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Abstract

Increasing decentralized electricity generation by distributed on-site photo-
voltaic (PV) systems and the amendment of regulatory frameworks in many
countries promote the active participation of prosumers in the energy sys-
tem. This thesis contributes to this topic by proposing both a peer-to-peer
trading concept and a concept for dynamic participation in an energy com-
munity. A linear program optimizes peer-to-peer trading between prosumers
of a local energy community with PV systems and battery energy storage
systems (BESSs) by maximizing the community’s welfare. Community mem-
bers are characterized by their individual willingness-to-pay, which reflects
their ambitions to reduce emissions from electricity consumption. For dy-
namic participation, a bi-level optimization model determines the optimal
parameters of possible new participants based on the environmental or eco-
nomic preferences of the community’s original members. Next, the model
is extended to a stochastic dynamic program to select new members. The
community wants to plan a few years ahead, which includes the following un-
certainties: (i) which members are leaving after each period, and (ii) which
are the potential new members willing to join the community. The focus lies
on the contractual design between the energy community and new entrants;
the model calculates the duration of contracts endogenously. The results of a
case study show improvements in the overall profitability of PV systems and
BESSs and that willingness-to-pay is a promising tool to save emissions from
electricity consumption. The results of dynamic participation demonstrate
that environment-oriented prosumers opt for a new prosumer with high PV
capacities installed and low electricity demand, whereas profit-oriented pro-
sumers prefer a new member with high demand but no PV system capacity,
presenting a new source of income. Sensitivity analyses indicate that new
prosumers’ willingness-to-pay has an important influence when the commu-
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Abstract

nity must decide between two new members. The last set of results shows a
sample energy community’s decision-making process over a horizon of several
years comparing the stochastic approach with a simple deterministic alter-
native solution.
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Kurzfassung

Zunehmende dezentrale Stromerzeugung durch Vor-Ort Photovoltaikanla-
gen (PV) und Änderungen der regulatorischen Rahmenbedingungen in vie-
len Ländern fördern die aktive Beteiligung von Prosumern am Energiesys-
tem. Diese Arbeit leistet einen Beitrag zu dem Thema, indem ein Peer-to-
Peer-Handelskonzept und ein Konzept für die dynamische Teilnahme an En-
ergiegemeinschaften entwickelt werden. Ein lineares Programm optimiert den
Peer-to-Peer-Handel zwischen Prosumern einer lokalen Energiegemeinschaft
mit PV-Anlagen und Batterie-Energiespeichersystemen (BESS) durch Max-
imierung der Wohlfahrt der Gemeinschaft. Die Mitglieder der Energiegemein-
schaft werden durch ihre individuelle Zahlungsbereitschaft charakterisiert, die
ihre Ambitionen zur Reduzierung der Emissionen aus dem Stromverbrauch
widerspiegelt. Für eine dynamische Beteiligung bestimmt ein Bi-Level Op-
timierungsmodell die optimalen Parameter möglicher neuer Teilnehmer auf
der Grundlage der ökologischen oder wirtschaftlichen Präferenzen der ur-
sprünglichen Mitglieder der Gemeinschaft. Anschließend wird das Modell
auf ein stochastisches dynamisches Programm zur Auswahl neuer Mitglieder
erweitert. Die Gemeinschaft möchte einige Jahre im Voraus planen, was die
folgenden Unsicherheiten beinhaltet: (i) welche Mitglieder nach jeder Periode
ausscheiden und (ii) welches die potenziellen neuen Mitglieder sind, die bereit
sind, der Gemeinschaft beizutreten. Der Schwerpunkt liegt auf der Vertrags-
gestaltung zwischen der Energiegemeinschaft und den neuen Mitgliedern; das
Modell berechnet die Dauer der Verträge endogen. Die Ergebnisse einer
Fallstudie zeigen, dass die Gesamtrentabilität von PV-Anlagen und BESS
verbessert wird und dass die Zahlungsbereitschaft ein vielversprechendes In-
strument zur Einsparung von Emissionen aus dem Stromverbrauch ist. Die
Ergebnisse der dynamischen Beteiligung zeigen, dass umweltorientierte Pro-
sumer sich für einen neuen Prosumer mit hohen PV-Kapazitäten und geringer
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Kurzfassung

Stromnachfrage entscheiden, während gewinnorientierte Prosumer ein neues
Mitglied mit hoher Nachfrage, aber ohne eigene PV-Anlagenkapazität bevorzu-
gen, was eine neue Einkommensquelle darstellt. Sensitivitätsanalysen zeigen,
dass die Zahlungsbereitschaft der neuen Prosumenten einen wichtigen Ein-
fluss hat, wenn sich die Gemeinschaft zwischen zwei neuen Mitgliedern entschei-
den muss. Die letzte Reihe von Ergebnissen zeigt den Entscheidungsprozess
einer beispielhaften Energiegemeinschaft über einen Zeitraum von mehreren
Jahren und vergleicht den stochastischen Ansatz mit einer einfachen deter-
ministischen Alternativlösung.
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PV Photovoltaic
BESS Battery energy storage system
SoC State of charge (of an energy storage system)
EV Electric vehicle
DER Distributed energy resources
GHG Greenhouse gas
SME Small-to-medium sized enterprise
SH Single house
SAB Small apartment building
DA Day-Ahead (market)
DSO Distribution system operator
EU European Union
REC Renewable Energy Community
CEC Citizen Energy Community
EAG Erneuerbaren Ausbaugesetz
REDII Recast Renewable Energy Directive
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LP Linear program
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MCP mixed complementarity problem
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1. Introduction

1.1. Motivation

The transformation of the energy sector toward sustainability is a significant
and important challenge for today’s society and the following generations, as
the energy sector is a main driver for climate change. The Intergovernmental
Panel on Climate Change (IPCC) has advised that to combat the impacts
of global warming, greenhouse gas (GHG) emissions must be substantially
reduced (Masson-Delmotte et al. (2018)). Globally, most of the energy used
for electricity, heating and cooling, transport, and in the industry sector is
generated by the combustion of fossil fuels, such as oil, natural gas, and
coal. Switching to renewable primary energy is a major part of the solution
toward sustainability. The electricity system plays an important role in this
transformation. Due to sector coupling, other sectors such as transport will
be increasingly electrified, which will lead to a high degree of electrification
in the future. Therefore, electricity generation from renewable sources is
key. In addition to the generation of hydro power, it is anticipated that
a large share will be provided by wind and photovoltaic (PV) generation
(IEA World Energy Outlook 2018 International Energy Agency (2018)). PV
electricity generation on a ground-mounted utility scale and via building
attached/-integrated PV systems has become increasingly prevalent in recent
years. Notably, on-site PV electricity generation in the building environment
accelerates the transition from a centralized energy system to a sustainable,
decentralized, and local one.

Decentralized electricity production creates an opportunity for consumers
such as households or small businesses to become producers at the same time
(called prosumers) and thereby become active participants in the energy sys-
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1. Introduction

tem. Especially with PV, it is relatively easy for prosumers to simultaneously
produce and consume local renewable energy. Because a single prosumer is
only a very small player in the system, a step forward for prosumers is to
collectively organize themselves in so-called energy communities, where mem-
bers have the opportunity to share or trade electricity with each other, and
take advantage of load aggregation to further optimize the use of resources
(Frieden et al. (2019)). There are different settings, in which PV generated
electricity can be shared among prosumers. In multi-apartment buildings,
tenants can share generation from a joint PV system. Furthermore, a mi-
crogrid is well suited to share (or to trade) locally generated electricity with
other parties connected to the microgrid. In a more virtual way, renewable
energy communities and citizen energy communities allow their participants
to share electricity without necessarily being restricted to physical proxim-
ity.

The objectives of energy community members are mostly to increase their
economic benefits and to contribute to climate change mitigation (Soeiro
and Dias (2020b) and Bauwens (2019)). Hence, a fair pricing mechanism and
trust in the community are crucial in this aspect. Furthermore, peer-to-peer
trading and energy communities are opportunities to create new sustainable
business models (F.G. Reis et al. (2021)). There are also opportunities
to form local, decentralized electricity markets (Doumen et al. (2021) and
Capper et al. (2022)). A common trading approach in scientific literature
is peer-to-peer trading, where participants directly buy and sell electricity
from/to their "peers" (Bjarghov et al. (2021), Sousa et al. (2019), and Tushar
et al. (2021)). Peer-to-peer trading allows participants to increase their con-
sumption of locally generated clean energy and to increase flexibility.

The importance of sustainable energy communities is growing, and the Eu-
ropean Union’s Clean Energy Package Directorate-General for Energy (Eu-
ropean Commission) (2019) explicitly mentions energy communities, and ac-
knowledges their great potential. The Recast Renewable Energy Directive
(REDII, see European Commission, 2018) paves the way to enable renewable
energy communities (REC). The therein defined measures will lead to higher
acceptance and a better establishment of energy communities in the future,
which means not only that the formation of energy communities is facilitated
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1. Introduction

and that entry barriers are reduced, but also that stabilization, medium-
and long-term developments, and selection processes in energy communities
should be better understood. When transitioning toward a world with a high
share of renewables, it can be assumed that local electricity markets, such
as peer-to-peer trading or pool markets, are more established and sufficient
regulatory framework exists.

This thesis focuses on energy communities that go beyond the meter and are
not limited to a closed system boundary, such as a multi-apartment building
or microgrid. Instead, the participants are located in different buildings,
and they match and trade their PV generation and demand profiles via a
local public distribution grid. However, it is necessary for the matching
and trading algorithm to be governed by certain specifications and detailed
rules. In the sense of "energy democratization," participation in an energy
community occurs on a voluntary basis, and different incentives are offered
to prosumers to entice them to join. In this respect, such incentives are
reflected in the individual willingness-to-pay of each prosumer: the stronger
the preference to buy local PV generation, the higher the willingness-to-pay.
A model is developed in this thesis that optimizes peer-to-peer trading in
an energy community while respecting the willingness-to-pay for local PV
generation of individual prosumers. The aim of the energy community is
not self-sufficiency, as the members of the community are connected to the
public grid and they still purchase part of their electricity from the retailer.
Instead, the aim of the energy community is to optimally use the resources
and thus sustain without requiring any governmental financial support or
subsidies. Furthermore, the analyses of this thesis consider existing energy
communities wherein a community manager selects optimal new participants
for the community in order to maximize benefits of its members.

1.2. Research questions

This thesis aims to answer three research questions related to energy com-
munities. This Section describes each of the research questions in detail and
then provides an overview on the relation between the research questions, as
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1. Introduction

illustrated in Figures 1.1 and 1.2.

The core objective of this thesis is the evaluation of local energy communities
with peer-to-peer trading and their development over time when members
(prosumers) leave the community or new potential members would like to
join. Therefore, from the community’s point of view, optimal decisions for
the selection of new participants have to be made. The objective of this thesis
is addressed in three contributions.

In the first contribution of this thesis (Perger et al. (2021)), a linear program
to optimally distribute PV generated electricity in an energy community
using a peer-to-peer trading approach is developed to answer the first research
question.

Research question 1: How can a peer-to-peer trading approach in energy
communities take into account prosumers’ individual preferences for saving
emissions caused by electricity consumption?

The research question is aimed to be answered using a linear optimization
problem with the objective to maximize community welfare. On one hand,
welfare measures how much the community self-consumes its own generation,
and on the other hand it measures how generation is distributed amongst
members. We consider individual willingness-to-pay of prosumers, which
reflect the prosumers’ ambitions to reduce emissions from the grid, in the
objective to maximize welfare of the community.

The second and third contributions are based on the first contribution and
both contributions cover the selection process of energy communities search-
ing for new members. The second contribution (Perger and Auer (2022))
addresses the second research question.

Research question 2: How would an existing energy community collec-
tively choose an optimal new member/prosumer to engage in peer-to-peer
trading?

The core objective of the second contribution is to investigate and optimize
energy communities, wherein prosumers trade self-generated PV electricity
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1. Introduction

with one another (peer-to-peer trading), including members’ entry and exit
over time. With the model developed in Perger and Auer (2022), it is pos-
sible to (i) choose between different prosumers, and (ii) choose the desired
parameters of a new prosumer.

The third research question in addressed in the third contribution (Perger
et al. (2022)).

Research question 3: Does knowledge of future developments in energy
communities help a community manager make better decisions selecting new
participants than without considering future developments?

The core objective of the third contribution is to optimize the selection pro-
cess of an energy community over a period of several years including stochas-
tic information. The decision of a community manager considers a portfolio
of possible new entrants to the community, who might or might not join in
the future. A stochastic dynamic optimization model is developed to answer
research question three.

Now that the three research questions that comprise this thesis have been
defined, we want to take a closer look on the relation between the research
questions. Research question one only considers static energy communities.
We look at a certain time frame (one year), where the set-up of community
members does not change, and optimize PV sharing within the community.
PV generation and electricity demand profiles vary hourly over a whole year.
With research question two, we start to consider dynamic energy communi-
ties. In the following year, the energy community is faced with the exit of
some existing members and the (possible) entry of new members, on whose
acceptance or rejection into the community a decision is made. Research
question two extends research question one in two dimensions: time scale
and variation of members, see Figure 1.1. The third research question is in
its way an extension of the second research question. We consider a longer
time horizon (up to five years instead of one year), and a larger portfolio of
possible prosumers.

Figure 1.2 shows how the research questions are related from a methodological

6
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Research question 1:
• Static participation
• No exit/entry of members
• Time scale: one year
• Optimal trading between 

members according to 
individual willingness-to-pay

• Maximize community welfare

Research question 3:
• Dynamic participation
• Portfolio of 20 potential 

members 
• Include exit of members 

into calculation
• Time scale: planning five 

years ahead
• Minimize annual 

emissions of existing 
members 

Research question 2:
• Dynamic participation
• Portfolio of two potential 

members 
• Fixed number of new members
• Time scale: planning one year 

ahead
• Trade-off between cost- and 

emission minimum (Pareto 
optimum)

𝑡𝑡 = 0 𝑡𝑡 = 1 𝑡𝑡 = 𝑁𝑁

Figure 1.1.: Connection of the research questions from an energy economics point of view
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wwiitthh  ffoorreeccaasstt

Research question 1 Research question 2 Research question 3

OOppttiimmaall  aallllooccaattiioonn  ooff  ppeeeerr--ttoo--ppeeeerr  
ttrraaddiinngg

• Objective:
• Maximize community welfare

• Static approach over one year 
(no changes of members)

• PV sharing under consideration 
of individual willingness-to-pay

• Constraints:
• Demand and PV generation 

covered
• Battery storage operation

OOppttiimmaall  sseelleeccttiioonn  ooff  ffiixxeedd  nnuummbbeerr  
ooff  ppaarrttiicciippaannttss

• Upper-level objective: 
• Minimize cost-emission 

function
• Lower-level objective: 

• Maximize community welfare
• Number of members fixed
• Choose optimal parameter of 

new members
• Preference between costs and 

emissions (Pareto optimization)

OOppttiimmaall  sseelleeccttiioonn  ooff  aannyy  nnuummbbeerr  ooff  
ppaarrttiicciippaannttss  ccoonnssiiddeerriinngg  ffoorreeccaasstt

• Upper-level objective: 
• Minimize emissions over several 

years
• Lower-level objective: 

• Maximize community welfare
• No fixed number of members
• Look-ahead policy: 

• Includes planning horizon of 5 
years and scenarios

Figure 1.2.: Connection of the research questions from a methodological point of view (evo-
lution of the method)

point of view. The linear program that was developed to answer research
question one is the basis of the following modeling extensions: a bi-level
model for research question two and a stochastic optimization for research
question three. Chapter 3 explains the methods in detail.

1.3. Structure of the thesis

The remainder of this thesis is structures as follows: Chapter 2 presents a
comprehensive literature review on energy communities and local electricity
markets. The Chapter starts with definitions and regulatory aspects of en-
ergy communities, followed by reviews of state-of-the-art energy community
modeling, stochastic optimization, and participation in energy communities
from social and regulatory perspective. Progress beyond state-of-the-art con-
cludes the Chapter.

Chapter 3 describes the methods applied to answer the research questions:
linear program, bi-level model, and stochastic program. Each method is de-

8



1. Introduction

scribed in a dedicated section starting with overview on the problem followed
by detailed mathematical formulation and nomenclature.

The presentation of results is divided into two parts: results of static partici-
pation (Chapter 4) and results of dynamic participation (Chapter 5). Chap-
ter 4 presents results outlined by the first research question. A case study is
set-up and results of different use cases and sensitivity analyses are shown.

Chapter 5 presents results outlined by the second and third research question.
Similar to Chapter 4, case studies are set-up for each research question. The
results for different scenarios of dynamic participation in energy communities
are shown.

Overall findings with respect to research questions and synthesis of results
is presented in Chapter 6. The last Chapter 7 completes the thesis with
conclusions and outlook.

9



2. State-of-the-art and progress
beyond

This Chapter provides a review and discussion of recent, relevant scientific lit-
erature regarding energy communities and peer-to-peer trading. The chapter
starts with an introduction and definition of energy communities in Section
2.1. Next, Section 2.2 provides a discussion of recent scientific literature
relevant to modeling of energy communities and peer-to-peer trading. The
Section concludes with an overview on practical, real-life peer-to-peer trad-
ing implementations. Section 2.3 covers participation and contracts in energy
communities from social and policy point of view. This Chapter concludes
with the thesis’ contribution to the progress beyond state-of-the-art in Sec-
tion 2.4.

2.1. Energy communities versus microgrids

In Europe, a legal framework has recently been set by the European Commis-
sion’s Clean Energy Package that promotes active consumer and prosumer
participation, self-consumption, and energy communities (see Directorate-
General for Energy (European Commission) (2019)).1 The European Com-
mission introduced the legal terms Renewable Energy Community (REC) and
Citizen Energy Community (CEC) in the 2018 Recast Renewable Energy Di-
rective (REDII, see European Commission, 2018) and the 2019 Electricity
Directive (ED, see European Commission (2019)), respectively. Both REC

1The related regulatory frameworks of different EU countries are presented in Campos
et al. (2020).
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2. State-of-the-art and progress beyond

and CEC are legal entities, where members are private persons, small busi-
nesses, or local institutions, and participation is on an open and voluntary
basis. Both RECs and CECs should offer environmental, economic, or so-
cial benefits for the community, and they do not primarily promote financial
profits. For the main differences between RECs and CECs, please refer to
Urbantschitsch (2020) and COMPILE (2019).

The concept of an energy community is fundamentally different to the concept
of a microgrid. A microgrid is a physical distribution grid, or a defined part
of a distribution grid, and all connected consumers and producers are part
of the microgrid. A microgrid is part of the distribution grid, but it can still
be “disconnected and independently operated” (see Rakos et al. (2012)). Ali
et al. (2017) investigate the policies, incentives, and barriers associated with
microgrids in the EU, US, and China, and further definitions, state-of-the-
art, and case studies are found in Hossain et al. (2014), Hirsch et al. (2018),
and Mohseni and Moghaddas-Tafreshi (2018).

In contrast, an energy community is not necessarily physically constrained to
a certain area, and participation is on a voluntary basis. Literature provides
different definitions of energy communities. For example, Gui and MacGill
(2018) provide a very broad definition of an energy community as a social
structure that has the primary goal of ensuring a cleaner energy supply,
and the context may also be extended to water, transportation, and waste
management. Gui and MacGill (ibid.) also introduce several concepts and
typologies relating to energy communities, such as community-scale energy
projects, virtual power plants (VPPs), peer-to-peer trading, and integrated
community energy systems (ICES).

This thesis focuses on energy communities, where proximity between mem-
bers is important on the one hand, but on the other hand, an energy com-
munity is not restricted to a certain neighborhood, and participation is on
a voluntary basis. The technology portfolio includes photovoltaic systems
(PV) and battery energy storage systems (BESS).

11
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2.2. Energy communities modeling and
implementations

2.2.1. PV sharing and energy communities

With a reduction in (or phasing out of) subsidized feed-in tariffs in many
countries, it is necessary to increase the self-consumption of PV generated
electricity to ensure that PV systems are still profitable. The load aggrega-
tion of multiple prosumers could therefore further increase profitability, and
tenant electricity models play a key role in this respect. Fina et al. (vol. 2018)
analyze sharing generated PV in multi-apartment buildings, and Roberts et
al. (2019a) compare different arrangements, with the aim of maximizing the
value of PV in apartment buildings. Then, Roberts et al. (2019b) evaluate
the impact of using a shared battery energy storage system (BESS) in apart-
ment buildings. Both a welfare maximization and a game-theoretic model
for PV sharing in a multi-apartment building are developed in Fleischhacker
et al. (2019), and multi-objective optimization for retrofitting an apartment
(building including rooftop PV systems) is modeled in Fan and Xia (2017).

To go beyond a single buildings (and therefore beyond the meter), energy com-
munities and peer-to-peer trading play a major role in managing the assets of
distributed energy resources (DERs). Lüth et al. (2018) analyze battery flex-
ibility in communities of prosumers and consumers, and Taşcıkaraoğlu (2018)
analyzes shared energy storage in neighborhood networks. Furthermore, the
study of Zepter et al. (2019) develops an interface to integrate communities
of small prosumers into the day-ahead and intraday markets. Energy com-
munities are very diverse, and their sizes, the number of actors involved, and
the rules of sharing electricity are not standardized. In Abada et al. (2020),
the viability of energy communities is shown to strongly depend on the rules
for sharing electricity among the members.

Sharing electricity within a community has a higher potential to reduce GHG
emissions than prosumers who act individually, as shown in Schram et al.
(2019a). Schram et al. (ibid.) also calculate the greenhouse gas reduction
in Austria, Belgium, France, Germany, Italy, the Netherlands, Portugal and
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Spain due to the deployment of energy communities. Radl et al. (2020)
compare the profitability of PV sharing in renewable energy communities
across certain European countries. Collecting empirical evidence from four
European countries, Wierling et al. (2018) found that energy cooperatives
play an important role as enablers of the energy transition; however, they
rely on governmental support to be competitive in the markets.

A net present value maximization for PV sharing in energy communities is
performed in Fina et al. (2019) for four characteristic settlement patterns in
Austria. Based on this, Fina et al. (2020) then find the cost-optimal potential
of energy communities in Austria as a whole. Building on different scenarios
for the European energy system in 2030, Zwickl-Bernhard and Auer (2021)
analyze the potential influence of local energy communities on the national
energy system of three reference countries. The effects of energy communi-
ties on the European electricity and heating system are analyzed in Backe
et al. (2022), who found that the large scale roll-out of energy communi-
ties across Europe causes less capacity expansion across Europe and storage
capacity expansion is decreased. Also, generation capacity expansion shifts
from building heating capacity towards electricity production capacity.

2.2.2. Peer-to-peer trading models in literature

A comprehensive review of existing literature and modeling approaches in the
field of peer-to-peer trading is presented in Soto et al. (2021). Most peer-to-
peer trading models consider consumers, prosumers, an energy sharing coor-
dinator, and an electricity supplier/retailer. There are different approaches
to implementing the energy exchange and negotiation processes. In Soto
et al. (ibid.), they are categorized into trading platforms, blockchain, game
theory, simulation, optimization, and algorithms. Different non-cooperative
game theory approaches for peer-to-peer trading of prosumers in microgrids
with PV systems and battery storage are developed in Paudel et al. (2019)
and Zhang et al. (2018). A canonical coalition game for peer-to-peer trading
is presented in Tushar et al. (2018), while Fleischhacker et al. (2019) com-
pares a Stackelberg game with a welfare maximization model for PV sharing
in multi-apartment peer-to-peers. Continuous double auctioning models for
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peer-to-peer trading are developed in Li and Ma (2020), Chen et al. (2019),
and Lin et al. (2019).

Trading preferences and decision strategies in peer-to-peer trading are evalu-
ated in Hahnel et al. (2020). In order to provide maximum profits, the study
of An et al. (2020) examines the optimal pricing strategies for the prosumer
and consumer and their peer-to-peer trading partners, and a simulation of
a peer-to-peer bidding system is conducted in Zhang et al. (2018). Notably,
Sousa et al. (2019) suggest that peer-to-peer trading currently means either:
(i) sharing of the excess renewable generation within a community, or (ii)
buying electricity directly from a local renewable generator.

To decrease aggregated peak load, Bjarghov et al. (2020) developed a peer-to-
peer trading capacity market formulated as a mixed complementarity prob-
lem (MCP). Sharing energy in a community-based market structure includ-
ing fairness indicators is proposed in Moret and Pinson (2019). Jiang et al.
(2021) presents a two-stage optimization approach, including social utility
maximization in the first stage and payment bargaining in the second stage.
Comparing three different models, Henriquez-Auba et al. (2021) found that
a sharing economy model in which PV generation is traded among firms in
a local spot market is a plausible pathway to maintaining and accelerating
investments in PV systems, considering that feed-in programs are likely to
be phased-out in the near future. Peer-to-peer markets with product differ-
entiation are introduced in Sorin et al. (2019). In Hashemipour et al. (2021),
virtual local energy markets with dynamic allocation of clusters that change
on a daily basis are developed. Electric vehicles (EV) are pooled into the
market to further increase flexibility.

Potential congestion and voltage problems in the distribution network con-
sidering the increasing penetration of DER are addressed in recent papers
on peer-to-peer trading. For example, Dynge et al. (2021) analyze the im-
pact of the low voltage grid on local markets. As the physical distribution
network is used for trades in local electricity markets, a market clearing ap-
proach considering network fees and power losses is introduced in Paudel et
al. (2020). The Euclidean distance of the distribution network between peers
is included as grid-related costs using a product differentiation method in Or-
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landini et al. (2019). Another product differentiation approach is presented
in Khorasany et al. (2020) in which network constraints are considered using
a power transfer distribution factor to represent the contribution of transac-
tions in the line flows. Considering electrical distances between prosumers,
Guerrero et al. (2021) include a shortest path algorithm in their peer-to-peer
market design and compare stable-matching and continuous double auction
allocation mechanisms. An optimization problem solving matching between
peers, including least-cost energy path algorithms, is proposed by Jogunola
et al. (2020).

2.2.3. Stochastic modeling and optimization of energy
communities

In the field of energy system analysis, there are many decisions that require
dealing with uncertainty, especially due to growing volatile renewable gener-
ation (wind and solar) and price variations. Yue et al. (2018) identified four
methods to tackle uncertainties: Monte Carlo analysis, stochastic program-
ming, robust optimization, and modeling to generate alternatives. About one
third of the studies reviewed in Yue et al. (ibid.) apply formal uncertainty
techniques. The majority of energy system models use sensitivity or scenario
analyses to include effects of uncertainty.

We find different stochastic optimization approaches within microgrids and
(smart) energy communities in scientific literature. Energy management of
a smart community with electric vehicle charging using a scenario-based
stochastic model predictive control framework is presented in Zhou et al.
(2022). Among other stochastic parameters, moving-horizon probabilistic
models are applied for the prediction of the arrival time of EVs. Kara
et al. (2022) show a pooled local flexibility market design under demand
uncertainty and stochastic bidding process, which can reduce the costs of
grid operation. Net-zero communities are modeled in Karunathilake et al.
(2019) using a fuzzy multi-criteria decision making approach: Renewable en-
ergies are selected based on a life-cycle perspective and under uncertainty.
Neyestani et al. (2015) analyze smart local networks, where customers can
choose between alternative solutions of energy supply according to their own
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preferences. Customers’ decisions are addressed by a stochastic modeling ap-
proach. Robust optimal on-line scheduling of an energy community, where
renewable energy sources including a community storage are shared, is ac-
complished in Scarabaggio et al. (2021) using a stochastic model predictive
control (MPC) approach. Uncertainty from forecast of inflexible demand
profiles and renewable production curves are included. In Corinaldesi et al.
(2020), the operating strategy for the flexibility of end-users is modeled us-
ing a rolling horizon approach, including trades at Day-Ahead and Intraday
spot markets. A scenario-based stochastic multi-energy microgrid investment
planning model to minimize costs is presented in Ehsan and Yang (2019).
Again regarding a microgrid, a two-stage program for unit commitment is
combined with a Markov decision process in Shin et al. (2017) considering
wind uncertainties. Ahmadi et al. (2022) developed a bi-level stochastic op-
timization for microgrids. Jiao et al. (2022) present a combined robust and
stochastic MPC for EV charging stations in microgrids.

In this section, we introduced models that include uncertainty in the planning
and the operation of energy communities. We found that stochastic param-
eters concern, among others, renewable generation profiles, energy demand
of prosumers, or EV charging. Some models include individual preferences
of prosumers, e.g., in Neyestani et al. (2015), where preferences of customers
to choose from alternative energy sources are included in their modeling ap-
proach. We found that little attention is paid to individual preferences of
prosumers and their willingness to participate in energy communities or lo-
cal electricity markets.

2.2.4. Practical peer-to-peer model implementations

Park and Yong (2017) introduce peer-to-peer trading concepts and provide
a comparative review. Zhang et al. (2017) also review different peer-to-peer
trading concepts, for example that of Piclo in the UK (see Piclo (2020)), the
Brooklyn Microgrid (Mengelkamp et al. (2018) and Brooklyn Microgrid Mi-
crogrid (2020)), and Vandebron in the Netherlands (see Vandebron (2020)).
Customers using Piclo buy local renewable electricity and generators have full
transparency on a half-hourly basis. The Exergy platform of the Brooklyn Mi-
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crogrid allows the prosumer to conduct autonomous electricity transactions
almost in real time. Vandebron allows producers of renewables to set their
own prices, and consumers then select a supplier. OurPower is a platform for
producers and consumers of renewable, decentralized electricity that is imple-
mented by an Austrian energy cooperative (see OurPower (2020)), and the
project P2PQ optimizes PV self-consumption and tests peer-to-peer trading
concepts via blockchain (see open4innovation (2018)). The sonnenCommu-
nity (see sonnenGroup (2020)) in Germany, Austria, Switzerland, and Italy
allows prosumers to share their electricity with other members of the son-
nenCommunity, and members of this community do not need to also use a
conventional electricity provider. In addition, people who join efriends can
invest in PV projects of SMEs and subsequently buy renewable PV genera-
tion from there (see eFriends Energy GmbH (2020)). Other recent projects
are presented by BestRES (see BestRES (2018)).

2.3. Participation in energy communities

2.3.1. Participation in local energy markets or communities from
a policy and social perspective

As already mentioned in the beginning of this Chapter in Section 2.1, a
number of legal instruments are included in the European Union’s Clean
Energy Package (Directorate-General for Energy (European Commission)
(2019)) introducing the legal framework to establish the sharing/trading of
self-generated electricity and to initiate economic incentives for its practice.
EU member states are obliged to enable the entrance of these active partic-
ipants into markets. Furthermore, the Clean Energy Package introduced a
definition of peer-to-peer trading. Nevertheless, many regulatory aspects of
peer-to-peer trading remain unclear. A review of current European policies,
legislation, and possible legal issues related to peer-to-peer trading and en-
ergy communities in electricity markets is presented in Almeida et al. (2021).
The European guidelines of the Clean Energy Package as transposed into
Austrian law is analyzed in Fina and Fechner (2021).
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Azarova et al. (2019) analyze how to design a Renewable Energy Community
to increase social acceptance, finding that acceptance for solar farms and
power-to-gas infrastructure is high, mixed for wind farms, and low for gas
power plants and power lines. To gain more knowledge regarding individuals’
willingness to participate in energy communities, using regression analysis,
Koirala et al. (2018) conducted a survey in the Netherlands to determine the
importance of factors such as environmental concerns, renewable acceptance,
community trust, and resistance (among others). According to the survey,
perceived barriers for participation include lack of time, financial reasons,
satisfaction with the status quo of the energy system, and no trust in the
neighborhood.

According to the analysis in Hackbarth and Löbbe (2020) focusing on in-
tentions of private households to participate in peer-to-peer trading mecha-
nisms in Germany, highly interested potential participants exhibit environ-
mental rather than economic preferences, and are drawn to innovative pricing
schemes. Soeiro and Ferreira Dias (2020) find that reliability is a key compo-
nent and that citizens recognize the added non-monetary values of renewable
energy communities.

In contrast to Germany and the Netherlands, there is a delay in the devel-
opment and integration of RECs in Southern European countries. Using a
survey in Spain and Portugal, Soeiro and Dias (2020a) aims to understand
the motivations of members in energy communities.

To ensure a just energy transition to a carbon-neutral economy, energy com-
munity projects should be observed from a social perspective (Longo et al.
(2020)) as well. How vulnerable groups might benefit from renewable energy
communities is explored in Hanke et al. (2021), who investigated 71 RECs
in Europe. In addition, the inclusion of vulnerable consumers in the energy
transition, who are generally underrepresented in REC projects, is discussed
in Hanke and Lowitzsch (2020). The enabling framework to support inclusion
remains rather unclear and should not languish as an idea on paper; there-
fore, lawmakers and policymakers should develop incentives targeting both
RECs and individual vulnerable consumers. Policy advice for new European
rules for RECs are derived in Hoicka et al. (2021).
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Regarding peer-to-peer trading concepts in particular, Reis et al. (2020) de-
veloped a multi-agent framework to model peer-to-peer electricity within
energy communities with an emphasis on vulnerable consumers and mem-
bers’ economic outcomes, considering fairness in the distribution of energy
resources. Fair revenue sharing and exit clauses are examined in Fioriti et al.
(2021), to identify the optimal sizing of energy communities.

2.3.2. Participation and contracts in energy communities

Main research topics within the field of energy communities and local elec-
tricity markets are the barriers and incentives to participation of prosumers
in energy communities. In this regard, the contracts and formation of energy
communities are key. A literature review summarizing recent publications
to derive challenges and barriers in energy communities from a consumer
perspective is found in Lazdins et al. (2021). At European level, Boulanger
et al. (2021) provide a qualitative overview of energy community concepts
and strategies that lead to their creation and growth. Bauwens (2019) make
a distinction between incentives of members of small and large communities:
Financial motives are most important for members of large communities,
while non-economic drivers (environmental, social, and other) dominate for
members of smaller, local communities.

Energy communities are opportunities to possibly create new (sustainable)
business models (F.G. Reis et al. (2021)). An optimistic outlook on possible
business models in the context of energy communities is brought by Cielo et
al. (2021), where sizing of PV systems and electrochemical energy storage is
optimized solving a mixed integer linear program leading to an internal rate
of return of 11%. Investments via consumer stock ownership plans as the
prototype business model for renewable energy communities are introduced
in Lowitzsch (2020). Roversi et al. (2022) investigate how energy communities
and climate city contracts are key interventions to face the ambitious goal of
implementing citizens centered and climate-neutral cities.

In local electricity markets and especially in peer-to-peer trading, dynamics
and diversity of the actors involved have to be considered. Creating dynamic
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peer-to-peer clusters for virtual local electricity markets to optimally match
load and renewable generation profiles for an EV flexibility marketplace is
presented in Hashemipour et al. (2021). Diverse DER portfolio character-
istics of prosumers are included in the study of Qiu et al. (2021), who de-
veloped a multi-agent deep reinforcement learning approach to address the
peer-to-peer trading problem. The concept of so-called (smart) contracts in
energy communities or peer-to-peer trading is described, among others, in
the following literature: Kirli et al. (2022) reviews smart contracts in en-
ergy systems, which are applied, e.g., in peer-to-peer trading, electric vehicle
charging, and demand-side response. Kirli et al. (ibid.) propose a systematic
model of the smart contracting process to guide researcher and practitioners
in this field. Chakraborty et al. (2020) developed an automated peer-to-
peer negotiation strategy for settling energy contracts under consideration of
prosumers’ individual and heterogeneous preferences over societal and envi-
ronmental criteria. Wang et al. (2020) propose an energy contract based on
Shapley values to allocate profits among participants in a fair way. Another
automated negotiation process of bilateral energy contracts is presented in
Pinto et al. (2018).

An energy community is a small, tangible social unit, wherein trust and con-
fidence in the community are key. Automated, smart contracts for trading, as
seen in Kirli et al. (2022), Chakraborty et al. (2020), Wang et al. (2020), Pinto
et al. (2018) and virtual energy communities (Hashemipour et al. (2021)) are
useful and supporting instruments. This thesis goes beyond these short-term
optimal allocation and trading contracts; we also consider the medium- to
long-term development of an energy community.

2.4. Contribution to the progress beyond
state-of-the-art

In relation to the research questions defined in Section 1.2 and the literature
presented in this Chapter, this thesis’ contribution to the progress beyond
state-of-the-art is presented in the following.
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In respect to research question one, a peer-to-peer trading model was devel-
oped that considers the willingness-to-pay of individual members. Compared
to the variety of modeling approaches shown in Section 2.2.2, the approach
developed in this thesis includes the following novelties:

• The prosumers not only share their PV surplus with the community,
but the total amount of PV electricity generation is peer-to-peer traded
within the community to optimally allocate resources while respecting
each of the member’s willingness-to-pay. In this respect, prosumers can
create a greater profit margin by selling their PV electricity generation
to community members who have a higher willingness-to-pay. In addi-
tion, prosumers who are interested in minimizing their environmental
footprint can purchase greater amounts of clean PV electricity genera-
tion. Many different nuances between profit maximization and emission
minimization are also possible.

• This concept means that prosumers do not prefer their own PV elec-
tricity generation over other prosumers’ PV generation and it paves the
way for energy communities to attain a sharing economy.

• The individual willingness-to-pay of each community member is a very
comprehensible function that is derived directly from GHG emissions
having an equivalent CO2 price in EUR/tCO2. It is a price that pro-
sumers are willing to pay on top of the electricity price and is their
individual and voluntary contribution to emission reduction targets.

• Prosumers are therefore able to calculate the reduction in direct emis-
sions (in tons of CO2) that is a result of them sharing PV generated
electricity. The willingness-to-pay is derived considering marginal emis-
sions which in turn reflect the actual hourly emission savings. With the
proposed method, prosumers can individually account for their environ-
mental impact and footprint.

In respect to research question two, a method is developed based on the peer-
to-peer allocation mechanism presented in Perger et al. (2021) to optimize
energy communities with peer-to-peer trading over the years.
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• We developed a framework to including members’ entry and exit in
energy communities.

• A novel peer-to-peer model is proposed that simultaneously provides (i)
an allocation mechanism for electricity trades between members and (ii)
a new member’s selection process. Both (i) and (ii) take the prosumers’
individual preferences into account.

• The selection process, which is of particular interest, operates from the
perspective of the community members, wherein community members
are searching for "optimal fitting participants" as opposed to optimal
technologies.

• The insights gained from the results and sensitivity analyses expand the
understanding of the importance of participants’ individual preferences.
These insights offer practical considerations to help establish stable and
prosperous local energy communities.

In respect to research question three, the selection process as suggested by
Perger and Auer (2022) is extended to include a stochastic forecast of a
horizon of five years.

• We consider the medium- to long-term development and stabilization
of an energy community. We ask how to assign contracts in energy
communities, such that participants are assured that the community is
evolving according to their needs, and trust is strengthened.

• To our knowledge, preferences of prosumers to join or leave an energy
community as stochastic input are not analyzed in any other paper.

• Finally, the explicit search for optimal participants for an energy com-
munity instead of searching for an optimal technology portfolio, as it
is state-of-the-art in most papers, is a prominent aspect of this work.
With increasing number of prosumers in the energy system and energy
communities as an established instrument, selection of participants will
become more and more standard practice.
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This chapter describes in detail the methods that are developed to answer
the research questions defined in Section 1.2. Therefore, this chapter is di-
vided into three parts, each focusing on one of the methods. In Section
3.1, a linear program (LP) to answer the first research question is presented.
Next, Section 3.2 presents a bi-level problem to solve dynamic participation
as posed by the second research question, and in Section 3.3, a stochastic
approach to dynamic participation to answer the third research question is
presented. Each section is organized as follows. We start with an overview on
the methodology including flow charts, then we continue with a description
of the optimization problem including mathematical formulation, and finally
we present nomenclature. For some detailed equations, as well as model ver-
ification and validation, please refer to Appendix A. First, we provide an
overview on the main characteristics of our three methods in Table 3.1.

Table 3.1.: Overview on the methods developed and applied in this thesis
Research question 1 2 3
Method Linear Program Bi-level Stochastic
Time scale: 1 year 1+1 years 1+5 years
New members: none fixed number any number

Selection criteria: no selection emissions emissions
and costs

Selection of: no selection parameters members
and members

Time resolution:
hourly hourly hourly

(one year) (representative (representative
days) days)

Github repository: T. Perger (2021) T. Perger (2021) T. Perger (2022)
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3.1. Peer-to-peer trading model for static participation
(linear program)

3.1.1. Overview on the methodology

The linear optimization model1 developed in this work is described in de-
tail in this section. In general, local energy communities with the following
properties are considered:

• Members of the community are either consumers, producers, or both
(prosumers). For simplicity, all members are referred to as prosumers
throughout the paper.

• The members are households or small-to-medium-sized enterprises (SMEs).

• The incentives for participants to join the energy community vary be-
tween (i) consuming local PV electricity, (ii) contributing to increas-
ing the community’s self-consumption, (iii) improving the PV system’s
profitability, (iv) avoiding emissions, and (v) others.

• The community is based on fully voluntary participation. Joining
or leaving the energy community is on a voluntary basis, and the
willingness-to-pay for the community’s generated PV electricity is indi-
vidually set (the minimum price is equal to the retail electricity price).

• The technology portfolio includes PV systems and BESS.

• Each household is connected to the public distribution grid, which is
used to conduct peer-to-peer trading. The case study presented in this
thesis is a set-up in which all the prosumers are located in the same
section of the local distribution system.

1Acronym of the model: FRESH:COM (FaiR Energy SHaring in local COMmunities).
The model is currently being developed in the Horizon 2020 project openENTRANCE
(see https://openentrance.eu).
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• The objective function of the model maximizes the community welfare,
and this is expressed in monetary terms.

Figure 3.1 shows a flow chart of the methodology. The sequence used in the
modeling approach is as follows:

• Members joining the energy community are defined and the following
prosumer input data are collected for the model: electricity demand
profile, PV generation profile, and battery parameters. It is important
to note that size of the PV system is not optimized for the community.2
It is assumed that prosumers, who join the community, already have a
PV system designed according to their roof top area and orientation,
and suitable to their annual demand.

• The willingness-to-pay of each prosumer is calculated as explained in
Section 3.1.2.2.

• A linear optimization problem (LP) is set-up, and the objective function
and constraints are defined according to Equations (3.3a)-(3.3g).

• The linear optimization problem is solved.

• The results for the community set-up are analyzed with respect to the
amount of electricity traded and the revenues and emission savings of
the prosumer.

3.1.2. Mathematical formulation

This section explains the optimization model in detail. Community welfare is
first defined in this context, willingness-to-pay of prosumers is then explained,
and the mathematical formulation of the objective function and constraints
of the model are then presented.

2Optimal capacity allocation of PV systems and BESSs in energy communities are devel-
oped in Fina et al. (2019), for example.
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Figure 3.1.: Flow chart of the optimization model FRESH:COM

3.1.2.1. Definition of community welfare

The objective of the model is to maximize the community welfare. To make
the abstract term community welfare more tangible, the individual members
of the energy community are considered on the one hand, and the energy
community as a whole is considered on the other hand.3

Part I of community welfare measures the optimal resource allocation on the
level of the community as a whole, and overall self-consumption is maximized
by peer-to-peer trading among members. In other words, the community

3The here defined community welfare is based on social welfare, which comprises two
parts: producer and consumer welfare. Producer welfare corresponds to part I – the
community as a whole acting as a producer to maximize profits. Consumer welfare
corresponds to part II and considers the demand function (here: willingness-to-pay).
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minimizes its electricity bill from the retailer. Part II of community welfare
is maximized when the share of PV generation is optimally assigned to each
member of the community under consideration of their individual willingness-
to-pay. Community welfare, CW , is defined as

CW =
�
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With this approach, prosumers not only negotiate the PV surplus, but the
entire amount of PV electricity generated is traded within the community,
without preference for self-consumption, and solely according to each individ-
ual’s willingness-to-pay. As willingness-to-pay also depends on avoiding GHG
emission, community welfare indirectly includes emission preferences.

3.1.2.2. Definition of willingness-to-pay

As explained above, the willingness-to-pay of an individual member deter-
mines how much PV generated electricity is shared between the community
members and how it is distributed. The main idea behind the willingness-
to-pay above the retail electricity price for purchases from the grid relates
to an individual’s preference for reducing marginal emissions from the grid.
Similar to marginal costs, marginal emissions are emitted when another unit
of electricity (kWh or MWh) is produced in the wider electricity system,
and the time variant vector et (in tCO2/kWh) represents the marginal emis-
sions. This means that the GHG emissions from a marginal power plant are
considered instead of the average emission factor. Each prosumer, j, can
choose an individual weighting factor, wj , (in EUR/tCO2), which represents
the amount they are willing to pay on top of the retailer’s price, because
marginal emissions will be avoided by buying the locally produced PV gen-
erated electricity.

The willingness-to-pay can thus be determined in relation to the retailer’s
electricity price, pGin

t , plus the premium for avoiding emissions as a product
of the individual weighting factor, wj , and the marginal emissions, et, as

wtpi,j,t = pGin
t + wj · et (3.2)
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qshare
i,j,t is therefore distributed according to the emission factor wj of each

prosumer. Ultimately, this means that prosumers do not prefer their own
PV generation over other prosumers’ PV generation.

3.1.2.3. Objective function and constraints

Figure 3.2 shows a sketch of a small, energy-trading community. The figure
helps to illustrate the following mathematical representation and formulation
of the optimization model, FRESH:COM. Including BESSs and PV systems
in the technological portfolio of the community, the optimization problem
can be formulated as follows.

max
{q

Gin
i,t ,q

Gout
i,t ,qshare

i,j,t ,

q
Bin
i,t ,q

Bout
i,t ,SoCi,t

}

�
t∈T ,i∈I

pGout
t qGout

i,t −
�

t∈T ,i∈I
pGin

t qGin
i,t +

�
t∈T ,i,j∈I

wtpi,j,tq
share
i,j,t

(3.3a)

subject to qload
i,t = qGin

i,t + qBout
i,t +

�
j∈I

qshare
j,i,t (3.3b)

qP V
i,t = qGout

i,t + qBin
i,t +

�
j∈I

qshare
i,j,t (3.3c)

SoCi,t = SoCi,t−1 + qBin
i,t · ηB − qBout

i,t /ηB (3.3d)
SoCmin

i ≤ SoCi,t ≤ SoCmax
i (3.3e)

qBin
i,t , qBout

i,t ≤ qBmax
i (3.3f)

qGin
i,t , qGout

i,t , qshare
i,j,t , qBin

i,t , qBout
i,t , SoCi,t ≥ 0 (3.3g)

for all i, j ∈ I and t ∈ T . The objective expressed in Equation (3.3a) to
maximize the community welfare described in Section 3.1.2.1. Equations
(3.3b) and (3.3c) are constraints for covering the demand and PV generation
of each prosumer at each time, and Equation (3.3d) determines the state of
charge (SoCi,t) of the batteries.4 Equations (3.3e) and (3.3f) limit the state
of charge and the (dis-)charging power to their physical boundaries. Finally,
the non-negativity constraints are represented by Equation (3.3g).

4Technically, it is possible to simultaneously charge and discharge the BESS using this
approach. However, this is avoided here by using the efficiency factor ηB < 1.
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Figure 3.2.: Sketch of electricity trading in a small energy community comprising three
members
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3.1.3. Nomenclature peer-to-peer trading model for static
participation

Variable Explanation Unit
t ∈ T = {1, . . . , T} Time steps
i ∈ I = {1, . . . , N} Index of the prosumers
Input
qP V

i,t PV generation of prosumer i kWh
qload

i,t Demand of prosumer i kWh
SoCmax

i Maximum capacity of prosumer i’s battery kWh

qBmax
i

Maximum (dis)charging power of prosumer
i’s battery kW

ηB Efficiency of the batteries

wj
Prosumer j’s weighting factor for marginal
emissions EUR/tCO2

wtpi,j,t Willingness-to-pay of prosumer j EUR/kWh
pGin

t Average spot market electricity price EUR/kWh
pGout

t Retailer’s electricity price EUR/kWh
et Marginal emissions from the grid tCO2/kWh
Output
qGin

i,t Purchase of prosumer i from the grid kWh
qGout

i,t Sales from prosumer i to the grid kWh
qshare

i,j,t Purchase of prosumer j from prosumer i kWh
qBin

i,t Charging of prosumer i’s battery kWh
qBout

i,t Discharging of prosumer i’s battery kWh
SoCi,t State of charge of prosumer i’s battery kWh
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3.2. Basic model for dynamic participation (bi-level
model)

3.2.1. Overview on the methodology

3.2.1.1. Modeling framework

The framework of the modeling approach is a peer-to-peer electricity trading
concept in a local energy community. Prosumers (or consumers or producers)
join on a voluntary basis and exchange PV electricity generated by commu-
nity members with one another. Figure 3.3 presents the basic idea of the
peer-to-peer trading concept in this paper. All members are connected to
the public distribution grid to be able to cover the community’s residual
load, to feed in the surplus PV electricity, and to trade with the other com-
munity members (green arrows). Participants in the community are either
households or small-to-medium-sized enterprises.5 The technology portfolio
includes PV systems and battery energy storage systems (BESSs). In addi-
tion, each prosumer has an individual willingness-to-pay for PV electricity
generated by community members, which determines the allocation of the
peer-to-peer trading.

The aim of this model is to optimize the dynamic participation of prosumers
in an energy community; hence, changes in the set-up of members over time
(i.e., exit/entry). In Figure 3.3, the orange parts represent a new member
joining the community.

In this context, new prosumers are characterized by (i) electricity load/
demand, (ii) electricity generation (PV system and BESS size), and (iii)
consumer-type (household or small business). Other characteristics include
electrical distance from the other community members, the minimum and
maximum number of new prosumers, and the length of binding contracts

5According to the European Commission’s Recast Renewable Energy Directive (REDII,
see European Commission (2018)), the concept of energy communities should mainly
benefit citizens, small businesses, and local authorities (see REScoop (2022)).
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Figure 3.3.: Sketch of the framework of the modeling approach

with the community. The latter is out of scope for this model, but it will
follow in Section 3.3.

3.2.1.2. Flow chart

The minimum length of a contract for prosumer participation in energy com-
munities is assumed to be one year. There is a deadline each year; until then,
members can decide to leave the community in the next contract period, or
decide to stay and extend the contract for another year. In the meantime,
prospective new members can declare interest in joining the community until
the annual deadline. The flow chart in Figure 3.4 shows the process that is
suggested to optimize dynamic participation in energy communities over a
horizon of several years.

• The starting point is the "old" community, where some members leave
at the end of their contract period.

• The status quo of the remaining members is then captured. The anal-
yses of peer-to-peer electricity trading under the consideration of pro-
sumers’ willingness-to-pay from Section 4 demonstrate two important
characteristics for a community and its members: Overall community
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welfare6, and the annual emissions and costs of each member. These
indicators are obtained by solving a linear program (see the model pre-
sented in Section 3.1 and Perger et al. (2021)) to maximize community
welfare of the original community configuration. The annual costs and
emissions are then used as "benchmarks" for the optimization process.

• After decisions about leaving, staying, or joining the community are
made by all existing and potential new members, a bi-level optimiza-
tion problem is solved to determine the optimal configuration of new
prosumers. The lower level problem is linear community welfare max-
imization that was applied to the original community in the previous
step to obtain benchmarks. The upper-level problem determines which
potential members are selected by the community, and subsequently,
the new prosumers’ parameters (annual electricity demand and peak
capacity of the installed PV systems).7

• Finally, the new community is defined and the process repeats in the
next year.

The implementation of the proposed method is shown for one period (year)
in order to focus on the selection process of the community using the bi-level
optimization approach.

3.2.2. Mathematical formulation of the optimization problem

3.2.2.1. Willingness-to-pay of prosumers

Prosumers’ individual willingness-to-pay determines how PV generated elec-
tricity is distributed among community members as part of the lower level

6Community welfare comprises two parts: (i) producer welfare, which considers the com-
munity as a whole to maximize producer profits, and (ii) consumer welfare, which con-
siders the individual demand functions (here, willingness-to-pay). Details are explained
in Section 3.2.2.2.

7The proposed model calculates optimal BESS sizes as well; however, the focus of this
work remains on annual demand and PV system size.
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Figure 3.4.: Flow chart of the proposed methodology

objective. The baseline of the willingness-to-pay is the retail electricity price,
pGin

t , and an individual CO2-price, wj , is added on top that relates to the
prosumer’s preference for reducing emissions from electricity consumption,
as it was already introduced in Section 3.1.2.2. In addition, the modeling
extension presented in this Section also includes a preference, di,j ∈ [0, 1],
to buy more locally (i.e., buying from a prosumer with the shortest electri-
cal distance). The willingness-to-pay of prosumer j at time t to buy from
prosumer i, wtpi,j,t, is adapted from Equation (3.2) as follows:

wtpi,j,t = pGin
t + wj(1 − di,j) · et. (3.4)

The emissions from the grid, et, are represented as a time series using the
greenhouse gases emitted into the wider electricity system by the marginal
power plant; hence, they are also known as marginal emissions. The local
energy community is assumed to be a price taker in the wider electricity
system.
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3.2.2.2. Community welfare

The aim of peer-to-peer electricity trade and the lower level objective is to
maximize community welfare, which is already defined in Section 3.1.2.2.

3.2.2.3. Prosumers’ cost-emission function

To evaluate the impact of new prosumers on original prosumers, the following
functions are defined:

∆costsi = costsi − costsi,old, (3.5)

∆emissionsi = emissionsi − emissionsi,old. (3.6)

Equation (3.5) is the deviation of prosumer i’s annual costs within the new
community set-up compared to the previous status-quo. Similar to Eq. (3.5),
Eq. (3.6) represents prosumer i’s annual emission increase or decrease. The
cost-emission function CE – the upper level objective – is defined next.

CE =
�

i∈Iold

αi∆costsi + (1 − αi)∆emissionsi (3.7)

Similar to Pareto-optimization, a weighting factor αi ∈ [0, 1] is introduced
for each prosumer to choose individually. Therefore, αi determines whether
more emphasis is placed on minimizing costs or emissions. By choosing an
individual αi, prosumers can express either a cost-saving or an emission-
saving preference. Due to the absolute values of costs and emissions in Eq.
(3.5) and (3.6), each prosumer’s changes count equally. The cost-emission
function CE is the objective to be minimized in the optimization problem.

The costs of each member i of the community over a certain period are
calculated as following:

costsi =
�
t∈T

pGin
t qGin

i,t −
�
t∈T

pGout
t qGout

i,t

+
�

t∈T ,j∈I
wtpj,i,tq

share
j,i,t −

�
t∈T ,j∈I

wtpi,j,tq
share
i,j,t , (3.8)
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where T is the respective time period. The emissions over a certain time
are:

emissionsi =
�
t∈T

etq
Gin
i,t (3.9)

Only purchases from the grid are considered in the emissions calculations,
because the production of PV electricity does not generate marginal emis-
sions.

3.2.2.4. Bi-level optimization problem

This model solves two main problems: (i) selecting the optimal electricity
demand and PV capacity of new prosumers to fulfill certain requirements
set by original community members, and (ii) maximizing community welfare,
given the new prosumers’ parameters selected in (i). Subsequently, this prob-
lem can be formulated as a bi-level problem, wherein the leader anticipates
the follower’s reaction. In the upper-level problem, the leader, of the bi-level
problem represents (i) and its lower level, the follower, (ii).

The leader minimizes the cost-emission function CE with the continuous
decision variables loadi and PVi, and the binary decision variables bi, for all
i ∈ Inew (see Eq. (3.10a)). The decision variables have lower and upper
bounds to ensure a reasonable solution of the model (see Eqs. (3.10b) and
(3.10c)). The set of variables

Qi,t = {qGin
i,t , qGout

i,t , qshare
j,i,t , qBin

i,t , qBout
i,t , SoCi,t}

are the lower level primal decision variables. The dual variables of the
lower level problem are {λload

i,t , λP V
i,t , λSoC

i,t } for equality constraints, {µSoCmax

i,t ,

µ
Bmax

in
i,t , µ

Bmax
out

i,t } for inequalities, and {βGin
i,t , βGout

i,t , βshare
i,j,t , βSoC

i,t , βBin
i,t , βBout

i,t } for
non-negativities. The objective function of the follower in Eq. (3.10e) maxi-
mizes community welfare. The equality constraints (3.10f)-(3.10i) ensure that
prosumer i’s electricity demand and PV generation are covered at all times.
The upper-level decision variables are included in Eq. (3.10h) and (3.10i)
for new prosumers. The state of charge of prosumer i’s BESS is defined in
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Eqs. (3.10j) and (3.10k), and other battery constraints in (3.10l)-(3.10n).
Non-negativity conditions are included in (3.10o).

min
{loadi,P Vi,bi,Qi,t}

�
i∈Iold

αi∆costsi + (1 − αi)∆emissionsi (3.10a)

subject to:
bi · loadmin

i ≤ loadi ≤ bi · loadmax
i ∀i ∈ Inew (3.10b)

bi · PV min
i ≤ PVi ≤ bi · PV max

i ∀i ∈ Inew (3.10c)�
i∈Inew

bi = n (3.10d)

max
Qi,t

�
t∈T ,i∈I

pGout
t qGout

i,t −
�

t∈T ,i∈I
pGin

t qGin
i,t +

�
t∈T ,i,j∈I

wtpi,j,tq
share
i,j,t (3.10e)

subject to:

qGin
i,t + qBout

i,t +
�
j∈I

qshare
j,i,t − qload

i,t = 0 (λload
i,t ) ∀i ∈ Iold, t (3.10f)

qGout
i,t + qBin

i,t +
�
j∈I

qshare
i,j,t − qP V

i,t = 0 (λP V
i,t ) ∀i ∈ Iold, t (3.10g)

qGin
i,t + qBout

i,t +
�
j∈I

qshare
j,i,t − loadiq

load
i,t = 0 (λload

i,t ) ∀i ∈ Inew, t (3.10h)

qGout
i,t + qBin

i,t +
�
j∈I

qshare
i,j,t − PViq

P V
i,t = 0 (λP V

i,t ) ∀i ∈ Inew, t (3.10i)

SoCi,t−1 + qBin
i,t · ηB − qBout

i,t /ηB − SoCi,t = 0 (λSoC
i,t ) ∀i, t > t0 (3.10j)

SoCi,t=tend
+ qBin

i,t0 · ηB − qBout
i,t0 /ηB − SoCi,t0 = 0 (λSoC

i,t0 ) ∀i, t = t0

(3.10k)
SoCi,t − SoCmax

i ≤ 0 (µSoCmax

i,t ) ∀i, t (3.10l)

qBin
i,t − qBmax

i ≤ 0 (µBmax
in

i,t ) ∀i, t (3.10m)

qBout
i,t − qBmax

i ≤ 0 (µBmax
out

i,t ) ∀i, t (3.10n)
− qGin

i,t , −qGout
i,t , −qshare

i,j,t ,

− qBin
i,t , −qBout

i,t , −SoCi,t ≤ 0 (βGin
i,t , βGout

i,t , βshare
i,j,t , βSoC

i,t , βBin
i,t , βBout

i,t ) ∀i, t

(3.10o)
with i, j ∈ I and t ∈ T .
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A common approach to solving a bi-level optimization problem is the trans-
formation to a mathematical program with equilibrium constraints (MPEC,
see Ruiz et al. (2014)). The lower level problem (Eqs. (3.10e)-(3.10o)) is re-
formulated by its corresponding Karush-Kuhn-Tucker (KKT) conditions, and
can be classified as a mixed complementarity problem (MCP) or equilibrium
problem, which is parameterized by the leader’s decision variables (Dempe
and Kue (2017)). The resulting optimization problem is single-level, and it
is linear except for binary variables and complementarity constraints. The
derivation of the KKT conditions is presented in detail in A.2. The resulting
complementarity conditions are then transformed into a mixed integer linear
program (MILP) using the Fortuny-Amat method (see A.2.3), also known
as the "Big-M approach" (Fortuny-Amat and McCarl (1981), Fischetti et al.
(2017), and Pineda et al. (2018)).
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3.2.3. Nomenclature basic model for dynamic participation

Sets
t ∈ T = {1, . . . , T} Time steps
i ∈ I = {1, . . . , N + n} Index of all prosumers
i ∈ Iold = {1, . . . , N} Index of old prosumers
i ∈ Inew = {N + 1, . . . , N + n} Index of new prosumers
Parameter
qload

i,t Demand of prosumer i (kWh)
qP V

i,t PV generation of prosumer i (kWh)
loadmax

i Max. annual demand of prosumer i ∈ Inew (kWh)
loadmin

i Min. annual demand of prosumer i ∈ Inew (kWh)
PV max

i Max. peak PV generation of prosumer i ∈ Inew (kW)
PV min

i Min. peak PV generation of prosumer i ∈ Inew (kW)
SoCmax

i Capacity of prosumer i’s battery (kWh)
qBmax

i Max. (dis)charging power of prosumer i’s battery (kW)
ηB Efficiency of the batteries
wj Prosumer j’s emissions weighting factor (EUR/tCO2)
dij Distance factor between prosumer i and j (∈ [0, 1])
wtpi,j,t Willingness-to-pay of prosumer j (EUR/kWh)
αi Upper-level preference factor of prosumer i (∈ [0, 1])
pGin

t Retailer’s electricity price (EUR/kWh)
pGout

t Average spot market electricity price (EUR/kWh)
et Marginal emissions from the grid (tCO2/kWh)
Decision variables
loadi Annual demand of prosumer i ∈ Inew (kWh)
PVi Installed PV capacity of prosumer i ∈ Inew (kW)
bi Binary decision variable of prosumer i ∈ Inew

qGin
i,t Purchase of prosumer i from the grid (kWh)

qGout
i,t Sales from prosumer i to the grid (kWh)

qshare
i,j,t Purchase of prosumer j from prosumer i (kWh)

qBin
i,t Charging of prosumer i’s battery (kWh)

qBout
i,t Discharging of prosumer i’s battery (kWh)

SoCi,t State of charge of prosumer i’s battery (kWh)
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3.3. Dynamic participation over multiple time steps
(bi-level model with stochastic forecast)

3.3.1. Overview on the methodology

The purpose of this third method is to develop a sound framework for energy
communities to select from a portfolio of potential members under consid-
eration of uncertainties, which is why a stochastic dynamic programming
approach is developed. We consider the (potential) members’ preferences
to stay, leave, or wanting to join the community as the main uncertainty.
Therefore, scenarios are developed and we use probabilities of possible future
entries and exits in/from the community. A community manager has to de-
cide what kind of contracts to offer to each of the prosumers. These contracts
are binding from the perspective of the community manager (members are
not allowed to be kicked out), but members can decide to leave the commu-
nity before the end of the contract.

The procedure can be summarized as follows: Each year, the community
manager captures the existing members and their contracts. Next, informa-
tion on new possible entrants and their willingness to join the community is
collected. Finally, we check if there are any existing members who want to
early phase out of their contract and leave the community. Now the com-
munity manager has collected all of the certain (deterministic) information.
Stochastic input data of future developments are then estimated, considering
the following uncertainties: (i) which members are leaving after each period,
and (ii) which are the potential new members willing to join the community.
A set of scenarios is designed to represent these uncertainties and include
them in the optimization problem.
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3.3.2. Mathematical formulation of the stochastic dynamic
program

This section presents the core of the method, the stochastic dynamic program.
The procedure introduced in Section 3.3.1 is now mathematically explained.
The dynamic program needs a policy, which is a function to determine deci-
sions given available information in a state. We choose a look-ahead policy:
Decisions are made explicitly optimizing over a certain time horizon with
stochastic forecasts. Figure 3.5 shows an overview of the structure of the
dynamic program. The planning horizon corresponds to n years in a set N ,
the scenarios ω are of a finite sample of potential outcomes Ω, and i ∈ I are
all (possible) prosumers of a portfolio. The optimization model solves two
main problems simultaneously: (i) selecting optimal new participants from
the portfolio of possible entrants and assigning contracts to them, and (ii)
optimally allocating the trading between participants considering their indi-
vidual willingness-to-pay. Optimal allocation in (ii) means maximizing the
community welfare (see Section 3.3.2.2) considering the participants chosen
in (i). Therefore, the problem can be formulated as bi-level problem, wherein
the leader (i) anticipates the reaction of the follower (ii).

3.3.2.1. Upper-level problem

The problem is divided into two steps: The first one, year n = 1, represents
the "here and now" decision. We know the status-quo of the community
and the portfolio of new members, who might or might not want to join,
at this time. The second step starts at n = 2 until n = N , where we use
scenarios such that the decision at n = 1 can "see" the future within a certain
horizon.

Objective function The objective function is minimized considering scenar-
ios and planning horizon:

min
xn,i(ω),un,i(ω),bn,i(ω),Qi,t,n(ω)

F1 +
�
ω∈Ω

N�
n=2

p(ω)Fn(ω) (3.11)
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Calculate emissions
of the portfolio as

stand-alone prosumers

Capture existing members
and their contract lengths

Capture potential new
member and existing
members who leave

Creation of scenar-
ios ω for the time

horizon n = 2 . . . , N

UPPER-LEVEL

min F1 +
�

ω∈Ω

�N
n=2 p(ω)Fn(ω)

with:

Fn(ω) =
�

i∈I(emissionsn,i(ω) −
bn,i(ω)emissionsout,i)sn,i(ω)b0,i

Transition function:

xn,i(ω) = xn−1,i(ω) − bn−1,i(ω) + sn,i(ω)un,i(ω)

LOWER-LEVEL

max
Qi,t,n(ω)

CW1 +
�

ω∈Ω

�
n∈N p(ω)CWn(ω)

subject to:

qGin
i,t,n(ω)+ qBout

i,t,n (ω)+
�

j∈I qsharej,i,t,n(ω)− bn,i(ω)q
load
i,t = 0

qGout
i,t,n (ω) + qBin

i,t,n(ω) +
�

j∈I qsharei,j,t,n(ω)− bn,i(ω)q
PV
i,t = 0

SoCi,t−1,n(ω)+qBin
i,t,n(ω)η

B−qBout
i,t,n (ω)/ηB = SoCi,t,n(ω)

Portfolio of
prosumers
i ∈ I

Contract
durations

x0,i

Decisions
s1,i

Scenarios
ω ∈ Ω

Time horizon
n ∈ N

Lower-level
variables:
Qi,t,n(ω)

and
emissionsn,i(ω)

emissionsout,i

Original
community

b0,i

Possible
decisions
sn,i(ω)

Upper-level
variables:
xn,i(ω),

un,i(ω), bn,i(ω)

Figure 3.5.: Overview on the stochastic dynamic program

F1 is the the value of the objective function at n = 1 (deterministic; scenarios
are not included). Fn(ω) is the value of the objective function of a certain
forecast year n and scenario ω, and p(ω) is the probability that ω happens.

As reference, we calculate the emissions of all possible members as if they
were stand-alone prosumers (not part of the community; hence, no electricity
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trading with anyone else but the grid, with the objective of maximizing their
own self-consumption). The objective function measures the improvement
of the community members’ emission balances. Therefore, the optimal se-
lection of new members should improve the emission balance of the existing
participants. The emissions of each community member i over a year n are
calculated as following:

emissionsn,i(ω) =
�
t∈T

etq
Gin
i,t,n(ω) (3.12)

This definition considers the purchases qGin
i,t,n from the grid only, as the pro-

duction of PV electricity does not generate marginal emissions. Fn(ω) is
composed of emissionsn,i(ω) and emissionsout,i; the latter are annual emis-
sions of member i as a stand-alone prosumer, as mentioned above.

Fn(ω) =
�
i∈I

(emissionsn,i(ω) − bn,i(ω)emissionsout,i) · sn,i(ω) · b0,i (3.13)

Let us describe Equation (3.13) in detail: We use b0,i and sn,i(ω)8 to exclude
prosumers, who were not part of the original community (i.e., b0,i = 0) and
those who want to leave the community in scenario ω (i.e., sn,i(ω) = 0),
from the calculations. In addition, we use bn,i(ω) to ensure that the share of
prosumer i’s emission balance in Fn(ω) is zero if prosumer i is not part of
the new community (bn,i(ω) = 0) in year n and scenario ω.9 Thus, linearity
of the problem, apart from binary variables, is maintained.

Transition function A so-called transition function reflects the system dy-
namics of a dynamic program. In this work, the transition function cal-
culates the remaining contract length (state variable xn,i(ω) ≥ 0) of each
prosumer i. It depends on the number of years remaining from the previous
year (xn−1,i(ω)) and the control variable un,i(ω) ≥ 0, which is the possible
extension of the contract. The transition function is defined as:

xn,i(ω) = xn−1,i(ω) − bn−1,i(ω) + sn,i(ω)un,i(ω) (3.14)

8b0,i and sn,i(ω) are exogenous parameters.
9The model sets all decision variables Qi,t,n(ω) = 0 if bn,i(ω) = 0; hence,

emissionsn,i(ω) = 0.
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valid for ∀i ∈ I, n > 1 ∈ N , ω ∈ Ω. sn,i(ω) is an exogenous parameter
from the scenarios, representing the (possible) choices of the portfolio: stay-
ing/joining (sn,i(ω) = 1), or leaving/not joining (sn,i(ω) = 0). Note that
when sn,i(ω) = 0, then xn,i(ω) = 0. The binary variable bn,i(ω) is one if
there is a valid contract for prosumer i in year n:

bn,i(ω) =

1 if xn,i(ω) > 0
0 if xn,i(ω) = 0

(3.15)

bn,i(ω) ∈ {0, 1} serves two ends: (i) in transition function (3.14), bn,i decreases
the contract length of the previous year xn−1,i(ω) by one year; (ii) bn,i(ω) can
set the lower-level constraints (3.10f) and (3.10g) to zero, thus excluding a
prosumer (refer to Section 3.3.2.2 for better understanding). The relationship
between xn,i(ω) and bn,i(ω) can be expressed by using a big-M approach. For
n = 1, we use the initial values x0,i and b0,i for the transition function:

x1,i =

x0,i − b0,i + s1,iu1,i if s1,i = 1
0 if s1,i = 0

(3.16)

Note that at n = 1, non-anticipativity constraints are imposed:

u0,i(ω) − u0,i = 0 (3.17)

Eq. (3.17) means that we have to choose one decision u0,i for the contract
length of prosumer i regardless of the outcome ω; hence, we are not allowed to
see into the future. Non-anticipativity constraints are included for all other
variables too:

x0,i(ω) − x0,i = 0 (3.18)
b0,i(ω) − b0,i = 0 (3.19)

Qi,t,0(ω) − Qi,t,0 = 0 (3.20)

There is also a rule implemented that prosumers, that wanted to join the
community (sn,i(ω) = 1), but were rejected (bn,i(ω) = 0), are not considered
anymore in the following years; hence, bm,i(ω) = 0 ∀m > n. We assume
that once a prosumer was rejected, they search for other, alternative energy
communities to join.
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3. Methods

3.3.2.2. Lower-level problem

The dynamic program has to solve a lower-level problem to optimally allocate
PV electricity generation within the community according to the participants’
individual willingness-to-pay. The lower-level problem is adopted from Perger
and Auer (2022); therefore, a very brief overview is presented in the following.
For details refer to the original publication.

Willingness-to-pay The willingness-to-pay of prosumer j at time t to buy
from prosumer i, wtpi,j,t, is as follows:

wtpi,j,t = pGin
t + wj(1 − di,j) · et. (3.21)

Community welfare The aim of peer-to-peer electricity trade is to maxi-
mize community welfare, which is defined in two parts. Part I of community
welfare measures the optimal resource allocation at community level, max-
imizing self-consumption of the community as a whole over a year. Part II
optimally assigns PV generated electricity to each member in consideration
of their individual willingness-to-pay; thus, part II represents peer-to-peer
trading from one prosumer to another, qshare

i,j,t . Community welfare (CW )
within scenario ω over year n is defined as following:

CWn(ω) =
�

t∈T ,i∈I


pGout

t qGout
i,t,n (ω) − pGin

t qGin
i,t,n(ω)� �� �

I

+
�
j∈I

wtpi,j,tq
share
i,j,t,n(ω)

� �� �
II



(3.22)

The set of variables

Qi,t,n(ω) =
�

qGin
i,t,n(ω), qGout

i,t,n (ω), qshare
j,i,t,n(ω), qBin

i,t,n(ω), qBout
i,t,n (ω), SoCi,t,n(ω)

	
(3.23)

are the lower level primal decision variables. The formulation is found in A.4.
The lower level problem is reformulated to its corresponding Karush-Kuhn-
Tucker (KKT) conditions in order to solve the bi-level problem.
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3.3.3. Nomenclature stochastic dynamic participation model

Sets
n ∈ N = {1, . . . , N} Years (forecasting horizon)
t ∈ T = {1, . . . , T} Hourly time steps
i ∈ I = {1, . . . , M} Index of prosumers in the portfolio
ω ∈ Ω = {ω1, . . . , ω|Ω|} Set of scenarios
Parameter
qload

i,t Demand of prosumer i (kWh)
qP V

i,t PV generation of prosumer i (kWh)
SoCmax

i Capacity of prosumer i’s battery (kWh)
qBmax

i Maximum (dis)charging power of prosumer i’s battery (kW)
ηB Efficiency of the batteries
wj Prosumer j’s preference to avoid emissions (EUR/tCO2)
dij Distance preference between prosumers i and j (∈ [0, 1])
wtpi,j,t Willingness-to-pay of prosumer j (EUR/kWh)
pGin

t Average spot market electricity price (EUR/kWh)
pGout

t Retailer’s electricity price (EUR/kWh)
et Emissions from the grid (tCO2/kWh)
sn,i(ω) Decision of i to join, stay or leave the community
p(ω) Probability of scenario ω

Decision variables
xn,i(ω) State variable: Remaining contract duration of i in year n

un,i(ω) Control variable: Contract extension for i in year n

bn,i(ω) ∈ {0, 1} Binary variable if i has a valid contract in year n

qGin
i,t,n(ω) Purchase of prosumer i from the grid (kWh)

qGout
i,t,n (ω) Sales from prosumer i to the grid (kWh)

qshare
i,j,t,n(ω) Purchase of prosumer j from prosumer i (kWh)

qBin
i,t,n(ω) Charging of prosumer i’s battery (kWh)

qBout
i,t,n (ω) Discharging of prosumer i’s battery (kWh)

SoCi,t,n(ω) State of charge of prosumer i’s battery (kWh)
λi,t,n(ω), βi,t,n(ω), µi,t,n(ω) Dual variables of the problem
Functions
Fn(ω) Value of objective function at n and ω

emissionsn,i(ω) Annual emissions of prosumer i

emissionsout,i Annual emissions of prosumer i if they are not a member
CWn(ω) Community welfare
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4. Results of static participation in
energy communities

This chapter presents the results of the first research question as presented in
Perger et al. (2021). Static participation in energy communities is analyzed
using a linear program developed for optimal peer-to-peer trading. Section
4.1 explains the case study set-up in detail. Next, Section 4.2 presents the
case study with households decomposed into results for a whole year and for
a specific time slot during the year. Section 4.3 shows results of the case
study with households and business. Finally, sensitivity analyses of static
participation are found in Section 4.4.

4.1. Case study set-up

4.1.1. Model implementation

The model is implemented in MATLAB (version R2019b, see MATLAB
(2019)) using the optimization toolbox YALMIP (see Löfberg (2004)) and
the solver Gurobi (see Gurobi Optimization, LLC (2021)). In this study, the
model is applied to different arbitrary energy community set-ups.

4.1.2. PV generation data

The PV generation data were obtained from the open source tool Renew-
ables.ninja (2019) (see also Pfenninger and Staffell (2016) and Staffell and
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4. Results of static participation in energy communities

Pfenninger (2016)), where relevant data can be obtained for any location and
for different PV system parameters, such as peak production, azimuth, and
tilt. The community set-up used to obtain the results in this paper is situated
in the city of Vienna, Austria (latitude 48.2084◦N and longitude 16.3725◦E).
The reference year employed was 2019, and a tilt of 35◦ was set equally for
all PV systems used in these analyses.

4.1.3. Prosumer data and willingness-to-pay

The sample community used to test the proposed linear optimization model,
FRESH:COM, comprises a set of (arbitrary) prosumers consisting of ten pri-
vate households and five small businesses. The electricity demands of the
households are generated by using real measured anonymized demand pro-
files (see EEG (2020)), while the electricity demands of the different types
of businesses are derived from so-called Synthetic Load Profiles (see APCS-
Austrian Power Clearing and Settlement (2019)), which are also used as a
reference in daily electricity market operations, scheduling, clearing, and fi-
nancial settlements. Table 4.1 shows the parameters of PV orientation and
peak output, the BESS capacity, the individual emissions’ preference, wi,
and the annual electricity demand of each prosumer, and Figures 4.1 and
4.2 are graphical displays of prosumer household data and those of the five
small businesses, respectively. Further information about the demand and
generation profiles is provided in B.1 and B.2.

The charging and discharging efficiencies of the batteries is assumed to be
ηB = 0.9, and the maximum (dis)charging power is qBmax

i = 1 kW. The state
of charge should not fall below SoCmin

i = 0 kWh.

4.1.4. Marginal emissions and prices

Schram et al. (2019b) presents a time series of marginal emissions from certain
European countries in 2017. The hourly values of the German-Austrian price
zone are used in this study to remain geographically consistent. Further
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4. Results of static participation in energy communities

Table 4.1.: Relevant data relating to different prosumers
Prosumer PV PV peak Storage Emission Annual

orientation output capacity factor wi demand
[kW] [kWh] [EUR/tCO2] [kWh]

Household 1 South 5 - 10 6628
Household 2 East West 6 4 70 4659
Household 3 South 3 - 100 5689
Household 4 South East 5 5 50 5138
Household 5 South 5 - 20 3762
Household 6 - - - 80 7700
Household 7 South West 5 6 0 5727
Household 8 - - - 100 5889
Household 9 East 5 - 90 5598
Household 10 South 5 6 40 8283
Business South 10 - 0 14000
Business 0-24 h East West 10 - 0 22000
Business 8-18 h South 10 - 0 15000
Shop/Hair dresser South 10 - 0 18000
Bakery East West 10 - 0 30000

information about marginal emissions can be found in B.3.

The optimization model also requires the retail electricity price, pGin
t , that

prosumers pay when buying electricity from the grid, and the remuneration,
pGout

t , for feeding PV generation to the grid. The average value of the 2019
Austrian retail electricity price (0.20 EUR/kWh1) is assumed for pGin (see
Eurostat (2022)).

In this case study, all the settings are designed for PV generated electricity
without consideration of any subsidies and/or feed-in tariffs. It is assumed
that excess PV generation is sold at a spot market price. To retain consistency
with data available for marginal emissions,2 the reference used here is the
average value of the base product of the (then) German-Austrian spot market
in 2017 (see EXAA Energy Exchange Austria (2020)). Therefore, pGout is set

1The exact average value across the country for 2019 was 0.2034 EUR/kWh
2The marginal power plant sets the price of the spot market and the marginal emissions.
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Figure 4.1.: (left axis) Energy consumption and PV generation for one year and (right axis)
battery capacity of the test community (households only)

to 0.0345 EUR/kWh.

4.2. Results of energy communities with households

4.2.1. Annual results

Energy Community without BESS In the set-up of prosumers selected (10
households without BESSs), 26% of the electricity is traded within the com-
munity, while the share of self-consumption is only 3%, see the pie chart in
Figure 4.3. Furthermore, 43% of the electricity is purchased from the re-
tailer and the surplus fed into the grid equals 28%. The objective function
of the linear optimization model ensures that the electricity purchased from
the retailer is minimized. Furthermore, sharing within the community and
self-consumption are preferred compared to selling to the grid.

Peer-to-peer trading is then discussed in detail. The 3D bar plot in Fig-
ure 4.4 shows the results of the optimization variable qshare

j,i,t over one year
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Figure 4.2.: Energy consumption and PV generation of the five small businesses for one
year

(
t∈T qshare
i,j,t , T = 1, . . . , 8760), and the amount of PV generated electric-

ity that each prosumer trades with other prosumers is evident. Following the
matrix logic of qshare

j,i,t , the diagonal line indicates the self-consumption of each
prosumer and their willingness-to-pay decides how the generation is shared.

As each member of the energy community has their own characteristic elec-
tricity demand and the dimensions of the PV system vary, the distribution
of qshare

j,i,t not only depends on the willingness-to-pay, but also strongly on
the size of each prosumer’s PV system. A different perspective is shown in
Figure 4.5, where the focus is on the relation between the self-consumption
of each prosumer (yellow) and the electricity purchased from the community
(green) and from the grid (blue). The PV consumption to demand ratio
(the percentage of the annual demand that is covered by PV generation from
self-consumption and buying from other community members) is presented
on the right axis (in %).

Figure 4.6 shows the correlation between the willingness-to-pay (left axis,
blue) and the ratio between the amount of PV electricity consumed and the
demand for electricity (right axis, red). The figure indicates that a high
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4. Results of static participation in energy communities

Figure 4.3.: Percentage of annual share of electricity consumed and PV electricity generated
(without BESSs)

Figure 4.4.: PV generation traded within the community in a year (without batteries)

willingness-to-pay generally leads to a higher share of PV electricity from the
community and vice versa. Therefore, the introduction of a willingness-to-
pay is a promising tool for allocating the PV electricity generated, especially
within an energy community where all of the PV generation is shared, and
not just each prosumer’s surplus.

The revenues and emissions’ savings of each prosumer change when they
join the energy community and engage in peer-to-peer trading. To analyze
this effect, the revenues and CO2-emissions are calculated and compared to
the revenues and the emissions that the members would generate if they were
stand-alone prosumers only, who do not share their PV electricity generation.
Participants with a high willingness-to-pay pay more for electricity in the
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Figure 4.5.: (left axis) Prosumer electricity demand is covered by PV self-consumption (yel-
low), PV generated by the community (green), and electricity from the grid
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Figure 4.6.: (left axis) Willingness-to-pay; (right axis) ratio between the amount of PV
generation consumed and amount of electricity demanded (without BESSs)

peer-to-peer trading scenario and end up with a negative financial balance
compared to being a stand-alone prosumer. On the other hand, participants
with a relatively low willingness-to-pay generate profits because they sell
most of their renewable energy to members who are willing to pay more.
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The red bars in Figure 4.7 show the financial savings generated by engaging
in peer-to-peer trading. The four prosumers with the highest willingness-to-
pay (prosumers 3, 6, 8, and 9) have a negative balance. Prosumers 1 and 7
have the lowest willingness-to-pay and the highest savings, with savings of
approximately 38% for prosumer 1.

A similar but opposite tendency can be seen with emissions’ savings. The
green bars in Figure 4.7 indicate whether a member can save marginal emis-
sions by purchasing from their peers. A high willingness-to-pay leads to
emissions’ savings because of the implicit preference to purchase emission-
free PV generated electricity over that from the retailer. It should be noted
that most prosumers in Figure 4.7 follow the same pattern: a positive fi-
nancial balance but no emission savings, or emission savings but a negative
financial balance.

Figure 4.7.: (left axis) Savings in Euros compared to being a stand-alone prosumer; (right
axis) emissions’ balance (without BESSs)

Energy Community with BESSs This section describes the effects of in-
cluding BESSs to the technology portfolio. By using BESSs, it is possible to
increase the community’s shared self-consumption and decrease the amount
purchased from the retailer. BESSs are added to the set-up of ten households
from the previous section. The pie chart in Figure 4.8 shows the distribution
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of electricity on an annual level with BESSs operating: 28% of the electricity
is shared within the community, 9% is provided by BESSs within the com-
munity, and 3% is self-consumption. Purchases from the grid have decreased
to 39% due to BESSs, and the amount sold to the grid has reduced to 21%.

Figure 4.8.: Percentages of annual share of electricity consumed and PV electricity gener-
ated (with BESSs)

Figure 4.9 compares the results of community set-ups with and without
BESSs showing the differences between the two scenarios, and the follow-
ing conclusions can be drawn:

• Batteries are charged only when the amount of generated PV electricity
exceeds the demand of the whole community; therefore, the amount of
electricity used for charging is equal to the difference in the amount
sold to the grid.

• Prosumers are not buying from the retailer to charge their batteries
- only PV electricity is used. Therefore, the difference in the amount
bought from the grid equals the amount discharged by batteries.

• When excess PV electricity is generated, prosumers with BESSs can
charge their batteries with the PV electricity they generate, and they
can then buy from the community, if required. When there is not
enough available PV generation, they can use their batteries to cover
their demand, instead of buying from the retailer. With BESSs, the
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4. Results of static participation in energy communities

whole community buys approximately 15% less electricity from the re-
tailer than without BESSs.

• BESSs do no compete with the community’s generated PV electricity
because only excess electricity generated is stored, and the batteries
are discharged only when the amount of PV generation is insufficient
for covering the demand. There is only a slight shift between self-
consumption and trading with other members.
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Figure 4.9.: Comparison of community set-ups with and without the inclusion of BESSs

In addition, Figure 4.10 shows that the financial savings of prosumers with
BESSs (prosumers 2, 4, 7, and 9) are higher than in Figure 4.7 (without
BESSs). Furthermore, prosumers 2, 4, 7, and 9 achieve greater emissions’
saving in this new scenario. These positive financial and emissions’ balances
could thus be incentives to invest in BESS.

4.2.2. Results for one specific hour

Following the results obtained on an annual level, one specific hour is analyzed
in detail in this section to gain a better insight into the peer-to-peer trading
mechanism. The set-up is the same as that in Section 4.2.1 without BESSs.
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Figure 4.10.: (left axis) Savings in Euros compared to being a stand-alone prosumer; (right
axis) emissions’ balance (with BESSs)

April 1st between 16:00 and 17:00 is chosen as the timeframe.3 Production
from the PV systems exceeds the total demand of the prosumers (see Figure
4.11) in this hour. The marginal emissions in this hour are 578 gCO2/kWh
and the willingness-to-pay (wtpi,j,t) is between 0.20 and 0.26 EUR/kWh (see
right axis Figure 4.11). Figure 4.12 shows the peer-to-peer trading results,
again as a 3D bar plot. Prosumers 6 and 8 have no PV systems of their
own, and they cover their demand by purchasing PV electricity from the
community. Prosumer 7 generates high amounts of PV electricity compared
to their demand, and is thus selling to prosumer 1 and 8. Other prosumers are
also selling proportions of their generated PV electricity to the community.
As there is a PV generation surplus, the community does not need to purchase
electricity from the retailer during this specific hour.

3During nighttime, when no PV electricity is produced, qshare
i,j,t = 0, ∀i, j ∈ I. Therefore,

a time slot during daytime is presented here.
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Figure 4.11.: Electricity demand and PV electricity generation - left axis; willingness-to-
pay - right axis (one specific hour)

4.3. Energy communities including businesses

Energy communities should not only be an option for private households, but
also for small and medium-sized enterprises (SMEs). The original community
set-up is extended by five prosumers that have typical commercial load pro-
files (see Section 4.1). Each new prosumer has a 10 kWpeak PV system, and
their wj is 0 EUR/tCO2 (the willingness-to-pay therefore corresponds to the
retailer’s electricity price). First, pie charts compare the annual share of elec-
tricity consumed and the PV electricity generated with and without BESSs.
As there are no BESSs assigned to the businesses (only to the households),
the effects of the BESSs are relatively small in this extended community
set-up. The remaining results in this section exclude BESSs. The annual
demand and amount of PV electricity generated is much higher for the busi-
nesses than for the households; therefore, qshare

j,i,t is particularly high for the
businesses (prosumers 11-15, see Figure 4.14).

Figure 4.15 shows the amount of electricity demanded by each prosumer that
is covered by the following: self-consumption, purchases from other commu-
nity members, and purchases from the grid. The PV electricity consumption
to demand ratio (right axis in Figure 4.15 and Figure 4.16) shows that the
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Figure 4.12.: PV generated electricity traded within the community during one specific
hour (without BESSs)

household prosumers can increase their share of locally generated PV elec-
tricity compared to the previous set-up (with only households), because of
the higher amount of available PV generation. The businesses show different
characteristics. Prosumer 13 is a business open from 08:00 until 18:00, and it
has a high PV electricity consumption to demand ratio. Its demand profile
is high during the day, especially around noon, which is a perfect time to
consume PV generated electricity. The demands of prosumers 11 and 14 are
highest during the day, but they are not as distinctive as prosumer 13; their
PV electricity consumption to demand ratios are lower than that of prosumer
13. In contrast, prosumers 12 and 15 have low PV electricity consumption
to demand ratios. Prosumer 12 is a business operating 24 hours a day, and
the peak demand of the bakery (prosumer 15) is in the early morning hours.
Both of their demand profiles do not correlate well with the PV electricity
generation profiles.

Finally, the financial balances and emissions’ savings of the five businesses
are shown in Figure 4.17. Interestingly, four out of the five businesses have a
negative financial balance. Only prosumer 13 has a positive balance, because
their demand profile correlates with PV electricity generation times. Due to
the overall dimension of the community’s PV systems, the other businesses
sell to the grid instead of selling to the community during times of high PV
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Figure 4.13.: Percentages of annual share of electricity consumed and PV electricity gen-
erated within the community (including five small businesses); left: without
BESSs; right: with BESSs

Figure 4.14.: The amount of generated PV electricity traded within the community (in-
cluding five small businesses) in one year (without BESSs)

electricity generation, which leads to lower profits. Therefore, the community
set-up is not ideal for most of the five businesses, because sufficient amounts
of PV electricity are already generated. A preferential set-up would thus
comprise mostly consumers to whom businesses can sell their PV generated
electricity. However, from the perspective of the community, businesses add
value because they become the consumers of the PV electricity generated.
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Figure 4.15.: (left axis) Prosumer electricity demand (including that of five small busi-
nesses) is covered by PV self-consumption (yellow), PV generated by the
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Figure 4.16.: (left axis) Willingness-to-pay; (right axis) ratio between the amount of PV
generation consumed and amount of electricity demanded (without BESSs,
including five small businesses)

Based on the results of this case study, it is necessary to determine what type
of community is the best fit for new potential members and which prosumer
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Figure 4.17.: (left axis) Savings in Euros compared to being a stand-alone prosumer; (right
axis) emissions’ balance (without BESSs, including five small businesses)

characteristics add value to communities. The following parts of this thesis
based on the contributions Perger and Auer (2022) and Perger et al. (2022)
analyze energy communities in which members drop in and out over several
years. It is important to determine criteria that members need to meet prior
to joining a community, so that the added value is optimal for the existing
community as well as for the new member.

4.4. Sensitivity analysis

In this section, the input parameters and the default set-up of ten households
without BESSs (Section 4.2.1) are modified in different sensitivity analyses.
The default set-up is located in Vienna, Austria, and some of the parameters
(for example the retail electricity price, the average spot market price, and
the marginal emissions) are specific to the region. The model presented in
this paper is designed to be applied in different regions and countries, and
only the location specific input data thus need to be adapted accordingly.

In the following sensitivity analyses, some of the input parameters are var-
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4. Results of static participation in energy communities

ied and the prosumer set-up is modified. In this section, the following four
scenarios are modeled and evaluated:

1. Varying the Retail Electricity Price

The average Austrian retail electricity price is just slightly below that
of the 2019 EU-28 average value (see Eurostat (2022)). As it would
be interesting to determine whether adapting the retail electricity price
in the model to that of another European country would change the
results of the energy community, the retail electricity price, pGin

t , is
adapted here to the average German value of 0.3088 EUR/kWh. This
is a retail electricity price at the upper end of Europe (due to the high
renewable levy share, surcharges, and taxes).

2. Varying the Remuneration for Excess PV Generation

In the default scenario, it is assumed that excess PV generation is sold
to the grid at an average spot market price. In this scenario, the results
are evaluated when the renumeration is neglectable, i.e. when pGout

t is
set to 0. This could occur if excess renewable generation in the current
electricity market design is treated rather as a burden than a benefit.

3. Varying the Marginal Emissions of the External Reference Electricity
Market

Compared to the Austrian/German electricity system, other electricity
systems have different power plant portfolios (for example, they have a
high share of nuclear power plants, which are classified as low-emission
or emission free in terms of GHG). As an example, the marginal emis-
sions in the French electricity system are a fraction of the marginal
emissions in the Austrian/German electricity market (see Schram et al
Schram et al., 2019b). In this sensitivity analysis, the vector of the
marginal emissions, et, represents the French electricity system instead
of the Austrian/German system.

4. Structural Diversification of the Community
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4. Results of static participation in energy communities

In this final sensitivity analysis, one member drops out of the com-
munity. To best demonstrate the possible impacts of changes in the
community set-up, it is considered that a prosumer with a relatively
high PV electricity generation and electricity demand leaves (prosumer
7 with a 5 kWpeak South West PV system).

The following Figure 4.18 shows the percentage deviation of the different
sensitivity analyses from the default scenario. The output values of social
welfare, self-consumption, sharing within the community, and the purchases
and sales from/to the grid are compared and the results are as follows:

• Community welfare (in EUR) decreases in all four sensitivity analy-
ses. As per Equation (3.1), the retail price, pGin

t , and remuneration,
pGout

t , influence community welfare. Varying marginal emissions does
not alter the weights of the willingness-to-pay, but the prosumers pay
proportionally less (or more if marginal emissions increase), and there-
fore the community welfare result changes. The drop-out of the member
decreases welfare because there are only 9 prosumers left to buy and
sell the PV electricity generated.

• The amount of electricity (in kWh) available for self-consumption and
sharing within the community shifts slightly in scenario 2-4. The only
distinctive deviation is noticeable in sensitivity 1, where self-consumption
increases and sharing with the community decreases. It is important to
note that self-consumption in the default scenario is only a few percent,
and thus the relative shift seems high.

• The purchases and sales from/to the grid (in kWh) in sensitivity analy-
ses 1-3 are not different from those in the default scenario, because the
prosumer set-up is the same and the community welfare maximization
minimizes the purchases/sales from the grid. However, these change
in sensitivity analysis 4, when one member leaves the community. The
total amount of electricity decreases, because there is a lower electricity
demand as well as lower PV electricity generation.
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Figure 4.18.: Deviation from default set-up for sensitivity analyses
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5. Results of dynamic participation in
energy communities

This chapter presents the results of the second and third research questions
as presented in Perger and Auer (2022) and Perger et al. (2022), respectively.
Both contributions address dynamic participation in energy communities.
The second research question, where dynamic participation over one year is
considered and a community can choose optimal parameters of new members,
is presented in Section 5.1. The case study set-up is found in Section 5.1.1,
followed by results for a case study with households in Section 5.1.2 and with
businesses in Section 4.3. Sensitivity analyses in Section 5.1.4 conclude the
results of the second research question. The third research question, where
a stochastic approach to dynamic participation is covered, is presented in
Section 5.2. The case study set-up and the set of scenarios are found in Sec-
tion 5.2.1. The selection of new members in year one using a horizon with
stochastic forecasts is shown in Section 5.2.2, and the results of a determin-
istic and stochastic approach are compared. Finally, the selection process in
Section 5.2.3 over five years comparing stochastic and deterministic solution
concludes this chapter.
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5.1. Dynamic participation over one year

5.1.1. Case study set-up

5.1.1.1. Model implementation

The model is implemented using Python (version 3.7.2; see Van Rossum and
Drake (2009)) using the Pyomo package (version 5.7.3; see Hart et al. (2011)
and Bynum et al., 2021), and Gurobi (version 9.0.0; see Gurobi Optimiza-
tion, LLC (2021)) as a solver. Gurobi is a commercial solver; alternatively,
the problem can be solved with the open-source solver GLPK (GNU Linear
Programming Kit, see GNU project (2021)). The model is available open
source on GitHub (see T. Perger (2021)).

5.1.1.2. Input data

To generate the results of a case study, a small community needs to be defined.
The electricity demand of each member is obtained from the open-source tool
LoadProfileGenerator (version 10.4.0; see Pflugradt and Muntwyler (2017)),
which generates artificial data. Different household types categorized by liv-
ing situation and demographics (single working person, elderly couple, family,
etc.) are included in this study.

The PV generation data are obtained from a different open-source tool Re-
newables.ninja (version v1.3; see Pfenninger and Staffell (2016), and Staffell
and Pfenninger (2016)). PV systems’ irradiation data and electricity output
are location-specific to Vienna, Austria.

While the existing community is characterized by specific input parameters,
standardized profiles for the new prosumers are used as input data:

• qload
i,t is a standardized load profile (H0 for household, G0 for stan-
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5. Results of dynamic participation in energy communities

dard business1)), which is normalized to 1000 kWh/year. For example,
a result of loadi = 5 means that the optimal prosumer has an an-
nual demand of 5000 kWh/year. The possible range is between 2000 −
8000 kWh/year.

• qP V
i,t is the generation profile of a 1 kWpeak PV system facing South;

hence, the decision variable PVi is a factor that upscales the PV system
size. The possible range is between 0 − 5 kWpeak.

A summary of the prosumers’ input data can be found in Figure 5.1 and
in more detail in Table 5.1. The willingness-to-pay wi is arbitrarily assigned
between the prosumers to cover a range between 0–100 EUR/tCO2. The elec-
trical distance factors dij ∈ [0, 1] can be represented by a symmetric matrix
with diagonal elements all set to 0 (see Figure 5.2). The values assumed
here are dummy values to represent electrical distances within a distribution
network because the case study is artificial. The higher the value of dij , the
further the electrical distance between prosumer i and j.
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Figure 5.1.: Annual electricity demand and photovoltaic (PV) generation of the prosumers
(left axis); willingness-to-pay wj of each prosumer (right axis)

Input data from the grid includes the following values: pGin
t = 0.2 EUR/kWh

(the average value of the 2019 Austrian retail electricity price; see Eurostat

1The synthetic load profiles of 2019 for household (H0 "Haushalt") and business (G0
"Gewerbe allgemein") are used (see further APCS-Austrian Power Clearing and Settle-
ment (2019)).
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5. Results of dynamic participation in energy communities

Table 5.1.: Parameters of the prosumers of the community ("-" indicates that a technology
type is not included). The willingness-to-pay wi of the new prosumers (H0 and
G0) is not optimized, but varied in a sensitivity analysis.

Annual PV PV peak Storage CO2-price
demand orientation output capacity wi

(kWh) (kW) (kWh) (EUR/tCO2)
Prosumer 1 3448 - - - 100
Prosumer 2 8548 South 5 - 0
Prosumer 3 2403 West 3 - 90
Prosumer 4 3320 South 3 3 30
Prosumer 5 2521 - - - 50
Prosumer 6 2167 South 3 - 60
Prosumer H0 2000 − 8000 South 0 − 5 - 0/50/100
Prosumer G0 2000 − 8000 South 0 − 5 - 0/50/100
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Figure 5.2.: Distance factors dij between the members (H0 and G0 represent the new pro-
sumers)

(2022)) and pGout
t = 0.04 EUR/kWh (average Austrian spot market price of

2019; see EXAA Energy Exchange Austria (2020)). Marginal emissions et

are hourly values obtained from Schram et al. (2019b) (Austrian-German
spot market), and average hourly values are found in Figure C.2 in the Ap-
pendix.
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5. Results of dynamic participation in energy communities

5.1.1.3. Clustering in the time domain

Because MPECs are computationally expensive, an alternative approach is
used to represent peer-to-peer trading within a community over a whole year.
The input data that is available in hourly resolution for a whole year is trans-
formed to three representative days using a k-means algorithm (Teichgraeber
and Brandt (2019)) of the Python tslearn package (Tavenard et al. (2020)).
The optimization model then determines the optimum using the three repre-
sentative days considering the weight (each day represents a number of days
of the year, which is then used to weight each representative day in the pro-
cess of upscaling back to annual values; all three days represent the whole
year) of each day in both the upper and lower level objective functions.

5.1.2. Results of bi-level optimization of a case study with
households

5.1.2.1. Status-quo of the original community

It is first necessary to take a deeper look into the original community’s peer-
to-peer trading. The original community consists of six households with
consumers and prosumers. The annual results (kilowatt-hours of electricity
bought and sold, emissions, and costs) of all members are presented in Table
5.2. Figure 5.3 presents the peer-to-peer traded electricity (in kWh/year) in
detail as a heat map; rows represent the amount a prosumer sells to each
peer, and columns are the respective purchases.

Compared to all other participants, prosumer 1 buys the most from the com-
munity, with the highest share coming from prosumer 2, who is prosumer
1’s closest peer and has a 5 kWpeak PV system installed. Prosumer 1 does
not own a PV system and has the highest willingness-to-pay. Prosumer 3
has the second-highest willingness-to-pay; however, they also have their own
PV system installed, and mostly consume their own generation. Prosumer
2 prefers to sell to prosumer 1, with a higher willingness-to-pay than pro-
sumer 3. Prosumer 2 clearly has the highest electricity demand within the
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5. Results of dynamic participation in energy communities

Table 5.2.: Summary of the results of peer-to-peer trading (original community set-up)
Prosumer 1 2 3 4 5 6
Buying grid (kWh) 1140.3 4871.6 1379.3 1080.4 1436.3 854.6
Selling grid (kWh) 0 818.3 1680.0 573.5 0 2286.9
Battery charging (kWh) 0 0 0 870.0 0 0
Battery discharging (kWh) 0 0 0 721.5 0 0
Self-consumption (kWh) 0 3341.5 1016.7 1400.7 0 1282.9
Buying community (kWh) 2308.1 334.6 6.5 117.4 1084.5 29.6
Selling community (kWh) 0 2300.8 274.3 1015.5 0 290.0
Emissions (tCO2) 0.6 2.6 0.7 0.6 0.8 0.5
Costs (EUR) 790.0 449.3 154.5 -8.2 527.7 24.0

community; therefore, the highest annual (marginal) CO2 emissions of the
community, despite having large PV system capacities installed.

Prosumer 5, who is a consumer only, prefers to buy from their closest peers,
prosumers 4 and 6. Prosumer 6 has very low annual electricity costs due to
high-self-consumption and being able to sell electricity to other members of
the community. Prosumer 4 is the only participant with a BESS and is able
to further minimize their electricity costs, achieving negative annual costs.
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Figure 5.3.: Heatmap of the peer-to-peer electricity trading between the prosumers
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5. Results of dynamic participation in energy communities

5.1.2.2. Cost- vs. emission-saving preference of prosumers

One new prosumer with a household electricity demand profile (prosumer H0)
is added to the original community of six households described above. The
potential new member is characterized by a willingness-to-pay of 50 EUR/tCO2
(mid-range compared to the other prosumers) and by electrical distances as
defined in Fig. 5.2. Minimizing the objective function of the upper-level
problem will determine the ideal parameters of the new prosumer. Annual
electricity demand might vary between 2000 kWh/year to 8000 kWh/year,
and PV capacity between 0 kWpeak to 5 kWpeak. The variable n (number of
new prosumers) is set to one; hence, with one potential new prosumer the
binary variable bi automatically equals one (see Eq. (3.10d)).

The first set of results shows two distinct cases; (i) where all members have
an emission-saving preference (αi = 0), and (ii) where all members have a
cost-saving preference (αi = 1). A third case (iii) with mixed preferences will
be presented in Section 5.1.2.3.

(i) Minimizing emissions In the first case, it is assumed that all commu-
nity members care about minimizing their annual emissions, but have no
preference regarding cost savings; αi = 0 is set for all prosumers i ∈ Iold.
The result of the new prosumer’s PV system size is not surprising. The PV
capacity is set to its maximum PVnew = PV max

new = 5 kWpeak. At the same
time, the optimal electricity demand of the new prosumer is at its minimum
loadnew = loadmin

new = 2000 kWh/year. The new annual peer-to-peer trading
values are shown in Fig. 5.4. The annual results (kilowatt-hours of electricity
bought and sold, marginal emissions, and costs) of all members are presented
in Appendix Table C.1.

Cost-wise, the newly added PV capacity can be seen as a competition with
other members’ PV systems. Part of the revenue from selling electricity
to consumers transfers to the new prosumer instead of old members, whose
earnings now decrease. Notably, the annual emissions of all prosumers in-
volved are reduced. Due to the newly added PV capacity, prosumers are able
to buy more electricity from the community. The electricity demand of the
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Figure 5.4.: Heatmap of the peer-to-peer electricity trading between the prosumers – all
αi = 0

new prosumer is low, such that there is little competition in consuming PV
electricity.

The Sankey diagram in Figure 5.5 demonstrates that members of the original
community (Iold) cover their electricity demand through self-consumption,
buying from other community members or buying from the grid. The left
side represents the old community without the new prosumer, and the right
side shows the new community. The new prosumer’s PV generation primarily
substitutes purchases from the grid, which is desirable if the common goal is
to reduce emissions. Prior to adding the new prosumer, community members
purchase 10 700 kWh from the grid. Adding a new prosumer with a 5 kWpeak
PV system installed, this amount can be reduced by around 8%. Prosumer 4,
who has battery storage installed, can also increase their self-consumption.

The next Figure 5.6 presents the annual cost and emission increase (or de-
crease) of each prosumer of the original community, comparing Eqs. (3.5)
and (3.6). Annual costs (left axis in red) increase slightly by a few EUR for
most prosumers, whereas emissions significantly decrease, as desired.

(ii) Minimizing costs The other distinct case is setting all αi = 1, indi-
cating that prosumers seek to minimize annual electricity costs. The op-
timal result of the bi-level problem is a prosumer with the maximum pos-
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Figure 5.5.: Sankey diagram of the electricity consumption of prosumers

+ ( ' % $ #

59:62<-9

#

%

(

,

(

%

#

!;
3
9-

7
6
-

./
-

3
9-

7
6
-

 "
;

 &
)

0

*:646

,1(

,1+

,1,

,1+

,1(

!;
3
9-

7
6
-

./
-

3
9-

7
6
-

 "
;

 4
*

8
(

&<"66":;6

Figure 5.6.: Cost- and emission balances of the prosumer of Iold – all αi = 0

sible annual electricity demand loadnew = loadmax
new = 8000 kWh/year. At

the same time, the new prosumer’s optimal PV capacity is at its minimum
PVnew = PV min

new = 0 kWpeak; hence, the new member is a consumer, who
buys PV electricity from the community, which generates additional rev-
enue for the other members. The new annual peer-to-peer trading values are
shown in Fig. 5.7. The annual results (kilowatt-hours of electricity bought
and sold, marginal emissions, and costs) of all members are presented in
Appendix Table C.2.

The Sankey diagram in Figure 5.8 demonstrates that members can increase
their income by selling a significant amount of their generation to the new
prosumer, which was previously sold to the grid because the new prosumer’s
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Figure 5.7.: Heatmap of the peer-to-peer electricity trading between the prosumers-all αi =
1

willingness-to-pay is higher than the remuneration for selling PV generation
into the grid wtpi,new,t > pGout

t .

Figure 5.8.: Sankey diagram of the electricity generation of prosumers

In total, about 40% of the community’s surplus PV production is sold to the
new prosumer in this scenario, resulting in cost savings for prosumers with
PV systems (see Figure 5.9). This is especially evident for prosumer 6, who is
the closest neighbor of the new prosumer. The consumers of the community,
prosumers 1 and 5 do not experience major changes. Emission balances offer
another interesting result; the lower the willingness-to-pay (e.g., prosumer
2 with w2 = 0 EUR/tCO2), the higher the annual CO2 emissions. Prior to
adding the new member with a high electricity demand, higher amounts of PV
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generated electricity remained available for prosumers with low willingness-
to-pay, which are now sold to the new member. Prosumer 6, the closest
neighbor of the new prosumer, achieves the highest cost decrease.
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Figure 5.9.: Cost and emission balances of the prosumer of Iold – all αi = 1

5.1.2.3. Prosumers with mixed emission and cost-saving preferences

While the prosumers’ choices of αi are uniform in both cases (i) and (ii) in
Section 5.1.2.2, this Section introduces non-uniform values of αi. There is an
extremely large number of possible combinations, many of which lead to the
same results as either case (i) or (ii). Other combinations lead to different re-
sults; for example, [α1, α2, α3, α4, α5, α6] = [1, 1, 0, 1, 1, 0], which is presented
here as case (iii). The optimal parameters of the new prosumer are set by the
model to maximum PV capacity and maximum annual electricity demand,
PVnew = 5 kWpeak and loadnew = 8000 kWh/year, respectively. The detailed
peer-to-peer trading in Figure 5.10 shows that the new prosumer trades elec-
tricity with the other members, but predominantly self-consumes their PV
generated electricity due to their own high annual electricity demand. This
differs from case (i) in the previous Section, wherein the new prosumer has
a low electricity demand and sells larger volumes of electricity to the other
members, comparing Fig. 5.11 with Fig. 5.5.

Due to the high share of self-consumption in case (iii), the new prosumer
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Figure 5.10.: Heatmap of the peer-to-peer electricity trading between the prosumers –
mixed αi

buys only small volumes of electricity from the community (see Fig. 5.12).
In general, there are less interactions/trades with the community, which is
reflected in the annual cost-emission balances as well. Figure 5.13 shows very
small deviations from the previous status quo. Annual emissions decrease
for prosumers 3 and 6, which is congruent with their preferences on saving
emissions (α3,6 = 0). Annual cost differences are negligible (less than 2 EUR
per year). The annual results (kilowatt-hours of electricity bought and sold,
marginal emissions, and costs) of all members are presented in Appendix
Table C.3.

Figure 5.11.: Sankey diagram of the electricity consumption of prosumers
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Figure 5.12.: Sankey diagram of the electricity generation of prosumers
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Figure 5.13.: Cost- and emission balances of the prosumer of Iold – mixed αi

5.1.3. Results of bi-level optimization of a case study with
households and businesses

Next, another potential new prosumer with the electricity demand profile of
a standard business (prosumer G0) is compared to prosumer H0. The results
are unchanged when the case study from Section 5.1.2 is conducted with pro-
sumer G0 instead of H0; therefore, the binary decision variables are actively
used in this step and the model is run with two potential new prosumers
Inew = {prosumer H0, prosumer G0} to determine which prosumer type is
preferred by the community. There is only one possible choice:�

i∈Inew

bi = 1. (5.1)
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5. Results of dynamic participation in energy communities

We start the analyses by minimizing the individual emissions again, as in case
(i). The community prefers the household profile with the same parameters
as seen in Section 5.1.2: PVnew =5 kWpeak and loadnew = 2000 kWh/year.
The annual peer-to-peer trading is shown in Figure 5.14 (left), wherein the
business (prosumer G0) is not part of the community. The other cases, (ii)
and (iii), minimizing the prosumers’ costs and mixed preferences elicit a dif-
ferent result. The business is a better match with PV generation profiles
than the household (see Figures C.2 and C.3 in the Appendix) and is, there-
fore, a better opportunity to sell surplus PV generation to. In case (ii) the
business is a consumer only, with an annual electricity demand of 8000 kWh
(see Figure 5.14, right). The results are summarized in Table 5.3.

Table 5.3.: Choosing between different prosumer types H0 and G0

prosumer type H0 G0
(i) individual emissions ✓ -
(ii) individual costs - ✓
(iii) mixed αi - ✓

kWh kWh

Figure 5.14.: Choosing between prosumer types; αi = 0 (left) vs. αi = 1 (right)

5.1.4. Sensitivity analysis

This Section presents sensitivity analyses to complete the results of this study.
In Section 5.1.4.1, differing levels of the new prosumer’s willingness-to-pay
are applied to the case study to determine possible changes in the results. In
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Section 5.1.4.2, the distances of the new prosumer to the other members are
altered.

5.1.4.1. Influence of willingness-to-pay

The first set of sensitivity analyses observes the effect of the new prosumer’s
willingness-to-pay on the community decision. First, we compare the outputs
of the bi-level model for different cases of prosumer preferences αi, as seen in
Sections 5.1.2.2 and 5.1.2.3, varying the new prosumer’s willingness-to-pay.
Table 5.4 presents the results of cases (i)-(iii), where wnew is altered from one
side of the spectrum of willingness-to-pay, wnew = 0 EUR/tCO2, to the other,
wnew = 100 EUR/tCO2. There is no noticeable influence of wnew in cases (i)
and (ii) (see Table 5.4). With either all αi = 0 or αi = 1, the parameters of
the new prosumer, 2000 kWh/5 kWpeak and 8000 kWh/0 kWpeak, respectively,
are clearly specified by the upper-level cost-emission objective function (CE),
regardless the new prosumer’s willingness-to-pay.

In contrast, wnew can be a decisive factor when αi are mixed. With wnew =
100 EUR/tCO2, the new prosumer’s optimal annual electricity demand de-
creases to 2000 kWh, whereas lower willingness-to-pay leads to 8000 kWh.
Prosumer 6 has a preference to lower emission (α6 = 0) in case (iii). When
wnew > w6 = 60 EUR/tCO2, the peer-to-peer allocation assigns higher vol-
umes of PV generated electricity to the new prosumer instead of prosumer
6, negatively impacting the cost-emission function CE and lowering the op-
timum electricity demand of the new prosumer.

Next, the community decides between two potential new members (similar to
Section 5.1.3) with opposite levels of willingness-to-pay to analyze the influ-
ence of the willingness-to-pay on the community’s choice. The first example
is two household (H0) prosumers, who are identical except for the willingness-
to-pay, wH0,0 = 0 vs. wH0,100 = 100. The community’s choices can be seen in
Table 5.5, column two (highlighted). In cases (i) and (iii), a prosumer with a
low willingness-to-pay is preferred, whereas, in case (ii), the community opts
for the prosumer with high willingness-to-pay. The two subsequent columns
on the right, which compares household (H0) and business (G0) prosumers,
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Table 5.4.: Influence of the willingness-to-pay on the results (new prosumer is a household).
wnew is the individual CO2-price of the new prosumer, loadnew and P Vnew

the resulting optimal annual electricity demand and PV capacity of the new
prosumer, respectively.

wnew = 0 wnew = 50 wnew = 100
loadnew PVnew loadnew PVnew loadnew PVnew

kWh kWpeak kWh kWpeak (kWh) (kWpeak)
(i) ind. emissions 2000 5 2000 5 2000 5
(ii) ind. costs 8000 0 8000 0 8000 0
(iii) mixed pref. 8000 5 8000 5 2000 5

repeat this pattern.

Table 5.5.: Influence of the willingness-to-pay on the choice of the community. wnew is the
individual CO2-price of the new prosumers.

prosumer type H0 H0 H0 G0 G0 H0
wi in EUR/tCO2 0 100 0 100 0 100
(i) individual emissions ✓ - ✓ - ✓ -
(ii) individual costs - ✓ - ✓ - ✓
(iii) mixed preferences ✓ - ✓ - ✓ -

An assertion can be drawn from the first set of sensitivity analyses that
while willingness-to-pay is not a decisive factor in terms of choosing a new
prosumer’s optimal parameters, it is crucial when deciding between two oth-
erwise identical or similar prosumers. This leads to the assumption that
willingness-to-pay is a more significant parameter than prosumer type.

5.1.4.2. Influence of distance criteria

The second type of sensitivity analysis alters the geographical location of
the new prosumer with respect to the old community members. The altered
distance factors, d̃, of the new prosumer are mirrored compared to the original
configuration, d:

d̃new,j = dnew,(N+1)−j , (5.2)
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where j are the indices of prosumers in Iold; hence, the new prosumer is
(geographically) on the other side of the community. The closest community
member is prosumer 1, the furthest is prosumer 6. Note that the distances
within the original community remain equal. The new distance factors can
be found in Figure 5.15.
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Figure 5.15.: Distance factors dij between the members (H0 and G0 represent the new
prosumers)

Cases (i)-(iii) are once again analyzed and the new prosumer is a household
prosumer type with a willingness-to-pay wnew = 50 EUR/tCO2. Deviation
from the previous distance set-up is noticeable in case (iii), where the PV
capacity changes to zero, whereas the other two cases remain the same, see
Table 5.6. In cases (i) and (ii), the location of the new prosumer does not
influence the community’s decision. To analyze the community’s decision in
the mixed-preference (case (iii)), Figure 5.16 compares the prosumer’s vol-
umes of traded electricity in two different scenarios: (a) the optimal output
of case (iii) (loadnew = 8000 kWh/year and PVnew = 0 kWpeak) and (b) the
non-optimal parameters of the new prosumer (loadnew = 8000 kWh/year and
PVnew = 5 kWpeak) in Section 5.1.2.3, both with new distance factors d̃new,j .
The optimal parameters in scenario (a) lead to an increase in purchases from
the community and a decrease in sales for the new prosumer (H0) compared
to (b). Therefore, the prosumers of Iold considerably increase sales volumes,
particularly prosumer 2 with a cost-saving preference (α2 = 1), which com-
pensates for the small decrease in purchases of prosumer 3 and prosumer 6,
who have an emission-saving preference (α3, α6 = 0) in case (iii).
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Table 5.6.: Influence of the willingness-to-pay on the community’s choice. dnew and d̃new

are the unmodified and modified distance factors, respectively; loadnew and
P Vnew are the the resulting optimal annual electricity demand and PV capacity
of the new prosumer, respectively.

old distances dnew new distances d̃new

loadnew PVnew loadnew PVnew

(kWh) (kWpeak) (kWh) (kWpeak)
(i) ind. emissions 2000 5 2000 5
(ii) ind. costs 8000 0 8000 0
(iii) mixed preferences 8000 5 8000 0
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Figure 5.16.: Deviation of buying/selling
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5.2. Stochastic dynamic participation with a horizon of
several year

5.2.1. Case study set-up

5.2.1.1. Model implementation and run time

The open-source model2 is implemented using Python (version 3.9.7; Van
Rossum and Drake (2009)), the Pyomo package (version 6.2; see Hart et al.
(2011) and Bynum et al., 2021), and the commercial3 solver Gurobi (version
9.5.0; see Gurobi Optimization, LLC (2021)). The stochastic dynamic pro-
gram is very computationally expensive; with a time horizon of five years
considering four scenarios, the case study presented in the following para-
graphs takes 7 hours and 36 minutes to solve on a standard computer with
Intel(R) Core(TM) i7 CPU. A deterministic solution of the same problem
without forecast and scenarios takes 47 seconds.

5.2.1.2. Data and assumptions

In this case study, a portfolio of 20 artificial prosumers consisting of ten
single houses (SH), eight small apartment buildings (SAB), and two small
businesses (SME) is considered. Single houses have PV systems with up to
5 kWpeak installed, and apartment buildings and businesses up to 8 kWpeak.
Additionally, some prosumers own a battery storage system (BESS). Not
all prosumers have their own PV systems; hence, they are consumers only.
The detailed data including PV system orientation and willingness-to-pay
(CO2-price wj) can be found in Table 5.7. wj covers a range between 0–
100 EUR/tCO2,4 depending on how strong a prosumer’s environmental am-

2https://github.com/tperger/PARTICIPATE
3Alternatively, the problem can be solved with the open-source solver GLPK (see GNU

project, 2021).
4With average emissions of 132 gCO2/kWh from electricity generation in Austria and, for

example, wj = 100 EUR/tCO2, the willingness-to-pay is 1.32 cent/kWh above the retail
electricity price.
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bitions are. The distance preferences di,j between prosumers are arbitrarily
assigned within di,j ∈ [0, 1]. The distances are symmetric, thus di,j = dj,i.

The initial set-up consists of ten prosumer (five SHs, four SABs, and one
SME); from there, the different scenarios are developed as shown in Section
5.2.1.3. Electricity demand data and PV production data are obtained from
open-source tools. Residential demand profiles (LoadProfileGenerator ver-
sion 10.4.0, see Noah Pflugradt, 2021 and Pflugradt and Muntwyler, 2017)
represent different living situations and demographics. Renewables.ninja (see
Renewables.ninja, 2019, Pfenninger and Staffell, 2016, and Staffell and Pfen-
ninger, 2016) provides electricity output data from PV systems; in this case
study, data from Vienna, Austria from 2019 is applied. To represent de-
mand profiles of businesses, a synthetic load profile for standard businesses
(G0 "Gewerbe allgemein") is used (see APCS-Austrian Power Clearing and
Settlement (2019)).

Other parameter of the case study concern electricity prices and emissions
from the grid. Prosumers buy remaining electricity, which they could not
buy from other community members or self-generate, from the retailer. The
average residential electricity price in Austria was pGin

t = 0.22 EUR/kWh in
2021 (see Eurostat (2022)). This value is constant over all t ∈ T and n ∈ N .
The excess PV generation, which prosumers could not sell to other commu-
nity members or self-consume, is sold to the grid at Day-Ahead (DA) mar-
ket prices. pGout

t are Austrian DA prices from 2019 (see ENTSO-E (2022)).
These values are time-variant over t ∈ T ; the time series is re-used for all
n ∈ N . Emissions from the grid are calculated using again data from ENTSO-
E (ibid.) for Austria. The calculation considers the amount of electricity
generated per hour and per generation type to account for the correspond-
ing emissions. et are hourly average values in gCO2/kWh; this time series is
again used for all n ∈ N .

Annual hourly data that is available for a whole year is transformed into
three representative days using the Python tslearn package (Tavenard et
al. (2020)), which is based on a k-means clustering algorithm (Teichgraeber
and Brandt (2019)). This step is necessary to reduce computational efforts,
because solving MPECs is already very time-consuming. Per year, 8760 time
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Table 5.7.: Parameters of the prosumers of the portfolio ("-" indicates that a technology
type is not included).

Annual demand PV PV peak BESS CO2-price
(kWh) orientation (kW) (kWh) (EUR/tCO2)

Prosumer SH 1 3336 South 5 3 100
Prosumer SH 2 4538 South 5 0 0
Prosumer SH 3 5253 - - - 90
Prosumer SH 4 5824 South 3 3 30
Prosumer SH 5 6337 South 5 0 50
Prosumer SH 6 6833 South 5 3 60
Prosumer SH 7 7346 - - - 40
Prosumer SH 8 7917 South 3 3 80
Prosumer SH 9 8632 South 5 0 20
Prosumer SH 10 9834 - - - 100
Prosumer SAB 1 6258 South 8 3 100
Prosumer SAB 2 8513 West 8 0 0
Prosumer SAB 3 9854 - - - 90
Prosumer SAB 4 10926 South 5 3 30
Prosumer SAB 5 11888 East 8 0 50
Prosumer SAB 6 12820 West 8 3 60
Prosumer SAB 7 13782 - - - 40
Prosumer SAB 8 14854 South 5 3 80
Prosumer SME 1 16195 South 8 0 10
Prosumer SME 2 18450 - - - 20

steps are reduced to 72 time steps only. The resulting representative days
reflect a summer, a winter, and a spring/fall day. The input data sets that
are clustered mainly vary during different times of the day and the year (i.e.,
seasons). This information is preserved in the representative time series,
therefore the clustering approach is reasonable in our application.

5.2.1.3. Scenarios

We use a finite set of scenarios to represent possible developments of the
portfolio of possible prosumers. Considering in total 20 prosumers, their
possible decisions, and a time horizon of a few years, a large number of
permutations are obtained. Therefore, a scenario tree with all possibilities

86



5. Results of dynamic participation in energy communities

would be very large. Due to the high computational efforts of stochastic
programming, we do not aim at using the full scenario tree for our research.
Instead, a relatively small set of completely different scenarios is developed
to represent the wide spectrum of possibilities.5 This decision is also justified
by the fact that in the objective function in Eq. (3.11), the scenarios are
weighted with their probabilities p(ω). As a result, with increasing number
of scenarios, the probabilities of each single scenario drop.

The use case that will be shown in the results section considers different
building and prosumer types: single houses (SH), small apartment buildings
(SAB), and small businesses (SME). At the beginning, the initial set-up con-
tains five SHs, four SABs, and one SME. The present contract lengths with
the community x0,i vary between zero (in the portfolio, but not a member)
and three years. From there, four different scenarios are considered:

• ω1: additional SABs might want to join in the upcoming years

• ω2: the SABs might want to phase-out in the upcoming years

• ω3: additional SHs might want to join in the upcoming years

• ω4: the SHs might want to phase-out in the upcoming years

Figure 5.17 shows a graphical representation of each scenario ω ∈ Ω from
year one to year five (blue – sn,i(ω) = 1; yellow – sn,i(ω) = 0; highlighted in
red - changes compared to the original community). The original community
consists of the following prosumers: SH 1, SH 2, SH 3, SH 6, SH 7, SAB 3,
SAB 4, SAB 5, SAB 7, SME 1.

5.2.2. Selection of new members in year one using a horizon with
stochastic forecasts

The energy community that is investigated in the case study considers a
portfolio of 20 (possible) prosumers. The portfolio is diverse: different build-

5The values of sn,i(ω) are randomly assigned.
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Figure 5.17.: Choice of the prosumers sn,i(ω) depending on the scenarios ω ∈ Ω (blue -
sn,i(ω) = 1; yellow - sn,i(ω) = 0; red highlighted - changes compared to the
original community)

ing types (single houses and apartment buildings), residential and commercial
consumers, different PV system sizes, etc. are included. Initially, the commu-
nity consists of ten members; the other ten prosumers are not members (yet),
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but part of the portfolio. It is up to the community manager to define who
could be a potential new member in the future. Observing a neighborhood or
a district, buildings currently under construction or newly constructed build-
ings could be potential new members in a few years or even sooner. Also,
growing interest in energy communities per se is considered. Residents of
existing buildings with already installed PV systems might notice the advan-
tages of joining forces in a community. With some expertise, such portfolio
can be created. The next step involves the development of plausible scenar-
ios. If and when a potential new prosumer might announce their willingness
to join the community are estimated. This does not have to be exact, because
uncertainties can be represented in the different scenarios.

5.2.2.1. Original community

Initially, the status-quo of the original community is observed to create a
starting point for the further evaluations of the results. Figure 5.18 shows
the peer-to-peer traded electricity (in kWh/year) in detail; columns represent
the purchases of each member, and rows the respective sales. The allocation
is based on the participants’ willingness-to-pay: Prosumers sell self-generated
PV electricity to those members with highest willingness-to-pay. Table 5.8
shows the quantitative, annual results (kilowatt-hours of electricity bought
and sold, emissions, and costs) of all members. The community consists of six
prosumers, who own PV systems (three of them own an additional BESS),
and four consumers, who cannot sell electricity; they rely on purchases from
the grid or from the community.

5.2.2.2. Stochastic solution

The first set of results shows the selection process for one year in detail. A
time horizon of five years with stochastic forecasts from year n = 2, . . . , 5 is
included in the decision at year n = 1. For each scenario within the time
horizon, different decisions are made depending on which configuration is op-
timal within each scenario. The resulting numbers of prosumers are shown
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Figure 5.18.: Peer-to-peer trading annual results of the original community in kWh/year

in Figure 5.19, grouped into the following categories: the numbers of existing
members (blue) and newly added members (green) are counted on the posi-
tive y-axis, and the numbers of prosumers, who are part of the portfolio but
no members of the community (yellow), and those leaving the community
(red) are counted on the negative part of y-axis. The scenarios ω1, ω2, ω3, ω4
are shown one below the other. Note that in year one, there is only one
joint decision for all scenarios together because of the non-anticipativity con-
straints imposed in Eq.s (3.17)-(3.20).

As shown in Figure 5.19, the decision at year one involves three prosumers
who join the community, and two prosumers who leave. Prosumer SAB 3 and
prosumer SAB 7 left on a voluntary basis (s1,i = 0). At n = 1, decisions on
the potential participation of prosumer SH 5, prosumer SAB 8, and prosumer
SME 2, who show interest in joining the community (s1,i = 1), are made. The
stochastic dynamic program under consideration of all four scenarios accepts
the new prosumers into the community. Prosumer SH 5 and SAB 8 bring
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Table 5.8.: Summary of the peer-to-peer trading results of the original community
Prosumer SH 1 SH 2 SH 3 SH 6 SH 7
Buying grid (kWh) 479.5 3369.5 3961.1 2712.2 4933.7
Selling grid (kWh) 815.3 2857.8 0 469.9 0
Battery charging (kWh) 880.0 0 0 880.0 0
Battery discharging (kWh) 747.4 0 0 776.8 0
Self-consumption (kWh) 1877.5 1099.2 0 3291.2 0
Buying community (kWh) 231.2 68.8 1291.4 53.1 2412.5
Selling community (kWh) 2887.9 2503.7 0 1819.6 0
Emissions (tCO2) 0.1 0.5 0.5 0.4 0.7
Costs (EUR) -531.0 78.4 1169.6 184.5 1637.1
Prosumer SAB 3 SAB 4 SAB 5 SAB 7 SME 1
Buying grid (kWh) 5601.8 6984.5 7741.2 7338.9 10452.5
Selling grid (kWh) 0 1319.5 665.8 0 1584.0
Battery charging (kWh) 0 880.0 0 0 0
Battery discharging (kWh) 0 783.0 0 0 0
Self-consumption (kWh) 0 3148.5 3855.7 0 5532.1
Buying community (kWh) 4252.5 10.0 291.4 6443.3 210.7
Selling community (kWh) 0 1112.7 3720.0 0 3221.0
Emissions (tCO2) 0.7 0.9 1.1 1.0 1.4
Costs (EUR) 2227.1 1249.7 910.2 3083.2 1578.7

PV systems to the community, which facilitates acceptance. Prosumer SME
2 on the other hand presents an interesting case: Not owning PV systems,
but having the highest electricity demand within the community, prosumer
SME 2 is not the ideal candidate for this community with the objective
of minimizing emissions. In our case study, there is sufficient excess PV
generation available for prosumer SME 2 to be included in the community
without worsening the objective function, because prosumer SAB 3 and SAB
7, who are both consumers only, left. We take a look at Figure 5.20, where
increase (or decrease) of annual costs and emissions comparing the original
community and the community at n = 1 are illustrated. Costs and emissions
of prosumers that left the community (prosumer SAB 3 and SAB 7), and
of those who joined the community (prosumer SH 5, SAB 8, and SME 2),
are compared with the costs/emissions of stand-alone prosumers. Without
the community, emissions due to electricity consumption of prosumers SAB 3
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Figure 5.19.: Acceptance/dropping out per scenario considering all prosumers in the port-
folio - stochastic solution

and SAB 7 highly increase in n = 1. All other emission balances are negative
except for prosumer SME 1, thus most prosumers can avoid emissions by
trading electricity with other community members. The only prosumer with
significant cost increase in year one is prosumer SAB 5, who buys from the
new members who joined the community at n = 1.

Returning to Figure 5.19, we now compare the scenarios from year two to
year five. There is a distinct difference between the scenarios starting from
year three: In scenario ω1 and ω3, new prosumers show interest in joining the
community, while in ω2 and ω4, some existing members leave the community,
without replacement by new prosumers. This diversity within the scenarios
is also reflected in the selection process. Single houses have higher PV capac-
ities installed in relation to their annual electricity demand than apartment
buildings or businesses. Therefore, single houses share more PV generated
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Figure 5.20.: Difference of annual costs and emissions between original community and new
community at n = 1 (red - annual costs; green - annual emissions); increase
of costs and emissions counted positive, decrease negative

electricity with the community than other prosumer types. In scenario ω4,
five single houses, which were part of the original community, leave in year
n = 3. The remaining members are then left with a community without suffi-
cient PV capacities to actually benefit from peer-to-peer trading. Hence, the
remaining prosumers leave too. The explanation for scenario ω2 is similar.

Let us now discuss the development of the original community’s annual emis-
sions over five years. The contributions of each scenario to the expected
emission are shown in Figure 5.21. In this graph, only emissions of active
members count; thus, emissions in scenarios ω2 and ω4 converge to zero.
Additional SABs joining at n = 3 in scenario ω1 increase emissions of the
original community members, while staying well below the baseline, the emis-
sions without sharing electricity in the community (dashed black line). In
scenario ω3, the annual emission decrease, because the newly added SHs pro-
vide more PV generated electricity, relative to their own demand, to trade
with the community.
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Figure 5.21.: Emissions over five years by scenario ω1, ω2, ω3, ω4 - stochastic solution

5.2.2.3. Deterministic solution

Next, we compare the selection of the stochastic approach with a simplified,
deterministic approach. The deterministic implementation is as following:
First, the existing members and potential new members are captured. The
optimization is executed knowing all relevant parameters of year n = 1, but
not considering any future developments. The simplified version of Eq. (3.11)
is:

min
xn,i,bn,i,un,i,Qi,t,n

Fn (5.3)

Constraint and lower level problem remain unchanged to those presented
in Section 3.3.2, however, the scenarios ω are missing. Figure 5.22 compares
stochastic and deterministic solutions of the problem by showing the decision
for each prosumer separately. While prosumers SH 5 and SME 2 are accepted
into the community as in the stochastic solution, prosumer SAB 8 is rejected
using a deterministic approach, which is the only distinction between the two
cases.
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Figure 5.22.: Selection of prosumers in year n = 1 (top - stochastic approach; bottom -
deterministic)

5.2.3. Selection process over five years comparing stochastic vs.
deterministic solution

Recalling the research question of this paper, we want to find out if the
stochastic approach to dynamic participation in energy communities leads to
different selection of prosumers than a more simple, deterministic approach.
For this purpose, the optimization model is applied over several consecutive
years using the deterministic implementation briefly explained in the previous
section. The consecutive execution of the deterministic program is performed
as following: We optimize using Eq. (5.3) with n = 1 as our objective
function, knowing all the relevant parameters of year one, but not considering
any future developments. The resulting configuration of members is the new
so-called original community for the following year and the contract lengths
are updated. We use scenario ω1 as a reference scenario, which we assume
will actually happen, meaning

sn,i = sn,i(ω1). (5.4)
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The optimization is repeated year by year for all n ∈ N . Afterwards, the
whole procedure is again repeated for the other scenarios ω2, ω3, ω4.

Figure 5.23 presents the decisions of the deterministic approach comparing
all four scenarios one below the other. In year one, all scenarios deliver the
same results, because the same parameters are assumed. Comparing with
Figure 5.19, it is interesting to notice that in the deterministic solution for
scenarios ω2 and ω4, there are still members in the community at n = 5, which
is not the case in the stochastic solution. This can be explained as follows:
The objective function Fn takes into account the emission balances of all
members of the original community. The deterministic approach updates the
community each year, thus the set-up of original members changes as well.
The stochastic results from the previous Section 5.2.2 are obtained from the
decision at year one and only considers the original community at the starting
point. The corresponding emissions are shown in Figure 5.24.
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6. Discussion and synthesis of results

This Chapter provides a synthesis and discussion of the results that are pre-
sented in the previous Chapters 4 and 5. Starting with Section 6.1, the
findings with respect to the research questions, which we defined in Section
1.2, are elaborated. The following Section 6.2 provides a discussion of the
limitations and strengths of the proposed methods. The final Section 6.3 of
this Chapter discusses upscaling and transferability of the methods in Sec-
tions 6.3.1 and 6.3.2, and then participation in energy communities from a
system perspective in Section 6.3.3. Figure 6.1 shows an overview of the
topics covered in this Chapter, and how they relate to each other.

6.1. Findings with respect to the research questions

The detailed key findings referring to each research question are outlined in
this Section. We will state the research questions once again and answer them
with the findings and insights gained in this work. We start with research
question one.

Research question 1: How can a peer-to-peer trading approach in energy
communities take into account prosumers’ individual preferences for saving
emissions caused by electricity consumption?

The results show that the implementation of individual willingness-to-pay as
an allocation mechanism in peer-to-peer trading, as proposed in this thesis,
promotes the desired outcomes for the prosumers. Participation in energy
communities creates added values depending on the needs of the prosumer:
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financial savings for profit-orientated prosumers with a low willingness-to-
pay, and high emissions’ savings for environmentally concerned prosumers
with a high willingness-to-pay.

Notably, the algorithm ensures that generated PV electricity is perfectly al-
located, not only to prosumers according to their willingness-to-pay, but it is
also optimized for the entire community by minimizing purchases and sales
from/to the retailer.

In addition, battery energy storage systems (BESSs) increase flexibility and
are therefore able to reduce the community’s purchases from the grid and
increase profitability for prosumers owning BESSs.

The findings of the sensitivity analyses show that the retail electricity price
has a great influence of the overall results. A higher retail price, for example
in Germany, decreases community welfare because the community members
generally have to pay more for electricity; however, local self-consumption be-
comes more valuable and therefore the profitability of sharing PV increases.

The set-up of the community (with respect to the installed PV capacities, the

99



6. Discussion and synthesis of results

number of prosumers vs. consumers, and the demand profiles) has a strong
impact on the performance of the entire community and of each prosumer.
As shown in the sensitivity analysis, members leaving the community may
decrease the community’s welfare and the amount of PV electricity generation
that is shared in the community. While this may not be significant when only
one prosumer leaves, the effects are likely to increase when there is greater
variation in the community set-up. This motivates the next research question
to further investigate changes in the portfolio of community members.

Research question 2: How would an existing energy community collec-
tively choose an optimal new member/prosumer to engage in peer-to-peer
trading?

The bi-level model developed to answer research question two is able to choose
the optimal parameters of a new member. This is the first step for gaining
useful information on the kind of prosumer (e.g., consumer only or prosumer,
high or low PV capacity, level of annual electricity demand, including or
excluding BESS (the latter aspect was not shown in this research)) that
is preferred by the community. Simultaneously, the model can determine
whether the participation of a new member in the community is accepted or
rejected; hence, a choice between potential members can be made. In Section
5.1, where the results of research question two are presented, the case study
was limited to one new addition to the community. However, it is possible
to introduce a portfolio of new members without limiting the number of new
members, which is useful for the next research question three. The model
determines simultaneously the optimal number of new members and which
ones are selected. This is possible because there are binary variables attached
to each new member that determine acceptance or rejection. The optimal
number differs based on the portfolio of members and the needs of the old
community.

The community’s choice reflects well the different needs of the members. We
can see that a community with environmental-oriented members opts for a
prosumer with a large PV system, while profit-oriented choose a consumer
with high electricity demand they can sell electricity to and thereby generate
profits. Geographical distance and the new prosumer’s willingness-to-pay also
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influence the decision. With mixed preferences, the needs of environment-
and profit-oriented prosumers are balanced. There is, of course, also the
possibility for the community to define a common goal, such as saving the
community’s total emissions. In that case, the community must ensure that
new prospective members commit to the same target.

The tool developed to answer research question two is only a basic model
for dynamic participation, because it shows only one year of the selection
process. It can be considered as a basis for dynamic participation over sev-
eral years (annual phase-in and phase-out of members). Also, it helps an
energy community to optimally select prosumers from a given portfolio with-
out considering possible future developments of the community. To improve
planning of the community, this matter is addressed by the next research
question.

Research question 3: Does knowledge of future developments in energy
communities help a community manager make better decisions selecting new
participants than without considering future developments?

For the purpose of answering research question three, a stochastic dynamic
program with a look-ahead policy is developed. The model is based on the
bi-level optimization model developed to answer the second research ques-
tion, which is able to select the most suitable new members for an energy
community and its optimal parameters. To answer the third research ques-
tion, the model is further developed so that the decision made in the here
and now includes a forecasting horizon that extends into the future.1 Future
parameters are stochastic and scenarios are used to adequately represent pos-
sible future developments. The results compare the selection of a community
manager with forecast and without forecast.

It is important to choose the scenarios carefully and make them as realistic
as possible. For example, it is up for debate whether it makes sense to
include scenarios that contradict each other, since they might cancel each
other out when weighted equally. Moreover, one should not attach too much

1Note that we have simplified the model to a choice between predefined prosumers of a
portfolio, since the stochastic approach with forecast is already very complex.
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importance to a scenario that is very unlikely to occur.

We noticed that in some scenarios, the model does not extend contracts of
members whose emission balances have strongly declined. This is equivalent
to members leaving the community because they are dissatisfied with the
community’s development. We have observed this problem in scenarios where
it is endogenously given to the model that a larger number of members leave,
leaving the remaining community members abandoned. A follow-up research
question could address how to prevent this.

Core characteristic of our approach to the selection process is the community
members’ objective to minimize emissions from electricity consumption. The
peer-to-peer trading mechanism maximizes self-consumption – and therefore
also minimizes emissions from electricity consumption – of the community
as a whole while considering prosumers’ individual willingness-to-pay. When
selecting prosumers from a portfolio of potential new members, the original
community aims at further avoiding emissions. It is up for discussion if en-
ergy community members are more interested in improving economic (e.g.,
by saving annual costs for electricity) or environmental benefits. Because
literature often indicates that environmental incentives play a particularly
important role for participants of energy communities, and because indi-
vidual willingness-to-pay that determine peer-to-peer trading in our work
include a preference to save emissions, the elaboration of research question
three focuses entirely on environmental interests. Therefore, we made a con-
scious decision not against minimizing costs, but for minimizing emissions
in the objective function, which is a distinguishing feature of this particular
analysis.

6.2. Limitations and strengths of the proposed
methods

This Section discusses the limitations and strengths of the methods proposed
in this thesis. We highlight the limitations that require further consideration
and investigation, first in terms of static participation and then in terms of
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dynamic participation, in Sections 6.2.1 and 6.2.2, respectively. The strengths
of the methods are presented in Section 6.2.3.

6.2.1. Limitations regarding static participation

The discussion of the limitations of the proposed methods begins with a
critical analysis of the peer-to-peer trading model, i.e., static participation
in energy communities. While energy communities typically have a posi-
tive impact on their members, other parties indirectly involved, for example
the distribution system operator (DSO), might experience a decrease in the
revenue due to local PV self-consumption. Naturally, DSOs are in favor of
increasing the fixed component of the grid tariff in case of an increase in self-
consumption of PV electricity generation by prosumers and communities. A
reduction in the variable grid tariff component also negatively impacts the
profitability of energy communities, as this component of the grid tariff di-
rectly relates to the retail electricity price. Therefore, future studies should
focus on different compositions of fixed versus variable charges of grid tariffs
and their corresponding influences on energy community results.

Starting with research question two, we add a so-called distance factor,
di,j ∈ [0, 1], to the prosumers’ willingness-to-pay. This distance-related factor
considers that the matching of widely dispersed PV generation and load is
disadvantageous, while closer matching is preferred.2 Equation (3.4) shows
how the distance between two members of the community influences the
willingness-to-pay: The larger di,j , the smaller the premium that is added on
top of the retail electricity price. In our approach, di,j is an artificial factor;
in real applications of peer-to-peer trading it should represent either (i) an
individual preference to buy from certain members of the community and
not from others, or (ii) a physical parameter such as distance in meters or
electrical distance3 between prosumers. Our approach does not specify how

2There are at least two reasons to introduce the distance factor in our work: (i) grid-
friendliness and (ii) support of local and decentralize energy supply.

3There are different measures of electrical distance for power networks; one example is
the absolute value of the inverse of the system admittance matrix (see Blumsack et al.
(2009)).
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exactly the distance factor can be interpreted and quantified. This ambiguity
is a limitation of our peer-to-peer trading model. We leave it open for those
who actually want to implement this type of energy community.

6.2.2. Limitations regarding dynamic participation

We continue the discussion on the limitations of the proposed methods by
focusing on dynamic participation. Related to the bi-level model that was
developed to answer research question two, we found the following discussion
points. The objective function of the bi-level model is based on a Pareto
optimization approach that includes two objectives, emission and cost min-
imization, in the same objective function. Both objectives are expressed in
different units; emissions in tCO2 and costs in EUR. These units are often
associated with each other when it comes to CO2-prices (such as in CO2-taxes
or certificate prices), but they are not easily comparable.

Another limitation regarding research question two is that our analyses show
only one year in which the community selects new participants. Hence, this
is only the basis on which dynamic participation with yearly entry and exit
of members is built. Also, the length of the binding contract between partic-
ipants and community is exactly one year (and can be extended for another
year after expiration); therefore, variations in contract lengths are not in-
cluded in the decision process. These issues are addressed in research question
three.

Regarding research question three, the analyses showed that the stochastic
approach to optimize a selection process of energy community members is
cumbersome. Not only are stochastic dynamic programs computationally
expensive, but also the creation of adequate scenarios, data collection and
estimation of existing members and potential new ones is a complex procedure
in real-life situations. Though, including scenarios that are most likely to
happen as a forecast in the decision process is recommended. The exact
contractual design between community members and the community as a
legal entity is subject to further research, which should include real test sites
and the investigation of legal aspects.
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Related to both research questions that analyze dynamic participation in
energy communities, research questions two and three, the following problems
are found. Both models have in common that they find a joint optimum
for all members by adding the objective of each member to the objective
function. A joint optimum does not mean that the individual optimum for
each participant is reached and it could mean a degradation for individual
participants. Interesting future work could investigate dynamic participation
from a game theoretic point of view.

An energy community must be able to attract suitable potential new members
to guarantee its performance over the years. If members leave the community
and cannot be replaced by new members who restore or improve the status
quo, the satisfaction of existing members with the community decreases. In
fact, this is a limitation of this thesis. The selection process is made solely
from the perspective of the original community, assuming the availability of
potential new prosumers who fit well into the community. This issue is ad-
dressed – but only indirectly and partially – in the third research question by
creating different scenarios in which different types of prosumers are included
in the portfolio of potential participants.

Our dynamic participation models allow an energy community to reject po-
tential members, which is in some way a contradiction to the environmental
preference attested to the community members. On the one hand, an energy
community should be a small, socially tangible entity of manageable size. A
sense of belonging, trust, and confidence are easier maintained in a small and
selective community. Therefore, boundaries are consciously drawn. On the
other hand, the suggested selection process is not a one-size-fits-all approach.
Energy communities can have different sizes, goals, and diversity of actors
involved. Setting no limits and accepting all interested prosumers into the
community would eventually lead to a (single) large energy community for
an entire country, which is not a socially tangible entity anymore. The pos-
sibility to actively participate and to engage in the energy system according
to one’s own preferences would be lost.

And lastly, in real implementations of energy communities it might be difficult
to find a common criteria that will determine if a potential new prosumer is
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allowed to join the community or not.

6.2.3. Strengths of the proposed methods

After the discussion of the limitations, we continue with the strengths of the
proposed methods. We start again with the peer-to-peer trading model, i.e.,
static participation in energy communities. One of the strengths of the peer-
to-peer trading approach presented here is that the billing should be relatively
easy to implement in real life. Time resolution is one hour, therefore hourly
smart meter data of all community members is sufficient to ex-post account
cash flows. This is an advantage compared to other peer-to-peer trading
concepts that rely on blockchain technologies.4

The idea to allocate electricity within the community based on individual
willingness-to-pay contributes to the strengths of the methods. The objec-
tive function to maximize community welfare ensures that the community’s
resources are optimally utilized by the members. Individual willingness-to-
pay enable the community to exactly account cash flows among its members.
Also, when PV systems produce less electricity than is demanded, the com-
munity’s generation is assigned to those with highest willingness-to-pay, i.e.,
those members are prioritized. Another distinctive feature of our peer-to-
peer trading model is that prosumers not only share their surplus with the
community, but the total amount of PV electricity generation is traded with
the community, which creates more opportunities for buying and selling. It
follows that the peer-to-peer trading concept endorses the concept of energy
communities contributing to a sharing economy. Interested participants can
consume locally generated PV electricity without having to own a PV sys-
tem, and other prosumers can sell their PV generation to those who wish to
consume it. There is a potential for new business models to be created and
for the promotion of investments in PV systems.

We now move to dynamic participation in energy communities and discuss
the strengths of our modeling approach in this regard. Our dynamic par-

4Of course, blockchains offer some advantages such as privacy protection of prosumers
and a fully decentralized application.
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ticipation models are able to simultaneously maximize community welfare,
i.e., optimally distribute PV electricity within the community, and select new
members. This way, all known parameters of a potential new member, such
as willingness-to-pay and distance to other members, can be included in the
selection process and the optimum can be found in one model run.

Although it is only possible to find a common optimum for the entire commu-
nity that does not guarantee individual optima of all members, it is important
that the objectives of all members are taken into account. In research ques-
tion two, each member can prioritize saving costs, saving emissions, or a
mixed preference.

Incorporating a stochastic forecast into the selection process, while computa-
tionally quite difficult, is an important step for energy communities to take
if they are to survive in the long term. Planning ahead as an energy commu-
nity will become especially important now that we are in the early stages of
introducing energy communities.

6.3. Upscaling, transferability, and system perspective

The research questions, which this thesis aims to answer, each consider the
perspective of single energy communities. By definition, energy communi-
ties are not closed systems and they are not self-sufficient. Participants are
connected to the distribution grid and usually purchase electricity to cover
residual demand from the electricity supplier. Therefore, analyses of energy
communities are only complete if the system perspective is also discussed.
In this Section, we discuss the following aspects: upscaling the potential
for energy communities in Section 6.3.1, transferability in Section 6.3.2, and
participation in energy communities from a system perspective in Section
6.3.3.
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6.3.1. Upscaling the potential for energy communities

The peer-to-peer model (FRESH:COM) for static participation presented in
the first contribution of this thesis, Perger et al. (2021), is also applied in a
case study within the Horizon 2020 project openENTRANCE (see openEN-
TRANCE (2022)), where, among other things, the theoretical potential of
energy communities in Europe is analyzed. Based on five European reference
countries,5 the number of energy communities is derived according to the
building stock and the following settlement patterns: city, town, suburban,
and rural areas. Settlement patterns are characterized by population den-
sity, prevalent building type (single family house, small and large apartment
buildings), rooftop areas available for installation of PV, and electricity de-
mand of residents. For this type of analysis, an accurate data base of the
residential building stock is key and a high special resolution is desirable to
correctly classify areas into settlement patterns.

Results of the analysis of the project’s case study show that participants of
energy communities can cut down their annual electricity costs and emissions.
Cost savings correlate with retail electricity prices, i.e. the higher the costs
per kilo-watt-hour, the higher the savings, and they correlate with the amount
of PV electricity generated by the community in total. Due to increasing
consumption of (clean) PV electricity, emissions of prosumers participating
in an energy community decrease.

The evaluation of the potential for energy communities as conducted in the
project’s case study adds value to this thesis too. Investigating peer-to-peer
trading in different settlement patterns shows where participants benefit most
from participation in energy communities. The average prosumer in a rural
community saves a larger portion of their annual costs and emissions than
average prosumers in other settlement patterns. Moreover, the results from
different countries show that where prices are highest, financial benefits for
community members are also highest. Equivalently, most emissions are saved
in countries with a high fossil share in power generation.

5Five countries are selected for the case study: Austria, Greece, Norway, Spain, and
England, to represent Central Europe, South-Eastern Europe, Scandinavia, Iberian
Peninsula and Great Britain, respectively.
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6.3.2. Transferability

The case studies that are shown in this thesis investigate energy communities
that are located in Austria, and therefore, the parameters such as electricity
prices and PV generation profiles are specific to Austria. As mentioned in
the previous Section 6.3.1, the peer-to-peer trading model can be applied
to different settings, for example different countries, settlement patterns, or
sizes of communities, when input parameters are adapted accordingly. In
Austria, the legal framework for the concepts of Renewable Energy Com-
munity (REC) and Citizen Energy Community (CEC) was created in the
Erneuerbaren Ausbaugesetz (EAG, see Republik Österreich (2022)). When
analyzing other countries, their country-specific regulatory frameworks rel-
evant to energy communities need to be considered. Member states of the
European Union have to transpose the new European rules of the recast of
the Renewable Energy Directive (REDII, see European Commission (2018))
into national law (see also Hoicka et al. (2021)). In this process, the indi-
vidual member states are at different starting points from a regulatory and
market point of view. For example, in 2015 the roll-out of sustainable energy
communities was relatively advanced in Germany compared to other counties
such as Spain, where collective ownership of renewable energy infrastructures
is rare (see Romero-Rubio and de Andrés Díaz (2015)). The diffusion of en-
ergy communities not only depends on policies and regulatory framework,
but also on energy mix, market structure, and social attitude (see Sciullo et
al. (2022) for a comparison of six European countries). Further comparisons
of the regulatory framework for energy communities across Europe can be
found in Frieden et al. (2019).

While the regulatory framework for energy communities is emerging in most
European countries, the concept of peer-to-peer trading in particular is not as
developed. In Austria for example, it is not yet possible to directly buy or sell
electricity from/to other prosumers, because the corresponding rules must be
created first. However, there are already some providers who are simulating
trading between private producers and consumers, based on the currently
applicable rules of the energy market. At least, as part of the Clean Energy
for all Europeans package of the EU, the aforementioned REDII and the
Electricity Directive on common rules for the internal market for electricity
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(ED, see European Commission (2019)) define the role of citizens as active
participants in the energy system and specify that consumers are allowed to
store, sell and consume their self-generated electricity (see Uhde (2022)).

Furthermore, we need to ask how peer-to-peer trading, as presented in this
thesis, can be managed and organized. The energy community needs an
organizational unit, for example a community manager, who is responsible
for billing, clearing, and accepting new members, among other things. A
community manager may charge a service fee that reduces members’ prof-
itability. It is also necessary to develop an algorithm that performs clearing,
for example a centralized matching algorithm. Using a decentralized method
is an option too, for example blockchain technology. However, it requires
additional energy, which is – in relation to the small amounts of energy that
are traded between peers in one transaction – not negligible.

Another point of discussion concerning transferability of the proposed meth-
ods is the following: How can we include the perspective of potential new
members into dynamic participation in energy communities? Our dynamic
participation models only consider the perspective of the old community,
whose members have to make a decision about the acceptance or rejection
of new members. A new member would expect certain benefits from joining
the community; we could extend our modeling approach to ensure that cer-
tain minimum requirements, for example expected emission savings, are met.
Another (very different) idea would be to reverse dynamic participation and
examine prosumers’ search for an ideal community. This was out of scope for
this thesis, but could present interesting future work.

6.3.3. Participation in energy communities from a system
perspective

Due to strong dependence on weather conditions, electricity production from
power plants using renewable energy sources such as wind and solar is typ-
ically characterized by volatile generation profiles. Especially when power
plants are bundled at one location, high renewable penetration creates stress
on electricity grids, because production (or lack thereof) occurs at the same
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time and at the same place. Therefore, large capacities of installed PV sys-
tems can temporarily strain the distribution grid. Increasing flexibility in the
system can be useful to flatten peak loads, so-called peak shaving, but also
to avoid heavy amounts of excess PV generation to burden the distribution
grid. There is a variety of flexibility options. Among others, there is the pos-
sibility to utilize storage (for example battery energy storage system, BESS),
demand response, sector coupling, or PV curtailment.

Now we want to discuss the influence of energy communities on distribution
grid operation. PV systems are the most established technologies for energy
communities, because they are relatively easy to implement and the barriers
to operate them are low. The generation profiles of PV systems are very
characteristic; they produce the highest outputs around noon, while there is
no generation at night. In the evenings, when demand typically peaks, PV
generation is low and peak demand cannot be significantly reduced by PV
alone without flexibility options. There are also seasonal characteristics: low
production in winter, high production in summer.

If grid-friendliness is an objective of the community, the operation of an
energy community can help balance grids. There are couple of scientific pa-
pers on the grid impact of energy communities. For example, Sudhoff et al.
(2022) found that a grid-friendly operation strategy of a renewable energy
community can reduce peak power at the low-voltage substation by 23–55%.
Comparing with an operation strategy that maximizes the members’ eco-
nomic benefits, the grid-friendly operation shows a cost-saving reduction of
less than one percent. Hence, aiming at reducing peak power as a community
require small compromises only. Weckesser et al. (2021) included a power flow
analysis and found that with the right operating strategy the energy com-
munity can reduce the low-voltage grid loading by up to 58%. For the case
of peer-to-peer trading, Bjarghov et al. (2020) developed subscribed capacity
tariff where end-users pay for a capacity level with a high excess energy term
in order to incentivize grid-friendly consumption profiles.

Another aspect that could increase flexibility is the fact that energy com-
munity members are active participants in the energy system. They tend
to be better informed about electricity markets, energy efficiency, and other
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related issues than traditional consumers. Therefore, awareness of flexibility
needs develops more quickly among energy community members and creates
a willingness to participate in flexibility-improving activities. For example,
innovative pricing schemes that reward peak load shaving can be integrated
into an energy community’s internal billing system.

While grid-friendliness was not an objective of this thesis, our peer-to-peer
trading model shows a few advantages that could help balance distribution
grids. First, the technology portfolio of the community includes BESS, which
can shift electricity generated by PV systems to a different hour of the day
when its most needed, and therefore members are not only bound to just-
in-time consumption. Also, community welfare maximization ensure that
the electricity bill of the community is minimized and therefore the internal
resources are utilized as much as possible. Next, although flexibility through
sector coupling is not included in the analyses of this thesis, some sector
coupling mechanisms can be included easily (e.g., electric vehicle charging,
operation of heat pumps, etc.) without fundamental change of the modeling
approach. Another aspect that could help balance the grid is the prosumers’
willingness-to-pay, which includes a preference for buying locally generated
electricity, i.e., the closer to another community member, the higher the
willingness-to-pay.

The main focus of this thesis is dynamic participation in energy communities,
and for this purpose the peer-to-peer trading model was extended to include
phase-in and phase-out of members. We would now like to conclude this
chapter with a discussion of our dynamic participation models, where new
members are selected to join an existing community, from a systems perspec-
tive. The objective function reflects the desires of the community members,
such as minimizing costs or emissions, which they would like to see fulfilled
by adding new members. We would now like to ask whether the community’s
decision also brings benefits to the energy system. There is potential that this
type of selection process could also be beneficial to grid-friendliness of the
community, if system perspective and community needs correlate. Incentives
for communities to choose prosumers who are best from a system perspective
need to be created. A positive side effect would be that investments in PV
systems (or other renewable energy generation systems) are triggered where
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they are most needed.
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Energy communities create opportunities for prosumers to actively partici-
pate in the energy system. This thesis contributes to this topic by proposing
both a peer-to-peer trading concept and a concept to evaluate the selec-
tion process to search for new members for an energy community. We start
with the conclusions of this thesis from the methodological point of view and
then from a thematic perspective. Finally, we present the outlook on future
work.

The methods presented in this thesis fulfill two main tasks. The first task
is the peer-to-peer trading algorithm to optimally allocate PV generated
electricity to the community members. Compared to more basic allocation
mechanisms in energy communities, peer-to-peer trading has the advantage
that individual participants are granted more autonomy and decision-making
power, here in the form of individual pricing. Nevertheless, the overall bene-
fit of the community is maximized, meaning all resources are used as best as
possible within the community and no kilowatt-hours are sold "unnecessarily"
to the grid.

The allocation mechanism is determined by the individual willingness-to-pay
of prosumers, which in our case is even higher than the retail electricity price.
That’s because in our approach, the entire PV electricity generation is put on
the internal community market, where it is allocated based on the prosumers’
demand curve. So it may happen that prosumers, instead of self-consuming,
sell their own generation to other participants with a higher willingness-to-
pay than themselves. Other energy community models typically assume that
the community-internal electricity price is somewhere between feed-in tariff
and retail price, so that both buyers and sellers benefit, and it only makes sell-
ing surplus generation attractive. In our case on the other hand, it is mostly
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sellers who benefit because of the prosumers’ willingness-to-pay above retail
price. In this context, the question arises whether it is realistic that partic-
ipants of an energy community will actually have an increased willingness-
to-pay, especially in times of already high electricity prices. In principle, our
suggested peer-to-peer allocation mechanism also works with willingness-to-
pay below retail price, but then only surplus generation is shared because
in order to put the entire PV generation on the market, producers must be
compensated at least at the retail price. There is a risk that our approach
could be only a niche application for particularly environmentally conscious
individuals.

The second task is the selection process of new members from the perspec-
tive of an existing community. Our model selects the best entrants from a
portfolio of potential new members. The best new entrant should improve
the annual costs and emissions balances of the old members of the commu-
nity. A challenge in the practical implementation of energy communities will
be the collection of relevant data. For the selection process, the dynamic
participation models need at least an estimation of hourly data of demand
and (PV) generation of potential new members. Especially in our stochastic
approach to dynamic participation that includes forecasts of several years, it
is difficult to realize.

The bi-level models developed in this thesis are complex procedures for rela-
tively small applications, and they are also computationally expensive. These
types of bi-level models could also be applied to other problems related to
electricity markets, such as whether or not a market area should be expanded
or whether or not market areas should be merged.

While we are still in the introductory phase of energy communities, it is
first important that consumers and prosumers are willing to create energy
communities together and that they can easily overcome regulatory and other
organizational barriers. Then, energy communities have to find a way to
remain relevant in the future. To accomplish this, we suggest in this thesis
to optimize the selection process of new members from the perspective of an
existing energy community. However, our proposed selection procedure will
only be relevant in the future if enough potentially interested new members
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can be found.

Therefore, energy communities must be able to sustain themselves and re-
main attractive to prosumers, preferably without the help of government
subsidies. In addition, energy communities must prove that the concept will
survive in the long term. It is important to investigate which regulatory as-
pects are helpful for energy communities and which are not. For example,
electricity tariff design can play a major role; with discounts on the network
tariff, prosumers and consumers can be encouraged to participate in energy
communities, whereas with high fixed components in electricity prices, energy
communities become economically less attractive.

However, the main purpose of energy communities, by definition, is not fi-
nancial gain, which means that other aspects besides economic attractiveness,
such as awareness about environmental issues, increasing self-sufficiency, or
consumption of locally generated electricity, should be focused on as incen-
tives for participation in energy communities.

In addition to revealing insights into dynamic participation in energy commu-
nities, this thesis may provide suggestions for follow-up research questions.
Since our studies are limited to the electricity sector, a concept that incorpo-
rates the ideas presented in this thesis (mainly individual willingness-to-pay
and dynamic participation) for holistic energy communities that include heat-
ing, cooling and other energy related aspects such as transport, (waste) water,
or disposal of general waste could be created. It is worth investigating closer
the contractual arrangements between energy communities as a legal entities
and their members. The exact design of contracts also depends on legal and
regulatory aspects and is therefore an interdisciplinary challenge. Also, it
would be interesting to see if our selection process could be turned around
and prosumers search for their ideal community, hence, energy communities
can compete when it comes to finding new participants.
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A.1. Validation of peer-to-peer trading modeling
approach

In this section, the model is validated by testing its basic functionalities.
Section A.1.1 presents the model validation with respect to sharing excess
PV electricity generation only, but not considering willingness-to-pay. The
functionality of the willingness-to-pay is then verified in Section A.1.2.

A.1.1. Model Validation by Sharing Excess PV Electricity
Generation Only

The first model validation verifies the model when considering that only the
prosumers’ excess PV electricity generation is shared with the other com-
munity members, and that the willingness-to-pay for PV generation by the
community is equal to the retailer’s electricity price. To model this case, the
willingness-to-pay, wtpi,j,t, is adapted compared to Equation (3.2):

wtpi,j,t = pGin
t , (A.1a)

wtpi,i,t = pGin
t + ϵi. (A.1b)

By adding a small term, ϵi, to pGin
t for self-consumption, it can be noticed

that self-consumption is preferred before buying from other members. No
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further changes are added to the model. The prosumers in this set-up are
the same ten households those presented in Table 4.1. The diagonal line in the
3D bar plot in Figure A.1 indicates the self-consumption of each prosumer.
Prosumers owning a PV system have very high self-consumption, and the
amount of excess PV generated electricity is shared mostly with members
who have no PV systems of their own.

Figure A.1.: Model sharing excess PV generation only (without BESSs)

Luthander et al. (2015) summarize different studies that have researched
typical values for prosumer self-consumption and the effects of BESSs on
self-consumption. As shown in Figure A.2, the values for self-consumption
in this scenario lie between 25%-40%, which is in agreement with the values
presented in ibid. Prosumer 3 has over 50% self-consumption and is an outlier
because of their small PV system. When including batteries (prosumers 2, 4,
7, and 9), the self-consumption of those prosumers operating BESSs increases
by 20%-25% (see Figure A.3).

A.1.2. Validating the Functionality of the Willingness-to-Pay

The next step is to validate the functionality of the willingness-to-pay. The
community set-up consists of ten households with the parameters shown in
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Figure A.2.: Community sharing excess PV generated electricity only (without BESSs)

Table 4.1, except that only prosumer 10 has a PV system (and all BESSs
are neglected). The 3D bar plot in Figure A.4 shows that the PV generated
electricity of prosumer 10 is traded within the community according to the
willingnesses-to-pay of the prosumers (i.e. who pays most, buys most), and
prosumer 3, 8, and 9 are the most willing to pay. Figure A.1 shows the
results relating mostly to self-consumption, where only excess PV generation
is distributed within the community. However, compared with the scenario
shown in Figure A.4, it is highly evident how the willingness-to-pay enables
and determines peer-to-peer trading.
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Figure A.3.: Community sharing excess PV generated electricity only (with BESSs)

Figure A.4.: Only one prosumer has a PV system (without BESSs)
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A.2. Formulation of the KKT conditions of the lower
level problem

A.2.1. Lagrangian function

To derive the KKT conditions, the Lagrangian function L must be formu-
lated:

L(qGin
i,t , qGout

i,t , qshare
i,j,t , qBin

i,t , qBout
i,t , SoCi,t)

= − SW

+ λload
i,t (qGin

i,t + qBout
i,t +

�
j∈I

qshare
j,i,t − qload

i,t )

+ λP V
i,t (qGout

i,t + qBin
i,t +

�
j∈I

qshare
i,j,t − qP V

i,t )

+ λSoC
i,t>t0(SoCi,(t>t0)−1 + qBin

i,t>t0 · ηB − qBout
i,t>t0/ηB − SoCi,t>t0)

+ λSoC
i,t0 (SoCi,t=tend

+ qBin
i,t0 · ηB − qBout

i,t0 /ηB − SoCi,t0)
+ µSoCmax

i,t (SoCi,t − SoCmax
i )

+ µ
Bmax

in
i,t (qBin

i,t − qBmax

i )

+ µ
Bmax

out
i,t (qBout

i,t − qBmax

i )
− βGin

i,t qGin
i,t − βGout

i,t qGout
i,t − βshare

i,j,t qshare
i,j,t − βBin

i,t qBin
i,t − βBout

i,t qBout
i,t − βSoC

i,t qSoC
i,t

(A.2)

A.2.2. Formulation of KKT conditions

Stationarity of the Lagrangian function:

∂L/∂qGin
i,t = pGin

t + λload
i,t − βGin

i,t = 0 (A.3a)
∂L/∂qGout

i,t = −pGout
t + λP V

i,t − βGout
i,t = 0 (A.3b)

∂L/∂qshare
i,j,t = −wtpi,j,t + λP V

i,t + λload
j,t − βshare

i,j,t = 0 (A.3c)

∂L/∂qBin
i,t = λP V

i,t + λSoC
i,t · ηB + µ

Bmax
in

i,t − βBin
i,t = 0 (A.3d)

∂L/∂qBout
i,t = λload

i,t − λSoC
i,t /ηB + µ

Bmax
out

i,t − βBout
i,t = 0 (A.3e)
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∂L/∂SoCi,t<tend
= −λSoC

i,t + λSoC
i,t+1 + µSoCmax

i,t − βSoC
i,t = 0 (A.3f)

∂L/∂SoCi,tend
= −λSoC

i,tend
+ λSoC

i,t0 + µSoCmax

i,t − βSoC
i,t = 0 (A.3g)

Substituting βGin
i,t , βGout

i,t , βshare
i,j,t , βBin

i,t , βBout
i,t βSoC

i,t , the stationarity of the La-
grangian function (A.3a)-(A.3g) can be formulated with complementarity
conditions as well (see Eq.s (A.4a)-(A.4g)). Eq.s (A.4h)-(A.4n) are the com-
plementarity conditions of the lower level problem’s constraints.

pGin
t + λload

i,t ≥ 0 ⊥ qGin
i,t ≥ 0 (A.4a)

−pGout
t + λP V

i,t ≥ 0 ⊥ qGout
i,t ≥ 0 (A.4b)

−wtpi,j,t + λP V
i,t + λload

j,t ≥ 0 ⊥ qshare
i,j,t ≥ 0 (A.4c)

λP V
i,t + λSoC

i,t · ηB + µ
Bmax

in
i,t ≥ 0 ⊥ qBin

i,t ≥ 0 (A.4d)

λload
i,t − λSoC

i,t /ηB + µ
Bmax

out
i,t ≥ 0 ⊥ qBout

i,t ≥ 0 (A.4e)
−λSoC

i,t + λSoC
i,t+1 + µSoCmax

i,t ≥ 0 ⊥ SoCi,t<tend
≥ 0

(A.4f)
−λSoC

i,tend
+ λSoC

i,t0 + µSoCmax

i,t ≥ 0 ⊥ SoCi,tend
≥ 0

(A.4g)

qGin
i,t + qBout

i,t +
�
j∈I

qshare
j,i,t − qload

i,t = 0 ⊥ λload
i,t (A.4h)

qGout
i,t + qBin

i,t +
�
j∈I

qshare
i,j,t − qP V

i,t = 0 ⊥ λP V
i,t (A.4i)

SoCi,t>t0−1 + qBin
i,t>t0 · ηB − qBout

i,t>t0/ηB − SoCi,t>t0 = 0 ⊥ λSoC
i,t>t0 (A.4j)

SoCi,t=tend
+ qBin

i,t0 · ηB − qBout
i,t0 /ηB − SoCi,t0 = 0 ⊥ λSoC

i,t0 (A.4k)
0 ≤ SoCmax

i − SoCi,t ⊥ µSoCmax

i,t ≥ 0
(A.4l)

0 ≤ qBmax

i − qBin
i,t ⊥ µ

Bmax
in

i,t ≥ 0 (A.4m)

0 ≤ qBmax

i − qBout
i,t ⊥ µ

Bmax
out

i,t ≥ 0 (A.4n)
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A.2.3. Transformation of complementarity conditions applying the
Fortuny-Amat method

The complementarity constraints are reformulated as a mixed-integer pro-
gram applying the Fortuny-Amat method. The following set of equations
shows the transformation of Eq. (A.4a), the other complementarity con-
straints, Eq.s (A.4b)-(A.4n), are transformed in the same way.

pGin
t + λload

i,t ≥ 0 (A.5a)
qGin

i,t ≥ 0 (A.5b)
pGin

t + λload
i,t ≤ (1 − uGin

i,t )MGin
1 (A.5c)

qGin
i,t ≤ uGin

i,t MGin
2 (A.5d)

uGin
i,t ∈ {0, 1} (A.5e)

The value of M are M1 = 5000 and M2 = 2000, which were determined
empirically, ensure the feasibility of the model and effectively no numerical
problems.

A.3. Validation of the bi-level modeling approach

In the bi-level optimization approach shown above, the lower level problem
maximizes the welfare of the community and optimally distributes the PV
generated electricity within the community. This linear problem is replaced
by its corresponding KKT conditions to solve the bi-level problem. The
lower level KKT formulation is validated by setting the upper-level objective
function to a constant (e.g., F (x) = 1) and I = Iold. With this configuration,
the results of the bi-level problem are compared to the solution of the lower
level problem without upper-level function, variables, and constraints (which
equals the solution of the linear optimization problem based on the model
presented in Perger et al. (2021)).

The difference of all participants’ annual results (amount of electricity bought
and sold, emissions, and costs) is calculated comparing the two solution meth-
ods. The box plot in Figure A.5 presents the distribution of each category
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of results. The differences between the two solution methods are negligibly
small in the scale of 10−13 and the KKT formulation of the lower level prob-
lem sufficiently substitutes the ordinary LP, which means that the Big-M
method is appropriately applied (see Kleinert et al. (2020)).
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Figure A.5.: Validation of the Karush-Kuhn-Tucker (KKT) conditions
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A.4. Lower-level problem formulation of bi-level model
with stochastic forecast

The formulation of the lower-level problem of the bi-level model with stochas-
tic forecast is:

max
Qi,t,n(ω)

CW1 +
�
ω∈Ω

�
n∈N

p(ω)CWn(ω) (A.6a)

subject to:

qGin
i,t,n(ω) + qBout

i,t,n (ω) +
�
j∈I

qshare
j,i,t,n(ω) − bn,i(ω)qload

i,t = 0 (λload
i,t,n(ω)) ∀i, t, n

(A.6b)

qGout
i,t,n (ω) + qBin

i,t,n(ω) +
�
j∈I

qshare
i,j,t,n(ω) − bn,i(ω)qP V

i,t = 0 (λP V
i,t,n(ω)) ∀i, t, n

(A.6c)
SoCi,t−1,n(ω) + qBin

i,t,n(ω) · ηB − qBout
i,t,n (ω)/ηB − SoCi,t,n(ω) = 0

(λSoC
i,t,n(ω)) ∀i, t > t0, n (A.6d)

SoCi,t=tend,n(ω) + qBin
i,t0,n(ω) · ηB − qBout

i,t0,n(ω)/ηB − SoCi,t0,n(ω) = 0
(λSoC

i,t0,n(ω)) ∀i, t = t0, n (A.6e)
SoCi,t=tend,n(ω) − SoCinit = 0 (λSoCinit

i,tend,n(ω)) ∀i, t = tend, n (A.6f)
SoCi,t,n(ω) − bn,iSoCmax

i ≤ 0 (µSoCmax

i,t,n (ω)) ∀i, t, n (A.6g)

qBin
i,t,n(ω) − bn,iq

Bmax

i ≤ 0 (µBmax
in

i,t,n (ω)) ∀i, t, n (A.6h)

qBout
i,t,n (ω) − bn,iq

Bmax

i ≤ 0 (µBmax
out

i,t,n (ω)) ∀i, t, n (A.6i)
− qGin

i,t,n(ω), −qGout
i,t,n (ω), −qshare

i,j,t,n(ω), −qBin
i,t,n(ω), −qBout

i,t,n (ω), −SoCi,t,n(ω) ≤ 0
(βGin

i,t,n(ω), βGout
i,t,n (ω), βshare

i,j,t,n(ω), βSoC
i,t,n (ω), βBin

i,t,n(ω), βBout
i,t,n (ω)) ∀i, t, n

(A.6j)
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B.1. Load profile data

The hourly average values of the household demand electricity profiles are
shown in Figure B.1; the corresponding total annual demand of each house-
hold is shown in Table 4.1; and the hourly average value of small and medium-
sized enterprises (SMEs) are shown in Figure B.2. From information obtained
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Figure B.1.: Household demand profiles, average hourly value

in APCS-Austrian Power Clearing and Settlement (2019), the following syn-
thetic load profiles were derived:
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• G0 – Business

• G1 – Business 0-24 h

• G3 – Business 8-18 h

• G4 – Shop/Hairdresser

• G5 – Bakery

The year of reference is 2019. The demand profiles are normalized to an an-
nual consumption of 1000 kWh for graphical purposes. To obtain the results
in Section 4, the synthetic load profiles are upscaled to the prosumers’ annual
demand (see Table 4.1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hours [h]

0

0.05

0.1

0.15

0.2

0.25

0.3

A
nn

ua
l h

ou
rly

 a
ve

ra
ge

 e
le

ct
ric

ity
 c

on
su

m
pt

io
n 

[k
W

h/
h]

Business
Business 0-24h
Business 8-18h
Shop/Hair dresser
Bakery

Figure B.2.: Business demand profiles, average hourly value, normalized to an annual con-
sumption of 1000 kWh

B.2. PV generation data

The PV generation data were obtained from Renewables.ninja (Pfenninger
and Staffell, 2016 and Staffell and Pfenninger, 2016) with the following pa-
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rameters:

• Location coordinates: 48.2084◦N, 16.3725◦E (Vienna, Austria)

• Dataset: MERRA-2 (global)

• Year: 2019

• System loss: 0.1

• Tilt: 35◦

• Azimuth:

– South: 180◦.

– East: 90◦.

– West: 270◦.

– South-East: 135◦.

– South West: 225◦.

B.3. Marginal emissions

The marginal emissions for Austria and Germany used to conduct the results
in Section 4 are obtained from Schram et al., 2019b. The data contain hourly
values in kgCO2/MWh for 2017. Data for other countries are also available:
Belgium, Spain, France, Italy, Netherlands, and Portugal. The marginal
emissions of France are used in the sensitivity analysis in Section 4.4. Figure
B.4 and B.5 show the average hourly values for Austria/Germany and France,
respectively.
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Figure B.3.: PV generation profiles for different PV system sizes and orientations – average
hourly value
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Figure B.4.: Marginal emissions in Austria and Germany (2017) – average hourly value
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Figure B.5.: Marginal emissions in France (2017) – average hourly value
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Appendix to Chapter 5

C.1. Input parameter of the community and the grid

The hourly input data of the case study is presented in the form of hourly
average values. The original community prosumers’ electricity demand is
shown in Fig. C.1. The average electricity output values of a 5 kWpeak PV
system is shown in Fig. C.2 (left axis), together with the marginal emissions
from the grid (right axis). Fig. C.3 shows the standardized load profiles of
household H0 and business G0, which are used in the case study to represent
the potential new members.
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Figure C.1.: Average hourly electricity demand of prosumers
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Figure C.2.: Average hourly electricity PV generation (left) and marginal emissions (right)
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C.2. Annual results of cases (i)-(iii) in detail

Tables C.1-C.3 present the annual results of purchases/sales from/to the grid
and the community, self-consumption, battery operation, emissions, and costs
for all prosumers 1-6 and prosumer H0. The tables are split into cases (i)-(iii)
from Sections 5.1.2.2 and 5.1.2.3.

Table C.1.: Summary of the results of peer-to-peer trading – case (i)
Prosumer 1 2 3 4 5 6 H0
Buying grid (kWh) 1140.3 4354.7 1278.2 917.5 1401 812.6 1027
Selling grid (kWh) 0 818.3 1680 584.6 0 2291.6 4611
Battery charging (kWh) 0 0 0 882.6 0 0 0
Battery discharging (kWh) 0 0 0 731.4 0 0 0
Self-consumption (kWh) 0 3365.6 1016.7 1573.4 0 1282.9 972
Buying community (kWh) 2308.1 827.4 107.6 97.8 1119.8 71.6 0.9
Selling community (kWh) 0 2276.8 274.3 819.2 0 285.4 877.7
Emissions (tCO2) 0.6 2.3 0.7 0.5 0.8 0.4 0.6
Costs (EUR) 790 449.5 158.1 -1.4 528.2 25.8 -165

Table C.2.: Summary of the results of peer-to-peer trading – case (ii)
Prosumer 1 2 3 4 5 6 H0
Buying grid (kWh) 1140.3 5587.5 1379.3 1432.6 1459.1 854.6 4792.1
Selling grid (kWh) 0 818.3 1568.3 516.1 0 341.2 0
Battery charging (kWh) 0 0 0 870 0 0 0
Battery discharging (kWh) 0 0 0 723.6 0 0 0
Self-consumption (kWh) 0 2911.6 1016.7 1098.2 0 1282.9 0
Buying community (kWh) 2308.1 48.6 6.5 65.6 1061.7 29.6 3207.9
Selling community (kWh) 0 2730.8 386 1375.4 0 2235.8 0
Emissions (tCO2) 0.6 3.0 0.7 0.8 0.8 0.5 2.6
Costs (EUR) 790 443.2 131.6 -25.8 527.6 -331 1663.1

154



Appendix C. Appendix to Chapter 5

Table C.3.: Summary of the results of peer-to-peer trading – case (iii)
Prosumer 1 2 3 4 5 6 H0
Buying grid (kWh) 1140.3 4983.7 1278.2 1185.8 1432.9 812.6 4351
Selling grid (kWh) 0 818.3 1680 573.5 0 2291.6 2876.6
Battery charging (kWh) 0 0 0 870 0 0 0
Battery discharging (kWh) 0 0 0 720.1 0 0 0
Self-consumption (kWh) 0 3315.6 1016.7 1347.5 0 1282.9 3365
Buying community (kWh) 2308.1 248.4 107.6 66.6 1088 71.6 284
Selling community (kWh) 0 2326.7 274.3 1068.8 0 285.4 219.1
Emissions (tCO2) 1 2.7 0.7 0.6 0.8 0.4 2.3
Costs (EUR) 790 448.8 156.3 -9.3 528 24.7 767.4
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