 Approach 1

The model is done considering that the cells have triangular shape (see
Fig. 7.9), meaning that each cell has N = 3 neighbours and so has to consider
24 = 16 schedulings.
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Figure 7.9: An example of cell positioning in decentralized TDD
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Figure 7.10: Spectral e�ciency for decentralized TDD, 4 cells, calculated by
approach 1.

Firstly, a simulation on 4 cells is done. In Fig. 7.10 we see the comparison
between the decentralized approach and the optimal solution. After 180
iteration steps the function reaches the value of the optimal solution.

Although this example shows that the algorithm is able to select the
optimal solution in general this is not a case. As the time markers for each
cell are moving independently and with di�erent step sizes, some markers
reach the boundary faster than the others. When a cell achieves time 0 or 1
its marker stay still, while the other cells continue to move their markers in
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Figure 7.11: Visualization of disadvantage of approach 1 of the distributed
scheduling on spectral e�ciency.

other to increase own spectral e�ciency. This behavior can cause a decline
of overall spectral e�ciency. This scenario is demonstrated in Fig. 7.11.
The function is increasing up to the point when three cells have made their
DL/UL decision (timing markers reached the value 0 or 1). At that point
just the forth cell is left to make a choice. While it moves the marker to
increase own spectral e�ciency it does not consider the decline of the overall
function.

The results of the system of ten cells is shown in Fig 7.12. Again the
negative e�ect of the previously described sel�sh behavior is demonstrated
by the decline of the function at the points when one of the cells makes a
decision (at iteration 38 and 108).

7.2.2 Approach 2

The simulation of the proposed decentralized TDD is done on the model
of ten triangular cells (see Fig. 7.13). In Section 7.2.1 we have observed
drop of total e�ciency as each cell has done scheduling. On the other side,
here simulated algorithm solves this issue (Fig. 7.13), by basing its decisions
on the total spectral e�ciency within its neighborhood. In the previous ap-
proach of of the cells The initial positions of the timing markers are assigned
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Figure 7.12: Spectral e�ciency for decentralized TDD for 10 cells scenario,
calculated by approach 1.

uniformly in the interval tk ∈ [1, 0] and the values of the spectral e�ciency
are set Rk,c ∈ [0, 1].

Due to the higher collaboration between cells, each cell, when moving the
timing marker considers how does its decision in�uence the other cells in the
neighborhood. This leads to a higher spectral e�ciency.

7.2.3 Comparison of the proposed decentralized TDD

schemes

Three previously discussed approaches of decentralized TDD are com-
pared. The model consists of ten triangular cells. The simulation is done on
the sample of 100 scenarios. In each scenario the initial values of the time
markers and spectral e�ciency are assigned uniformly so that tk ∈ [0, 1] and
Rk,c ∈ [0, 1], k ∈ M, c ∈ [0, · · · , 2N+1], N = 3 being the number of cells
bordering one cell. For each probe all three schemes optimize the system by
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Figure 7.13: Spectral e�ciency for approach 2 of decentralized TDD, model
of 10 cells.

the given data. The achieved spectral e�ciency by each approach over the
probe number is demonstrated in the Fig. 7.14. It is obvious that the scheme
considering just the spectral e�ciency of the cell moving the marker (scheme
1) achieves the lowest results. On the other hand the two following schemes
show similar results. To make the comparison more precise, an simulation
with higher number of scenarios is done, and the average spectral e�ciency
per scheme is calculated and compared.

When a simulation on 500 samples is analyzed we came to following con-
clusions:

• As expected, the scheme one achieves the lowest spectral e�ciency,
Rscheme1 = 59.327.

• The scheme two resulted with the average spectral e�ciency Rscheme2 =
66.777.

• Scheme three, applied on the same scenarios achieves average spectral
e�ciency of Rscheme3 = 67.454.

We notice that the scheme three shows the highest success rate being ≈ 12%
higher than the scheme one and ≈ 1% higher than the average spectral
e�ciency achieved by the scheme two.
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Figure 7.14: Comparison of the spectral e�ciency achieved by the proposed
decentralized scheduling schemes.

7.2.4 Power Allocation

The decentralized scheme of power allocation is simulated on the system
of ten cells. The cells are assumed to have equilateral triangular shape with
the altitude 900 m. Consequentially each cell is bordered by up to three cells
with which it communicates. The base stations are placed in the center of
each cell, therefore, the neighboring cells base stations are distanced by 600
m from each other. Further we place �ve users in each cell. The users are
placed uniformly within the interval 50 m to 300 m away from the center of
their own cell. The DL/UL scheduling is done as described in Section 5, and
during the power allocation it is taken as constant.

The values of transmit power P
(DL)
k,i and P

(UL)
k,i are normalized to the
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Figure 7.15: Position of the users in simulation with 10 cell for the case of
decentralized power allocation.

noise variance σk,i = 1. Each base station is allocated with the maximal

DL transmit power P
(BS)
k,max = 10Kk, k ∈ M , Kk denoting the number of

users in cell k. Further the maximal transmit power allocated to each user
transmitting in uplink is P

(UL)
max = 10.

The channel gains are determined as described in Section 7.1.

The simulation model is shown in Fig. 7.15. The scheduling is set so that
all the cells transmit in in downlink. The allocated powers are shown in Table
7.1. We notice that in the �rst cell the users two and four are allocated with
power zero, as they are placed far away from the base station and the chan-
nel gain is lower than between the other users and the BS1. Additionally,
being positioned close to the BS4 and BS3, leads to the higher inter-channel
interference, and consequentially decreases the spectral e�ciency of the com-
munication with the user. On the other side the power allocated for user �ve
is taking the highest value due to its small distance from the base station.

The e�ect of inter-channel interference on power allocation is best ob-
served in cell 8. Even though user 36 and 40 are at a similar distance from
BS8, user 40 is allocated power P

(DL)
40 ≈ 7 and user 36 power P

(DL)
36 = 0.

The reason is that UE36 being close to BS4 originates high inter-channel
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UE1 : 2.66 UE2 : 0 UE3 : 15.01 UE4 : 0 UE5 : 32.33

UE6 : 7.71 UE7 : 12.12 UE8 : 11.32 UE9 : 10.89 UE10 : 7.94

UE11 : 0 UE12 : 20.08 UE13 : 22.68 UE14 : 7.23 UE15 : 0

UE16 : 6.16 UE17 : 0 UE18 : 38.48 UE19 : 5.13 UE20 : 0.21

UE21 : 2.43 UE22 : 14.34 UE23 : 11.00 UE24 : 8.54 UE25 : 13.69

UE26 : 15.35 UE27 : 16.52 UE28 : 12.69 UE29 : 0 UE30 : 5.43

UE31 : 15.68 UE32 : 2.70 UE33 : 12.98 UE34 : 9.38 UE35 : 9.26

UE36 : 0 UE37 : 18.69 UE38 : 18.36 UE39 : 5.95 UE40 : 6.99

UE41 : 7.74 UE42 : 0 UE43 : 0 UE44 : 16.53 UE45 : 25.73

UE46 : 14.16 UE47 : 0 UE48 : 12.74 UE49 : 7.70 UE50 : 15.39

Table 7.1: The results of power allocation using the decentralized iterative
scheme.

interference, while UE40 is far away from all base stations presented in the
system.

Fig. 7.16 shows the level of total spectral e�ciency in all ten cells during
the iterative process of power allocation. The step number denotes the points
when a power is allocated to each user. Further, the iteration cycle represents
the points when a full cycle of power allocation to all users in the system is
done. The spectral e�ciency corresponding to step 1 denotes the e�ciency
achieved when all users are allocated with no power, P

(DL)
k,i = 0. Further,

step 2 denotes the case when just one cell has reallocated its transmit powers,
considering that all other cell operate with transmit powers determined in
previous step. Because this case actually means not considering real in�uence
of interference, the speed of increasing the allocated powers is limited as
explained in Section 5.2.3. We notice that the spectral e�ciency is increasing
very fast during the �rst cycle, as the transmit powers are increased from zero
but still on relatively low level to cause high interference. On the other side
at iteration cycle 2 (n = 2) we can see that the function is not constantly
increasing any more. The reason for such a behaviour is that at the each step
powers are determined within the cell, locally, not calculating the e�ect on
the spectral e�ciency in the whole system. As the allocated powers increase,
the inter-channel interference also increases and can cause fall in the total
spectral e�ciency.

We notice that during each iteration cycle the spectral e�ciency is in-
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Figure 7.16: Total spectral e�ciency during the process of allocation of trans-
mit powers.

creasing slower and slower as it reaches the optimal point. As the optimal
allocation is found, spectral e�ciency tends to a constant value meaning that
the transmit powers have not changed though whole iteration cycle. Even
though no change grater than the constant δ has been made, this cycle is
still of crucial signi�cance to the process because it denotes that the function
has converged and the optimal values of the transmit powers are set.

7.3 Performance of centralized vs. decentral-

ized TDD

Finally we can compare performance of the proposed algorithms. The
simulated model consists of four cells. Each cell is modeled as an equilateral
triangle, with a base o� 1000 m. Within each cell four users are distributed
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uniformly.
Because of time consumption problem of running proposed algorithm for

centralized TDD, an optimal solution is found by extensive search. Finding a
solution in decentralized manner is done by the approach 3, which has shown
the best performance.

After running the simulations, we have obtained the following mean values
of total spectral e�ciency:

• centralized TDD: 29.0

• decentralized TDD: 23.0.

It is obvious that centralized solution outperforms distributed approach by
approximately 20%. Moreover, it is important to emphasize that in the
future work, further simulations should be conducted, using more realistic
data and bigger cellular systems. We assume that by running simulations
where pre-saved data used for optimizing decentralized system is calculated
on a big number of probes, algorithm for decentralized TDD would perform
better.
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Chapter 8

Conclusion and future work

This thesis examined possibility of increasing the capacity of a cellular
system by applying dynamic TDD, where each cell operates in DL or UL
based on tra�c requirements. Since this can lead to a scenario where neigh-
boring base stations are transiting in opposite directions, high inter-channel
interference is expected. To solve this issue we have addressed two questions

1. scheduling and

2. power allocation

so the spectral e�ciency is maximized.
In this thesis we have proposed two approaches to calculate parameters

of a cellular system, which optimize dynamic TDD in centralized and decen-
tralized manner. In centralized TDD, di�erently to decentralized, a central
unit is present which oversees the whole system and optimizes it. On the
one hand it is a reason for having higher computational cost. On the other
hand it enables the system to reach the optimal solution, i.e., maximize total
spectral e�ciency for all users.

Power allocation by centralized approach consists of an optimization prob-
lem with constraints. It includes MK variables. To solve this problem we
have used Lagrange multipliers method. Further, scheduling is done by ob-
serving performance of all possible scheduling combinations in the system.

The same problem, has as well been approached in a decentralized man-
ner. The process of scheduling is done as a partially cooperative game, where
BSs are the players. Each sub-frame is continuously divided by timing mark-
ers, representing a desire of a cell to transmit in DL or UL. Scheduling is
determined gradually until the values of the timing markers converge to one
extreme. Secondly, powers are allocated in each BS by solving Lagrange
multipliers method.

55
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In Chapter 6 we have discussed computational e�ort for each of the algo-
rithm. We have concluded that centralized TDD requires way higher com-
putational cost. It is especially signi�cant as the size of the observed cellular
system, number of cells and number of users per cell, increases. Calculated
computation cost of each algorithm is:

• Centralized TDD: O(2M(5MK)3).

• Decentralized TDD: O(M(5K)3).

On the other side centralized TDD provides better performance by approx-
imately 20%. We assume that the number becomes smaller if the more re-
alistic data set has been used to run the simulation. However, decentralized
approach would still show signi�cant performance downgrade compared to
centralized TDD.

About future work, the proposed algorithms should be simulated on a
more realistic model. It is to emphasize that the proposed algorithms as well
as created MATLAB codes support model of any size, M cells and K users.

Further, it is to investigate if the proposed centralized method can be
combined with the decentralized in order to use bene�ts of both approaches.
It could be done through clustering of neighboring cells, or cells which show
similar tra�c pro�le. Further, it would be useful to determine on real case
scenarios, to which extent the combination of the two approaches increases
spectral e�ciency.
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