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Abstract
In many areas of robotics, it is necessary to get a complete and correct understanding
of the environment of a robot. Service robots in particular will operate in the same
environment for extended period of time. An important part of that understanding is
to correctly identify and understand the objects that are present. For this purpose, a
scene in which the robot is usually located is scanned and mapped with a 3D scanner.
The map can then be broken down into its individual elements either automatically by a
segmentation procedure or by a human annotating it. Each object is assigned a class
from a predetermined set of classes in order to be correctly processed by the robot.

Nowadays, such classification tasks are done with neural networks, which need a lot
of data to be trained and achieve good results. Due to the effort and sometimes also
the lack of capabilities, it is often not feasible to train a neural network with data from
real scans. Another possibility is to train on computer-aided design (CAD) generated
3D models, which are often available in large numbers from libraries or production data.
One problem that arises is the difference that exist between the real scanned data and
the CAD data, known as the Sim2Real Gap.

We investigate this Sim2Real Gap in more detail by selecting different neural networks
and performing different experiments. The neural networks are selected to cover different
categories of input data. These input data are images, voxel grids (volume-based) and
point cloud based. The selected algorithms are, in the same order, MVCNN, VoxNet
and PointNet and its successor PointNet++. In order to simulate a depth scanner,
a reconstruction pipeline is created, which, similar to sensors, compiles the necessary
3D data from generated depth images. Afterwards, this reconstructed 3D data is
further modified in different experiments to simulate different defects that occur during
3D scans. These defects are, besides the change due to the reconstruction, random or
unknown orientation and size, partial occlusions, limited visibility of objects and erroneous
segmentation. Finally, a data set with real scans is evaluated. In all experiments, it
was shown that training with reconstructed data can improve performance, in some
cases significantly. Furthermore, it was shown that the image-based algorithm, MVCNN,
performed best in almost all experiments, as it proved most robust to all types of noise
applied.
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Kurzzusammenfassung
Bei vielen Bereichen in der Robotik ist es notwendig, ein vollständiges und korrektes
Verständnis der Umgebung eines Roboters zu bekommen. Das trifft insbesondere für
Service Roboter zu, die in der gleichen Umgebung für einen längeren Zeitraum operie-
ren. Ein wichtiger Teil dieses Verstehens, ist die vorkommenden Objekte korrekt zu
identifizieren und verstehen zu können. Dazu wird eine Szene, in der sich der Roboter
befindet üblicherweise mit einer Art von 3D-Scanner gescannt und kartographiert. Die
Karte kann anschließend in ihre einzelnen Elemente zerlegt werden, entweder durch ein
Segmentierungsverfahren oder durch einen Mensch, der sie annotiert. Im Folgenden
wird jedes vorkommende Objekt einer Klasse aus einem vorbestimmten Set an Klassen
zugeordnet, um korrekt von dem Roboter bearbeitet werden zu können.

Solche Klassifizierungsaufgaben werden heutzutage üblicherweise mit neuronalen Net-
zen gemacht, die in der Trainingsphase jedoch viel Material benötigen, um gute Ergebnisse
zu erzielen. Aufgrund des Aufwands und manchmal auch mangelnder Möglichkeiten ist
es oft nicht zielführend ein neuronales Netz mit Daten aus Scans zu trainieren. Eine
andere Möglichkeit ist es mit Computer-aided Design (CAD) generierten 3D-Modellen zu
trainieren, die oft in Vielzahl aus Bibliotheken oder Produktionsdaten vorhanden sind.
Ein Problem, das daraus besteht, sind die generellen Unterschiede zwischen den in echt
gescannten Daten und den CAD-Daten, die als Sim2Real Gap bekannt ist.

Um diese Sim2Real Gap näher zu untersuchen werden verschiedene neuronale Netze
ausgewählt und damit verschiedene Experimente durchgeführt. Die neuronalen Netze
werden so ausgewählt, dass verschiedene Kategorien von Eingangsdaten abgedeckt wer-
den. Diese Eingangsdaten sind bild-, voxel- also Volumens- und Punktwolken-basiert
und die dafür ausgewählten Algorithmen sind MVCNN, VoxNet und PointNet sowie
dem Nachfolger PointNet++. Um einen Tiefenscanner zu simulieren wird eine eigene
Rekonstruktions-Methode ("Reconstruction Pipeline") erstellt, welche ähnlich wie mit
Sensoren die notwendigen 3D-Daten aus selbst erstellten Tiefenbildern zusammensetzt.
Danach werden diese rekonstruierten 3D Daten in verschiedenen Experimenten weiter
verändert um verschiedene Defekte zu simulieren, die bei 3D Scans entstehen. Diese
Defekte sind neben der Veränderung durch die Rekonstruktion, zufällige bzw. unbekannte
Orientierung und Größe, teilweise Verdeckungen, eingeschränkte Sicht auf Objekte und
fehlerhafte Segmentierung. Schlussendlich wird noch ein Datensatz mit echten Scans aus-
gewertet. Bei allen Experimenten hat sich gezeigt, dass ein Training mit rekonstruierten
Daten die Performance teils deutlich verbessern kann. Weiters hat sich gezeigt, dass der
bildbasierte Algorithmus, MVCNN, bei fast allen Experimenten am besten funktioniert
hat, also am robustesten auf die getesteten Arten von Störungen reagiert.
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1 Introduction
With the development of robotics in recent decades, robots are no longer found exclusively
in industrial environments. At home, the tasks of robots are also no longer limited to
simple floor cleaning. Instead, as service robots, they are performing increasingly complex
household chores.

To ensure safe and efficient operation, a robot must gain a good understanding of its
environment before it becomes active, especially in people’s homes. Whether it is about
deciding which objects can be safely manipulated or identifying obstacles, machine vision
is an essential component of the robot to understand its surroundings. Segmentation
of the scene and 3D object classification are essential machine vision tasks to obtain
semantic information. Later on, other useful information can be extracted as well, like
pose estimation, part segmentation, etc. Scene segmentation’s goal is to find out which
data points belong to which object.

1.1 Challenge
After a scene has been fully captured by a 3D sensor, several tasks need to be executed
in order to properly understand the content. The first one is to divide the scene into
individual objects or object parts and is referred to as segmentation. Then the 3D object
classification can be executed to assign those objects to a certain class as illustrated in
Figure 1.1.

The classification can be achieved with a large variety of methods. Classical methods
often rely on hand-crafted descriptors such as [2]. They are based on expert knowledge
and require more adaptation of class shapes, input data, tweaking of parameters etc. [3]

The ever-increasing computing power and memory of general purpose GPUs or dedi-
cated hardware combined with the creation of very large training datasets enabled the

Lamp?

Flower pot?

Sofa?

Figure 1.1: 3D data processing steps: Original scene, segmentation and object classifica-
tion [1]
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1 Introduction 2

Figure 1.2: 3D data representations: view-, grid and point-based representation

rather old concept of neural networks to experience a revival in the last couple of years.
State-of-the-art 3D object classification methods [4]–[8] are now dominated by deep
learning-based methods, almost completely replacing classical methods [9].

For the best results with Deep Learning Algorithms, large training datasets are required.
This means that for every object that the robot encounters during its operation, the
robot must be provided with a large amount of annotated data. The process of manually
capturing, segmenting and annotating 3D data for any object or class of objects is very
costly. A better alternative is to use generic CAD models to alleviate this issue. They
are widely available for all kinds of classes, because of the widespread use of CAD-based
design and manufacturing. However, training neural networks with CAD models can
lead to performance losses in operation due to the discrepancies between artificial models
and recorded data. This is commonly referred to as the Sim2Real gap. Due to the many
possible variations of that Sim2Real gap it is not easy to quantify the performance of
each classification method. In general, these phenomena are occlusion, smoothed-out
surfaces and over- or under-segmentation.

1.2 Contribution
In order to get a better understanding of the Sim2Real gap, its effect on the accuracy
within a selection of state-of-the-art classification methods is checked. For each major 3D
data representation, a characteristic classification method is selected. 3D data is commonly
represented either as point clouds, voxel grids, or a set of rendered pictures/views
in classification tasks. An example of these representations is shown in Figure 1.2.
PointNet++ [4] and its predecessor PointNet [10] (which are referred to as PN++ and
PN) are chosen as representatives for point-based methods, VoxNet [11] for grid-based
methods and MVCNN [5], [12] for multi-views methods. These three methods were
chosen because of their relatively good performance, availability and representativeness.

The 3D CAD model data set ModelNet [13] is chosen for training and evaluation. The
ModelNet40 variant is widely used for evaluation and comparison by state-of-the-art 3D
classification methods. It contains a sufficient amount of data with 12.311 artificial CAD
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VoxNet

Depth Image
Render

CAD Model TSDF
Reconstruction

Point Cloud

PointNet++

Result Comparison

Defects 
Simulation

Voxel GridMultiview Render

MVCNN

Figure 1.3: Procedure of an experiment, where artificial defects are introduced to a 3D
model. It is then evaluated by three different kind of neural networks to
investigate the behaviours. As an example a CAD model of a radio is shown
with 50% of its surface removed.



1 Introduction 4

models in 40 classes for the studies. The complete models of the dataset also enable the
simulation of specific aspects of the Sim2Real gap to separately evaluate the impact of
specific design elements on each deep learning model. In particular, the impact of the
reconstruction of object models from a set of rendered depth maps, but also the impact
of rotation, scale and occlusions on data representations is investigated. The steps of
this experiments including the evaluation with each model are outlined in Figure 1.3.
First a CAD model is rendered in depth images similar to the output of a sensor. This
depth images are then combined and a mesh is recreated again with a Truncated Signed
Distance Function (TSDF) procedure. Then the before mentioned defects are applied to
simulate some challenges of the Sim2Real gap. The defective mesh is then converted to
the individual input data type of the networks to be evaluated and compared.

As a result of all of these experiments, the weaknesses and strengths of each method
are identified for different noise scenarios. This gives an overview of how well each type
of classification algorithm performs but also which type is best suited for certain problem
cases in the context of the Sim2Real gap. The results suggest that the multi-view render-
based model MVCNN works best for most problems. However, there are also weaknesses
that may not occur in the nearly equally well-performing point-based model PointNet++.
In a further step, the performance on a data set with captured data ScanObjectNN [14] is
evaluated as well. This test partially confirms the results from the previous experiments,
although the overall performance is worse with the real recorded data. This is mainly due
to the fact that in the experiments different phenomena are partly considered in isolation.
In general, however, it can be shown that some further development is still required for
state-of-the-art models. At least until an eventual final goal is reached to train with CAD
data to evaluate measured data like from the ScanNet dataset. In addition, it could be
shown that the performance of the CAD training could be further improved by a prior
modification of the CAD training data. This is summarized in a set of guidelines to help
improve the performance with real-world data.

Part of the results presented in this thesis were previously published in the following
papers:

• "Analysis of 3D shape representations in presence of corrupted data" [15]

• "Measuring the Sim2Real Gap in 3D Object Classification for Different 3D Data
Representation" [16]

1.3 Thesis outline
In the following chapters all the performed experiment are explained in detail. Chapter
2 gives a literature background on all the used methods. In chapter 3, the effects of the
Sim2Real gap are further investigated. In the subsequent chapter 4, the experimental
setups and results are then described in detail. Finally, chapter 5 gives a conclusion of
all the results. Appendix A contains all the detailed results in tables and graphs.



2 Related Work
This chapter gives a brief overview of 3D data representations and existing work on the
classification of 3D objects.

2.1 3D data representation
There are several ways in which 3D information can be stored and processed. Depending
on the application and the origin of the data, one of them is selected. A lossless conversion
between the 3D data representations is usually not possible.

2.1.1 Point Cloud
One of the most commonly used formats is point clouds. A point cloud is a set of
points of a vector space that has a disorganized spatial structure. A point is usually
described by a set of Cartesian coordinates. In some cases, additional information such
as color or the surface normal for the respective points is also stored. Point clouds can
be generated by 3D scanners using different methods. One example of this is RGB-D
cameras which record a color image with additional depth information simultaneously,
such as the Microsoft Kinect.

The point clouds can then be directly extracted from this depth information. For each
pixel,the 3D position is calculated by an inverse projection using the camera’s intrinsic
parameters and position. Since the depth image is only taken from a single viewpoint,
parts of the object or scene that are obscured for the camera are not included in the
point cloud. To overcome this problem, multiple depth images can be captured from
different viewpoints. Merging this depth information is a well-known problem for which
several solutions exist.

Since the space represented is not bounded and there is no limit to the density and
thus the number of points, the amount of data for high-resolution scans can be arbitrarily
high. Manipulations such as resampling can limit the number to a practical amount.
A popular toolset for processing point clouds is the so-called Point Cloud Library [17].
When processing point clouds, it must be taken into account that the position of the
coordinate origin and the orientation of the object or scene can in principle be arbitrary,
and can also differ from point cloud to point cloud.

5
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Vertex 1

Normal

Vertex 2 Vertex 3

Figure 2.1: A mesh consists of multiple faces which each contain 3 vertices. The surface
normal can be derived from the order of the vertices.

2.1.2 Mesh
Another prominent 3D data concept is the so-called mesh. In contrast to a point cloud,
the data is presented in a more structured way. There are vertices, which represent
spatial points similar to the point cloud, and faces, which form elements of the surface
from these points. The faces are described by a set of vertices, whereas the vertices
are usually only referenced by indices. The number of indices per face is in principle
arbitrary, but triangles, i.e. faces with 3 indices, have become standard for simpler and
uniform processing, especially for 3D graphics hardware. The order of the vertices in the
face usually also determines the direction of the surface normals (see figure 2.1).

Meshes can be modeled directly by hand using 3D graphics software or alternatively
exported from existing mechanical 3D CAD drawings. The latter has greatly contributed
to the compilation of extensive data sets with meshes. Such data not created by sensor
measurements is also referred to as synthetic data. Due to the large number of programs
that can be used to create and edit meshes with different functionality and scope, there
are also a large number (30+) of different file formats that are mostly not compatible
with each other.

Meshes can also be generated from the point clouds or depth images acquired from
scans using various algorithms such as Truncated Signed Distance Function (TSDF) to
merge multiple scans from different viewpoints or the ball-pivoting algorithm [18] that
can create a mesh out of a point cloud. The procedure with TSDF is explained in more
detail in section 4.1.2. Ball-Pivoting Algorithm works by moving a virtual ball of a
user-defined size across the space of the point cloud. If the ball touches exactly three
points, a triangle is formed and saved. The ball is then moved across the edge of the
triangle to find more connected triangles. This is repeated until all edges are tried and
all points of the point cloud are examined. Conversely, a point cloud can be created
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Figure 2.2: Phong reflection model vectors: surface normal N, direction to observer V,
direction to light L and light reflection direction R [21]

quite easily from a mesh. For this purpose, only the vertices have to be stored as points.
It should be noted, however, that, especially with synthetic meshes, the vertices can have
large variations in density. Fixed density point clouds and meshes can be obtained e.g.
by uniformly sampling the points over the surface. Such fixed density point clouds are
then more similar to the result of a measurement.

Similar to point clouds, direct processing of non-regular and variable sized data is more
complicated for neural networks. Standard neural network architectures usually rely
on a regular data schema like images or similar, like spectrograms in the audio domain.
However, there are also approaches to process mesh data directly with a neural network
like MeshCNN [19]. In order to still take advantage of the advanced development in the
field of image recognition, meshes can also be mapped to one or more 2D images.

When mapping to 2D images, the intrinsic and extrinsic camera parameters as well as
the rendering must be taken into account. In the rendering phase, the 3D information is
projected onto a 2D surface. In order to give the object a different appearance depending
on the light, and give a visual sense of depth, shading is used to approximate the local
behavior of light on the object’s surface. Here, the light source used and the reflection
model applied have a significant influence. An established and illustrative method for
calculating reflection is the so-called Phong reflection model [20]. With this method,
the intensity of the illumination is summed by three components: ambient, diffuse and
specular.

One example with all three components is shown in figure 2.3.
The intensity is calculated from the original intensity of the light Iin, the ambient

light intensity Iambient, the material constants kambient, kdiffuse, kspecular, n and the vectors
L, N, R, V.

Iout = Iambient + Idiffuse + Ispecular (2.1)
Iambient = Ia · kambient (2.2)

Idiffuse = Iin · kdiffuse (L · N) (2.3)
Ispecular = Iin · kspecular (R · V)n (2.4)
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Ambient + + =Diffuse Specular Phong Reflection

Figure 2.3: Example of Phong reflection components. For illustration purposes both the
ambient and diffuse light components are colored blue [22]

with
kdiffuse + kspecular ≤ 1, kambient ≤ 1 (2.5)

In this case, L is the incident vector of the light, N is the surface normal vector, V is
the direction of the observer, and R is the direction of the light’s reflection, calculated
from L and N (see figure 2.2). All vectors are normalized.

This method can also be used to calculate several light sources simultaneously. For
this purpose, the intensity of each light source is calculated individually and summed
up. For different types of light sources such as point lights and parallel directional lights
(sun), only the incidence vector L changes for the illumination calculation.

2.1.3 Voxel grid
In addition to point clouds and meshes, there is a third type of representation called voxel
grids, which presents the data in a strict grid structure. A voxel can be represented by a
grid point in a three-dimensional grid. The word voxel is a portmanteau of volume and
pixel. In a dense voxel grid, usually the position of each voxel is not stored explicitly, but
it is inferred from the save position in the data structure containing the grid. Depending
on the type of grid, different categories of information can be stored for each voxel. To
reduce data storage for large grids, it’s also possible to compress the data by using a
sparse grid representation using various methods.

A popular type of voxel grids are occupancy grids, which also have different subtypes,
which are described in [11]. Often a so-called binary grid is used, where a Boolean value
is used to indicate whether the voxel is occupied or free or if it belongs to an object or to
the background. However, there are other forms which can provide more information
per-voxel depending on the needs. For example, with limited perspective in 3D scans,
a voxel grid can distinguish whether the voxel is free, occupied or only invisible to the
recording system. The density grid is based on ray tracing calculation. The value of the
voxel corresponds to the probability that the voxel would block the sensor ray. Thus,
object parts that do not occupy a complete voxel in terms of volume generate a smaller
density value.

Unlike point cloud or mesh, an object in a voxel grid cannot have an arbitrarily large
size. Therefore, before converting to a voxel grid, the object must be scaled, positioned,
and optionally aligned to fit the voxel grid. In contrast to point clouds or meshes, voxel
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grids are very sensitive to changes in rotation and scaling. This means, for example, that
point clouds rotated by a few degrees can result in completely different voxel grids after
conversion. The higher the resolution of the voxel grid, the smaller this effect.

Due to the three-dimensional expansion, the memory needed increases cubically with
the grid resolution. However, it is also possible to reduce this significantly with sparse
data structures, such as octrees, reducing the memory footprint but making queries more
complicated.

2.2 Datasets
In addition to the ever-improving hardware, the many available ever-growing datasets
have also contributed greatly to the advancement of machine vision methods in recent
decades. A dataset generally refers to a collection of data that is collected or managed
for a specific purpose. For machine learning, a dataset is needed for unsupervised and
supervised learning. For the latter, there needs to be separate training and test sets from
one or two different data sources. As an essential statistical property, a dataset should
satisfy the independent and identically distributed (i.d.d) assumptions [23]. This means
that all examples in the dataset are independent of each other. Additionally, training
and test sets should be identically distributed. Due to the considerable effort to create
or assemble datasets and also to verify these properties, a limited number of datasets
are used as standards in a given field. Results can therefore easily be compared. With
popular datasets, the results are sometimes also tracked and benchmarked in global
hosted challenges.

The datasets for 3D data available for scientific purposes fall into different categories
depending on their intended use. The most popular ones at the moment are (Human) Pose
Estimation, 3D Semantic Segmentation (implicitly including 3D object classification),
Object Detection, 3D Reconstruction, Autonomous Driving, etc. as listed on [24]. For
this work with a robotic background, indoor datasets are of particular interest. The
available datasets can be distinguished between two different types. On the one hand,
there are those based on (synthetic) man-made CAD data like ShapeNet [25] and
ModelNet [13]. While ModelNet has fixed categories, ShapeNet uses a hierarchy based on
the WordNet lexical database. Smaller subsets have been spun off from ShapeNet, such
as ShapeNetCore, ShapeNetSem, ShapeNet Parts or PartNet with a smaller number of
clearly delimited categories, which, like ModelNet40, have undergone manual annotation
verification. ModelNet contains 127.915 objects in 662 categories. The subset ModelNet40
has 12.311 objects.

In contrast, there are datasets consisting of 3D scans like ScanNet [26], Matter-
port3D [27], Stanford 3D Indoor Scene Dataset (S3DIS) [28] and the derived ScanOb-
jectNN [14]. Most of these scans were captured as video using RGB-D sensors and
include entire scenes with many typical indoor objects such as furniture. A mesh of the
entire scene was then generated offline from the videos using a TSDF-based method
with additional camera pose estimation such as [29]. This mesh was then segmented
and annotated manually or with auxiliary tools. The annotation here represents a much
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larger effort than the actual acquisition (500 to 20 workers for ScanNet). There are also
technical differences in the annotation between the data sets. For example, for ScanNet,
voxel-based annotation was used, while for S3DIS, additionally generated Point Clouds
were annotated. The entire ScanObjectNN dataset consists of 15 classes with a total of
2902 unique objects. These objects were extracted from 700 unique scenes from SceneNN
and ScanNet.

In practice, datasets are split into two or three non-overlapping and independent
subsets. A training set, a test set and an optional validation set. The validation set is
used for evaluating models when tuning hyperparameters and data preparation. The
test set is used for rating the performance of a model after training is complete and can
be used to compare different models with each other. Some recommend a 70%, 20% and
10% split [30] or a 80%, 20% split without validation part [31].

2.3 3D object classification
Statistical classification of data can be described as determining which category a data
point, observation, or variable should be placed in. The algorithm that performs a
classification process is called a classifier. This is usually done on the basis of a training
dataset that contains observations (or instances) whose association to a category is known.
This type of learning is referred to as supervised or inductive learning and is also the
best studied approach.

Fundamentally, a distinction is made between binary and multi-class problems, i.e. two
or more classes which usually have different solutions. Most problems always deal with a
finite number of classes [32]. A common approach to classification problems in computer
vision is to extract certain features of objects. These features are basically a set of
quantifiable properties and are used for training via machine learning in order to create a
classifier. Machine learning is a subfield of computer science that studies methods trained
to make predictions or perform behaviors based on data or, in particular, relationships
within that data. The predictions are made based on recognized patterns in the data
that are extracted during the training phase, and, for a subset of the algorithms, are
continuously updated to make increasingly better predictions. Popular machine learning
methods used in the context of classification are linear classifiers, quadratic classifiers,
support vector machines (SVMs), decision trees and neural networks.

In the context of this work, 3D object classification is discussed, which is the process of
assigning a semantic label to 3D data. This chunk of 3D data is expected to contain only
one single object. This means that for real scanned data, each object has to be isolated as
well as possible with segmentation first. The term "object recognition" is also sometimes
used in the same context as classification, but it can also describe a broader context.
Object classification is to be distinguished from the discipline of object detection, which
describes procedures that not only identify objects but also localize them.
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Figure 2.4: single perceptron with inputs (xi), bias b, weights wi and an activation
function f

2.3.1 Deep Learning
One important subfield of machine learning is the study of artificial neural networks
(ANNs), which are inspired by the neurons of a human brain. The very basic element of
an ANN is a node, perceptron or neuron. Figure 2.4 shows a typical single node which
has a number of inputs (xi), a bias value (b), connection weights (wi), an activation
function (f) and an output. For the output of a neuron, the sum of all the input values
multiplied by the weights and the bias is calculated. The sum is then passed to a certain
activation function and the output is generated. The activation function can be any
linear or nonlinear function. The most common ones are:

• Rectified Linear Units (ReLU) [33]: f(z) = max(0, z)

• Tanh: f(z) = tanh(z)

• Sigmoid activation: f(z) = 1
1+e−z

If many of such nodes are connected and structured in multiple layers an entire neural
network can be constructed. Figure 2.5 shows the separation of these layers into one input
layer, multiple hidden layers and one output layer. In the hidden layers, all nodes are
connected to all nodes in the previous layer, which makes them so called fully connected
(FC) layers.

For computer vision, another special architecture has proven to be very effective. With
high-dimensional inputs such as raw images or other visual data, ANNs using only fully
connected layers quickly reach their limits, because of the high number of nodes and
weights. When using images as input, the natural two-dimensional arrays have to be
transformed to one-dimension, which destroys the two-dimensional locality of images.
The same applies for images with multiple (color-) channels or for fixed 3D data such as
voxel grids.

Convolutional neural networks (CNNs) have one or multiple convolutional layers to
overcome these problems. Instead of a connection to all previous inputs or previous
nodes, only a certain number of local nodes are used for the calculation. The structure of
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Figure 2.5: Structure example of a network with n full connected layers
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Figure 2.6: AlexNet architecture with the dimension of each layer [36]. It consists of 5
convolutional (Conv) and 3 fully connected (FC) layers.

this assignment acts similar to a learnable filter or kernel which extracts useful features
for the rest of the network. After the convolutional layer, a pooling layer is often used. In
these layers, the data of the previous layer are again aggregated multidimensionally and
locally. The output is generated by a simple function such as the maximum or average
of all the input data. This allows the dimension for the next layer to be reduced. A
convolutional layer is defined via kernel size (e.g. 3x3 for 2D), stride and padding.

The first popular convolutional neural network was AlexNet [34], which uses 5 convo-
lution layers for feature extraction and 3 fully connected layers for classification. Figure
2.6 shows all the layers with their respective node sizes. With LeNet-5 [35], there was
actually the first published use of CNN for handwritten character recognition as early
as 1998, but CNNs did not find wider use until the success of AlexNet in the ImageNet
2015 contest.
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For training a neural network, the definition of a loss function is necessary. The loss
function result indicates how well or poorly the network performs. One simple example
of a loss function is a mean square error function such as

L(y, ŷ) = 1
n

n∑
i=1

(yi − ŷi)2 (2.6)

where ŷ is the desired and y is the actual output of our network of all the training
examples n. At the start of the training, the weights are either set to a random value
or to a defined value, e.g. for pre-trained networks. In order to reduce the value of the
loss function, the weights have to be adjusted in the correct way. One popular method
is to calculate or approximate the gradient of the loss function for the weights. The
corresponding algorithm is known as gradient descent or stochastic gradient descent if
only a subset of the data is considered. With the gradient function, the weights can be
iterative calculated with a defined learning rate (lr), which is one of the hyperparameters.

wj = ŵj − lr
∂L

∂wj

(2.7)

Because of the complex network structure, the calculation of the gradient is not done
analytically but rather with a separate method called backpropagation. Instead of using
a stochastic gradient descent with a constant learning rate, more sophisticated optimizer
methods with adaptive learning rate are used. One of the optimizers named Adam [37]
has turned out to be a de-facto standard due to its properties and is utilized for many
networks. The name is derived from the phrase "adaptive moments" and it is often
considered robust and therefore easy to handle.

2.3.2 View-based representation
The idea behind view-based methods is to make 2D image recognition techniques usable
for tasks in the 3D domain. Being a very popular research area on its own, 2D image
recognition is an established subject with a large number of well performing methods
and algorithms. Some well-known tasks include recognizing certain things like faces,
handwriting or objects e.g. in traffic or in the medical domain.

In order to make 2D image recognition usable for 3D object classification, the object
must be mapped as completely as possible. This can be done by using multiple views from
different angles. The images of those different angles can then be individually evaluated
and the result can be combined, for example, with average or by taking the maximum
output value. However, as shown in [12] a more sophisticated solution is to combine
those results inside the network with certain layers. For this network Multi-View-CNN
(MVCNN) the outputs for each individual image are connected with a max-pooling layer
followed by a few fully connected layers. This makes the network able to learn how to
combine the results in the best way possible. MVCNN’s work has also been updated
in [5], which is the version referred to as MVCNN furthermore in this thesis.

For rendering images, the author of MVCNN uses the Phong reflection model with
perspective projection. However, it is stated that the network is rather invariant to



2 Related Work 14

illumination. For a complete mapping, the author uses either 12 views around the z-axis
or 20 views around the object in all directions. In order to avoid the assumption of an
always up-right orientation of the meshes, each view is again rotated 90° four times to
get a total of 80 views. However, since the rendered meshes are still oriented the same,
this approach is still only able to evaluate a limited number of orientations. Yet, from
the experiment results, it can be seen that the difference between 12 and 80 views is not
very significant (<1% for classification accuracy).

The image classification network used is from the Oxford Visual Geometry Group
(VGG), which was first introduced at the ILSVRC challenge in 2014 [38]. The first used
variant, VGG-M, is similar to AlexNET as it also contains 5 convolutional and 3 fully
connected layers with additional dropout and softmax layers. In the updated version
VGG-11 [39], a slightly bigger variation with 8 convolutional and 3 fully connected layers
could improve the result by a few percent. Subsequent experiments with even more
complex networks from the ResNet family (ResNet 18, ResNet 34, ResNet50), however,
could not enhance the performance significantly further.

The image classification networks are also pre-trained with ImageNet images. This
means that this part of the network has already been trained with a generic data set
with 1000 categories. It gives the network the ability to generate classifiers for generic
features found in most of the images. During the actual training of the whole network,
which is often called fine-tuning, the weights already start with certain initial values. A
general term for this strategy is Cross-Modal Transfer Learning. A comparison without
using this pre-training shows a drop in performance of a few percent.

The original paper also describes another application called sketch recognition, i.e. the
categorization of simple hand drawings. For this application, the models were rendered
differently in line drawing style. For further improvement, dataset augmentation and
jittering on the rotation of the input images is used to improve the accuracy.

In later works, the structure of MVCNN was further refined. One of such is GVCNN [40]
which improves the view combination with an extra group-based pooling, while
3DSeqViews [41] takes advantage of the sequence in which views are observed to improve
the classification results. Another direction is to use different projections such as
panorama [42] to cover more of the object in a single view. These variations are
not considered in this work, because the basic properties that are important for the
experiments still remain the same.

2.3.3 Grid-based representation
A different approach is utilizing 3D convolutional neural layers instead of 2D ones in
combination with 3D grids. In contrast to the view-based methods, the existing 3D data
can directly be used as input. The use of voxel grids is investigated in 3D ShapeNets [43]
and VoxNet [11]. Yet, with the additional dimension, the exponential growth in the
number of parameters and memory has been a limiting factor in the accuracy of early
models. Further works overcome this limit like OctNet [44] by using an octree-based
learning architecture or binVoxNet [45] by using binary representations. More recent
improvements to the VoxNet approach have been made by using sparse representations
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like in [46]. In this work, the basic VoxNet [11] is chosen as a representative due
to its simplicity and to better show the strengths and weaknesses of the grid-based
representation.

Similar to MVCNN, with VoxNet the input data Z-axis is assumed to be aligned with
the gravity axis. To allow for rotation, the input data is augmented by several twisted
poses. This means that each model is included in the data set with several different
poses. In the evaluation, all poses are also evaluated and the maximum score is taken.
Only by augmenting training data and taking it into account in the evaluation could a
per-class accuracy of 83% be achieved for ModelNet40. Without this, the performance
for this dataset was significantly worse at 61%.

The original paper also compares different types of occupancy grids. Here, however,
no clear difference has been shown. For the experiments, data from very different sources
were used. Besides the ModelNet40 dataset with CAD models, also datasets from
LiDAR data (LiDAR data Sydney Urban Objects [47]) and a dataset from RGBD data
(NYUv2 [48]) were considered.

2.3.4 Point-based representation
The third kind of approach is using point-clouds without intermediate representation.
With the input being a subset of 3D points lying on the surface of an object, point
clouds are closer to the output of depth sensors than the other two representations. The
challenge of using point clouds is handling the specific properties of this input data. In
general, point clouds are unordered. That means that, unlike pixel arrays in images
or voxel arrays, the data is not inherently sorted. Another important aspect of point
clouds is that a large part of the information content is contained in the interaction
between points. Since no structural or neighbor information is available, the information
is contained in the distance metric of the points. So the network has to be able to
retrieve this structural information on its own. Finally, the points must also be able to be
modified by transformations such as translation, rotation and scaling without this having
an influence on the information content. This means that all points undergo the same
transformation while preserving the relational euclidean distances between the points.
The network must therefore not consider the absolute position of individual points in
any way.

With PointNet [10], all these distinctive characteristics are dealt with. In order to get
independent of the order of the input data, symmetric functions are used to combine
the information from all the points. For this case, the max-pooling function is used in
the initial layers. In the paper, other options that utilize permutation or sorting of the
input data are investigated and do not provide as good results. The problem with a
possible unknown transformation is handled with an input dependent matrix. The values
of this transformation matrix are also calculated using a separate neural network with
several layers, which are also trained in the training phase. The neural network of the
matrix also uses the point cloud as input. This means, depending on the point cloud,
the transformation matrix adjusts itself to achieve a transformation as independently as
possible. In addition to classification, the network is also able to do segmentation tasks
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with an adaptation of the architecture on the output side.
A further improvement was made with PointNet++ [4] by using hierarchy layers to

make it more robust to scale and other variations. Other approaches rely entirely on
neighborhood information instead of coordinates information. Some like SpiderCNN [49]
and PointCNN [7] even go so far as to adapt conventional operators which have been
used for regular domains such as images to irregular ones. Other approaches like KPConv
use convolution weights that are located in Euclidean space by kernel points. Only input
points close to them are considered with a distance function. Another algorithm with
extended grouping is investigated in DGCNN [6] where, instead of individual points,
local geometric structures are used by constructing a local neighborhood graph. For
this work, PointNet and PointNet++ are chosen as representatives, because of their
popularity. In general, point-based methods are also probably the most researched of
these 3 representations at the time of writing.

Table 2.1 gives an overview of some size metrics of all the networks such as the layer
counts and calculation effort. The total layer count includes all layers and activating
functions including Convolution, Fully Connected, MaxPool, ReLU, Dropout, BatchNorm
Layers and calculation. The parameter number is the total number of weights and biases
of all the layers. MAC is short for Multiply-accumulate operation which is a fundamental
procedure for most of the calculations in neural networks.

Convolution
Layers

Fully Connected
Layers

Total
Layers

Parameters
(M)

MACs
(G)

MVCNN 8 3 26 128.93 89.94
VoxNET 2 2 11 0.92 15.27
PointNet 9 7 23 3.47 0.45
PointNet++ 27 6 49 1.48 0.87

Table 2.1: Comparison of network size parameters. Parameters are written in Mega (106)
and Multiply-accumulate operations (MACs) are written in Giga (109).

2.3.5 Sim2Real Gap
The idea of Sim2Real is to transfer observations acquired through simulations to real
world systems. These can cover different areas in computer vision, like Automated
Driving [50], Robot Ego-Pose Estimation [51] or 3D Object Classification [52].

The motivation is that the use of simulation data is usually cheaper and safer. In
addition, there are experiments that can not be performed at all or much more easily
in the simulation domain. An example are 3D objects, which are more difficult to
obtain in reality, but can be easily produced with CAD data. In the final application,
however, these rare objects should be reliably recognized just like the others. To close the
Sim2Real gap, this must first be properly understood, i.e. how systems react differently
to simulation and the real world. For object classification in literature [52] there is rather
a qualitative estimation of what these differences, often called noise, look like.
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The sources of error can essentially be divided between the acquisition and the post-
processing. On the one hand, the sensor causes errors due to sensor noise. Another
important point, however, is the usually limited viewing angle. In order to obtain a
complete object representation, it must be scanned from all sides. This is either simply
not possible because the object is not accessible from all sides or not practical because
it does not correspond to the function of the system in the situation. In such cases, an
incomplete model must therefore be expected. With the dataset of ScanObjectNN, it
has been shown that with common indoor scans, the objects of the scenes often contain
only 50% of their surface [14].

During post-processing there are errors with under- or over-segmentation, whereby
parts of other objects are wrongly assigned or parts are missing because they are assigned
to other objects. The superfluous or missing data further complicates detection. When
converting the sensor data to the input data of the network, there may also be distortions
of the surfaces, alteration of details or artifacts, which can be seen with TSDF in section
4.1.2.

2.4 Performance metrics
For comparing the performance of classification algorithms, different metrics can be used.

The most basic and most widely used one is accuracy. Accuracy is the number of
correct predictions divided by the total number of predictions. For a multi-class problem
statement like in this work, an accuracy value can be evaluated for every class individually.
For this, the number of correct predictions for this class is divided only by the number
(predicted and actual) of that class. The accuracy values per class can be combined in
two ways. Either the average of all values can be calculated, which is the Mean Class
Accuracy. Otherwise, all correct predictions of all classes can be summed up and divided
by the number of all predictions. The latter is more often called Overall Accuracy. If the
number of objects in all classes is equal, these two accuracy values are equal.

One popular concept of visualizing classification results is using confusion matrices.
For these matrices, one axis represents the predicted class and the other the actual class.

Figure 2.7 shows an example with MVCNN and ScanObjectNN results. Here accuracy
values are used, which means that each value is normalized by the total number of actual
class entries. This means that each column sums up to 1. It is also sometimes practical
to show the actual amount of each prediction or to normalize it by predicted classes,
which makes it essentially recall values.

With the confusion matrix, problematic classes can be identified conveniently. In the
example it shows that almost every shelf is correctly identified as such, but many other
objects are identified as shelf as well, which includes most of the desks.
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Figure 2.7: Example of a confusion matrix for 11 classes of ScanObjectNN



3 Understanding the Sim2Real gap
causes

For a better understanding of the Sim2Real gap, a few experiments similar to [14]
will be performed. In this paper, objects are extracted from real-world scans and the
performance of common point-based networks is compared with that dataset. The
networks were trained using either objects from the ModelNet40 dataset or from the
same dataset. In addition, the same scan dataset was also tested with artificially induced
undersegmentation. This means that background parts were also present with the objects.
To test this in a consistent way, the objects were separated from the scene with an
axis-aligned bounding box.

Although only point-based networks were compared, there were clear performance
differences and the authors were also able to create a new, optimized network. So, based
on the findings, a new, partly better network could be created.

In general, however, the tests showed that the absolute performance of all tested
networks is rather poor when training with ModelNet40 and testing the ScanObjectNN
data set. Here the overall accuracy was between 49.3% and 30.9%. PointNet, also
considered in this work, was about in the upper third with 42.3%. Compared to most of
the results in this work, however, it must be clarified here that this data set consists of
only 11 classes. This new data set was formed from the common classes of ModelNet40
and the 15 classes of ScanObjectNN. A further explanation with own experiments is
described in section 4.4.

A challenge in this test with real data is, on the one hand, the limited data and, on
the other hand, that all phenomena of the Sim2Real Gap occur simultaneously. For
the ScanObjectNN mentioned above, a large number of scans were used. A total of 700
indoor scenes were selected from the SceneNN and ScanNet mesh datasets. From these,
2902 objects could be manually selected from 15 categories. Despite the large effort, this
is little compared to ModelNet40 and makes it difficult to find many matching classes.
With the attempts with ScanObjectNN, only the behavior of incorrect segmentation
could be examined better in detail. The other lack of objects cannot be regarded or only
with difficulty separately from each other. There are, on the one hand, incompleteness
due to occlusion, errors of reconstruction or oversegmentation. On the other hand, there
are other phenomena due to scan or reconstruction, like low frequency noise on the
surface. One way to do this with the existing data would be to sort the objects manually
according to how pronounced the phenomena are. However, since this is not a practical
approach and it would also reduce the data set very much, the different phenomena are
reproduced based on the generic data.

19
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3.1 Data representations
In the following, we investigate how the different classification algorithms might behave
for the previously mentioned problems.

3.1.1 Effects on rendered images
For view-based algorithms, the object is first imaged in two dimensions and this 2D
image is then evaluated. In advanced algorithms such as MVCNN, several images from
different viewpoints are also combined during the evaluation. For different occlusion
effects, this leads to a higher probability of an image where the object is possibly almost
complete. Depending on the scanning method, there may be more or less noise on smooth
surfaces. These imperfections can have a negative influence on the result when it is
picked up by the renderer. For example, even though in MVCNN the silhouette is likely
to have a greater influence than the surface itself as explored in the later paper [5], the
reconstruction also changes the silhouette. Thus, for straight objects, the silhouette is
also changed upon distortion of the surface, at least for certain viewing angles. Another
problem is caused by undersegmentation. Similar to missing parts, certain viewing angles
can be unchanged here. However, depending on the characteristics, the leftover parts are
often visible from several viewing angles. E.g. remnants of the floor, which appear on
almost all images, because of the 45◦ viewing angle of the renderer.

3.1.2 Effects on point cloud
In contrast to the view-based methods, the point-based methods use much less information
from the actual object. For example, in the ScanObjectNN dataset, the objects have
50000 - 500000 vertices. For the point-based methods, only a random fraction or a
fraction determined by sampling methods is used. Usually, these are 1000 to 2000 points,
depending on the setting. In contrast to view-based, the behavior is more difficult to
estimate due to internal complexity. In general, nonetheless, it can be assumed that
surface distortions have less effect, since the surfaces are resolved less precisely anyway
due to the small number of points. Based on the neighborhood hierarchy, it can be
assumed that the methods are less robust against under- and over-segmentation effects.

3.1.3 Effects on voxel grids
Similar to the point-based methods, grid-based also significantly reduces the information
of the input data. The meshes often have only a fraction of the volume of the bounding
boxes and thus, depending on the resolution of the voxel grid, many data points are
combined into a single voxel. As a result, surface imperfections are also less heavily
transferred to the input data and are therefore not picked up by the network. This
also applies to smaller holes in the objects that can occur during segmentation or due
to occlusion. E.g. with the binary occupation network, the corresponding voxel is still
marked as occupied by the surrounding faces. In the case of under-segmentation, however,
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this leads to the opposite effect, that even small remnants lead to an unintentionally
occupied voxel when captured.

3.2 Occlusions
When manually viewing scanned datasets such as ScanObject, it is noticeable that almost
all objects have been captured incompletely. This incompleteness generally happens
due to occlusions during scanning. Basically, two types of causes of occlusions can
be distinguished. On the one hand, the scanners often have only a limited range of
motion. In addition, objects are often located on or near walls. This results in large-scale
occlusions that often affect an entire side or sometimes even two entire sides of an object.
In real scenarios, this often depends on the object class. There are objects that are
rather freestanding and accessible from all sides, like office chairs, dining tables, doors
and objects that are almost always placed against a wall like sofas, TVs, beds or even
structurally connected to walls like bathtubs and toilets. A view from below, which is
often present in CAD data, is always missing in scans. The other cause is objects in the
room which are obscuring others. These obscured areas are usually smaller and do not
cover an entire side of an object. Also, for this, there are tendencies in the classes of real
scenarios e.g. office chairs which are often in front of desks and they obscure each other.

In the following, experiments are presented to simulate the described occlusion phe-
nomena in an analytical way for the Sim2Real Gap. The goal of these experiments is
to modify CAD data as if an occlusion happens. For the restricted viewing angle, the
CAD data is recorded at restricted camera angles and then reconstructed. To get a
consistent result, the camera angles are arranged in a circle around the object. The
camera positions are at a regular distance of exactly 50% the height of the object. The
orientation points exactly at the object and the distance is set so that the object is always
completely captured by the cameras. A total of 12 camera perspectives are to be used
for the experiment. To investigate the different characteristics of the occlusion behavior,
different subsets of the cameras are used for the reconstruction.

Simulating occlusion by other objects can also be done using camera reconstruction.
Here a virtual object, for example a cube, can be placed in front of the object, which
partially obscures the object. During reconstruction, the cube is removed and a hole
remains. This method works in principle, but has the major disadvantage that the
occlusion varies greatly in size depending on the object shape and thus class. For this
reason, the reconstruction is not suitable for this type of experiment. Therefore, another
method is used that directly modifies the mesh data. This is done by randomly selecting
a vertex in the object and removing all adjacent faces. Then, other adjacent faces are
randomly removed until a desired percentage of the surface has been removed. Thus, a
hole is generated in the object and it grows until it reaches a well-defined share of the
total surface area. In Figure 3.1 this is visualized. This method has the advantage that
it is highly controllable and therefore has the same effect on all classes of objects. There
is, however, the disadvantage that the choice of a random starting point may lead to
unrealistic or obscuring effects that are unlikely to occur with real objects. Nonetheless,
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Figure 3.1: Artificial hole grown on the object surface. It’s further extended by removing
a random adjacent face (orange).

this cannot be corrected without a deeper understanding of the object.

3.3 Segmentation errors
When processing a scanned scene, it is broken down into its individual components.
During this segmentation, defects can appear just like during the scan. If the objects
are not separated correctly, the object will either become larger or smaller due to the
unrelated parts. Both have different effects on the classification performance. A common
error can occur when separating the floor to which many indoor objects are directly
connected.

Semantic errors can also happen, so that e.g. the pillows are not assigned to the bed,
although it is handled that way in a matching CAD dataset. Or small objects that are
on a table or shelf and are not recognized as independent objects by the segmentation
algorithm.

There are several possibilities to simulate the misbehavior of the segmentation. Over-
segmentation often cannot be distinguished from occlusion, so it makes no sense to
conduct separate experiments for it. In contrast, under-segmentation is much more
difficult to simulate. One possibility might be to assemble a complete realistic scene with
CAD models and apply a segmentation algorithm. However, a good and consistent way
without human intervention may only be possible through complicated procedures with
AI. A straightforward way is to consider only the segmentation of the floor, as this is
also a very common error. This can be easily done by attaching the floor as a surface to
the object at the bottom with a size depending on the object’s dimensions.



4 Experiments

4.1 Experimental setup
In this section, first the used datasets are introduced, then creation of the experiment
input data is explained and finally the setup of each network, MVCNN, VoxNet and
PointNet/PointNet++, is presented.

4.1.1 Datasets
For the experiments, two 3D object datasets, ModelNet40 and ScanObjectNN, were used.

The original division of the objects into training and test split is used in this thesis.
Because the number of available objects is not the same between the classes, the dataset
is not balanced. This means that it makes a difference in the accuracy values whether the
overall accuracy or the mean class accuracy is considered, which is explained in section
2.4. Table A.1 lists all classes of ModelNet40 with the object count for training and test.

To compare the results between ModelNet40 and ScanObjectNN dataset, an intersection
of the common classes of both datasets was created. The newly formed datasets with 11
classes are named ModelNet11 and ScanObjectNN11. Table 4.1 shows how the classes
correspond to each other.

4.1.2 Reconstruction Pipeline
In order to generate evaluation data from the ModelNet dataset that is closer to scanned
real-world data, a custom reconstruction pipeline was created. In the first step, it is
necessary to scale the models uniformly. Although real scanned data is often scaled
uniformly by the scanning and reconstruction process, this cannot be assumed for man-
made objects. Especially if the data originates from different libraries, there will be
different scaling. This means that with man-made objects or objects from different
scanning databases it is necessary to scale them uniformly before further processing.
Each object was centred based on the bounding box and then resized so that the object
fits exactly into a unit sphere around the object.

The object is then rendered from different camera angles in depth images. The depth
images have a resolution of 1 mm. To get a comprehensive image, 26 camera positions
were selected. Since the objects should still be as complete as possible in this step, a
sufficiently large number of camera positions are chosen. Especially for concave-shaped
objects like bowls, it is difficult to capture the object completely with only a few camera
angles. These cameras are arranged in two circles on the top and bottom half of the
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Class # ScanobjectNN
Class

ModelNet
Classes

# training
MN11

# test
MN11

# test
SO11

1 bed bed 515 100 22
2 cabinet dresser, wardrobe 287 106 75
3 chair bench, chair, stool 1152 140 78
4 desk desk 200 86 30
5 display monitor 465 100 42
6 door door 109 20 42
7 shelf bookshelf 572 100 49
8 sink sink 128 20 24
9 sofa sofa 680 100 42
10 table table 392 100 54
11 toilet toilet 344 100 17

Table 4.1: New datasets ModelNet11 (MN11) and ScanObjectNN11 (SO11) as intersec-
tion between ScanobjectNN and ModelNet40 with object count

model. In addition, there is a top and a bottom view. In Figure 4.1 camera positions are
illustrated.

A 3D model is then created from the depth images, just as is possible with a
depth camera. For the purpose of reconstruction, a truncated signed distance func-
tion (TSDF) [53][54] based algorithm is used which is provided by [55].

A signed distance function is a mathematical term which is the distance from a given
point to the boundary of a set such as a shape. With one of the conventions, the sign is a
positive value for all points inside the set and decreases with proximity to the boundary.
The result is zero when the point is exactly on the boundary and negative on the outside
of the set. In addition, if the values are clamped between 1 and -1 it is a truncated
distance function.

As a basis, the TSDF algorithm uses a volume where each voxel contains a numerical
value. The whole process is also referred to as RGB-D integration. In this volume, the
depth images are projected and the distance function is calculated. Each pixel in the
depth image is projected through the volume with a ray cast. Equation 4.1 shows the
calculation of the TSDF. For each voxel with position x hit by the ray, the distance to the
camera is calculated (dcam) and the depth value of the pixel (ddepth) is subtracted. Then
the value is scaled by the truncation distance (dT D). An increased truncation distance
helps smooth out noise from the depth images and sensor position, but thin structures
might not be detected correctly. The resulting value is then clamped between -1 and
1. For each voxel hit by the ray, the TSDF values of the voxel grid Dt and the weights
Wt are recalculated. The weighting function wt(x) can be set as a function depending
on the voxel camera distance. Ideally, the weighting function should match the sensor
noise model. In [56] some functions are evaluated. In the implementation of Open3D the
weighting function is set to wt = 1.
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Figure 4.1: Placement of 24 depth cameras around an object for a nearly complete TSDF
reconstruction
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Figure 4.2: Example of TSDF for an object in 2D. (a) shows the raycast and distances for
a single depth value with the truncation distance dT D and the stored depth
value of the pixel ddepth. All red marked voxel are being evaluated for that
depth value. (b) shows the final grid values from which the zero crossings are
determined.

dsdf (x) = dcam − ddepth(x)
dT D

(4.1)

dtsdf (x) = min(−1, max(1, dsdf (x))) (4.2)

Dt+1(x) = Wt · Dt + wt(x) · dtsdf (x)
Wt(x) + wt+1(x) (4.3)

Wt+1(x) = Wt(x) + wt+1(x) (4.4)
Figure 4.2 illustrates the calculation of the distance between the camera and the depth
measurement. For simplification reasons, only a slice of the voxel grid is shown. For
performance reasons, usually only voxels inside truncation distance dT D are updated
(marked red) at each step. After the calculation is done for each voxel and each depth
map, the surface of the object is determined by the zero crossing of the voxel values.

Finally, a marching cube algorithm [57] is then used to create a correct mesh from
the voxel grid. With this algorithm, for each 8 neighboring voxels a small mesh piece
is added based on whether they are occupied or not. For 8 voxels, a total of 28 = 256
combinations are possible. When ignoring all rotational and mirrored duplicates, there
are only 15 unique combinations. Figure 4.3 shows these 15 combinations. Following
this principle, the entire voxel grid is traversed and the mesh is successively assembled.
Finally, the mesh is cleaned up by removing duplicated vertices.
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Figure 4.3: Marching cube: Conversion to mesh parts based on the occupation of each
voxel. Occupied voxel are displayed with orange dots. [58]

In order to achieve a similarity with real applications, the same resolution and image
format is chosen for the depth images as for the original Microsoft Kinect sensor, which
is 640x480 with 16 bits.

In visual comparison to CAD models, the reconstructed ones show smoothed out object
edges. At the same time, planar surfaces become less smooth. Small details such as
doorknobs are either simplified or missing completely. Very thin structures like doors
can also be problematic when the truncation distance value is set too large, or when the
CAD design is using unreasonable fine structures.

There are also considerable differences in the mesh structure, as the vertices are now
more equally distributed evenly on the surfaces. Also, the total count of the vertices and
faces is much higher. A side-by-side comparison is shown in Figure 4.4.

In real recordings, the depth data is also overlaid with sensor noise. This noise was
measured and investigated, for example, in [59] for the Microsoft Kinect sensor. In general,
a lateral and an axial noise component can be expected, which have approximately a
Gaussian distribution. These components also depend on the distance, whereby the
standard deviation for the noise in the axial direction increases quadratically with the
distance. For this work, artificial noise directly in the depth data was omitted, as in the
range we work in the noise model, influence was mostly removed by the integration done
over all the images.

4.1.3 Neural Network Setup
A total of four neural networks are used for the following experiments. They are
parametrized with standard values according to their publications. If those parameters
are fine-tuned, the accuracy values could be increased even further, but the target is to
get a better understanding of the characteristics of degradation of each method, instead
of comparing the absolute maximum values.

MVCNN

For MVCNN an implementation with PyTorch [60] is used, which is provided by the
original author of [5]. As described in the original paper [12] the quality of the input
dataset plays a significant role in the performance of MVCNN in terms of image properties



4 Experiments 28

Figure 4.4: CAD Model (left) and TSDF reconstruction (right)
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Figure 4.5: Camera placement for the MVCNN dataset generation [12]

and view coverage. In order to generate the dataset from the ModelNet40 objects, a
blender script was used. This script as well as an already full rendered ModelNet40
dataset is used, which is also provided by the author [61].

Like in the original paper and the subsequent publication [5], 12 views per object are
used for the experiments. These views are taken by 12 virtual cameras that are arranged
in a circle around the object. As in the original, these cameras are also arranged above
the ground plane at an angle of approx. 30° to the ground plane as shown in figure 4.5.
Since the models of ModelNet40 are always aligned with the upper axis, an additional
transformation is not necessary. The distance from the object to the camera is always
adjusted so that the image is completely filled by the object. The generated images
have a resolution of 224x224 and are rendered with the Phong reflection model with
a parallel light source from a fixed position. The phong reflection model means that
the final rendered color of each pixel is the addition of an ambient, diffuse and specular
highlight component. The used image is gray scale and saved with RGBA8 encoding and
a uniform background color.

In order to test the MVCNN implementation, the dataset with the rendered images
was recreated with the original ModelNet data and a Blender script provided by the
author. When training and evaluating with the recreated dataset, the 94.21 % overall
could not be achieved as with the original dataset also provided by the author. The
deviations are shown in Table 4.2.

Dataset Overall Accuracy Mean Class Accuracy
Original rendered 94.21% 90.59%
Script rendered 91.53% 89.38%

Table 4.2: Comparison of training and evaluation with original dataset provided by the
author and self-rendered dataset with blender

A further analysis with a per-pixel comparison of the render images shows that the
camera is rotated around its roll axis by a few degrees. It is also noticeable that this
angle difference is not constant across all classes. By training with the original dataset
and modified datasets with various angles, it can also be noticed that the network with
the original dataset is sensitive to changes in angle, where the datasets with a constant
angle are not. If the class and angle matched during the evaluation, a significantly higher
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accuracy could be achieved for this class than if only the class matched. In addition, the
differences between similar classes are artificially increased by changing the angle. A
concrete example is ’desk’ and ’table’ with an angle difference of approx. 0.5°. With the
original dataset files, both classes achieve 96% and 95% accuracy compared to 82% and
76% with the script rendering. If the entire test dataset is now rendered with either those
two angles, an apparent increase can be noticed if the angles match. Table 4.3 shows the
change in class accuracy when evaluation is done with datasets at different angles.

Object rotation desk table
0.8° 95.3% 82%
1.31° 40.6% 93%

Table 4.3: Class accuracy when training with original dataset and evaluation with datasets
rendered with different angles

In general, it can be stated that the trained model with the original dataset reacts
much more sensitively to changes in angle. A test with several evaluation data sets at
different angles shows a clear fluctuation in accuracy (0° 71.2 %; 0.8° 90.1 % and 5°80.1
%). If, on the other hand, the network has only been trained with a constant angle, the
accuracy remains almost constant at 91.5% even when evaluated with different angles.

It can be concluded from this that MVCNN can react very sensitively to inconsistencies
in the dataset with overfitting, even if these are not noticeable during a visual inspection
or seem unimportant.

The datasets for MVCNN are created with Blender version 2.79b and the original
provided script for all experiments. As for the training settings, vgg11 was used as CNN
and the learning rate was set to 5 · 10−5 as recommended by the author. The batch size
was kept at 32 with a total of 30 epochs.

VoxNet

For VoxNet, the implementation which is provided by the original author uses outdated
neural network frameworks. That is why for this work an alternative implementation
is used which also utilizes PyTorch. It gets similar performance results and the neural
network structure matches the one described in the paper. As suggested by the paper
author, a 32x32x32 binary occupancy grid is chosen as input format. A bigger grid size
has not shown any significant increase in accuracy. For the preparation of the dataset,
the voxel grids are created with an universal rasterization tool called binvox [62]. The
binary occupancy grid works in a way that every voxel is considered occupied as soon
as some part of any face is inside its volume. Since the models in ModelNet40 are
of different sizes, they are uniformly scaled according to their bounding sphere before
conversion. In contrast to a bounding box, the bounding sphere has the advantage that
it can be rotated without having to be rescaled to fit into the same voxel grid. The
provided Pytorch implementation is modified to be able to handle different rotations. As
suggested in the original paper [11], each ModelNet40 object was trained with 12 copies
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in 30°off rotation poses around the vertical axis. Conversely, during the evaluation, the
voting takes place over these 12 rotation poses, with the pose with the greatest activation
winning. In the paper, this is referred to as "Training Augmentation" and "Test Voting".
Both are necessary to reach the published 83% accuracy with ModelNet40 which is
assumed to be the mean class accuracy. However, the accuracy drop without both is not
that significant as described in the original paper with the used implementation (-22%
vs. -4.8%, absolute difference). For training, the learning rate is set to 10−4, the batch
size to 128 and a few hundred epochs are used.

PointNet/PointNet++

For PointNet and PointNet++, implementations by the original author are used.
When generating the input data, the models are also scaled according to their bounding

sphere with zero mean. Then random 1024 vertices with their absolute coordinates are
selected from each mesh. With CAD data the vertices are generally not evenly distributed.
More detailed parts, for example, a door handle contains substantially more vertices than
the other parts of the door, while having a significantly smaller share of the total surface.
Depending on the design artist, exporter or scanner, the vertex distribution can also be
very unreasonable in some places. In order to get the best information content needed for
classification a vertices are evenly resampled on the surface of the object before selecting
the 1024.

For the experiments, the standard configuration with the three-level hierarchical
network with three fully connected layers was selected. No additional normals were used
as input.

4.2 Impact of TSDF reconstruction
To better understand the difference between artificial and real data, the entire ModelNet40
dataset [13] was reconstructed using the pipeline described in the previous chapter. As
a comparison, each of the classification methods was trained and evaluated with the
original and the TSDF reconstructed dataset. The results are shown in table 4.4. For
this experiment, the original parameters were taken by the authors as best as possible.
A detailed description of the individual parameters is given in section 4.1.3

Train Test MVCNN VoxNet PN++
CAD CAD 89.4 82.9 88.0
CAD TSDF 83.4 (-6.0%) 82.2 (-0.7%) 85.6 (-2.4%)
TSDF TSDF 88.5 83.1 87.1
TSDF CAD 85.8 (-2.7%) 80.8 (-2.3%) 85.0 (-2.1%)

Table 4.4: Impact of the TSDF reconstruction of object models, mean per class accuracy
is reported in percent with the absolute percentage decrease in parenthesis
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In general, it can be seen that all CAD trained networks have quite a loss when
evaluated with TSDF and vice versa. For MVCNN, this is most likely due to the
different surface structure. The small imperfections make a considerable difference to
the surfaces of rendered images, but also on the outline of the renders. For VoxNet,
these imperfections have almost no influence at all, because during the conversion to the
voxelgrid this information is lost and has no influence on the classification result. All 3
networks have a small drop in training and evaluation with TSDF data of a few percent.
It is possible that with TSDF data it is more difficult for the networks to detect subtle
differences between classes that may be unintentionally present in the CAD data.

4.2.1 Impact of random rotation
In the original ModelNet40 dataset, all objects have a correct orientation on the global
vertical axis (model Z-axis). Objects with a specific preferred direction (e.g. aircraft) are
aligned to one of the other axes, although there is no clear consistency even within classes.
The vertical axis is also often known in real-world scenarios, as it can be determined
relatively easily via an accelerometer, for example. The orientation of an object around
the global vertical axis cannot be easily determined by sensors or a simple evaluation by
software.

To determine the sensitivity of each classification method to this rotation, each model
in the dataset was rotated by a random angle. To obtain a consistent result, each
model was evaluated at 3 different angles. The result is summarised in table 4.5. The
reconstructed TSDF dataset was used as the basis for training and evaluation.

Method Overall accuracy Mean class accuracy
MVCNN 91.5 (-0.0%) 88.8 (+0.3%)
VoxNet 85.9 (-0.6%) 82.5 (-0.6%)
PointNet 88.0 (-0.4%) 85.0 (+0.1%)
PointNet++ 89.1 (-0.3%) 86.6 (-0.5%)

Table 4.5: Impact of random rotation, absolute percentage decrease in parenthesis. The
models are trained and tested with the TSDF reconstructed dataset

As can be seen, none of the methods shows a significant difference. This can be
attributed to the respective techniques of the methods to deal with rotations. For
MVCNN, the angle dependency is automatically compensated by the dataset of 12
images with different rotation poses per object. According to the experiment, the error
margin in the rotation angle left at 30° seems to be too small to show any difference.

Since the grid-based format is very angle-dependent, similar to the view-based format,
a similar principle was used for VoxNet. In VoxNet, the training data set is enriched
with different angles in order to obtain a rotation dependency. This means that each
object is present several times in the training data set with different angles. As suggested
in the original paper, a number of 12 angles were selected here. During the evaluation,
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each angle is also evaluated separately and the angle with the best score is used for the
classification via vote.

According to the author, PointNet and PointNet++ show a small rotational dependency.
In order to achieve a certain degree of rotational independence, the models are randomly
rotated with a uniform distribution during training.

A rotation around one of the other axes is not dealt with here, as there are too many
possibilities due to three degrees of freedom to get a reasonably meaningful result. For
various scenarios, however, such a rotation could certainly occur, e.g. a service robot
which wants to classify a fallen bottle.

4.3 Impact of segmentation and occlusion errors
In contrast to real recorded data, CAD models cannot be viewed from every angle or
they are obscured by other objects. Another problem that can be observed with real
data is incorrect segmentation after further processing of the data. Here it can happen
that either parts of the objects are completely missing because they are assigned to
another object or foreign parts of another object are assigned to the target object. This
problem is often described as over-segmentation. Since faulty segmentation and occlusion
often have almost the same effects, no further distinction is made between them in the
following experiments.

4.3.1 Random holes
One way to simulate such occlusions as consistently as possible across all classes is to
generate artificially growing holes in the objects. Although this is not quite the most
realistic approach, it gives the most control over occlusions and allows a fair comparison
across all classes. In the method used, a random face is selected by the model and the
nearest faces are removed in a random manner until a certain percentage of the total
surface area of the model is reached. If no nearby faces are left and the criterion is not
yet reached, the result is discarded and the process is restarted for the model. This
ensures that there is always only 1 hole per model with the correct surface ratio.

This experiment also starts with the TSDF reconstructed models and then evaluates
the deformed models with all classification algorithms. Figure 4.6 shows the mean class
accuracy for different occlusion levels.

As can be seen, all 3 methods have a similar downward trend. For small occlusion levels
(5% and 10% occluded), VoxNet shows almost no degradation. Due to the comparably
large voxel size, almost no changes are made to the input here. For the Occupancy Grid,
which VoxNet uses, the voxel is still considered to be occupied unchanged, even if some
vertices have been removed.

For medium sized occlusions (of up to 20%), PointNet++ shows the smallest loss.
MVCNN overall shows the best performance even for the larger holes. This can most
likely be attributed to the fact that of the 12 views, even with 50% missing surface, some
still have a recognizable and distinguishable shape.
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Figure 4.6: Average class accuracy at different degrees of occlusion for CAD and TSDF
trained MVCNN, VoxNet and PN++ networks

4.3.2 Circle camera with full, half and quarter circle coverage
Another experiment deals specifically with the limitations of the available camera angles
for the scanner. For this purpose, the models were reconstructed similarly to the TSDF
pipeline, but only with a limited camera angle. In contrast to the original pipeline, the
camera is located at about 50% of the object height, i.e. exactly between the two circles
used for training. For the experiment, either all (full), only the cameras from the front
or from the back (half) and the sides (quarter) were used. For each step, 12 regularly
spaced views were placed. To ensure a correct orientation of the objects, the provided
’Aligned 40-Class ModelNet’ dataset was used. However, since only the orientation per
class is consistent here, but not among the classes, this orientation was still corrected for
some classes.

The results are shown in table 4.6. Figure 4.7 shows the arrangement of the cameras
with reference to the table. The left and right quarters differ only slightly, so in each
case the average value for both was given.

At the class level, the degradation is also very dependent on the general shape of the
objects. Some objects like ’guitar’, ’bottle’, ’laptop’ keep their unique shape even when
scanned from only a few angles. For other concave shaped objects, the low viewing angle
makes it much harder to distinguish them at fewer angles. Therefore, even at the full
circle, a clear degradation is apparent.
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Method Full (a) Half (Front) (b) Half (Back) (c)

MVCNN 78.14 73.45 (-6.0%) 67.63 (-13.5%)
VoxNet 71.41 67.33 (-5.7%) 62.00 (-13.2%)
PointNet 75.27 67.45 (-10.4%) 64.10 (-14.8%)
PointNet++ 70.58 64.23 (-9.0%) 56.79 (-19.5%)

Method Quarter (Front) (d) Quarter (Back) (e)

MVCNN 69.10 (-11.6%) 61.85 (-20.8%)
VoxNet 60.68 (-15.0%) 55.92 (-21.7%)
PointNet 51.62 (-31.4%) 49.14 (-34.7%)
PointNet++ 57.73 (-18.2%) 49.39 (-30.0%)

Table 4.6: Impact of limited viewpoints during model reconstruction. Mean class accuracy
and relative change in percent, TSDF trained model.

(a) (b) (c) (d) (e)

Figure 4.7: Visualization of the restricted viewing angles used for the experiments. (a)-(e)
are referenced in Table 4.6

4.3.3 Impact of Scale
Since the actual size of the objects is not known or cannot be taken into account either in
ModelNet40 or in the sensor recording, the models are scaled uniformly before they are
processed further. This happens as described, on the basis of a unit sphere. If parts of
the object are missing due to over-segmentation or missing blink angles, the models are
scaled and positioned differently before processing than if they were whole. This behavior
is examined separately with an experiment by cutting the models. In contrast to the
experiment with the random holes, the clear cuts only resulted in scaling changes that
depend on the object and the orientation. The percentages can also not be compared,
because here the volumes of the unit sphere and not the ratio of the surface are decisive.

For the experiment, each model was divided according to the TSDF reconstruction.
With 2 gradations, either 50% or 30% of the unit sphere volume was removed by a
straight horizontal cut. Figure 4.8 shows the cut of such a model. Subsequently, the
models were evaluated accordingly. Here, once a correct scaling was performed for the
respective incomplete model and once the (incomplete) model was scaled as if it was still
whole. The results are summarized in table 4.7.

As can be seen, MVCNN is almost unaffected by scaling. The slight increase in
rescaling could be explained by the fact that more of the image area of the input images
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Figure 4.8: Clear cut of an object with 30% unit sphere volume

Method 30% cut
(orig scale)

30% cut
(rescaled)

50% cut
(original)

50% cut
(rescaled)

MVCNN 83.1 (-11.1%) 86.0 (-8.0%) 71.0 (-24.1%) 72.7 (-22.2%)
VoxNet 73.5 (-18.4%) 73.0 (-19.0%) 73.0 (-19.0%) 45.2 (-49.8%)
PointNet 79.7 (-11.7%) 76.4 (-15.4%) 26.0 (-71.2%) 40.4 (-55.3%)
PointNet++ 84.3 (-9.7%) 83.3 (-10.7%) 71.1 (-23.8%) 68.8 (-26.3%)

Table 4.7: Impact of re-scaling due to incomplete models. Mean class accuracy and
relative change in percent. TSDF trained model.

can be utilized and thus more information can be used by the network.
VoxNet shows a clear difference in scaling at the 50% cut. As one can imagine, scaling

and centering on the voxel grid gives a significant difference in occupancy. This means
that very incomplete models would still perform comparably well with VoxNet. However,
due to scaling and positioning, there is a significant degradation in VoxNet compared to
MVCNN and PointNet++. When comparing PointNet and PointNet++, it becomes clear
that the former generally has a clear disadvantage of 50% due to the lack of hierarchical
neighborhood information. PointNet++ seems to perform much better here, as expected,
and also seems to have only a slight dependency on scaling.

4.3.4 Floor segmentation error
Since many objects in the household area are located on a flat base surface, be it the
floor or e.g. a table surface, it can happen that parts of the surface are also incorrectly
assigned to the object. Such a failure of the segmentation function is also called under-
segmentation. To mimic this behavior, a rectangular plane was attached to the base
of the model with a size of 105% of the original object size. The models are then run
through the TSDF reconstruction pipeline including the plane and are evaluated.

The results are summarized in table 4.8.
In this experiment, MVCNN again has a clear lead over the other methods. The large

drop-off in PointNet and PointNet++ can be explained by the fact that, due to the
fixed number of input points, not only unwanted outliers are sampled, but also fewer
correct points can be sampled. Since in the experiment the plane depends only on the
total size of the objects and not on the actual ground contact area, some objects contain
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Method Bottom plane
MVCNN 78.3 (-16.2%)
VoxNet 66.5 (-26.2%)
PointNet 23.2 (-74.3%)
PointNet++ 25.3 (-72.9%)

Table 4.8: Impact of a plane sticking to bottom. Mean class accuracy and relative change
in percent. TSDF trained model.

Figure 4.9: Example of objects from the ScanObjectNN dataset [14]

a disproportionate amount of plane (e.g. airplanes). Due to the higher camera angle
used in MVCNN, the ground area for many classes does not make much difference for
MVCNN.

4.4 Evaluation with ScanObjectNN Dataset
In order to be able to compare the results with real world sensor data, tests were also
made with ScanObjectNN, a dataset which is acquired from sensor data. As described in
section 4.1.1, both ModelNet11 and ScanObjectNN11 datasets were created from a set of
common classes.

For the source data of ScanObjectNN there are two variants for all objects. One is
using an exact segmentation and one is using an imprecise one, where also larger parts
of the background are located at the objects. The latter was created by placing an axis
aligned bounding box over the exactly segmented object and then cutting out the object
together with the contents of the bounding box. A few examples of the included objects
are shown in figure 4.9.

For the experiments, the networks were trained with ModelNet11 and the reconstruction
pipeline. Then they were evaluated with both datasets. As can be seen in table 4.9, there
is a significant drop for all networks on the real data, whereas MVCNN still dominates.
The differences here are not as clear as usual. Unexpectedly, the accuracy of data with
background improves for VoxNet, PointNet and PointNet++. This can possibly be
described by the otherwise observed robustness of VoxNet. Because the bounding box
is used for the segmentation, there is practically no change in scale, which is also very
positive for VoxNet. For PointNet, the background may not provide enough false points
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to matter in random sampling. For this case, only every 50th to 150th point is sampled.
Since only 11 classes were considered here instead of the usual 40, the accuracy values

cannot be directly compared with the previous experiments.

Method ModelNet11 ScanObjectNN
without BG

ScanObjectNN
with BG

MVCNN 93.49 62.69 (-33.0%) 58.58 (-37.3%)
VoxNet 90.08 49.77 (-44.8%) 54.36 (-39.7%)
PointNet++ 93.31 52.49 (-43.8) 55.78 (-40.2%)
PointNet 90.31 54.22 (-40.0%) 55.71 (-38.3%)

Table 4.9: Results when training on ModelNet and evaluating on ScanObjectNN with
and without baackground (BG). Mean class accuracy in percent and relative
change in parenthesis

4.5 Impact of test data degradation
Since MVCNN performed much better than the others in the previous tests, the behavior
of MVCNN will be further investigated with additional analysis. An essential property
of MVCNN is the ability to find the best result from different perspectives. This makes
it robust against a wide range of noise. To investigate this behavior further, from the 12
images per object, a different number of images are replaced by black ones. The images
which are left out are always next to each other. Table 4.10 shows the results for the
TSDF trained and evaluated model with objects at a random orientation. This means
that always one random orientation is left out.

Number of
black images

Overall
accuracy

Mean class
accuracy

1 90.9 88.2
2 91.2 88.3
3 91.1 88.2
6 91.2 87.9
8 90.8 87.8
9 90.3 87.2
10 88.5 86.7
11 83.5 81.7

Table 4.10: Impact of manipulated images on accuracy of the evaluation.

This result shows that even with a small number of usable images, a rather good
performance can be achieved. Black images do not produce any activation in the network,
so they do not affect the result in a negative way compared to images with other colors.
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For the next experiment, the robustness against wrong inserted images is investigated.
For that, one random image of the 12 for each object is replaced by a random image
from another class. First, a more distinctive object, an airplane, is inserted. This results
in an overall accuracy of 91.4% which means a rather small drop. Secondly, a cup, a
more generic object, is inserted, which results in a slightly worse drop to 90.1% overall
accuracy.

This result shows that as soon as a view resembles a supposedly different object due
to noise, it can very well lead to a wrong classification. However, the probability of this
seems to be comparably low, which makes MVCNN still very robust.



5 Conclusion
In this work, three 3D classification methods are compared and their performance is
analyzed with real sensor data. The central problem with using state-of-the-art methods
like deep neural networks is that huge amounts of data training data is necessary in order
to achieve the best results. Thanks to computer-aided design (CAD), a huge amount
of 3D data is available, but it lacks some similarities with real captured data. In order
to further examine this so-called Sim2Real gap, several experiments with three selected
classification methods were done. The selection of those methods was based on the type
of input data they use. To gain a comprehensive understanding of the algorithms, a view-
based, a voxel-based and a point-based algorithm were selected. The particular selected
methods were MVCNN [5], VoxNet [11], PointNet [10] and its successor, PointNet++ [4].
Due to the lack of the huge amounts of curated captured data, the experiments were
done with CAD data which was altered in several ways. The first step was to setup
a reconstruction pipeline which acts similarly to real world scans. The CAD models
are rendered in depth images from several perspectives and then reassembled to 3D
models again via TSDF. Starting from this data, several other experiments are carried
out, like giving the models a random orientation, creating holes of different sizes to
simulate occlusion and segmentation errors, cutting away certain parts with clear cuts
and experimenting with resulting size changes. To investigate restricted views further, a
camera on a circular trajectory with varying coverage was used. Finally, a comparison
with real world data from ScanObjectNN dataset was performed.

5.1 Understanding the Sim2Real gap
Based on the analysis of the experiments, especially with the ScanObjectNN dataset, it was
shown that it is advantageous for all networks to modify the CAD-based datasets before
training. In this case, artificial depth mapping and subsequent TSDF reconstruction
improved the outcome and also made the models more robust to other noise. This
behavior could be observed with all four methods.

With neural networks acting as a black box, it is complex to explain the cause of
certain behaviours. However, with the experiments shown and own assumptions made,
it can be shown that it is still possible to predict certain properties. The sensitivity of
MVCNN to surface perturbations by the TSDF pipeline as opposed to the other networks,
or the vulnerability of VoxNet to changes in the scaling of data are good examples, as
they are directly connected to the data representation more so than the network itself.
On the other hand, the robustness of MVCNN in the presence of limited camera views
can also be well understood by the network combination of multiple views.

40
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When looking at the actual performance, it can be seen that all the networks are
performing really well on CAD data. Even with very similar classes like desk and table,
the overall accuracy of all networks is close to or over 90%. When doing experiments
which heavily modify the data, like creating holes with 50% of the total surface area or
doing a reconstruction with a very restricted view, the accuracy quickly drops from 70%
to 50%. Depending on the application, this is very likely not acceptable and shows that
the use of these methods is only practical if the scans are as complete or more complete
than that. Conversely, this means that with such experiments it may also be possible
to estimate how complete the scans in the applications actually need to be in order to
provide reliable results.

With an overall accuracy of just 67% to 54% all the networks performed rather poorly
with the ScanObjectNN dataset. Considering only 11 classes were used instead of the 40
classes for the other experiments, this means for this particular dataset the Sim2Real
gap is still too big for these four methods and the data preparation in the form of TSDF
reconstruction.

5.2 Outlook
To improve the less than ideal results for the ScanObjectNN dataset, the Sim2Real gap
could be reduced in several ways or the methods as a whole could be improved even
further.

One direction could be to further investigate how to prepare for better training. As
was done with the reconstruction pipeline, even more defects and imperfections could
be introduced to make the training data even more similar to the actual scanned data.
This approach is usually referred to as data augmentation. In this work the pipeline
reconstructed models with complete visibility. A natural extension would be to examine
scanned data to best implement the limited view. From the results of the original
ScanObjectNN paper [14], we can see that methods like PointNet++ achieve about 77.9%
overall accuracy when also trained with the ScanObjectNN data and using 15 classes.
Therefore, with a suitable modification of the CAD training data, a similarly good result
should also be achievable.

Other feasible experiments could be to further test occlusion behavior, which is one
of the main problems. This could possibly be done by setting up artificial room scenes
similar to the ones in SceneNN [63] or ScanNet [26]. Performing similar experiments
when using more realistic constraints imposed by realistic room layouts and a real sensor
would create realistic occlusion and help refine the intuition built in this work. Another
interesting experiment could be the simulation of an inaccurate camera position sensor
which is a common source of noise and leads to certain artifacts in the reconstructed
data.

A completely different direction could be to further investigate the behavior of the
networks at a lower level to get even more insights for the Sim2Real Gap. This could be
done by visualizing the neural activations and getting a better understanding of e.g. why
certain objects are wrongly categorized.



A Appendix
Table A.1 gives an overview of all objects counts for the ModelNet40 dataset. The
numbers represent the default test and training split which is also used in this work.

No. Class # train # test
1 airplane 626 100
2 bathtub 106 50
3 bed 515 100
4 bench 173 20
5 bookshelf 572 100
6 bottle 335 100
7 bowl 64 20
8 car 197 100
9 chair 889 100
10 cone 167 20
11 cup 79 20
12 curtain 138 20
13 desk 200 86
14 door 109 20
15 dresser 200 86
16 flower_pot 149 20
17 glass_box 171 100
18 guitar 155 100
19 keyboard 145 20
20 lamp 124 20
21 laptop 149 20
22 mantel 284 100
23 monitor 465 100
24 night_stand 200 86
25 person 88 20
26 piano 231 100
27 plant 240 100
28 radio 104 20
29 range_hood 115 100
30 sink 128 20
31 sofa 680 100
32 stairs 124 20
33 stool 90 20
34 table 392 100
35 tent 163 20
36 toilet 344 100
37 tv_stand 267 100
38 vase 475 100
39 wardrobe 87 20
40 xbox 103 20

Table A.1: ModelNet40 classes and object count with train and test split
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A.1 Results for TSDF reconstruction
Refering to section 4.2, the results of training and testing the original and TSDF
reconstructed dataset are listed in Tables A.2 and A.3.

MVCNN VoxNet
Training CAD CAD TSDF TSDF CAD CAD TSDF TSDF
Test CAD TSDF TSDF CAD CAD TSDF TSDF CAD
Overall acc. 0.915 0.863 0.915 0.889 0.858 0.854 0.865 0.835
Mean class acc. 0.894 0.834 0.888 0.857 0.829 0.822 0.831 0.808
airplane 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
bathtub 0.940 0.800 0.940 0.920 0.720 0.767 0.820 0.800
bed 1.000 0.990 1.000 0.990 0.980 0.933 0.980 0.970
bench 0.800 0.750 0.750 0.800 0.700 0.600 0.600 0.650
bookshelf 0.910 0.800 0.940 0.930 0.970 0.930 0.950 0.980
bottle 0.990 0.990 0.990 1.000 0.930 0.950 0.950 0.910
bowl 0.900 0.850 1.000 0.900 0.950 0.900 0.950 0.950
car 1.000 1.000 1.000 0.940 0.960 0.957 0.970 0.960
chair 0.970 0.970 0.980 0.980 0.970 0.970 0.970 0.960
cone 0.950 0.900 0.900 0.900 0.950 0.900 0.900 0.900
cup 0.750 0.400 0.700 0.750 0.700 0.750 0.600 0.650
curtain 0.950 1.000 0.950 0.800 0.750 0.750 0.800 0.800
desk 0.826 0.756 0.849 0.767 0.709 0.643 0.698 0.686
door 0.950 1.000 1.000 0.950 0.850 0.883 0.850 0.850
dresser 0.872 0.744 0.791 0.721 0.616 0.601 0.709 0.395
flower_pot 0.050 0.000 0.250 0.050 0.350 0.317 0.250 0.200
glass_box 0.980 0.930 0.970 0.970 0.940 0.850 0.970 0.760
guitar 1.000 1.000 1.000 0.990 0.990 0.997 0.980 0.980
keyboard 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.950
lamp 0.900 0.700 0.900 0.950 0.850 0.800 0.950 0.900
laptop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mantel 0.980 0.940 0.990 0.950 0.930 0.953 0.940 0.920
monitor 0.940 0.910 0.970 0.990 0.950 0.963 0.950 0.940
night_stand 0.698 0.558 0.767 0.721 0.651 0.698 0.709 0.674
person 1.000 0.950 0.950 1.000 0.900 0.800 0.800 0.950
piano 0.980 0.900 0.960 0.920 0.850 0.867 0.880 0.830
plant 0.890 0.870 0.870 0.890 0.690 0.730 0.740 0.750
radio 0.950 0.900 0.950 0.900 0.550 0.800 0.500 0.400
range_hood 0.930 0.820 0.900 0.930 0.880 0.867 0.880 0.900
sink 0.800 0.350 0.950 0.850 0.650 0.700 0.750 0.700
sofa 0.940 0.970 0.950 0.900 0.960 0.950 0.960 0.960
stairs 0.950 0.850 1.000 0.900 0.900 0.900 0.900 0.900
stool 0.800 0.800 0.850 0.850 0.750 0.650 0.750 0.700
table 0.760 0.770 0.770 0.760 0.800 0.783 0.710 0.710
tent 0.950 0.950 0.950 0.650 0.950 0.950 0.950 0.950
toilet 1.000 1.000 1.000 1.000 0.960 0.947 0.960 0.970
tv_stand 0.860 0.560 0.890 0.760 0.770 0.790 0.800 0.750
vase 0.830 0.880 0.780 0.770 0.750 0.810 0.750 0.700
wardrobe 0.850 0.850 0.800 0.550 0.700 0.533 0.650 0.700
xbox 1.000 0.950 0.850 0.700 0.700 0.700 0.750 0.650

Table A.2: Accuracy values for training and testing with original CAD and TSDF recon-
structed data
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PointNet PointNet++
Training CAD CAD TSDF TSDF CAD CAD TSDF TSDF
Test CAD TSDF TSDF CAD CAD TSDF TSDF2 CAD
Overall acc. 0.885 0.730 0.876 0.718 0.902 0.876 0.894 0.874
Mean class acc. 0.861 0.705 0.851 0.679 0.880 0.856 0.871 0.850
airplane 1.000 0.550 1.000 1.000 1.000 1.000 1.000 1.000
bathtub 0.820 0.700 0.820 0.620 0.940 0.940 0.900 0.880
bed 0.990 0.920 0.960 0.760 0.970 0.950 0.970 0.950
bench 0.650 0.600 0.750 0.750 0.800 0.750 0.700 0.700
bookshelf 0.890 0.820 0.920 0.890 0.930 0.930 0.930 0.920
bottle 0.940 0.880 0.940 0.800 0.960 0.930 0.950 0.940
bowl 0.950 0.900 0.900 1.000 0.950 0.800 0.950 1.000
car 0.980 0.880 0.970 1.000 0.980 0.980 0.990 0.990
chair 0.970 0.950 0.970 0.930 0.960 0.950 0.960 0.970
cone 1.000 0.750 1.000 0.700 1.000 1.000 0.900 1.000
cup 0.650 0.550 0.750 0.550 0.800 0.600 0.800 0.900
curtain 0.900 0.950 0.900 0.850 0.900 0.850 0.900 0.850
desk 0.826 0.512 0.779 0.395 0.930 0.826 0.884 0.895
door 0.850 0.900 0.850 0.850 0.900 0.850 0.850 0.900
dresser 0.651 0.535 0.698 0.430 0.698 0.430 0.733 0.477
flower_pot 0.250 0.250 0.250 0.100 0.350 0.150 0.300 0.350
glass_box 0.960 0.720 0.970 0.710 0.950 0.790 0.930 0.880
guitar 1.000 0.890 0.990 0.880 0.990 1.000 0.950 0.840
keyboard 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
lamp 0.950 0.900 0.850 0.550 0.800 0.850 0.850 0.800
laptop 1.000 0.300 1.000 0.000 1.000 1.000 1.000 1.000
mantel 0.960 0.920 0.940 0.630 0.970 0.960 0.970 0.960
monitor 0.950 0.940 0.930 0.890 0.990 0.980 0.970 0.980
night_stand 0.791 0.651 0.744 0.581 0.698 0.547 0.686 0.814
person 0.950 0.750 0.900 0.900 0.900 0.950 1.000 0.950
piano 0.870 0.640 0.890 0.800 0.940 0.940 0.950 0.950
plant 0.740 0.650 0.710 0.710 0.740 0.890 0.730 0.710
radio 0.800 0.450 0.800 0.400 0.750 0.800 0.750 0.700
range_hood 0.920 0.660 0.940 0.640 0.950 0.930 0.960 0.980
sink 0.750 0.400 0.750 0.700 0.850 0.900 0.850 0.850
sofa 0.980 0.940 0.940 0.970 0.970 0.960 0.960 0.960
stairs 0.900 0.750 0.800 0.600 0.950 0.950 1.000 0.950
stool 0.850 0.450 0.750 0.550 0.750 0.800 0.800 0.700
table 0.800 0.060 0.780 0.020 0.780 0.790 0.750 0.720
tent 0.950 1.000 0.950 0.550 0.950 0.950 0.950 0.950
toilet 0.970 0.840 0.970 0.880 0.990 0.990 1.000 0.990
tv_stand 0.800 0.720 0.830 0.720 0.880 0.800 0.870 0.810
vase 0.790 0.830 0.740 0.750 0.790 0.870 0.800 0.780
wardrobe 0.550 0.450 0.650 0.450 0.800 0.800 0.650 0.350
xbox 0.900 0.650 0.750 0.650 0.750 0.850 0.750 0.650

Table A.3: Accuracy values for training and testing with original CAD and TSDF recon-
structed data

The figures A.1 to A.4 show confusion matrices for training and testing with CAD
and TSDF reconstructed data in all combinations. Due to the space requirements and
conciseness, the class names are not labeled on the axes. The 40 classes are shown in
alphabetical order from top to bottom and left to right in the diagram. Figure A.17 can
be seen as a reference with fully labeled axis.
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Figure A.1: Confusion matrices for CAD trained and CAD test data
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Figure A.2: Confusion matrices for CAD trained and TSDF test data
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Figure A.3: Confusion matrices for TSDF trained and TSDF test data
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Figure A.4: Confusion matrices for TSDF trained and CAD test data
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A.2 Results for random rotation
Refering to section 4.2.1, the results of the experiment with random rotation are presented
in table A.4. In this experiment, all models are trained with reconstructed TSDF data and
tested with the same, but with a random rotation around the up-axis. The corresponding
confusion matrices are shown in figure A.5.

MVCNN VoxNet PointNet PointNet++
Overall acc. 0.915 0.859 0.880 0.891
Mean class acc. 0.888 0.825 0.850 0.866
airplane 1.000 1.000 1.000 1.000
bathtub 0.940 0.827 0.793 0.907
bed 1.000 0.980 0.970 0.970
bench 0.750 0.600 0.717 0.717
bookshelf 0.940 0.930 0.903 0.920
bottle 0.990 0.947 0.943 0.953
bowl 0.900 0.950 1.000 0.900
car 1.000 0.970 0.983 0.987
chair 0.980 0.967 0.983 0.960
cone 0.950 0.900 1.000 0.950
cup 0.700 0.600 0.733 0.817
curtain 0.950 0.833 0.900 0.900
desk 0.872 0.682 0.795 0.899
door 1.000 0.833 0.833 0.833
dresser 0.779 0.678 0.725 0.775
flower_pot 0.000 0.250 0.283 0.267
glass_box 0.970 0.967 0.970 0.900
guitar 0.990 0.960 0.990 0.950
keyboard 1.000 1.000 1.000 0.983
lamp 0.900 0.950 0.850 0.850
laptop 1.000 1.000 1.000 1.000
mantel 0.970 0.940 0.953 0.960
monitor 0.970 0.950 0.943 0.980
night_stand 0.756 0.659 0.752 0.663
person 1.000 0.850 0.833 1.000
piano 0.950 0.847 0.893 0.937
plant 0.920 0.727 0.723 0.750
radio 0.950 0.533 0.733 0.733
range_hood 0.960 0.887 0.927 0.963
sink 0.950 0.717 0.700 0.850
sofa 0.960 0.960 0.950 0.947
stairs 0.950 0.867 0.817 0.983
stool 0.750 0.717 0.733 0.750
table 0.760 0.737 0.783 0.760
tent 0.950 0.950 0.950 0.950
toilet 1.000 0.960 0.983 0.997
tv_stand 0.820 0.787 0.827 0.847
vase 0.810 0.760 0.747 0.793
wardrobe 0.700 0.583 0.617 0.617
xbox 0.800 0.733 0.767 0.717

Table A.4: Accuracy values for random rotation experiment
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Figure A.5: Confusion matrices for random rotation experiment
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A.3 Results for random holes
The tables A.5-A.8 show all the results for the random holes experiment described in
section 4.3.1. The percentage indicates the dimensions of the hole in relation to the total
surface of the object. The associated confusion matrices for 30% and 50% hole size is
shown in figures A.6 and A.7.

MVCNN
CAD TSDF

Hole Surface Area 5% 10% 30% 50% 5% 10% 30% 50%
Overall acc. 0.819 0.806 0.701 0.575 0.903 0.892 0.821 0.700
Mean class acc. 0.796 0.785 0.690 0.556 0.871 0.862 0.790 0.678
airplane 1.000 1.000 0.990 0.780 1.000 1.000 1.000 0.890
bathtub 0.780 0.720 0.420 0.200 0.940 0.860 0.800 0.500
bed 0.990 0.980 0.890 0.760 1.000 1.000 0.960 0.910
bench 0.700 0.750 0.750 0.500 0.750 0.800 0.800 0.750
bookshelf 0.750 0.760 0.560 0.380 0.950 0.930 0.890 0.790
bottle 0.980 0.950 0.920 0.730 0.990 0.970 0.950 0.770
bowl 0.850 0.800 0.900 0.750 0.900 0.950 0.900 0.900
car 1.000 1.000 0.990 0.960 0.990 0.990 0.980 0.920
chair 0.970 0.970 0.930 0.820 0.970 0.980 0.960 0.880
cone 0.900 0.800 0.850 0.700 0.950 0.900 0.900 0.800
cup 0.300 0.400 0.250 0.000 0.650 0.600 0.400 0.150
curtain 0.950 0.950 0.950 0.700 0.900 0.900 0.950 0.900
desk 0.709 0.779 0.605 0.477 0.872 0.884 0.837 0.721
door 0.950 0.850 0.800 0.650 1.000 0.950 0.900 0.850
dresser 0.581 0.512 0.291 0.081 0.744 0.663 0.419 0.233
flower_pot 0.050 0.050 0.100 0.050 0.000 0.000 0.000 0.050
glass_box 0.560 0.330 0.070 0.050 0.910 0.880 0.760 0.510
guitar 0.990 1.000 0.960 0.920 1.000 1.000 0.960 0.870
keyboard 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
lamp 0.750 0.750 0.650 0.550 0.900 1.000 0.750 0.600
laptop 1.000 1.000 1.000 0.800 1.000 1.000 1.000 0.800
mantel 0.910 0.910 0.770 0.590 0.980 0.980 0.950 0.810
monitor 0.900 0.860 0.780 0.670 0.990 0.980 0.980 0.930
night_stand 0.535 0.547 0.453 0.279 0.767 0.698 0.616 0.477
person 0.950 0.950 0.950 0.850 1.000 0.950 0.950 0.800
piano 0.910 0.910 0.820 0.660 0.930 0.930 0.890 0.740
plant 0.870 0.900 0.920 0.910 0.910 0.940 0.980 0.940
radio 0.800 0.700 0.650 0.250 0.800 0.750 0.750 0.700
range_hood 0.780 0.810 0.610 0.430 0.950 0.950 0.840 0.650
sink 0.300 0.350 0.200 0.050 0.850 0.850 0.700 0.600
sofa 0.940 0.970 0.910 0.910 0.950 0.940 0.910 0.860
stairs 0.900 0.850 0.850 0.750 0.950 0.950 0.950 0.900
stool 0.800 0.800 0.850 0.550 0.750 0.750 0.800 0.600
table 0.750 0.730 0.450 0.270 0.730 0.660 0.430 0.310
tent 0.900 0.900 0.750 0.800 0.900 0.900 0.900 0.750
toilet 1.000 0.990 0.950 0.880 1.000 1.000 0.970 0.820
tv_stand 0.340 0.260 0.080 0.020 0.770 0.700 0.430 0.230
vase 0.860 0.900 0.840 0.680 0.800 0.820 0.750 0.620
wardrobe 0.750 0.800 0.400 0.250 0.650 0.700 0.300 0.150
xbox 0.900 0.900 0.500 0.600 0.750 0.750 0.400 0.450

Table A.5: Accuracy values for random holes experiment for MVCNN
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VoxNet
CAD TSDF

Hole Surface Area 5% 10% 30% 50% 5% 10% 30% 50%
Overall acc. 0.855 0.841 0.761 0.600 0.861 0.861 0.760 0.583
Mean class acc. 0.823 0.813 0.723 0.569 0.830 0.821 0.722 0.553
airplane 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997
bathtub 0.800 0.780 0.720 0.647 0.800 0.760 0.660 0.507
bed 0.930 0.940 0.900 0.700 0.970 0.960 0.890 0.657
bench 0.550 0.600 0.700 0.733 0.650 0.700 0.750 0.667
bookshelf 0.920 0.920 0.850 0.570 0.930 0.940 0.800 0.463
bottle 0.940 0.950 0.860 0.583 0.950 0.970 0.870 0.397
bowl 0.900 0.850 0.850 0.817 0.950 0.950 0.850 0.850
car 0.950 0.950 0.880 0.837 0.970 0.950 0.860 0.770
chair 0.980 0.970 0.980 0.943 0.970 0.960 0.940 0.927
cone 0.900 0.900 0.900 0.817 0.900 0.900 0.850 0.700
cup 0.750 0.700 0.700 0.400 0.600 0.600 0.500 0.250
curtain 0.750 0.800 0.700 0.717 0.750 0.800 0.700 0.717
desk 0.686 0.674 0.593 0.438 0.709 0.744 0.651 0.516
door 0.900 0.900 0.600 0.150 0.800 0.900 0.500 0.133
dresser 0.570 0.523 0.419 0.159 0.674 0.686 0.360 0.047
flower_pot 0.250 0.200 0.050 0.100 0.200 0.250 0.100 0.083
glass_box 0.810 0.680 0.380 0.110 0.970 0.940 0.510 0.180
guitar 1.000 1.000 0.980 0.957 0.970 0.980 0.960 0.987
keyboard 0.950 1.000 0.650 0.300 1.000 1.000 0.900 0.483
lamp 0.800 0.850 0.750 0.783 0.950 0.950 0.900 0.817
laptop 1.000 1.000 1.000 0.950 1.000 1.000 1.000 1.000
mantel 0.950 0.950 0.910 0.647 0.940 0.950 0.860 0.647
monitor 0.980 0.930 0.930 0.797 0.960 0.940 0.920 0.730
night_stand 0.663 0.651 0.523 0.244 0.733 0.733 0.605 0.391
person 0.800 0.800 0.650 0.383 0.850 0.850 0.750 0.350
piano 0.870 0.870 0.700 0.487 0.880 0.860 0.680 0.443
plant 0.780 0.790 0.830 0.767 0.730 0.720 0.800 0.760
radio 0.800 0.800 0.550 0.400 0.400 0.600 0.400 0.350
range_hood 0.860 0.860 0.830 0.653 0.890 0.850 0.820 0.697
sink 0.700 0.700 0.700 0.667 0.700 0.700 0.700 0.700
sofa 0.960 0.940 0.870 0.723 0.950 0.950 0.910 0.783
stairs 0.850 0.900 0.800 0.750 0.850 0.900 0.850 0.783
stool 0.750 0.700 0.600 0.333 0.700 0.750 0.700 0.233
table 0.790 0.800 0.730 0.617 0.740 0.740 0.670 0.487
tent 0.950 0.950 0.950 0.917 0.950 0.950 0.900 0.900
toilet 0.950 0.960 0.870 0.627 0.970 0.970 0.910 0.733
tv_stand 0.780 0.710 0.510 0.317 0.750 0.770 0.510 0.263
vase 0.810 0.780 0.710 0.570 0.750 0.760 0.740 0.567
wardrobe 0.550 0.450 0.250 0.000 0.700 0.600 0.050 0.000
xbox 0.800 0.800 0.550 0.133 0.700 0.650 0.550 0.150

Table A.6: Accuracy values for random holes experiment for VoxNet
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PointNet
CAD TSDF

Hole Surface Area 5% 10% 30% 50% 5% 10% 30% 50%
Overall acc. 0.723 0.688 0.504 0.270 0.876 0.868 0.718 0.446
Mean class acc. 0.702 0.670 0.517 0.293 0.846 0.838 0.703 0.463
airplane 0.560 0.540 1.000 0.100 1.000 1.000 0.930 0.380
bathtub 0.760 0.740 0.700 0.200 0.820 0.740 0.680 0.220
bed 0.880 0.890 0.900 0.400 0.960 0.970 0.810 0.290
bench 0.700 0.600 0.750 0.650 0.750 0.750 0.650 0.500
bookshelf 0.800 0.780 0.840 0.110 0.930 0.900 0.670 0.310
bottle 0.860 0.870 0.920 0.070 0.940 0.940 0.810 0.340
bowl 0.900 0.800 0.950 0.550 1.000 0.950 0.900 0.800
car 0.870 0.850 0.920 0.350 0.980 0.980 0.850 0.710
chair 0.960 0.940 0.970 0.890 0.980 0.970 0.930 0.810
cone 0.750 0.750 0.900 0.550 0.950 1.000 0.900 0.700
cup 0.400 0.400 0.600 0.100 0.700 0.750 0.600 0.350
curtain 0.950 0.950 0.900 0.550 0.900 0.950 0.850 0.750
desk 0.488 0.430 0.733 0.174 0.767 0.802 0.663 0.500
door 0.900 0.800 0.700 0.500 0.850 0.800 0.700 0.500
dresser 0.570 0.500 0.581 0.035 0.721 0.721 0.512 0.093
flower_pot 0.300 0.300 0.300 0.050 0.150 0.300 0.200 0.050
glass_box 0.650 0.400 0.760 0.000 0.970 0.920 0.300 0.030
guitar 0.880 0.870 0.990 0.740 0.980 1.000 1.000 0.990
keyboard 1.000 1.000 0.950 0.350 1.000 1.000 0.750 0.350
lamp 0.900 0.900 0.900 0.700 0.850 0.900 0.750 0.800
laptop 0.250 0.250 1.000 0.150 1.000 1.000 0.950 0.750
mantel 0.880 0.850 0.880 0.330 0.940 0.940 0.740 0.420
monitor 0.930 0.930 0.900 0.310 0.950 0.940 0.890 0.650
night_stand 0.674 0.616 0.628 0.070 0.779 0.674 0.465 0.151
person 0.750 0.750 0.750 0.150 0.900 0.850 0.750 0.350
piano 0.610 0.570 0.750 0.090 0.890 0.880 0.630 0.280
plant 0.670 0.620 0.730 0.590 0.710 0.760 0.710 0.680
radio 0.450 0.350 0.600 0.000 0.800 0.700 0.650 0.550
range_hood 0.680 0.580 0.790 0.100 0.930 0.920 0.740 0.410
sink 0.500 0.450 0.750 0.400 0.750 0.650 0.700 0.600
sofa 0.910 0.870 0.830 0.070 0.940 0.930 0.720 0.320
stairs 0.750 0.700 0.850 0.450 0.800 0.750 0.750 0.600
stool 0.500 0.500 0.600 0.150 0.750 0.700 0.550 0.300
table 0.050 0.060 0.720 0.030 0.770 0.740 0.740 0.510
tent 0.950 1.000 0.950 0.850 0.950 0.950 0.900 0.900
toilet 0.840 0.840 0.980 0.370 0.980 0.990 0.870 0.570
tv_stand 0.720 0.720 0.650 0.080 0.820 0.790 0.500 0.220
vase 0.820 0.790 0.700 0.460 0.730 0.750 0.680 0.500
wardrobe 0.450 0.400 0.350 0.000 0.500 0.500 0.200 0.050
xbox 0.600 0.650 0.750 0.000 0.750 0.750 0.550 0.250

Table A.7: Accuracy values for random holes experiment for PointNet
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PointNet++
CAD TSDF

Hole Surface Area 5% 10% 30% 50% 5% 10% 30% 50%
Overall acc. 0.852 0.827 0.718 0.529 0.882 0.881 0.799 0.659
Mean class acc. 0.827 0.810 0.707 0.531 0.858 0.853 0.772 0.636
airplane 1.000 1.000 1.000 0.930 1.000 1.000 0.990 0.800
bathtub 0.960 0.880 0.660 0.400 0.900 0.880 0.760 0.440
bed 0.920 0.840 0.760 0.560 0.950 0.960 0.900 0.800
bench 0.700 0.750 0.650 0.400 0.750 0.700 0.650 0.600
bookshelf 0.920 0.910 0.840 0.700 0.920 0.910 0.810 0.680
bottle 0.940 0.920 0.760 0.380 0.950 0.940 0.750 0.560
bowl 0.800 0.850 0.800 0.650 0.900 0.850 0.900 0.750
car 0.970 0.970 0.880 0.600 0.990 0.980 0.920 0.750
chair 0.950 0.970 0.930 0.730 0.970 0.960 0.960 0.770
cone 0.900 0.900 0.800 0.600 0.950 0.900 0.800 0.800
cup 0.600 0.500 0.550 0.550 0.750 0.800 0.750 0.600
curtain 0.900 0.800 0.750 0.500 0.900 0.950 0.850 0.700
desk 0.814 0.837 0.744 0.488 0.895 0.872 0.779 0.674
door 0.850 0.700 0.650 0.600 0.800 0.750 0.500 0.600
dresser 0.279 0.198 0.128 0.070 0.721 0.791 0.651 0.477
flower_pot 0.050 0.350 0.200 0.150 0.300 0.300 0.150 0.100
glass_box 0.710 0.600 0.370 0.270 0.890 0.900 0.770 0.520
guitar 0.990 0.980 0.900 0.770 0.940 0.930 0.870 0.740
keyboard 1.000 1.000 0.700 0.550 0.950 1.000 0.900 0.600
lamp 0.850 0.850 0.750 0.600 0.900 0.800 0.800 0.650
laptop 1.000 1.000 0.850 0.550 1.000 1.000 1.000 0.750
mantel 0.940 0.920 0.790 0.610 0.960 0.970 0.940 0.830
monitor 0.970 0.980 0.910 0.660 0.970 0.980 0.920 0.790
night_stand 0.500 0.430 0.291 0.081 0.605 0.651 0.488 0.384
person 0.900 0.950 0.800 0.700 0.950 0.900 0.800 0.700
piano 0.940 0.920 0.860 0.700 0.960 0.960 0.890 0.740
plant 0.880 0.870 0.940 0.920 0.780 0.810 0.860 0.910
radio 0.700 0.750 0.700 0.450 0.700 0.800 0.750 0.700
range_hood 0.900 0.900 0.660 0.450 0.960 0.950 0.870 0.740
sink 0.900 0.900 0.750 0.750 0.850 0.850 0.750 0.700
sofa 0.940 0.900 0.710 0.260 0.940 0.940 0.810 0.580
stairs 0.900 0.900 0.950 0.750 0.900 0.850 0.900 0.800
stool 0.850 0.750 0.650 0.500 0.850 0.800 0.650 0.350
table 0.740 0.720 0.630 0.580 0.710 0.640 0.610 0.580
tent 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.900
toilet 0.990 0.970 0.830 0.450 0.990 0.990 0.890 0.690
tv_stand 0.800 0.660 0.450 0.290 0.840 0.850 0.660 0.510
vase 0.840 0.830 0.650 0.480 0.760 0.750 0.650 0.560
wardrobe 0.550 0.600 0.450 0.300 0.550 0.600 0.600 0.200
xbox 0.800 0.700 0.650 0.300 0.750 0.700 0.450 0.400

Table A.8: Accuracy values for random holes experiment for PointNet++
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Figure A.6: Confusion matrices for random holes with 30% surface coverage



A Appendix 56

Figure A.7: Confusion matrices for random holes with 50% surface coverage
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A.4 Results for circle camera
The tables A.9 and A.10 show the results of the circle camera experiment described
in section 4.3.2. The viewing angles for the different coverages are shown in figure 4.7.
The corresponding confusion matrices are shown in figures A.8 to A.10 for full, half and
quarter circles.

MVCNN VoxNet

Viewing Angle Full Half
Front

Half
Back

Quart.
Front

Quart.
Back Full Half

Front
Half
Back

Quart.
Front

Quart.
Back

Overall acc. 0.814 0.775 0.709 0.737 0.646 0.741 0.693 0.615 0.625 0.551
Mean class acc. 0.781 0.734 0.676 0.691 0.619 0.714 0.673 0.620 0.607 0.559
airplane 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
bathtub 0.700 0.620 0.700 0.270 0.280 0.700 0.760 0.700 0.230 0.230
bed 0.910 0.930 0.880 0.860 0.725 0.580 0.530 0.560 0.410 0.430
bench 0.700 0.750 0.650 0.650 0.600 0.650 0.700 0.750 0.750 0.825
bookshelf 0.960 0.940 0.500 0.950 0.505 0.940 0.920 0.470 0.920 0.485
bottle 0.980 0.980 0.980 0.975 0.965 0.970 0.970 0.970 0.980 0.970
bowl 0.950 0.950 1.000 0.875 0.850 0.700 0.700 0.750 0.675 0.650
car 0.990 0.960 0.950 0.920 0.800 0.990 0.980 0.970 0.850 0.530
chair 0.980 0.960 0.960 0.945 0.945 0.960 0.970 0.950 0.970 0.955
cone 0.950 0.950 0.950 0.950 0.950 0.900 0.900 0.900 0.900 0.900
cup 0.500 0.300 0.350 0.200 0.275 0.500 0.500 0.450 0.250 0.350
curtain 0.950 0.900 0.900 0.900 0.850 0.700 0.800 0.850 0.850 0.875
desk 0.337 0.430 0.244 0.366 0.250 0.628 0.628 0.419 0.535 0.407
door 1.000 1.000 1.000 0.975 1.000 0.850 0.700 0.750 0.600 0.575
dresser 0.372 0.174 0.012 0.198 0.000 0.407 0.047 0.012 0.000 0.000
flower_pot 0.050 0.050 0.050 0.050 0.000 0.250 0.250 0.250 0.125 0.175
glass_box 0.970 0.910 0.940 0.830 0.870 0.400 0.340 0.250 0.095 0.065
guitar 1.000 0.990 1.000 0.960 0.945 0.980 1.000 0.980 1.000 0.990
keyboard 0.750 0.650 0.200 0.650 0.200 0.700 0.500 0.150 0.475 0.150
lamp 0.950 0.850 0.850 0.875 0.875 0.900 0.900 0.900 0.950 0.950
laptop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.950 1.000 1.000
mantel 0.970 0.980 0.790 0.960 0.610 0.670 0.680 0.490 0.605 0.450
monitor 0.980 0.980 0.960 0.995 0.965 0.960 0.920 0.910 0.910 0.910
night_stand 0.477 0.465 0.326 0.366 0.151 0.221 0.186 0.151 0.163 0.128
person 0.950 1.000 1.000 1.000 0.975 0.800 0.900 0.900 0.900 0.850
piano 0.770 0.640 0.570 0.625 0.430 0.620 0.480 0.210 0.465 0.145
plant 0.960 0.960 0.970 0.970 0.965 0.710 0.720 0.740 0.725 0.720
radio 0.750 0.700 0.450 0.625 0.450 0.300 0.250 0.250 0.225 0.250
range_hood 0.940 0.950 0.840 0.930 0.765 0.880 0.760 0.630 0.665 0.555
sink 0.500 0.400 0.400 0.350 0.350 0.650 0.700 0.650 0.650 0.650
sofa 0.780 0.500 0.490 0.495 0.440 0.910 0.730 0.430 0.580 0.335
stairs 0.900 0.850 0.900 0.950 0.975 0.900 0.800 0.900 0.800 0.900
stool 0.650 0.600 0.600 0.600 0.650 0.700 0.650 0.700 0.700 0.700
table 0.700 0.640 0.600 0.640 0.635 0.770 0.760 0.720 0.755 0.745
tent 0.900 0.850 0.800 0.675 0.650 0.900 0.950 0.950 0.925 0.925
toilet 0.910 0.940 0.860 0.870 0.820 0.820 0.810 0.770 0.660 0.760
tv_stand 0.450 0.410 0.300 0.295 0.190 0.510 0.420 0.300 0.390 0.260
vase 0.820 0.770 0.780 0.745 0.735 0.740 0.670 0.670 0.565 0.575
wardrobe 0.300 0.300 0.100 0.100 0.050 0.250 0.050 0.050 0.000 0.000
xbox 0.550 0.150 0.200 0.050 0.050 0.550 0.400 0.400 0.025 0.000

Table A.9: Accuracy values for circle camera experiment.
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PointNet PointNet++

Viewing Angle Full Half
Front

Half
Back

Quart.
Front

Quart.
Back Full Half

Front
Half
Back

Quart.
Front

Quart.
Back

Overall acc. 0.774 0.679 0.625 0.531 0.481 0.719 0.660 0.540 0.585 0.467
Mean class acc. 0.753 0.675 0.641 0.516 0.491 0.706 0.642 0.568 0.577 0.494
airplane 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 0.940 0.990
bathtub 0.700 0.680 0.660 0.050 0.050 0.480 0.320 0.300 0.180 0.070
bed 0.640 0.680 0.490 0.230 0.135 0.630 0.590 0.450 0.545 0.450
bench 0.750 0.800 0.800 0.775 0.775 0.600 0.600 0.750 0.600 0.700
bookshelf 0.880 0.850 0.400 0.830 0.415 0.790 0.810 0.390 0.790 0.390
bottle 0.870 0.870 0.880 0.735 0.725 0.870 0.910 0.890 0.900 0.830
bowl 0.800 0.750 0.800 0.350 0.350 0.800 0.800 0.850 0.700 0.725
car 1.000 0.990 0.990 0.510 0.225 0.970 0.980 0.670 0.850 0.310
chair 0.960 0.970 0.970 0.975 0.955 0.930 0.930 0.950 0.930 0.905
cone 1.000 1.000 1.000 0.950 0.925 1.000 0.950 1.000 0.925 0.950
cup 0.750 0.800 0.750 0.000 0.000 0.900 0.600 0.650 0.525 0.350
curtain 0.850 0.950 0.900 0.950 0.950 0.850 0.900 0.900 0.900 0.900
desk 0.698 0.674 0.547 0.663 0.535 0.686 0.651 0.453 0.628 0.436
door 0.900 0.600 0.700 0.400 0.475 0.800 0.450 0.450 0.300 0.300
dresser 0.314 0.012 0.000 0.000 0.000 0.221 0.093 0.023 0.029 0.012
flower_pot 0.350 0.250 0.250 0.075 0.075 0.250 0.200 0.300 0.200 0.175
glass_box 0.820 0.650 0.700 0.005 0.000 0.980 0.670 0.150 0.125 0.005
guitar 0.980 0.980 0.990 0.995 0.990 0.860 0.740 0.800 0.460 0.700
keyboard 0.750 0.400 0.200 0.400 0.225 0.500 0.400 0.200 0.475 0.150
lamp 0.850 0.850 0.850 0.850 0.850 0.950 0.950 0.850 0.900 0.900
laptop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
mantel 0.810 0.430 0.460 0.425 0.460 0.790 0.860 0.420 0.850 0.425
monitor 0.910 0.810 0.880 0.840 0.875 0.960 0.860 0.900 0.880 0.915
night_stand 0.186 0.105 0.093 0.105 0.116 0.256 0.186 0.140 0.134 0.105
person 0.850 0.850 0.850 0.900 0.900 1.000 0.950 0.950 0.900 0.950
piano 0.730 0.520 0.260 0.395 0.265 0.470 0.400 0.140 0.370 0.100
plant 0.660 0.690 0.700 0.685 0.725 0.720 0.820 0.790 0.835 0.825
radio 0.400 0.350 0.400 0.325 0.400 0.400 0.350 0.350 0.275 0.300
range_hood 0.930 0.680 0.460 0.210 0.200 0.820 0.660 0.710 0.660 0.525
sink 0.700 0.600 0.600 0.325 0.375 0.750 0.550 0.550 0.425 0.375
sofa 0.830 0.340 0.240 0.265 0.090 0.630 0.370 0.020 0.260 0.025
stairs 0.750 0.750 0.800 0.775 0.850 1.000 0.900 1.000 0.975 0.975
stool 0.650 0.700 0.700 0.700 0.725 0.700 0.700 0.650 0.650 0.600
table 0.710 0.660 0.650 0.690 0.680 0.660 0.650 0.670 0.625 0.585
tent 0.900 0.850 0.900 0.475 0.625 0.900 0.950 0.950 0.750 0.725
toilet 0.920 0.890 0.870 0.715 0.715 0.760 0.800 0.470 0.640 0.135
tv_stand 0.610 0.440 0.330 0.410 0.285 0.360 0.250 0.240 0.230 0.195
vase 0.850 0.860 0.820 0.640 0.645 0.790 0.740 0.690 0.680 0.675
wardrobe 0.150 0.050 0.000 0.025 0.000 0.200 0.150 0.000 0.050 0.025
xbox 0.700 0.650 0.750 0.000 0.075 0.000 0.000 0.050 0.000 0.050

Table A.10: Accuracy values for circle camera experiment (continued).
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Figure A.8: Confusion matrices for full circle setup
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Figure A.9: Confusion matrices for half circle (front) setup
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Figure A.10: Confusion matrices for quarter circle (front) setup
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A.5 Results for impact of scale
The tables A.11 and A.12 show the results of the cut experiment corresponding to section
4.3.3 where the impact of scale is further investigated. For this experiment, the 3D
models are cut and either rescaled or not to fit in a unit-sphere. Figures A.11 and A.12
show confusion matrices for 30% and 50% cut experiments with rescaling.

MVCNN VoxNet

Cut amount 30% 30%
rescaled 50% 50%

rescaled 30% 30%
rescaled 50% 50%

rescaled
Overall acc. 0.838 0.894 0.710 0.765 0.780 0.767 0.773 0.515
Mean class acc. 0.831 0.861 0.710 0.727 0.735 0.730 0.730 0.452
airplane 1.000 1.000 0.990 1.000 1.000 0.996 1.000 0.860
bathtub 0.680 0.720 0.460 0.340 0.660 0.682 0.700 0.320
bed 0.890 0.990 0.740 0.870 0.750 0.788 0.700 0.410
bench 0.800 0.750 0.700 0.550 0.550 0.488 0.800 0.200
bookshelf 0.960 0.970 0.930 0.960 0.920 0.916 0.970 0.920
bottle 1.000 0.990 0.940 0.990 0.960 0.954 0.990 0.840
bowl 0.800 0.750 0.800 0.800 0.050 0.142 0.900 0.000
car 0.980 0.980 0.920 0.910 0.650 0.627 0.940 0.150
chair 0.970 0.960 0.790 0.850 0.970 0.963 0.990 0.680
cone 0.950 0.900 0.950 0.950 0.650 0.629 0.900 0.300
cup 0.500 0.500 0.550 0.300 0.650 0.713 0.500 0.100
curtain 0.950 0.950 0.950 0.900 0.750 0.771 0.850 0.650
desk 0.837 0.779 0.849 0.570 0.616 0.524 0.686 0.419
door 0.950 0.950 0.900 0.850 0.850 0.875 0.600 0.150
dresser 0.302 0.686 0.163 0.442 0.488 0.498 0.674 0.360
flower_pot 0.050 0.000 0.050 0.000 0.250 0.183 0.150 0.000
guitar 0.980 0.970 0.940 0.840 0.890 0.865 0.990 0.610
keyboard 1.000 1.000 1.000 0.950 0.950 0.929 0.000 0.550
lamp 0.900 0.900 0.900 0.800 0.850 0.804 0.900 0.750
laptop 1.000 1.000 0.600 0.700 1.000 0.938 0.950 0.350
mantel 0.940 0.960 0.760 0.840 0.880 0.867 0.970 0.700
monitor 0.980 0.970 0.940 0.870 0.940 0.933 0.990 0.670
night_stand 0.488 0.779 0.267 0.512 0.628 0.600 0.372 0.174
person 1.000 1.000 0.850 0.700 0.800 0.821 0.850 0.750
piano 0.810 0.920 0.610 0.730 0.870 0.803 0.870 0.520
plant 0.930 0.930 0.970 0.950 0.720 0.718 0.760 0.630
radio 0.900 0.900 0.650 0.850 0.550 0.571 0.550 0.250
range_hood 0.870 0.940 0.750 0.870 0.840 0.828 0.810 0.430
sink 0.850 0.900 0.650 0.500 0.550 0.583 0.700 0.200
sofa 0.890 0.920 0.730 0.730 0.900 0.887 0.870 0.480
stairs 0.950 0.950 0.900 0.950 0.800 0.813 0.900 0.550
stool 0.750 0.800 0.550 0.800 0.700 0.704 0.700 0.300
table 0.660 0.810 0.430 0.700 0.850 0.841 0.550 0.760
tent 0.950 0.850 0.800 0.700 0.950 0.954 0.950 0.650
toilet 0.990 0.990 0.770 0.800 0.970 0.930 0.930 0.810
tv_stand 0.520 0.840 0.200 0.510 0.700 0.728 0.610 0.520
vase 0.720 0.780 0.540 0.570 0.790 0.791 0.770 0.340
wardrobe 0.850 0.700 0.650 0.500 0.600 0.679 0.300 0.250
xbox 0.850 0.800 0.650 0.500 0.500 0.538 0.450 0.350

Table A.11: Accuracy values for the cut and rescaling experiment
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PointNet PointNet++

Cut amount 30% 30%
rescaled 50% 50%

rescaled 30% 30%
rescaled 50% 50%

rescaled
Overall acc. 0.820 0.784 0.248 0.422 0.866 0.861 0.762 0.747
Mean class acc. 0.797 0.764 0.260 0.404 0.843 0.833 0.711 0.688 h
airplane 1.000 0.970 0.180 0.320 1.000 1.000 0.990 0.990
bathtub 0.780 0.700 0.020 0.260 0.800 0.780 0.420 0.360
bed 0.810 0.790 0.020 0.270 0.860 0.840 0.740 0.700
bench 0.650 0.650 0.200 0.250 0.700 0.650 0.550 0.500
bookshelf 0.930 0.890 0.530 0.750 0.920 0.950 0.920 0.910
bottle 0.960 0.950 0.920 0.890 0.960 0.950 0.840 0.850
bowl 0.900 0.450 0.050 0.000 0.850 0.750 0.250 0.250
car 0.920 0.830 0.100 0.230 0.970 0.960 0.890 0.890
chair 0.970 0.950 0.230 0.440 0.950 0.950 0.810 0.770
cone 0.850 0.700 0.800 0.000 0.950 0.900 0.800 0.800
cup 0.750 0.750 0.000 0.100 0.750 0.750 0.300 0.150
curtain 0.900 0.900 0.550 0.800 0.900 0.900 0.900 0.750
desk 0.674 0.721 0.209 0.314 0.895 0.872 0.814 0.802
door 0.850 0.900 0.150 0.300 0.800 0.850 0.700 0.800
dresser 0.581 0.512 0.000 0.174 0.674 0.628 0.581 0.547
flower_pot 0.150 0.200 0.000 0.050 0.350 0.300 0.150 0.150
glass_box 0.610 0.390 0.050 0.120 0.850 0.860 0.800 0.860
guitar 0.990 0.880 0.960 0.610 0.920 0.950 0.760 0.690
keyboard 1.000 1.000 0.000 0.700 1.000 1.000 0.650 0.600
lamp 0.800 0.850 0.700 0.700 0.850 0.850 0.800 0.700
laptop 0.950 1.000 0.100 0.550 1.000 1.000 0.600 0.550
mantel 0.840 0.820 0.120 0.500 0.980 0.970 0.910 0.920
monitor 0.940 0.970 0.100 0.460 0.980 0.980 0.810 0.850
night_stand 0.628 0.570 0.000 0.140 0.640 0.547 0.488 0.500
person 0.800 0.800 0.850 0.750 0.900 0.950 0.850 0.850
piano 0.870 0.870 0.160 0.470 0.920 0.930 0.870 0.870
plant 0.700 0.760 0.430 0.470 0.730 0.740 0.870 0.830
radio 0.550 0.700 0.350 0.300 0.700 0.650 0.700 0.550
range_hood 0.920 0.830 0.100 0.480 0.950 0.980 0.890 0.890
sink 0.700 0.600 0.200 0.350 0.750 0.700 0.500 0.350
sofa 0.870 0.920 0.080 0.380 0.920 0.920 0.670 0.640
stairs 0.800 0.750 0.250 0.500 0.850 0.900 0.900 0.950
stool 0.700 0.700 0.300 0.450 0.800 0.750 0.850 0.800
table 0.580 0.520 0.130 0.560 0.700 0.690 0.610 0.680
tent 0.950 0.900 0.400 0.450 0.950 0.950 0.900 0.950
toilet 0.980 0.960 0.280 0.640 0.970 0.980 0.870 0.840
tv_stand 0.840 0.800 0.150 0.520 0.820 0.830 0.730 0.650
vase 0.750 0.700 0.340 0.260 0.770 0.780 0.710 0.680
wardrobe 0.550 0.650 0.000 0.150 0.700 0.700 0.600 0.600
xbox 0.900 0.750 0.400 0.500 0.750 0.700 0.450 0.500

Table A.12: Accuracy values for the cut and rescaling experiment (continued)
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Figure A.11: Confusion matrices for cut experiment with 30% cut and rescaled models
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Figure A.12: Confusion matrices for cut experiment with 50% cut and rescaled models
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A.6 Result for floor segmentation error
The results for the segmentation error experiment in section 4.3.4 are shown in table
A.13. In this experiment, a slightly bigger plane is attached underneath each 3D model
to simulate non-ideal segmentation. The corresponding confusion matrices are shown in
figure A.13.

MVCNN VoxNet PointNet PointNet++
Overall acc. 0.777 0.645 0.242 0.253
Mean class acc. 0.783 0.665 0.232 0.253
airplane 0.080 0.020 0.000 0.000
bathtub 0.920 0.700 0.220 0.220
bed 0.980 0.910 0.000 0.120
bench 0.700 0.400 0.050 0.150
bookshelf 0.940 0.940 0.870 0.870
bottle 0.980 0.920 0.020 0.030
bowl 0.400 0.650 0.050 0.200
car 0.960 0.700 0.000 0.000
chair 0.940 0.980 0.000 0.050
cone 0.850 0.950 0.000 0.200
cup 0.800 0.750 0.050 0.600
curtain 0.800 0.600 0.800 0.650
desk 0.256 0.116 0.116 0.047
door 1.000 0.950 0.850 0.800
dresser 0.674 0.640 0.326 0.360
flower_pot 0.050 0.200 0.000 0.100
glass_box 0.960 0.290 0.520 0.540
guitar 0.140 0.070 0.000 0.050
keyboard 1.000 1.000 0.400 0.550
lamp 0.950 0.850 0.200 0.050
laptop 1.000 1.000 0.000 0.100
mantel 0.870 0.670 0.130 0.290
monitor 0.960 0.930 0.010 0.100
night_stand 0.593 0.477 0.500 0.407
person 0.850 0.800 0.000 0.050
piano 0.830 0.690 0.170 0.100
plant 0.880 0.440 0.350 0.510
radio 0.900 0.500 0.000 0.000
range_hood 0.950 0.780 0.000 0.000
sink 0.800 0.550 0.300 0.000
sofa 0.950 0.920 0.040 0.010
stairs 1.000 0.750 0.050 0.400
stool 0.850 0.600 0.300 0.300
table 0.360 0.530 0.650 0.240
tent 0.950 1.000 0.000 0.000
toilet 0.990 0.780 0.020 0.210
tv_stand 0.930 0.650 0.690 0.710
vase 0.840 0.760 0.830 0.700
wardrobe 0.700 0.500 0.400 0.300
xbox 0.750 0.650 0.350 0.100

Table A.13: Accuracy values for floor segmentation experiment
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Figure A.13: Confusion matrices floor segmentation experiment
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A.7 Result for ScanObjectNN
Tables A.14 to A.17 show the results of the experiments with ScanObject data. In
order to investigate the Sim2Real Gap two new datasets are created. They are named
ModelNet11 (MN11) and ScanObjectNN11 (SO11) and are listed in table 4.1. Note that
both datasets have a significantly different ratio for objects per class. ScanObjectNN11
is available with two variants, where for one, the objects are cut out manually and for
the other, the objects are cut out very roughly. This means that it contains a lot of the
background or other objects.

The models for this much smaller datasets are trained with the unmodified CAD data
and with the TSDF recreated data.

Confusion matrices are shown in figures A.14 to A.16 for models trained with the
TSDF reconstructed data.

MVCNN
Training MN11 CAD MN11 TSDF

Evaluation MN11
CAD

MN11
TSDF SO11 SO11+BG MN11

CAD
MN11
TSDF SO11 SO11+BG

Overall acc. 0.951 0.909 0.526 0.497 0.868 0.932 0.672 0.598
Mean class acc. 0.949 0.898 0.468 0.458 0.875 0.935 0.627 0.586
bed 1.000 0.990 0.818 0.909 0.890 1.000 0.818 0.909
cabinet 0.943 0.934 0.133 0.133 0.858 0.962 0.427 0.240
chair 0.950 0.943 1.000 0.936 0.914 0.900 0.987 0.897
desk 0.837 0.767 0.100 0.000 0.605 0.872 0.167 0.033
display 1.000 0.990 0.762 0.690 0.940 1.000 0.643 0.595
door 0.950 0.900 0.286 0.619 0.950 0.950 0.786 0.929
shelf 0.980 0.890 0.612 0.531 0.910 0.960 0.959 0.918
sink 0.950 0.800 0.000 0.042 0.950 0.950 0.125 0.375
sofa 0.970 0.970 0.714 0.667 0.960 0.980 0.881 0.762
table 0.860 0.720 0.667 0.389 0.690 0.710 0.574 0.315
toilet 1.000 0.970 0.059 0.118 0.960 1.000 0.529 0.471

Table A.14: Accuracy values for ScanObjectNN11 (SO11) dataset without and with Back-
ground data (BG) trained with unmodified CAD and TSDF reconstructed
data from the ModelNet11 (MN11) dataset
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VoxNet
Training MN11 CAD MN11 TSDF

Evaluation MN11
CAD

MN11
TSDF SO11 SO11+BG MN11

CAD
MN11
TSDF SO11 SO11+BG

Overall acc. 0.908 0.904 0.560 0.566 0.891 0.914 0.545 0.552
Mean class acc. 0.890 0.882 0.517 0.548 0.879 0.901 0.498 0.544
bed 0.980 0.970 0.318 0.682 0.990 0.990 0.273 0.636
cabinet 0.887 0.953 0.093 0.093 0.708 0.925 0.067 0.080
chair 0.921 0.929 0.974 0.949 0.929 0.943 0.962 0.923
desk 0.709 0.709 0.167 0.367 0.698 0.721 0.233 0.267
display 0.980 0.960 0.810 0.929 0.970 0.970 0.738 0.833
door 0.950 0.950 1.000 0.976 0.950 0.950 1.000 0.929
shelf 0.980 0.920 0.510 0.612 0.970 0.930 0.510 0.571
sink 0.650 0.600 0.458 0.375 0.700 0.750 0.500 0.458
sofa 0.950 0.960 0.286 0.381 0.980 0.980 0.333 0.595
table 0.810 0.780 0.778 0.426 0.800 0.790 0.741 0.333
toilet 0.970 0.970 0.294 0.235 0.970 0.960 0.118 0.353

Table A.15: Accuracy values for ScanObjectNN11 (SO11) dataset without and with Back-
ground data (BG) trained with unmodified CAD and TSDF reconstructed
data from the ModelNet11 (MN11) dataset (continued)

PointNet
Training CAD trained TSDF trained

Evaluation MN11
CAD

MN11
TSDF SO11 SO11+BG MN11

CAD
MN11
TSDF SO11 SO11+BG

Overall acc. 0.931 0.808 0.343 0.320 0.767 0.919 0.540 0.540
Mean class acc. 0.918 0.786 0.297 0.283 0.764 0.903 0.542 0.557
bed 0.950 0.860 0.045 0.000 0.880 1.000 0.273 0.545
cabinet 0.925 0.915 0.000 0.000 0.651 0.925 0.013 0.147
chair 0.943 0.964 0.795 0.744 0.943 0.936 0.872 0.923
desk 0.884 0.512 0.033 0.033 0.605 0.814 0.333 0.300
display 0.970 0.790 0.190 0.146 0.910 0.930 0.786 0.786
door 1.000 0.900 1.000 0.881 0.950 0.950 0.976 0.976
shelf 0.990 0.890 0.104 0.163 0.920 0.920 0.438 0.653
sink 0.700 0.550 0.417 0.500 0.650 0.700 0.583 0.375
sofa 0.950 0.520 0.073 0.100 0.940 0.930 0.439 0.571
table 0.810 0.800 0.547 0.426 0.000 0.830 0.604 0.389
toilet 0.980 0.940 0.059 0.118 0.960 1.000 0.647 0.471

Table A.16: Accuracy values for ScanObjectNN (SO11) dataset without and with Back-
ground data (BG) trained with unmodified CAD and TSDF reconstructed
data from the ModelNet11 (MN11) dataset (continued)
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PointNet++
Training MN11 CAD MN11 TSDF

Evaluation MN11
CAD

MN11
TSDF SO11 SO11+BG MN11

CAD
MN11
TSDF SO11 SO11+BG

Overall acc. 0.937 0.923 0.543 0.484 0.893 0.936 0.558 0.573
Mean class acc. 0.930 0.917 0.516 0.454 0.892 0.933 0.525 0.558
bed 0.970 0.950 0.500 0.545 0.930 0.940 0.591 0.636
cabinet 0.953 0.925 0.120 0.133 0.717 0.943 0.160 0.080
chair 0.943 0.957 0.974 0.897 0.943 0.957 0.962 0.846
desk 0.826 0.814 0.567 0.367 0.802 0.884 0.400 0.467
display 0.980 0.980 0.500 0.595 0.990 0.990 0.548 0.707
door 0.950 0.950 1.000 0.881 0.950 0.950 1.000 0.952
shelf 0.960 0.920 0.306 0.653 0.980 0.960 0.388 0.531
sink 0.850 0.850 0.417 0.375 0.850 0.900 0.250 0.500
sofa 0.950 0.920 0.500 0.286 0.930 0.960 0.667 0.450
table 0.850 0.860 0.611 0.204 0.730 0.780 0.574 0.370
toilet 1.000 0.960 0.176 0.059 0.990 1.000 0.235 0.588

Table A.17: Accuracy values for ScanObjectNN (SO11) dataset without and with Back-
ground data (BG) trained with unmodified CAD and TSDF reconstructed
data from the ModelNet11 (MN11) dataset (continued)
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Figure A.14: Confusion matrices for MN11 dataset trained with TSDF reconstructed
data
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Figure A.15: Confusion matrices for ScanObjectNN11 dataset without background
trained with TSDF reconstructed data
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Figure A.16: Confusion matrices for ScanObjectNN11 with background trained with
TSDF reconstructed data
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A.8 Results for Test data degradation
The results for the test data degradation experiment in section 4.5 are shown in table
A.18 and in the confusion matrices in figure A.17.

# Black Images 1 2 3 6 8 9 10 11 12
Overall acc. 0.909 0.912 0.911 0.912 0.908 0.903 0.885 0.835 0.041
Mean class acc. 0.882 0.883 0.882 0.879 0.878 0.872 0.867 0.817 0.025
airplane 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.000
bathtub 0.920 0.920 0.920 0.940 0.900 0.920 0.880 0.760 0.000
bed 0.990 1.000 1.000 1.000 1.000 0.990 0.970 0.950 0.000
bench 0.750 0.750 0.750 0.750 0.800 0.800 0.800 0.750 0.000
bookshelf 0.920 0.920 0.920 0.920 0.930 0.910 0.870 0.860 0.000
bottle 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 1.000
bowl 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.000
car 1.000 1.000 0.990 0.980 0.990 0.980 0.970 0.900 0.000
chair 0.980 0.970 0.980 0.980 0.970 0.980 0.960 0.910 0.000
cone 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.950 0.000
cup 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.750 0.000
curtain 0.950 0.950 0.950 0.950 0.950 0.950 0.900 0.850 0.000
desk 0.860 0.895 0.872 0.849 0.849 0.802 0.756 0.605 0.000
door 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
dresser 0.767 0.756 0.756 0.791 0.779 0.767 0.721 0.547 0.000
flower_pot 0.000 0.000 0.000 0.000 0.050 0.050 0.050 0.050 0.000
glass_box 0.970 0.980 0.970 0.970 0.970 0.970 0.970 0.980 0.000
guitar 0.990 1.000 1.000 1.000 0.990 0.990 0.990 0.940 0.000
keyboard 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
lamp 0.900 0.900 0.900 0.900 0.900 0.850 0.900 0.850 0.000
laptop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
mantel 0.970 0.980 0.970 0.970 0.970 0.970 0.950 0.920 0.000
monitor 0.980 0.980 0.970 0.980 0.950 0.940 0.940 0.840 0.000
night_stand 0.767 0.767 0.791 0.802 0.779 0.791 0.756 0.628 0.000
person 1.000 1.000 0.950 0.950 1.000 0.950 0.950 0.900 0.000
piano 0.930 0.920 0.930 0.930 0.910 0.890 0.850 0.790 0.000
plant 0.920 0.920 0.920 0.910 0.930 0.920 0.910 0.900 0.000
radio 0.950 0.950 0.950 0.900 0.900 0.850 1.000 0.900 0.000
range_hood 0.940 0.960 0.950 0.960 0.940 0.940 0.930 0.900 0.000
sink 0.900 0.900 0.900 0.900 0.850 0.800 0.850 0.800 0.000
sofa 0.960 0.960 0.960 0.960 0.960 0.950 0.830 0.760 0.000
stairs 0.950 0.900 0.950 0.800 0.750 0.800 0.850 0.600 0.000
stool 0.750 0.750 0.750 0.750 0.800 0.800 0.800 0.750 0.000
table 0.760 0.730 0.760 0.790 0.780 0.800 0.770 0.690 0.000
tent 0.950 0.950 0.950 0.900 0.850 0.850 0.950 0.850 0.000
toilet 0.990 1.000 1.000 0.990 0.990 0.990 0.980 0.960 0.000
tv_stand 0.810 0.850 0.820 0.820 0.810 0.810 0.780 0.780 0.000
vase 0.810 0.820 0.820 0.820 0.820 0.820 0.810 0.790 0.000
wardrobe 0.650 0.650 0.700 0.700 0.750 0.750 0.750 0.700 0.000
xbox 0.750 0.750 0.700 0.750 0.750 0.750 0.750 0.700 0.000

Table A.18: Accuracy values for MVCNN only experiment where a certain number of
views was replaced by entire black images
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Figure A.17: Confusion matrix for MVCNN only experiment where 11 views of 12 views
where replaced by black images
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A.9 Repositories
A list of the most important code repositories used in this thesis is shown in table A.19.

Title URL Description

MVCNN_pytorch https://github.com/jongchyisu/mvcnn_pytorch Implementation of MVCNN based on
PyTorch [64] by the original author

VoxNet.pytorch https://github.com/MonteYang/VoxNet.pytorch Implementation of VoxNet based on PyTorch

VoxNet https://github.com/dimatura/voxnet Original implementation of VoxNet based on
Theano and Lasagne

PointNet https://github.com/charlesq34/pointnet Original implementation of PointNet based on
TensorFlow[65]

PointNet++ https://github.com/charlesq34/pointnet2 Original implementation of PointNet++ based
on TensorFlow[65]

ScanObjectNN https://github.com/hkust-vgd/scanobjectnn Description of ScanObjectNN dataset and
model

Open3D https://github.com/isl-org/Open3D Library used for various 3D data manipulation
including the TSDF reconstruction pipeline

Trimesh https://github.com/mikedh/trimesh Library used for various 3D data manipulation

Table A.19: A list of the most significant repositories.

https://github.com/jongchyisu/mvcnn_pytorch
https://github.com/MonteYang/VoxNet.pytorch
https://github.com/dimatura/voxnet
https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2
https://github.com/hkust-vgd/scanobjectnn
https://github.com/isl-org/Open3D
https://github.com/mikedh/trimesh
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