
Robotic Grasping of Tiny Objects with a Suction Cup

DIPLOMARBEIT

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. M. Vincze
Projektass. Dipl.-Ing. P. Ausserlechner

submitted at the

TU Wien
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Lukas Rinnofner

Matr.Nr.: 01525111

Wien, am 8. März 2023

Vision for Robotics Group
A-1040 Wien, Gusshausstr. 27, Internet: http://www.acin.tuwien.ac.at

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grundsätzen
für wissenschaftliche Abhandlungen von mir selbstständig erstellt wurde. Alle verwendeten
Hilfsmittel, insbesondere die zugrunde gelegte Literatur, sind in dieser Arbeit genannt und
aufgelistet. Die aus den Quellen wörtlich entnommenen Stellen, sind als solche kenntlich
gemacht.

Das Thema dieser Arbeit wurde von mir bisher weder im In- noch Ausland einer Beurtei-
lerin/einem Beurteiler zur Begutachtung in irgendeiner Form als Prüfungsarbeit vorgelegt.
Diese Arbeit stimmt mit der von den Begutachterinnen/Begutachtern beurteilten Arbeit
überein.

Wien, am 8. März 2023 _______________

Lukas Rinnofner

Danksagung

Am Beginn meiner Diplomarbeit möchte ich meinem Betreuer Herrn Ao.Univ.Prof. Dipl.-
Ing. Dr.techn. Markus Vincze für die Anregung zu diesem interessanten Thema, die
zahlreichen hilfreichen Ideen und die konstruktive Kritik zu meiner Arbeit meinen Dank
aussprechen. Ebenfalls danken möchte ich meinem Zweitbetreuer Herrn Dipl.-Ing. Philipp
Ausserlechner für sein Feedback und seine fachliche Unterstützung.

Abschließend gilt mein Dank meinen Eltern, die mich bei meinem gesamten Bildungsweg
stets unterstützt haben. Ohne sie wäre ein Abschluss meines Studiums in dieser Form
sicher nicht möglich gewesen.

II

Abstract

Evolved from simple manipulators, robots have progressively turned into all-round helpers
for various tasks. The ability to grasp objects poses a fundamental skill for autonomous
machines. Pick-and-place tasks in a crowded household remain still challenging for state-
of-the-art robots. For this thesis, a program to perform pick-up maneuvers with a suction
cup was created. The goal was to pick tiny objects reliably and place them at a target
position. To achieve this, a custom dataset was created to set up an object detection
system. With the dataset, an object detector, able to localize things of interest, was
trained. Subsequently, feasible grasp poses can be determined and reached using a motion
planner to avoid any collision with obstacles. After a successful grasp, the robot is
able to recognize a storage box and drop an object in it. For transitions between these
program parts, a state machine was designed. Various experiments were carried out
to test the developed concept. These involved picking tasks with different items and
additional obstacles. The results showed that the robot can pick up tiny objects reliably
in real-world scenarios. The final program enables further research to easily investigate
different approaches for detection and motion planning.

III

Kurzfassung

Ausgehend von einfachen Manipulatoren haben sich Roboter zunehmend zu vielseitig
einsetzbaren Helfern für diverse Aufgaben entwickelt. Die Möglichkeit Objekte zu ergreifen
stellt eine grundlegende Fähigkeit für autonome Maschinen dar. Pick-and-Place-Aufgaben
in einem überfüllten Haushalt sind für moderne Roboter immer noch eine Herausforderung.
Für diese Diplomarbeit wurde ein Programm zur Durchführung von Aufhebe-Manövern
mit einem Saugnapf entwickelt. Ziel war es, kleine Objekte zuverlässig aufzuheben und
sie an einem Zielort abzulegen. Um dies zu erreichen, wurde ein eigener Datensatz
erstellt und ein Objekterkennungssystem entwickelt. Mit dem Datensatz wurde das
Erkennungsprogramm trainiert. Damit können Objekte lokalisiert werden und anschließend
passende Greifpositionen berechnet werden. Die Verwendung eines Bewegungsplaners
ermöglicht es, die berechnete Position zu erreichen und eine Kollision mit Hindernissen
zu vermeiden. Nach einem erfolgreichen Aufheben ist der Roboter in der Lage eine
Lagerbox zu erkennen und ein Objekt darin abzulegen. Für die Übergänge zwischen
diesen Programmteilen wurde eine State-Machine entworfen. Um das entwickelte Konzept
zu testen, wurden verschiedene Experimente durchgeführt. Dabei handelte es sich um
Aufhebe-Aufgaben mit unterschiedlichen Gegenständen und zusätzlichen Hindernissen.
Die Ergebnisse zeigten, dass der Roboter in der Lage ist kleine Objekte in einem realen
Szenario zuverlässig aufzunehmen. Für zukünftige Forschungen ermöglicht das finale
Programm eine einfache Untersuchung von verschiedenen Ansätzen zur Objekterkennung
und Bewegungsplanung.

IV

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Challenge . 2
1.3 Approach and Contributions . 3
1.4 Results . 4
1.5 Thesis Outline . 4

2 Related Work 5
2.1 Pick-and-Place Robots . 5

2.1.1 Amazon Picking Challenge Winner 5
2.1.2 Industry Robots . 7
2.1.3 The Toyota HSR . 8

2.2 Computer Vision . 9
2.2.1 Neural Networks used for Computer Vision 9
2.2.2 Mask R-CNN . 11

2.3 Motion planning . 12

3 Basics for Robotic Programming 16
3.1 ROS and its Plug-ins . 16
3.2 State Machines . 19
3.3 Python Controls . 20

4 Tiny Objects Program 21
4.1 Program States . 21
4.2 Finding Objects . 23
4.3 Picking up Objects . 26
4.4 Lay-Down and Handover . 29
4.5 User Interface . 30

V

Contents Contents VI

5 Experimental Evaluation of TOP 32
5.1 Experiment Setup . 32
5.2 Experiment Results . 36
5.3 Discussion of Failures . 38
5.4 Performance Evaluation . 40

6 Conclusion 42

Bibliography 44

Acronyms 48

List of Figures 49

List of Tables 51

Listings 52

VI

CHAPTER 1

Introduction

In the past years, robots have been able to offer more and more support for humans.
In particular, various of them found their way into many households. These so-called
service robots can perform useful tasks for humans. Today, already available commercial
products for households can clean floors and pools or mow the lawn. In the future, more
sophisticated tasks will likely be done by robots too. This would involve tasks like cleaning
a complete household and assisting elderly or disabled people with their daily needs.
As the number of possible jobs for a robot increases, as complex the development of
such machines gets. Designing an ideal kinematic construct for a manipulator, finding a
suitable motion planning algorithm, or detecting and localizing various objects are just a
few examples of current challenges. These interdisciplinary challenges intersect with the
domains of computer science, electrical and mechanical engineering and others. Using the
previously done work on hard- and software in the field of robotics, this thesis aims to
contribute to this knowledge by tackling the problem of a pick-and-place task.

1.1 Motivation

The Human Support Robot (HSR) from Toyota, was developed to serve humans in their
households. A simple task like bringing a glass of water is a large challenge for a robot. It
must be able to move around in a crowded environment and find a water source. The tap
must be known, and feasible grasps must be calculated. Robotic researchers tackle various
other examples of such problems. To push this development, Toyota provides the HSR to
different universities as a research object. One was given to the Vision For Robotics team
(V4R) at the TU Wien, which is focused on computer vision related problems. Different
object detection and pose estimation algorithms are tested with the HSR [1], [2]. These

1

1 Introduction 1.2 Challenge 2

methods are examined with grasping experiments using the robot’s gripper. The gripper
is not practicable for tiny objects and therefore, pick-up maneuvers with the suction cup
shall be investigated. In doing so, a basic structure for grasping tasks with the ability to
test other more refined detection and grasping algorithms should be created.

1.2 Challenge

Grasping an object resembles a simple task for humans but represents a complex problem
for a robot. There is still an extensive amount of research left until robots are able to
operate in a normal household environment without problems. In order to adapt robots to
specific problems in the human surrounding they can be equipped with hardware that is
superior to its human equivalent. An example in terms of grasping would be the use of a
suction cup. A cup can lift objects just by creating a vacuum on plain surfaces. Hence the
term "tiny objects" in the thesis title could also be interpreted as "thin" or "flat objects",
which have proper surfaces to generate a vacuum on. Many household items have flat
surfaces, and by exploiting those, appropriate grasping points can be calculated without
the knowledge of all 6 degrees of freedom (DoF) of the object. As another approach to
the formerly developed pose estimators, a simpler way of finding suitable grasp points is
examined here.

Figure 1.1: The Human Support Robot with
household items and the storage box

Three goals are defined. The first is a functional detection of tiny objects with the HSR
visual system. Next is achieving a pick-up maneuver with the suction cup, and the last
goal is an additional handling of the picked objects. This involves finding the proper
storage box and performing a drop maneuver. Figure 1.1 shows the HSR with a selected

1 Introduction 1.3 Approach and Contributions 3

set of ordinary household objects on the table. The card, box, and coin to the right
resemble tiny objects, which are the targets of the suction cup pick-up tasks, and the
spam and mustard function as additional distractors and obstacles. Also, the storage box
is visible in the background. In Figure 1.2, a sketch of the overall goal can be seen. After
reaching a given waypoint, the robot should pick a tiny object, move to the known drop
point and place the item inside the storage box.

suction cup

tiny object

gripper

storage box

Figure 1.2: Pick-and-place goal

1.3 Approach and Contributions

To achieve the chosen goals, a Python [3] program for the robot was created. The developed
grasping program is called Tiny Objects Program or short TOP. As shown in Figure 1.3,
the goals of the three main parts resemble the core parts of the software. A successful
pick-up move must run through the program in the given order. In the design process
the same sequence was kept. First, an individual detection system was created. This
system was trained with a specially created dataset including images of cards, boxes, and
coins. Each of the three objects can be detected with the HSR’s RGB-D sensor. A ROS
service is used for the detection system, making it possible to change the trained model
easily. In the next step, as shown in the yellow box in Figure 1.3, a feasible grasp pose
had to be created and reached with the robot’s manipulator. An appropriate suction cup
position over the sought-after item is determined using its localization given by the three
translational DoFs. Obstacles are detected by the depth sensor and a motion planner is
used to find a collision free trajectory to the grasping pose. The method’s precision is
sufficient to pick cards and boxes. The green box outlines the last step of TOP. In this,
the robot can handle a picked object in different ways. A drop maneuver was developed
to store objects. Thereby, the HSR is able to recognize a storage box with a QR code.
Again the motion planner is used to move the robot’s arm in the box. Then the picked
item is dropped by pushing the suction cup over the box’s edge.

The main contribution of this thesis is a working program for the Toyota HSR to execute
pick-and-place tasks of tiny objects with the suction cup. The complete program can be
accessed over [4]. All essential goals of the three main parts could be achieved. Each section

1 Introduction 1.4 Results 4

Object
Detection

Grasp
Execution

Further Object
Handling

Figure 1.3: The three main parts of the Tiny Objects Program (TOP)

was designed separately, making it possible, to execute the main functions independently.
A state machine was created to manage the transitions between these functionalities and
additional error-handling parts. To execute a complete pick-up task, a set of waypoints
is given to the robot. Those are used to define locations with a good view on a table or
shelf and mark the storage box or the handover position. The basic structure of the state
machine is also adaptable to integrate more error treatments.

1.4 Results

The feasibility of various grasping tasks was verified by experiments. With the developed
program, the HSR is able to perform pick-and-place maneuvers with cards and small boxes.
For coins, another method with more precision is needed. The tests proved that a simple
approach to object detection and grasp point estimation is enough to pick up objects with
a flat surface. Different grasping tasks involving obstacles were carried out to examine
the detection system and the motion planner. A rating system was created to review the
success rate of the grasping tasks. The achieved score shows the capability to pick up tiny
objects in a simple real-world setup reliably. Further experiments were done to investigate
the weaknesses of the program. They showed additional promising possibilities in terms of
object detection and motion planning, especially in avoiding collisions with other objects,
to accomplish better results in more crowded real-world settings.

1.5 Thesis Outline

The following chapter depicts the state of the art in related terms of science. This includes
modern pick-and-place robots and methods for object detection and motion planning.
Chapter 3 outlines the basics behind the programming of a robot and describes some of
the used software. In chapter 4, the development of TOP and the thoughts behind it are
shown in detail. The finished program was tested with a variety of experiments, which are
documented in chapter 5. In the last chapter, this thesis ends with an overall conclusion
and suggestions for potential future work.

CHAPTER 2

Related Work

In this chapter, a look is taken at the related research areas of this thesis. The first section
provides an outline of different robots and their use of suction cups. The build of the
robot, which is later used for experiments, is explained and it is compared to similar
robots equipped with suction cups. In the next subchapter, computer vision and the
basics behind it are explained. The last section shows different solutions to the problem
of robot motion planning.

2.1 Pick-and-Place Robots

In this section, three different robots for pick-and-place operations are listed and described.
The first one was developed to compete in a challenge with other robots to compare
different ways of tackling one task. The insight of the development team is outlined. The
second one is an example of a robot sold by an industrial robot company. Some features,
more specific for an industry robot, are listed. The last section describes the robot used
later in this thesis for picking up thin objects.

2.1.1 Amazon Picking Challenge Winner

To compare the accomplishment of different robots, competitions, and other scoring
systems are needed. One competition was the Amazon Picking Challenge, which was
attended by 25 university teams from all over the world. The goal was to address the
typical warehouse problem of picking a variety of things from a subdivided shelf. The list
of objects included paper boxes, plastic packages, balls, a pencil cup, and more things

5

2 Related Work 2.1 Pick-and-Place Robots 6

of other shapes. The robot should be able to locate a specific object correctly, grasp it,
and put it in a bin beside the shelf. Difficulties of such a task are the alternating form of
the objects, the different materials and surfaces, the long shelf, which leads to visually
declined images in the back area, and the cluttered order with objects lying beside each
other.

In [5], the winner team of the 2015 challenge is describing their robot. A few of their key
elements during the designing process and their evaluation are summarized here. Taking
a look at the hardware of the robot, part of its success is, besides the holonomic mobility,
its end effector. The end effector consists of a suction cup on a crevice nozzle. The system
is capable of producing an air flow with a 250 W vacuum cleaner. This strong suction
force, which can lift up to 1.5 kg, is insensitive to small deviations of the ideal grasp
point location and therefore reduces the precision requirements of the object detection. In
Figure 2.1 the slim form of the end effector can be seen. This form is ideal for reaching
objects in the back of a crowded shelf, without a large risk of colliding with other objects.
The evaluation of the failure cases shows that the most likely unsuccessful picking attempt
is due to an object recognition failure. A disadvantage of the suction cup system is the
lack of the ability to pick up the pencil cup, because of its permeable structure.

Figure 2.1: The robot during the challenge [5]

On the software side, the robot is built on a modular system with ROS [6] in combination
with other modules like OpenCV [7] for perception or [8] for navigation. Due to the high
grade of uncertainties, complex motion planning is replaced by very simple planning and
a feedback approach. The grasp pose is planned beforehand and during the execution,
the robot uses pre-defined motions in combination with sensor feedback gained from the
contact surfaces of the objects or the shelf. There are two possible grasp poses: One
from the top and one from the side. The selected pose is picked with the use of a scoring
system, which considers the success rate of a pose in combination with the orientation of
the object and the available space for the end effector. During the grasp, the suction cup
presses the items against the shelf. In doing so, the need to calculate an ideal grasp point
is neglected by exploiting the environment. The team’s solution is positioned far on the

2 Related Work 2.1 Pick-and-Place Robots 7

feedback side. In comparison to that, the majority of other teams relied more on motion
planning.

The winner of the 2018 challenge is described in [9]. This robot is also equipped with a
suction cup as the primary picker and an additional gripper for manually specified items.
Calculating the grasp pose is done with three different strategies. The first tries to find
surface-normals if accurate depth information of an item is available. These normals are
weighted, and the best grasp point is chosen. If there are just scattered depth points,
such as coming from partially reflective objects, the second method picks a single grasp
point at the center of the depth point cloud. The last strategy uses the RGB image of the
camera to estimate an object’s position. The center of the object’s RGB segment is used
as grasp point and the grasp is executed vertically.

2.1.2 Industry Robots

Properties like reliability and economic efficiency are not prioritized in robotic scientific
research. The research focuses on developing new concepts and methods to gain knowledge.
The robot of the Amazon Picking Challenge winner team succeeded in picking up ten of
twelve objects [5]. This performance can be considered sufficient for a challenging task
with many uncertainties and where feasibility is the goal. If the robot should support
or replace a human worker instead, this success rate must be raised. Therefore more
common industrial solutions aim to achieve higher reliability in handling simpler tasks
with known boundaries. An example could be a pick-and-place task, where the form
and the location of the parts are known, or a transport of an object from one point to
another on a predefined route. In such cases, the robot can be designed and programmed
specifically, and the software just needs to handle minor deviations from the predefined
assumptions.

Figure 2.2: SWIFTI CRB 1100 from ABB [10]

One example of collaborative robots or cobots would be the SWIFTI CRB 110 from ABB
[10], which can be seen in Figure 2.2. This stationary manipulator can be controlled
by an interface or programmed for pick-and-place operations. In combination with an

2 Related Work 2.1 Pick-and-Place Robots 8

external camera, the objects can be in a cluttered order. The robot can be equipped with
suction cups or a gripper, depending on the use case. ABB developed safety features for a
collaborative environment where humans and robots work and interact with each other.
The presence of humans can be detected by a laser scanner, and the system slows down
any movements when a person is in a closer range. If the person gets too close, the robot
stops, and removing or adding parts to the working space is possible. In terms of working
capacity, the maximum payload is 4 kg with a Tool Center Point (TCP) speed of 5 m/s.
In operation, the achievable accuracy is up to 0.01 mm.

2.1.3 The Toyota HSR

This section gives an overview of the Human Support Robot (HSR) from Toyota. The
HSR was used for developing the program to pick up flat objects in this thesis. In [11],
the development of the HSR is documented, and the following information is taken from
there. The motivation to design such a robot was the demand for a helping companion
in households of older people similar to service dogs. To identify the main tasks, which
HSR should be able to perform, potential service dog users were asked. After evaluating
the responses, the focus was given to carrying tasks and the ability to remote control the
robot. The finished form of HSR can pick up objects with a weight of up to 1.2 kg from
the floor or up to a height of 725 mm by grasping from the top, side, and front directions.
The arm can be extended to a height of 1375 mm. A maximum velocity limit of 0.8 km/h
is set for safety reasons. The given target of not exceeding a maximum kinetic force of 10 J
is reached, and in an unfavorable case the energy was 3,24 J. For flat objects, a suction
pad, capable of producing a force up to 3 N, is added to the gripper.

Figure 2.3: The HSR is equipped with various sensors [12]

The software architecture operates with ROS, and a real-time subsystem with a Linux
kernel manages the motion control. The robot has a variety of sensors, which can be seen

2 Related Work 2.2 Computer Vision 9

in Figure 2.3. The access of the sensor data can be done over ROS topics or with Python.
To detect objects, either the RGB images of the head stereo camera or the 3D sensor can
be used. The 3D sensor is capable of providing an RGB image and a depth image. Intense
calculations for object detection can be outsourced on external hardware, transferring
data over wireless or wired LAN. The laser range sensor on the mobile base is used for
collision detection. There are also additional sensors to those in Figure 2.3 like a hand
camera, a force and torque sensor in the hand, and a pressure sensor for the suction cup.
The use of the software and the motion planning are explained in more detail in later
sections.

The HSR and the SWIFTI CRB 1100 are designed for different applications. The ABB
robot achieves a high precision with faster speed compared to the HSR. This is possible
due to the safety measures, where no human is near during fast movements. The HSR
ensures safety by reducing the kinetic energy and also achieves a more harmless impression,
compared to a fast-moving industry robot. Path planning of HSR movements is done by
inverse kinematics. If the gripper touches a surface, the feedback can be used over the
arm force sensor. Similar to the Amazon Picking Challenge winner [5], this can be used
for tasks with known boundaries.

2.2 Computer Vision

The term computer vision covers a variety of domains in science, which all have the goal
to extract information from images, similar to the human visual system. The processed
data can be multiple images, videos or also depth information from 3D scanners. This
interdisciplinary field deals with getting, processing and evaluating digital images. The
focus of this section lies in the analysis of images in terms of object detection and pose
estimation. With the use of object detection, a machine should be able to classify and
localize a specific object shown in an image. Classification is the ability to identify the
presence of an object which could be a person, household things, an animal or something
else. Localization defines the position of an object, which is then marked with a bounding
box.

2.2.1 Neural Networks used for Computer Vision

Popular state-of-the-art methods for computer vision tasks use convolutional neural
networks (CNN). In recent years some of those methods had become so powerful that even
human competitive results are achievable [13]. In this subsection, at first a look is taken
at the basics of feedforward neural networks (FNN) followed by CNNs. The presented
information of CNNs is based on [14]. Figure 2.4 shows a simple FNN, which consists of 3
layers. A multidimensional vector is mostly the input for the first neurons. Depending
on the type, usually inside a neuron the inputs are multiplied with weights, summed up,
and fed into an activation function. This function transmits the output to the next layer,
a hidden layer in the example. A perceptron is a single neuron network, which has just
zero and one as output value. The weights of this neuron get updated by calculating
the loss function on the training set and using backpropagation. Supervised learning is

2 Related Work 2.2 Computer Vision 10

the training with labeled data, meaning for a given input a specific output is predefined.
Unsupervised learning is without prior labeling of the data, but in terms of image pattern
recognition usually the training is supervised. The structure of FNNs comes along with
disadvantages in terms of object detection. For just a 28x28 pixel, black-and-white image
one neuron of the first hidden layer would receive 784 inputs. This produces a complex
structure with a large number of weights, which scales with the image size. Training those
weights is computationally intense, and it is more difficult to prevent overfitting. CNNs
have proven to be better in terms of object detection, as they are reducing the number of
trainable weights.

Hidden Layer

Input 3

Input 2

Input 1

Input Layer

Output Layer

Output

Figure 2.4: Simple feedforward neural network

Compared to the FNN a CNN consists typically of three different layer types: convolutional,
pooling and fully-connected layers. A convolutional layer uses a trainable kernel and parts
of the input matrix to calculate a new matrix. A kernel can be understood as a filter
for specific patterns for example edges. In Figure 2.5 the process of a 2D convolution
and pooling can be seen. In this example the input is a 6x6 matrix. By multiplying
3x3 parts with different kernels, which consist of weights trained for different patterns,
the values of new 6x6 matrices are calculated. Different methods exist for handling the
matrix edges, which can also lead to a reduction in the matrix size. The pooling layer
always reduces the size of the matrix, where max pooling is the preferred method. This
leads to a smaller amount of weights needed in the next layers and usually the number
of kernels is increased. A CNN consists mostly out of different convolution and pooling
layers. After those, fully-connected layers are used. They are created with a structure of
normal feedforward layers. The number of neurons in the output layer can be the amount
of different classes, which are detectable by the network. The advantage of CNNs is their
reduced complexity compared to FNNs. In a convolution layer, the same kernel values
are used for the whole input matrix. The number of training weights are reduced to just
the kernel values, allowing CNNs to handle larger input images without an increase of
network complexity. This makes them the preferred state-of-the-art method in terms of
object detection.

2 Related Work 2.2 Computer Vision 11

6 x 6 6 x 6

3 x 3

max poolingconvolution

x kernels

max value

Figure 2.5: CNN convolution and pooling

Figure 2.6: Instance segmentation done with Mask R-CNN [16]

2.2.2 Mask R-CNN

With CNNs classification tasks can be done significantly better as with FNNs, but
additional parts are needed to localize the found object on the image. The desired goal
here is instance segmentation, meaning to detect all pixels from the same object and not
only a bounding box. An example for instance segmentation can be seen in Figure 2.6,
where known objects and persons are marked with different colors. The library Detectron2
[15] provides algorithms for detection and segmentation. With this platform the Mask
R-CNN detector is later used.

Mask R-CNN [16] is built up on the Faster R-CNN framework [17]. The structure of Faster
R-CNN is shown in Figure 2.7. An input image is first processed with convolutional layers
into feature maps. The feature maps serve as input for the Region Proposal Network
(RPN), which outputs candidate bounding boxes. This is done with anchor boxes in
different scales and aspect ratios, a classifier and regressor. The probability, that an object
is inside a proposal, is determined by the classifier. The regressor regresses the bounding
box, estimated by an anchor box, into a refined estimated bounding box. The RPN gives
back proposals for potential objects in the feature map.

Mask- and Faster R-CNN proceed differently after the RPN. Faster R-CNN uses Region of
Interest (RoI) pooling to produce fixed size feature maps. These maps are then classified
and the outputs are bounding boxes with their specific object labels. As seen in Figure

2 Related Work 2.3 Motion planning 12

Figure 2.7: Faster R-CNN framework [17]

2.8 Mask R-CNN uses RoIAlign instead. This is an improved method for pooling. Next,
the RoIAlign output is used with a CNN to determine the object class at first. Decoupled
from the classification, another CNN is used to finally determine the segmentation. For
each object learned by the network, the output of Mask R-CNN is then the object class, a
bounding box and a binary mask indicating the pixels of the object.

Figure 2.8: Mask R-CNN framework [16]

2.3 Motion planning

Motion planning is the process of finding a feasible sequence of joint trajectories so that a
robot’s end effector can reach its target pose. This includes solving the problems of path
planning, trajectory planning, and joint control. Starting with a given goal as a grasp
pose, which could come from a human user interface or the object detection system of

2 Related Work 2.3 Motion planning 13

the robot, the end effector has to reach this position. In Figure 2.9, a simple planning
flowchart can be seen. The first step is to define the final position in joint coordinate
space. Therefore the path planning algorithm uses inverse kinematics to calculate the
joint angles from a given gripper pose. In most cases, this results in an over-determined
kinematic problem, because there are several possible joint positions. Here the nearest
possible solution to the actual position can be picked to obtain the joint angles. If there
are obstacles present, the path cannot be a straight movement to the goal. Then the path
planning algorithm needs to find a path with collision avoidance. If a possible path is
found, the trajectory planner calculates suitable velocities and accelerations for the joint
controller. This is done by using splines as paths and derivating them.

gripper
poseGrasp Pose

Generation

joint
angles

Inverse
Kinematics

Trajectory
Planning

joint
trajectory Joint

Controller

path

gripper
pose

Path
Planning

Figure 2.9: Motion planning flowchart

Most common mounted manipulators have 6 degrees of freedom. Able to move its base,
the HSR for example has a total of 8 DoFs. Therefore, to solve the inverse kinematic
problem, two joints are calculated and then used as parameters in the inverse kinematics
analytic equation. The obtained solutions are then optimized to a final one with the use
of a weighting function. The weight is previously defined and either prefers a larger base
or arm movement [12]. If there are no obstacles to avoid, the robot’s path just needs to
respect the joint limitations and can be designed as a simple, desired angle value for each
joint controller. The typical workspace of a service robot is mostly crowded with a variety
of obstacles, which can change locations. Therefore collision avoidance has to be taken
into consideration.

To explain how a path with collision avoidance can be found, an example is shown in
Figure 2.10. The shown method is a probabilistic roadmap method (PRM), which is one
possible way of pathfinding. This method was introduced in [19]. In (a) a robot arm
with 3 DoFs and two spherical obstacles can be seen. The translucent arm represents the
goal pose. The configuration space can be seen in (b), where the 3 DoFs represent the 3
axes of the coordinate system. The colored areas are all configurations where the robot
would be in contact with the obstacles, and the two points in blue and yellow are the start
and goal poses. Usually, these analytical areas of the obstacles in the configuration space
are not calculated. Only collision checks for each configuration are done. In (c) a set of
random configurations is created, and the red points indicate an invalid configuration.
The valid ones are connected with their neighbors within a defined radius. A path is found
if there is a possible connection between the valid configurations from the start to the goal
point. After adding more random configurations, a collision-free path is found, as shown

2 Related Work 2.3 Motion planning 14

(a) Workspace with obstacles (b) Configuration space with obstacles

(c) Configuration space with random
configurations

(d) Configuration space with a found
path

Figure 2.10: Example of PRM planning (Generated with [18])

in (d). This might not be the shortest path, resulting in some unnecessary movements of
the robot arm. If the number of configurations is increased, shorter paths can be found.
Another benefit of the PRM method is that for fixed obstacles a once-created roadmap
can be used for arbitrary start and goal points. Modifications of the shown PRM are one
of the state-of-the-art methods in path planning.

Another concept behind many state-of-the-art methods was published in [20] called rapidly
exploring random tree (RRT). In this method, trees of possible configurations expand
from the starting point. The key advantage is the expansion towards unexplored regions.
One point is created randomly and then added as a vertex to the closest available node
if it is not in collision with an obstacle. A connection to a new point must also match
with any non-holonomic constraints of the robot’s mechanics. The random generation
is customizable, making it possible to use some RRT methods for better performance in

2 Related Work 2.3 Motion planning 15

specific cases. In Figure 2.11 further developed RRT methods are shown. Both methods
are capable of finding a suitable path in the configuration space. RRT* evaluates the
distance from a newly added vertex to the starting point and picks the shortest path.
Therefore the trees can reroute themselves. In [21] is shown that RRT* is more likely to
converge to an optimal solution and outperforms the RRT algorithm. As another example
of an RRT variant, the random node generation in RRT*N is additionally biased in a way,
that new nodes are generated toward the goal point. This results in the development of
fewer tree branches, as seen in Figure 2.11 (b).

(a) RRT* path planning (b) RRT*N path planning,

Figure 2.11: Different variants of RRT methods [22]

In [12], the used path planner of the HSR is called the Constrained BiDirectional RRT 2
(CBiRRT2) [23]. This algorithm tries to connect two RRTs starting from the start and
goal position. It also allows planning with constraints such as collisions, torque, or balance.
MoveIt was also used in some cases instead of the original planner, which is accessible
through Python commands. This was done because the HSR MoveIt package offers better
support in terms of dynamic obstacle detection. MoveIt uses the Open Motion Planning
Library (OMPL), which includes a set of different motion planners [24]. The default
planner of OMPL is KPIECE [25], but the planner cannot operate with the HSR, so RRT*
was chosen. More details on the HSR motion planning can be found in section 4.3.

CHAPTER 3

Basics for Robotic Programming

This chapter gives a brief overview of the software ROS as the operating system for many
robots. The core concept behind ROS is explained, and some practical, additional software
is shown. Then a brief look is taken at the basics of state machines and their use for
sequencing operations. Last, an example for Python commands to control the HSR is
given.

3.1 ROS and its Plug-ins

ROS functions as the core of the information and command manager behind the developed
program from this thesis. The idea and thoughts of the ROS developers are described in
[6]. Robot Operating System or short ROS is not an operating system in a traditional way.
Instead, it manages the communication between programs on a host operating system.
Before ROS, robotic researchers had to create frameworks to handle the complexity of a
robot. In many cases, software was adjusted for a specific purpose, and other frameworks
had to be designed for other cases. ROS was created to provide one single framework,
which should be used in various cases without repeatedly redesigning essential software.
The design goals of ROS are the following. The peer-to-peer communication ability is
one key element. Computers, executing computational-intense tasks like object detection,
can share information directly with others. Another advantage of ROS is the possibility
of using different programming languages. According to [26], ROS supports Python,
C++, and Lisp. It should be mentioned that the later used packages in chapter 4 have
instructions for Python and C++, where C++ can have additional commands in cases
like in MoveIt [27]. The core system is designed efficiently so that additional debugging or
logging tools can be used but are not loaded in as default. Various other software projects

16

3 Basics for Robotic Programming 3.1 ROS and its Plug-ins 17

are available for ROS, and the focus was to make the entanglement between those as small
as possible.

Node Node
Topic

Message
Integer,

Boolean, ...
SubscriberPublisher

Reply
Service
Server

Service
Client

Action
Server

Action
Client

Request

Goal
Feedback

Result

Figure 3.1: Communication concept in ROS

A few terms of the concepts in ROS are described here [28]. The most common terms are
the following. Packages are the primary unit for organizing software in ROS. A package
includes nodes, configuration files, dependencies, and other information. Distributing
software can be done by releasing a package or a repository consisting of a collection
of packages. Nodes are performing computational tasks. These operations can be a
Python or C++ script calculating something, a program controlling a sensor, or something
else. A message is used to communicate between nodes, and the transferred information
is previously declared. Figure 3.1 shows the information-sharing concept between two
nodes. The information exchanged inside a message can be standard types like integers,
arrays, or custom types. A service is used for the one-way exchange of data. For example,
controlling a LED can be done by a service server. The server takes requests from a client,
handles them, and gives a response to the client. In a similar way, an action server is
operating [29]. An action client sends a defined goal to the server, additionally the client
can request feedback during the operation or abort it. An action server could control the
base movements of a robot and get a location as the goal. The client gets the result once
the goal is reached or aborted. Goal, feedback, and result can contain standard types
similar to messages.

One of the most significant benefits of using ROS is the access to a variety of additional
software over an interface. The robotic simulator Gazebo can be used with ROS to
simulate a robot in a physical environment [30]. Before testing code on a real robot,
simulating it is a cheaper and faster option, especially for debugging. It is possible to
create a simulation world in Gazebo with the use of pre-built objects. Toyota has already
built a model of the HSR for Gazebo and provides objects like household articles, furniture,
and boxes with QR-Codes. With those, the object detection of the HSR can be tested
without having access to the real robot. The robot can be seen in a simulated household

3 Basics for Robotic Programming 3.1 ROS and its Plug-ins 18

in Figure 3.2. A physics engine calculates interactions with objects. Therefore motion
planning and grasping can be tested in Gazebo too.

Figure 3.2: A HSR world created from Toyota in Gazebo

Figure 3.3: The view from the robot in RViz

Another helpful visualization tool of ROS is RViz [31]. With the usage of camera data,
RViz is able to create a 3D visualization environment. In Figure 3.3, the view of the
HSR robot can be seen. The RGB image of the head sensor, combined with the depth
information, generates a 3D model of the environment the robot is observing. Other
images from the head stereo aspect or the hand camera are visible on the right side.
Additionally to the camera, other sensor data of the lidar system is displayed as red
voxels near the ground surface, indicating known collision points. Other collision areas,

3 Basics for Robotic Programming 3.2 State Machines 19

detected by the depth sensor, can also be displayed. The green areas on the ground are
labeling objects and walls from a predefined map. The visual information about collision
points and obstacles can be used to understand specific paths during a robot’s movement
with collision avoidance. Coordinate systems of fixed points, objects, or robot parts can
be displayed for geometry-related tasks. The end effector’s coordinate system is visible
in Figure 3.3. A variety of custom display settings can be chosen in RViz, making it a
convenient tool for debugging.

3.2 State Machines

In the domain of computer science, state machines are computational models to perform
specific tasks in a row. A state can have an input value, do calculations with it, or compare
it to another saved value and transmit a result to different outputs, which can be other
states or the end of a finite state machine. In robotics, constructing a state machine helps
build a problem-solving algorithm. It is often easier to divide a task into smaller steps for
clarity.

move out

goto home

vacuum on

goto grasp

goto view

goto bin

object rec.

wiggle

vacuum off

success

attempt next object

retreat

failure

add object to end of queue

stuck on floor

object not found

sense collision

sense collision

object not grasped

Figure 3.4: The state machine of the Amazon Picking Challenge robot [5]

A simplified version of the state machine used in [5] can be seen in Figure 3.4. Beginning
from the starting state "goto home", the desired workflow is indicated by solid arrows. The
dashed lines lead to problem-handling states. For example, if the proper object is found in
the "object rec." state, the next step would move the robot to a grasp position. Otherwise,

3 Basics for Robotic Programming 3.3 Python Controls 20

the robot would retreat and try to pick a different object. The shown state machine is
just a reduced version, and the complete one in [5] has 26 states and 50 transitions. For
implementing a state machine in ROS, the package SMACH can be used [32]. SMACH
uses Python as a programming language. States, saved values, and their in- and outputs
can be defined in a simple way, making the whole state machine easy to adapt for future
applications.

3.3 Python Controls

To program the HSR, either Python or ROS functions can be used. The developed
software for this thesis can be accessed over [4]. In Listing 3.1, an example of HSR Python
commands is shown. The code defines the StartSuction state of a SMACH state machine.
This state is just used in the user input and has only the outcome ’succeeded’. The robot
and the needed parts have to be initialized first to send them commands afterwards. The
suction cup can be started by sending a Boolean variable. In similar ways other parts,
like the robot’s base or arm, can be controlled.

Listing 3.1: Code example
class Star tSuc t i on (smach . State) :

def __init__(s e l f) :
smach . State . __init__(s e l f , outcomes=[’ succeeded ’])
s e l f . robot = Robot ()
s e l f . su c t i on = s e l f . robot . try_get (’ suc t i on ’)

def execute (s e l f , userdata) :
print (50∗ ’#’ + ’ \n ’)
i f s e l f . su c t i on i s not None :

rospy . l o g i n f o (’ S t a r t i ng ␣ suc t i on ’)
s e l f . su c t i on . command(True)

else :
rospy . l o g i n f o (’ Could␣not␣ s t a r t ␣ suc t i on ’)

print (’ \n ’ + 50∗ ’#’ + ’ \n ’)
return ’ succeeded ’

CHAPTER 4

Tiny Objects Program

The following chapter describes the proposed method for pick-and-place tasks with tiny
objects. The created method is named Tiny Objects Program, abbreviated with TOP. The
first section outlines the corresponding state machine for the whole process. In each state,
the transitions between and the handling of unwanted outcomes are described. With the
concept of a state machine in mind, key elements of the finding and picking processes are
explained next. In section 4.4, the different options for further operation after a successful
pick are depicted. The last section briefly overviews the user interface for interacting with
the robot.

4.1 Program States

This thesis aims to tackle the problem of picking up tiny objects. To completely cover
a robot’s pick-up process, all the different processes involved are separated first. Each
individual task must be executed in a specific order, dealing with any known errors
that occur. A state machine was chosen as the basic structure to build a simple and
easy-to-adapt framework for the grasping program. The framework can be seen in Figure
4.1. The green arrows indicate a state’s desired outcome, and the red ones lead to error-
handling states colored in yellow or the program exit. If a state crashes during execution
or connections are lost, the state machine will also transfer to the exit state, which aborts
the program.

The state machine starts with the robot moving to the next known viewpoint. Those
viewpoints are predefined x and y coordinates with an additional angle as the viewing
direction of the robot. It is assumed that the HSR was able to map the room where the

21

4 Tiny Objects Program 4.1 Program States 22

succeeded

no path
found movement

abortedPick Object

succeeded

no object
found

no more
viewpoints

Move To Next
Viewpoint Exit

viewpoint not
reached

Check Pick

succeeded

Lay Down Handover

START

succeeded

Move To Drop
Point

Exit Successful

succeeded

lay down
object

hand over
object

no object action

Find Object

viewpoint not
reached

Move To Last
Viewpoint

no object
picked

Go To Neutral

succeeded

drop point not
reached

Figure 4.1: TOP state machine

desired object is located. In most cases, the object will lie on a table or other furniture,
and therefore, the robot must be able to find appropriate points with a clear perspective
of the object. The state machine can work with a mapping program, which provides
viewpoints for the moving states to work in an unknown environment. If the room and the
furniture are known, and changes to the layout are not possible, predefined viewpoints are
sufficient. In case of a blocked viewpoint, the next one is chosen as a goal, or the program
will exit unsuccessfully if no points are left. After the state has succeeded, the RGB-D
camera of the HSR is used to find the desired object. The name of the object must be
provided to the Find_Object state. Section 4.2 explains the robot’s object detection in
detail. If the object detection cannot find the expected item, the robot moves to the next
viewpoint. This could be the case if the view is blocked at this point or the lighting is

4 Tiny Objects Program 4.2 Finding Objects 23

disturbing the camera input. When the state outcome is successful, the robot tries to
pick up the object. If the object is visible, but there is no feasible way to reach it, the
HSR will move to the next viewpoint and try to grasp the item from a different position.
Collision checks are done before and during movements. A possible collision stops the
execution of movements. After a stop, the robot goes into the neutral position and tries
the pickup again. In case of a successful pick, the suction cup pressure sensor is used
to make sure an object is sucked up. If the pressure sensor cannot detect anything, the
robot repositions itself and tries to locate the item again. When the suction cup absorbs
something, the HSR moves to the predefined drop point and executes a handover or a
lay-down operation optionally.

The presented state machine is a basic structure to pick up objects. The state machine
can be added as a sub-state machine in a more advanced program. The necessary states
can be adapted with additional problem handling by simply adding more transitions. As
explained in the following sections, most states are also independently executable for easy
debugging, testing, and integration into other programs.

4.2 Finding Objects

The goal of the object-finding state is to reliably detect and locate a specific object. As
the core platform of this task, Detectron2 [15] from Meta is used. The picked framework
for detection and segmentation is Mask R-CNN, which is implemented in Detectron2. An
explanation of Mask R-CNN is given in section 2.2. Before the detection system can be
trained, a dataset must be created. There are a variety of datasets available, which include
several objects. One is the COCO (Common Objects in Context) dataset as described in
[33]. The collection includes images with annotations, bounding boxes, and segmentations
for over 80 different object categories. As a state-of-the-art dataset, COCO is widely
used to develop object detection models. Tiny or flat objects, which should be covered in
this thesis, are not available in the COCO dataset. Also, other datasets and pre-trained
models do not focus on tiny objects. Therefore an individual dataset was created for the
object detection part of this thesis.

In order to create the dataset, three object classes were defined: card, box, and coin. All
three object classes can be seen in Figure 4.2. The card is a regular ID card with standard
measurements (86 mm x 54 mm) from the TU Wien, containing a few text blocks, logos,
and an image of a person on a white background. The second class "box" should represent
different boxes used in a household environment. As a training object, the "gelatin box"
from the YCB object set [34] with the dimensions 85 x 73 x 28 mm was used. The YCB
object set is a collection of various household items to provide a standard object set for
benchmark tests of different robots and manipulators. The last class "coin" is chosen as a
test for the robot’s visual system and manipulator precision. A detection system capable
of detecting those three objects could not be found and therefore a custom object detection
was needed. Over 120 pictures were taken of the items in different environments alone or
with other objects around. The pictures were reduced in resolution and segmented with
the software "labelme" [35]. These segmentations are visible as green lines and points in
Figure 4.2.

4 Tiny Objects Program 4.2 Finding Objects 24

Figure 4.2: A training image with the three object classes: card, box and coin

After all objects in the image set had been labeled, the training of the Detectron2 detector
was done with the official tutorial [36]. As the basic model, the pre-trained backbone
version "mask_rcnn_R_50_FPN_3x" was used. The model has already learned to detect
and segment the different classes of the COCO dataset. This pre-training makes it possible
to re-train the model for a different class with only a small amount of training images. The
focus of this thesis is not to develop a ready-to-use prototype but to test the feasibility of a
pick-and-place task. Therefore this simple object detection approach is sufficient in terms
of tiny objects in a not too crowded area. A stable and reliable model needs more training
data and further investigations. By using the tutorial’s training settings, new model
weights for the three chosen classes were obtained. Those weights were loaded with the
Detectron2 service from the TU Wien vision for robotics research group [37]. The service
was modified to be able to load custom model weights and define self-created metadata.
With the service subscribed to the topic of the HSR’s RGB-D camera, Detectron2 is able
to do an object detection of the actual image on request. In Figure 4.3, the output of
the model can be seen. This output includes the name, the segmented region, and the
bounding box of detected objects. The percentage indicates the model’s confidence in a
guess. The threshold to neglect less confident detections is set at the start of the service.

The Find_Object state is created as a normal SMACH state, calling an action server
named Find_Object_Action_Server. All relevant parts of the finding process are done
inside the server. The benefit of separating it from the normal state is the ability to handle
the different results and to execute a finding operation alone. To call the action server, a
corresponding action message is used. The message includes a string with the sought-after
object name as the goal and another string as the result to provide information on how
the state succeeded. A given goal can either be succeeded, aborted, or preempted by the
action server. If the known problem that the object could not be found occurs, the server
is set to succeeded. The problem information is written into the result message. This
message is then evaluated in the SMACH state, and depending on the result, the state
will transfer to Move_To_Next_Viewpoint or Pick_Object. If there is an unknown error
or a timeout, the action server will be set to aborted, and the state will transfer to the

4 Tiny Objects Program 4.2 Finding Objects 25

Figure 4.3: The HSR detects a card and a box

exit. During the execution of the action server, the Detectron2 service is called. The robot
lowers its head to get a slightly different view if the Detectron2 model is not able to find
the specific object. Sometimes, light irradiation affects the image, and the state can find
the target with a second try.

To identify the position of an object, the center of the item’s bounding box is chosen as
the object’s location on the image. This localization is shown in Figure 4.4 with the image
coordinates x and y. If more objects of the same type appear in the image, the closer one
to the lower edge is picked. With the x and y values, the information of the same point in
the depth image is extracted. The x, y, and z distances to the RBG-D camera are stored
for each point in the depth image. With the actual camera position known, this distance
can be used to localize the object in the room, as shown in Figure 4.5. Visible in the left
Figure, the found card is located with a published coordinate frame using the "tf" package
in ROS [38]. The orientation of the detected object coordinate system is the same as the
"base_link" frame, which marks the position of the robot base.

image x

image y

image x

image y

depth point
(x,y,z)

Figure 4.4: RGB and depth image of the HSR camera

4 Tiny Objects Program 4.3 Picking up Objects 26

Therefore, the three translational DoFs of a found object are determined. The same angles
as the robot’s base are used to define the rotatory DoFs. The angles around the x- and
y-axis are always given by the surface the object is lying on. For a household environment,
it is likely that this surface has the same orientation as the ground floor. The third angle
around the z-axis, is the same as the z-angle in the base_link frame. This angle affects
the grasp pose generation in the next state. In cases without obstacles between the base
and the object, the robot can drive from any wheel position straight to its goal to pick it
up. This is possible due to the used dual-wheel caster-drive mechanism described in [11].
The robot uses caster wheels in combination with two separately powered wheels mounted
on a rotating structure. This mechanism is holonomic and capable of generating speed
in all directions. Therefore the resulting wheel position from approaching the viewpoint
does not need to be considered for the next state.

z
x

y

y-distance

z-distance

RGB-D sensor

base link

card

Figure 4.5: Localization of an object

The Figures 4.4 and 4.5 were taken in Gazebo. For fast and easy access to a testing
environment for the grasping program, a Gazebo world similar to the experiment location
in chapter 5 was created. The standard HSR objects were used, and additionally, a
card object with a credit card texture was generated. As noticeable in the figures, the
simulated environment looks artificial compared to Figure 4.3. Different lighting settings
and additional textures for the floor and the walls could be used, but the Gazebo world
is only sufficient for early tests of the Find_Object_Action_Server. The main focus
was to provide a reliable object detection in a real-world environment. Therefore only
non-artificial images were used as training data, and an actual examination of the program
was done in a real-world setting.

4.3 Picking up Objects

After the HSR has been able to successfully find the sought-after object, the state machine
transfers to the Pick_Object state. The goal of this state is to provide a stable picking
process with the suction cup. The focus here lies on tiny objects, which can vary in length
and width but only have minor deviations in their height. Therefore the same picking
process can be used for the three objects: card, box, and coin. Similar to the previous

4 Tiny Objects Program 4.3 Picking up Objects 27

one, this state also calls an action server Arm_Movement_Action_Server. The action
message also contains a string with the result information and, as the goal, either the
command "pick_" plus the object’s name or "lay_down". The action server is used by the
Pick and also by the Lay_Down state. This is to use only one MoveIt commander for
both path-planning operations.

The action server starts with the initialization of MoveIt. Here the motion planner can
be chosen, and different options like planning time and planning attempts can be set.
In section 2.3, it was mentioned that the standard planner from MoveIt is not available
for the HSR at the current state of the used package. Therefore the HSR chooses RRT
Connect by default. This planner is a bidirectional version of the basic RRT algorithm.
As shown in [21], RRT is outperformed by RRT*, and hence RRT* is chosen as planner.
There are additional planners available that work with the HSR. RRT* is sufficient for
the pick-and-place tasks investigated in this thesis, and therefore no other planners were
used. The planning time is set to 10 seconds to ensure an efficient path and reduce the
amount of confusing movements, which can occur if the first feasible path is executed.
The number of planning attempts, meaning the number of different tree structures built,
is set to 5. After the setup of the planner settings, a box object resembling the ground
floor is added to the planning scene. Collision objects get detected by the RGB-D camera,
and they are loaded as voxel points into the planning scene. They are visible in Figure
4.6, where the HSR plans a pick move in a real-world environment. The depth estimates
of the floor sometimes lead to wrong voxel predictions, which subsequently give false
collision warnings for the robot’s base. If those warnings occur, the robot cannot move in
the evadable collision areas. By adding the floor as a scene object, MoveIt ignores voxels
near the ground. The floor and another box below the table plane are visible in green.
Depending on the view angle, the table stand is often not detected. If the planner does not
consider these collision areas, unwanted contact between the robot base and the stands can
happen. Therefore the dimensions of the plane table surface are projected downwards and
added as a second collision object. This is done with the table_plane_extractor_server
from the TU Wien team [39].

Figure 4.6: MoveIt planning scene in RViz

4 Tiny Objects Program 4.3 Picking up Objects 28

Pick-up and lay-down operations have the same initialization followed by a check for a
published coordinate frame. For picking tasks, the server checks if the frame of the target
object is available. If the frame is accessible, another frame indicating the goal position
for the end effector is published. For the HSR, the arm’s only end effector in MoveIt is
the gripper center. The suction cup is mounted on the outside of one gripper. The lack of
the ability to use the suction cup as the end effector makes it necessary to calculate the
goal position by taking the distance between the suction cup and the gripper center into
account. In Figure 4.7, the placement of the goal frame is illustrated. A z-offset is set
between the suction cup and the table to ensure no gripper collision during the movement.
During picking tests, it was noticeable that MoveIt does not consider the gripper for
collision avoidance, but in some cases the z-offset was able to compensate for this. After
setting the goal, the planner calculates the path with the given settings. If the planner is
successful and a feasible path can be found, the robot starts to execute the trajectory. For
cases where a grasp pose from the front is not achievable, another grasp with a 90-degree
rotated goal frame is checked. If no path is found for the second pose either, the state
machine transfers to Move_To_Next_Viewpoint. The robot might get a better position at
the next viewpoint, and the entire find and pick process is repeated. During the execution
of the picking movement, the HSR moves its arm and base through the room, whereas
the depth camera constantly scans for new collision objects. For example, if a person
goes through the planned trajectory, the robot will stop, and the Pick_Object state will
transfer to Go_To_Neutral. After the neutral position is reached, the robot tries to plan
a new path from its actual position, which differs from the viewpoint.

goal frame
end effector

z-offset

Figure 4.7: Setting the goal frame for the end effector

If the goal frame is reached without complications, as shown in the Figure 4.7 to the right,
the HSR will activate the suction cup and move it straight downwards. This movement
continues until the pressure sensor inside the suction cup detects a change coming from a
stuck object or the table. Next to the successful execution of a picking trajectory, the
robot raises its arm and moves slightly backward. In Figure 4.8, the HSR raised the
suction cup after picking a card with the first grasp pose. The pressure sensor is evaluated
again in the Check_Pick state to check the result of the pick after successfully performing
all movements. If no object is stuck on the cup, the find and pick operations are repeated
with the previous viewpoint. Rare failures with clearly visible and reachable objects can
occur by the motor controllers’ lack of precision and reliability.

4 Tiny Objects Program 4.4 Lay-Down and Handover 29

Figure 4.8: The HSR picks a card between obstacles

4.4 Lay-Down and Handover

After a successful pick, the robot will start to move to a predefined point and execute
another optional task with the object. The TOP state machine can transfer to three
different outcomes. One is to exit the program without any more movements with the
object remaining on the suction cup. The other two are the Lay_Down and the Handover
states. These states aim to deliver the picked object either to a human or place it inside a
box to tidy up the room. A script from the TU Wien vision for robotics team was used
for the handover. It runs another action server, which extends the robot arm so that a
person can easily take the object. After the HSR notices a contact force applied on the
gripper, it will go to the neutral position again.

In the Lay_Down state, the object should be placed in a box labeled with a QR code
marker. This can be seen in Figure 4.9 (a). The HSR has a built-in marker detection,
which uses the stereo camera. A corresponding coordinate frame is published and named
with the marker number if a marker is visible for the vision system. The frame is then
used to place another frame above the box as the end effector goal. Shown in Figure 4.9
(b), the goal frame is placed so that the gripper of the HSR will point toward the blue
z-direction. Like in the section before, the table_plane_extractor_server adds a collision
box on the ground and MoveIt uses the rest of the voxels from the table surface and the
box for path planning with collision avoidance.

In the Figure 4.10 to the left, the robot has reached the goal frame given to the MoveIt
planner. At this position, a conventional method would be just to stop the suction force
and invert the pressure inside the suction cup to drop the object. Unfortunately, the
mechanic of the HSR is not capable of doing so. If the pressure is turned off, the card is
still stuck on the suction cup because of the remaining partial vacuum. Most objects tend
to fall after about one minute, which is not an acceptable time for such a task. Therefore
another goal for the hand end effector is given to the robot. The new frame is put toward

4 Tiny Objects Program 4.5 User Interface 30

(a) Box labeled with marker (b) Goal frame above the box

Figure 4.9: Lay-down box in real and in RViz

the negative z-direction of the hand. During the execution, the card is pulled off by the
box. The standard planner of the HSR is used for this movement because the goal is just
simply moving the arm backward and does not need any consideration of collisions. After
reaching the trajectory end, the HSR will return to neutral, and the state machine can
exist successfully.

goal frame
v

Figure 4.10: Dropping a card in the box

4.5 User Interface

A user interface can be accessed with the Unix shell. It can be seen in Figure 4.11. The
left row is the interface controlled by character commands. Here the whole state machine
or parts of it can be started. A map object is loaded, which stores the required waypoints
for the program. Also, custom maps can be created for new environments. Thereby,
new map points can be added by setting the actual position of the HSR as a waypoint.

4 Tiny Objects Program 4.5 User Interface 31

Feedback for chosen options or state transfers is given on the left side. Information about
both action servers responsible for object detection and arm movement is shown on the
right. These windows resemble multiple shells running in one. Each sector is a node
running the corresponding code and printing feedback. To split the shell window, the
software "tmux" was used. In a second terminal window accessible with tmux commands,
the table_plane_extractor_server and the handover_server are started.

Figure 4.11: User interface with action servers

CHAPTER 5

Experimental Evaluation of TOP

In this chapter, the results and evaluation of the TOP functionalities are presented. The
first section describes the setup of the experiments to test the program. Different layouts
were designed to challenge the core features of the grasping program. In the second section,
the results are presented. Failures, which occurred during the experiments, are discussed
in the next section. Thereby, additional program flaws are also mentioned. In the last
section, the overall performance of the developed grasping method is outlined.

5.1 Experiment Setup

The goal of the proposed experiments in this section is to give reproducible results to
evaluate the core features of the grasping program. The main testing focus lies on the
detecting and picking process, which are the essential parts of the given problem examined
in this thesis. Lay_Down, Handover, and other states are developed as additional parts.
Hence they are not involved in the following experiments. A scoring system was used
to rate task executions and to provide comparable results. A suggestion to benchmark
robotic grasping is given in [40]. Inspired by this concept, a scoring system to verify the
grasping quality of a robot with a suction cup was created for this thesis. For the sake of
simplicity, the suggested system uses a reduced complexity to evaluate a pick task of a tiny
object. Five rating categories were defined to investigate the strengths and weaknesses of
TOP. One point is given for the successful execution of a category, and zero points are
given if the robot fails. If an error occurs, the maximum score of the next rating category
is reduced by the number of previous errors. This ensures that each category is evaluated
on its own and no prior mistake has an influence on the success rate of the following

32

5 Experimental Evaluation of TOP 5.1 Experiment Setup 33

categories. The relative success rate is calculated afterward to highlight the weaknesses.
The chosen categories are:

• Found: The object was detected and located.

• Planned: The motion planner was able to create an executable path.

• Picked: The object was picked up by the suction cup.

• Stable: The object remains on the suction cup.

• Collision: The pick-up was successful and no other object was touched during the
movement (Only at tests with obstacles).

Five different experiment setups were chosen to investigate the program’s performance
and to show its limits of usability. Four times the ID card was the sought-after object,
and one time the gelatin box. In three experiments, the objects "spam" and "mustard"
were placed as additional obstacles. Those items are like the gelatin box part of the YCB
object set [34]. The chosen experiments are:

1. 25 tries to pick up the ID card from different positions without any obstacles

2. 5 tries to pick up the ID card with mustard and spam as obstacles aside

3. Same as 2. but spam is located in front of the card

4. 5 tries to pick up the gelatin box with mustard and spam aside

5. 5 tries to pick up the ID card on a table tilted by 10 degrees

The HSR starts each attempt in the same starting position to provide comparable results.
Figure 5.1 gives a sketch of the setup. This position is used in all experiments. The robot
will always start by looking at the gaze point to ensure an optimal view of the table. The
point is defined by the distance of 1 m in x and 0.3 m in z from the base coordinate system.
A 40 cm distance between the robot and the desk ensures enough arm movement space
and also forces the HSR to approach it using the base link drive. The dimensions of the
table are smaller than a regular desk or dinner table to enable a direct view of the top
surface from the robot’s neutral position.

Figure 5.2 shows the different setups for the five experiments. In Figure 5.2a and 5.2b,
the 1. experiment can be seen. The pattern is used to position the card after each try.
For each of the five card positions, the HSR had to pick up the card five times, resulting
in 25 tries for the 1. experiment. Positions one and two are chosen to check if there is a
difference between a vertical and horizontal position. The robot must pick the object near
the table edge at positions three and four. This is to investigate if possible collisions with
the desk stand occur. The fifth location is chosen to challenge the HSR’s reachability of
distant objects. After the card was placed, the pattern was removed, and only the card
remained on the table. In the 2. experiment, the card, spam, and mustard were placed
like in Figure 5.2c to investigate the collision avoidance. The added items should represent
two typical household obstacles, where the sought-after object lies in between. The same

5 Experimental Evaluation of TOP 5.1 Experiment Setup 34

gaze point
x=1m z=0.3m

55 x 55 cm

45 cm
40 cm

RGB-D sensor

Figure 5.1: Setup for all experiments

three objects but in a different layout are used for the 3. experiment. The spam is placed
in front of the desired object to challenge the object detection. The spam did not block
the visibility of the card. In the 4. test, the card was replaced with the gelatin box, as
it can be seen in Figure 5.2e. This experiment should outline if there are any different
behaviors between a card and a box pick-up maneuver. In the last experiment, the table
was tilted by 10°, as shown in Figure 5.2f. In this test, the table surface is not parallel to
the ground floor, like in the case of a lectern. The grasp pose is still the same as shown in
Figure 4.7, with the suction cup direction orthogonal to the ground floor. It should be
investigated if the grasp still works even if the direction vector of the suction cup is not
orthogonal to the card’s surface.

5 Experimental Evaluation of TOP 5.1 Experiment Setup 35

(a) 1. experiment - pattern was removed
before start

1

3

2

4

5

(b) Pattern for card positions in the 1.
experiment

(c) 2. experiment - spam and mustard
added

(d) 3. experiment - spam and mustard
with different layout

(e) 4. experiment - box instead of card (f) 5. experiment - table tilted by 10°

Figure 5.2: Different setups for each experiment

5 Experimental Evaluation of TOP 5.2 Experiment Results 36

5.2 Experiment Results

Table 5.1 lists the results from the 1. experiment. Out of 25 attempts, the HSR managed
to pick up the card successfully in 23 cases. This success rate shows the practicality of
TOP for simple pick-up tasks without any other disturbances. Two failures occurred
during the picking movement. Therefore the maximum score in the stable category was
reduced two times. In the first picking error, the robot tried to move the arm center above
the card. In this movement, the gripper was too close to the card and pushed it away
from the original position, resulting in a miss of the card with the suction cup. During
the second failure, the movement was aborted due to an error of the motor controller. No
obvious mistake could be determined, and the ROS nodes of the program were working
correctly. There is the possibility that the failure occurred in the execution of a standard
package from the HSR. Besides these two misses, the robot was able to pick up the card
from any position with a high success rate. No significant performance differences could
be determined between the card’s positions. At location five, the HSR used the second
grasping pose twice, which resulted in the robot driving to another side of the table. The
card was placed by alternating the top and back sides. The object detection was able to
detect both sides reliably.

Position Found Planned Picked Stable Failure
1 5/5 5/5 4/5 4/4 Card displaced
2 5/5 5/5 5/5 5/5
3 5/5 5/5 5/5 5/5
4 5/5 5/5 4/5 4/4 Controller failed
5 5/5 5/5 5/5 5/5

Table 5.1: Results of the 1. experiment - card only

In the 2. experiment, the robot picked up the card twice without any point deduction. In
the first flawed attempt, the spam was slightly touched by the gripper. This did not affect
the picking maneuver compared to the fifth attempt, where a collision happened and the
robot stopped its motion. If a stronger force is recognized due to a collision, the HSR’s
motor controller will stop. The third attempt failed due to a motor controller error. Like
in the 1. experiment, there did not occur any collision, and no action server seemed to
have a problem. Out of these five tries, no problem with the object detection algorithm is
noticeable with this lineup of objects. The path planning has problems to avoid objects
near the target position.

In Table 5.3, the scoring of the 3. experiment can be observed. This experiment had a
high number of failures, resulting in only one attempt without any error. As it can be seen
in Figure 5.2, the only difference between the 2. and the 3. experiments was the lineup
of the objects. The spam was placed in front of the card. From the HSR’s perspective,
the card was clearly visible behind the spam, but the object detection failed to find it
three times. This is likely due to a lack of appropriate training data for such cases. The
training was done without images where items were placed in front of the training objects.
Therefore, the detector cannot handle occlusions. If the robot was able to find the card,

5 Experimental Evaluation of TOP 5.2 Experiment Results 37

Attempt Found Planned Picked Stable Collision Failure
1 1 1 1 1 0 Spam collision
2 1 1 1 1 1
3 1 1 0 - - Controller failed
4 1 1 1 1 1
5 1 1 0 - - Spam collision

Table 5.2: Results of the 2. experiment - card with mustard and spam aside

it could pick up the card and avoid a collision with the spam. During the first attempt,
the gripper slightly collided with the table. The depth sensor detected the table, and the
path planning algorithm could find a path without any collision. Nevertheless, a collision
occurred. A possible explanation would be that the planning algorithm only considers
the arm’s hand center as the end effector, and the remaining gripper geometry with the
suction cup is ignored for collision avoidance.

Attempt Found Planned Picked Stable Collision Failure
1 1 1 1 1 0 Table collision
2 0 - - - - Card not found
3 1 1 1 1 1
4 0 - - - - Card not found
5 0 - - - - Card not found

Table 5.3: Results of the 3. experiment - card with mustard aside and spam in front of
card

The sought-after object was replaced with the gelatin box in experiment 4. As the results
in Table 5.4 show, only two attempts were without a mistake. Both failures in attempts
two and five resulted from collisions with the box, while the robot tried to reach the
MoveIt goal frame from Figure 4.7. In two, the collision was minimal, and therefore it had
no impact on the pick-up task. In five, the gripper moved the box too far away, leading to
a miss with the suction cup. In the third attempt, a card was detected instead of the box.
The similar form of both objects could explain this. With only a slight height difference,
both objects appear like a rectangle from the robot’s perspective, and the focus of the
object detection is more on the form than the texture of the items.

Attempt Found Planned Picked Stable Collision Failure
1 1 1 1 1 1
2 1 1 1 1 0 Collision with box
3 0 - - - - Card found instead
4 1 1 1 1 1
5 1 1 0 - - Box displaced

Table 5.4: Results of the 4. experiment - box with mustard and spam aside

5 Experimental Evaluation of TOP 5.3 Discussion of Failures 38

The results of the 5. experiment are given in Table 5.5. The experiment was done without
additional collision objects, so the collision rating was skipped. As shown in Figure 5.2f
the table was tilted. Only one attempt was a successful pick-up. During the other four,
the robot failed by displacing the card during the movement. This always happened while
the HSR was trying to reach the MoveIt goal frame. The error is likely caused by the
path planner ignoring the gripper dimensions. In the next section, the experiment was
repeated with an increased z-offset between the MoveIt goal position and the card position
to ensure the found trajectory is presumably without a collision between the table and
gripper.

Attempt Found Planned Picked Stable Failure
1 1 1 0 - Card displaced
2 1 1 0 - Card displaced
3 1 1 1 1
4 1 1 0 - Card displaced
5 1 1 0 - Card displaced

Table 5.5: Results of the 5. experiment - card and table tilted by 10°

5.3 Discussion of Failures

Often occurring mistakes already show up in the 1. experiment. The abrupt stop during
the execution of a trajectory, where no apparent mistakes could be determined, needs to
be investigated more thoroughly. The second most common failure, the collisions between
the gripper and other objects, could be prevented by improving the robot’s geometric
model used in path planning. The same enhancements can be the key solution for the
collisions in the 2. experiment. Besides these errors, no other complications were observed
in the other categories in the first two experiment setups.

The failure of the object detection system in experiment 3 is shown in Figure 5.3. The
pictures were taken to reproduce the failure after the experiment, and the spam was
exchanged with the gelatin box. The object detection algorithm only takes objects into
account which are placed in front and neglects those in the area behind. From the robot’s
perspective in Figure 5.3, both items are clearly detectable for the HSR, but either the box
or the card gets detected if they are placed in front. More training data, which includes
more cases of various layouts and occlusions, is needed to fix the mistake. The failures in
the 4. experiment also have similar causes to those before. The object detection focuses
too much on the geometry of the sought-after objects. A better training dataset also
needs to take this problem into account. Besides the gripper geometry improvement, a
better depth sensor resolution could also lead to less collision.

Due to the bad performance during the 5. experiment, the attempts were repeated with
the test of an enhancement. In the repeat, the changed offset improved the success rate,
as shown in Table 5.6. The fourth attempt was another controller failure. Those happen
sometimes for no apparent reason. Furthermore, the gripper touched the card slightly on

5 Experimental Evaluation of TOP 5.3 Discussion of Failures 39

(a) Card gets detected in front (b) Box gets detected in front

Figure 5.3: Object detection failure occurring in the 3. experiment

the last try, and the item was displaced by a few millimeters. Hence the predefined goal
for the suction cup was on the card’s edge. The card was lifted briefly and dropped caused
by the lack of suction power resulting in a zero for the stable category. Nevertheless, the
changed offset led to a quick and easy enhancement for such a picking task.

Attempt Found Planned Picked Stable Failure
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 0 - Controller failed
5 1 1 1 0 Card dropped

Table 5.6: Repeat of the 5. experiment with increased z-offset

Another issue of the object detection, which was not part of the experiments, is shown in
Figure 5.4a. A card on top of the gelatin box cannot be detected in the current state of
the algorithm. A working prototype of a care robot must be able to manage cases like a
crowded household. Therefore additional training images need to be taken where objects
appear stacked and in occluded and messy scenarios. Training images of stacked objects
would also reduce the strong geometry-focused detection. A coin was chosen as a third
target for the pick-up task. It is possible to detect a coin with the HSR’s RGB-D sensor,
as presented in Figure 5.4b. The success rate of this detection is unreliable due to the
low resolution of the image and the strong influence of light disturbances and reflections.
Although the robot is able to localize the coin sometimes, the pick-up never succeeds. The
localization method and the robot’s mechanical system is not precise enough to hit the
coin with the suction cup reliably. Besides that, the suction power is not strong enough to
hold coins with small pits like standard euro coins. Therefore no other experiments with
coins were done. Another pick-up method, which could achieve more precision, should be
able to pick up coins with appropriate surfaces. A possible way to achieve more precision

5 Experimental Evaluation of TOP 5.4 Performance Evaluation 40

would be using the arm camera. In the first step, the camera is moved above the coin, and
in the second step, the hand camera’s image is used to reposition the suction cup precisely.
Further investigation must be done if such a method could achieve reliable results.

(a) Box gets detected, card on top not (b) Coin can be detected

Figure 5.4: Additional object detection examples

5.4 Performance Evaluation

In Figure 5.5, the results of all experiments are pictured. 45 tests were done in total,
including 15 with the additional collision objects rating score. If a failure occurred in one
category, the score of the following ones was reduced. All categories were summarized,
and the relative score is shown at the corresponding scale in Figure 5.5. For experiment
five, the score of the repeated version shown in Table 5.6 was picked. The suggested
enhancement of the changed z-offset was added during the failure discussion and this
change would not affect the results of the other four previously done experiments.
As visible in the total score, the motion planning algorithm was always successful. If the
object could be located, the RRT* algorithm was able to find an executable trajectory
in the given time of 10 seconds. All the objects were positioned in reach of the HSR.
It should be mentioned that the path planning category just evaluates the capability of
finding a path and does not consider the quality of the path. The second best category
is the stability of a grasped object. The only failure occurred due to a poor grasp with
the suction cup positioned on the edge of the card. If the robot was able to position the
suction cup entirely on the object’s surface, no problems with the stability were noticed.
Various arm movements are executable without the risk of losing the object. Other objects
like a euro coin or larger boxes cannot be lifted with the HSR. Nevertheless, objects with
appropriate weight and surfaces, like the gelatin box or ID cards, do not lead to any
complications in terms of stability. A disadvantage of the mechanics of the suction cup
was described in section 4.4. On the one side, the vacuum provides good stability, but on
the other side, objects get stuck on the suction cup, making it hard to place them at a
specific location.

5 Experimental Evaluation of TOP 5.4 Performance Evaluation 41

Found
41/45

Planned
41/41

Picked
35/41

Stable
34/35

Collision
5/8

Figure 5.5: Performance of each category (experiment 1,2,3,4 and repeat of 5)

Problems concerning object detection mainly happened during the 3. experiment. As
mentioned in the previous section, the focus lies on objects in front, while those in the
background are neglected. This apparent weakness must be dealt with more appropriate
training data, which should tackle the problems with occlusions, items in the background
and stacked items. In terms of more complex tasks, object detection is likely to be the
hardest part in the development of a working prototype that is able to operate in a chaotic
household. Enhanced detection models can be loaded with the provided Detectron2 service.
The TOP state machine could therefore work as a basic framework for more advanced
algorithms.

The failures that occurred in the last two categories: "picked" and "collision" can be
summarized by two cases. The first is the motor controller failure. During the execution
of the motion trajectory, the controller failed three times. A causality between this error
and something else could not be determined. After the controller failures occur, the HSR
can still execute further commands. Hence, TOP offers a simple solution. As shown in
Figure 4.1, the robot would go to its neutral position and repeat the pick-up process.
The second error source was collisions between the gripper and various objects, which
led to displacements of the sought-after object or movement abortions. In some cases,
like in the tilted table experiment, a simple solution is provided by increasing the z-offset
between the MoveIt goal and the object. Another suggested approach would be to change
the geometry of the HSR’s gripper and arm parts used in MoveIt for collision avoidance.
Enlarging parts of the stored gripper model would force the planner to ensure a larger
safety distance between the robot and objects. Therefore, this change could also lead to
an improvement for the motion planning related problems.

CHAPTER 6

Conclusion

In this thesis, a program to pick up tiny objects with a suction cup was developed. TOP
was designed for the Toyota HSR, but the concept can be transferred to any arbitrary
mobile manipulator. The three main parts of the program are detecting tiny objects,
executing the pick-up movement by using a previously determined grasp point, and
dropping picked objects in a storage box. The robot localizes the sought-after object
using a 2D image detection and a depth sensor. A grasp point for the suction cup is
determined by this localization without the need to identify the other three rotatory DoFs
of the object. This solution exploits household object geometries, which often feature flat
surfaces, to simplify the given grasping task. A motion planner is used to reach the grasp
point while avoiding any collisions. To identify the storage box, a QR code label was
used. For a complete pick-up and store task, a state machine was created to manage the
transition between the parts and handle possible errors.

Each of the program’s three main parts were successfully tested, first in a simulated
environment and then in a real-world scenario. Pick-and-place tasks could be executed
with an ID card and a box. Five different experiment setups with 45 carried-out attempts
in total were done to investigate the object detection and motion planning parts of TOP.
The experiments have proven that the robot can reliably detect and pick a card on a
table without the presence of any other obstacles. Possible enhancements for better
collision avoidance and object detection were observed regarding scenarios with additional
obstacles. Besides a card and box, the third target object was a coin. The developed
localization method, combined with the robot’s mechanics, led to a lack of precision,
making it impossible to lift the coin.

Future works can therefore investigate other methods to pick up coins. A suggestion to
improve the precision would be using the robot’s hand camera to refine an object’s position

42

6 Conclusion 43

after a first rough estimation with the depth camera. The Detectron2 service, called by
the object detection state, can easily be adapted to test another detection method. With
a changed models, the basic system can still be used to grasp objects. An alternative
object detection could be an enhanced version capable of detecting items in a typical
crowded household area. Another promising direction would be the development of a
surface detection system. The TOP grasp pose estimation uses the center point of tiny
objects whose height is distinctly smaller than the length and width. Flat surfaces of
larger objects could be detected to find an appropriate grasp point for them.

In conclusion, feasibility could be achieved with the TOP grasping method. This offers a
variety of possible extensions for the basic structure presented in this thesis. There is still
a large amount of research left until a prototype of a complex service robot is ready to
operate in the real world. The work done by autonomous robots is increasing rapidly and
the future will show what achievements are possible for them.

Bibliography

[1] D. Bauer, T. Patten, and M. Vincze, VeREFINE: Integrating Object Pose Verification
with Physics-guided Iterative Refinement, arXiv:1909.05730 [cs], May 2020. [Online].
Available: http://arxiv.org/abs/1909.05730 (visited on 02/22/2023).

[2] S. Thalhammer, M. Leitner, T. Patten, and M. Vincze, „PyraPose: Feature Pyramids
for Fast and Accurate Object Pose Estimation under Domain Shift,“ in 2021 IEEE
International Conference on Robotics and Automation (ICRA), 2021, pp. 13 909–
13 915.

[3] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor
Wiskunde en Informatica Amsterdam, 1995.

[4] Luke-rinney/hsr_small_objects, en. [Online]. Available: https://github.com/
luke-rinney/hsr_small_objects (visited on 03/03/2023).

[5] N. Correll, K. Bekris, D. Berenson, et al., „Lessons from the Amazon Picking
Challenge,“ Jan. 2016.

[6] M. Quigley, K. Conley, B. Gerkey, et al., „ROS: An open-source Robot Operating
System,“ in ICRA Workshop on Open Source Software, vol. 3, Jan. 2009.

[7] G. Bradski, „The OpenCV Library,“ Dr. Dobb’s Journal of Software Tools, 2000.
[8] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, „The Office

Marathon: Robust navigation in an indoor office environment,“ in 2010 IEEE
International Conference on Robotics and Automation, 2010, pp. 300–307.

[9] D. Morrison, A. Tow, M. McTaggart, et al., „Cartman: The Low-Cost Cartesian
Manipulator that Won the Amazon Robotics Challenge,“ in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 7757–7764.

[10] CRB 1100, en. [Online]. Available: https://new.abb.com/products/robotics/
collaborative-robots/crb-1100 (visited on 09/26/2022).

44

http://arxiv.org/abs/1909.05730
https://github.com/luke-rinney/hsr_small_objects
https://github.com/luke-rinney/hsr_small_objects
https://new.abb.com/products/robotics/collaborative-robots/crb-1100
https://new.abb.com/products/robotics/collaborative-robots/crb-1100

Bibliography 45

[11] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and K. Murase, „Devel-
opment of Human Support Robot as the research platform of a domestic mobile
manipulator,“ ROBOMECH Journal, vol. 6, Apr. 2019.

[12] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and K. Murase, „De-
velopment of the Research Platform of a Domestic Mobile Manipulator Utilized
for International Competition and Field Test,“ in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018, pp. 7675–7682.

[13] D. Ciresan, U. Meier, and J. Schmidhuber, „Multi-column deep neural networks for
image classification,“ in 2012 IEEE Conference on Computer Vision and Pattern
Recognition, Providence, RI: IEEE, Jun. 2012, pp. 3642–3649, isbn: 978-1-4673-1228-
8 978-1-4673-1226-4 978-1-4673-1227-1. [Online]. Available: http://ieeexplore.
ieee.org/document/6248110/ (visited on 11/02/2022).

[14] K. O’Shea and R. Nash, An Introduction to Convolutional Neural Networks, 2015.
[Online]. Available: https://arxiv.org/abs/1511.08458.

[15] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, Detectron2, 2019. [Online].
Available: https://github.com/facebookresearch/detectron2.

[16] K. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask R-CNN, arXiv:1703.06870
[cs], Jan. 2018. [Online]. Available: http://arxiv.org/abs/1703.06870 (visited
on 11/28/2022).

[17] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks, arXiv:1506.01497 [cs], Jan. 2016. [Online].
Available: http://arxiv.org/abs/1506.01497 (visited on 11/29/2022).

[18] Y. L. Aaron T. Becker, Probabilistic Roadmap Method in 3D, en, Feb. 2020. [Online].
Available: http://demonstrations.wolfram.com/ProbabilisticRoadmapMethod
In3D/ (visited on 11/19/2022).

[19] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, „Probabilistic roadmaps
for path planning in high-dimensional configuration spaces,“ IEEE Transactions on
Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[20] S. M. LaValle, „Rapidly-exploring random trees : A new tool for path planning,“
The annual research report, 1998.

[21] S. Karaman and E. Frazzoli, Incremental Sampling-based Algorithms for Optimal
Motion Planning, arXiv:1005.0416 [cs], May 2010. [Online]. Available: http://
arxiv.org/abs/1005.0416 (visited on 12/24/2022).

[22] H. Mohammed, L. Romdhane, and M. A. Jaradat, „RRT*N: An efficient approach
to path planning in 3D for Static and Dynamic Environments,“ en, Advanced
Robotics, vol. 35, no. 3-4, pp. 168–180, Feb. 2021, issn: 0169-1864, 1568-5535. [Online].
Available: https://www.tandfonline.com/doi/full/10.1080/01691864.2020.
1850349 (visited on 11/20/2022).

[23] D. Berenson, S. Srinivasa, and J. Kuffner, „Task Space Regions: A framework
for pose-constrained manipulation planning,“ en, The International Journal of
Robotics Research, vol. 30, no. 12, pp. 1435–1460, Oct. 2011, issn: 0278-3649,
1741-3176. [Online]. Available: http://journals.sagepub.com/doi/10.1177/
0278364910396389 (visited on 11/19/2022).

http://ieeexplore.ieee.org/document/6248110/
http://ieeexplore.ieee.org/document/6248110/
https://arxiv.org/abs/1511.08458
https://github.com/facebookresearch/detectron2
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1506.01497
http://demonstrations.wolfram.com/ProbabilisticRoadmapMethodIn3D/
http://demonstrations.wolfram.com/ProbabilisticRoadmapMethodIn3D/
http://arxiv.org/abs/1005.0416
http://arxiv.org/abs/1005.0416
https://www.tandfonline.com/doi/full/10.1080/01691864.2020.1850349
https://www.tandfonline.com/doi/full/10.1080/01691864.2020.1850349
http://journals.sagepub.com/doi/10.1177/0278364910396389
http://journals.sagepub.com/doi/10.1177/0278364910396389

Bibliography 46

[24] Available Planners. [Online]. Available: https://ompl.kavrakilab.org/planners.
html (visited on 11/19/2022).

[25] I. A. Sucan and L. E. Kavraki, „A Sampling-Based Tree Planner for Systems With
Complex Dynamics,“ IEEE Transactions on Robotics, vol. 28, no. 1, pp. 116–131,
2012.

[26] ROS/Introduction - ROS Wiki. [Online]. Available: http://wiki.ros.org/ROS/
Introduction (visited on 10/01/2022).

[27] MoveIt-Tutorials — moveit_tutorials Noetic documentation. [Online]. Available:
https://ros-planning.github.io/moveit_tutorials/ (visited on 10/01/2022).

[28] ROS/Concepts - ROS Wiki. [Online]. Available: http://wiki.ros.org/ROS/
Concepts (visited on 10/01/2022).

[29] Actionlib - ROS Wiki. [Online]. Available: http://wiki.ros.org/actionlib
(visited on 10/03/2022).

[30] E. Ackerman, Latest Version of Gazebo Simulator Makes It Easier Than Ever to
Not Build a Robot, en, Section: Robotics, Feb. 2016. [Online]. Available: https:
//spectrum.ieee.org/latest- version- of- gazebo- simulator (visited on
10/03/2022).

[31] Rviz - ROS Wiki. [Online]. Available: http://wiki.ros.org/rviz (visited on
10/28/2022).

[32] Smach - ROS Wiki. [Online]. Available: http://wiki.ros.org/smach (visited on
10/29/2022).

[33] T.-Y. Lin, M. Maire, S. Belongie, et al., Microsoft COCO: Common Objects in
Context, arXiv:1405.0312 [cs], Feb. 2015. [Online]. Available: http://arxiv.org/
abs/1405.0312 (visited on 12/16/2022).

[34] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dollar, „Bench-
marking in Manipulation Research: Using the Yale-CMU-Berkeley Object and Model
Set,“ IEEE Robotics & Automation Magazine, vol. 22, no. 3, pp. 36–52, 2015.

[35] K. Wada, Labelme: Image Polygonal Annotation with Python, Dec. 2022. [Online].
Available: https://github.com/wkentaro/labelme (visited on 12/17/2022).

[36] Google Colaboratory, de. [Online]. Available: https://colab.research.google.
com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5 (visited on 12/17/2022).

[37] V4r-tuwien/detectron2_ros. [Online]. Available: https://github.com/v4r-tuwien
/detectron2_ros (visited on 12/17/2022).

[38] Tf - ROS Wiki. [Online]. Available: http : / / wiki . ros . org / tf (visited on
12/17/2022).

[39] V4r-tuwien/table_plane_extractor: Service for horizontal table plane extraction.
[Online]. Available: https://github.com/v4r-tuwien/table_plane_extractor
(visited on 12/27/2022).

https://ompl.kavrakilab.org/planners.html
https://ompl.kavrakilab.org/planners.html
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
https://ros-planning.github.io/moveit_tutorials/
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/actionlib
https://spectrum.ieee.org/latest-version-of-gazebo-simulator
https://spectrum.ieee.org/latest-version-of-gazebo-simulator
http://wiki.ros.org/rviz
http://wiki.ros.org/smach
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://github.com/wkentaro/labelme
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5
https://github.com/v4r-tuwien/detectron2_ros
https://github.com/v4r-tuwien/detectron2_ros
http://wiki.ros.org/tf
https://github.com/v4r-tuwien/table_plane_extractor

Bibliography 47

[40] F. Bottarel, G. Vezzani, U. Pattacini, and L. Natale, „GRASPA 1.0: GRASPA is a
Robot Arm graSping Performance benchmArk,“ IEEE Robotics and Automation
Letters, vol. 5, no. 2, pp. 836–843, Apr. 2020, arXiv:2002.05017 [cs], issn: 2377-3766,
2377-3774. [Online]. Available: http://arxiv.org/abs/2002.05017 (visited on
12/30/2022).

http://arxiv.org/abs/2002.05017

Acronyms

Constrained BiDirectional RRT 2 CBiRRT2

Convolutional Neural Networks CNN

Degrees of Freedom DoF

Feedforward Neural Network FNN

Human Support Robot HSR

Open Motion Planning Library OMPL

Probabilistic Roadmap Method PRM

Rapidly Exploring Random Tree RRT

Region of Interest RoI

Region Proposal Network RPN

Robot Operating System ROS

Tool Center Point TCP

48

List of Figures

1.1 The Human Support Robot with household items and the storage box . . 2
1.2 Pick-and-place goal . 3
1.3 The three main parts of the Tiny Objects Program (TOP) 4

2.1 The robot during the challenge [5] . 6
2.2 SWIFTI CRB 1100 from ABB [10] . 7
2.3 The HSR is equipped with various sensors [12] 8
2.4 Simple feedforward neural network . 10
2.5 CNN convolution and pooling . 11
2.6 Instance segmentation done with Mask R-CNN [16] 11
2.7 Faster R-CNN framework [17] . 12
2.8 Mask R-CNN framework [16] . 12
2.9 Motion planning flowchart . 13
2.10 Example of PRM planning (Generated with [18]) 14
2.11 Different variants of RRT methods [22] . 15

3.1 Communication concept in ROS . 17
3.2 A HSR world created from Toyota in Gazebo 18
3.3 The view from the robot in RViz . 18
3.4 The state machine of the Amazon Picking Challenge robot [5] 19

4.1 TOP state machine . 22
4.2 A training image with the three object classes: card, box and coin 24
4.3 The HSR detects a card and a box . 25
4.4 RGB and depth image of the HSR camera 25
4.5 Localization of an object . 26
4.6 MoveIt planning scene in RViz . 27
4.7 Setting the goal frame for the end effector 28
4.8 The HSR picks a card between obstacles 29

49

List of Figures 50

4.9 Lay-down box in real and in RViz . 30
4.10 Dropping a card in the box . 30
4.11 User interface with action servers . 31

5.1 Setup for all experiments . 34
5.2 Different setups for each experiment . 35
5.3 Object detection failure occurring in the 3. experiment 39
5.4 Additional object detection examples . 40
5.5 Performance of each category (experiment 1,2,3,4 and repeat of 5) 41

List of Tables

5.1 Results of the 1. experiment - card only 36
5.2 Results of the 2. experiment - card with mustard and spam aside 37
5.3 Results of the 3. experiment - card with mustard aside and spam in front

of card . 37
5.4 Results of the 4. experiment - box with mustard and spam aside 37
5.5 Results of the 5. experiment - card and table tilted by 10° 38
5.6 Repeat of the 5. experiment with increased z-offset 39

51

Listings

3.1 Code example . 20

52

	1 Introduction
	1.1 Motivation
	1.2 Challenge
	1.3 Approach and Contributions
	1.4 Results
	1.5 Thesis Outline

	2 Related Work
	2.1 Pick-and-Place Robots
	2.1.1 Amazon Picking Challenge Winner
	2.1.2 Industry Robots
	2.1.3 The Toyota HSR

	2.2 Computer Vision
	2.2.1 Neural Networks used for Computer Vision
	2.2.2 Mask R-CNN

	2.3 Motion planning

	3 Basics for Robotic Programming
	3.1 ROS and its Plug-ins
	3.2 State Machines
	3.3 Python Controls

	4 Tiny Objects Program
	4.1 Program States
	4.2 Finding Objects
	4.3 Picking up Objects
	4.4 Lay-Down and Handover
	4.5 User Interface

	5 Experimental Evaluation of TOP
	5.1 Experiment Setup
	5.2 Experiment Results
	5.3 Discussion of Failures
	5.4 Performance Evaluation

	6 Conclusion
	Bibliography
	Acronyms
	List of Figures
	List of Tables
	Listings

