
Vorhersagbare und
leistungsfähige

Rechnerarchitekturen
für zeitkritische Systeme

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Michael Platzer, BSc
Matrikelnummer 1029376

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner

Diese Dissertation haben begutachtet:

Isabelle Puaut Michel Schellekens

Wien, 12. Oktober 2022
Michael Platzer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Predictable and Performant
Computer Architectures

for Time-Critical Systems

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Michael Platzer, BSc
Registration Number 1029376

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner

The dissertation has been reviewed by:

Isabelle Puaut Michel Schellekens

Vienna, 12th October, 2022
Michael Platzer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Michael Platzer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Oktober 2022
Michael Platzer

v

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Peter Puschner, who
mentored me throughout almost my entire academic career, supervising my bachelor
thesis, my master thesis, and now my doctoral thesis, who supported and encouraged all
of the ideas and research interests I was pursuing, no matter how far-fetched they were.

I also want to thank Prof. Isabelle Puaut and Prof. Michel Schellekens for reviewing
my dissertation, as well as Prof. Christoph Kirsch and Prof. Jens Knoop for serving on
my proficiency evaluation committee.

Next, I would like to thank my former colleagues at the Cyber-Physical Systems group,
mostly Denise Ratasich, Christian Hirsch, and Emad Maroun, for the many inspiring
discussions and for making my time at TU Wien unforgettable.

Many thanks to Birgit Hofreiter and the entire team of the Innovation Incubation
Center, particularly Alexandra Negoescu, for teaching me the importance of innovation
and how to effectively communicate my ideas and projects.

Thank you also to Laura Flandorfer, Johanna Hover, and Lara Tiefenthaler, among
others, for showing me the true meaning of ambition.

Most of all, I would like to thank my family, especially my mother Susanne, for their
constant support and encouragement.

vii

Kurzfassung

In Echtzeitsystemen müssen Rechenprozesse innerhalb einer bestimmten Zeitspanne
abgeschlossen werden. Andernfalls könnte das System mit möglicherweise katastropha-
len Konsequenzen versagen. Daher ist es wichtig, das Zeitverhalten dieser Prozesse zu
analysieren, um zu gewährleisten, dass sie immer rechtzeitig abgeschlossen werden. Die
Zeitanalyse moderner Systeme wird jedoch durch die mangelnde zeitliche Vorhersag-
barkeit sowohl der Software als auch der Hardware eingeschränkt, bis zu dem Punkt,
an dem eine Zeitanalyse überhaupt nicht mehr durchführbar ist. Die traditionell in
Echtzeitsystemen verwendeten, besser vorhersagbaren Architekturen, sind nicht mehr in
der Lage, die Leistungsanforderungen der heutigen anspruchsvollen Rechenaufgaben zu
erfüllen. Diese Arbeit befasst sich mit diesem Problem, indem sie angelehnt an aktuelle
Trends neue Rechnerarchitekturen für den Einsatz in zeitkritischen cyber-physischen
Systemen untersucht, mit dem Ziel, die derzeitige Leistungslücke zwischen vorhersag-
baren und leistungsstarken Rechenplattformen zu schließen. Es wird insbesondere ein
Instruktionsfilter vorgestellt, der in bestehende Prozessorarchitekturen integriert werden
kann und dadurch ermöglicht, zeitlich vorhersagbare Software auf einer Vielzahl von
Architekturen auszuführen. Außerdem wird die Verwendung eines zeitlich vorhersagbaren
Vektorprozessors in Echtzeitsystemen vorgeschlagen, ein Prozessortyp, der in der Lage ist,
datenparallele Rechenaufgaben effizient auszuführen und eine höhere Vorhersagbarkeit
ohne Leistungseinbußen bietet. Umfassende Evaluierungen und Vergleiche mit bestehen-
den Ansätzen zeigen, dass diese beiden Beiträge konkurrenzfähige Alternativen darstellen,
die die Auswahl geeigneter Rechenplattformen und die Leistung von Echtzeitsystemen
für relevante Rechenaufgaben verbessern.

ix

Abstract

In real-time systems, computing tasks must complete within a certain time limit. Oth-
erwise, the system might fail with potentially catastrophic consequences. Therefore,
it is essential to analyze the timing behavior of these tasks in order to guarantee that
they will always complete in time. However, the timing analysis of modern systems is
complicated by the lack of temporal predictability of both the software and hardware,
to the point where a timing analysis is not feasible at all. The more predictable archi-
tectures traditionally used in real-time systems are no longer capable of fulfilling the
performance requirements of today’s demanding workloads. This work addresses the
problem by investigating new computer architectures, in line with current trends, for use
in time-critical cyber-physical systems, with the aim of closing the current performance
gap between predictable and high-performance platforms. In particular, it presents an
instruction filter, which can be integrated into existing processor architectures with
the aim of executing temporally predictable software on a wide variety of architectures.
Also, it proposes the use of a timing-predictable vector processor in a real-time system,
a processor type capable of efficiently executing data-parallel worloads and provides
increased predictability without compromising performance. Comprehensive evaluations
and comparisons with existing approaches show that both of these contributions are com-
petitive alternatives that improve the choice of suitable platforms and the performance
of hard real-time systems for relevant workloads.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

2 WCET Analysis and Timing-Predictable Computer Architectures 7
2.1 Timing-Predictable Computer Architectures 7
2.2 WCET Analysis . 10
2.3 Considerations . 13

3 A Timing-Predictable Real-Time Application 15
3.1 Mitigating response time variability in real-time control systems . . . 16
3.2 Single-Path Paradigm . 17
3.3 System Description . 22
3.4 Evaluation . 26
3.5 Findings . 28

4 Making COTS Processors Timing-Predictable 31
4.1 Single-Path Filter . 32
4.2 Filter Implementation . 35
4.3 Implementation details . 38
4.4 Evaluation . 41
4.5 Limitations of Single-Path Code . 45
4.6 Findings . 49

5 A Vector Coprocessor for Data-Parallel Real-Time Workloads 51
5.1 Parallel Processing Architectures . 52
5.2 RISC-V Vector Extension . 57
5.3 Architecture . 58
5.4 Timing Predictability . 61
5.5 Performance Evaluation . 63

xiii

5.6 Application Benchmarks . 67
5.7 Findings . 71

6 Conclusion 73

List of Figures 77

List of Tables 81

Acronyms 83

Bibliography 85

CHAPTER 1
Introduction

Real-time computing is different from other types of computing in that the correctness
of a task does not only depend on its logical correctness but also on the time within
which it terminates. In real-time systems, tasks are usually associated with a deadline,
which indicates the time by which the respective task must be completed. Real-time
systems are frequently at the core of safety-critical cyber-physical systems, and missing a
deadline can lead to catastrophic consequences.

Real-time systems are classified by the impact that a missed deadline can have on
the system’s operational status [72]:

• In a hard real-time system, a deadline miss leads to total system failure.

• A firm real-time system can tolerate infrequent deadline misses, but any results
that are not available in time are useless.

• For soft real-time systems, a deadline miss degrades the quality of service, but
results are still useful even if they are only available after the deadline.

A complex system might comprise several tasks with varying degrees of criticality,
and a deadline miss could have very different consequences depending on the task. Such
systems are referred to as mixed-criticality systems. In a mixed-criticality system, the
above definitions apply to the individual tasks, rather than the entire system: a hard
real-time task is one for which a deadline miss brings down the entire system, while a
deadline miss by a soft real-time task does not impede the system’s overall functionality.

In order to guarantee that a hard real-time task will not miss its deadline, its temporal
behavior has to be analyzed and its maximum execution time must be determined. The
analysis of the temporal behavior of real-time systems is called timing analysis. Timing
analysis is closely related to functional verification in that both attempt to give certain

1

1. Introduction

guarantees about the properties of a computer program. However, while functional
verification is concerned with the correctness of the results produced by a program,
timing analysis is interested in the time it takes an algorithm to terminate.

In the domain of functional verification, it is possible to divide the verification of
a computer system into independent verification of the hardware and verification of
the software. The Instruction Set Architecture (ISA) of a computer precisely specifies
the operation of the underlying hardware and provides an abstraction layer to software
running on this machine [68]. While hardware verification attempts to prove that the
execution platform correctly implements the ISA [115], software verification builds on this
foundation to demonstrate that software correctly uses the available machine instructions
w.r.t. a given specification [70, 11]. However, the ISA only specifies the results that a
machine instruction must produce, but does not define any timing properties. Therefore,
timing analysis has to simultaneously consider the timing properties of a program as well
as of the underlying hardware on which that program executes.

Static Timing Analysis (STA) attempts to derive a safe bound of the maximum time
it takes a program to terminate, which is called the worst-case execution time (WCET).
This requires solving two problems: modeling the timing behavior of the execution
platform and determining the possible execution paths of a program [129]. While the first
problem depends on the temporal predictability of the execution platform, the complexity
of the second problem increases as the number of execution paths in a program grows.

The timing predictability of a computing system is a qualitative measure of the
degree to which the execution time of a program can be accurately predicted. High
timing predictability is essential to determine tight WCET bounds: a timing behavior
that is hard to predict requires a pessimistic analysis, which typically leads to a gross
over-estimation of the WCET. For instance, if the caching policy of a processor makes
it hard to determine whether memory accesses will result in cache hits or cache misses,
then the worst-case behavior must be assumed, which is a cache miss. This can lead to
considerable over-approximations. Wilhelm et al. [130] concluded that the predictability
of the processing platform is of such importance that it determines whether a timing
analysis is feasible at all.

Besides the predictability of the hardware, the predictability of the software (i.e. the
number of possible execution paths) also has consequences on the complexity of WCET
analysis. Every data-dependent control-flow branch contributes to an exponential growth
of the number of execution paths. Thus, exploring all possible paths becomes intractable.
The situation becomes particularly complex for loops: if the loop condition depends
on input data, then a special annotation that bounds the maximum number of loop
iterations is required. Otherwise, it might be impossible to bound the execution time
of a loop. A similar problem arises for recursive function calls, which equally require
bounding.

Real-time systems are currently facing a compromise between performance and pre-
dictability: The low predictability of more performant systems leads to over-approximations

2

of the WCET. Hence, the performance can not be fully utilized in a time-critical applica-
tion. Attempts to increase the temporal predictability of either hardware or software
tend to impact performance. Yet, the performance requirements of real-time systems
continue to grow with the emergence of new computationally intensive applications, such
as advanced driver assistance systems and self-driving vehicles [69].

It seems that real-time systems are confined to inferior processors with weaker
performance and simpler programs in order to retain the temporal predictability required
for timing analysis, which prohibits their use in demanding applications. However, two
paradigm shifts that are currently taking place have the potential to change this situation
and allow real-time platforms to catch up. One of these paradigm shifts affects computing
hardware, while the other one is taking place in the software domain.

For several decades computer architects have aimed at increasing the performance of
processors, first by exploiting the combination of Moore’s Law (the doubling of transistor
densities every 18 – 24 months) and Dennard Scaling (constant power densities due to
the reduced power consumption of individual transistors) to increase the clock frequency,
then via increased micro-architectural optimizations. However, as the race for better
performance is slowed down by the increasing power requirements of modern processors,
the attention shifts towards improving the energy-efficiency instead [29]. This new
quest for reduced power consumption is reviving interest in architectures that are more
amenable to timing analysis, such as hardware accelerators, which are inherently more
predictable [85].

At the same time, a paradigm shift is taking place in the software world: the advent
of machine learning is profoundly changing several domains of computer science, such as
computer vision or natural language processing [2, 45]: Traditional algorithms are being
replaced by neuronal networks, thus shifting software design towards more declarative
programming. Neuronal networks are usually devoid of data-dependent control-flow
branches. Instead, a fixed network topology determines the operations that need to be
carried out [78]. As such, many programs based on machine-learning algorithms are
inherently more temporally predictable.

This work explores new architectural concepts in the domain of real-time systems
with an emphasis on improving the predictability of both hardware and software while
taking inspiration from architectural concepts explored in other domains in an attempt
to bridge the performance gap between time-critical processing and platforms without
real-time constraints.

In particular, the aim of my research work is to answer the following questions:

1. Is it possible to improve the predictability of software by eliminating data-dependent
control-flow branches without impacting its performance and without severely
limiting the available processing platforms?

2. Which processing architecture is able to handle the emerging massively data-parallel
workloads while retaining sufficient predictability to be usable in a hard real-time

3

1. Introduction

system and also remaining flexible enough to execute a broad set of potential
workloads?

The overall goal of my work is to advance the current state-of-the-art in real-time
systems design by investigating architectures that allow to increase the temporal pre-
dictability of both software and hardware in time-critical systems and hence ease the
timing analysis. For this purpose, architectural extensions to existing platforms as well
as new processing architectures are considered and evaluated.

First, Chap. 2 gives an overview of the existing timing-predictable computer archi-
tectures. It also discusses the requirements of processor suitable for real-time systems.
Further, the concept, the requirements, and the shortcomings of static WCET analysis
as the currently most popular mean to achieve guaranteed execution times are explained.

Chap. 3 introduces an alternative approach to timing-predictability that attempts
to forego some of the inconveniences of traditional WCET analysis by eliminating data-
dependent control-flow branches from the program code. This approach is known as the
single-path paradigm, since the execution traces of a program are all merged into a single
path. In particular, the chapter shows that single-path code can be applied to the state
estimation and control algorithm of a quadcopter, a highly dynamic real-time control
system.

Single-path code makes use of predicated execution to replace data-dependent control-
flow branches, which means that individual instructions can be enabled or disabled
based on the value of a predicate. Therefore, single-path code can only be executed on a
hardware platform that supports predicated execution. The demonstrated application uses
the timing-predictable T-CREST architecture that has been designed with single-path
code in mind and allows the predication of all instructions.

Besides some exceptions, such as the T-CREST platform and most notably the ARM
ISA, predicated execution is not a common feature in most computer architectures.
Therefore, Chap. 4 proposes a lightweight processor extension that adds support for
fully predicated execution to existing processors. This so-called single-path filter is fitted
to the hardware design of a LEON3 and an ARM Cortex-M0 processor and a detailed
evaluation compares the performance of single-path code on these extended processors
with that of regular code and the WCET bounds determined using traditional timing
analysis.

The results of this evaluation show that single-path code is a competitive alternative
to traditional WCET analysis. Although single-path code essentially forces the worst-case
behavior for every execution, it facilitates the analysis to the point where determining
the exact WCET becomes trivial. While single-path code cannot generally reduce the
WCET of a program, it frequently performs better than the WCET bound found using
traditional timing analysis. The reason for this seemingly counter-intuitive observation is
that the WCET bound determined by STA is typically an over-estimation of the actual

4

WCET, which allows single-path to perform better despite always executing all program
paths at once, including the worst-case path.

For instance, most processor architectures (even relatively simple ones designed for
use in embedded systems) feature some form of branch prediction, which attempts to
predict the outcome of a conditional branch instruction in order to speculatively start
executing instructions at the predicted branch target address before the branch condition
has been evaluated. The branch prediction is commonly based on the outcome of prior
branch instructions. Keeping track of all possible control-flow branches that may lead to
a certain point in the program’s execution flow is intractable. Hence, a WCET analysis
tool will have to conservatively assume that the branch predictor will mispredict the
outcome of the branch instruction in all but the most basic scenarios and thus add the
penalty incurred by flushing the pipeline to its WCET estimate. Single-path code, on
the other hand, does not use any branch instructions. Therefore, branch mispredictions
followed by stall cycles for flushing the pipeline cannot occur. As a result, for relatively
short conditional statements the single-path code is faster than the conservative estimate
of the WCET analysis. Fig. 3.2 in Chap. 3 illustrates in detail how single-path code can
be faster for such a statement.

Chap. 5 extends the concept of predicated execution to parallel computer architectures
by proposing a timing-predictable vector coprocessor. Vector processing is a form of
parallel processing that is suited for data-parallel applications. A vector instruction
processes a whole vector of elements rather than just a single value. Special vector masks
are used as a form of predication, where vector instructions can be enabled or disabled
individually for each element of a vector based on a vector mask.

The timing behavior and performance of the proposed vector coprocessor are ana-
lyzed in detail and compared to other vector processors and to existing parallel timing-
predictable execution platforms. It turns out that the inherent efficiency of vector
processing renders many of the optimizations used in modern architectures ineffective.
Therefore, these optimizations can be removed without significant reductions in per-
formance. Hence, removing optimizations that typically impede timing-predictability
has much less of a performance penalty for a vector processor than for other processors.
Therefore, the performance and scalability of the proposed timing-predictable vector
coprocessor are similar to that of other vector processing architecture and significantly
better than that of timing-predictable multi-core platforms for data-parallel workloads.

Chap. 6 concludes that leveraging predicated execution allows to improve the timing
predictability of computer programs in time-critical systems. In particular, the paral-
lelized predicated execution offered by vector processors appears to be well suited for
demanding data-parallel real-time applications. As such, the proposed single-path filter,
that dramatically improves the availability of predicated execution, and the proposed
timing-predictable vector coprocessor are well positioned to advance the state-of-the-art
in timing-predictable computer architectures.

5

CHAPTER 2
WCET Analysis and

Timing-Predictable Computer
Architectures

Hard real-time systems are dependable computer systems used in various safety-critical
applications. The characteristic of a real-time system is that correct system behavior
requires not only the results of computations to be correct but also that these results are
produced within a certain time span [72]. Therefore, verifying the correctness of such a
system involves WCET analysis to determine the maximum execution time of tasks [129].
This, in turn, requires modeling the timing behavior of the execution platform.

WCET analysis benefits from a processor architecture with easily predictable instruc-
tion timings. However, optimizations frequently used in modern processors, such as
caches, branch prediction, and out-of-order execution, reduce the timing-predictability
and complicate the timing analysis to the point where the timing-predictability of the
architecture determines whether WCET analysis is feasible at all [130].

This chapter introduces the current state-of-the-art in timing-predictable computer
architectures as well as in WCET analysis and discusses the associated challenges.

2.1 Timing-Predictable Computer Architectures
Early computer architectures typically had very predictable timing behavior that could
be easily analyzed [122]. Shallow pipelines and flat memory hierarchies meant that the
execution time of instructions had low variability, if not being constant. Therefore, timing
models for these architectures were simple, and determining the WCET of a sequence of
instructions was straightforward.

7

2. WCET Analysis and Timing-Predictable Computer Architectures

For several years the combination of Moore’s Law (the doubling of transistor densities
roughly every 18 – 24 months) and Dennard Scaling (constant power densities due to the
reduced power consumption of individual transistors as a bi-product of reduced feature
size) allowed processor performance to scale almost linearly with transistor count by
increasing the operating frequency [29]. During this period, there was little incentive
to complicate processor design by adding complex optimization features, which meant
that the timing behavior of many processors remained relatively predictable. However,
in the mid-2000s, power dissipation limits put an end to the acceleration of processor
clock frequencies, and further performance gains required increased micro-architectural
optimizations. While improving average-case performance, these speed-up mechanisms
(e.g., caches, branch prediction, out-of-order execution) came at the expense of increased
timing variability and reduced predictability.

Timing-predictability is usually not a concern for the designers of processor architec-
tures. Instead, the main focus is to improve average performance [122]. However, this
meant that new processors became increasingly less predictable and thus less suitable for
use in time-critical applications.

Engblom and Jonsson [37] analyzed the timing behavior of single-issue in-order
pipelines and identified so-called long timing effects (LTEs) that occur when one in-
struction affects the timing of other instructions. The presence and duration of these
LTEs are used as a metric to classify processor pipelines and characterize their timing
predictability.

Wilhelm et al. [130] described timing anomalies, i.e., variations in the timing behavior
of a sequence of instructions resulting from interactions between the individual instructions
as well as the micro-architectural state of the processor that are hard to predict. Timing
anomalies jeopardize the timing-predictability of an architecture.

Thiele and Wilhelm [122] also identified threats to the timing-predictability of a system
and proposed design principles to support better predictability. Their recommendations
are, among others, to favor static rather than dynamic decisions, to use scratchpad memory
as an alternative to cached memory, to take advantage of parallel execution instead of
speculation in VLIW designs, or to use static scheduling in multi-core architectures.

Based on these findings, Berg et al. [15] established the following design principles for
predictable processor architectures:

• Minimal variation in the timing of instructions.

• Non-interference between processor components.

• Deterministic processor behavior.

• Comprehensive documentation, including timing behavior of all instructions.

8

2.1. Timing-Predictable Computer Architectures

• Recoverability: Information about any processor state that affects instruction
timing must be eventually recoverable (i.e., given an initial unknown state it must
be possible to eventually gain full knowledge about the processor’s state).

Based on these principles, a number of architectures for use in real-time systems
were proposed that restored the predictability and analyzability of early processors
while attempting to retain some of the speed gains achieved through micro-architectural
optimizations.

Within the Merasa project, Ungerer et al. [123] developed a processor that runs several
hardware threads on a single core, one of which is a hard real-time thread, while the
other threads are available for tasks with less stringent timing requirements. While this
improves the performance of the non-real-time threads, time-critical computations cannot
take advantage of these gains since they are confined to the slower real-time thread. They
followed up their research with the parMERASA multi-core architecture [124], which
runs parallel hard real-time applications on up to 64 Merasa cores, organized in clusters
and connected with a timing-analyzable network-on-chip (NoC). This architecture allows
multiple time-critical tasks to run in parallel or to distribute the workload of a task
across several cores. While increasing the number of cores significantly increases the
overall performance, the real-time NoC quickly becomes the main bottleneck of the whole
processing system and limits its scalability.

As part of the T-CREST project, Schoeberl et al. [113] presented the timing-
predictable processor Patmos, which can be used in a multi-core configuration where
individual Patmos cores are connected among each other via a message-passing NoC and
to a real-time memory controller using a second NoC. A statically scheduled dual-issue
pipeline potentially doubles the performance of each core, while using multiple cores
allows parallelization similar to the parMERASA architecture. Schoeberl et al. demon-
strated versions with up to 15 cores. However, they found that their NoC suffers from
the same shortcomings as the one of the parMERASA platform. In particular, they
report that the worst-case performance of parallel tasks only grows logarithmically in the
number of processing cores, which drastically limits the scalability of the architecture.

Another category of fully timing-compositional processors is the precision-timed
(PRET) machines [32], which feature predictable timing by completely eliminating any
variability in the execution time of instructions. Liu et al. [77] proposed a PRET machine
called Precision Timed ARM (PTARM), which interleaves four hardware threads in a
five-stage pipeline such that the previous instruction of a thread exits the pipeline as the
next one enters it, thus avoiding pipeline hazards. This greatly simplifies WCET analysis
at the expense of slowing down the performance of each individual thread. As such, the
PTARM is suitable for workloads that can utilize four or more independent threads.
Zimmer et al. [136] followed up with a more flexible processor called FlexPRET, for
which the number of pipeline stages simultaneously used by each thread is configurable
on a per-thread basis. This allows having a hard real-time thread that utilizes only one
pipeline stage at once, while another thread can use all the remaining pipeline stages for

9

2. WCET Analysis and Timing-Predictable Computer Architectures

less critical computation. However, while this improves performance for non-real-time
tasks, time-critical tasks do not benefit.

Wilhelm et al. [130] suggested using processor architectures that are free of any
timing anomalies, which they refer to as fully timing-compositional architectures. Timing
anomalies usually result from branch prediction and speculative execution [104]. However,
Hahn et al. [55] went on to show that even simple single-issue in-order cores are prone
to timing anomalies. Because pipelined processors keep fetching instructions while the
previous ones are still executing, the memory access of a load or store instruction can
be delayed by the fetching of a subsequent instruction. This re-ordering of memory
accesses potentially affects all processors with a von Neumann memory model (combined
instruction and data memory) and more than just a few pipeline stages.

Hahn et al. followed up their findings by presenting the Strictly In-order Core
(SIC) [52], a processor which delays memory accesses resulting from instruction cache
misses until any memory accesses from preceding instructions are complete. They
proved that SIC is free of timing anomalies, thus enabling compositional timing analysis.
Their work has been followed up by proofs showing that the T-CREST and the PRET
architectures are equally free of timing anomalies [64].

De Dinechin et al. [28] proposed using the Kalray MPPA®-256, a many-core processor
with 256 cores, for timing-predictable massively parallel computation and argued that
its processor cores are fully timing-compositional. However, Hahn et al. [52] conjecture
that the buffers used in those cores are a likely source of timing anomalies. Hence,
while this platform would offer parallel processing performance surpassing any current
timing-predictable computer architecture, it appears to be unsuitable for hard real-time
applications.

Timing-predictability is an essential property of a processing platform to allow its use
in real-time systems. Since the optimizations used in most modern processors compromise
this property, only a few processing architectures, most of which have been specially
designed for that purpose, are available for time-critical applications. Yet, the choice of
architectures is further limited by the need for a timing model and support by WCET
analysis tools in order to be able to actually carry out a timing analysis for hard real-time
tasks executing on a given processor. Moreover, even if tool support and a timing model
are available, the analysis is not trivial.

2.2 WCET Analysis
In hard real-time systems, the WCET of tasks must be determined to guarantee the
correctness of the system. This is frequently done via STA, i.e., using a static analysis
tool to inspect the machine code of a program and calculate its maximum execution time
based on a timing model of the execution platform.

The choice of processing architectures suitable for use in real-time systems is already
limited by the stringent requirements regarding the timing-predictability of the archi-

10

2.2. WCET Analysis

tecture. However, in order to carry out a timing analysis, the selected processor must
also be supported by any of the available timing analysis software, unless one desires to
develop or extend such a software oneself. At the time of writing, the website of AbsInt
GmbH, the company behind one of the major STA programs, lists less than 30 supported
processor models for the latest release of their WCET analyzer [1] (and several of those
that are supported appear to be close variants of the same architecture).

Even if a processing architecture is supported by timing analysis software, determining
the WCET of programs remains a complex task. There is no general solution for bounding
the execution time of any program, as that would implicitly solve the halting problem [129].
WCET analysis inspects the execution paths in a program and attempts to identify the
worst-case path, which leads to the longest execution time. Unfortunately, the number of
potential execution path grows exponentially as the number of conditional statements and
other programming constructs introducing control-flow alternatives increases. Therefore,
investigating every possible execution path and the various processor states through
which it runs quickly becomes intractable. Most STA tools abstract the concrete state of
a processor in an attempt to mitigate this problem. As a consequence, it is generally
no not possible to determine the exact WCET of a program. Instead, the analysis gives
a safe bound that is at least as high as the actual WCET. However, while that bound
might be relatively accurate, it is often exaggerated.

2.2.1 Challenges in the application of WCET analysis
Although determining the WCET of real-time system tasks is essential, in practice, the
process of performing WCET analysis of production code turns out to be a complex and
cumbersome process requiring significant manual intervention [129].

The practical difficulties of STA of industrial code were investigated by Sehlberg et
al. [114]. They did a static WCET analysis of production code used on construction
vehicles and found that while it is relatively easy to obtain loose WCET bounds using
analysis tools, significantly more effort is required if tighter WCET estimates are desired.
In particular, code that happens to include many if-statements with exclusive conditions
yields many infeasible paths, a fact that is difficult to capture in manual annotations and
which leads to large over-estimates of the WCET.

These conclusions are supported by earlier work by Ermedahl et al. [38], who carried
out three case studies where static WCET analysis was done on production code. They
also concluded that good WCET bounds can be obtained by static analysis but that the
analysis is labor intensive due to the extensive amounts of annotations required for tight
WCET bounds.

Byhlin et al. [17] performed static WCET analysis on software in time-critical auto-
mobile communication networks. They conclude that the quality of the bounds of WCET
analysis can be greatly improved by precise code and system knowledge, in particular
about the range of possible input values. They criticize that the analysis tools have
insufficient support for specifying input data ranges.

11

2. WCET Analysis and Timing-Predictable Computer Architectures

Wilhelm et al. [130] investigated which factors are enlarging the gap between WCET
estimates and the effective upper bound of execution time. They found that the lack
of predictability of the execution platform and the resulting uncertainties are the main
factors leading to overestimated WCETs, to the point where the hardware architecture
determines whether a WCET analysis is feasible at all.

Another factor that contributes to the overestimation is the exponential growth of
the possible execution paths of a program as the number of data-dependent conditional
control-flow instructions increases. As a result the exhaustive analysis of all paths becomes
intractable even for moderately sized programs. Hence, abstractions are required, which
must take into account the worst-case behavior of the abstracted component. Therefore,
the structure and complexity of a program’s control-flow graph contribute to overly
pessimistic execution time bounds.

2.2.2 Alternatives to static WCET analysis
Because of the issues with STA, researchers have proposed alternative approaches to
determine or at least estimate the WCET of a program. One of the main goals is to
reduce the overestimation of the WCET that plagues the traditional static analysis.

Measurement-Based Probabilistic Timing Analysis (MBPTA) [109] uses a combination
of measurements and static analysis to determine an execution time bound that holds with
some probability. Optimistic WCET bounds would have a higher violation probability,
while more pessimistic WCET bounds are more likely to hold.

Wenzel et al. [128] proposed a hybrid approach where timing measurements are used
as a substitute to a hardware timing model and combined with STA. A similar approach
is used by Bernat et al. [16], who compute probabilistic bounds on the WCET, again
using a mix of measurement-based and analytical approaches.

Quinton et al. [102] introduce the concept of Typical Worst-Case Analysis (TWCA),
which derives a formal bound for the number of violations of a typical worst-case execution
time within a certain time frame.

While probabilistic approaches have proven to be useful in many cases, their appli-
cation is not without challenges. In particular, hardware systemic effects need to be
carefully considered [48], and appropriate test coverage is essential for the accuracy of
the violation probabilities of the execution time bounds [74]. Additionally, the execution
time of code must have a probabilistic behavior, which requires adequate support from
hardware and software, such that the timing behavior can be modeled with probabilistic
and statistical methods [84].

Therefore, probabilistic timing analysis has some similar issues as STA:

• While STA requires the processor to be timing-predictable, probabilistic alternatives
require that it has a probabilistic timing behavior. In particular, the modeled

12

2.3. Considerations

features must be statistically independent of each other, which is generally not the
case in most processor architectures.

• STA can only be done for processors for which tool support and an accurate timing
model are available. Similarly, probabilistic methods need to model probabilistic
behavior and systemic effects of the execution platform.

• While the huge number of possible execution paths of a typical program forces the
use of abstractions in STA, it requires careful analysis and planning of measurement
runs to ensure a sufficiently high test coverage for measurement-based techniques.

Hence, probabilistic timing analysis also requires dedicated hardware, and obtaining
WCET bounds remains complicated. Although probabilistic analysis may avoid the
overestimation of the actual WCET that is typical for STA, the violation probability of
the obtained bound may not be acceptable for tasks that require more reliable estimates.

2.3 Considerations
Designers of hard real-time systems have only a very limited choice of execution platforms
at their disposal. The processing system needs to be timing-predictable, and it must
be supported by one of the available timing analysis programs. Even if that is the case,
timing analysis remains a complicated process requiring extensive source code annotations
to obtain tight WCET bounds. Measurement-based probabilistic methods that have been
proposed as alternatives to STA are plagued by similar problems and are not suitable if
a guaranteed execution time bound is required.

These rigid limitations have led to a significant performance gap between processing
platforms that are appropriate for real-time systems thanks to their timing-predictability
and the majority of computer architectures that do not consider the needs of time-critical
applications, particularly when looking at parallel architectures, which are becoming
increasingly important to tackle nowadays workloads [69]. Fig. 2.1 visualizes this gap
by placing both real-time and non-real-time architectures on a performance scale based
on the hardware’s peak performance in operations per second. Note that the real-time
architectures are further subdivided into soft-core processors synthesized in configurable
logic and application-specific integrated circuits (ASICs). While a certain performance
disparity between soft-core and ASIC processors is natural, the gap between the best-
performing timing-predictable multi-cores (e.g., the 8-core ARM Cortex-R) and high-
performance parallel computer architectures is still a couple of orders of magnitude.

Timing-predictability is an essential requirement for processing platforms in time-
critical applications. Therefore, it is unlikely that the performance gap can be closed
by attempts to shed or weaken the predictability of the execution platform. However,
the restrictions imposed by current STA methods might be avoidable by continuing the
search for alternatives. Freeing real-time systems from the limitations of current WCET
analysis practice could simultaneously increase the choice of computer architectures

13

2. WCET Analysis and Timing-Predictable Computer Architectures

suitable for real-time systems, ease the process of obtaining execution time bounds
for programs, and improve the accuracy of the resulting WCET estimates. This work
attempts to do exactly that in the hope of identifying ways to reduce the performance gap
by extending the choice of processors available for real-time computation and exploring
the predictability of computer architectures that until now have not been considered
for time-critical applications. The single-path filter proposed in Chap. 4 enables a wide
range of processors to execute timing-predictable code, thus greatly increasing the choice
of processors suitable for time-critical tasks. The vector coprocessor presented in Chap. 5
extends the concept of predicated execution to a parallel architecture and shows that
vector processing is a performant mean to execute data-parallel real-time workloads.

OP/s108 109 1010 1011 1013 10141012

Real-time
Architectures

LEON 3 Patmos

FPGAs ASICs Multi-cores AcceleratorsGPUs

Attribution: This figure contains a photograph of a Motorola 68HC908JB8, licensed under CC BY-SA 3.0 by Antoine Bercovici. The logos of
Cobham Limited, the T-CREST project, Arm Limited, Ambric, Inc., NVIDIA Corporation, and Google LLC are trademarks owned by the
respective companies or organisations, and are included here for identification purposes only.

Cortex-R

Non-real-time
Parallel Architectures

AM2045B RTX 3090 TPU

Figure 2.1: Performance gap between processing architectures suitable for use in hard
real-time systems and those optimizing for average performance, based on the theoretical
peak performance in operations per second. The real-time architectures are subdivided
into soft-cores implemented in configurable logic, such as the LEON 3 or the T-CREST
platform, and ASICs, such as the ARM Cortex-R series. The performance numbers are
for parallel variants (i.e., combined performance of the maximum number of available
cores for multi-core architectures).

14

CHAPTER 3
A Timing-Predictable Real-Time

Application

The content of this chapter is based on and extends a conference paper titled A Real-Time
Application with Fully Predictable Task Timing [?].

A real-time control system remains stable by reacting to changes in the system’s
state within a certain time limit that depends on the dynamics of the system. However,
the stability of the system does not only depend on the worst-case time within which
the controller reacts but may also be compromised if the jitter (i.e., variability) of the
response time is large. Traditional WCET analysis covers the first aspect by deriving
an upper bound on the controller’s response time but usually does not analyze the
timing variability of an application. Additionally, static WCET analysis depends on
the availability of tool support and a timing model for the execution platform. The
determined bounds tend to grossly over-estimate the actual WCET unless significant
manual intervention and annotations are employed.

This chapter serves to motivate an alternative approach that achieves fully predictable
task timing by leveraging predicated execution to completely eliminate variability in
the execution time of a task and to show the feasibility of that approach by applying
it to a highly dynamic control problem. The chosen approach is known as the single-
path paradigm, which eliminates any data-dependencies in the control-flow graph of
an application by replacing conditional code sections with predicated execution (i.e.,
conditional instructions are always executed, but a predicate selects whether instructions
actually change the state of the processor).

The use of single-path code allows to completely forego any static WCET analysis.
Since the control-flow graph of single-path code has no data dependencies, the execution
time is constant w.r.t. input data. Therefore, a single measurement is enough to determine
that constant execution time, which simultaneously also corresponds to the WCET. Since

15

3. A Timing-Predictable Real-Time Application

the execution time can be measured on the actual hardware, this approach also avoids
any potential inaccuracies in the timing model of a processor that is used for traditional
static WCET analysis. Further, since the execution time is constant, any variability in
the controller’s response time is completely eliminated, effectively removing the stability
issues associated with response time jitter.

This chapter assesses the feasibility of a single-path control system for a highly
dynamic system by compiling the control algorithm of a quadcopter to single-path code
and evaluating its performance and stability. It also features a performance comparison
with non-single-path code to quantify the performance penalty incurred by the predicated
execution of all code branches.

3.1 Mitigating response time variability in real-time
control systems

The stability of a real-time control system may be compromised if the controller fails to
counteract deviations from the targeted system state within a certain time. Additionally,
the system’s stability could be threatened if the controller has a large variability in its
response time, which introduces jitter into the control loop.

Ovaska et al. [89] proposed a predictive compensation scheme to mitigate the effects
of response time variability on system stability. A predictor estimates the execution time
of the control algorithm based on timing measurements during previous executions. The
outputs of the controller are held back if the control task finishes early until the predicted
time has elapsed. Response-time jitter is therefore reduced by smoothing.

A more drastic approach is to completely eliminate the variability in the response
time by applying the control signals only after a delay equal to the WCET of the control
algorithm. This approach was proposed by Henzinger et al. [56], who introduced the
time-triggered language Giotto, which enforces strictly time-triggered task invocation as
well as time-triggered application of control actions. This separation of reactivity from
schedulability guarantees constant reaction times but requires a tight WCET bound.
Otherwise, the delay becomes unnecessarily large, which might compromise stability
more than the jitter.

Frehse et al. [42] further expanded on this by suggesting to reduce the delay of
the actuator inputs to the upper bound determined by TWCA instead of the more
conservative WCET bound. They show that this approach can improve the response of
control systems which aim to optimize various parameters such as responsiveness, limited
overshoot or stability, and can tolerate deadline misses.

Duggirala et al. [30] presented verification methods for real-time linear control systems
that take into account the infrequent deadline misses resulting from TWCA. They reduce
the analysis of linear control systems governed by linear ODEs to software verification
with computation over reals and show that several methods from software verification
can then be used to verify their correctness.

16

3.2. Single-Path Paradigm

Using single-path code for the control algorithm effectively removes any variability in
the response time. While this is similar to the approach by Henzinger et al., the need
to determine the WCET of the control algorithm is avoided by single-path code, and
there is no need to implement a mechanism to hold back the controller outputs since
single-path code has constant execution time on timing-predictable hardware, which
naturally guarantees that there is no variability in the controller’s response time.

3.2 Single-Path Paradigm

The single-path paradigm eliminates execution time variability by eliminating any data-
dependent control-flow branches, thus effectively merging all execution traces of a program
into a single execution path [100]. STA is limited, among others, by the exponential
growth of possible program execution paths as the number of control-flow alternatives
increases, which renders the analysis of each possible path intractable. Single-path code
eliminates this issue, requiring determining the execution time of a single execution path
only. As a result, timing analysis becomes trivial. The execution time of single-path code
is constant on a timing-predictable processor, requiring only a single measurement to
determine this constant execution time and hence the exact WCET of the code [98]. As
such single-path code follows the concept of repeatable timing [33].

In order to convert a program to single-path code, all data-dependent control-flow
instructions need to be eliminated. This is achieved by using predicated execution
as a replacement for conditional execution. Predicated execution allows enabling or
disabling individual instructions based on the truth value of a predicate [26]. A disabled
instruction is still executed (i.e., it is fetched by the processor just as any other instruction).
However, it does not modify the state of the processor and thus has no effect. Therefore,
when executing a single-path program, the same sequence of instructions is executed
by the processor each time. Yet, whether these instructions take effect is controlled by
predicates, which may vary from one execution to the next. The predicates capture the
truth values of data-dependent conditions, thus replacing conditional execution governed
by data-dependent control-flow changes.

Fig. 3.1 serves as an example of the single-path transformation, replacing a conditional
statement by predicated execution. The pseudo-code on the left corresponds to the
machine instructions emitted for a simple conditional statement with two mutually
exclusive code paths (i.e., an if-then-else-statement). Based on the truth value of the
condition COND (which is assumed to be the result of some boolean expression depending
on input data), the control-flow either continues right away with the first assignment of
the variable x, or is redirected to the else-branch, thus executing the second assignment.
By contrast, the pseudo-code on the right illustrates how the same result is achieved
using predicated execution. This time, the truth value of the condition COND is captured
in a predicate, which enables either the first or the second assignment of x, with the other
assignment being disabled. Both branches of the conditional statement are executed.

17

3. A Timing-Predictable Real-Time Application

However, the predicate captures the value of the condition and governs which instructions
actually take effect.

Substituting conditional execution with predicated execution is not exclusive to
single-path code. Some ISAs, such as the 32-bit ARM ISA, support predicated execution
as a means to improve performance. When supported, the intent is often that predicated
execution is used for short conditional statements where the overhead of executing both
branches is less than the performance loss resulting from frequent branch misprediction.
Predicated execution is also sometimes used in cryptography, where constant execution
times serve to defeat timing attacks that attempt to (partially) recover secret data by
analyzing the execution time of a program [71].

However, in single-path code, predicated execution is not only used for simple
conditional statements but also to remove any data-dependency in the control-flow
graph. This also extends to function calls within conditional statements. A function
that is called depending on a data-dependent condition is always executed in single-path
code. However, if the associated condition is false and thus the function would not have
been executed in regular code, then all instructions within that function are disabled
by a predicate and thus have no effect. This also applies to recursive functions, which
therefore require a recursion bound to avoid infinite recursion. STA equally requires a
recursion bound to be able to determine a WCET bound for recursive functions.

The concept of avoiding any data-dependent control-flow changes also applies to loops
in single-path code. Loops are always executed for the same constant number of iterations,
which corresponds to the loop bound of a loop. If the loop condition becomes false before
this maximum number of iterations is reached (which would correspond to exiting the
loop in regular code), then a predicate disables the instruction of all subsequent iterations.
Note that a loop bound is equally required for STA to determine the WCET of a loop.
Single-path code always forces the worst-case (maximum) number of iterations of a loop.

goto else if ¬COND
x = 1

goto end

else:

x = 2

end:

...

eval COND

(COND) x = 1

(¬COND) x = 2

...

Figure 3.1: A conditional statement as implemented in regular machine code using
conditional control-flow instructions on the left and the equivalent single-path version
which instead uses predicated execution on the right.

18

3.2. Single-Path Paradigm

The main disadvantage of single-path code is that all branches of conditional state-
ments must be executed. Therefore, the single-path version of a program is expected to
execute slower than its regular version. The reduced performance is, however, traded for
increased predictability. Also, the WCET, which is the most relevant metric for real-time
systems, might not be increased all that much by the single-path transformation.

In regular code, the WCET of a conditional statement is the maximum of the execution
times of the individual branches, while in single-path code, it is the sum. However, if
the WCET of the individual branches is short or there is only one branch with a large
execution time, then the difference can become negligible. For loops, single-path code
always forces the maximum number of executions. Yet, that means the execution time of
a loop in single-path code is not worse than its WCET for regular code.

The execution time overhead created by the single-path transformation is further
diminished by the fact that the STA of regular machine code typically over-estimates
the actual WCET. For single-path code, there is only one execution path to analyze,
which renders the timing analysis trivial and allows to determine a much more accurate
execution time bound [99]. As a result, the constant execution time of single-path code
may even be lower than the WCET bound of the equivalent regular machine code [92].

Fig. 3.2 illustrates how the single-path code of a simple conditional statement can
execute in a shorter time than the WCET of the equivalent regular code, despite executing
both alternatives. The control-flow graph of a conditional statement with two alternatives
is depicted in (a), and (b) shows the sequence of regular program code with a conditional
branch and an unconditional jump that a compiler would typically generate for such a
statement. When executing such a conditional statement on a processor with dynamic
branch prediction, then the best case behavior is that the branch is correctly predicted and
the shorter alternative is executed, as illustrated in (c). However, the worst-case behavior
shown in (d), which occurs if the branch is mispredicted and the longer alternative
executed instead, takes significantly longer to execute as it also includes several cycles
of delay due to the pipeline flush caused by the mispredicted branch. By contrast, the
equivalent single-path code sequence presented in (e) requires no branches and has a
constant execution time that is lower than the WCET of the regular code.

The example in Fig. 3.2 illustrates that single-path code may execute faster than the
WCET of the equivalent regular program code using a simple example of a conditional
statement with two very short alternatives. However, note that this may still be true
for larger conditional statements as long as one of the two alternatives is shorter than
the overhead caused by a mispredicted branch, since then the execution of the longer
alternative after a mispredicted branch still takes longer than executing both alternatives
in sequence, as done in single-path code. Chap. 4 contains a detailed comparison of the
performance of single-path code w.r.t. the WCET bounds of regular code for a set of
benchmark applications.

Besides rendering the timing analysis trivial, other advantages favor the use of single-
path code in real-time systems. The execution time of single-path code is constant w.r.t.

19

3. A Timing-Predictable Real-Time Application

A

B C

(a) Control flow graph
of a simple conditional
statement with two al-
ternatives

A
br

jmp

B

C

(b) Regular program code of that con-
ditional statement which redirects
the control flow using a conditional
branch and a jump instruction

A
pred

B'

C'

(c) Single-path code of that
statement where blocks B’ and
C’ are the predicated variants
of B and C, respectively

C

A
0

1

2

3

4

5

6

7

br

8clock
cycles

(d) Execution sequence for
regular code when the branch
is correctly predicted as taken

jmp

B

A
0

1

2

3

4

5

6

7

br

flush

8clock
cycles

(e) Execution sequence when
the branch is not taken but
was mispredicted to be taken

A
pred

B'

C'

0

1

2

3

4

5

6

7

8clock
cycles

(f) Execution sequence for
single-path code which uses
predicated execution instead

Figure 3.2: Comparison of the execution time of various execution sequences of regular
code and the execution of single-path code for a simple conditional statement. The
conditional statement in this example has two alternatives, labeled B and C, which take
two and one cycles to execute, respectively. We further assume that the conditional
branch instruction takes one cycle to execute if it is correctly predicted, but causes
an additional 3-cycle pipeline flush if mispredicted. An unconditional jump and the
instruction that sets up a predicate for predicated execution are assumed to always
execute in one cycle. Regular machine code can execute the statement in as little as
3 cycles if the shorter alternative is executed and the branch is correctly predicted.
However, due to the penalty incurred by a mispredicted branch the WCET of the regular
code is 8 cycles. Note that depending on the possible execution traces that lead to this
conditional statement within a larger program this worst-case might actually not be
reachable (e.g., because the branch predictor cannot be in a state that causes it to predict
the branch as taken when in fact it is not). Yet, in general the WCET analysis has to
conservatively assume that this local worst-case fully contributes to the global worst-case
timing. By contrast, the single-path code always executes in 5 cycles and is thus faster
despite executing both alternatives.20

3.2. Single-Path Paradigm

input data on timing-predictable hardware. This constant execution time (which also
corresponds to the WCET) can be determined with a single measurement on the actual
hardware. Therefore, there is no need for a timing model of the execution platform,
which allows deploying single-path code on platforms that are not supported by analysis
tools (e.g., due to the lack of a timing model). In addition, potential mismatches between
the timing model and the actual hardware, which may lead to a violation of WCET
bounds for regular code, are completely avoided.

3.2.1 Hardware Requirements
In practice, the adoption of single-path code is complicated by the limited availability of
predicated execution in current processor architectures.

Single-path code relies on predicated execution to execute all the code branches of
a program (merged into a single path) while discarding the results of instructions that
would have been skipped by control-flow changes in regular machine code. Predicated
execution allows to conditionally disable instructions (thus discarding their results) based
on the truth value of a predicate.

Most processing architectures support a limited form of predicated execution covering
some instructions. For instance, the conditional move instruction, which moves the
content of one register to another register if a condition is true, is part of several ISAs [81].
The availability of a conditional move instruction is already sufficient to transform any
WCET-analyzable program into single-path code [97, 101]. The resulting single-path
code speculatively executes all conditional branches of a program and uses the conditional
move to either keep or discard their results, based on the condition that would have
triggered control-flow changes in regular code. The timing-predictable Java Optimized
Processor (JOP) implements a conditional move instruction specifically to allow the
execution of single-path code [112].

The presence of conditional variants of a small subset of the instructions of an ISA is
referred to as partially predicated execution. While it is sufficient to enable the execution
of single-path code, the efficiency of that single-path code is frequently compromised
due to the need to avoid potential side-effects when executing the instructions of a
conditional branch (or, more specifically, the need for these side effects to manifest only
if the condition associated with the branch is actually true). For instance, a speculatively
executed branch might need to avoid exceptions (e.g., a division by zero). Therefore, a
single-path transformation that relies on a conditional move only, or a similar form of
partially predicated execution, usually adds a significant amount of complexity to the
code.

In order to execute single-path code efficiently, the processing hardware must support
fully predicated execution, where all available instructions are predicated (except for
control-flow changes, which by definition are always unconditional in single-path code).
However, fully predicated execution is a rare feature. A notable example is the 32-bit
ARM instruction set, which sets aside four bits in the encoding of every instruction for a

21

3. A Timing-Predictable Real-Time Application

condition field that allows enabling or disabling the instruction based on the condition
flags in the status register [63].

Among the timing-predictable processing architectures, the ISA designed as part of
the T-CREST project supports fully predicated execution, and the compilation toolchain
developed specially for it is capable of generating single-path code for execution on
the timing-predictable processor Patmos [113]. As such, the T-CREST architecture is
currently the only timing-predictable processor architecture with native support for the
efficient execution of single-path code. Patmos was designed as a fully timing-predictable
processor with a statically scheduled dual-issue RISC pipeline, a deterministic branch
prediction mechanism, and predictable cache and memory access latency. Therefore,
the execution of single-path code is effectively constant w.r.t. to input data on this
architecture. Therefore, the T-CREST platform is used for the present evaluation.

3.3 System Description
This section details the control system used to motivate and evaluate the use of single-path
code in a real-time control system. A quadcopter (i.e., a helicopter with four propellers
rotating around the vertical axis) serves as the system to be controlled.

The T-CREST architecture with its timing-predictable processor Patmos is used as
the execution platform for the controller. An Inertial Measurement Unit (IMU) serves as
the only sensor of the system, measuring acceleration forces and rotational speeds, which
allows estimating the attitude (i.e., the orientation within 3D space) of the quadcopter.
Four motors, each spinning one of the propellers of the quadcopter, are the actuators.

Fig. 3.3 shows a schematic depicting the hardware setup. The measurements from
the IMU are supplied to the processor, which executes algorithms for state estimation
and control of the quadcopter. The control outputs are the desired speeds of the four
propellers, which are then fed to the motor controllers, which in turn take care of
regulating the power supplied to the motors such that the propellers turn at the desired
rotational speeds. Patmos is a soft-core processor that is synthesized in configurable logic
on an Field-Programmable Gate Array (FPGA).

3.3.1 Overview of Quadcopters
A quadcopter is a helicopter that generates lift with four horizontally spinning propellers.
In contrast to conventional helicopters, which have a large main rotor in the center and
control their attitude by adjusting the pitch of the propeller blades, the orientation of a
quadcopter is controlled by regulating the rotational speed of its propellers [60, 18].

A quadcopter usually consists of the following major components [31]:

• Sensor hardware to detect the current state of the quadcopter, such as the current
attitude, i.e., the orientation relative to the ground.

22

3.3. System Description

• A propulsion system consisting of four propellers, each of which is spun by a motor
to which it is attached. The speed of each motor (and hence of the attached
propeller) is regulated by an electronic speed controller (ESC).

• A flight controller, which reads the sensors and transmits the desired speed of each
motor to the corresponding ESC.

These components are attached to a rigid frame that has four arms extending outwards
in a cross pattern, with the four motors each mounted at the end of one arm. Fig. 3.4
shows the quadcopter in flight.

The thrust of each propeller is oriented downwards, thus counteracting gravity and
thereby keeping the quadcopter aloft. Variations in the speed of the propellers at opposing
ends of the frame create torque and allow it to control its attitude. By slightly tilting
the frame and hence the thrust vector, the quadcopter is able to move sideways.

If the quadcopter deviates too far from a horizontal orientation, with the thrust of
the propellers no longer aimed downwards and thus no longer fighting gravity, then the
quadcopter will fall and crash.

Quadcopters are unstable and require active control [59]. In order to maintain stable
flight, the quadcopter must react to changes in attitude by adjusting the propeller speeds
such that they generate a torque that counteracts any deviations.

Stable flight is only possible if the controller counteracts attitude changes within a
certain time span, the exact duration of which is determined by the dynamics of the
quadcopter. As such, it is a real-time control system with a strict upper limit on the
allowable response time of the controller.

FPGA with
Patmos soft-core

M

IMU with 3-axis
accelerometer
and gyroscope

x4

4 motors with propellers,
each regulated by an ESC

motor
speeds

4

Figure 3.3: Schematic overview of the hardware setup. The IMU measures acceleration
forces (which comprise the true acceleration ẍ as well as the force exerted by gravity g�z)
and angular rotation rates ω. The Patmos processor, which is synthesized on an FPGA,
uses these measurements to estimate its state and determines adequate speeds for each
of the four propellers. These desired speeds are then communicated to motor controllers,
which take care of regulating motor power accordingly.

23

3. A Timing-Predictable Real-Time Application

Figure 3.4: Photograph of the quadcopter in flight. It consists of a frame with four
extending arms. A motor with a propeller is attached to each arm. The IMU and the
FPGA on which the controller runs are located on a circuit board in the center of the
quadcopter.

3.3.2 Real-Time Controller Software

The Patmos processor executes both a state estimation and a control algorithm. The
former estimates the quadcopter’s attitude based on the IMU measurements, and the
latter computes a control response based on that attitude, which is then applied to the
motor ESCs.

The IMU measures accelerations and rotational speeds at a constant rate, and
whenever a new measurement is available, an interrupt is generated in the Patmos
processor, and the new measurement data is transferred to the core. That interrupt
prompts the execution of the state estimator and controller code, using the newly
generated IMU measurements to update the current state estimate and then using that
state estimate to compute an adequate control action. Upon completion, the control
outputs generated by the controller are fed to the motor controllers, which subsequently
adapt the propeller speeds accordingly.

Fig. 3.5 shows a timing diagram of a few controller cycles. The IMU updates trigger
the execution of the state estimator and controller, which in turn computes and applies the
control action. Since the execution time of the single-path code is constant, the response
time of the controller, i.e., the delay from when the IMU acquires the measurements

24

3.3. System Description

sensor read and
state estimation

controller action

execution
time

time period T

time period T

sensor read and
state estimation

controller action

execution
time

time period T

time period T

sensor read and
state estimation

controller action

execution
time

delay

IMU
update

rotor
speeds IMU

update

rotor
speeds IMU

update

rotor
speeds

t

Figure 3.5: Timing diagram of the state estimation and control algorithms executing
on the Patmos core. The execution time of these algorithm is a constant, therefore
the delay between an update from the IMU and the adjustment of the rotor speeds by
the controller (i.e. the response time of the controller) is also constant and the period
between subsequent control actions equals the period between IMU updates.

until when the computed propeller speed are applied, is constant. Therefore, the period
between subsequent adaptions of the propeller speeds is constant and equals the sampling
period of the IMU.

In order to approximate the state of the quadcopter, the IMU orientation estimation
algorithm proposed by Madgwick et al. [80] is used. The control algorithm is based on the
nonlinear H-infinity controller with input coupling presented by Raffo et al. [103]. The
choice of a nonlinear control algorithm rather than a linear PID controller for the present
evaluation is motivated by the fact that nonlinear control algorithms are commonly used
on quadcopters [137]. It serves to evaluate the single-path approach for a complex control
algorithm.

The state estimation and the control algorithm have been implemented and compiled
to single-path code using the compiler toolchain of the T-CREST project [96].

3.3.3 Timing Requirements
In order to determine the timing requirements of a real-world real-time control system,
the limitations of the hardware must be taken into account. In particular, the rate at
which the desired propeller speeds can be adjusted is limited by the motor controllers.

The propeller speeds of quadcopters are commonly regulated by ESCs, which are
controllers for the motors which spin the propellers. Most commercially available ESCs
are controlled via Pulse-Width Modulation (PWM). The input signal to the ESC is a
pulse train with pulses of varying width but usually with a constant frequency. The
pulse duration, i.e., the time between a rising edge of the signal and the next falling edge,
encodes the desired speed. This is the reference input of the ESC, which will regulate
the power delivered to the motor coils in order to maintain that speed.

25

3. A Timing-Predictable Real-Time Application

The industry standard for regulating ESC is a PWM signal with a pulse width between
1 and 2 ms, where a 1 ms pulse corresponds to the minimum speed (i.e., standstill), and
a 2 ms pulse is equivalent to the maximum speed [88]. The frequency of the PWM signal
has no influence on the speed applied by the ESC. However, the range of acceptable pulse
widths limits the available frequency range. In order for the ESC to correctly identify
the pulses, they must not overlap, so in order to allow pulse widths of 2 ms, the period
between subsequent pulses must be larger than that. Hence, the frequency of the PWM
signal must be less than 500 Hz.

Some ESC controllers allow to calibrate the range of acceptable pulse widths, and
given that a maximum pulse width of less than 2 ms has been programmed, it is possible
to regulate the propeller speed with a PWM signal of more than 500 Hz. However, these
appear to be non-standardized extensions to the default control signal. Therefore, a
maximum update rate of the ESC of 500 Hz is selected and used as the task frequency
for the control system.

The state estimator and controller are executed as one task, and since there is no
other task to be executed, the only requirement for schedulability is that the period
between two subsequent IMU interrupts must be greater than the execution time of
the code. Therefore, it is required that the code of the state estimation and control
algorithms must be executed within 2 ms in order to be schedulable on the execution
hardware.

By measuring the execution time of the state estimation and control algorithm, the
total execution time is 202.8 µs, which is well below the 2 ms limit. Since both algorithms
are implemented in single-path code, this execution time is constant w.r.t. input data.

3.4 Evaluation
The practicability of applying the single-path paradigm to real-time control systems is
evaluated by compiling the state estimation and control algorithms described in section 3.3
to single-path code and using it to stabilize a quadcopter in flight.

Since only the attitude (i.e., the angular orientation) is controlled, but not the position,
the quadcopter tends to drift away. Therefore, the quadcopter is secured with tethers,
which can be seen in Fig. 3.4, to limit the space within which it can move. Several flight
tests showed that the single-path controller is indeed able to successfully control the
orientation of the quadcopter and keep it in a stable flight, hovering above the ground.

The predictable timing behavior of the Patmos processor guarantees that single-path
code executes in a constant time. Hence, there was no need to carry out an STA for the
controller code since a single measurement is enough to determine its constant execution
time and thus its WCET. However, the predictability of single-path code is traded for
potentially reduced performance. The remainder of this section analyses the performance
penalty incurred by the single-path transformation.

26

3.4. Evaluation

Table 3.1: Execution Time Measurements of the State Estimation Algorithm

Processor
Architecture

CPU Cycles Time (µs)
mean max mean max

Patmos (80 MHz) 4612.5 4636 57.656 57.950
Patmos single-path 5087 5087 63.587 63.587
ARM (1400 MHz) 12605.9 87136 9.004 62.240

The single-path code for the state estimation and control algorithms has execution
times of 63.3 µs and 139.2 µs, respectively. By contrast, the mean execution times for
regular variants of these algorithms on the Patmos processor are 57.7 µs and 87.3 µs,
respectively. Note that the execution time varies for the regular version, as opposed to
the single-path version with its constant execution time. Yet, the maximum execution
times that were observed are less than 1 µs above the mean value, suggesting that these
algorithms naturally have a low timing variability. Indeed, the source code contains only
very few short data-dependent code branches.

The overhead introduced by the single-path transformation is larger for the control
than for the state estimation algorithm. While the constant execution time of the
single-path variant of the state estimation algorithm is about 10 % larger than the mean
execution time of the regular variant, the single-path variant of the control algorithm
takes almost 60 % longer to execute than the regular variant takes on average.

Patmos is a timing-predictable processor, and the control algorithms for the quadcopter
show little timing variability even if they are not compiled to single-path code. In order
to further motivate the appeal of constant execution times, both algorithms are also
executed on an ARM Cortex-A53 processor and their execution times during 10 000
executions are recorded. Tables 3.1 and 3.2 list the mean and maximum execution times
of the state estimation and the control algorithm, respectively, for all code variants and
processor architectures discussed so far. While on Patmos the algorithms were running on
the unmanaged bare-bones core, on the ARM they were executed as processes managed
by an Operating System (OS). In both cases performance counters were used to gather
the execution times and on the ARM all measurement that were interrupted by the OS
(e.g., by context switches or signals) were discarded to ensure a fair comparison. The
measurements on both platforms include execution times with the cache being empty (or
at least, not containing any of the instructions or data of the algorithms) as well as with
a warmed-up cache. Note that the timing-predictable method and data caches of the
Patmos core are much more predictable than the caches of the ARM. Additionally, the
single-path code always forces an initial cache fill to ensure a constant execution time.

Executing the state estimation and the control algorithms on the superscalar ARM
processor is significantly faster on average than on Patmos. However, the timing variability

27

3. A Timing-Predictable Real-Time Application

Table 3.2: Execution Time Measurements of the Control Algorithm

Processor
Architecture

CPU Cycles Time (µs)
mean max mean max

Patmos (80 MHz) 6986 7026 87.326 87.825
Patmos single-path 11136 11136 139.200 139.200
ARM (1400 MHz) 16876.7 201177 12.055 143.698

is also much larger for both algorithms. The box plot shown in Fig. 3.6 visualizes the
differences in timing behavior between these architectures. While the average performance
of the ARM core is much better, there are several outliers with a much larger execution
time, with some executions taking up to 10 times longer than the average. These outliers
are most likely caused by cache misses which force the core to fetch instructions and/or
data from varying cache levels or even from main memory. Despite the lower clock speed
of the Patmos soft-core, some of the execution times recorded on the ARM core even
exceed the constant execution time of the single-path variants on Patmos.

The comparison shows that the execution time of single-path code is larger than that
of regular code on the same architecture. Additionally, a timing-predictable computer
architecture is expected to have a worse average-case performance than an architecture
optimized for maximum throughput, since speed-up mechanisms affecting the predictabil-
ity of its timing behavior must be avoided. However, when it comes to predictability
and worst-case performance, then the timing-predictable Patmos soft-core seems able to
compete with these high-performance architectures. Single-path code takes timing pre-
dictability to the next level, completely eliminating any timing variability on a predictable
execution platform such as the T-CREST architecture.

3.5 Findings

Single-path code reduces timing-variability and renders timing analysis trivial by removing
all data-dependent control-flow changes. Instead, predicated execution is used for
conditional code. Despite the decreased performance, single-path code might be an
attractive choice for hard real-time systems where predictability, timing guarantees, and
low response-time variability are essential for overall system performance and safety. As
such, single-path code is a potential alternative to traditional WCET analysis since it
avoids many of the troubles that typically complicate STA.

On hardware that can execute single-path code with constant execution time, there
is no need for static analysis at all. Instead, the constant execution time (which thus
also corresponds to the WCET) can be determined with a single measurement. Hence,

28

3.5. Findings

Figure 3.6: Box-plot showing the distribution of the execution time measurements of
the implementation of the state estimation and the control algorithms on the Patmos
processor (with and without using single-path code) running at 80 MHz and on a 1.4 GHz
ARM processor. For the time-predictable Patmos core the variability is very low (or 0 for
single-path code), thus the box is reduced to a line. However, the measurements on the
superscalar ARM processor show significant variability, with some outliers in the order
of 10 times larger than the average.

the need for a static analysis is completely avoided, which means that no timing model
or tool support is required.

While single-path code with constant execution times does not require a static analysis,
tool support is required for the single-path transformation itself. The evaluation presented
in this chapter used the compilation toolchain of the T-CREST project [96] to generate
single-path code for the Patmos core. Yet, transforming regular code to single-path code
depends on the ISA but not on the specific processor used. Therefore, adding support
for a new ISA to the existing single-path transformation tools potentially enables the use
of single-path code on all processors complying with that ISA. By contrast, the timing
models required for traditional STA are processor-specific. Hence, static timing analysis
software requires changes for every new processing platform that shall be supported. As
such, tool support for single-path code is likely much simpler to extend to a broad range
of architectures than static WCET analysis.

Yet, one of the main practical limitations for the use of single-path code in hard
real-time systems is the limited support for predicated execution on existing computer
architectures, which is essential for the execution of single-path code. Therefore, in order

29

3. A Timing-Predictable Real-Time Application

to allow more widespread use of single-path code, it would be desirable if support for
fully predicated execution could be extended to more processing architectures.

30

CHAPTER 4
Making COTS Processors

Timing-Predictable

The content of this chapter is based on and extends a conference paper titled A processor
extension for time-predictable code execution [92].

Single-path code is a code generation paradigm that renders execution time analysis
trivial by eliminating any data-dependent control-flow branches. Instead of redirecting
the control flow, all conditional code branches make use of predicated execution to
conditionally enable or disable instructions based on the truth value of predicates.
Thereby, the execution traces of a program are all merged into a single path, and the
same sequence of instructions is executed for every invocation of the program, although
some instructions might have no effects as they are disabled depending on the current
value of the associated predicate.

In regular code, the number of possible execution paths grows exponentially in the
number of control-flow alternatives, which complicates timing analysis. By reducing the
program to a single execution path, single-path code drastically simplifies timing analysis.

In order to be able to execute single-path code, the execution platform must support
predicated execution. In particular, as discussed in Chap. 3, the efficient execution
of single-path code requires fully predicated execution, where every instruction can be
predicated. However, fully predicated execution is an uncommon feature in nowadays
processor architectures.

The control system presented in Chap. 3 executes on the timing-predictable Patmos
processor developed as part of the T-CREST project. This architecture has been designed
with support for single-path code in mind. Yet, most processing architectures are not
specially designed to be able to execute single-path code, and the effort and cost of
developing a custom architecture suited for a certain purpose and with support for single-
path code are significant. More widespread adoption of single-path code is hindered by

31

4. Making COTS Processors Timing-Predictable

the limited support in existing architectures and the huge amount of work required to
develop and maintain a custom architecture.

This chapter evaluates the feasibility of a single-path extension, a lightweight pro-
cessor extension intended to add support for single-path code to any existing processor
architecture while requiring only minimal changes to the processor design.

4.1 Single-Path Filter
The goal of the present work is to execute single-path code on existing processor cores
that do not have native support for fully predicated execution. For that purpose, both
the instruction set and the hardware design of a processor are extended.

Special instructions for manipulating predicates are added to the ISA of a target
architecture. These new instructions are encoded with unused opcodes. Existing cores do
not understand these special instructions. Therefore, an instruction filter that interprets
the special instructions is placed on the instruction fetch path of the core. Regular
instructions are then filtered based on the value of predicates. These predicates are
hosted by the filter itself and modified by the new instructions.

The automated single-path transformation algorithm developed by Prokesch et al. [96]
is used to convert regular machine code to single-path code. While Prokesch et al. imple-
mented single-path generation inside their port of the LLVM compiler, this transformation
is applied as a post-processing step to a fully compiled and linked executable. That way
the single-path conversion is not tied to a specific compilation toolchain. The trans-
formation rearranges the basic blocks of the Control-Flow Graph (CFG) of a program
and replaces conditional control-flow instructions with special instructions that modify
predicates.

Allowing existing processor cores to execute single-path code, therefore, involves two
steps:

1. Single-path code is generated from regular machine code and consists of restructured
object code that includes special instructions for computing predicates. These
special instructions extend the ISA of a processor architecture and are encoded
with unused opcodes.

2. An instruction filter is added to the processor core. At runtime, this filter interprets
the special predicate-defining instructions of the single-path code and filters regular
instructions depending on the predicate states. As a result, the processor receives
a stream of filtered native instructions (either instructions from the object code or
NOPs) at runtime.

Fig. 4.1 shows a conceptual diagram of a processing platform using the single-path
filter. All instructions that are fetched by the core pass through this filter. The filter

32

4.1. Single-Path Filter

Memory CPU

Single-path filter

Data load/store

NOP Instruction
fetch

Condition
codes

&

Special
instructions

Regular
instructions

Figure 4.1: Concept diagram of the single-path filter: Instructions are fetched from
memory and pass through the filter, from where they are either passed on to the core or
replaced by an instruction with no effects. Special instructions are used to control the
predicates. The filter has access to the condition codes of the core, thus allowing to set
predicates conditionally.

directly interprets the special predicate-defining instructions that were injected into the
code by the single-path transformation algorithm and implements predication for all other
instructions. Regular instructions are either passed on to the processor or replaced with
NOP instructions (depending on the architecture, there might be several instructions
that have no effect, but for simplicity, all of them are referred to as NOPs). Instructions
are only forwarded to the core if all predicates on the predicate stack are true. Otherwise,
they are replaced by NOPs.

Conditionally modifying predicates requires access to the condition codes of the
processor. Therefore, the filter has an interface that allows to route the condition codes
out of the core and into the filter. The filter is then capable of evaluating these condition
codes and modifying predicates accordingly.

4.1.1 Required modifications to support single-path code

The single-path conversion is applied to the executable file of a program after all com-
pilation and linking steps have been completed, which has the advantage that it is
not dependent on a specific compilation toolchain. That requires, however, that any
additional state information necessary for the execution of the single-path code (such as,
for instance, the predicate values) need to be saved in the filter, as saving it in memory or

33

4. Making COTS Processors Timing-Predictable

registers might lead to collisions with the memory or register allocation of the preceding
compilation or linking steps.

The first requirement to execute single-path code generated in this manner is that
the execution platform must support fully predicated execution. The single-path filter
must interpret special instructions that compute predicates, manage the predicates and
filter out instructions that are disabled by these predicates. Predicates capture the
truth values of conditions, and a new predicate is required for every condition that is
encountered. Predicates expire when the execution of subsequent instructions no longer
depends on the associated condition. Programming constructs that use conditions, such
as conditional statements or loops, can be nested, with new conditions applying on top
of others. Consequently, the predicates should be managed in a predicate stack. A new
predicate is pushed to the stack when encountering a condition, and the predicate is
removed from the stack when it expires. That predicate stack must be stored in dedicated
hardware in the filter such that the predicate values are readily available to it.

Another requirement is that loops require an iteration counter. In regular code, the
number of iterations of a loop depends on the loop condition only. However, in single-path
code the loop bound dictates the number of iterations and a counter is required to count
these iterations. This counter cannot be stored in memory or a register either, in order
to avoid restricting the hardware resources available to the compiler. Therefore, the
iteration counters for loops in single-path code also need to be stored in hardware. Loops
might be nested. Hence, a loop counter stack is required. A new loop counter is pushed
to that stack upon entering a loop and initialized with the total iteration count. The
counter is then decremented on every iteration. When the loop counter reaches 0, the
loop exits, and the loop counter is removed from the stack.

The single-path filter must also have a dedicated return address stack for single-path
functions. In regular code, a function call writes the address of the call instruction to
a specific register known as the return address register. When the function returns, it
transfers control back to that address. Function calls can be conditional, for instance,
when they appear inside conditional statements. In single-path code, every function call
is executed unconditionally, but depending on the values of predicates, all instructions of
that function might be inactive, and thus the function call might have no effects. This
is equivalent to a function that would not have been executed in regular code. Since
an inactive function does not modify any memory locations or registers, including the
return address register, the return address would be lost if it were not saved elsewhere.
Therefore, the return address of single-path function calls must be stored in the filter as
well. Function calls are usually nested. Hence, a return address stack is required.

Finally, in order to support recursive function calls the single-path filter also requires
recursion counters. Since in single-path code function calls are always unconditional, a
recursive function would call itself over and over again indefinitely if the recursion depth
is not limited otherwise. Therefore single-path code requires a recursion bound for every
recursive function. That bound is compared against a recursion counter every time a
recursive function is called. The recursion counter is incremented every time the function

34

4.2. Filter Implementation

is entered and decremented every time the function is left. A call of the recursive function
is aborted if the recursion counter reaches the recursion bound.

4.2 Filter Implementation
In order to add the ability to execute single-path code to an existing processor, an
instruction filter with a predicate stack is added to it, which computes and saves predicates
triggered by special predicate-defining instructions and filters regular instructions based
on the values of these predicates, by either passing them on to the core or replacing
them by NOPs. The filter also manages a loop counter stack that holds the iteration
counters of loops in single-path code, a return address stack that stores the return
addresses of single-path function calls and recursion counters. To control the behavior
of the single-path filter, the instruction set must be extended with special single-path
instructions, which modify the state of these hardware stacks. Unused opcodes in the
instruction set are used to encode these special instructions, which replace conditional
control-flow instructions when generating single-path code and are parsed and applied
directly by the filter when fetched by the processor core.

Single-path code requires the ability to conditionally modify predicates since the
predicates are used to capture the truth value of conditions. Therefore, the instruction
filter needs access to the results of comparisons in the core. On most architectures,
condition codes are used to capture the results of compares and to evaluate conditions.
Hence, by giving the instruction filter access to these condition codes, it can evaluate
conditions analogously to the processor core and modify predicates accordingly.

The present implementation requires that all predicates on the predicate stack are
true in order to enable instructions and thereby forward them to the core. Although the
hardware implementation does not differentiate between different types of predicates,
they are distinguished logically based on the purpose they serve in single-path code.

1. Conditional predicates: A conditional predicate is pushed to the stack for each
conditional statement (e.g., if-then-else statements). The conditional predicate is
initialized based on the result of a condition and remains on the stack for as long
as the condition applies.

2. Loop predicates: Each loop has a loop predicate which is the first predicate pushed
to the predicate stack when entering a loop and the last predicate removed when
exiting the loop. The loop predicate is true as long as the loop condition is true.
Once cleared, it remains false for all remaining loop iterations.

3. Iteration predicates: In addition to the loop predicate, every loop also has an
iteration predicate. The iteration predicate is set to true at the beginning of each
loop iteration and is cleared if one iteration of the loop is aborted without exiting
the loop, such as would happen when encountering a continue statement.

35

4. Making COTS Processors Timing-Predictable

4. Function predicates: Single-path code requires that all instructions of a function
are always executed. Hence, an early return from a function is realized by clearing
a dedicated function predicate. Each function has a function predicate which is
the first predicate pushed to the predicate stack upon entering the function, and
conversely the last predicate popped from the stack upon leaving that function.

Fig. 4.2 shows the C code for a simple conditional statement, along with pseudo-
assembler representations of the regular version as well as of the single-path version of
the machine code for that conditional. The generic operations OP_A, OP_B, OP_C,
and OP_D represent instructions from the processor’s native instruction set. OP_A
is executed unconditionally prior to the conditional block. OP_B is executed if the
condition COND is true. Otherwise, OP_C is executed instead. Finally, OP_D comes
after the conditional block and is again executed unconditionally. In regular machine
code, the conditional execution of either OP_B or OP_C is realized with control-flow
instructions. A conditional branch instruction moves control to the else label if COND is
false, thus executing OP_C. Otherwise, OP_B is executed, and then an unconditional
jump takes control to the end of the conditional block. The single-path version, by
contrast, does not use any control-flow instructions. Instead, a new predicate is pushed
to the stack, and that predicate (with index 0 since it is at the top of the stack) is cleared
if COND is false. Hence, the predicate at the top of the stack initially corresponds to
the truth value of COND, and therefore the operation OP_B is only enabled if COND is
true. Then, the value of the predicate is inverted, thereby enabling OP_C if COND is
false. The right column shows the state of the predicate stack depending on the truth
value of COND for each of the generic operations.

Fig. 4.3 shows a similar representation for a simple loop. This time, however, the
single-path version also contains a control-flow instruction. This is a special instruction
that is used in conjunction with a loop counter, which will be replaced either by a jump
to the start of the loop as long as the loop counter is not 0 or by a NOP to exit the
loop when the loop counter reaches 0. The loop counter is pushed to the loop counter
stack and initialized with the loop bound specified in the annotation before the start
of the loop. It is then decremented on each iteration. Loops use a loop predicate to
capture the state of the loop condition and an iteration predicate that replaces backward
jumps to the start of the loop (e.g., via a continue-statement in C code). While the loop
predicate at index 1 in the predicate stack is cleared if the loop condition COND_A is
false and then remains false for all remaining iterations, the iteration predicate at index
0 is conditionally cleared if COND_B is true for one loop iteration only and is reset to
true for the next iteration. Both of these predicates are pushed to the predicate stack
before entering the loop and removed from the stack after the loop has been left.

The single-path filter substitutes the instructions fetched from memory by NOPs
when any of the predicates on the stack is false. In order to achieve constant execution
time, that substitute instruction must have the same execution time as the original
instruction. Which and how many instructions are used for this purpose will therefore

36

4.2. Filter Implementation

Function
predicate

Loop
predicate

Iteration
predicate

Conditional
predicate

C Code: Regular Machine Code: Single-Path Code: Predicate Stack:

COND

&=

1 0
¬COND

&=

1 0

1 0 1 0

0

0

&= &=

&=

&=

 OP_A

 goto 'else' if ¬COND
 OP_B
 goto 'end'
else:

 OP_C

end:

 OP_D

 OP_A
 PUSH 1 predicate
 CLEAR predicate 0 if ¬COND
 OP_B

 INVERT predicate 0
 OP_C

 POP 1 predicate
 OP_D

Figure 4.2: Example of a conditional statement in single-path code: While regular
machine code uses control-flow instructions to conditionally execute code, in single-path
code predicates are used instead.

COND_A ¬COND_A

C Code: Regular Machine Code: Single-Path Code: Predicate Stack:

¬COND_BCOND_B

&=

&= &=

&=

&=

&= &=

2 1 0 2 1 0 2 1 0

2 1 0 2 1 0

0

0

 OP_A

loop:

 goto 'end' if ¬COND_A
 OP_B

 goto 'loop' if COND_B

 OP_C

 goto 'loop'
end:

 OP_D

 OP_A
 PUSH 2 predicates
 PUSH loop counter = 8
loop:

 CLEAR predicate 1 if ¬COND_A
 OP_B

 CLEAR predicate 0 if COND_B

 OP_C
 SET predicate 0
 DECREMENT loop counter
 GOTO 'loop' if loop counter ≠ 0
 POP loop counter
 POP 2 predicates
 OP_D

Figure 4.3: Example of a loop in single-path code: The loop bound annotation is used to
initialize the loop counter in single-path code and the loop is executed for a constant
number of iterations. The loop predicate capturing the loop condition and the iteration
predicate, which is cleared by a continue statement and reset at the start of each iteration,
control whether the instructions are actually active.

depend on the specific processor. On architectures that use a hard-wired zero register
(i.e., a register that always reads as 0 and cannot be written), the destination register of
an instruction can simply be replaced by that zero register, in which case the instruction
has no effect.

The single-path filter can conceptually be integrated into any processor core, ranging
from simple in-order cores to superscalar processors. The only important requirement is
that the filter needs access to the condition codes in order to store the result of compare
instructions into predicates. Also, while the presence of optimizations such as data
caches and dynamic predictors does not impede the operation of the single-path filter,
it would most likely affect the timing-predictability that has been gained by adding

37

4. Making COTS Processors Timing-Predictable

the filter. A notable exception are branch predictors, which are commonly used to
speculatively execute instructions following a data-dependent conditional branch before
the outcome of the condition and thus the branch target are known. Since single-path
code does not use conditional branches, the presence of a dynamic branch predictor does
not impede its timing predictability. The single-path filter is evaluated on processors
that are implemented in a hardware description language which can be synthesized in an
FPGA.

4.3 Implementation details
The single-path generation and the instruction filter have been implemented for two
Reduced Instruction Set Computer (RISC) processors:

1. LEON3, a SPARC v8 processor core developed by Cobham Gaisler for safety-critical
applications [5].

2. ARM Cortex-M0, a processor core developed by ARM that uses the 16-bit ARM
Thumb instruction set [63].

Both processors have a multi-stage in-order pipeline with predictable timings. Thus,
they execute a given single-path program in constant time regardless of input values.
They are synthesized as soft-cores on an FPGA together with the proposed single-path
filter extension.

The single-path filter is controlled by special single-path instructions that are added
to the respective instruction sets of these two architectures. Unused opcodes in both the
SPARC v8 and the ARMv6-M Thumb ISAs are used to encode these special instructions
in order to support the LEON3 and the ARM Cortex-M0 processors, respectively.

Figure 4.4 shows the selected encoding for single-path instructions for both instruction
sets. For the SPARC v8 ISA, the unused opcode 1 of instruction format 2 is used for the
custom instructions, with bits 31 and 30 cleared to indicate the instruction format and
bits 24 through 22 holding the opcode with a value of 1. A 5-bit ID field identifies up
to 32 individual single-path instructions and 22 bits of the instruction word are left for
immediate values associated with the instruction. On the 16-bit ARM Thumb ISA the
single-path instructions are encoded with two combined 16-bit instruction words. An
unused opcode encoded by the 5 uppermost bits of the first instruction halfword are
re-purposed for the single-path instructions. Again, 5 bits encode the specific type of
single-path instruction and 22 bits remain for immediate values.

The single-path instructions that are processed by the filter are listed in Table 4.1.
These instructions modify the internal state of the single-path filter by operating on the
predicates that affect the execution of regular instructions, as well as the loop counter and
return address stacks. These special instructions are only recognized by the single-path

38

4.3. Implementation details

filter but not by the processor core itself. Therefore, they are substituted by a NOP in
most cases, except for instructions that alter the control-flow, such as the instruction
LOOP BRNZ, which jumps back to the head of a loop unless the loop counter has reached
0. These instructions are replaced by unconditional jump instructions such that the main
core performs the necessary control-flow changes required by the single-path code.

Besides interpreting and executing these special instructions, the single-path filter
also needs to enable and disable regular instructions as required by the current state
of the predicates. Disabled instructions are replaced by NOPs. However, the present
implementation takes care to retain the same timing behavior, no matter whether an
instruction is disabled or not, such that the execution time of the single-path code is
truly independent of input data. Therefore, the single-path filter substitutes disabled
instruction words with alternatives that have no effect but an execution time that equals
the execution time of the disabled instruction.

The SPARC ISA uses a hard-wired zero register, i.e., a general-purpose register that
holds the constant value 0 and cannot be modified. Such a zero register is common on
many RISC architectures and typically has the address 0. It can conveniently be used to
discard the result of an operation by using that zero register as the destination register.
Hence, the single-path filter for the LEON3 processor can disable most instructions by
simply overwriting their destination register address with 0. Memory accesses are an
exception since a disabled memory instruction might use an invalid address but must not
cause a bus error. A dedicated memory region is reserved for disabled load and store
instructions, with disabled store instructions dumping the write data into that location
and disabled load instructions reading from that location into the zero register, thus
discarding whatever value has previously been stored there. The selected memory location
is chosen such that it can be addressed with the immediate fields of the instruction word.

The 16-bit ARM Thumb instruction set, on the other hand, has no hard-wired zero
register. Therefore, other means must be found to disable instructions while preserving

012345678910111213141516171819202122232425262728293031

00 id 001 imm22

(a) SPARC-v8 Single-Path Instructions Encoding

0123456789101112131415

11101 id imm6
0123456789101112131415

imm16

(b) ARMv6-M Thumb Single-Path Instructions Encoding (note that these are two 16-bit instruction
words combined into a 32-bit word)

Figure 4.4: Encoding formats for the special single-path instructions in the SPARC-v8
and the ARMv6-M Thumb instruction sets. The field id is used to identify the individual
single-path instructions. For both architectures a total of 22 bits can be used to encode
immediate values (see Table 4.1 for a list of single-path instructions and their respective
use of the immediate field).

39

4. Making COTS Processors Timing-Predictable

their timing on the ARM Cortex-M0. Fortunately, all arithmetic instructions have
an execution time of exactly one cycle, the same execution time as the generic NOP
instruction for that architecture. Memory accesses, in turn, can be substituted by stack-
relative loads and stores (i.e., memory instructions that use an address relative to the
stack pointer). Choosing a sufficiently large offset allows to redirect disabled memory
accesses to unused stack regions below the address of the current stack pointer. A stack

Table 4.1: Special Predicate-Defining Instructions

Instruction Description Immediate Field
PRED PUSH Push new predicates to predicate stack

(initialized to true)
Number of predicates to
push

PRED POP Pop predicates from predicate stack Number of predicates to
pop

PRED SET Set a predicate (change its value to true) Index of the predicate to
set

PRED IN-
VERT

Invert a predicate (toggle its value) Index of the predicate to
invert

PRED
CCLR

Conditionally clear a predicate (set its
value to false)

3 bits: condition, rest:
predicate index

LOOP PUSH Push new loop counter to loop counter
stack

Initial value of new loop
counter

LOOP POP Pop top loop counter from loop counter
stack

Unused

LOOP
BRNZ

Branch to start of loop if top loop
counter is not zero, post-decrement top
loop counter

Branch address
(architecture-specific
encoding)

SP CALL Call a single-path function (push pro-
gram counter to return address stack)

Call address (architecture-
specific encoding)

SP RET Return from single-path function (pop
address from return address stack and
jumps to that address)

Unused

RECUR EN-
TER

Enter a recursive function (increment
the function’s recurrence counter if it
is below the recursion limit, otherwise
return immediately)

Unique index for this recur-
sive function

RECUR
EXIT

Exit a recursive function (decrement the
function’s recurrence counter)

Unique index for this recur-
sive function

40

4.4. Evaluation

analysis can be carried out to ensure that none of these accesses will ever interfere with
any actual stack data.

4.4 Evaluation
The performance of the proposed approach is evaluated by comparing the constant
execution time of single-path code with the WCET of the equivalent regular code on
both processors for a set of benchmark programs. For regular machine code, the WCET
is the relevant metric in real-time systems since that is the amount of processing time
that system designers need to reserve for the execution of a task. For single-path code,
however, the execution time is constant on time-predictable hardware. Hence, the WCET
of single-path code equals that constant execution time which can be determined by
measuring it once.

The evaluation uses version 1.9 of the TACLe benchmark collection [39], a collection
of benchmark programs targeted at WCET research. This benchmark collection contains
several programs from the Mälardalen [50] and the MiBench [51] collections, among
others, with annotations required for timing analysis, such as loop bounds, that are added
to the code. Some of the benchmark programs had incorrect loop bound annotations
or architecture-related errors (e.g., assumptions about the size of C data types that
do not apply to all ISA). For these programs, either existing fixes that have not yet
been included in an official release or custom patches, which have been submitted to
the maintainers of the TACLe benchmarks and should be included in upcoming releases,
have been used. One program had architectural issues on both ISAs. These problems
could not be fixed and thus the program had to be removed from the evaluation.

For reference, WCET bounds have been determined for each program using the aiT
WCET Analyzer [40], a widely used static timing analysis tool developed by AbsInt
GmbH, which is able to find tight WCET bounds [49]. The annotations contained in
the TACLe benchmark programs are used by the tool in addition to its capability of
automatically extracting some flow-facts through value analysis. The WCET analysis thus
uses the exact same loop bounds and recursion limits as the single-path transformation.

Fig. 4.5 and 4.6 show plots that compare the constant execution time of the single-
path version with the WCET bound of the regular version on the LEON3 and the ARM
Cortex-M0 processors of each program of the kernel and the sequential sets of the TACLe
benchmarks, respectively. Those programs that use floating-point arithmetic have been
excluded (neither of the two processors has a floating-point unit), as well as two programs
which turned out to be unsuited for conversion to single-path code (see Section 4.5 for
details) and one program (ammunition from the sequential set) which failed due to
architectural issues that could not be fixed.

The left plot in each figure shows the absolute execution times of both the single-path
and the regular version of each program on a logarithmic scale, as well as the WCET
bound of the regular program. The execution time of the single-path version is constant.

41

4. Making COTS Processors Timing-Predictable

TACLeBench v1.9 Kernel Benchmarks†
LEON3 (SPARC v8) ARM Cortex-M0 (ARM Thumb)

102 103 104 105 106 107 108 109

binarysearch

bitcount

bitonic

bsort

countnegative

crc

fac

insertsort

jfdctint

matrix1

md5

prime

recursion

sha

Execution time (cycles)

Execution time of single-path code

WCET of regular code

Execution times of regular code

1:2 1:1 2:1

Ratio single-path : WCET

† Excluding programs using floating-point arithmetic.

Figure 4.5: Comparison of the execution time of the single-path version with the WCET
bound of the regular version of the TACLeBench benchmark programs. The large plots
on the left show the constant execution time of the single-path version of each benchmark
program as well as the WCET bound and execution time of the regular code version of
that program in CPU cycles. The narrow plots on the right show the ratio between the
execution time of the single-path version and the WCET of the regular version for each
program. The WCET bounds have been obtained with the aiT WCET Analyzer from
AbsInt GmbH.

Hence, there is only one sample for each program, depicted by a diamond symbol. By
contrast, the execution time of the regular version may vary, in which case the plot shows
several samples as crosses, although frequently the test input data for many benchmark
programs is constant rather than initialized randomly, which leads to constant execution
times for the regular version as well. The WCET bound of the regular version of each
program that has been determined with the aiT WCET Analyzer is depicted by a vertical
bar. Execution times and bounds on the LEON3 are shown in dark blue and those on
the ARM Cortex-M0 in orange.

Additionally, the narrow plot on the right of each figure highlights the ratio between
the constant execution time of the single-path version and the WCET bound of the
regular version of each program. If the ratio is 1:1, then the execution time of the
single-path code equals the WCET bound of the regular code. A larger ratio indicates
that the single-path code performs worse, with its execution time being larger than the

42

4.4. Evaluation

TACLeBench v1.9 Sequential Benchmarks†
LEON3 (SPARC v8) ARM Cortex-M0 (ARM Thumb)

104 105 106 107 108 109 1010 1011 1012

adpcm_dec

adpcm_enc‡

cjpeg_transupp

cjpeg_wrbmp

dijkstra

g723_enc

gsm_dec‡

h264_dec‡

huff_dec

mpeg2

ndes‡

petrinet

rijndael_dec‡

rijndael_enc

statemate

Execution time (cyc es)

Exec(tion time of sing e-path code

WCET of reg(ar code

Exec(tion times of reg(ar code

1:2 1:1 2:1 4:1 8:1

Ratio sing e-path : WCET

† Excluding programs using floating-point arithmetic, with infeasibly large WCET and ammunition which failed
due to architectural issues. ‡ Programs that have been patched.

Figure 4.6: Comparison of the execution time of the single-path version with the WCET
bound of the regular version of the TACLeBench benchmark programs. The large plots
on the left show the constant execution time of the single-path version of each benchmark
program as well as the WCET bound and execution time of the regular code version of
that program in CPU cycles. The narrow plots on the right show the ratio between the
execution time of the single-path version and the WCET of the regular version for each
program. The WCET bounds have been obtained with the aiT WCET Analyzer from
AbsInt GmbH.

bound of the regular code. However, for several programs, the constant execution time
of the single-path version is less than the WCET bound of the regular code.

It turns out that the constant execution time of the single-path version of the
benchmark programs is typically between twice as slow to twice as fast as the WCET of
the regular version. Which version is faster apparently depends on the structure of the
control-flow graph of the program itself, with the single-path variant of some benchmark
programs, such as bitonic, always performing better than the regular version, while for
some other programs, such as bitcount, the single-path version is always slower than the
WCET bound of the regular version. Additionally, the processing platform seems to
have an effect on the relative performance of single-path code w.r.t. the WCET bound

43

4. Making COTS Processors Timing-Predictable

of regular code. One can see that the single-path versions performs better on the ARM
Cortex-M0 than on the LEON3 for most benchmark programs.

The control-flow graph of a program obviously has a strong influence on the relative
performance of its single-path version since all possible code branches need to be exe-
cuted unconditionally. In particular, programs with conditional statements that have
multiple branches with long execution times incur a significant performance penalty when
transformed to single-path code. This effect is particularly pronounced for the program
mpeg2 from the sequential set of the TACLe benchmarks (see Fig. 4.6), for which the
execution time of the single-path version is about an order of magnitude larger than the
WCET of the regular version.

In general, the WCET of a program cannot be reduced by transforming it to single-
path code (with the exception of some marginal improvements if the execution platform
has a large branch-misprediction penalty). Yet, the results show that single-path code
frequently performs better than the WCET bound of the regular code of a program. The
main reason for this is the over-estimation of the actual WCET by the timing analysis
software. Similarly, the fact that single-path code appears to perform better on the ARM
Cortex-M0 than on the LEON3 is most likely due to the analysis software deriving tighter
WCET bounds for the LEON3, possibly because that processor is better supported due
to its frequent use in industrial real-time systems.

The main advantage of single-path code over static timing analysis is that timing
analysis becomes trivial. For processors with predictable execution timing the execution
time of single-path code is constant. Therefore, the WCET is determined by measuring
it on the actual hardware. Hence, single-path code is not affected by the quality and
accuracy of a timing model or the sophistication of the analysis software, and it is not
limited to architectures supported by these tools. The results show that the perceived
inefficiency of executing all instructions unconditionally does not contribute to a significant
overhead when compared to the WCET bounds of regular code for most of the benchmark
programs.

The code size of single-path code has also been compared with that of regular code.
Fig. 4.7 shows the amount of instruction memory space required for the regular versions
as well as the single-path versions of the TACLe benchmark programs. This reveals that
the single-path transformation increases code size by about 20–30 % on both architectures.
Roughly 5–7 % of the regular machine code consists of control-flow instructions, while
for single-path code, it is only about 2 %. Instead, single-path code comprises 6–9 %
of special instructions that manipulate the predicates and between another 14–17 %
of additional overhead. Interestingly, the proportion of special predicate manipulating
instructions is larger for the ARM Thumb architecture than for the other instruction set.
The reason is probably that while most of the ARM Thumb instructions are 16-bit wide,
these special instructions were all encoded as 32-bit instructions because almost all of
the 16-bit instruction encoding space has already been assigned by the standard.

44

4.5. Limitations of Single-Path Code

SPARC v8 ARM Thumb

Regular Single-Path Regular Single-Path
0

50

100

150

200

250

300
In

tr
u
c
ti
o
n
 M

e
m
o
ry
 (
K
iB
)

Control-flow instructions (branches, jumps, function calls and returns)

Special instructions that manipulate predicates

Additional overhead required for single-path code

Regular non-control-flow instructions (arithmetic, memory access, ...)

Figure 4.7: Code size of the regular machine code and the single-path versions of all
TACLe benchmark programs used for the evaluation combined.

4.5 Limitations of Single-Path Code

The results of the evaluation show that the performance of single-path code with respect
to the WCET bound of the equivalent regular code depends upon the program itself as
well as on the amount of pessimism of the WCET bound. Some TACLe benchmarks
appear to be better suited for single-path code than others. This section discusses some
of the programming constructs and algorithms that cause these variations and derives
recommendations for writing programs that perform well when converted to single-path
code.

As already mentioned in Section 3.2, the WCET of a loop does not increase in
single-path code since loops are simply executed for the maximum number of iterations.
However, the WCET of a conditional statement with more than one branch increases
when transformed to single-path. While in regular code, only one branch of a conditional
statement is executed, single-path code executes all branches (but only one of them is

45

4. Making COTS Processors Timing-Predictable

enabled by the predicates). The execution time of a conditional statement in single-path
code is the sum of the execution times of all branches plus any overhead for evaluating
the condition. In regular machine code, however, the WCET of a conditional statement
is the maximum of the execution times of the individual branches. As a consequence,
conditional statements with multiple lengthy branches should be avoided in single-path
code.

The single-path version of the program bitonic from the kernel set of the TACLe
benchmarks has a shorter execution time on both processors than the WCET of the
regular version. Studying the source code of that program showed that it contains
conditional statements with only one branch (i.e., simple if -statements without an else-
branch), as well as a few loops. Therefore, there are no alternative branches whose
execution time would sum up and thus the single-path transformation does not increase
the WCET of that program.

For the program bitcount, on the other hand, the execution time of the single-path
version is larger than WCET of the regular version on both cores. The source code
reveals that the main function of this program has a conditional statement with eight
branches (implemented as a switch-statement with eight case-statements), each of which
is calling a function. The whole conditional statement is placed within two nested loops
and hence executed several times in a row. Here the single-path version clearly looses
in efficiency since all branches need to be executed sequentially, while WCET analysis
can take advantage of the fact that in the regular version only one of the branches is
executed.

During this analysis, some programming constructs were encountered that were not
well suited for conversion to single-path code, but that could easily be converted to a
more efficient variant. Fig. 4.8 shows an example of a construct that becomes particularly
expensive in single-path code. In the example program on the left, the function func is
called with a different argument depending on a condition. In the respective single-path
version, the function is called twice (only one call will have actual effects), while in the

if COND then
func(1)

else
func(2)

end if

if COND then
a = 1

else
a = 2

end if
func(a)

Figure 4.8: The program on the left requires that the function func is called twice in
single-path code, once with 1 as argument and once with 2. The code on the right avoids
the repeated calls by moving the function call out of the conditional statement and
instead conditionally assigning the value of the argument to a temporary variable which
is then passed to the function.

46

4.5. Limitations of Single-Path Code

n

n/2

...

1 1

...

n/2

...
...

1 1

(a) Best-case for regular quicksort

n

n–1

n–2

...

1

(b) Worst-case for regular quicksort

n

n–1

n–2

...

1 1

...

n–2

...
...

n–1

n–2

...
...

n–2

...
...

1 1

(c) Single-path quicksort

Figure 4.9: Call trees of the recursive quicksort algorithm implemented in regular machine
code in the best-case as well as the worst-case situation and for a single-path version of
the algorithm. In the best-case scenario a regular quicksort implementation divides the
list into two sublists of equal length during each recursive call and hence requires a call
tree with a depth of log2 n, yielding an execution time of O(n · log2 n); in the worst-case
scenario all elements except for one are in the same sublist on every recursive call and
the call tree becomes a linear chain with a depth of n− 1, increasing the execution time
to O(n2). Single-path code requires that the union of all possible call trees is executed,
which requires n2 − 1 nested calls and has an execution time of O(n3).

47

4. Making COTS Processors Timing-Predictable

regular code version, the function would always only be called once. Fortunately, this
inefficiency can be avoided by assigning the argument of the function to a temporary
variable, as shown in the program on the right. That way only the assignment of the
variable is conditional and hence executed twice in single-path code, while the function is
called once after that assignment.

A very similar construct that was encountered frequently is that two branches of a
conditional statement read the same value from an array and then assign it to different
variables. The way these were usually implemented meant that the calculation of the
memory address based on the array index as well as loading the value would happen
within each of the two branches and so that code would be executed twice in single-path
code. In general, several instances were encountered where code was duplicated within
the branches of a conditional statement and could easily be moved out of the statement,
thus improving the execution time of the single-path version.

Additionally, some algorithms have been identified that are not very well suited for
single-path code. One of these is the well-known sorting algorithm quicksort [57], which
sorts a sequence recursively by choosing a pivot element and then dividing the sequence
into two sublists, one of which contains all the elements that are less than the pivot
element and the other one containing all those elements that are greater. The two sublists
are then passed to recursive calls of the sorting function, which return the sorted sublists.
The final sorted sequence is obtained by concatenating the first sublist, the pivot element
and the second sublist.

The regular machine code for a quicksort implementation has an execution time
between O(n · log2 n) and O(n2) [58]. In the best case, the pivot element is always chosen
such that the sequence is divided into two equally sized sublists with n/2 elements during
every recursive call. In that case the algorithm requires log2 n nested calls of the sorting
function. In the worst case, all elements of the sequence are either less than the pivot
element or all elements are greater, such that the entire original sequence minus the
pivot element ends up in the same sublist on every recursive call, thus requiring n− 1
nested calls. Fig. 4.9 shows the call graphs for these two extreme cases, as well as the
call graph for a single-path version of quicksort. The call graph of the single-path version
is the union of all possible call graphs since every recursive function call is executed
unconditionally, despite the majority of these being disabled. Single-path code needs
to take into account both worst-case scenarios: the scenario where all elements are less
than the pivot element and the scenario where all elements are greater than the pivot
element, which requires two recursive calls that can each support a sublist with up to
n− 1 elements. Hence, the single-path transformation increases the execution time of
quicksort to O(n3).

The programs anagram and huff_enc from the sequential set of the TACLe benchmarks
use a quicksort implementation borrowed from the GNU C library [14] that becomes
particularly inefficient in single-path code. In that implementation, the sorting function
conditionally calls itself from within a loop, which means that in single-path code, the
recursive call is executed unconditionally on every loop iteration (and the loop is always

48

4.6. Findings

executed for the maximum number of iterations). The iteration bound of that loop is 8,
thus each call of the sorting function results in another 8 recursive calls. The total number
of nested calls therefore is 8n − 1 (with n being the maximum length of the sequence
to sort and hence the maximum depth of the call tree). In the programs anagram and
huff_enc the maximum length of the sequence to sort is 17 and 256, respectively. Hence,
the single-path version of these programs requires a total of 2.25 · 1015 and 1.55 · 10231
nested calls, respectively. Both programs do not terminate in a reasonable amount of
time and had to be excluded from the evaluation.

As an alternative to quicksort, mergesort is more appropriate for a single-path
program. This algorithm always divides a sequence into two sublists of equal length,
recursively sorts both of these individually and then merges the sorted sublists into a
sorted sequence [46]. While the call graph of quicksort depends on the values of the pivot
elements, the call graph of mergesort has no data dependencies, since the input sequence
is always divided into two sublists of length n/2 irrespective of the values in the sequence.
Therefore, the depth of the call graph is limited to log2 n, which allows to set tighter
recursion limits for the single-path version.

While quicksort is an extreme example, there are likely several other algorithms that
are less suitable for single-path code, with more appropriate alternatives available. The
programs in the TACLe benchmark collection aim to be representative of programming
schemes and algorithms used in various areas [39]. These usually optimize for average-
case rather than worst-case performance, since average performance is what matters in
non-real-time applications [99]. However, for real-time systems worst-case performance
is critical, as it is for single-path code, which always executes all possible branches
of a program, including the worst-case branch. Therefore, replacing algorithms and
programming schemes with ones that are more suitable for single-path code would likely
improve the execution time of the single-path versions of the benchmark programs.

The limitations discussed in this section are related to programming techniques and
algorithms that take advantage of features found in most widely available processor
architectures. Single-path code with its predicated execution requires a different way of
thinking about program design and algorithms in order to avoid programming constructs
that favor established processor designs and code generation techniques but fail to execute
efficiently on predictable hardware.

4.6 Findings

Single-path code simplifies timing analysis by merging all possible execution paths of a
program into a single path. This is achieved by using predicated execution instead of
conditional control-flow changes. The overhead caused by predicated execution is kept to
a minimum when fully predicated execution is available. However, hardly any processor
architectures support it, thus confining single-path code to those few that do.

49

4. Making COTS Processors Timing-Predictable

The single-path filter presented in this chapter brings support for fully predicated
execution to existing processor designs. This opens up the possibility of efficiently
executing single-path code on a wide range of architectures.

The single-path filter is well suited for single-core processors. However, many modern
workloads are inherently parallel [69]. Therefore, the next chapter discusses a way to
parallelize the concept of predicated execution.

50

CHAPTER 5
A Vector Coprocessor for
Data-Parallel Real-Time

Workloads

The content of this chapter is based on and extends a conference paper titled Vicuna: A
Timing-Predictable RISC-V Vector Coprocessor for Scalable Parallel Computation [93].

So far, this thesis has dealt with timing-predictable computer architectures that
are simple single-core processors executing a single stream of instructions, with each
instruction producing one result at a time. Yet, parallelism is of major importance in
nowadays computer architectures. Real-time systems are no exception, as many emerging
time-critical applications require the performance offered by parallel architectures [69].
Therefore, it is essential to discuss how the concepts introduced so far can be parallelized.

Chap. 3 and 4 explained the concept of predicated execution and how it can be used
to ease timing analysis by eliminating data-dependent control-flow branches. The present
chapter introduces a kind of data-parallel computer architecture that allows to naturally
extend this concept to parallel processing.

A straightforward way to create a parallel architecture based on a simple traditional
processor core is to replicate it multiple times and to use a low-level network to connect
the individual cores to the memory system, thus creating a multi-core architecture. While
this approach has been chosen numerous times already in the context of timing-predictable
computing [113, 124], the present work instead focuses on vector processors, a kind of
processor architecture that is inherently data-parallel.

A vector processor implements the single-instruction multiple-data (SIMD) paradigm
with instructions operating on a vector of elements instead of individual values. In contrast
to array processors, the elements in a vector are not only processed simultaneously

51

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

using multiple processing elements but also sequentially over several clock cycles [7].
Consequently, the length of a vector is not limited by the number of processing elements
and is usually configurable, allowing potentially very large vectors to be manipulated by
a single instruction. Thus, the cost of fetching and decoding the instruction is amortized
over a large amount of data, which aids energy-efficiency and also reduces the effectivity
of complex hardware-level optimizations [85]. Therefore, the timing-predictability of
vector processors can be achieved by avoiding certain optimizations without significantly
impacting their performance.

On vector processors, it is usually possible to conditionally modify individual elements
of a vector by using vector masks. These vector masks can be setup manually or can
be the result of comparisons between individual vector elements. As such, vector masks
allow a form of element-wise predicated execution, where an instruction can be enabled
or disabled individually for each element of a vector. Thus, vector processors parallelize
the concept of predicated execution.

This chapter presents the timing-predictable RISC-V vector processor Vicuna, which
is tailored to the needs of time-critical systems [93]. Vicuna has been implemented in
SystemVerilog and compliant with the recently ratified version 1.0 of the official RISC-V
vector extension, RISC-V V [105]. Vicuna is a coprocessor and requires a main core to
function. It has been integrated with the open-source RISC-V core Ibex [110]. This
combined processing system is free of timing anomalies and, therefore, well suited for use
in real-time systems. Despite its timing-predictability, Vicuna retains a peak performance
of over 10 billion operations per second on a Xilinx 7 Series FPGA. Evaluations on
data-parallel benchmarks show its efficiency is over 90 % for compute-bound workloads.

5.1 Parallel Processing Architectures
This section presents an overview of parallel processing platforms in general, as well as
a detailed analysis of existing vector processors. The main aspects are summarized in
Table 5.1.

Micro-architectural optimizations have been one of the primary means to increase the
performance of processors since the break-down of Dennard scaling at the beginning of
the century. However, as the performance gains achieved via these optimizations began to
dry up, computer architects were forced to use varying degrees of parallelism to enhance
performance further [62].

A straightforward way to implement parallelism is to use several processor cores,
each executing an individual stream of instructions. This approach, referred to as the
multiple-instruction, multiple data (MIMD) paradigm [41], has since allowed continuing
increases in performance. Despite the prevalence of multi-core systems, it turns out
that applications which effectively use this parallelism are often highly data-parallel
and thus, the cores end up all executing the same instructions [24]. The fetching and
decoding of identical instructions throughout multiple cores are not only a waste of

52

5.1. Parallel Processing Architectures

resources and energy but also increase the pressure on the shared memory interface.
Multi-core processors usually connect the individual cores to the memory system via
a NoC [13], and the efficient design and use of these NoCs is an active research area
with a number of challenges [82]. In particular, application mapping, which assigns the
available bandwidth on the NoC to the individual cores (or clusters of cores) according
to application-specific needs, is a key factor in determining the performance of the
overall system. Unfortunately, the problem of application mapping is, in general, NP-
hard [94]. Hence efficiently utilizing the cores in such a system is challenging [107, 119, 4],
particularly when safety requirements demand certain guarantees with respect to the
bandwidth and latency of the NoC [67, 95]. As a result, the performance of the individual
cores in a multi-core system is increasingly limited by the NoC as more cores are added.
Schoeberl et al. found that the performance of the T-CREST platform scales only
logarithmically with the number of cores [113]. Therefore, although being very flexible,
multi-core systems are not well suited for data-parallel processing tasks.

Several parallel processing architectures which are a better match for data-parallel
workloads have been proposed. Graphics Processing Units (GPUs) are increasingly used
for massively parallel tasks [90], such as for instance machine-learning algorithms. GPUs
take advantage of the single-instruction multiple-threads (SIMT) paradigm [76], as a
single instruction stream controls data processed across several hardware threads, which
enables highly efficient processing of huge quantities of data. GPUs also found their way
into safety-critical systems in domains such as autonomous driving [36, 69, 47], where
they are indispensable for processing vast amounts of sensor data. However, the use

Table 5.1: Performance and timing predictability of parallel computer architectures

Processor Ar-
chitecture

Multi-
Core
CPU

General-
purpose
GPU

Domain-
Specific
Accelera-
tors

Existing
Vector
Proces-
sors

Timing-
Predictable
Platforms

Vicuna

General-
purpose

� � � � �

Efficient
parallelism

� � � �

Timing-
predictable

� � �

Max. OPs
per sec (·109)
FPGA / ASIC

2.2 ∗ /
1 200∗∗

3.2 † /
35 000 ††

5 000 ‡ /
45 000 ‡‡

15 § /
128 §§

2.4 ¶ /
49¶¶

10 / —

∗ 16-core Cobham LEON3
∗∗ 344-core Ambric Am2045B
† FlexGrip soft GPU [6]
†† NVIDIA RTX 3090

‡ Srinivasan et al. [120]
‡‡ Google TPU [66]
§ 32-lane VEGAS [22]
§§ 16-lane PULP Ara [19]

¶ 15-core T-CREST Patmos [113]
¶¶ 8-core ARM Cortex-R82

53

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

of GPUs in real-time systems still poses several challenges [34]. Most GPUs are not
preemptive, which instead requires software-preemption techniques [47], and modeling
their timing behavior is complicated by undisclosed arbitration techniques used to resolve
contention for shared resources such as the memory bus [35]. In addition, the timing
analysis of heterogeneous systems comprising a CPU and a GPU with separate memories
introduces its own challenges [108, 34].

An alternative to GPUs enjoying a much tighter integration with the main core is
single instruction multiple data (SIMD) arrays which have been added to several popular
ISAs over the last years. These are additional functional units added to a processor core
that are capable of processing several elements stored in a fixed-sized array at once. Their
disadvantage is that the computational resources need to be replicated for each element,
and new instructions are required to take advantage of the increased array size [19].

Recently, the advent of machine learning has fueled the development of new special-
purpose accelerator architectures. These architectures only support specific operations
required for a narrow set of applications and trade flexibility and often precision for
unprecedented computational performance, such as the 45 · 1012 operations per second
achieved by the Tensor Processing Unit (TPU) [66]. An interesting side-effect of these
domain-specific accelerators is that due to their simple architecture, their timing behavior
is usually much simpler to analyze than that of other processing architectures [85].
However, the impressive peak performance figures are only reached for workloads that
fit the intended purpose of the accelerator, while other tasks either suffer drastically
reduced performance or cannot be executed at all. By contrast, a general-purpose vector
processor can execute any task that can be run on a conventional processor.

5.1.1 Vector Processors
Vector processing is similar to array processing, with one instruction operating on several
elements. However, while an array processor requires a dedicated processing element
for each data element to be processed, a vector processor has the added flexibility of
processing a vector of elements not only simultaneously but also sequentially over several
clock cycles. This allows variable vector lengths and the processing of large quantities of
data by a single instruction. Fig. 5.1 depicts the differences in the processing patterns
of array processors and vector processors. The array processor features a number of
processing elements, and the length of the array that can be operated on by one instruction
is limited by that number. In contrast, vector processors typically comprise specialized
execution units which are capable of processing a certain number of elements concurrently,
but more importantly, the elements are also processed over several cycles.

The ability to process a large vector of data without the need to replicate computa-
tional resources for each element makes vector processors particularly energy-efficient [24].
Vector processors handle the bottleneck imposed by a narrow memory interface shared
for instructions and data, which is referred to as the von Neumann bottleneck, very
effectively [12]. In a vector processor, the fetching and decoding of instructions are

54

5.1. Parallel Processing Architectures

amortized over a potentially very large vector. Thus, vector processors have the potential
to surpass even GPUs, for which instructions are amortized over a fixed block size only,
in terms of efficiency [19].

Vector processing used to be popular in the 1960s and 70s, when most of the super-
computers were vector processors, such as the Illiac IV [61] or the Cray series [106]. These
processors were modular designs comprising thousands of integrated circuits. However,
towards the end of the century, they were superseded by integrated microprocessors,
which achieved much higher clock frequencies [7].

Despite vanishing from the high-end computing market, vector processors continued
to exist as general-purpose accelerators. In particular, several designs targeting FPGAs,
which extend popular soft-core processors, such as the Altera Nios II/f [3], have been
developed. For instance, the VESPA [133], VIPERS [134], and VEGAS [22] architectures
all add vector processing capabilities to a MIPS-based or Nios main core. These designs
have subsequently been refined, with VENICE [116], an area-efficient improved version
of VEGAS, or MXP [117], which added additional support for fixed-point computation,
being proposed.

In the last few years, vector architectures have been re-gaining attention as energy-
efficient parallel processing platforms. The vector coprocessor Hwacha [75] is based on
the open RISC-V ISA [126]. Despite inspiring many features of the new RISC-V vector
extension, Hwacha uses a custom RISC-V extension that is not compatible with the now
finalized official V extension. Hwacha is part of the RocketChip core generator [8], and
several processor designs that use Hwacha as a coprocessor have been presented [131, 111].

To date, a major impediment to the more widespread adoption of vector processors
has been the lack of standardization and tool support. All vector processors discussed so
far use custom extensions to existing ISAs for vector instructions. Since vector processors
have played no role in high-performance computing in the last decades, there is no

vld
ld
vmul
add

vmul0 vmul1 vmul2 vmul3

vld0 vld1 vld2 vld3

ld

add

Instructions Scalar units Array processing elements
PE0 PE1 PE2 PE3

 t

(a) Array processor.

vld
ld
vmul
add

vmul0
vmul2

vld1

vld3ld

add

Instructions Scalar units Vector units
VLSU VMUL

 t

vld0

vld2

vld5

vld7

vld4

vld6

vmul1
vmul3

vmul4
vmul6

vmul5
vmul7

(b) Vector processor.

Figure 5.1: Comparison of the execution patterns of array and vector processors. In-
structions prefixed with a v operate on a vector of elements, while the rest are regular
scalar instructions. On an array processor, the number of available processing elements
limits the amount of elements that can be operated on by a single instruction, while on a
vector processor large data vectors can be processed over several clock cycles.

55

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

support for these extensions in major compilation toolchains. However, this is about
to change as several major ISAs are extended with vector processing capabilities, such
as the ARM ISA, which recently adopted the Scalable Vector Extension (SVE) [121] or
the open-source RISC-V ISA [126] for which a vector extension is proceeding towards
ratification [105]. Work is underway to add support for these extensions to the GNU
Compiler (GCC) as well as the LLVM compiler suites, with initial support for the SVE
and the RISC-V V extension available in the latest release of both of these toolchains.

One of the first vector architectures implementing the RISC-V V extension is Ara[19],
which serves as a vector coprocessor for the application-class RISC-V core CVA6 [135].
However, Ara is a performance-oriented platform that uses optimizations that are known
to cause timing anomalies, such as banked register files, greedy memory arbitration [55],
and runtime decisions for selecting functional units [127].

Recently, several new processing architectures adopting the RISC-V vector extension
have been proposed, some of which target resource-constrained embedded systems and
are deliberately kept simple, which might facilitate the analysis of their timing behavior.
However, these architectures frequently implement a small subset only of the full RISC-V
V extension. The choice of supported instructions is usually geared towards a specific
use case, with machine learning being by far the most prominent application. For
instance, RISC-V2 [91], Arrow [10], and the minimal vector processor presented by
Johns and Kazmierski [65] are accelerators for machine learning implementing only a few
select V extension instructions. Similarly, VPQC [132] is a RISC-V-based cryptography
accelerator that supports some of the V extension’s instructions which are required for
certain post-quantum cryptographic algorithms.

Although these domain-specific architectures achieve significant performance for cer-
tain tasks, they lack the versatility of a general-purpose vector processor. In particular,
RISC-V2 and Arrow do not support any of the V extension’s vector permutation in-
structions, which simplifies their design by eliminating any inter-connections between
individual lanes. However, due to the lack of support for vector permutation instructions,
any algorithms that require the re-ordering of vector elements, such as many signal
processing algorithms (e.g., the DFT) or most cryptographic algorithms (e.g., AES
encryption), cannot be executed on these platforms (or have to implement permutations
via costly memory transactions). By contrast, Vicuna implements almost the entire
RISC-V V extension, with the exception of floating-point instructions, which allows
parallelizing any algorithm that can be executed on a regular processor using fixed-point
arithmetic.

Vicuna is the first and, at the time of writing, only timing-predictable general-purpose
vector processor. It has been shown that Vicuna is free of timing anomalies [93]. The
reduced overhead and inherent efficiency of the vector processing paradigm eliminates
the need for optimizations that would undermine its timing-predictability. Vicuna’s
performance matches that of other vector architectures while still providing full timing-
predictability and freedom from timing anomalies.

56

5.2. RISC-V Vector Extension

5.2 RISC-V Vector Extension
This section gives an overview of the RISC-V ISA as well as its vector processing extension.

The RISC-V instruction set is an extensible ISA that is developed by the RISC-V
foundation. The ISA specifies a base instruction set with limited functionality, which has
to be supported by every conformant processor and a growing number of extensions that
can optionally be implemented. As such, the RISC-V instruction set aims to be a flexible
replacement for various existing instruction sets. Depending on their application-specific
needs, architects can decide which of the extensions they choose to support in their
implementation, from simple embedded systems requiring only the base set to complex
high-performance architectures implementing several extensions.

The RISC-V V extension introduces vector processing to the RISC-V instruction set.
While the base instruction set, as well as some extensions, have already been ratified, the
V extension is currently undergoing a review process and is expected to be ratified soon.

The RISC-V V extension adds 32 vector registers to the ISA and defines vector
instructions to manipulate these vector registers. While the bit-width of the vector
registers is an implementation constant, the bit-width of the individual elements in a
vector register can be configured at runtime. Elements are stored contiguously in a vector
register, and thus the number of elements that a vector register can hold depends on the
current element width. Up to 8 vector registers can be combined into a register group
allowing a single vector instruction to operate on several vector registers. The vector
instructions broadly fall into four categories:

1. Vector memory instructions are load and store instructions that move data between
the vector registers and memory.

2. Vector arithmetic instructions are parallelized analogs of regular arithmetic and
logic instructions that apply the same operation to the individual elements of vector
registers. These are further divided into integer, fixed-point, and floating-point
vector instructions.

3. Vector reduction instructions use an arithmetic or logic operation to reduce all
elements in a vector register to a single value (such as producing the sum of all
elements or returning the maximum value).

4. Vector permutation instructions rearrange the positions of elements within a vector
register. These include slide instructions that move all elements up or down a
vector register as well as general index-based permutation.

The V extension also allows masking individual elements for almost all vector opera-
tions. For this purpose, vector instructions have a dedicated mask bit in the instruction
word, which controls whether the respective operation is masked or unmasked. Masked
vector instructions are a form of predication allowing to conditionally enable or disable

57

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

the instruction for each element in the vector using an element mask. These masks
are stored in regular vector registers and can be produced, for instance, by the vector
comparison instructions. Additionally, the V extension defines a set of instructions to
handle these vector masks.

5.3 Architecture
This section describes the architecture of the timing-predictable RISC-V vector coproces-
sor Vicuna.

Vicuna is a coprocessor that extends a RISC-V main core with support for the V
extension instructions. The 2-stage 32-bit RISC-V core Ibex [110] is used as the main
core. Ibex executes the instructions of the RISC-V base set and a few other non-vector
instructions that are not part of the base set (e.g., multiplication and division), which are
collectively referred to as scalar instructions, and forwards vector instructions to Vicuna
via a coprocessor interface.

Vicuna features a vector instruction decoder, an instruction queue for decoded vector
instructions, a dispatcher, and several specialized functional units which execute the
vector instructions. Fig. 5.2 shows an overview of Vicuna’s structure and its integration
with the main core Ibex. Vicuna and the main core share a common data cache to ensure
data consistency, while the main core fetches instructions from a separate instruction
cache. A memory arbitration strategy that extends the concept developed for the timing-
predictable processor SIC is used [52] in order to guarantee that all memory accesses
are performed in program order. The data cache takes precedence over the instruction
cache on the memory bus, and the main core’s simple 2-stage pipeline guarantees that
an instruction cache miss can never delay the memory access of a previous instruction.
Similarly, Vicuna is given precedence in case it accesses the data cache at the same time
as Ibex. Additionally, all memory transactions that would result from a cache miss of
the main core are inhibited while there is a pending vector load or store instruction
somewhere in the pipeline (i.e., either in the vector instruction queue or in the vector
load and store unit).

Vicuna features the following specialized functional units, which each handle a subset
of the vector instructions:

• A Vector Load and Store Unit (VLSU) interfaces the memory system and handles
all vector memory instructions.

• A Vector Arithmetic and Logical Unit (VALU) executes the element-wise vector
arithmetic instruction (except for multiplications).

• A dedicated Vector Multiplier (VMUL) handles vector multiplication.

• A Vector Slide Unit (VSLDU) implements the slide operations, which move elements
up or down a vector register.

58

5.3. Architecture

ID + EX StageIF Stage

Prefetch
buffer Decoder

Reg File

ALU
V-Inst

rs1
rs2

W VLSU

Ibex
RV32IMC

Vicuna
RV32V V-DecoderVReg File

VALU VMUL VSLDU VIDXU

Ack

LSU

Wait

32

32

I$

D$

M
em

or
y

A
rb

ite
r

Pending vector load / storeE
xt

er
na

lM
em

or
y

Figure 5.2: Overview of Vicuna’s architecture and its integration with the main core
Ibex. Both cores share a common data cache. To guarantee in-order memory access, the
memory arbiter delays any access following a cache miss by the main core until pending
vector load and store operations are complete. When accessing the data cache, the vector
core always takes precedence.

• A Vector Indexing Unit (VIXDU) is used for vector permutation (except for slides)
and reduction instructions. In addition, only the VIXDU can write back scalar
results to the main core’s registers.

These units are capable of operating in parallel, thus allowing the concurrent execution
of several vector instructions. The width of the datapath can be configured individually
for each unit which allows the processing of several vector elements each cycle, except for
the VIXDU, which can only process one element per cycle due to the irregular access
patterns of some of the instructions it implements. In addition, this allows adapting
the throughput of each unit based on how frequently it is used, increasing throughput
for heavily-used instructions while saving resources by scaling down less used functional
units. This approach contrasts with the more common lane-based vector processors,
which replicate all computational resources across each lane and thus do not allow to
configure the throughput of individual functionality.

The VALU and VMUL both implement element-wise operations on a fixed-width
datapath. Therefore, the number of elements that are processed simultaneously depends
on the current width of the individual elements. Similar to other vector processors,
Vicuna uses fracturable adders and multipliers [22] to perform mixed-width operations
on a fixed-width vector register portion. A fracturable adder is a series of 8-bit adders

59

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

whose carry chains are cascaded to allow wider operations. Hence, four 8-bit, two 16-bit,
or one 32-bit addition or subtraction are executed on four cascaded 8-bit adders with
the carry chains between the adders open or closed depending on the element width. A
similar approach is used for fracturable multipliers, which perform 8-bit, 16-bit, or 32-bit
multiplications using four 16-bit multipliers.

Vicuna uses a centralized vector register file rather than distributing vector registers
across lanes as done in lane-based vector processors. Distributed register files are well-
suited for element-wise operations but require additional logic to exchange register data
between lanes for widening or narrowing arithmetic instructions, for reduction, and for
permutation instructions. In order to avoid the substantial consumption of logic resources
required for selecting large sub-words from large vector registers, the functional units
read entire vector registers into shift registers. The content of these shift registers is then
shifted by the number of bits that are simultaneously processed by the unit each cycle,
thus feeding contiguous portions of the vector register to the unit. Similarly, the results
of computations are accumulated into another shift register and then written back to the
vector register file at once. The concept is depicted in Fig. 5.3a, which shows the data
flow within the VALU.

Operand Shift Registers

Result Shift Register

Operand A Operand B

Result

Vreg read

Vreg write

(a) Organization of the vector ALU.
Operand registers are read sequentially
into shift registers and consumed over
several cycles by processing a fixed-
width portion each cycle. Results are
again accumulated into a shift register
before write-back.

VALU

VLSU

write enable

write enable

VREG addr & data

VREG addr & data

Vector
Register

File } further
write ports{further

read
ports

&

≥1
write
enable

VREG addr & data

(b) The VALU and VLSU share a common write port,
with the VLSU always taking precedence. In case
of a collision, the value and address of the VALU
write request are temporarily saved and written to
the vector register file in the next cycle. Neither unit
can write for two subsequent cycles. Hence the delayed
write always succeeds.

Figure 5.3: Reading and writing whole registers from the vector register file avoids
subword selection logic and allows multiplexing of read and write ports without affecting
timing predictability.

60

5.4. Timing Predictability

Vicuna’s units are capable of operating in parallel. Hence, the vector register file
requires several read and write ports to supply the units and consume their results.
However, since vector registers are read at once and then fed to the unit over several
cycles and results are first accumulated before being written back to the destination
register, the read and write ports can both use multiplexing. Each unit has a dedicated
read port, which it uses to fetch the individual operand registers sequentially. The VMUL
is the only unit that has two read ports in order to better support the fused multiply-add
instructions, which use three operands. The write-ports are shared between units and
use a special circuitry shown in Fig. 5.3b to handle collisions without introducing timing
anomalies. Since results are aggregated before write-back, a functional unit cannot write
in two subsequent cycles. Therefore, in case of a collision, one unit takes precedence and
writes its result to the vector register file. The result of the second unit is written to a
temporary buffer from where it is then written to the register file in the next cycle. The
second write from the temporary buffer is guaranteed to succeed since neither the first
nor the second unit can produce another result within just one cycle.

5.4 Timing Predictability
This section discusses the requirements for efficient timing analysis and shows that Vicuna
meets these requirements.

Vicuna avoids many optimizations commonly found in modern processing architec-
tures, which are known to increase timing variability and thus complicate the modeling
and analysis of the timing behavior. This section analyzes Vicuna’s timing-predictability
and shows that it is free of timing anomalies, an essential property to enable efficient
compositional timing analysis.

Vicuna has been carefully designed to avoid any inter-dependencies between its
execution units which could cause variable execution times. In particular, the multiplexing
technique used for reading and writing to and from the vector register file, as described in
Sect. 5.3, avoids stalls even in case of collisions. Once an instruction has started executing
on one of Vicuna’s functional units, it completes within a fixed number of cycles which
depends on the type of instruction, the throughput of the respective execution unit, the
number of vector registers that are part of a register group, and in case of the VLSU on
the bandwidth and access latency of the memory bus.

From recent literature we learn that even simple architectures which avoid complex
optimizations have been shown to exhibit timing anomalies [54]. There are two kinds of
timing anomalies: counterintuitive timing anomalies, which affect the timing-predictability
of a processing system, and amplification timing anomalies, which threaten the timing-
compositionality [64]. Both timing-predictability and timing-compositionality are essential
properties to prevent the need for an exhaustive exploration of all possible system states
during WCET analysis. Timing-compositionality, in particular, is required to allow
decomposing the timing analysis and deriving a global worst-case from local worst-case
behavior [53].

61

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

Counterintuitive timing anomalies occur whenever a better local case leads to a global
worst-case behavior, such as, for instance, a cache hit causing a longer overall execution
time than a miss. This kind of timing anomaly can occur when runtime decisions are
involved in selecting a functional unit [127] or when instructions with multi-cycle latencies
are delayed by the concurrent execution of later instructions [9]. Vicuna avoids this type
of timing anomalies by guaranteeing deterministic execution times for all instructions.

Amplification timing anomalies occur when cascading effects of a local worst-case
behavior cause an even larger increase in overall execution time. This type of anomaly
can be very subtle to discover and affect even simple in-order pipelines with just a few
stages. In particular, the re-ordering of memory accesses on the memory bus has recently
been shown to be a source of timing anomalies [54]. Amplification timing anomalies
can occur if the timing behavior of a processing platform is not monotonic w.r.t. the
progress order of instructions [52], i.e., if an instruction can be delayed by a subsequent
instruction.

Hahn and Reineke have introduced a formalism to prove the monotonicity of the
timing behavior and thus freedom of timing anomalies of an execution pipeline [52] and
applied that formalism to their timing-predictable core SIC. This formalism is extended
to prove that Vicuna is equally free of amplification timing anomalies. Given a program
with a fixed sequence of instructions I = {i0, i1, i2, . . . }, the pipeline state during the
execution of that program maps each instruction to its current progress. The progress
P := S × N0 of an instruction is defined by its current pipeline stage s ∈ S and the
number n ∈ N0 of remaining cycles in that stage. Due to the deterministic nature of
Vicuna’s execution units, the combined pipeline of the main core Ibex and Vicuna is
modeled with the following stages:

S = {pre, IF , ID+EX ,VQ,VEU , postS , postV }

The abstract stages pre and post model instructions that have not yet started
execution or have already left the pipeline, respectively, analogous to the model used for
SIC. However, scalar and vector instructions are differentiated in the post stage, which
are represented by postS and postV , respectively. IF is the main core’s fetch stage, and
ID+EX is its combined decode and execute stage. The stage VQ models instructions
that are currently in Vicuna’s instruction queue, and the abstract stage VEU represents
vector instructions currently executing on one of Vicuna’s execution units. The vector
instruction queue retains the ordering of instructions, and the execution time of vector
instructions is fully deterministic on all vector execution units. Therefore, modeling each
of the concrete stages is not required.

The ordering �S of these pipeline stages is as follows:

pre �S IF �S ID+EX �S
�S

postS

VQ �S VEU �S postV

62

5.5. Performance Evaluation

Both scalar and vector instructions first enter the pipeline of Ibex, which fetches and
decodes the instructions. The ID+EX stage executes scalar instructions right away and
forwards vector instructions to Vicuna’s decoder, which decodes and validates vector
instructions. Scalar instructions exit the pipeline and move to the postS stage after
that, while vector instructions enter the vector instruction queue VQ, are subsequently
executed by one of Vicuna’s execution units, and finally, move to the postV stage.

The execution time of vector instructions on Vicuna’s functional units is fully deter-
ministic, with the exception of load and store instructions which might stall in case of a
cache miss. The memory arbiter holds back any memory accesses by the main core if any
vector loads or stores are pending. Therefore, vector loads or stores are not delayed by
other instructions that might cause memory accesses by the main core. The vector queue
retains the ordering of vector instructions, and the first vector instruction is dispatched
to its respective execution unit as soon as that unit becomes available, and potential
data hazards have been resolved. Therefore, instructions in the vector queue can only
be delayed by prior instructions but never by later instructions. Similarly, instructions
in the ID+EX stage can be stalled by an ongoing memory access of the vector core,
during memory loads and stores, by a vector instruction writing back to a scalar register,
or when a vector instruction has been decoded, but the vector queue is full. In any
case, an instruction in this stage can only be delayed by earlier instructions. Finally,
the main core’s instruction stage is stalled in case the subsequent ID+EX stage stalls
or in case of an instruction cache miss, which can further be delayed by ongoing data
loads or stores. Hence, the progress order of instructions is maintained throughout the
execution platform, and instructions in any stage can only be stalled by prior instructions.
Therefore, the execution time of instructions is monotonic w.r.t. the progress order, and
thus amplification timing anomalies are avoided.

Vicuna is free of both counterintuitive and amplification timing anomalies. Therefore,
it is timing-predictable and timing-compositional, enabling fast and efficient WCET
analysis.

5.5 Performance Evaluation
This section presents an assessment of Vicuna’s performance and scalability by measuring
the execution time of three simple Basic Linear Algebra Subroutine (BLAS) subroutines
with varying degrees of arithmetic intensity on different configurations of Vicuna synthe-
sized on a Xilinx 7 Series FPGA and comparing the results with other vector processing
architectures.

Three configurations of Vicuna are evaluated, with vector register lengths of 128, 512,
and 2048 bits, respectively, with the parameters of each configuration as well as the peak
multiplier performance and maximum clock rate listed in Table 5.2.

The performance effectively achieved by an application on a parallel processor ar-
chitecture is frequently degraded by several bottlenecks, which can render the efficient

63

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

Table 5.2: Configurations of Vicuna for evaluation on a Xilinx 7 Series FPGA. Note that
for larger configurations, the maximum clock frequency decreases slightly as these require
more resources which complicates the routing process.

Config.
Name

Configuration Parameters 8-bit
MACs
per cycle

Clock
frequency
(MHz)

Vector Reg. Multiplier Data- Data-Cache
Width (bit) Path Width

(bit)
Size (kB)

Small 128 32 8 4 100
Medium 512 128 64 16 90
Large 2048 1024 128 128 80

utilization of parallel computing resources challenging. Vicuna has been evaluated on an
FPGA platform with a 32-bit memory interface which eventually limits the performance
gains achieved by increasing the vector register and datapaths of functional units. The
roofline model visualizes the peak performance in operations per cycle in function of the
arithmetic intensity of an application. The arithmetic intensity is the ratio of the number
of operations of an application per byte of memory transfer. An application is either
compute-bound if its performance is limited by available computation performance, or
memory-bound if overall performance is limited by the memory bandwidth instead.

The roofline performance boundary for each configuration of Vicuna is shown in
Fig. 5.4. The dashed lines are the theoretical performance boundaries for each configura-
tion, with the horizontal part corresponding to the compute-bound region, where the
peak performance equals the maximum arithmetic throughput, and the diagonal part
showing the memory-bound region, where the memory bandwidth limits the achievable
performance. The plot also shows the measured performance for three benchmarks:
weighted vector addition, 3 × 3 image convolution, and matrix multiplication. The
percentages next to the markers indicate the ratio of effective vs. theoretical performance.

The first benchmark, AXPY, is a weighted vector addition defined as Y ← αX + Y ,
where X and Y are two vectors, and α is a scalar. It has been implemented for vectors
of 8-bit elements, which requires n 8-bit multiply-accumulate (MAC) operations and 3n
bytes of memory transfer for a vector with n elements. Hence, the arithmetic intensity
for this benchmark is 1/3, which places it in the memory-bound region for all three
configurations of Vicuna.

The second benchmark is 3× 3 image convolution, which loads an input image and
applies a 3 × 3 convolution kernel. This requires 9 MACs per pixel and two memory
transactions for loading and then storing each pixel, which yields an arithmetic intensity
of 4.5 for 8-bit pixel values.

Finally, the third benchmark is the generalized matrix multiplication (GEMM) which
is defined as C ← AB + C where A, B, and C are matrices. The arithmetic intensity of

64

5.5. Performance Evaluation

2

1

4

8

16

1

32

64

128

2 4 8 160.50.25
 39.2 %

 65.4 %
 84.2 %

32 64 128
G

E
M

M
2

5
6

x
2

5
6

C
O

N
V

3
x
3

A
X

PY
6

5
5

3
6

Pe
rf

o
rm

a
n
ce

(O
P

/
cy

cl
e
)

 41.9 %

 63.8 %

 33.7 %

Arithmetic intensity (OP / byte)

Small

Medium

Large

Vicuna configuration

 59.7 %

 88.7 %

 88.1 %

256 512

G
E
M

M
1

0
2

4
x
1

0
2

4

 99.0 %

 91.2 %

 99.5 %

Figure 5.4: Roofline plot of the performance results for the benchmark algorithms for
each of Vicuna’s three configurations listed in Table 5.2. The dashed lines are the
performance boundaries of each configuration, and the markers show the measured
effective performance. The percentages indicate the ratio of effective vs. theoretical
performance.

this benchmark depends on the matrix size, with n3 MAC operations and 4n2 memory
transactions required for n × n matrices. Using 8-bit values this gives an arithmetic
intensity of n/4. Hence, for large matrices, this is a heavily compute-bound benchmark.
For this evaluation, matrix sizes of 256× 256 and 1024× 1024 are used, which give an
arithmetic intensity of 64 and 256, respectively.

The results show that the performance of Vicuna scales well across the three configu-
rations, achieving over 90 % efficiency for compute-bound tasks, which is in line with
other high-performance vector processors.

Vicuna’s resource footprint is similar to other FPGA-based vector processors. Fig. 5.5
compares the resource utilization and performance of Vicuna with that of VESPA [133]
and VEGAS [22]. The radar chart depicts the lookup table, flip-flop, DSP block, and
RAM utilization of each of these architectures, along with the achieved clock period and
the efficiency in terms of multiplier utilization for compute-bound workloads. Vicuna
consumes a similar amount of logic resources as the other two processors. However, its
clock period is larger, which stems from the latency of the ports of its vector register
file. VESPA requires fewer register file ports since it is only capable of executing one
instruction at a time, and VEGAS equally uses fewer ports into a scratchpad memory that
replaces the conventional register file. Despite the reduced clock frequency, the overall
performance of Vicuna is still higher due to its ability to better utilize computational

65

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

Lookup Tables

(×103)

Flip-flops

(×103)

DSP blocks
(hardware multipliers)

On-chip RAM
(kbit)

Multiplier
idle time for

compute-bound
workload (%)

Clock period
(ns)

30

60

90

15 30 45

60

120

180

500

1000

1500

204060

4

8

12

32-lane VESPA

32-lane VEGAS

Vicuna
(fast config.)

Lower values are
better for all
parameters.

Figure 5.5: Resource utilization and performance of the FPGA-based vector processors
Vicuna, VESPA, and VEGAS (each configured for a peak performance of 128 8-bit
operations per cycle).

resources by executing several instructions concurrently. VEGAS, for instance, executes
a 4096× 4096 matrix multiplication within 4.377 billion cycles on a 32-lane configuration,
which translates to a multiplier utilization of only 49 %. The large configuration of
Vicuna, which has the same peak performance per cycle, reaches a multiplier utilization
of over 90 % for similar compute-bound workloads.

Vicuna’s efficiency is in line with more recent vector processing architectures targeting
ASICs instead of FPGAs, such as Hwacha [75] and Ara [19], which equally reach an
efficiency of over 90 % for compute-bound tasks. Ara has been reported to reach close to
98 % multiplier utilization for a 256× 256 matrix multiplication on a configuration with
16 64-bit lanes. However, while these two processors are capable of efficiently exploiting
data-level parallelism, they use speed-up mechanisms that can be a source of timing
anomalies. Ara uses a banked register file that allows concurrent reads and writes for
vector registers located in different banks but resolves banking conflicts dynamically using
a weighted round-robin arbitration scheme that prioritizes arithmetic operations over
memory operations. Therefore, slow memory operations can further be delayed by later
arithmetic instructions, which violates the principle of monotonicity in the instruction
timings [55]. Additionally, the progress of instructions can be affected by runtime
decisions. Thus, Ara is most likely affected by both counterintuitive and amplification
timing anomalies [127]. Hwacha also uses a banked register file, but sequences accesses

66

5.6. Application Benchmarks

of vector register elements in a way that avoids banking conflicts. However, due to its
out-of-order write-back mechanism, Hwacha also exhibits timing anomalies. Moreover,
none of the mentioned vector architectures maintain program order for memory accesses.
In particular, memory accesses of earlier vector instructions can be delayed by concurrent
memory operations of later scalar instructions, which is likely to cause amplification
timing anomalies on all of these platforms [55].

Vicuna is different from other vector processors due to its timing-predictability and
freedom of timing anomalies, which enable the efficient timing analysis required for
real-time applications. However, Vicuna’s performance is close to that of other vector
processors, which are affected by timing anomalies and thus unsuitable for such systems.
Vicuna’s performance for data-parallel workloads scales significantly better than that of
timing-predictable multi-core architectures, for which the memory interconnect becomes
a limiting factor [82, 119], especially in a real-time system requiring guarantees w.r.t.
the latency and bandwidth of each core [67, 95]. As a result, the performance of the
timing-predictable multi-core platforms, such as the T-CREST or the parMERASA
multi-core architectures, only scales logarithmically in the number of cores [113, 43].

Finally, the adoption of Vicuna is eased by using a standardized ISA instead of a
custom extension. With its combined efficiency, scalability, timing-predictability, and
standard compliance, Vicuna is ideally suited for data-parallel real-time applications.

5.6 Application Benchmarks

So far, the performance of Vicuna has been evaluated using a small set of linear algebra
kernels. This section presents a more thorough analysis based on three relevant real-world
algorithms from the domains of signal processing, image processing, and cryptography,
as well as a comparison with a timing-predictable multi-core platform.

The primary purpose of these benchmarks is to evaluate the performance gains
achieved by increasing Vicuna’s computational resources and comparing these with the
performance gains achieved by increasing the number of cores in a timing-predictable multi-
core architecture. The timing-predictable multi-core platform T-CREST is used [113]
for this comparison. This architecture connects the individual cores to the memory
with a tree-shaped time-division multiplexing (TDM) memory arbiter, which guarantees
repeatable and predictable access times for each core.

Besides demonstrating Vicuna’s performance and scalability for several different
workloads, the choice of applications from different areas also serves to highlight its
versatility, which is a crucial advantage of general-purpose vector processing architectures
over domain-specific accelerators.

The following three algorithms have been implemented and evaluated on Vicuna and
T-CREST:

67

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

1. The discrete Fourier transform (DFT), implemented using the fast Fourier Transform
(FFT) method proposed by Cooley and Tukey [23].

2. Image registration, based on the algorithm proposed by Lucas and Kanade [79].

3. The Advanced Encryption Standard (AES) [25].

The DFT is an important signal processing algorithm that is used to perform the
Fourier transform for subsequent analysis of the frequency spectrum in many signal
processing applications. Due to its importance, the DFT is frequently implemented in
hardware [20] or accelerated using dedicated hardware functionality [83]. A parallel
version of the FFT proposed by Cooley and Tukey [23] is implemented with RISC-V
vector instructions, as well as a multi-core variant for use on T-CREST.

Image registration is the process of finding a vector that translates an image such that
the difference to a second image becomes minimal. It is an important image processing
technique used, for instance, to estimate the optical flow between two consecutive
frames of an image sequence or to match image regions in stereo vision. Similar to the
DFT, the importance of this algorithm has equally led to the development of dedicated
hardware accelerators [27, 118], some of which are specifically targeting safety-critical
applications [21]. The popular image registration algorithm proposed by Lucas and
Kanade [79] has been implemented using RISC-V vector instructions for Vicuna and on
the multi-core T-CREST platform.

The block cipher Rijndael [25] was selected as the AES in 2001 and is since widely
used for data encryption. Security and privacy considerations with Internet of Things
(IoT) devices and edge computing are fostering the use of AES encryption in embedded
systems [44]. However, the computational performance required by AES often prohibits
the use of software implementations on low-power devices. Therefore, several specialized
AES hardware accelerators for use in embedded systems have been proposed [87, 86]. A
vector processor can substitute the need for a dedicated accelerator and can be used for
other tasks as well, thus potentially reducing the resource footprint of data processing
architectures that require encryption and decryption capabilities in addition to their
primary function. AES encryption has been implemented in RISC-V vector instructions
as well as a multi-core variant on T-CREST.

Although Vicuna and the T-CREST platform are very different architectures, it has
been attempted to match the resources available to each as closely as possible. Both
Vicuna and the T-CREST platform use a 32-bit main memory interface, which eventually
limits the achievable performance increase. For Vicuna, the duration of loads and stores
increases as the vector length increases since only 32 bits of data can be fetched from the
main memory each cycle. For T-CREST, the duration of loads and stores accessing main
memory also increases since its memory arbiter has fewer time-slots to give to each core
as the number of cores in the system increases. The data caches of the T-CREST cores
have been found to use a write-through policy, which causes unnecessary writes to main
memory for intermediate data. Therefore, the implementation loads all data into the

68

5.6. Application Benchmarks

core-local scratchpad memory first, thus allowing each core to process that data without
requiring intermediate accesses on the memory bus.

Each core of the T-CREST platform is capable of executing one operation per cycle.
Hence, the peak performance of the multi-core system in operations per cycle is equal
to the core count. The benchmark applications have been evaluated on configurations
with 1, 2, 4, 8, and 16 cores. For Vicuna, the number of operations per cycle depends on
the datapath width of its functional units and on the bit-width of the individual vector
elements. Configurations with datapath widths of 32, 64, 128, and 256 bits are used.
The implementations of the FFT and the image registration algorithms both use 16-bit
fixed-point values, which yields a peak performance from 2 to 16 operations per cycle for
these four configurations. The AES algorithm operates on individual bytes. Thus the
peak performance of the Vicuna configurations varies between 4 and 32 operations per
cycle.

Fig. 5.6 presents the results of the evaluation. The three plots show the performance
for each of the three algorithms w.r.t. the available computational resources achieved on
Vicuna in blue and the T-CREST platform in orange. The theoretical peak performance
on the x-axis corresponds to the maximum throughput of the arithmetic units for Vicuna
and the number of cores for T-CREST. An application-specific performance metric
is used on the y-axis to quantify the effective performance in function of theoretical
peak performance for the respective algorithm. The diagonal grid lines correspond to
linear growth (i.e., a doubling in effective performance for a doubling in computational
resources). The results show that Vicuna’s effective performance scales better than that
of the T-CREST platform as the computational throughput is increased. While the
performance gains eventually drop below linear growth for both architectures, Vicuna is
capable of sustaining linear or close-to-linear gains for a larger computational throughput
than T-CREST.

In a multi-core system, each core separately needs to fetch the instructions of the
algorithm, a penalty which is not incurred for Vicuna where the instructions are fetched
by the main core only. Additionally, the code executed by Vicuna consists of fewer
instructions overall since the ability to have instructions operate on several values at once
allows for a reduction in code size. Therefore, Vicuna performs better than T-CREST
for the FFT and the image registration benchmarks.

The T-CREST platform is at an advantage for the AES benchmark since the byte
permutations required as part of the algorithm are free when combined with other steps
(by storing the individual bytes at different memory offsets than they were loaded from).
For Vicuna, the byte permutations have been implemented with a sequence of masked
vector slide instructions. Further, the AES algorithm involves a lookup into a 256-entry
lookup table, which has been implemented with an indexed load instruction on Vicuna.
The indexed load cannot be parallelized since the elements to be fetched are not stored
contiguously, thus requiring a separate load request for each element. Yet, thanks to
its superior scalability, Vicuna eventually surpasses the performance of the T-CREST
platform for a configuration with a peak performance of 16 operations per cycle.

69

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

(a) Effective vs. theoretical performance for a parallel variant of Cooley and Tukey’s FFT
algorithm [23]

(b) Effective vs. theoretical performance for Lucas and Kanade’s image registration [79]

(c) Effective vs. theoretical performance of the 128-bit AES algorithm [25]

Figure 5.6: Performance growth comparison between Vicuna in blue and the T-CREST
multi-core platform in orange based on three real-world applications. As the theoretical
peak performance rises by increasing the throughput of units for Vicuna and adding
more cores for T-CREST, the effective performance gain is much higher for Vicuna than
for the T-CREST platform. The diagonal grid lines correspond to linear growth.

70

5.7. Findings

While raising the theoretical peak performance by increasing the throughput of the
functional units on Vicuna and adding additional cores on the T-CREST platform leads
to improved performance on both architectures, the performance gains are lower for
T-CREST. The results confirm the observation by Schoeberl et al. that the performance
of the T-CREST platform scales only logarithmically in the number of cores [113]. By
contrast, the performance of Vicuna scales better, as has already been demonstrated in
Sect. 5.5, which is in line with the performance advantages of non-timing-predictable
vector processors over non-timing-predictable multi-core architectures [19].

Dedicated hardware accelerators have been developed for each of the three applica-
tions used in this analysis. While accelerators usually deliver significant performance
gains for specific tasks, the hardware cannot be re-used for other purposes. Thus, if
a processing system needs increased performance for several such algorithms, then a
separate accelerator is required for each of them. Vicuna is a general-purpose vector
processor and, as such, is capable of parallelizing any algorithm that can run on a
conventional processor. Hence, all three applications can be executed on Vicuna, thus
re-using the same computational resources for different tasks. While domain-specific
accelerators typically are timing-predictable, they lack the versatility of a general-purpose
processing platform.

Vicuna can be used as a general-purpose parallel processing platform for a variety of
time-critical applications. It is more scalable and efficient for highly parallel workloads
than multi-core architectures and more versatile than domain-specific accelerators. Vicuna
fuses the benefits of vector processors and timing-predictable platforms into a processing
architecture with the following unique characteristics:

• The scalable parallelism of vector processors, in contrast to the limited parallel
performance of multi-core or array processors.

• The flexibility of a general-purpose computing platform, as opposed to domain-
specific accelerators.

• The timing-predictability required in real-time applications.

5.7 Findings
Most modern processor architectures improve average performance by making use of
micro-architectural optimizations, which complicate the analysis of their timing behavior.
Processors used in real-time systems must avoid these features such that the execution
times of tasks can be analyzed. Thus, real-time architectures generally suffer from
drastically reduced computation power and are not able to compete with high-performance
architectures. Yet, the requirements of many safety-critical applications force system
architects to select less safe non-real-time processing platforms for performance reasons.

Vicuna is the first timing-predictable vector processing architecture. Vector processors
are a promising architecture for real-time systems that need to handle the performance

71

5. A Vector Coprocessor for Data-Parallel Real-Time Workloads

requirements of emerging highly parallel applications. The timing behavior of vector
processors is simpler to analyze than that of complex heterogeneous systems. Vicuna
has been shown to be free of timing anomalies and thus enables compositional timing
analysis.

Despite its predictability, the performance of Vicuna is close to that of other vector
processors that are not timing-predictable. Thanks to the vector processing paradigm’s
inherent efficiency, optimizations that affect predictability can be avoided without a
significant impact on performance. Vicuna implements the recently finalized vector
extension of the RISC-V ISA and is ideally suited for the massively data-parallel workloads
in many emerging time-critical applications in domains such as autonomous driving.

Additionally, vector processors support fully predicated execution via masked vector
instructions. This is a form of predication that allows compilers to enable or disable
the instruction for each individual element of a vector. As such, vector processors are
capable of efficiently executing single-path variants of vectorized code. In contrast to the
single-path filter discussed in Chap. 4, vector processors have native support for fully
predicated execution and do not require such an extension.

Consequently, vector processors appear to be ideally suited for demanding data-
parallel real-time applications for two reasons: The processing hardware has inherently
better timing-predictability, and the native support for fully predicated execution means
that the vectorized code is equally inherently more predictable.

72

CHAPTER 6
Conclusion

The design of hard real-time systems requires that the WCET of tasks is determined
in order to establish guarantees w.r.t. the response time of the system and hence its
correctness. The static analysis methods widely used for this purpose require an accurate
timing model of the execution platform, which allows an analysis tool to determine
the execution time of the various possible execution paths. However, optimization
features in modern processor architectures reduce the predictability to the point where a
WCET analysis may not be possible at all. Even for processors designed to be timing-
predictable, actually performing this analysis on production code requires significant
manual annotations, and the WCET bounds determined by the analysis tools are often
over-estimated.

The combination of stringent timing requirements, a constrained choice of suitable
execution platforms that is further reduced by limited tool support, analysis results
that are severely impacted by the accuracy of the timing model and the quality of
code annotations, as well as the poor predictability of performance-oriented processor
architectures currently confines hard real-time systems to the few architectures especially
designed for this purpose. This has led to a significant performance gap between processors
suited for time-critical tasks and those attempting to maximize performance. Yet, the
performance requirements of modern hard real-time applications can no longer be met
with the existing timing-predictable architectures.

This thesis attempts to identify possible ways to bridge the performance gap by
increasing the pool of potential candidate architectures that can be used for real-time
systems. The main idea is to leverage predicated execution in order to eliminate data-
dependent control-flow branches, which dramatically simplifies timing analysis. While
Chap. 3 demonstrates the use of single-path code in real-time systems, Chap. 4 proposes a
processor core extension that adds support for predicated execution and can conceptually
be integrated into any existing processor.

73

6. Conclusion

The concept of predicated execution can be parallelized by vector processors, an
inherently data-parallel architecture that is currently gaining popularity due to its energy-
efficiency. Incidentally, processor architectures that have better energy-efficiency also
tend to be more timing-predictable [85]. The shift towards parallel and energy-efficient
architectures has in recent years been fueled by the popularity of machine-learning, a
trend that might also benefit real-time systems since the micro-architectural optimizations
used in most processors that hinder predictability are becoming less attractive due to
their poor energy-efficiency. Therefore, it is likely that future computer architectures
see less of these optimizations and thus an improved timing-predictability. Chap. 5
exemplifies this trend by presenting a timing-predictable vector processor that retains
the performance, scalability, and efficiency of other vector processors that have not been
designed with real-time systems in mind.

While favoring parallel and energy-efficient hardware, the data-parallel nature of most
machine-learning applications also appears to favor a more data-oriented programming
style rather than the pre-dominant imperative programming style. This is reflected in
a major re-thinking of traditional compiler technologies and the introduction of new
compiler infrastructure, such as the MLIR project [73], that embraces a new and much
more flexible way of writing programs than traditional imperative programming. This new
data-flow-oriented approach to compiler technology is intended to facilitate the mapping of
complex parallel tasks to an ever-growing number of parallel architectures [125]. As a side
effect, support for predicated execution is becoming an integral part of the compilation
toolchain.

With toolchain and hardware support for predicated execution and data-parallel
processing on the rise, real-time system architects can take advantage of these new
developments to reduce the performance gap between timing-predictable and mainline
processors. The single-path filter and the timing-predictable vector processor presented in
this thesis show that improved predictability does not necessarily jeopardize performance
and that real-time systems do not need to be confined to a few purpose-built processors.

Based on these findings, the research questions raised in Chap. 1 can be answered as
follows:

1. It is indeed possible to improve the predictability of software by leveraging predicated
execution to eliminate data-dependent control-flow branches without impacting its
performance and without severely limiting the available processing platforms, as
has been demonstrated by the single-path filter proposed in Chap. 4, which allows
to extend existing processor designs with support for predicated execution and thus
allows to execute predictable code on a potentially very large range of processors.
Chap. 3 has shown that single-path code is well suited for real-time control systems.

2. Further, it is possible to parallelize the concept of predicated execution by leveraging
data-parallel architectures, such as vector processors, which can be made timing-
predictable without affecting their performance, as has been shown in Chap. 5 by
proposing and evaluating the timing-predictable vector processor Vicuna.

74

While the present work attempts to open up new perspectives for future real-time
system architectures, a number of problems remain to be solved by future work. Chap. 4
identified some programming constructs and algorithms that should be avoided in single-
path code due to their reduced efficiency and proposed better alternatives. However, a
more systematic investigation of programming techniques and their efficacy in single-path
code should be conducted, with the goal of deriving recommendations for programmers
and ideally also compiler techniques that allow to avoid these inefficiencies. Predicated
execution can be used on vector processors to avoid the need for a traditional WCET
analysis by taking advantage of the properties of single-path code. Nonetheless, it would
be desirable to develop a systematic approach to assess the WCET of tasks on Vicuna in
particular and on vector processors in general.

Future work in the domain of real-time system architectures will certainly be shaped
by the broader trends and developments taking place today, and researchers should
keep a close eye on emerging compiler technologies and hardware architectures, which
hopefully will allow timing-predictable processors to catch up and thus be able to meet
the performance requirements of future time-critical systems.

75

List of Figures

2.1 Performance gap between processing architectures suitable for use in hard
real-time systems and those optimizing for average performance, based on
the theoretical peak performance in operations per second. The real-time
architectures are subdivided into soft-cores implemented in configurable logic,
such as the LEON 3 or the T-CREST platform, and ASICs, such as the
ARM Cortex-R series. The performance numbers are for parallel variants
(i.e., combined performance of the maximum number of available cores for
multi-core architectures). 14

3.1 A conditional statement as implemented in regular machine code using con-
ditional control-flow instructions on the left and the equivalent single-path
version which instead uses predicated execution on the right. 18

3.2 Comparison of the execution time of various execution sequences of regular
code and the execution of single-path code for a simple conditional statement.
The conditional statement in this example has two alternatives, labeled B
and C, which take two and one cycles to execute, respectively. We further
assume that the conditional branch instruction takes one cycle to execute
if it is correctly predicted, but causes an additional 3-cycle pipeline flush
if mispredicted. An unconditional jump and the instruction that sets up
a predicate for predicated execution are assumed to always execute in one
cycle. Regular machine code can execute the statement in as little as 3 cycles
if the shorter alternative is executed and the branch is correctly predicted.
However, due to the penalty incurred by a mispredicted branch the WCET of
the regular code is 8 cycles. Note that depending on the possible execution
traces that lead to this conditional statement within a larger program this
worst-case might actually not be reachable (e.g., because the branch predictor
cannot be in a state that causes it to predict the branch as taken when in fact
it is not). Yet, in general the WCET analysis has to conservatively assume
that this local worst-case fully contributes to the global worst-case timing. By
contrast, the single-path code always executes in 5 cycles and is thus faster
despite executing both alternatives. 20

77

3.3 Schematic overview of the hardware setup. The IMU measures acceleration
forces (which comprise the true acceleration ẍ as well as the force exerted
by gravity g�z) and angular rotation rates ω. The Patmos processor, which
is synthesized on an FPGA, uses these measurements to estimate its state
and determines adequate speeds for each of the four propellers. These de-
sired speeds are then communicated to motor controllers, which take care of
regulating motor power accordingly. 23

3.4 Photograph of the quadcopter in flight. It consists of a frame with four
extending arms. A motor with a propeller is attached to each arm. The IMU
and the FPGA on which the controller runs are located on a circuit board in
the center of the quadcopter. 24

3.5 Timing diagram of the state estimation and control algorithms executing
on the Patmos core. The execution time of these algorithm is a constant,
therefore the delay between an update from the IMU and the adjustment of
the rotor speeds by the controller (i.e. the response time of the controller) is
also constant and the period between subsequent control actions equals the
period between IMU updates. 25

3.6 Box-plot showing the distribution of the execution time measurements of
the implementation of the state estimation and the control algorithms on
the Patmos processor (with and without using single-path code) running at
80 MHz and on a 1.4 GHz ARM processor. For the time-predictable Patmos
core the variability is very low (or 0 for single-path code), thus the box is
reduced to a line. However, the measurements on the superscalar ARM
processor show significant variability, with some outliers in the order of 10
times larger than the average. 29

4.1 Concept diagram of the single-path filter: Instructions are fetched from
memory and pass through the filter, from where they are either passed on to
the core or replaced by an instruction with no effects. Special instructions are
used to control the predicates. The filter has access to the condition codes of
the core, thus allowing to set predicates conditionally. 33

4.2 Example of a conditional statement in single-path code: While regular machine
code uses control-flow instructions to conditionally execute code, in single-path
code predicates are used instead. 37

4.3 Example of a loop in single-path code: The loop bound annotation is used
to initialize the loop counter in single-path code and the loop is executed
for a constant number of iterations. The loop predicate capturing the loop
condition and the iteration predicate, which is cleared by a continue statement
and reset at the start of each iteration, control whether the instructions are
actually active. 37

78

4.4 Encoding formats for the special single-path instructions in the SPARC-v8
and the ARMv6-M Thumb instruction sets. The field id is used to identify the
individual single-path instructions. For both architectures a total of 22 bits
can be used to encode immediate values (see Table 4.1 for a list of single-path
instructions and their respective use of the immediate field). 39

4.5 Comparison of the execution time of the single-path version with the WCET
bound of the regular version of the TACLeBench benchmark programs. The
large plots on the left show the constant execution time of the single-path
version of each benchmark program as well as the WCET bound and execution
time of the regular code version of that program in CPU cycles. The narrow
plots on the right show the ratio between the execution time of the single-path
version and the WCET of the regular version for each program. The WCET
bounds have been obtained with the aiT WCET Analyzer from AbsInt GmbH. 42

4.6 Comparison of the execution time of the single-path version with the WCET
bound of the regular version of the TACLeBench benchmark programs. The
large plots on the left show the constant execution time of the single-path
version of each benchmark program as well as the WCET bound and execution
time of the regular code version of that program in CPU cycles. The narrow
plots on the right show the ratio between the execution time of the single-path
version and the WCET of the regular version for each program. The WCET
bounds have been obtained with the aiT WCET Analyzer from AbsInt GmbH. 43

4.7 Code size of the regular machine code and the single-path versions of all
TACLe benchmark programs used for the evaluation combined. 45

4.8 The program on the left requires that the function func is called twice in
single-path code, once with 1 as argument and once with 2. The code on
the right avoids the repeated calls by moving the function call out of the
conditional statement and instead conditionally assigning the value of the
argument to a temporary variable which is then passed to the function. . 46

4.9 Call trees of the recursive quicksort algorithm implemented in regular machine
code in the best-case as well as the worst-case situation and for a single-
path version of the algorithm. In the best-case scenario a regular quicksort
implementation divides the list into two sublists of equal length during each
recursive call and hence requires a call tree with a depth of log2 n, yielding
an execution time of O(n · log2 n); in the worst-case scenario all elements
except for one are in the same sublist on every recursive call and the call tree
becomes a linear chain with a depth of n− 1, increasing the execution time
to O(n2). Single-path code requires that the union of all possible call trees
is executed, which requires n2 − 1 nested calls and has an execution time of
O(n3). 47

79

5.1 Comparison of the execution patterns of array and vector processors. Instruc-
tions prefixed with a v operate on a vector of elements, while the rest are
regular scalar instructions. On an array processor, the number of available
processing elements limits the amount of elements that can be operated on
by a single instruction, while on a vector processor large data vectors can be
processed over several clock cycles. 55

5.2 Overview of Vicuna’s architecture and its integration with the main core Ibex.
Both cores share a common data cache. To guarantee in-order memory access,
the memory arbiter delays any access following a cache miss by the main core
until pending vector load and store operations are complete. When accessing
the data cache, the vector core always takes precedence. 59

5.3 Reading and writing whole registers from the vector register file avoids subword
selection logic and allows multiplexing of read and write ports without affecting
timing predictability. 60

5.4 Roofline plot of the performance results for the benchmark algorithms for
each of Vicuna’s three configurations listed in Table 5.2. The dashed lines
are the performance boundaries of each configuration, and the markers show
the measured effective performance. The percentages indicate the ratio of
effective vs. theoretical performance. 65

5.5 Resource utilization and performance of the FPGA-based vector processors
Vicuna, VESPA, and VEGAS (each configured for a peak performance of 128
8-bit operations per cycle). 66

5.6 Performance growth comparison between Vicuna in blue and the T-CREST
multi-core platform in orange based on three real-world applications. As the
theoretical peak performance rises by increasing the throughput of units for
Vicuna and adding more cores for T-CREST, the effective performance gain
is much higher for Vicuna than for the T-CREST platform. The diagonal
grid lines correspond to linear growth. 70

80

List of Tables

3.1 Execution Time Measurements of the State Estimation Algorithm 27
3.2 Execution Time Measurements of the Control Algorithm 28

4.1 Special Predicate-Defining Instructions . 40

5.1 Performance and timing predictability of parallel computer architectures . 53
5.2 Configurations of Vicuna for evaluation on a Xilinx 7 Series FPGA. Note that

for larger configurations, the maximum clock frequency decreases slightly as
these require more resources which complicates the routing process. . . . 64

81

Acronyms

AES Advanced Encryption Standard. 68

ASIC application-specific integrated circuit. 13

BLAS Basic Linear Algebra Subroutine. 63

CFG Control-Flow Graph. 32

DFT discrete Fourier transform. 68

ESC electronic speed controller. 23–26

FPGA Field-Programmable Gate Array. 22, 38, 55, 65, 66

GPU Graphics Processing Unit. 53–55

IoT Internet of Things. 68

ISA Instruction Set Architecture. 2, 4, 18, 21, 22, 29, 32, 38, 39, 41, 54–57, 67, 72

MAC multiply-accumulate. 64, 65

NoC network-on-chip. 9, 53

RISC Reduced Instruction Set Computer. 38, 39

SIMD single-instruction multiple-data. 51

STA Static Timing Analysis. 2, 4, 10–13, 17–19, 26, 28, 29

TDM time-division multiplexing. 67

WCET worst-case execution time. 2–5, 7, 9–21, 26, 28, 29, 41–46, 61, 63, 73, 75, 77

83

Bibliography

[1] AbsInt Angewandte Informatik GmbH: Supported targets for WCET analysis.
https://www.absint.com/ait/targets.htm. Accessed: 2022-03-28.

[2] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and
H. Arshad. State-of-the-art in artificial neural network applications: A survey.
Heliyon, 4(11):e00938, 2018. ISSN 2405-8440. doi:10.1016/j.heliyon.2018.e00938.

[3] Nios II Processor Reference Handbook. Altera Corporation, 2009.

[4] W. Amin, F. Hussain, S. Anjum, S. Khan, N. K. Baloch, Z. Nain, and S. W. Kim.
Performance evaluation of application mapping approaches for network-on-chip
designs. IEEE Access, 8:63607–63631, 2020. doi:10.1109/ACCESS.2020.2982675.

[5] J. Andersson, J. Gaisler, and R. Weigand. Next generation multipurpose micropro-
cessor, 2010.

[6] K. Andryc, M. Merchant, and R. Tessier. FlexGrip: A soft GPGPU for FPGAs.
In 2013 International Conference on Field-Programmable Technology (FPT), pages
230–237, Dec. 2013. doi:10.1109/FPT.2013.6718358.

[7] K. Asanovic. Vector Microprocessors. PhD thesis, University of California, Berkeley,
CA, USA, 1998.

[8] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,
P. Dabbelt, J. R. Hauser, A. M. Izraelevitz, S. Karandikar, B. Keller, D. Kim,
J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar, H. Mao, M. Moretó, A. J. Ou, D. A.
Patterson, B. C. Richards, C. Schmidt, S. Twigg, H. D. Vo, and A. Waterman. The
rocket chip generator. Technical Report UCB/EECS-2016-17, EECS Department,
University of California, Berkeley, Apr. 2016.

[9] M. Asavoae, B. B. Hedia, and M. Jan. Formal Executable Models for Auto-
matic Detection of Timing Anomalies. In F. Brandner, editor, 18th International
Workshop on Worst-Case Execution Time Analysis (WCET 2018), volume 63 of
OpenAccess Series in Informatics (OASIcs), pages 2:1–2:13, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-073-6.
doi:10.4230/OASIcs.WCET.2018.2.

85

https://www.absint.com/ait/targets.htm
https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1109/ACCESS.2020.2982675
https://doi.org/10.1109/FPT.2013.6718358
https://doi.org/10.4230/OASIcs.WCET.2018.2

[10] I. A. Assir, M. E. Iskandarani, H. R. A. Sandid, and M. A. R. Saghir. Arrow: A
RISC-V vector accelerator for machine learning inference, July 2021.

[11] C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Ingredients of operating
system correctness: Lessons learned in the formal verification of pikeos. 2010.

[12] S. F. Beldianu and S. G. Ziavras. Performance-energy optimizations for shared
vector accelerators in multicores. IEEE Transactions on Computers, 64(3):805–817,
2015. doi:10.1109/TC.2013.2295820.

[13] L. Benini and G. De Micheli. Networks on chip: a new paradigm for systems on chip
design. In Proceedings 2002 Design, Automation and Test in Europe Conference
and Exhibition, pages 418–419, 2002. doi:10.1109/DATE.2002.998307.

[14] J. L. Bentley and M. D. McIlroy. Engineering a sort function. Software—Practice
and Experience, 23:1249–1265, 1993.

[15] C. Berg, J. Engblom, and R. Wilhelm. Requirements for and design of a processor
with predictable timing. In L. Thiele and R. Wilhelm, editors, Perspectives Work-
shop: Design of Systems with Predictable Behaviour, number 03471 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2004. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany. URL
http://drops.dagstuhl.de/opus/volltexte/2004/5.

[16] G. Bernat, A. Colin, and S. Petters. Wcet analysis of probabilistic hard real-time
systems. In 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002., pages
279–288, 2002. doi:10.1109/REAL.2002.1181582.

[17] S. Byhlin, A. Ermedahl, J. Gustafsson, and B. Lisper. Applying static wcet
analysis to automotive communication software. In 17th Euromicro Conference on
Real-Time Systems (ECRTS’05), pages 249–258, 2005. doi:10.1109/ECRTS.2005.7.

[18] P. Castillo, R. Lozano, and A. E. Dzul. Modelling and Control of Mini-Flying
Machines. Springer, 2005.

[19] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini. Ara: A 1
GHz+ scalable and energy-efficient RISC-V vector processor with multi-precision
floating point support in 22 nm FD-SOI. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, PP:1–14, Dec. 2019. doi:10.1109/TVLSI.2019.2950087.

[20] T.-S. Chang, J.-I. Guo, and C.-W. Jen. Hardware-efficient dft designs with cyclic con-
volution and subexpression sharing. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, 47(9):886–892, 2000. doi:10.1109/82.868456.

[21] J. Cho, Y. Jung, D.-S. Kim, S. Lee, and Y. Jung. Moving object detection based on
optical flow estimation and a gaussian mixture model for advanced driver assistance
systems. Sensors, 19(14), 2019. ISSN 1424-8220. doi:10.3390/s19143217. URL
https://www.mdpi.com/1424-8220/19/14/3217.

86

https://doi.org/10.1109/TC.2013.2295820
https://doi.org/10.1109/DATE.2002.998307
http://drops.dagstuhl.de/opus/volltexte/2004/5
https://doi.org/10.1109/REAL.2002.1181582
https://doi.org/10.1109/ECRTS.2005.7
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/82.868456
https://doi.org/10.3390/s19143217
https://www.mdpi.com/1424-8220/19/14/3217

[22] C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S. Sant, and G. G. Lemieux.
VEGAS: Soft vector processor with scratchpad memory. In Proceedings of the
19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’11, page 15–24, New York, NY, USA, 2011. Association for Computing
Machinery. ISBN 9781450305549. doi:10.1145/1950413.1950420.

[23] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19:297–301, 1965. doi:10.1090/S0025-
5718-1965-0178586-1.

[24] D. Dabbelt, C. Schmidt, E. Love, H. Mao, S. Karandikar, and K. Asanovic. Vector
processors for energy-efficient embedded systems. In Proceedings of the Third
ACM International Workshop on Many-Core Embedded Systems, MES ’16, page
10–16, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450342629. doi:10.1145/2934495.2934497.

[25] J. Daemen and V. Rijmen. Aes proposal: Rijndael. 1999.

[26] M. Delvai, W. Huber, P. Puschner, and A. Steininger. Processor support for
temporal predictability - the spear design example. In 15th Euromicro Conference
on Real-Time Systems, 2003. Proceedings., pages 169–176, July 2003.

[27] J. Diaz, E. Ros, F. Pelayo, E. Ortigosa, and S. Mota. Fpga-based real-time optical-
flow system. IEEE Transactions on Circuits and Systems for Video Technology, 16
(2):274–279, 2006. doi:10.1109/TCSVT.2005.861947.

[28] B. Dinechin, D. Amstel, M. Poulhies, and G. Lager. Time-critical computing on a
single-chip massively parallel processor. pages 1–6, Mar. 2014. ISBN 9783981537024.
doi:10.7873/DATE.2014.110.

[29] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge.
Near-threshold computing: Reclaiming moore’s law through energy efficient
integrated circuits. Proceedings of the IEEE, 98(2):253–266, Jan. 2010.
doi:10.1109/JPROC.2009.2034764.

[30] P. S. Duggirala and M. Viswanathan. Analyzing real time linear control systems
using software verification. In 2015 IEEE Real-Time Systems Symposium, pages
216–226, 2015. doi:10.1109/RTSS.2015.28.

[31] E. Ebeid, M. Skriver, and J. Jin. A survey on open-source flight control platforms of
unmanned aerial vehicle. In 2017 Euromicro Conference on Digital System Design
(DSD), pages 396–402, Aug 2017. doi:10.1109/DSD.2017.30.

[32] S. A. Edwards and E. A. Lee. The case for the precision timed (pret) machine.
In Proceedings of the 44th Annual Design Automation Conference, DAC ’07, page
264–265, New York, NY, USA, 2007. Association for Computing Machinery. ISBN
9781595936271. doi:10.1145/1278480.1278545.

87

https://doi.org/10.1145/1950413.1950420
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1090/S0025-5718-1965-0178586-1
https://doi.org/10.1145/2934495.2934497
https://doi.org/10.1109/TCSVT.2005.861947
https://doi.org/10.7873/DATE.2014.110
https://doi.org/10.1109/JPROC.2009.2034764
https://doi.org/10.1109/RTSS.2015.28
https://doi.org/10.1109/DSD.2017.30
https://doi.org/10.1145/1278480.1278545

[33] S. A. Edwards, S. Kim, E. A. Lee, I. Liu, H. D. Patel, and M. Schoeberl. A
disruptive computer design idea: Architectures with repeatable timing. In 2009
IEEE International Conference on Computer Design, pages 54–59, 2009.

[34] G. A. Elliott and J. H. Anderson. Real-world constraints of GPUs in real-
time systems. In 2011 IEEE 17th International Conference on Embedded and
Real-Time Computing Systems and Applications, volume 2, pages 48–54, 2011.
doi:10.1109/RTCSA.2011.46.

[35] G. A. Elliott and J. H. Anderson. Globally scheduled real-time multiprocessor
systems with GPUs. Real-Time Systems, 48:34–74, 2012. doi:10.1007/s11241-011-
9140-y.

[36] G. A. Elliott, B. C. Ward, and J. H. Anderson. GPUSync: a framework for
real-time GPU management. In 2013 IEEE 34th Real-Time Systems Symposium,
pages 33–44, 2013. doi:10.1109/RTSS.2013.12.

[37] J. Engblom and B. Jonsson. Processor pipelines and their properties for static
wcet analysis. In A. Sangiovanni-Vincentelli and J. Sifakis, editors, Embedded
Software, pages 334–348, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
ISBN 978-3-540-45828-9.

[38] A. Ermedahl, J. Gustafsson, and B. Lisper. Experiences from Industrial WCET
Analysis Case Studies. In R. Wilhelm, editor, 5th International Workshop on
Worst-Case Execution Time Analysis (WCET’05), volume 1 of OpenAccess Series in
Informatics (OASIcs), Dagstuhl, Germany, 2007. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-939897-24-8. doi:10.4230/OASIcs.WCET.2005.811.
URL http://drops.dagstuhl.de/opus/volltexte/2007/811.

[39] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoe-
berl, R. B. Sørensen, P. Wägemann, and S. Wegener. TACLeBench: A benchmark
collection to support worst-case execution time research. In M. Schoeberl, editor,
16th International Workshop on Worst-Case Execution Time Analysis (WCET
2016), volume 55 of OpenAccess Series in Informatics (OASIcs), pages 2:1–2:10,
Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[40] C. Ferdinand and R. Heckmann. ait: Worst-case execution time prediction by
static program analysis. In R. Jacquart, editor, Building the Information Society,
pages 377–383, Boston, MA, 2004. Springer US. ISBN 978-1-4020-8157-6.

[41] M. J. Flynn. Some computer organizations and their effectiveness. IEEE Trans.
Comput., 21(9):948–960, Sept. 1972. ISSN 0018-9340. doi:10.1109/TC.1972.5009071.

[42] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle. Formal analysis of timing
effects on closed-loop properties of control software. In 2014 IEEE Real-Time
Systems Symposium, pages 53–62, 2014. doi:10.1109/RTSS.2014.28.

88

https://doi.org/10.1109/RTCSA.2011.46
https://doi.org/10.1007/s11241-011-9140-y
https://doi.org/10.1007/s11241-011-9140-y
https://doi.org/10.1109/RTSS.2013.12
https://doi.org/10.4230/OASIcs.WCET.2005.811
http://drops.dagstuhl.de/opus/volltexte/2007/811
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/RTSS.2014.28

[43] M. Frieb, R. Jahr, H. Ozaktas, A. Hugl, H. Regler, and T. Ungerer. A paralleliza-
tion approach for hard real-time systems and its application on two industrial
programs. Int. J. Parallel Program., 44(6):1296–1336, Dec. 2016. ISSN 0885-7458.
doi:10.1007/s10766-016-0432-7.

[44] M. Frustaci, P. Pace, G. Aloi, and G. Fortino. Evaluating critical security issues of
the iot world: Present and future challenges. IEEE Internet of Things Journal, 5
(4):2483–2495, 2018. doi:10.1109/JIOT.2017.2767291.

[45] Y. Goldberg. A primer on neural network models for natural language processing.
Journal of Artificial Intelligence Research, 57:345–420, 2016. doi:10.1613/jair.4992.

[46] H. H. Goldstine and J. von Neumann. Planning and coding of problems for an
electronic computing instrument. In John yon Neumann Collected Works, Volume
V: Design of Computers, Theory of Automata and Numerical Analysis, pages
152–214. Pergamon Press, Oxford, England, 1963.

[47] V. Golyanik, M. Nasri, and D. Stricker. Towards scheduling hard real-time image
processing tasks on a single GPU. In 2017 IEEE International Conference on
Image Processing (ICIP), pages 4382–4386, 2017. doi:10.1109/ICIP.2017.8297110.

[48] F. Guet, L. Santinelli, and J. Morio. On the Reliability of the Probabilistic Worst-
Case Execution Time Estimates. In 8th European Congress on Embedded Real
Time Software and Systems (ERTS 2016), TOULOUSE, France, Jan. 2016.

[49] J. Gustafsson. The worst case execution time tool challenge 2006. In Second Inter-
national Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (isola 2006), pages 233–240, 2006.

[50] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The mälardalen wcet
benchmarks: Past, present and future. In 10th International Workshop on Worst-
Case Execution Time Analysis (WCET 2010), volume 15, pages 136–146, 01 2010.
doi:10.4230/OASIcs.WCET.2010.136.

[51] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. Mibench: A free, commercially representative embedded benchmark
suite. In Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop, WWC ’01, page 3–14, USA, 2001. IEEE Computer Society.
ISBN 0780373154.

[52] S. Hahn and J. Reineke. Design and analysis of sic: A provably timing-predictable
pipelined processor core. In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 469–481, Dec. 2018. doi:10.1109/RTSS.2018.00060.

[53] S. Hahn, J. Reineke, and R. Wilhelm. Towards compositionality in execution
time analysis: Definition and challenges. SIGBED Rev., 12(1):28–36, Mar. 2015.
doi:10.1145/2752801.2752805.

89

https://doi.org/10.1007/s10766-016-0432-7
https://doi.org/10.1109/JIOT.2017.2767291
https://doi.org/10.1613/jair.4992
https://doi.org/10.1109/ICIP.2017.8297110
https://doi.org/10.4230/OASIcs.WCET.2010.136
https://doi.org/10.1109/RTSS.2018.00060
https://doi.org/10.1145/2752801.2752805

[54] S. Hahn, J. Reineke, and R. Wilhelm. Toward Compact Abstractions for Processor
Pipelines, pages 205–220. Springer International Publishing, Nov. 2015. ISBN
978-3-319-23505-9. doi:10.1007/978-3-319-23506-6_14.

[55] S. Hahn, M. Jacobs, and J. Reineke. Enabling compositionality for multicore timing
analysis. In Proceedings of the 24th International Conference on Real-Time Networks
and Systems, RTNS ’16, page 299–308, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450347877. doi:10.1145/2997465.2997471.

[56] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a time-triggered language
for embedded programming. Proceedings of the IEEE, 91(1):84–99, 2003.

[57] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321, July 1961.
ISSN 0001-0782. doi:10.1145/366622.366644.

[58] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 01 1962. ISSN
0010-4620. doi:10.1093/comjnl/5.1.10.

[59] G. Hoffman, H. Huang, S. L. Waslander, and C. J. Tomlin. Quadrotor helicopter
flight dynamics and control: Theory and experiment. In Conference of the American
Institute of Aeronautics and Astronautics, Aug 2007.

[60] G. Hoffmann, D. G. Rajnarayan, S. L. Waslander, D. Dostal, J. S. Jang,
and C. J. Tomlin. The Stanford testbed of autonomous rotorcraft for multi
agent control (STARMAC). In The 23rd Digital Avionics Systems Confer-
ence (IEEE Cat. No.04CH37576), volume 2, pages 12.E.4–121, Oct 2004.
doi:10.1109/DASC.2004.1390847.

[61] R. M. Hord. The Illiac IV: The First Supercomputer. Springer-Verlag Berlin
Heidelberg GmbH, 1982.

[62] M. Horowitz. Computing’s energy problem (and what we can do about it). In 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pages 10–14, Feb. 2014. doi:10.1109/ISSCC.2014.6757323.

[63] D. Jagger. Advanced RISC Machines Architecture Reference Manual. Prentice Hall,
1996. ISBN 978-0-13-736299-8.

[64] M. Jan, M. Asavoae, M. Schoeberl, and E. A. Lee. Formal semantics of predictable
pipelines: a comparative study. In 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 103–108, Jan. 2020. doi:10.1109/ASP-
DAC47756.2020.9045351.

[65] M. Johns and T. J. Kazmierski. A minimal risc-v vector processor for embedded
systems. In 2020 Forum for Specification and Design Languages (FDL), pages 1–4,
2020. doi:10.1109/FDL50818.2020.9232940.

90

https://doi.org/10.1007/978-3-319-23506-6_14
https://doi.org/10.1145/2997465.2997471
https://doi.org/10.1145/366622.366644
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1109/DASC.2004.1390847
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ASP-DAC47756.2020.9045351
https://doi.org/10.1109/ASP-DAC47756.2020.9045351
https://doi.org/10.1109/FDL50818.2020.9232940

[66] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati,
W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg,
A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. In-datacenter performance
analysis of a tensor processing unit. SIGARCH Comput. Archit. News, 45(2):1–12,
June 2017. ISSN 0163-5964. doi:10.1145/3140659.3080246.

[67] N. Kadri and M. Koudil. A survey on fault-tolerant application mapping techniques
for network-on-chip. Journal of Systems Architecture, 92:39 – 52, 2019. ISSN
1383-7621. doi:10.1016/j.sysarc.2018.10.001.

[68] G. Kane. MIPS RISC Architecture. Prentice-Hall, Inc., USA, 1988. ISBN
0135847494.

[69] J. Kim, R. R. Rajkumar, and S. Kato. Towards adaptive gpu resource manage-
ment for embedded real-time systems. SIGBED Rev., 10(1):14–17, Feb. 2013.
doi:10.1145/2492385.2492387.

[70] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood.
Sel4: Formal verification of an os kernel. In Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, SOSP ’09, page 207–220, New York,
NY, USA, 2009. Association for Computing Machinery. ISBN 9781605587523.
doi:10.1145/1629575.1629596. URL https://doi.org/10.1145/1629575.
1629596.

[71] P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In N. Koblitz, editor, Advances in Cryptology — CRYPTO
’96, pages 104–113, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. ISBN
978-3-540-68697-2.

[72] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. Springer Publishing Company, Inc., 2nd edition, 2011. ISBN 1441982361.

[73] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar, R. Riddle,
T. Shpeisman, N. Vasilache, and O. Zinenko. MLIR: Scaling compiler infrastructure
for domain specific computation. In Proceedings of the 2021 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO ’21, page 2–14.
IEEE Press, 2021. ISBN 9781728186139. doi:10.1109/CGO51591.2021.9370308.

91

https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1016/j.sysarc.2018.10.001
https://doi.org/10.1145/2492385.2492387
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1109/CGO51591.2021.9370308

[74] S. Law and I. Bate. Achieving appropriate test coverage for reliable measurement-
based timing analysis. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 189–199, July 2016. doi:10.1109/ECRTS.2016.21.

[75] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović, and K. Asanović.
A 45nm 1.3ghz 16.7 double-precision gflops/w risc-v processor with vector accelera-
tors. In ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC),
pages 199–202, Sept. 2014. doi:10.1109/ESSCIRC.2014.6942056.

[76] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro, 28(2):39–55, Mar. 2008. ISSN
0272-1732. doi:10.1109/MM.2008.31.

[77] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee. A pret microarchitecture
implementation with repeatable timing and competitive performance. In 2012
IEEE 30th International Conference on Computer Design (ICCD), pages 87–93,
2012. doi:10.1109/ICCD.2012.6378622.

[78] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi. A survey of deep
neural network architectures and their applications. Neurocomputing, 234:11–26,
2017. ISSN 0925-2312. doi:10.1016/j.neucom.2016.12.038.

[79] B. D. Lucas and T. Kanade. An iterative image registration technique with an
application to stereo vision. In Proceedings of the 7th International Joint Conference
on Artificial Intelligence - Volume 2, IJCAI’81, page 674–679, San Francisco, CA,
USA, 1981. Morgan Kaufmann Publishers Inc.

[80] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan. Estimation
of imu and marg orientation using a gradient descent algorithm. In 2011
IEEE International Conference on Rehabilitation Robotics, pages 1–7, June 2011.
doi:10.1109/ICORR.2011.5975346.

[81] S. A. Mahlke, R. E. Hank, J. E. McCormick, D. I. August, and W.-M. W. Hwu. A
comparison of full and partial predicated execution support for ilp processors. In
Proceedings of the 22nd Annual International Symposium on Computer Architecture,
ISCA ’95, page 138–150, New York, NY, USA, 1995. Association for Computing
Machinery. ISBN 0897916980.

[82] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote. Outstanding
research problems in noc design: System, microarchitecture, and circuit perspectives.
Trans. Comp.-Aided Des. Integ. Cir. Sys., 28(1):3–21, Jan. 2009. ISSN 0278-0070.
doi:10.1109/TCAD.2008.2010691.

[83] R. Meyer and K. Schwarz. Fft implementation on dsp-chips-theory and practice.
In International Conference on Acoustics, Speech, and Signal Processing, pages
1503–1506 vol.3, 1990. doi:10.1109/ICASSP.1990.115692.

92

https://doi.org/10.1109/ECRTS.2016.21
https://doi.org/10.1109/ESSCIRC.2014.6942056
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/ICCD.2012.6378622
https://doi.org/10.1016/j.neucom.2016.12.038
https://doi.org/10.1109/ICORR.2011.5975346
https://doi.org/10.1109/TCAD.2008.2010691
https://doi.org/10.1109/ICASSP.1990.115692

[84] S. Milutinovic, J. Abella, and F. J. Cazorla. On the assessment of probabilistic
WCET estimates reliability for arbitrary programs. EURASIP Journal on Embedded
Systems, 2017. ISSN 1687-3963. doi:10.1186/s13639-017-0076-8.

[85] T. Mitra. Time-predictable computing by design: Looking back, looking forward. In
Proceedings of the 56th Annual Design Automation Conference 2019, DAC ’19, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367257.
doi:10.1145/3316781.3323489.

[86] R. Mondal, H. Ngo, J. Shey, R. Rakvic, O. Walker, and D. Brown. Effi-
cient architecture design for the aes-128 algorithm on embedded systems. In
Proceedings of the 17th ACM International Conference on Computing Fron-
tiers, CF ’20, page 89–97, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450379564. doi:10.1145/3387902.3392624. URL
https://doi.org/10.1145/3387902.3392624.

[87] S. Morioka and A. Satoh. An optimized s-box circuit architecture for low power aes
design. In B. S. Kaliski, ç. K. Koç, and C. Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2002, pages 172–186, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg. ISBN 978-3-540-36400-9.

[88] R. Morones. Documentation for the esc, imu and arduino ide code for the computer
systems. 2013.

[89] S. Ovaska and O. Vainio. Predictive compensation of time-varying computing delay
on real-time control systems. IEEE Transactions on Control Systems Technology,
5(5):523–526, 1997. doi:10.1109/87.623038.

[90] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips.
GPU computing. Proceedings of the IEEE, 96:879–899, May 2008.
doi:10.1109/JPROC.2008.917757.

[91] K. Patsidis, C. Nicopoulos, G. C. Sirakoulis, and G. Dimitrakopoulos.
RISC-V2: A scalable RISC-V vector processor. In 2020 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages 1–5, Sept. 2020.
doi:10.1109/ISCAS45731.2020.9181071.

[92] M. Platzer and P. Puschner. A processor extension for time-predictable code
execution. In 2021 IEEE 24th International Symposium on Real-Time Distributed
Computing (ISORC), pages 34–42, 2021. doi:10.1109/ISORC52013.2021.00016.

[93] M. Platzer and P. Puschner. Vicuna: A Timing-Predictable RISC-V Vector
Coprocessor for Scalable Parallel Computation. In B. B. Brandenburg, ed-
itor, 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021), vol-
ume 196 of Leibniz International Proceedings in Informatics (LIPIcs), pages

93

https://doi.org/10.1186/s13639-017-0076-8
https://doi.org/10.1145/3316781.3323489
https://doi.org/10.1145/3387902.3392624
https://doi.org/10.1145/3387902.3392624
https://doi.org/10.1109/87.623038
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/ISCAS45731.2020.9181071
https://doi.org/10.1109/ISORC52013.2021.00016

1:1–1:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik. ISBN 978-3-95977-192-4. doi:10.4230/LIPIcs.ECRTS.2021.1. URL
https://drops.dagstuhl.de/opus/volltexte/2021/13932.

[94] R. Pop and S. Kumar. A survey of techniques for mapping and scheduling applica-
tions to network on chip systems. Jan. 2009.

[95] B. Pourmohseni, S. Wildermann, M. Glaß, and J. Teich. Hard real-time application
mapping reconfiguration for NoC-based many-core systems. Real-Time Systems,
55:433–469, 2019. doi:10.1007/s11241-019-09326-y.

[96] D. Prokesch, S. Hepp, and P. Puschner. A generator for time-predictable code. In
2015 IEEE 18th International Symposium on Real-Time Distributed Computing,
pages 27–34, April 2015. doi:10.1109/ISORC.2015.40.

[97] P. Puschner. Transforming execution-time boundable code into temporally pre-
dictable code. In Proceedings of the IFIP 17th World Computer Congress - TC10
Stream on Distributed and Parallel Embedded Systems: Design and Analysis of
Distributed Embedded Systems, DIPES ’02, page 163–172, NLD, 2002. Kluwer, B.V.
ISBN 1402071566. doi:10.1007/978-0-387-35599-3_17.

[98] P. Puschner. The single-path approach towards WCET-analysable software. In
IEEE International Conference on Industrial Technology, 2003, volume 2, pages
699–704 Vol.2, Dec 2003. doi:10.1109/ICIT.2003.1290740.

[99] P. Puschner. Experiments with wcet-oriented programming and the single-path
architecture. In 10th IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, pages 205–210, 2005.

[100] P. Puschner and A. Burns. Writing temporally predictable code. In Pro-
ceedings of the Seventh IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems. (WORDS 2002), pages 85–91, Jan 2002.
doi:10.1109/WORDS.2002.1000040.

[101] P. Puschner, R. Kirner, B. Huber, and D. Prokesch. Compiling for time pre-
dictability. In F. Ortmeier and P. Daniel, editors, Computer Safety, Reliability,
and Security, pages 382–391, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
ISBN 978-3-642-33675-1.

[102] S. Quinton, T. T. Bone, J. Hennig, M. Neukirchner, M. Negrean, and R. Ernst.
Typical worst case response-time analysis and its use in automotive network design.
In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
2014.

[103] G. V. Raffo, M. G. Ortega, and F. R. Rubio. Nonlinear H∞ controller for the
quad-rotor helicopter with input coupling. In 18th IFAC World Congress, volume 44,
pages 13834 – 13839, 2011. doi:https://doi.org/10.3182/20110828-6-IT-1002.02453.

94

https://doi.org/10.4230/LIPIcs.ECRTS.2021.1
https://drops.dagstuhl.de/opus/volltexte/2021/13932
https://doi.org/10.1007/s11241-019-09326-y
https://doi.org/10.1109/ISORC.2015.40
https://doi.org/10.1007/978-0-387-35599-3_17
https://doi.org/10.1109/ICIT.2003.1290740
https://doi.org/10.1109/WORDS.2002.1000040
https://doi.org/https://doi.org/10.3182/20110828-6-IT-1002.02453

[104] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and B. Becker.
A Definition and Classification of Timing Anomalies. In F. Mueller, editor, 6th
International Workshop on Worst-Case Execution Time Analysis (WCET’06),
volume 4 of OpenAccess Series in Informatics (OASIcs), Dagstuhl, Germany,
2006. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-03-
3. doi:10.4230/OASIcs.WCET.2006.671. URL http://drops.dagstuhl.de/
opus/volltexte/2006/671.

[105] Working draft of the proposed RISC-V V vector extension. RISC-V International,
Jan. 2021. URL https://github.com/riscv/riscv-v-spec. Version 0.10.

[106] R. M. Russell. The CRAY-1 computer system. Commun. ACM, 21(1):63–72, Jan.
1978. ISSN 0001-0782. doi:10.1145/359327.359336.

[107] P. K. Sahu and S. Chattopadhyay. A survey on application mapping strategies
for network-on-chip design. Journal of Systems Architecture, 59(1):60 – 76, 2013.
ISSN 1383-7621. doi:10.1016/j.sysarc.2012.10.004.

[108] S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. D. de Dinechin. The shift to
multicores in real-time and safety-critical systems. In 2015 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 220–
229, 2015. doi:10.1109/CODESISSS.2015.7331385.

[109] L. Santinelli, F. Guet, and J. Morio. Revising measurement-based probabilistic tim-
ing analysis. In 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 199–208, April 2017.

[110] P. D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand, and
L. Benini. Slow and steady wins the race? a comparison of ultra-low-power RISC-V
cores for internet-of-things applications. In 2017 27th International Symposium on
Power and Timing Modeling, Optimization and Simulation (PATMOS), pages 1–8,
Sept. 2017. doi:10.1109/PATMOS.2017.8106976.

[111] C. Schmidt, J. Wright, Z. Wang, E. Chang, A. Ou, W. Bae, S. Huang, V. Milo-
vanović, A. Flynn, B. Richards, K. Asanović, E. Alon, and B. Nikolić. An eight-core
1.44-ghz risc-v vector processor in 16-nm finfet. IEEE Journal of Solid-State
Circuits, pages 1–1, 2021. doi:10.1109/JSSC.2021.3118046.

[112] M. Schoeberl, P. Puschner, and R. Kirner. A single-path chip-multiprocessor
system. In S. Lee and P. Narasimhan, editors, Software Technologies for Embedded
and Ubiquitous Systems, pages 47–57, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg. ISBN 978-3-642-10265-3.

[113] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside,
K. Goossens, S. Goossens, S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jordan,
E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Puffitsch, P. Puschner, A. Rocha,

95

https://doi.org/10.4230/OASIcs.WCET.2006.671
http://drops.dagstuhl.de/opus/volltexte/2006/671
http://drops.dagstuhl.de/opus/volltexte/2006/671
https://github.com/riscv/riscv-v-spec
https://doi.org/10.1145/359327.359336
https://doi.org/10.1016/j.sysarc.2012.10.004
https://doi.org/10.1109/CODESISSS.2015.7331385
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/JSSC.2021.3118046

C. Silva, J. Sparsø, and A. Tocchi. T-CREST: Time-predictable multi-core archi-
tecture for embedded systems. Journal of Systems Architecture, 61(9):449–471,
2015. ISSN 1383-7621. doi:10.1016/j.sysarc.2015.04.002.

[114] D. Sehlberg, A. Ermedahl, J. Gustafsson, B. Lisper, and S. Wiegratz. Static WCET
analysis of real-time task-oriented code in vehicle control systems. In Second Inter-
national Symposium on Leveraging Applications of Formal Methods, Verification
and Validation (isola 2006), pages 212–219, Nov 2006. doi:10.1109/ISoLA.2006.63.

[115] E. Seligman, T. Schubert, and M. V. A. K. Kumar. Formal Verification: An
Essential Toolkit for Modern VLSI Design. Morgan Kaufmann, Boston, 2015. ISBN
978-0-12-800727-3. doi:10.1016/C2013-0-18672-2.

[116] A. Severance and G. Lemieux. VENICE: A compact vector processor for FPGA
applications. In 2011 IEEE Hot Chips 23 Symposium (HCS), pages 1–5, 2011.
doi:10.1109/HOTCHIPS.2011.7477515.

[117] A. Severance and G. Lemieux. Embedded supercomputing in FPGAs with the
vectorblox MXP matrix processor. In 2013 International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), pages 1–10, 2013.
doi:10.1109/CODES-ISSS.2013.6658993.

[118] K. Seyid, A. Richaud, R. Capoccia, and Y. Leblebici. Block matching
based real-time optical flow hardware implementation. In 2016 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), pages 2206–2209, 2016.
doi:10.1109/ISCAS.2016.7539020.

[119] A. K. Singh, P. Dziurzanski, H. R. Mendis, and L. S. Indrusiak. A survey and
comparative study of hard and soft real-time dynamic resource allocation strategies
for multi-/many-core systems. ACM Comput. Surv., 50(2), Apr. 2017. ISSN
0360-0300. doi:10.1145/3057267.

[120] S. Srinivasan, P. Janedula, S. Dhoble, S. Avancha, D. Das, N. Mellempudi, B. Daga,
M. Langhammer, G. Baeckler, and B. Kaul. High performance scalable FPGA
accelerator for deep neural networks, 2019. URL https://arxiv.org/abs/
1908.11809.

[121] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker. The arm
scalable vector extension. IEEE Micro, 37(2):26–39, Mar. 2017. ISSN 0272-1732.
doi:10.1109/MM.2017.35.

[122] L. Thiele and R. Wilhelm. Design for timing predictability. Real-Time Systems,
28:157 – 177, 2004. doi:10.1023/B:TIME.0000045316.66276.6e.

96

https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1109/ISoLA.2006.63
https://doi.org/10.1016/C2013-0-18672-2
https://doi.org/10.1109/HOTCHIPS.2011.7477515
https://doi.org/10.1109/CODES-ISSS.2013.6658993
https://doi.org/10.1109/ISCAS.2016.7539020
https://doi.org/10.1145/3057267
https://arxiv.org/abs/1908.11809
https://arxiv.org/abs/1908.11809
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1023/B:TIME.0000045316.66276.6e

[123] T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quiñones,
M. Gerdes, M. Paolieri, J. Wolf, H. Cassé, S. Uhrig, I. Guliashvili, M. Hous-
ton, F. Kluge, S. Metzlaff, and J. Mische. Merasa: Multicore execution of hard
real-time applications supporting analyzability. IEEE Micro, 30(5):66–75, 2010.
doi:10.1109/MM.2010.78.

[124] T. Ungerer, C. Bradatsch, M. Frieb, F. Kluge, J. Mische, A. Stegmeier, R. Jahr,
M. Gerdes, P. Zaykov, L. Matusova, Z. J. J. Li, Z. Petrov, B. Böddeker, S. Kehr,
H. Regler, A. Hugl, C. Rochange, H. Ozaktas, H. Cassé, A. Bonenfant, P. Sainrat,
N. Lay, D. George, I. Broster, E. Quiñones, M. Panic, J. Abella, C. Hernandez,
F. Cazorla, S. Uhrig, M. Rohde, and A. Pyka. Parallelizing industrial hard real-time
applications for the parmerasa multicore. ACM Trans. Embed. Comput. Syst., 15
(3), May 2016. ISSN 1539-9087. doi:10.1145/2910589.

[125] N. Vasilache, O. Zinenko, A. J. C. Bik, M. Ravishankar, T. Raoux, A. Belyaev,
M. Springer, T. Gysi, D. Caballero, S. Herhut, S. Laurenzo, and A. Cohen. Com-
posable and modular code generation in MLIR: A structured and retargetable
approach to tensor compiler construction. 2022. doi:10.48550/ARXIV.2202.03293.

[126] A. Waterman and K. Asanovic. The RISC-V Instruction Set Manual: User-Level
ISA. CS Division, EECS Department, University of California, Berkeley, CA, USA,
June 2019.

[127] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anomalies
in superscalar processors. In Fifth International Conference on Quality Software
(QSIC’05), pages 295–303, 2005. doi:10.1109/QSIC.2005.49.

[128] I. Wenzel, R. Kirner, B. Rieder, and P. Puschner. Measurement-based timing
analysis. Communications in Computer and Information Science, 17:430–444, 10
2008. doi:10.1007/978-3-540-88479-8_30.

[129] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-
lat, and P. Stenström. The worst-case execution-time problem—overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst., 7(3), May 2008. ISSN
1539-9087. doi:10.1145/1347375.1347389.

[130] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand.
Memory hierarchies, pipelines, and buses for future architectures in time-critical
embedded systems. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 28(7):966–978, 2009. doi:10.1109/TCAD.2009.2013287.

[131] J. C. Wright, C. Schmidt, B. Keller, D. P. Dabbelt, J. Kwak, V. Iyer, N. Mehta,
P.-F. Chiu, S. Bailey, K. Asanović, and B. Nikolić. A dual-core risc-v vector
processor with on-chip fine-grain power management in 28-nm fd-soi. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 28(12):2721–2725, 2020.
doi:10.1109/TVLSI.2020.3030243.

97

https://doi.org/10.1109/MM.2010.78
https://doi.org/10.1145/2910589
https://doi.org/10.48550/ARXIV.2202.03293
https://doi.org/10.1109/QSIC.2005.49
https://doi.org/10.1007/978-3-540-88479-8_30
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1109/TCAD.2009.2013287
https://doi.org/10.1109/TVLSI.2020.3030243

[132] G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng. Vpqc: A
domain-specific vector processor for post-quantum cryptography based on risc-v
architecture. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(8):
2672–2684, Apr. 2020. doi:10.1109/TCSI.2020.2983185.

[133] P. Yiannacouras, J. G. Steffan, and J. Rose. VESPA: Portable, scalable, and flexible
FPGA-based vector processors. In Proceedings of the 2008 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, CASES ’08, page
61–70, New York, NY, USA, 2008. Association for Computing Machinery. ISBN
9781605584690. doi:10.1145/1450095.1450107.

[134] J. Yu, G. Lemieux, and C. Eagleston. Vector processing as a soft-core CPU
accelerator. In Proceedings of the 16th International ACM/SIGDA Sympo-
sium on Field Programmable Gate Arrays, FPGA ’08, page 222–232, New York,
NY, USA, 2008. Association for Computing Machinery. ISBN 9781595939340.
doi:10.1145/1344671.1344704.

[135] F. Zaruba and L. Benini. The cost of application-class processing: Energy and
performance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi
technology. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
27(11):2629–2640, Nov 2019. ISSN 1557-9999. doi:10.1109/TVLSI.2019.2926114.

[136] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee. Flexpret: A processor
platform for mixed-criticality systems. In 2014 IEEE 19th Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), pages 101–110, 2014.
doi:10.1109/RTAS.2014.6925994.

[137] A. Zulu and S. John. A review of control algorithms for autonomous quadro-
tors. In Open Journal of Applied Sciences, number 4, pages 547–556, Sep 2014.
doi:10.4236/ojapps.2014.414053.

98

https://doi.org/10.1109/TCSI.2020.2983185
https://doi.org/10.1145/1450095.1450107
https://doi.org/10.1145/1344671.1344704
https://doi.org/10.1109/TVLSI.2019.2926114
https://doi.org/10.1109/RTAS.2014.6925994
https://doi.org/10.4236/ojapps.2014.414053

	Kurzfassung
	Abstract
	Contents
	Introduction
	WCET Analysis and Timing-Predictable Computer Architectures
	Timing-Predictable Computer Architectures
	WCET Analysis
	Considerations

	A Timing-Predictable Real-Time Application
	Mitigating response time variability in real-time control systems
	Single-Path Paradigm
	System Description
	Evaluation
	Findings

	Making COTS Processors Timing-Predictable
	Single-Path Filter
	Filter Implementation
	Implementation details
	Evaluation
	Limitations of Single-Path Code
	Findings

	A Vector Coprocessor for Data-Parallel Real-Time Workloads
	Parallel Processing Architectures
	RISC-V Vector Extension
	Architecture
	Timing Predictability
	Performance Evaluation
	Application Benchmarks
	Findings

	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

