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A B S T R A C T

If convergences grow so large that the serviceability of a tubbing ring is lost, remedial measures must be
taken. In this context, it is useful to reconstruct the displacement history of the tunnel ring in order to gain
insight into the evolution of the structural behavior that has led to the current configuration. This challenge is
tackled with the help of measured convergences and rigid body kinematics. The latter are sufficient, because the
deformations of tubbings, resulting from normal forces and bending moments, do not contribute significantly
to the displacements of segmental rings. The analysis is focused on convergences measured during a real-
scale test of a symmetric tunnel ring. It consists of six tubbings and has three kinematic degrees of freedom.
Deformed configurations are reproduced by optimizing the three scalar components of one symmetric and two
antisymmetric modes of rigid body displacements. This problem is under-determined, because convergences
are routinely measured in two directions only. Its solution is obtained in two steps. At first, the component
of the symmetric mode of rigid body displacements is identified such that the measured convergences are
reproduced in the best-possible fashion. Thereafter, the remaining differences between measured and modeled
convergences are reduced to zero by optimizing the components of the two antisymmetric modes. This kind
of structural analysis starts with the most recent set of measured convergences. It proceeds, in a step-by-step
manner backwards in time to older sets of monitored data. It is shown that the developed method allows for
a satisfactory reproduction of the displacement history of the tested tubbing ring, making use of measured
vertical and horizontal convergences. The obtained visualization of the displacement history of the entire
tunnel ring provides more insight into the structural behavior than diagrams showing only the evolution of
single convergences.
1. Introduction

Tunnel boring machines excavate the ground mass and construct
linings consisting of segmental rings. The precast reinforced concrete
segments are referred to as tubbings. Right after installation, every ring
is supposed to be close to a perfect circle. External forces acting on the
lining result in its ovalization (Huang et al., 2017; Marwan et al., 2021).
This is routinely monitored by measuring changes of the diameter,
i.e. convergences, both in vertical and horizontal direction (Pinto and
Whittle, 2014). Ovalization of segmental linings is tolerated up to
convergence-related serviceability limit states (Li et al., 2018). The
latter are surpassed as soon as the largest measured convergence, in
absolute terms, exceeds a specific fraction of the outer diameter of
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1 As for convergences computed in design simulations of future tunnels, the limit is 3‰ in case of aligned longitudinal joints, and 2‰ in case they are
misaligned (GB/T51438-2021, 2021).

the segmental ring, usually 2%, see (DG/TJ08-2123-2013, 2013; Jiang
et al., 2021).1

Provided that such a serviceability limit state is reached or sur-
passed, engineers must select and implement remedial measures (Yuan
et al., 2012). Nowadays, two main strategies of remediation are dis-
cussed in the literature. The first one refers to the treatment of the
ground mass by means of grouting in order to adjust the ground pres-
sure acting on the tunnel lining (Zhang et al., 2018b). The grout may be
injected either through holes in the tubbings (Li and Chen, 2012; Zhou
et al., 2018; Jin et al., 2018) or through boreholes from the ground
surface (Zhu et al., 2019). The second remedial strategy is to strengthen
the tunnel linings, e.g. based on filament wound profiles (Liu et al.,
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2017), steel rings (Liu et al., 2018), steel–concrete composites (Zhang
et al., 2019a), or ultra-high performance concrete (Liu et al., 2021).

A graphical representation of the deformed configuration of the
tunnel ring provides insight into the structural behavior and facilitates
the selection of remedial measures. Nowadays, the current configura-
tion of overly deformed tunnel rings can be documented by means
of full-field and high-resolution laser-scanning (Nuttens et al., 2014;
Xie and Lu, 2017) and photogrammetry (Ai et al., 2016). However,
engineers would even better understand the structural behavior of
tunnel rings if the displacement history of an entire tunnel ring could
be reconstructed (Li et al., 2017). Such a reconstruction must be based
on available data from historic structural monitoring, mostly in the form
of convergences (T/CSPSTC 43-2019, 2019). This is setting the scene
for the present contribution.

This study deals with the question whether or not it is possible to
reconstruct deformed configurations of segmental tunnel rings based on
two convergence measurements. For that purpose, a real-scale test of
a segmental tunnel ring was analyzed. Structural monitoring included
measurement of convergences in six different directions. This is benefi-
cial to the present study, because the available experimental data allow
for focusing the analysis on the vertical and horizontal convergences
and for assessing the quality of the obtained results based on the other
four available convergences.

A method for reconstructing the deformed configuration of segmen-
tal tunnel rings, based on two measured convergences, is presented.
The approach rests on rigid body kinematics. This is motivated as
follows: Convergences of segmental tunnel rings are governed by
rigid body displacements of the tubbings (Blom, 2002; El Naggar and
Hinchberger, 2008). The deformations of the tubbings, resulting from
normal forces and bending moments, only produce some 5% of the
convergences (Zhang et al., 2019b). This implies that any deformed
configuration of a segmental lining can be well approximated by means
of a kinematic description of the rigid body displacements of the tub-
bings, associated with their relative rotations at the joints. The analyzed
segmental ring consists of six tubbings and has three kinematic degrees
of freedom. Thus, all possible states of rigid body displacements can
be described mathematically as a linear combination of three indepen-
dent modes of rigid body displacements. Because the analyzed tunnel
ring is initially symmetric, it is possible to introduce one symmetric
mode (Zhang et al., 2019b) and two antisymmetric modes (Jiang et al.,
2021). Thus, reconstruction of the deformed configuration based on
two measured convergences requires the identification of three scalar
values, representing components of the three modes of rigid body
displacements.

The focus of the present paper is on single rings. This is reasonable
for loading scenarios which are characterized by insignificant interac-
tion between adjacent rings, as resulting from (i) small axial loading,
(ii) radial loading that is almost uniform in the longitudinal direction,
and (iii) adjacent rings with aligned longitudinal joints, see (Zhang
et al., 2019c). Liu et al. (2022) investigated ring-to-ring interaction
in case of large axial loading and misaligned longitudinal joints of
neighboring rings. This interaction was shown to lead to (i) a significant
increase of the deformations of the tubbings, resulting from additional
normal forces and bending moments, and (ii) a decrease of relative
rotations at the joints, associated with rigid body displacements of the
tubbings. In such situations, it is possible that the convergences are not
only governed by rigid body displacements of the tubbings, but that
their deformations also play an important role. If this is the case, the
applicability of the present developments is questionable.

The paper is organized as follows. Section 2 contains the conver-
gences measured during a real-scale test of a segmental tunnel ring.
Section 3 focuses on the reconstruction of deformed configurations,
based on measured vertical and horizontal convergences. This recon-
struction rests on the mathematical description of the three modes of
rigid body displacements and on an expression for the convergences
as a function of the components of these three modes. The proposed
2

Fig. 1. Real-scale laboratory test of a segmental tunnel ring: photo of the setup.

method is described and applied to the horizontal and vertical conver-
gences measured in the final state of the test. Finally, the evolution of
the deformed configurations of the tubbing ring is traced backwards
from the end to the beginning of the test. Section 4 contains the
conclusions drawn from the presented study and recommendations for
practical applications.

2. Convergences measured during the test of a real-scale segmen-
tal tunnel ring

A real-scale segmental tunnel ring, as is frequently used for metro
tunnels in Shanghai, was tested at Tongji University, see Fig. 1. The
structure consisted of six tubbings. The six joints in between were
located at angular positions

𝜑 ∈ {8◦, 73◦, 138◦, 222◦, 287◦, 352◦} , (1)

see Fig. 2(a). The radius of the axis of the ring, 𝑅, amounted to
2925 mm. The radial thickness of the tubbings, ℎ, was equal to 350 mm.
Thus, the outer diameter of the ring is obtained as

𝐷𝑜 = 2𝑅 + ℎ = 6200mm. (2)

During testing, the segmental ring was subjected to radial forces im-
posed by means of 24 hydraulic jacks. They were organized in three
groups, see Fig. 2(a). The corresponding point loads are referred to as
𝑃1, 𝑃2, and 𝑃3, see Fig. 2(b) for their intensities as functions of the load
steps. The test was carried out in two phases. The first one consisted
of nine load steps, associated with and referred to the application of
loads simulating the ground pressure. The ratio between vertical and
horizontal ground pressure amounted to 0.7. The remaining load steps
simulated the decrease of the horizontal ground pressure resulting from
excavation in the lateral vicinity of the tunnel.

Convergences were measured in six directions, described by angular
coordinates

𝜓 ∈ {0◦ , 42◦ , 73◦ , 90◦ , 107◦ , 138◦} , (3)

see Fig. 3. Positive values of convergences, 𝐶𝑒𝑥𝑝(𝜓) > 0, refer to an
increase of the distance between two opposite measurement points,
negative values, 𝐶𝑒𝑥𝑝(𝜓) < 0, to a decrease. Notably, both 𝜑 and 𝜓
are equivalent angular coordinates with the origin at the crown of
the segmental tunnel ring. The reason for introducing two different
symbols for the same coordinate is to render the presentation as clear as
possible. 𝜑𝑗 denotes the position of the 𝑗th joint between neighboring
tubbings, and 𝜓𝑘 refers to the direction of the 𝑘th available convergence
measurement.

During the first phase of the test, see load steps 1 to 9, the conver-
gences increased rather moderately and virtually linearly, see Fig. 3.
During the second phase, the convergences increased significantly,
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Fig. 2. Real-scale testing of a segmental tunnel ring: (a) arrangement of the tubbings and the hydraulic jacks, (b) prescribed intensities of the jack forces.
Fig. 3. Results from structural monitoring during real-scale testing: (a) specific directions of measured convergences, (b) measured convergences: negative values refer to a decrease
f the initial diameter, positive values to an increase.
n
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xcept in the directions of 𝜓2 = 42◦ and 𝜓6 = 138◦. The test was
stopped at load step 18, because a convergence-related serviceability
limit state had been surpassed, given that the absolute value of the
largest measured convergence, 𝐶(𝜓4 = 90◦) = +144mm, exceeded 2%
of the outer diameter of the structure, see Eq. (2).

3. Reconstruction of the deformed configurations based on
measured convergences

3.1. Mathematical description of rigid body displacements associated with
relative rotations at the joints (Jiang et al., 2021)

Convergences are governed by rigid body displacements of the
tubbings (Blom, 2002; El Naggar and Hinchberger, 2008), while
deformations of the tubbings only produce some 5% of the conver-
gences (Zhang et al., 2019b). Rigid body displacements of a segmental
tunnel ring, expressed as functions of the relative rotations at the joints,
3

i

read as (Jiang et al., 2021)

𝑢(𝜑) =
6
∑

𝑗=1
𝑅𝛥𝜃𝑗 sin(𝜑 − 𝜑𝑗 )𝐻(𝜑 − 𝜑𝑗 ) , (4)

𝑣(𝜑) = −
6
∑

𝑗=1
𝑅𝛥𝜃𝑗

[

1 − cos(𝜑 − 𝜑𝑗 )
]

𝐻(𝜑 − 𝜑𝑗 ) , (5)

𝜃(𝜑) =
6
∑

𝑗=1
𝛥𝜃𝑗𝐻(𝜑 − 𝜑𝑗 ) , (6)

where 𝑢 and 𝑣 denote the radial and tangential displacement compo-
ent, respectively, whereas 𝜃 and 𝛥𝜃𝑗 stand for the rotation of the
ross-section and the relative rotation at the 𝑗th joint, respectively,
nd 𝐻(𝜑 − 𝜑𝑗 ) denotes the Heaviside function. Notably derivation of
qs. (4)–(6) is based on the transfer relations (Zhang et al., 2017),
epresenting analytical solutions of the linear theory of thin circular
rches, presented in the Appendix A. Because segmental tunnel lin-
ngs are closed rings, the relative rotations must satisfy the following
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Fig. 4. Three modes of rigid-body displacements of the analyzed segmental ring: (a) symmetric mode, see the first column of 𝑨 in Eq. (10), (b) the first antisymmetric mode, see
the second column of 𝑨 in Eq. (10), and (c) the second antisymmetric mode, see the third column of 𝑨 in Eq. (10); crosses mark the points located at 0◦, 90◦, 180◦, and 270◦;
fter (Jiang et al., 2021).
d

h
t

𝐶

ontinuity conditions (Jiang et al., 2021)

𝑢(0) = 𝑢(2𝜋) ⇒
6
∑

𝑗=1
𝛥𝜃𝑗 sin𝜑𝑗 = 0 , (7)

𝑣(0) = 𝑣(2𝜋) ⇒
6
∑

𝑗=1
𝛥𝜃𝑗 (1 − cos𝜑𝑗 ) = 0 , (8)

(0) = 𝜃(2𝜋) ⇒
6
∑

𝑗=1
𝛥𝜃𝑗 = 0 . (9)

ecause six relative rotations must satisfy three continuity conditions,
here are infinitely many solutions. They can be described mathemati-
ally as the superposition of three linearly independent modes of rigid
ody displacements. As for the analyzed symmetric ring, it is possible to
ntroduce one symmetric and two antisymmetric modes of rigid body
isplacements, see Fig. 4. Thus, the relative rotations can be expressed
s (Jiang et al., 2021):

𝛥𝜃1
𝛥𝜃2
𝛥𝜃3
𝛥𝜃4
𝛥𝜃5
𝛥𝜃6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏞⏟⏞⏟
𝜟𝜽

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

+0.3427 +0.6923 −0.1171
−0.5737 ±0.0000 +0.4111
+0.2310 −0.1440 −0.5632
+0.2310 +0.1440 +0.5632
−0.5737 ∓0.0000 −0.4111
+0.3427 −0.6923 +0.1171

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑨

⋅
⎡

⎢

⎢

⎣

𝛽1
𝛽2
𝛽3

⎤

⎥

⎥

⎦

⏟⏟⏟
𝜷

. (10)

n Eq. (10), 𝛽1 is the component associated with the symmetric mode
f rigid body displacements, see the first column of 𝑨 and Fig. 4(a).
2 is the component associated with the first antisymmetric mode, see
he second column of 𝑨 and Fig. 4(b). 𝛽3 is associated with the second
ntisymmetric mode, see the third column of 𝑨 and Fig. 4(c).

The base matrix 𝑨 in Eq. (10) is customized for the tunnel ring
hown in Fig. 2(a), with positions of the joints according to Eq. (1).
s for other segmental tunnel rings, the base matrix 𝑨 can be derived,

ollowing the approach presented in Appendix B.

.2. Convergences as function of the components associated with the three
odes of rigid body displacements

Identification of the deformed configuration of a segmental tunnel
ing based on measured convergences requires an expression for the
onvergence in the 𝜓𝑘-direction, 𝐶(𝜓𝑘), as a function of 𝛽1, 𝛽2, and 𝛽3.

To this end, 𝐶(𝜓𝑘) is related by means of the Pythagorean theorem to
he displacement components 𝑢(𝜓𝑘) and 𝑣(𝜓𝑘) as well as 𝑢(𝜓𝑘 + 𝜋) and
𝑣(𝜓𝑘 + 𝜋), see also Fig. 5:
[

2𝑅 + 𝑢(𝜓𝑘) + 𝑢(𝜓𝑘 + 𝜋)
]2

+
[

𝑣(𝜓𝑘) + 𝑣(𝜓𝑘 + 𝜋)
]2

=
[

2𝑅 + 𝐶(𝜓𝑘)
]2
. (11)

Insertion of the relative rotations according to Eq. (10) into Eqs. (4)
and (5) and of the resulting expressions into Eq. (11) yields, after
4

Fig. 5. Relation between the convergence in the 𝜓𝑘 direction, 𝐶(𝜓𝑘), and the
isplacement components 𝑢(𝜓𝑘) and 𝑣(𝜓𝑘) as well as 𝑢(𝜓𝑘 + 𝜋) and 𝑣(𝜓𝑘 + 𝜋).

aving solved for 𝐶(𝜓𝑘), the sought expression for the convergence in
he 𝜓𝑘-direction as a function of 𝛽1, 𝛽2, and 𝛽3:

(𝜓𝑘; 𝛽1, 𝛽2, 𝛽3) =

{

[

2𝑅 +
6
∑

𝑗=1
𝑅
(

𝐴𝑗,1 𝛽1 + 𝐴𝑗,2 𝛽2 + 𝐴𝑗,3 𝛽3
)

×

{

sin(𝜓𝑘 − 𝜑𝑗 )𝐻(𝜓𝑘 − 𝜑𝑗 ) + sin(𝜓𝑘 + 𝜋 − 𝜑𝑗 )𝐻(𝜓𝑘 + 𝜋 − 𝜑𝑗 )
}

]2
+

[ 6
∑

𝑗=1
𝑅
(

𝐴𝑗,1 𝛽1 + 𝐴𝑗,2 𝛽2 + 𝐴𝑗,3 𝛽3
) {

[

1 − cos(𝜓𝑘 − 𝜑𝑗 )
]

𝐻(𝜓𝑘 − 𝜑𝑗 ) +

[

1 − cos(𝜓𝑘 + 𝜋 − 𝜑𝑗 )
]

𝐻(𝜓𝑘 + 𝜋 − 𝜑𝑗 )
}

]2
}

1
2

− 2𝑅 .

(12)

The mathematical problem, dealt with in the following Subsec-
tions, refers to the identification of optimal values of the components
of the rigid body displacement, 𝛽1, 𝛽2, and 𝛽3, such that the mod-
eled convergences according to Eq. (12) reproduce the corresponding
measurements.

3.3. Reconstruction of the deformed configuration of the tunnel ring based
on horizontal and vertical convergences measured in the final state of the
test

Measurements of convergences of segmental linings must be carried
out in a minimum-invasive fashion in order to disturb the operation of
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Fig. 6. Optimization of 𝛽1, 𝛽2, and 𝛽3 in order to reproduce the vertical and horizontal convergences measured at load step 18 (= beyond the serviceability limit state): (a)
optimization of 𝛽1 according to Eq. (14), see also Eq. (15), and (b) optimization of 𝛽2 and 𝛽3 according to Eq. (16), see also Eqs. (17) and (18).
.
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tunnels as little as possible. Therefore, convergences are usually mea-
sured in selected cross-sections and in two directions only. In order to
simulate such a practical scenario, the first analysis of the experimental
data of Section 2 is limited to vertical (𝜓1 = 0) and horizontal (𝜓4 =
𝜋∕2) convergences. In order to check whether or not reconstruction
of the deformed configuration based on two convergences is possible,
the first analysis is restricted to load step 18, at which a convergence-
related serviceability limit state has been surpassed, see Section 2. The
measured convergences in vertical and horizontal direction read as
𝐶𝑒𝑥𝑝(𝜓1) = −125mm and 𝐶𝑒𝑥𝑝(𝜓4) = +144mm, respectively, see also
Fig. 3(b).

The values of the three optimization variables, 𝛽1, 𝛽2, and 𝛽3, are
to be identified such that the vertical and horizontal convergences,
modeled according to Eq. (12), reproduce the two measured values.
Thus, the square root of the sum of squared errors (𝑆𝑅𝑆𝑆𝐸) between
measured and modeled convergences must vanish:

𝑆𝑅𝑆𝑆𝐸(𝛽1, 𝛽2, 𝛽3) =
√

1
2

∑

𝑘=1, 4

[

𝐶𝑒𝑥𝑝(𝜓𝑘) − 𝐶(𝜓𝑘, 𝛽1, 𝛽2, 𝛽3)
]2

= 0 . (13)

This optimization problem is under-determined. As a remedy, it will
be assumed that the deformed configuration is governed by symmetric
rigid body displacements. The identification of 𝛽1, 𝛽2, and 𝛽3 will be
organized in two steps. At first, 𝛽2 and 𝛽3 will be set equal to zero,
and 𝛽1 will be identified such as to explain the two convergences in
the best-possible fashion. In step 2, the remaining differences between
modeled and measured convergences will be reduced to zero, based on
suitably identified values of 𝛽2 and 𝛽3. These two steps will be described
in more detail in the following two paragraphs.

Step 1 is limited to symmetric rigid body displacements. Accordingly,
the antisymmetric components 𝛽2 and 𝛽3 are set equal to zero. 𝛽1 is
identified such as to minimize the square root of the sum of squared
errors:

𝑆𝑅𝑆𝑆𝐸(𝛽1) =
√

1
2

∑

𝑘=1, 4

[

𝐶𝑒𝑥𝑝(𝜓𝑘) − 𝐶(𝜓𝑘, 𝛽1, 𝛽2 = 0, 𝛽3 = 0)
]2

→ min.

(14)

The solution of Eq. (14) is computed numerically and reads as:

𝛽1 = 0.1333 , (15)

see Fig. 6(a). The related value of 𝑆𝑅𝑆𝑆𝐸 according to Eq. (14)
amounts to 10.1mm. The modeled vertical and horizontal convergences
5

read as 𝐶(𝜓1) = −135.1mm and 𝐶(𝜓4) = +133.9mm, respectively.
Table 1
Complete set of six convergences measured at load step 18, see also Eq. (3) and Fig. 3(b)
𝜓1 = 0.0000 rad 𝐶𝑒𝑥𝑝(𝜓1) = −125mm
𝜓2 = 0.7330 rad 𝐶𝑒𝑥𝑝(𝜓2) = −9mm
𝜓3 = 1.2741 rad 𝐶𝑒𝑥𝑝(𝜓3) = +90mm
𝜓4 = 1.5708 rad 𝐶𝑒𝑥𝑝(𝜓4) = +144mm
𝜓5 = 1.8675 rad 𝐶𝑒𝑥𝑝(𝜓5) = +138mm
𝜓6 = 2.4086 rad 𝐶𝑒𝑥𝑝(𝜓6) = ±0mm

Step 2 focuses on identifying the antisymmetric components of
igid body displacements in order to reduce the remaining differences
etween the measured and the modeled convergences to zero. In
athematical terms, this problem reads as

𝑅𝑆𝑆𝐸(𝛽2, 𝛽3) =
√

1
2

∑

𝑘=1, 4

[

𝐶𝑒𝑥𝑝(𝜓𝑘) − 𝐶(𝜓𝑘, 𝛽1 = 0.1333, 𝛽2, 𝛽3)
]2

= 0 .

(16)

Eq. (16) is solved numerically, see Fig. 6(b). Two solutions are
obtained:

𝛽1𝑎 = +0.1331 , 𝛽2𝑎 = −0.09258 , 𝛽3𝑎 = +0.05308 , (17)
𝛽1𝑏 = +0.1331 , 𝛽2𝑏 = +0.09258 , 𝛽3𝑏 = −0.05308 . (18)

In order to assess the quality of these two solutions, the error of
reproduction of all six convergences is computed:

𝑆𝑅𝑆𝑆𝐸(𝛽1𝑎, 𝛽2𝑎, 𝛽3𝑎) =

√

√

√

√
1
6

6
∑

𝑘=1

[

𝐶𝑒𝑥𝑝(𝜓𝑘) − 𝐶(𝜓𝑘, 𝛽1𝑎, 𝛽2𝑎, 𝛽3𝑎)
]2

= 16.4mm, (19)

𝑆𝑅𝑆𝑆𝐸(𝛽1𝑏, 𝛽2𝑏, 𝛽3𝑏) =

√

√

√

√
1
6

6
∑

𝑘=1

[

𝐶𝑒𝑥𝑝(𝜓𝑘) − 𝐶(𝜓𝑘, 𝛽1𝑏, 𝛽2𝑏, 𝛽3𝑏)
]2

= 29.5mm, (20)

see also Table 1. These results underline that the solution (17) repro-
duces all six measured convergences better than the solution (18), see
also Fig. 7.

The respective deformed configurations are obtained by inserting
the solutions (17) and (18), respectively, into Eq. (10), and the obtained
relative rotations into Eqs. (4) and (5), see the red and the green graph
in Fig. 8(a) and (b). The two solutions are mirror images with respect

to a vertical axis of symmetry.
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Fig. 7. Convergence as a function of the angular coordinate 𝜑: comparison of measured
convergences, see the circles, with identified results, reproducing the vertical and
horizontal convergences.

For comparison, also the deformed configuration obtained by Jiang
et al. (2021) is included in Fig. 8, see the blue graphs. It was obtained
as the result of a comprehensive structural analysis accounting for the
relative rotations at the joints and the prescribed point loads. Thus, the
computed displacements account for the deformations of the tubbings:
contraction in the tangential direction produced by compressive normal
forces and changes of curvature produced by bending moments. The
relative rotations at the joints were first estimated based on tangential
displacement jumps, measured at the inner and outer gaps of the
joints. Subsequently, they were postprocessed in order to explain the
measured horizontal and vertical convergences in the best-possible
fashion.

The deformed configuration of the tested ring according to
Eqs. (17), (10), (4), and (5), see the red graph in Fig. 8(a), is virtually
identical with the deformed configuration taken from (Jiang et al.,
2021), see the blue graph in Fig. 8(a). This underlines the fact that the
deformations of the tubbings, resulting from normal forces and bending
moments, do not contribute significantly to the convergences.

3.4. Reconstruction of the deformed configuration of the tunnel ring based
on all six convergences measured in the final state of the test

In order to further demonstrate the quality of the reproduction of
the measured convergences by the solution (17), identification of 𝛽1, 𝛽2,
and 𝛽3 is repeated, this time, however, based on all six convergences
measured at load step 18, see Table 1. This optimization problem
is over-determined. Therefore, 𝛽1, 𝛽2, and 𝛽3 are identified such as
to minimize the sum of the squared errors between the six pairs of
measured and modeled convergences:

𝑆𝑅𝑆𝑆𝐸(𝛽1, 𝛽2, 𝛽3) =

√

√

√

√
1
6

6
∑

𝑘=1

[

𝐶𝑒𝑥𝑝(𝜓𝑘) − 𝐶(𝜓𝑘, 𝛽1, 𝛽2, 𝛽3)
]2

→ min. (21)

The solution is obtained numerically. It reads as

𝛽1𝑐 = +0.1205 , 𝛽2𝑐 = −0.09331 , 𝛽3𝑐 = +0.05145 . (22)

The modeled convergences agree well with the available experimental
measurements, see Fig. 9(a).

The related value of 𝑆𝑅𝑆𝑆𝐸 according to Eq. (21) amounts to

𝑆𝑅𝑆𝑆𝐸(𝛽1𝑐 , 𝛽2𝑐 , 𝛽3𝑐 )=

√

√

√

√
1
6

6
∑

𝑘=1

[

𝐶𝑒𝑥𝑝(𝜓𝑘) − 𝐶(𝜓𝑘, 𝛽1𝑐 , 𝛽2𝑐 , 𝛽3𝑐 )
]2

=12.6mm.
6

(23) c
This result is slightly better than that based on the vertical and horizon-
tal convergences, compare Eq. (23) with Eq. (19). Still, the deformed
configuration corresponding to the solution (22) is virtually identical
with the one corresponding to the solution (17), see Fig. 9(b). This cor-
roborates the robustness of the presented approach for determination of
rigid body displacements of a segmental tunnel ring based on vertical
and horizontal convergences.

3.5. Backwards tracing of the evolution of the deformed configuration,
starting from the final state of the test

It remains to be checked whether or not the evolution of the
deformed configuration can be traced backwards, from load step 18
to the period of time before the segmental tunnel ring has surpassed
the serviceability limit state. To this end, the deformed configura-
tion is reconstructed, load step by load step, in descending order:
17, 16, 15,… , 1.

Sets of values of 𝛽1, 𝛽2, and 𝛽3 are computed twice for every load
step, using the method based on vertical and horizontal convergences,
see Section 3.3, and the one based on all six available convergence
measurements, see Section 3.4. The optimization problems (14), (16),
and (21) are solved numerically in the vicinity of the solution for the
previously analyzed load step, see Fig. 10 for the results. The solid
lines refer to the method based on vertical and horizontal conver-
gences, whereas the dashed lines refers to the method based on all
six measured convergences. Their very good agreement proves that the
approach based on the vertical and horizontal convergences is capable
of identifying deformed configurations of segmental tunnel rings.

3.6. Deformed configurations in different classes of convergence-related
serviceability

Current Chinese codes of practice, see e.g. DG/TJ08-2123-2013
(2013), define four classes of convergence-related serviceability of seg-
mental tunnel rings. This classification is based on the largest measured
convergence, in absolute terms, i.e.

𝐶𝑚𝑎𝑥 = max{|𝐶𝑣|, |𝐶ℎ|} , (24)

here 𝐶𝑣 = 𝐶(𝜓1) and 𝐶ℎ = 𝐶(𝜓4) denote the vertical and the hori-
ontal convergences, respectively. Class A, ‘‘acceptable serviceability’’,
s defined as 𝐶𝑚𝑎𝑥 ≤ 0.008𝐷𝑜, class B, ‘‘reduced serviceability’’, as
.008𝐷𝑜 < 𝐶𝑚𝑎𝑥 ≤ 0.012𝐷𝑜, class C, ‘‘endangered serviceability’’, as
.012𝐷𝑜 < 𝐶𝑚𝑎𝑥 ≤ 0.020𝐷𝑜, and class D, ‘‘violated serviceability’’,
s 𝐶𝑚𝑎𝑥 > 0.020𝐷𝑜, see also the top of Fig. 10. In order to illustrate
eformed configurations, representative of these four classes, the focus
s placed on load steps 12, 16, 17, and 18, see Fig. 10. Deformed
onfigurations are computed from the 𝛽-values illustrated in Fig. 10,
ased on Eqs. (10), (4), and (5). A sequence of deformed configurations
s obtained. It illustrates the evolution of the state of displacements
f the segmental ring throughout its loading history, leading to the
onfiguration at which the serviceability limit state has been surpassed,
ee Fig. 11.

The displacements are qualitatively similar. Because of their contin-
ous growth, the segmental tunnel ring is passing though all classes of
onvergence-related serviceability. This underlines that the unsymmet-
ic structural behavior has developed continuously rather than having
een caused by singular events such as sudden local damage of specific
arts of the ring.

. Conclusions and recommendations

The presented study has confirmed that convergences of segmental
unnel rings are governed by rigid body displacements of the tubbings,
ecause their deformations, resulting from normal forces and bending
oments, do not contribute significantly to the overall state of displace-
ents of segmental tunnel rings. This is the basis for the first set of
onclusions:
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Fig. 8. Deformed configurations of the tested ring at load step 18 according to (a) Eq. (17), see the red graph, and (b) Eq. (18), see the green graph, and comparison with
the hybrid solution obtained by Jiang et al. (2021), who have used the point loads of load step 18, the measured relative rotations at the joints, and the measured vertical and
horizontal convergences as input for hybrid structural analysis accounting for the deformation of the tubbings, see the blue graphs.
Fig. 9. (a) Convergence as a function of the angular coordinate 𝜑: comparison of measured convergences, see the rings, with results identified by reproducing the vertical and
horizontal convergences, see the red graph and Eq. (17), as well as with results identified by reproducing all six measured convergences in the best-possible fashion, see the
blue graph and Eq. (22), and (b) comparison of deformed configurations obtained by means of two measured convergences, see Eq. (17) and the red graph, and six measured
convergences, see Eq. (22) and the blue graph.
t
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Fig. 10. Evolution of the rigid body displacement components 𝛽1, 𝛽2, and 𝛽3, as a
function of the larger convergence, max{|𝐶𝑣|, |𝐶ℎ|}; solid lines refer to the method
ased on vertical and horizontal convergences, whereas the dashed lines refer to the
ethod based on all six measured convergences.
7

• Deformed configurations of a segmental lining can be well approx-
imated based on the kinematics of rigid body displacements of the
tubbings, resulting from relative rotations at the joints.

• Segmental rings, consisting of 𝑛 tubbings, have 𝑛 joints and
𝑛 − 3 kinematic degrees of freedom. All possible states of rigid
body displacements can be described mathematically as linear
combinations of 𝑛 − 3 linearly independent modes of rigid body
displacements.

• Deformed configurations of a segmental tunnel ring can be
described by means of 𝑛 − 3 scalar values, representing com-
ponents of the 𝑛 − 3 linearly independent modes of rigid body
displacements.

• Even if a segmental tunnel ring is initially symmetric, also
antisymmetric modes of rigid body displacements may arise.

The analyzed ring is symmetric and consists of six tubbings. Thus,
it has one symmetric and two antisymmetric modes of rigid body
displacements, see Fig. 4. The related components are denoted as 𝛽1,
𝛽2, and 𝛽3. The line of arguments in the bulleted list above has provided
he motivation to develop a method which allows for identification of
1, 𝛽2, and 𝛽3, based on two measured convergences. It is recommended
o solve this under-determined optimization problem in two steps:

tep 1: Assuming that the symmetric mode of rigid body displace-
ments governs the deformed configuration, 𝛽 is optimized
1
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Fig. 11. Deformed configurations, identified by means of vertical and horizontal convergences, see the red graphs, and with the help of all six measured convergences, see the blue
raphs: (a) load step 12 in serviceability class A, ‘‘acceptable serviceability’’, (b) load step 16 in serviceability class B, ‘‘reduced serviceability’’, (c) load step 17 in serviceability
lass C, ‘‘endangered serviceability’’, and (d) load step 18 in serviceability class D, ‘‘violated serviceability’’.
in order to reproduce the two measured convergences in the
best-possible fashion, while 𝛽2 and 𝛽3 are set equal to zero.

Step 2: The remaining differences between measured and modeled
convergences are reduced to zero, based on the antisymmetric
modes of rigid body displacements, i.e. by means of optimization
of 𝛽2 and 𝛽3, while 𝛽1 is kept constant at the value identified in
the first step.

Step 2 has resulted in two axisymmetric solutions, see Fig. 8. This
has raised the need to identify the solution which is more realistic.
Therefore, it is recommended to organize the reproduction of the dis-
placement history of segmental tunnel rings throughout the monitoring
period during which convergences were measured, as follows.

• The analysis starts at the current configuration of the tunnel ring.
In order to identify the more realistic solution for 𝛽1, 𝛽2, and 𝛽3,
it is recommended to measure convergences in several directions:
the more of them, the better.

• The values obtained for 𝛽1, 𝛽2, and 𝛽3 are the basis for the analysis
of the evolution of the deformed configuration, based on past
convergence measurements, even if these monitoring data refer
to two directions only.

• Retrogressing step-by-step in time, the values of 𝛽1, 𝛽2, and 𝛽3 are
optimized, using the previously described two-step procedure. As
for the numerical solution of the optimization problem regarding
𝛽2 and 𝛽3, see Step 2, the solution of the previously analyzed
configuration is used as the starting point.
8

This procedure was applied to a segmental tunnel ring, which was
tested until the convergence-related serviceability limit state had
been surpassed. Results obtained by means of measured vertical and
horizontal convergences could be shown to be reliable, because the con-
vergences were measured in six directions during the well-instrumented
test. The success of the method is remarkable, because the tested
structure has clearly shown an unsymmetric behavior, challenging the
assumption used in Step 1, see above.

Based on data from real-scale testing of a segmental tunnel ring,
it was shown that the presented method is useful for engineering
applications, because it allows for translating measured histories of two
convergences into a sequence of images, visualizing the evolution of
the displacements of the entire tunnel ring (see, e.g., Fig. 11). Such a
sequence of images provides much better insight into the structural
behavior of the tunnel lining than diagrams showing the evolution
of single convergences (see, e.g., Fig. 3). Therefore, the presented
method is appreciated by tunnel engineers, striving to understand the
structural behavior of segmental linings throughout their monitored
history. It is of particular significance for engineering practice that the
presented method is capable of coping with very challenging scenarios,
characterized by convergences which have grown so large that tunnel
serviceability is at stake. It is concluded that the developed approach
is a very effective enrichment of the pool of methods available to
support the decision making process regarding remedial measures for
segmental tunnel linings, the serviceability of which is endangered or

even violated by large convergences.
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The presented study is a successful example for application-oriented
research in the engineering sciences. The motivation was provided by
an unsolved problem in tunneling practice. Research was based on
scientifically well-rooted theoretical concepts. The developed method
has a high degree of novelty. It is only as complex as necessary to
provide a solution to the problem at hand. At the same time, it is as
simple as possible to ensure that it will be used in the engineering
practice. The method was systematically verified, because it survived a
strictly quantitative attempt of falsification. This test of the method was
severe, because it was based on high-quality monitoring data, recorded
during real-scale testing of a segmental tunnel ring. This underlines that
the developed method is very well suited for applications with data
from real tunnels. This is the logic next step, representing an interesting
topic for follow-up work.

Finally, it is emphasized that the presented developments are based
on the assumption that convergences are governed by rigid body dis-
placements of the segments, resulting from relative rotations at the
joints. This assumption was shown to be reasonable for the analysis
of a single-ring laboratory test. As for tunnel linings with significant
ring-to-ring interaction, this assumption must be scrutinized.
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ppendix A. Transfer relations of the linear theory of thin circular
rches

Transfer relations, representing analytical solutions of the linear
heory of thin circular arches, are given as (Zhang et al., 2017)

𝑢(𝜑)
𝑣(𝜑)
𝜃(𝜑)
𝑀(𝜑)
𝑁(𝜑)
𝑉 (𝜑)
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos𝜑 sin𝜑 𝑇13(𝜑) 𝑇14(𝜑) 𝑇15(𝜑) 𝑇16(𝜑)
∑

𝑢𝐿(𝜑)
− sin𝜑 cos𝜑 𝑇23(𝜑) 𝑇24(𝜑) 𝑇25(𝜑) 𝑇26(𝜑)

∑

𝑣𝐿(𝜑)
0 0 1 𝑇34(𝜑) 𝑇35(𝜑) 𝑇36(𝜑)

∑

𝜃𝐿(𝜑)
0 0 0 1 𝑇45(𝜑) 𝑇46(𝜑)

∑

𝑀𝐿(𝜑)
0 0 0 0 cos𝜑 − sin𝜑

∑

𝑁𝐿(𝜑)
0 0 0 0 sin𝜑 cos𝜑

∑

𝑉 𝐿(𝜑)
0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢𝑖
𝑣𝑖
𝜃𝑖
𝑀𝑖

𝑁𝑖

𝑉𝑖
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(A.1)
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where

𝑇13(𝜑) = 𝑅 sin𝜑 , 𝑇14(𝜑) =
𝑅2

𝐸𝐼
(cos𝜑 − 1) ,

𝑇15(𝜑) =
𝑅
𝐸𝐴

1
2
𝜑 sin𝜑 + 𝑅3

𝐸𝐼

( 1
2
𝜑 sin𝜑 + cos𝜑 − 1

)

,

𝑇16(𝜑) =
𝑅
𝐸𝐴

( 1
2
𝜑 cos𝜑 − 1

2
sin𝜑

)

+ 𝑅3

𝐸𝐼

( 1
2
𝜑 cos𝜑 − 1

2
sin𝜑

)

,

𝑇23(𝜑) = 𝑅 (cos𝜑 − 1) , 𝑇24(𝜑) =
𝑅2

𝐸𝐼
(𝜑 − sin𝜑) ,

𝑇25(𝜑) =
𝑅
𝐸𝐴

( 1
2
𝜑 cos𝜑 + 1

2
sin𝜑

)

+ 𝑅3

𝐸𝐼

(

𝜑 − 3
2
sin𝜑 + 1

2
𝜑 cos𝜑

)

,

𝑇26(𝜑) =
𝑅
𝐸𝐴

(

−1
2
𝜑 sin𝜑

)

+ 𝑅3

𝐸𝐼

(

1 − cos𝜑 − 1
2
𝜑 sin𝜑

)

,

𝑇34(𝜑) = − 𝑅
𝐸𝐼

𝜑 , 𝑇35(𝜑) =
𝑅2

𝐸𝐼
(sin𝜑 − 𝜑) , 𝑇36(𝜑) =

𝑅2

𝐸𝐼
(cos𝜑 − 1) ,

𝑇45(𝜑) = 𝑅 (1 − cos𝜑) , 𝑇46(𝜑) = 𝑅 sin𝜑 .

(A.2)

The vector on the left-hand side of Eq. (A.1) contains the kinematic
and the static variables at an arbitrary cross-section, defined by the
angular coordinate 𝜑, i.e. the cross-sectional rotation 𝜃, the radial and
the tangential displacement, 𝑢 and 𝑣, respectively, the normal force 𝑁 ,
the shear force 𝑉 , and the bending moment 𝑀 . The matrix on the
right-hand side is the so-called transfer matrix. Its top-left six-by-six
submatrix refers to the solution for an unloaded part of the arch. The
mathematical expressions for the nonzero elements 𝑇𝑖𝑗 of this submatrix
are given in Eq. (A.2). The first six elements in the last column of
the transfer matrix in Eq. (A.1) refer to the superposition of solutions
for different types of loading. They are available for dead load, inter-
facial discontinuities of kinematic variables, and point loads (Zhang
et al., 2017), a uniform temperature change (Zhang et al., 2018a),
ground pressure (Zhang et al., 2019c), and overload on the ground
surface (Zhang et al., 2021). In Eq. (A.1), the rightmost vector contains
the kinematic and static variables at the initial cross-section 𝜑 = 0
(index ‘‘𝑖’’) . Representing integration constants, they must be identified
by means of boundary conditions.

The kinematic quantities, 𝑢𝑖, 𝑣𝑖, and 𝜃𝑖, refer to rigid body displace-
ments of the entire ring, without relative rotations of the tubbings.
Given the present focus on convergences, representing relative rather
than absolute displacements, they are set equal to zero (Zhang et al.,
2017):

𝑢𝑖 = 𝑣𝑖 = 𝜃𝑖 = 0 . (A.3)

The static quantities, 𝑀𝑖, 𝑁𝑖, and 𝑉𝑖, are determined by formulating
three continuity conditions of a closed ring (Zhang et al., 2019b):
𝑢(𝜑 = 0) = 𝑢(𝜑 = 2𝜋), 𝑣(𝜑 = 0) = 𝑣(𝜑 = 2𝜋), and 𝜃(𝜑 = 0) = 𝜃(𝜑 = 2𝜋).
This yields

𝑀𝑖 =
𝐸𝐼

2𝑅𝜋
(

𝐸𝐴𝑅2 + 𝐸𝐼
)

[

2𝐸𝐴𝑅
∑

𝑣𝐿(2𝜋)

+
(

3𝐸𝐴𝑅2 + 𝐸𝐼
)
∑

𝜃𝐿(2𝜋)
]

, (A.4)

𝑁𝑖 = − 𝐸𝐼𝐸𝐴
𝑅𝜋

(

𝐸𝐴𝑅2 + 𝐸𝐼
)

[

∑

𝑣𝐿(2𝜋) + 𝑅
∑

𝜃𝐿(2𝜋)
]

, (A.5)

𝑉𝑖 = − 𝐸𝐼𝐸𝐴
𝑅𝜋

(

𝐸𝐴𝑅2 + 𝐸𝐼
)

∑

𝑢𝐿(2𝜋) . (A.6)

The solution for a relative rotation, 𝛥𝜃𝑗 , at the joint located at
𝜑 = 𝜑𝑗 , reads as (Zhang et al., 2017)

𝑢𝐿(𝜑) = −𝑅𝛥𝜃𝑗 sin(𝜑 − 𝜑𝑗 )𝐻(𝜑 − 𝜑𝑗 ) , (A.7)

𝑣𝐿(𝜑) = 𝑅𝛥𝜃𝑗
[

1 − cos(𝜑 − 𝜑𝑗 )
]

𝐻(𝜑 − 𝜑𝑗 ) , (A.8)

𝜃𝐿(𝜑) = 𝛥𝜃𝑗𝐻(𝜑 − 𝜑𝑗 ) , (A.9)

𝑁𝐿(𝜑) = 𝑉 𝐿(𝜑) =𝑀𝐿(𝜑) = 0 . (A.10)

Given the present focus on rigid body displacements, the inner forces

must vanish everywhere in the tunnel ring: 𝑀(𝜑) = 0 kNm and 𝑁(𝜑) =
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𝑉 (𝜑) = 0 kN. Therefore, also 𝑀𝑖, 𝑁𝑖 and 𝑉𝑖 must vanish. This is an
alternative way of deriving the conditions (7)–(9). Notably, Eqs. (4)–
(6) can be obtained by specifying the first three rows of Eq. (A.1) for
Eqs. (A.3), (A.7)–(A.9), and 𝑀𝑖 = 𝑁𝑖 = 𝑉𝑖 = 0.

Appendix B. Derivation of the base vectors of the relative ro-
tations resulting in rigid body displacements of the tubbings of
general segmental tunnel rings

Consider a segmental ring consisting of 𝑛 tubbings. Such a structure
contains 𝑛 joints. Scientific research by Blom (2002), El Naggar and
Hinchberger (2008), as well as by Zhang et al. (2019b) suggests that the
deformed configurations are governed by rigid body displacements as-
sociated with relative rotations at the joints. The latter must satisfy the
continuity conditions of a ring, see Eqs. (7)–(9). Cast in matrix–vector
form, these conditions read as

⎡

⎢

⎢

⎣

sin𝜑1 sin𝜑2 sin𝜑3 sin𝜑4 … sin𝜑𝑛
1 − cos𝜑1 1 − cos𝜑2 1 − cos𝜑3 1 − cos𝜑4 … 1 − cos𝜑𝑛

1 1 1 1 … 1

⎤

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛥𝜃1
𝛥𝜃2
𝛥𝜃3
𝛥𝜃4
⋮
𝛥𝜃𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

, (B.1)

The following discussion is focused on the strategy for computation
of the relative rotations at the joints, 𝛥𝜃𝑗=1, 2,…, 𝑛, representing the
components of the vector 𝛥𝜽:

𝛥𝜽 = [𝛥𝜃1 ; 𝛥𝜃2 ; 𝛥𝜃3 ; 𝛥𝜃4 ; … ; 𝛥𝜃𝑛], (B.2)

As for 𝑛 ≤ 3, the solution of 𝛥𝜽 is unique, i.e. 𝛥𝜃𝑗=1, 2,…, 𝑛 = 0.
This implies that rings consisting of three or less tubbings represent
kinematically stable systems. However, in real segmental linings, 𝑛 is
typically larger than three.

As for 𝑛 ≥ 4, there are 𝑛 − 3 > 0 kinematic degrees of freedoms. In
this case, Eq. (B.2) has infinitely many solutions. Still, solutions for 𝛥𝜽
can be expressed in the form of a linear combination of (𝑛 − 3) vectors
of fundamental solutions, 𝛥𝜽𝑝=1, 2,… 𝑛−3, which are linearly independent
of each other:

𝛥𝜽 = 𝛼1𝛥𝜽1 + 𝛼2𝛥𝜽2 +⋯ + 𝛼𝑛−3𝛥𝜽𝑛−3 , (B.3)

where 𝛼𝑝=1, 2,… 𝑛−3 represent scalar values referred to as coefficients.
In the special case of symmetric segmental tunnel rings, the 𝑛 − 3
vectors of fundamental solutions may be subdivided into symmetric and
antisymmetric modes of rigid body displacements, see e.g. Section 3.3.

In the general case, the 𝑛 − 3 vectors of fundamental solutions can
be obtained as follows: 𝛥𝜃𝑗=4, 5,… 𝑛 are combined to one set of arbitrary
values and inserted into Eq. (B.1). Then, 𝛥𝜃𝑗=1, 2, 3 are obtained from
the resulting system of equations. Casting the computed values 𝛥𝜃𝑗=1, 2, 3
and the prescribed values 𝛥𝜃𝑗=4, 5,… 𝑛 as a vector, results in the first fun-
damental solution, 𝛥𝜽1. The remaining vectors of fundamental solutions
are obtained one after another, following the same procedure, but using
independent choices for 𝛥𝜃𝑗=4, 5,… 𝑛. Finally, 𝑛 − 3 linearly independent
vectors of fundamental solutions, 𝛥𝜽𝑝=1, 2, 3,…, 𝑛−3, are available. They
form a basis. According to Tanton (2005), it can be orthonormalized as
follows:

𝒆1 =
𝛥𝜽1

‖𝛥𝜽1‖
, (B.4)

𝒆2 =
𝛥𝜽2 − (𝛥𝜽2 ⋅ 𝒆1) ⋅ 𝒆1

‖𝛥𝜽2 − (𝛥𝜽2 ⋅ 𝒆1) ⋅ 𝒆1‖
, (B.5)

𝒆3 =
𝛥𝜽3 − (𝛥𝜽3 ⋅ 𝒆1) ⋅ 𝒆1 − (𝛥𝜽3 ⋅ 𝒆2) ⋅ 𝒆2

‖𝛥𝜽3 − (𝛥𝜽3 ⋅ 𝒆1) ⋅ 𝒆1 − (𝛥𝜽3 ⋅ 𝒆2) ⋅ 𝒆2‖
, (B.6)

⋮

10
𝒆𝑛−3 =

𝛥𝜽𝑛−3 −
𝑛−4
∑

𝑝=1
(𝛥𝜽𝑛−3 ⋅ 𝒆𝑝) ⋅ 𝒆𝑝

‖𝛥𝜽𝑛−3 −
𝑛−4
∑

𝑝=1
(𝛥𝜽𝑛−3 ⋅ 𝒆𝑝) ⋅ 𝒆𝑝‖

. (B.7)

inally, Eq. (B.3) is rewritten as

𝜽 = 𝛽1𝒆1 + 𝛽2𝒆2 +⋯ + 𝛽𝑛−3𝒆𝑛−3 , (B.8)

here 𝛽𝑝=1, 2,… 𝑛−3 stand for scalar components associated with the base
ectors of fundamental solutions. In matrix–vector form, the vector of
elative rotation angles at the joint, 𝛥𝜽, can be written as

𝜽 = 𝐀 ⋅ 𝜷 , (B.9)

ee also Eq. (10).

ppendix C. List of symbols

𝐀 matrix containing base vectors of relative rotations
at the joints

𝐴𝑗,𝑖 an element of the base matrix 𝐀
𝐶 model-predicted convergence
𝐶𝑒𝑥𝑝 experimentally measured convergence
𝐶ℎ horizontal convergence
𝐶𝑚𝑎𝑥 largest measured convergence in absolute terms
𝐶𝑣 vertical convergence
𝐷𝑜 outer diameter of the tunnel ring
𝐞𝑝 orthonormalized base vector of relative rotations at

the joints (𝑝 = 1, 2, 3, … , 𝑛 − 3)
𝐻 Heaviside function
ℎ radial thickness of the tubbings
𝑀 bending moment
𝑀𝑖 bending moment at the initial cross-section
𝑀𝐿 load integral for the bending moment
𝑁 normal force
𝑁𝑖 normal force at the initial cross-section
𝑁𝐿 load integral for the normal force
𝑛 number of segmental joints
𝑃1 point load acting in the top and the bottom regions

of the segmental tunnel ring
𝑃2 point load acting in the lateral regions of the

segmental tunnel ring
𝑃3 point load acting in the intermediate regions

between 𝑃1 and 𝑃2
𝑅 radius of the axis of the segmental tunnel ring
𝑢 radial component of the displacement
𝑢𝑖 radial component of the displacement at the initial

cross-section
𝑢𝐿 load integral for the radial displacement
𝑉 shear force
𝑉𝑖 shear force at the initial cross-section
𝑉 𝐿 load integral for the shear force
𝑣 circumferential component of the displacement
𝑣𝑖 circumferential component of the displacement at

the initial cross-section
𝑣𝐿 load integral for the circumferential displacement
𝛼𝑝 vector components
𝜷 vector, containing components associated with the

base vectors of fundamental solutions for relative
rotations at the joints

𝛽𝑝 vector component
𝛽1 component associated with the symmetric mode of

rigid body displacements
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R

A

B

D

E

G

H

J

J

L

L

L

𝛽2 component associated with the first antisymmetric
mode of rigid body displacements

𝛽3 component associated with the second
antisymmetric mode of rigid body displacements

𝛽1𝑥 𝑥th solution of 𝛽1
𝛽2𝑥 𝑥th solution of 𝛽2
𝛽3𝑥 𝑥th solution of 𝛽3
𝛥𝜃𝑗 relative rotation at the 𝑗th joint
𝛥𝜽 vector of relative rotations at the joints
𝜃 cross-sectional rotation angle
𝜃𝑖 rotation angle of the initial cross-section
𝜃𝐿 load integral for the cross-sectional rotation
𝜑 angular coordinate of the polar coordinate system
𝜑𝑗 polar position of the 𝑗th joint of the segmental

tunnel ring
𝜓 angular coordinate of the polar coordinate system
𝜓𝑘 𝑘th direction in which the convergence is measured
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