
Truth and Preferences - A Game Approach for Qualitative Choice Logic

Robert Freiman1 , Michael Bernreiter1
1Institute of Logic and Computation, TU Wien

robert@logic.at, michael.bernreiter@tuwien.ac.at

Abstract

In this paper, we introduce game-theoretic seman-
tics (GTS) for Qualitative Choice Logic (QCL),
which, in order to express preferences, extends
classical propositional logic with an additional con-
nective called ordered disjunction. Firstly, we
demonstrate that game semantics can capture ex-
isting degree-based semantics for QCL in a natu-
ral way. Secondly, we show that game semantics
can be leveraged to derive new semantics for the
language of QCL. In particular, we present a new
semantics that makes use of GTS negation and, by
doing so, avoids problems with negation in existing
QCL-semantics.

1 Introduction
Preferences are a key research area in artificial intelligence,
and thus a multitude of preference formalisms have been de-
scribed in the literature [PTV16]. An interesting example
is Qualitative Choice Logic (QCL) [BBB04], which extends
classical propositional logic by the connective #»× called or-
dered disjunction. Intuitively, F #»×G states that F or G should
be satisfied, but satisfying F is more preferable than satisfy-
ing only G. This allows to express soft-constraints (prefer-
ences) and hard-constraints (truth) in a single language.

For example, let us say we want to formalize our choice of
pizza toppings, and that we definitely want tomato-sauce (t).
Moreover, we want either mushrooms (m) or artichokes (a),
but preferably mushrooms. This can easily be expressed in
QCL via the formula t ∧ (m

#»×a). This formula has three
models in QCL, namely M1 = {t,m, a}, M2 = {t,m}, and
M3 = {t, a}. QCL-semantics then ranks these models via so-
called satisfaction degrees. The lower this degree, the more
preferable the model. In this case, M1 and M2 would be
assigned a degree of 1 and M3 would be assigned a degree of
2, i.e., M1 and M2 are the preferred models of this formula.

In the literature, QCL has been studied with regards to
possible applications [BNS04; BS08a; LHR14] and compu-
tational properties [BMW21]. However, not all aspects of
QCL-semantics are uncontroversial. For example, viewing
QCL as an extension of classical logic, it is natural to expect
a formula F to be logically equivalent to its double negation

¬¬F . But this property does not hold in QCL, as all infor-
mation about preferences in F is is erased in ¬F . This is-
sue has been addressed by Prioritized QCL (PQCL) [BS08b],
which defines ordered disjunction in the same way as QCL
but changes the meaning of the classical connectives, includ-
ing negation. While PQCL solves QCL’s problem with dou-
ble negation, it in turn introduces other controversial behav-
ior, e.g., that both a formula F and its negation ¬F can be
satisfied by the same interpretation. No alternative semantics
for QCL is known to us that addresses both of these issues at
the same time.

In order to tackle these issues, we develop game-theoretic
semantics (GTS) for QCL, embedding choice logics in the
rich intersection of the fields of game-theory and logics
([HV19; Ben14; Vää11]). Building on the concepts of ra-
tional behavior and strategic thinking, GTS offer a natural
dynamic viewpoint of dealing with truth and preferences.
Originally, GTS go back to Jaakko Hintikka [Hin73], who
designed a win/lose game for two players, called Me (or I)
and You1, both of which can act in the role of Proponent or
Opponent of a formula F of over an interpretation I. The
game proceeds by rules for step-wise reducing F to an atomic
formula. Most importantly, negation is interpreted in game-
theoretic terms as dual negation, [Tul14]: at formulas ¬G,
the game continues with G and a role switch. It turns out that
I have a winning strategy for this game if and only if F is
classically true over I.

To capture not only truth but also preferences, we extend
this two-valued game with more fine-grained outcomes. We
show that our proposed game framework adequately models
the degree-semantics of QCL. Game-theoretically speaking,
the aforementioned issues with negation in QCL arise, be-
cause the players in the GTS are not fully symmetric. Elim-
inating this asymmetry leads to a new game and by exten-
sion yields a new logic we call Game-induced Choice Logics
(GCL), where negation indeed behaves as in classical logic.
In the last section, we outline how to lift the GTS to a sequent
calculus for preferred model entailment in GCL.

2 Preliminaries
In this section, we formally introduce QCL and discuss fun-
damental notions in GTS.

1Hintikka and others call this player Nature



2.1 Qualitative Choice Logic (QCL)
The most prominent choice logic in the literature is QCL
[BBB04], which adds ordered disjunction ( #»×) to classical
propositional logic.

Definition 2.1. Let U denote an infinite set of propositional
variables. The set FQCL of QCL-formulas are built induc-
tively as follows: (i) a ∈ FQCL for all a ∈ U ; (ii) if
F ∈ FQCL, then (¬F ) ∈ FQCL; (iii) if F,G ∈ FQCL, then
(F ◦G) ∈ FQCL for ◦ ∈ {∧,∨, #»×}.

The semantics of QCL is based on two functions, namely
optionality and satisfaction degree. The satisfaction degree
of a formula can be either a natural number or ∞ and is used
to rank interpretations: the lower the degree, the better. The
optionality of a formula represents the maximum finite sat-
isfaction degree this formula can obtain (as we will see in
Lemma 2.4) and is used to penalize interpretations that do not
satisfy the preferred option F in an ordered disjunct F #»×G.

Definition 2.2. The optionality of QCL-formulas is de-
fined inductively as follows: (i) opt(a) = 1 for ev-
ery propositional variable a ∈ U , (ii) opt(¬F ) = 1,
(iii) opt(F ◦G) = max(opt(F ), opt(G)) for ◦ ∈ {∨,∧},
and (iv) opt(F #»×G) = opt(F ) + opt(G).

Definition 2.3. An interpretation I ⊆ U is a set of proposi-
tional variables. The satisfaction degree of QCL-formulas is
defined inductively as follows:

degI(a) = 1 if a ∈ I,∞ otherwise
degI(¬F ) = 1 if degI(F ) = ∞,∞ otherwise

degI(F ∧G) = max(degI(F ),degI(G))

degI(F ∨G) = min(degI(F ),degI(G))

degI(F
#»×G) =


degI(F ) if degI(F ) < ∞
opt(F ) + degI(G) if degI(F ) = ∞,

degI(G) < ∞
∞ otherwise

If degI(F ) = k we say that I satisfies F to a degree of k.
If degI(F ) < ∞ we say that I classically satisfies F , or that
I is a model of F . Moreover, if degI(F ) < degJ (F ) for
two interpretations I and J then I is more preferable than J .
To fully understand QCL-semantics, we must take note that
satisfaction degrees are bounded by optionality, as intended:

Lemma 2.4 (from [BBB04]). For all QCL-formulas F and
all interpretations I, degI(F ) ≤ opt(F ) or degI(F ) = ∞.

Indeed, inspecting Definition 2.2 in view of Lemma 2.4
shows how optionality is used to penalize non-satisfaction:
given F

#»×G, if some interpretation I classically satisfies F ,
i.e., degI(F ) < ∞, we get degI(F

#»×G) = degI(F ) ≤
opt(F ); if I does not classically satisfy F , i.e., degI(F ) =
∞, we get degI(F

#»×G) = opt(F ) + degI(G) > opt(F ).
We now define the central notion of preferred models, and

then give a small example of QCL-semantics in action.

Definition 2.5. Let F be a QCL-formula. I is a preferred
model of F iff degI(F ) < ∞ and degI(F ) ≤ degJ (F ) for
all other interpretations J .

Example 2.6. The QCL-formula F = (a ∧ b)
#»×a

#»×b ex-
presses that satisfying both a and b is preferable to satisfy-
ing only a, which in turn is preferable to satisfying only b.
First, observe that opt(F ) = 3. Moreover, deg∅(F ) = ∞,
deg{b}(F ) = 3, deg{a}(F ) = 2, and deg{a,b}(F ) = 1.
Thus, {a, b} is a preferred model of F .

Now consider F ′ = ((a∧b) #»×a
#»×b)∧¬(a∧b), which is sim-

ilar to F , but with the additional information that a and b can
not be jointly satisfied. Again, deg∅(F

′) = ∞, deg{b}(F
′) =

3, and deg{a}(F
′) = 2. However, deg{a,b}(F

′) = ∞, i.e.,
{a, b} does not satisfy F ′. Since it is not possible to satisfy
F ′ to a degree of 1, {a} is a preferred model of F ′.

Note that ordered disjunction is associative under
QCL-semantics, which means that we can simply write
A1

#»×A2
#»× . . .

#»×An to express that we must satisfy at least
one of A1, . . . , An, and that we prefer Ai to Aj for i < j.
Formally, this is expressed by the following lemma:
Lemma 2.7 (from [BBB04]). Let F , G, and H be QCL-
formulas. Then (F

#»×(G
#»×H)) and ((F

#»×G)
#»×H) have the

same optionality and the same satisfaction degree under all
interpretations.

As mentioned in the introduction, an alternative semantics
for QCL has been proposed in the form of PQCL [BS08b].
Specifically, PQCL changes the semantics for the classical
connectives (¬,∨,∧), but defines ordered disjunction ( #»×)
in the same way as QCL. For our purposes, it is not nec-
essary to formally define PQCL. Rather, it suffices to note
that, in PQCL, negation propagates to the atom level, mean-
ing that ¬(F ∧ G) is simply assigned the satisfaction degree
of ¬F ∨ ¬G, ¬(F ∨G) is assigned the degree of ¬F ∧ ¬G,
and ¬(F #»×G) is assigned the degree of ¬F #»×¬G.

2.2 Game-Theoretic Semantics (GTS)
We start by recalling Hintikka’s game [Hin73] over a formula
F in the language restricted to the connectives ∨,∧,¬ and
over an interpretation I. The game is played between two
players, Me and You, both of which can act either in the role
of Proponent (P) or Opponent (O). The game starts with Me
as P of the formula F and You as O. At formulas of the form
G1 ∨ G2, P chooses a formula Gi that the game continues
with. At formulas of the form G1 ∧ G2 it is O’s choice. At
negations ¬G, the game continues with G and a role switch.
Every outcome of the game is a propositional variable a. The
player currently in the role of P wins the game (and O loses)
iff a ∈ I. It is known that I have a winning strategy for this
game iff I |= F .

How can we extend Hintikka’s game from classical logic to
choice logic? We propose the following intuitive reading of
ordered disjunction ( #»×): at G1

#»×G2 it is P’s choice whether
to continue with G1 or with G2, but this player prefers G1.
My aim in the game is now not only to win the game but to do
so with as little compromise to My preferences as possible.
Thus, it is natural to express My preference of G2-outcomes
O2 over G1-outcomes O1 via the relation O1 ≪ O2. We
leave the formal treatment of this game for the next section
and conclude with some standard game-theoretic definitions.
Definition 2.8. A game is a pair G = (T, d), where
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1. T = (V,E, l) is a tree with set of nodes V (usually
called (game) states) and edges E. The leafs of T are
called outcomes and are denoted O(G). The labelling
function l maps nodes of T to the set {I, Y }.

2. d is a payoff-function mapping outcomes to elements of
a linear order (D,⪯).

We write x ≈ y if x ⪯ y and y ⪯ x. In the games that we are
interested in, D is partitioned into two sets, W and L, where
W is upward-closed and L = D \W . Outcomes O are called
winning if d(O) ∈ W and losing if d(O) ∈ L.

For example, in Hintikka’s game (without negations), the
underlying game tree is exactly the tree-representation of the
formula F . The labels of ∧-formulas are “Y”, while the label
of ∨-formulas are “I”. The payoff functions maps outcomes
to P = {0, 1}, where d(p) = 1 iff p ∈ I. P carries the usual
ordering 0 < 1 and W = {1}.

A strategy σ for Me in a game can be understood as My
complete game-plan. For every node of the underlying game-
tree labelled “I”, σ tells Me to which node I have to move.
Here is a formal definition:

Definition 2.9. A strategy σ for Me for the game G is a sub-
set of the nodes of the underlying tree such that (1) the root
of T is in σ and for all v ∈ σ, (2) if l(v) = I , then at least one
successor of v is in σ and (3) if l(v) = Y , then all successors
of v are in σ. A strategy for You is defined symmetrically. We
denote by ΣI and ΣY the set of all strategies for Me and You,
respectively.

Conditions (1) and (3) make sure that all possible moves
by the other player are taken care of by the game-plan.

Note that each pair of strategies σI ∈ ΣI , σY ∈ ΣY

defines a unique outcome of G, which we will denote by
O(σI , σY ). We abbreviate d(O(σI , σY )) by d(σI , σY ). A
strategy σ∗

I for Me is called winning if, playing according
to this strategy, I win the game, no matter how You move,
i.e. for all σY ∈ ΣY , d(σ∗

I , σY ) ∈ W . An outcome O
that maximizes My pay-off in light of Your best strategy is
called maxmin-outcome. Formally, O is a maxmin-outcome
iff d(O) ≈ max⪯σI

min⪯σY
d(σI , σY ) and d(O) is called the

maxmin-value of the game. A strategy σ∗
I for Me is a maxmin-

strategy for G if σ∗
I ∈ argmax⪯σI

min⪯σY
d(σI , σY ). Minmax

values and strategies for You are defined symmetrically.
The class of games that we have defined falls into the cat-

egory of zero-sum games in game-theory. They are charac-
terized by the fact that the players have strictly opposing in-
terests. In zero-sum games, the minmax and maxmin value
always coincide and is referred to as the value of the game.

3 A Game for QCL
We now give a formal definition of a Hintikka-style game
for QCL. As motivated in the previous section, we seek to
capture the intuition that ordered disjunction ( #»×) should be
interpreted as a preference of a player for all outcomes on the
left of #»× over all outcomes on the right. Game states will be
of the form P : F or O : F , where F is a QCL-formula and
the labels “P” and “O” are to signify that I currently act in
the role of proponent and opponent, respectively.

We inductively define the game tree T (Q : F ) of the game
G(Q : F, I) for Q ∈ {P,O}, as well as an order ≪ on out-
comes, which represents preferences in the game from My
viewpoint (Yours are the exact opposite). Both definitions
will be independent of the given interpretation I. After that
we define the payoff-function d, which respects ≪ on My
winning outcomes. The definition of T (Q : F ) depends on
the structure of F :

(Ra) T (P : a) consists of the single leaf r and ≪P:a= ∅.
(R¬) T (P : ¬G), consists of a root r labelled “I”, and im-

mediate subtree T (O : G) and ≪P:¬G= ∅, i.e. at
P : ¬G, the game continues with a role switch and
erased preferences for the remainder of the game.

(R∧) T (P : G1 ∧ G2) is a tree with root r labelled “Y”,
and immediate subtrees T (P : G1) and T (P : G2), i.e.
at P : G1 ∧ G2, You choose whether to continue with
P : G1 or with P : G2. The preference is given by
≪P:G1∧G2

=≪P:G1
∪ ≪P:G2

.
(R∨) T (P : G1 ∨ G2) is a tree with root r labelled “I”,

and immediate subtrees T (P : G1) and T (P : G2),
i.e. at P : G1 ∨ G2, I choose whether to continue with
P : G1 or with P : G2. The preference is given by
≪P:G1∧G2=≪P:G1 ∪ ≪P:G2 .

(R #»×) T (P : G1
#»×G2) is a tree with root r labelled “I”,

and immediate subtrees T (P : G1) and T (P : G2),
i.e. at P : G1

#»×G2, I choose whether to continue with
P : G1 or with P : G2. The preference is given
by O1 ≪P:G1

#»×G2
O2 iff O1 ∈ O(P : G2)

2 and
O2 ∈ O(P : G1), or O1 ≪P:Gj

O2 for j ∈ {1, 2}.
This means that I prefer all winning outcomes of the G1-
game over all outcomes of the G2-game.

The tree T (O : F ) is the same as T (P : F ), except that la-
bels are swapped and the preference relation is always empty.
For example, T (O : G1

#»×G2) consists of the node labelled
“Y” with immediate subtrees T (O : G1) and T (O : G2)
and ≪O:G1

#»×G2
= ∅. The rule (R¬) may sound a bit counter-

intuitive, but it precisely captures negation in QCL. For a crit-
ical discussion on negation, see Subsetion 4.1.

Let us say that an atomic game state P : a is true in I if
a ∈ I, and false otherwise. Conversely, O : a is true if a ̸∈
I, and false otherwise. The payoff-function d is defined as
follows: given an outcome O, let π≪(O) = {O1, O2, ..., On}
be the longest ≪-path starting in O, i.e. O = O1, the Oi are
pairwise different outcomes and Oi ≪ Oi+1 for all 1 ≤ i ≤
n − 1. Let us say that is O is true, if O stands for a true
atomic game state, and otherwise false. The payoff-function
dI maps into the set D = N ∪ {∞}, linearly ordered by ⪯,
the inverse natural ordering (1 is best, ∞ is worst):

dI(O) =

{
|π≪(O)|, if O is true,
∞, if O is false.

If I is clear from context, we simply write d instead of dI .
Example 3.1. Consider the formula F = ((a

#»×b)
#»×c) ∧

¬(a #»×d). Figure 1 depicts the corresponding game tree.

2For simplicity, we write O(Q : F ) instead of O(G(Q : F ))
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[
P : ((a

#»×b)
#»×c) ∧ ¬(a #»×d)

]Y
[
P : (a

#»×b)
#»×c

]I
[
P : a

#»×b
]I

[P : a] [P : b]

[P : c]

[
P : ¬(a #»×d)

]I
[
O : a

#»×d
]Y

[O : a] [O : d]

Figure 1: A game tree for QCL.

Observe that the node O : a
#»×d has the label “Y” because

the roles of the players are switched in the parent node
P : ¬(a #»×d). The order on outcomes is P : c ≪ P : b ≪
P : a. Note that O : d ≪̸ O : a, since preferences are deleted
via the negation rule (R¬).

Consider the interpretation {a}. The winning outcomes are
P : a and O : d and the degree-order is given by d(P : a) =
1, d(P : b) = d(P : c) = d(O : a) = ∞, d(O : d) = 2. In
this case, I have no winning strategy: in the root node, it is
Your turn, and You can move to the right where the leaf O : a
is not a winning outcome because roles were switched.

Now consider {b}. The winning outcomes are P : b, O : a
and O : d and the degree-order is given by d(P : a) =
d(P : c) = ∞, d(P : b) = 2, d(O : a) = d(O : d) = 1.
If You move to the right this only leads to winning outcomes
(with value 1) for Me (due to switched roles). If You move to
the left, it is now always My turn, and I can reach the winning
outcome P : b with a value of 2. Thus, it is better for You to
move to the left, and the best outcome for Me is P : b.
Lemma 3.2. The longest ≪-path in O(P : F ) has length
opt(F ).

The above Lemma can be shown via induction on F , using
the fact that preferences are erased at negations as well as in
all game trees T (O : G). This is already quite a nice result
as it shows that the notion of optionally arises naturally in our
game, whereas in QCL, optionality must be defined a-priori
to ensure that the semantics work as intended. We are now
ready to show that our game semantics captures QCL:
Theorem 3.3. The value of G(P : F, I) is equal to degI(F ).

For the proof of Theorem 3.3, we introduce some
handy notation: When I is clear from context, we denote
by O(Q : F ) the maxmin-outcome and by d(Q : F ) the
maxmin-value of the game G(Q : F , I). Where it does not
cause confusion, we will identify a formula with the corre-
sponding node in the game tree. Since the payoff-function d
differs from one game to another, let us denote by dQ:F the
payoff-function for the game G(Q : F , I).

Proof (of Theorem 3.3). It suffices to show the following two
claims by induction on F : (1) d(P : F ) = degI(F ) and (2)
d(O : F ) = ∞, if degI(F ) < ∞ and 1 otherwise. Since
in the game G(O : F, I) all preferences are deleted, it is
essentially Hintikka’s game. We will therefore prove only (1).
Remember that the ordering ⪯ is the inverse of the natural
ordering ≤ on N ∪ {∞}. I therefore seek to ≤-minimize My
payoff in the game.

F = a: This game consists of a single node v. The longest
≪-path starting at v has length 1. Therefore, d(P : a) = 1
iff a ∈ I iff degI(a) = 1 and d(P : a) = ∞ iff a /∈ I iff
degI(a) = ∞.
F = G1 ∧ G2: In the first round, You choose between

P : G1 and P : G2. Your best strategy is to go to the subgame
with ⪯-minimal payoff:

d(P : G1 ∧G2) = min
⪯

{d(P : G1), d(P : G2)}

= max{degI(G1),degI(G2)}
= degI(G1 ∧G2)

Here, the second step used the fact that ⪯ is the inverse of the
natural ordering on N ∪ {∞} and the induction hypothesis.
F = G1 ∨G2: In the first round, I choose between P : G1

and P : G2, Therefore:
d(P : G1 ∨G2) = max

⪯
{d(P : G1), d(P : G2)}

= min{degI(G1),degI(G2)}
= degI(G1 ∧G2)

Again, we used the induction hypothesis in the second step.
F = G1

#»×G2: In the first round, I choose between P :
G1 and P : G2, but all outcomes of the G2-game are in ≪-
relation to all outcomes of the G1-game, which is respected
by the payoff-function for the winning outcomes. Let us write
W (Gi) for the winning outcomes of G(P : Gi, I), i.e. those
outcomes O with dP:Gi(O) < ∞. By Lemma 3.2, the longest
≪- path in O(P : G1) has length opt(G1). Hence, for all
O ∈ O(P : G1

#»×G2):

dP:F (O) =


dP:G1

(O), if O ∈ W (G1),

dP:G2(O) + opt(G1), if O ∈ W (G2),

∞, otherwise.

Therefore, if O(P : G1) is winning, i.e., d(P : G1) =
degI(G1) < ∞, then I move to P : G1 and
d(P : G1

#»×G2) = dP:F (O(P : F )) = dP:G1
(O(P :

G1)) = degI(G1) = degI(F ). If O(P : G1) is losing,
but O(P : G2) is winning, i.e., d(P : G1) = degI(G1) = ∞
and d(P : G2) = degI(G2) < ∞, then I move to P : G2

and d(P : F ) = dP:F (O(P : F )) = dP:G2(O(P : G2)) +
opt(G1) = degI(G2) + opt(G1) = degI(F ). If both
O(P : G1) and O(P : G2) are losing, then d(P : F ) =
∞ = degI(F ).
F = ¬G: Here the game continues with O : G. By (2),

d(O : G) = ∞, if degI(G) < ∞ and 1 otherwise. Hence,
d(P : ¬G) = d(O : G) = degI(¬G).
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4 A New Semantics
In this section, we first identify some contentious behavior in
QCL (and PQCL) with regards to negation. We then address
these issues by adapting our game semantics from Section 3
to use GTS negation. Lastly, we specify a degree-semantics
for this new game.

4.1 Negation in QCL (and PQCL)
While choice logics are a useful formalism to express both
soft constraints (preferences) and hard constraints (truth) in a
single language, existing semantics (such as QCL and PQCL)
are not without problems. One matter of contention lies in
how choice logics deal with negation, as we will now see.

Consider the following statement: “I want almond or ba-
nana ice cream, but preferably almond”. It is clear how
to formalize this sentence in QCL, namely simply as a

#»×b,
where a and b are abbreviations for almond and banana ice
cream respectively. However, it is not obvious, and generally
not agreed upon, how the negation of this sentence is to be un-
derstood. In QCL, negation erases all information about pref-
erences and only takes classical satisfaction into account. Un-
der this interpretation, ¬(a #»×b) is to be read as “I do not want
almond or banana ice cream”, which means that ¬(a #»×b) is
equivalent to ¬a ∧ ¬b (cf. Table 1). This is certainly a prag-
matic approach, but, as we believe, potentially problematic
because it means that negation does not actually apply to the
entire sentence, i.e., ¬(a #»×b) can not be read as “I do not
want almond or banana ice cream, but preferably almond”.
Moreover, this approach means that a QCL-formula F is not
logically equivalent to its double negation ¬¬F , which may
lead to non-intuitive behavior. Consider the following sen-
tence: “I do not not want almond or banana icecream, and
preferably almond”. It is certainly reasonable to understand
this sentence to be equivalent to our initial sentence. How-
ever, ¬¬(a #»×b) is not logically equivalent to (a

#»×b) in QCL
since all information about preferences is lost in ¬¬(a #»×b).

PQCL addresses this issue, i.e., F is always equivalent to
¬¬F . However, in our view, PQCL introduces two other
problems with negation. In PQCL, ¬(a #»×b) is interpreted as
¬a #»×¬b (cf. Table 1). The first issue is that it is possible for
an interpretation to classically satisfy both a formula F and
its negation ¬F . For example, in Table 1 we can see that the
interpretations {a} and {b} classically satisfy both (a

#»×b) and
¬(a #»×b). However, the ordered disjunct (a #»×b) not only ex-
presses a preference, but also a hard constraint (a or b must
be satisfied). We believe that negation should act on both of
these aspects. Moreover, as a result of this behavior, the im-
plication F → G can in general not be defined via ¬F ∨ G.
For example, the formula ¬(a #»×b) ∨ c is classically satisfied
by the interpretations {a} and {b}, although the antecedent
(a

#»×b) is satisfied under these interpretations while the con-
sequent c is not. Secondly, the satisfaction degree of ¬F does
not only depend on the satisfaction degree and optionality of
F . Looking again at Table 1 we see that the interpretations
{a} and {a, b} satisfy (a

#»×b) to the same degree, i.e., they are
equally preferable, but {a} satisfies ¬(a #»×b) to a degree of 2
while {a, b} does not satisfy ¬(a #»×b) at all.

I a
#»×b ¬a ∧ ¬b ¬a #»×¬b

∅ ∞ 1 1
{b} 2 ∞ 1
{a} 1 ∞ 2
{a, b} 1 ∞ ∞

Table 1: Truth table showing the satisfaction degrees of ¬(a #»×b) in
QCL (equivalent to ¬a ∧ ¬b) and PQCL (equivalent to ¬a #»×¬b).

When designing our new game semantics, we will keep
these issues in mind. Our main goal is to define a negation
that acts both on hard-constraints (truth) as in QCL and soft-
constraints (preferences) as in PQCL. Moreover, we will en-
sure that (1) formulas are equivalent to their double negation,
(2) formulas and their negation can not be satisfied classically
by the same interpretation, and (3) the satisfaction degree of
¬F depends only on the satisfaction degree of F .

It must be noted that QCL and PQCL are not the only
semantics for propositional logic extended with ordered dis-
junction. Another example can be found in [MW18], where
the concept of satisfaction degrees is abandoned. The seman-
tics induce a partial order among interpretations. However,
negation is handled in the same way as in QCL, i.e., all infor-
mation about preferences is lost and therefore formulas are
not equivalent to their double negation.

4.2 Using GTS Negation
We now address the issues with negation in previous ap-
proaches to choice logics, as outlined in Section 4.1. One
of the main problems was that all information on preferences
is lost in negated formulas. From the game-point of view,
this corresponds to the fact that at game states ¬F , all prefer-
ences are deleted. But in a game-theoretic setting it is natural
to consider a game where this deletion does not occur. We
therefore propose the following rule for negation:

(R¬) T (P : ¬G), consists of a root r labelled “I”, the im-
mediate subtree T (O : G), and ≪P:¬G equal to ≪O:G,
i.e., at P : ¬G, the game continues with a role switch.

All other rules stay the same, except that in T (O : F )
labels are swapped and preferences are switched, i.e. ≪O:F

is the inverse of ≪P:F . For example, if F = G1
#»×G2, then

T (O : F ) consists of the node labelled “Y” with immediate
subtrees T (O : G1) and T (O : G2) and O1 ≪O:F O2 iff
O2 ≪P:F O1.

Additionally, we change our payoff-function to respect
preferences not only in Player I’s winning outcomes, but in
both Player’s winning outcomes:

Definition 4.1. Let Z := (Z \ {0},⊴). The ordering ⊴ is
the inverse of the natural ordering on Z− and on Z+ and for
a ∈ Z+, b ∈ Z− we set b ◁ a. For an outcome O, we set3

δI(O) =

{
|π≪(O)|, if O is true,
−|π≫(O)|, if O is false.

Again, we write δ, instead of δI , if I is clear from context.
We denote the new game initiated at the game state Q : F
and played over the interpretation I by NG(Q : F, I).
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Figure 2: Preferences and winning payoffs of the two players in the games G and NG

Observe that with these alterations, the two players become
truly symmetric. The goal of both players is now to (1) win
the game with (2) as little compromise as possible, and other-
wise (3) force the opponent in as much compromise as possi-
ble. See Figure 2 for an instructive graphical representation,
which also shows how this new approach differs from the old
approach of QCL and its corresponding game G.

Example 4.2. Consider again the the formula ((a
#»×b)

#»×c) ∧
¬(a #»×d) from Example 3.1. The game tree is the same as
before (see Figure 1). The order on outcomes is now P : c ≪
P : b ≪ P : a and O : a ≪ O : d.

Consider the interpretation {a}. As in Example 3.1, I have
no winning strategy since You can always move to the right
side at the root node and to the left side in O : a

#»×d to reach
O : a with a value of −1.

Now consider {d}. The only winning outcome is O : a
and the payoffs are given by δ(P : c) = −1, δ(P : b) = −2,
δ(P : a) = −3, δ(O : a) = 2, δ(O : d) = −2. If You move
to the left at the root node, it is best for Me to reach the out-
come P : a with a payoff of −3. If You move to the right at
the root node, You have to move to the right again in O : a

#»×d
to reach a losing outcome, namely O : d with a payoff of −2.
Thus, it is better for You to move to the right at the root note,
giving us the game value −2.

4.3 Extracting a Degree Semantics

Using our game NG as a cornerstone, we now define a
degree-function for QCL-formulas taking values in the do-
main (Z,⊴) from Definition 4.1 and discuss some of its prop-
erties. The resulting logic will be called GCL, for Game-
induced Choice Logic. The proof of adequacy of the game
NG with respect to this degree-function is topic of the next
subsection. We denote the optionality function of GCL by
optG, and define it in the same way as the optionality func-
tion opt of QCL, except for negation:

optG(¬F ) = optG(F )

With this definition, we can extend Lemma 3.2 for NG:

Lemma 4.3. Let Q ∈ {P,Q}. The longest ≪-path in
O(Q : F ) has length optG(F ).

The degree function of GCL is denoted by degGI . It assigns
to each formula a degree relative to an interpretation I and is
defined inductively as follows (for succinctness, we abbrevi-

3Notice the flipped ≪-sign in the second case.

ate optG(F ) with oF and optG(G) with oG):

degGI (a) = 1 if a ∈ I,−1 otherwise

degGI (¬F ) = −degGI (F )

degGI (F ∧G) = min(degGI (F ),degGI (G))

degGI (F ∨G) = max(degGI (F ),degGI (G))

degGI (F
#»×G) =


degGI (F ) if degGI (F ) ∈ Z+

oF + degGI (G) if degGI (F ) ∈ Z−,

degGI (G) ∈ Z+

degGI (F )− oG otherwise

Here min and max are relative to ⊴. If degGI (F ) ∈ Z+ then
we say that I classically satisfies F , or that I is a model of F .
Note that, in contrast to QCL, those interpretations that result
in a higher degree relative to the ordering ⊴ are more prefer-
able, which is also why we take the maximum degree for dis-
junction and the minimum degree for conjunction. However,
since ⊴ inverts the order on Z+, a degree of 1 is considered
to be higher than a degree of 2. With this in mind, the notion
of preferred models can be defined analogously to QCL:

Definition 4.4. Let F be a QCL-formula. Under our new
semantics, I is a preferred model of F iff degGI (F ) ∈ Z+

and degGJ (F ) ⊴ degGI (F ) for all other interpretations J .

First, we show that ordered disjunction is still associative
under these new semantics:

Lemma 4.5. Let F1 = ((A
#»×B)

#»×C), F2 = (A
#»×(B

#»×C))
for any QCL-formulas A,B,C. Then optG(F1) = optG(F2)

and degGI (F1) = degGI (F2) for all interpretations I.

Proof. optG(F1) = optG(F2) is immediate. Let
I be an arbitrary interpretation. We can show
degGI (F1) = degGI (F2) by distinguishing all cases for
degGI (A),degGI (B),degGI (C) ∈ {Z−,Z+}. We demon-
strate the degGI (A) ∈ Z−, degGI (B) ∈ Z−, and degGI (C) ∈
Z−. Then degGI (A

#»×B) = degGI (A) − optG(B) and
degGI (B

#»×C) = degGI (B) − optG(C). Thus, degGI (F1) =

degGI (A
#»×B)−optG(C) = degGI (A)−optG(B)−optG(C).

Moreover, degGI (F2) = degGI (A) − optG(B
#»×C) =

degGI (A)− (optG(B) + optG(C)) = degGI (F1).

Secondly, it follows directly from the above degree func-
tion that negation in our new semantics behaves as desired4.
Crucially, negation acts both on hard- and soft-constraints.

4Recall the discussion in Section 4.1.
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Moreover, F and ¬F are never satisfied by the same inter-
pretation, F and ¬¬F are equivalent, and the degree of ¬F
depends only on the degree of F .

Lemma 4.6. Let F be any GCL-formula, and let I and J be
interpretations. It holds that

• degGI (F ) ∈ Z+ iff degGI (¬F ) ∈ Z−,

• degGI (F ) = degGI (¬¬F ),

• if degGI (F ) = degGJ (F ) then degGI (¬F ) = degGJ (¬F ).

Intuitively, negation in GCL preserves information on pref-
erences by allowing for degrees of dissatisfaction. For exam-
ple, the formula ¬(a #»×b) can only be satisfied by the interpre-
tation ∅. However, we must also inspect the interpretations
that do not satisfy the formula: {b} will result in a degree of
−2 while {a} and {a, b} will result in a degree of −1, mean-
ing that {b} is more preferable than {a} and {a, b}. This re-
flects the fact that negation in GCL not only negates truth, as
in QCL, but also preferences. Also note that, unlike in PQCL,
the implication F → G can be defined via ¬F ∨G since the
antecedent F is classically satisfied if and only if ¬F is not.

4.4 Adequacy of NG

Using the notation of Section 4.2 and the degree-function
from Section 4.3, we can show the following result:

Theorem 4.7. The value of NG(P : F, I) is degGI (F ).

Proof. We use the same notation as in the proof of Theo-
rem 3.3 and proceed by induction on the following two claims
(1) δ(P : F ) = degGI (F ) and (2) δ(O : F ) = −degGI (F ).
Most of the cases are similar to the proof of Theorem 3.3, so
we focus on the cases P : F that require different reasoning:

F = G1
#»×G2: From the fact that δ respects ≪ for the

winning outcomes of both players and the game rule of #»×, we
observe the following facts: First, if the G1-game is winning
for Me, I go to G1 in the first round. Secondly, if G1 is losing
and G2 is winning, I go to G2. And thirdly, if both games
are losing, I go to G1. Since all outcomes of the G2-games
are in ≪-relation to all outcomes of the G1-game, we have
by Lemma 4.3 for all outcomes O:

δP:F (O) =


δP:G1

(O), if O ∈ W (P : G1),

δP:G2
(O) + opt(G1), if O ∈ W (P : G2),

δP:G1(O)− opt(G2), if O ∈ L(P : G1).

The last case comes from the fact that O ≫ O′ for
all O′ ∈ O(P : G2), Lemma 4.3 and the definition
of δ. We now use the inductive hypothesis: in the first
case from above, O(P : F ) ∈ W (P : G1) and therefore
δ(P : F ) = δ(P : G1) = degGI (G1). In the second
case, O(P : F ) ∈ W (P : G2) and therefore δ(P : F ) =

δ(P : G2)+opt(G1) = degGI (G2)+opt(G1). Finally, in the
third case, O(P : F ) ∈ L(P : G1) and therefore δ(P : F ) =

δ(P : G1)− opt(G2) = degGI (G2)− opt(G2).
F = ¬G: The game continues at O : G. Therefore, us-

ing the inductive hypothesis (2), δ(P : F ) = δ(O : G) =

−degGI (G) = degGI (F ).

Cases where I am in the role of Opponent are similar. For
example, let us consider O : G1 ∧G2. In the first move I
choose between the two subgames O : G1 and O : G2. I
seek to maximize My payoff, so I go to the subgame with
⊴-maximal value. Therefore, using the inductive hypothe-
sis, δ(O : G1 ∧G2) = max{δ(O : G1), δ(O : G2)} =

max{−degGI (G1),−degGI (G2)} =

−min{degGI (G1),deg
G
I (G2)} = −degGI (G1 ∧G2).

5 Towards Preferred Model Entailment
In future work we plan to present a lifting of the GTS for GCL
to a provability game for preferred model entailment5. This
lifting is done in two steps. First, the game is extended to
a family of truth-degree comparison games [FLP20; PFL21]
parametrized by r ∈ Z. The rules of this game closely follow
the rules of NG to ensure that I have a winning strategy in
the new game iff I have a strategy for NG with payoff ⊵ r.

In the second step this game is lifted to a disjunctive game
[FM09; Fre21]. Intuitively, the two players play all GTS-
games over a fixed formula simultaneously over all models.
Additionally, I am allowed to make back-up copies of game
states, which I can return to later. I win this game iff I win in
at least one back-up copy. We will show that the disjunctive
game adequalty models preferred model entailment. Further-
more, My winning strategies directly correspond to proofs
in a cut-free sequent-calculus. The technique of disjunctive
states has already been demonstrated for a number of GTS
for different logics [FM09; Fre21; FLP20; PFL21]. The case
of GCL is the first to require a two-step lifting and give rise
to a deduction/refutation system [Gor19].

6 Conclusion
This paper proposes game semantics for the language of
Qualitative Choice Logic (QCL), and thereby show that
game-theoretic semantics (GTS) are well-suited for logics
such as QCL in which soft- and hard-constraints are ex-
pressed in a single language.

On the one hand, we show that the degree-based seman-
tics of QCL can be captured naturally via GTS. The notion
of optionality, which must be defined a-priori in QCL, arises
naturally in our setting as a property of game trees.

On the other hand, we make use of GTS negation to intro-
duce a novel semantics for the language of QCL. We show
that this new semantics avoids issues with negation in QCL
and Prioritized QCL (PQCL) while retaining desirable prop-
erties such as associativity of ordered disjunction.

Regarding future work, we outlined how our game seman-
tics can be lifted to a provability game by which a cut-free
sequent calculus can be obtained. We also plan to exam-
ine our new semantics with respect to computational prop-
erties, and to investigate how our approach can be adapted
to formalisms related to QCL such as other choice logics
[BB16; BMW20; BMW21] or the lexicographic logic intro-
duced by Charalambidis, Papadimitriou, Rondogiannis, and
Troumpoukis [Cha+21].

5In preferred model entailment, a set T of QCL-formulas entails
a classical formula F if F is true in all preferred models of T .
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