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Kurzfassung

Die Idiopathischelungenfibrose ist eine schwere und tödliche Krankheit. Die mediane
Überlebenszeit liegt bei Patienten ohne Behandlung zwischen 3-5 Jahren. Daher sind die
Früherkennung und das Fortschreiten der Krankheit für die Analyse von entscheidender
Bedeutung, aber diese Aufgabe kann eine Herausforderung sein, da diese Ergebnisse von-
einander abweichen. Die Methode besteht aus sieben Schritten: Bildsegmentierung, Merk-
malsextraktion, Merkmalsclusterung mithilfe von Bag of Visual Words, Bildregistrierung
innerhalb eines Patienten, Identifizierung von Markern für das Fortschreiten der Krank-
heit, ein Übergangsnetzwerk für das Fortschreiten der Krankheit und Ergebnisvorhersage.
Die Bildsegmentierung ist notwendig, um das Lungenvolumen aus den Computertomo-
grafiescans zu erhalten. Durch Übersegmentierung wird jedes Voxel auf ein Supervoxel
der Größe 0, 5cm3 statt 0, 7mm3 reduziert. Jedes Supervoxel wird einem bestimmten
Lungenmustertyp zugewiesen. Anhand der Häufigkeit der gegebenen Lungenmustertypen
im Klassifikationsmodell haben wir eine Reihe von Krankheitsmuster-Marker-Kandidaten
erkannt. Die Marker-Indikatoren wurden in einem Wiederholbarkeits-Setup mit 20 Zu-
fallsläufen gefunden. Für vier Kandidaten mit der höchsten Stabilitätseinstufung ergibt
die Überlebensvorhersage unterschiedliche Ergebnisse für Gruppen mit ähnlichen Mus-
tersignaturen, für einen Validierungsdatensatz liefert das Ergebnis eine gleichwertige
Aussage.
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Abstract

Idiopathic pulmonary fibrosis (IPF) is a severe and lethal disease. The median survival
outcome is between 3-5 years for patients without a treatment. Therefore, early detection
and quantification of disease progression are essential for the steering of treatment.
Treatment decisions are challenging, since we don’t understand the relationship between
present disease appearance, outcome and treatment response, yet. In this thesis we
develop and evaluate a methodology to quantitatively assess changes associated with IPF,
and to predict future outcome based on imaging data for patients. The methodology
consists of 7 steps, image segmentation, features extraction, features clustering using Bag
of Visual Words, intra-patient image registration, identification of disease progression
markers, a transition network related to disease progression, and outcomes prediction.
Image segmentation is necessary to obtain the lung volume from the computer tomography
scans. Over-segmentation is applied to reduce each voxel to a supervoxel of size 0.5cm3

instead of 0.7mm3. Each supervoxel is assigned to a given lung pattern type. We
recognized a set of disease pattern marker candidates through the frequency rate of the
given lung pattern types in the classification model. The marker indicators were found
in a repeatability setup with 20 random runs. For four top stability ranked candidates,
the outcome survival prediction yields different outcomes for groups with similar pattern
signatures, for a validation dataset, the result delivers an equivalent statement.
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CHAPTER 1
Introduction

Idiopathic pulmonary fibrosis (IPF), is the most frequent form of interstitial lung disease
(ILD) [1]. It is a major contributor to roughly 20% of all reported cases of Interstitial Lung
Disease (ILD), and it is the most widespread and severe form of Idiopathic Interstitial
Pneumonia (IIP) [2]. IIP encompasses a collection of ILDs with undefined causes and
differing patterns of inflammation and fibrosis, but they share similar clinical, physiological,
and radiologic features [3]. IPF was diagnosed in roughly 40,000 new patients across
Europe in 2011, with the United Kingdom accounting for more than 12.5% of all reported
cases [4]. The majority of patients diagnosed with IPF suffer from a gradual decline
in lung function throughout the course of their illness. However, there is a minority of
people who maintain their current level of function and do not exhibit any indications of
worsening [5]. IPF patient has a median survival period of between three and five years
[6][7][8]. This disease progression cannot be reversed, therefore a possible prediction of
the disease progression is crucial. Although this is challenging as disease course in IPF
are quite diverse. The CT-lung patterns play a crucial role in the diagnosis and treatment
decisions for IPF. The accuracy of CT scans in diagnosing IPF based solely on imaging
findings is high, which is why this method is often relied upon in the diagnosis process.
These images provide valuable information that can aid in making treatment decisions.
However, the difficulty of consistently recognizing these patterns makes it challenging
to diagnose IPF accurately. The ability to detect these patterns with more certainty
and to understand their relationship to the future course of the disease and the risk of
progression is of utmost importance. A better understanding of CT-lung patterns can
lead to earlier diagnosis, improved treatment outcomes, and ultimately, a better quality
of life for patients with IPF.
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1. Introduction

1.1 Problem statement
a) An automatic method to process lung CT data.
b) Identify disease patterns that are associated with progression.
c) Learn to predict future disease courses with other markers.

1.2 Aim of the thesis
This work aims to develop an unsupervised machine learning method to identify quantita-
tive radiological imaging markers related to IPF disease progression. The ability of early
IPF recognition and prognosis of the disease development course and future outcomes
are highly needed in clinical environments. The main contributions are:

• Improvement of image segmentation methods for high density lung patterns such as
ground glass opacity, honeycombing and reticular patterns

• Exploration of various methods to extract features from High Resolution Computer
Tomography data of the lung

• Identification of novel imaging marker patterns associated with disease progression

• Recognizing pathways of lung tissue transition during the progression of the disease

• Evaluation of these novel markers for outcome regarding their ability to predict

1.3 Thesis Outline
The thesis consists of 8 chapters and is structured as follows:

Chapter 1: Introduction summarizes the purpose of the thesis as well as the rationale
behind writing it. In addition to that, it contains an overview of the methodological
approach that was employed in this thesis.

Chapter 2: Medical background provides the medical background of the thesis and
the latest clinical knowledge about IPF.

Chapter 3: Chest Imaging examines the physical and technological foundations of
the relevant chest imaging modalities and their benefits and drawbacks.

Chapter 4: State of the art reviews the state-of-the-art approaches relevant to this
work.

2



1.4. Publications

Chapter 5: Methodology describes the methods proposed in this thesis. It includes
image segmentation, features extraction using bags of visual words, features extraction us-
ing StyleGAN, disease progression marker identification, intra-patient image registration,
local tissue transition pathway and outcome risk prediction.

Chapter 6: Experiments and Results show the results of the proposed approaches
and the evaluation of these methods.

Chapter 8: Conclusion includes a summary of results as well as ideas for further
research directions.

1.4 Publications
Parts of this thesis have been published in the journal European Radiology:

[Unsupervised machine learning identifies predictive progression markers of IPF]
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CHAPTER 2
Medical background

2.1 Idiopathic pulmonary fibrosis
Idiopathic Pulmonary Fibrosis (IPF) is a progressive and debilitating lung disease
characterized by the formation of scar tissue in the lungs. IPF often also referred as
cryptogenic fibrosing alveolitis (CFA), is a condition that worsens with time and is
typically an untreatable disease [5] [9]. It is a type of interstitial lung disease (ILD) and
is considered to be a complex and poorly understood condition with a significant impact
on public health[5]. Diagnosis of IPF can be challenging as it requires the exclusion of
other causes of ILD, and it can be challenging to differentiate IPF from other forms of
fibrotic lung diseases. The criteria for the diagnosis of IPF have been defined by the
American Thoracic Society (ATS) and the European Respiratory Society (ERS) [5] [9] as
a combination of clinical, radiological, and pathological findings.

2.2 Epidemiology
The epidemiology of IPF is a rapidly evolving field and the exact incidence and prevalence
of IPF are not well known. Incidence refers to the number of new cases of a disease that
occur in a given population over a specified time period, while prevalence refers to the
number of individuals in a population who have the disease at a given point in time.
Studies have shown that IPF is a rare disease, with a reported incidence ranging from
2.5 to 16 cases per 100,000 population per year and a prevalence of approximately 11
to 64 cases per 100,000 population[10]. However, it is believed that these numbers may
be underestimations of the true incidence and prevalence of IPF, as the disease is often
underdiagnosed or misdiagnosed. In Northern Italy, a study found a higher incidence of
IPF compared to other European countries, with an estimated incidence of 15.8 cases per
100,000 population per year [11]. In Italy, a study found an incidence of IPF of 7.2 cases
per 100,000 population per year and a prevalence of 45 cases per 100,000 population [12].

5



2. Medical background

It is estimated that the disease affects approximately 128,000 individuals in the United
States [10].
Within the non-Hispanic white population, the prevalence is around 85.9%. 60.1% of
cases are observed in males whereas only 39.9% are observed in females [13]. Males are
almost twice as likely as females to be diagnosed with the illness. It is unknown what
accounts for the variation in percentages across racial groupings and between the sexes.
After the first diagnosis, the average life expectancy with this fatal condition is between
three and five years [14] [15] [16].
Diagnosis of IPF is challenging because its symptoms, such as shortness of breath,
coughing, and fatigue, are similar to those of other respiratory diseases. Therefore, it
is important to rule out other causes of fibrotic lung disease before making a diagnosis
of IPF. The diagnosis is typically made through a combination of physical examination,
pulmonary function tests, imaging studies, and biopsy of lung tissue. Smoking is a
well-established risk factor for the development of IPF and has been shown to increase the
incidence of the disease [13]. Other risk factors for IPF include exposure to environmental
toxins, such as asbestos, and a family history of the disease.
IPF is a complex and poorly understood disease that affects a relatively small number
of individuals, with a higher incidence in Northern Italy compared to other European
countries. Further research is needed to understand the epidemiology of IPF and develop
effective strategies for the early detection, diagnosis, and treatment of the disease.

2.3 Etiology of IPF
There is still much ambiguity surrounding the etiology of IPF. Despite the fact that the
exact risk factors for this disease are yet to be better understood, a variety of exposures
have been shown to be correlated with an increased probability of developing IPF [3].
The correlation between cigarette smoking and idiopathic pulmonary fibrosis has been
documented in recent study [17]. Baumgartner et al. conducted a case-control study
across many sites and discovered that considerably more individuals in the case group
(72%) had a smoking history than in the control group (62%). The odds ratio for patients
with a smoking history in the past is 1.60. This study also indicated that smokers who
consumed between 21 and 40 packs of cigarettes annually had a 2.3% higher risk of
developing IPF [13]. This group of smokers had a hazard ratio of 2.3. In a further study
where 225 cases of IPF were examined, a similar finding was reported. Along with an
average of four controls per case who were matched to the patient in terms of gender,
age, and community, the odds ratio for each smoker is higher at 1.57 [18].
Exposure to metal and wood dust was reported to be related to an increased risk of IPF
[18]. A history of exposure to metal and wood dust contributed to the development of
odds of 0.67 in IPF patients, but in the control cases, the odds were only 0.50 and 0.46.
Genetic factors have been regularly identified as potential causes, despite the fact that
there are no known genetic alterations that are directly associated with IPF cases that
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2.4. Diagnosis of IPF

spread [19]. Patients may have mutations in surfactant protein C, a hydrophobic protein
generated only by type II alveolar epithelial cells (AEC II) [20]. In some circumstances,
a common polymorphism in the promoter region of the musin 5B gene expression may
play a role in the etiology of pulmonary fibrosis, as reported by Seibold et al.[21]. The
name for this polymorphism is MUC5B dysregulation.

The exact causes of IPF are not well understood; however, a number of risk factors
have been associated with an increased probability of developing IPF, including smoking,
exposure to metal and wood dust, and genetic mutations. Studies have shown that
cigarette smoking is associated with an increased risk of IPF, with smokers who consume
between 21 and 40 packs of cigarettes annually having a higher risk. Exposure to metal
and wood dust has also been linked to an increased risk of IPF. Genetic mutations, such
as mutations in surfactant protein C or dysregulation in the musin 5B gene, have also
been identified as potential causes, but the role of these genetic factors in IPF is not fully
understood.

2.4 Diagnosis of IPF

Idiopathic Pulmonary Fibrosis (IPF) is a lung disease characterized by progressive scarring
and thickening of lung tissue, leading to shortness of breath, persistent dry cough, fatigue,
weight loss, and clubbing of the fingers. Clinical diagnosis of IPF is based on a patient’s
symptoms, a thorough medical history, and a physical examination, including a lung
function test and imaging studies (such as high-resolution computed tomography (CT)
scans). According to a review article by Spagnolo et al. [3], the diagnostic criteria
for IPF also involve the exclusion of other potential causes of interstitial lung disease.
Additionally, in a study by Burrows and Johnson [22], the authors found that patients
with IPF typically experience a gradual onset of symptoms and a decline in lung function
over time. This study done between 1955 and 1973 revealed that of 220 patients, 92%
exhibited dyspnea, 73% had a cough, and 56.8% produced sputum. The great majority
of patients’ chests had extensive fibrosing. In overall, 145 cases were associated with
malformations of the fingernails or toenails.

The diagnosis of Idiopathic Pulmonary Fibrosis (IPF) is based on a combination of
clinical symptoms, pulmonary function tests, biopsy results, and medical imaging analysis.
Clinical symptoms include progressive shortness of breath, dry cough, and fatigue.

2.4.1 Laboratory analysis

Since specific and adequate quantification methods are yet to be identified, laboratory
analysis for IPF patients is relatively limited. Laboratory testing for pulmonary fibrosis
is nearly typically restricted to eliminate other recognizable causes[3].
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2. Medical background

2.4.2 Physiologic of analysis

The results of pulmonary function tests (PFT) conducted on patients with IPF reveal a
restrictive pattern during spirometry and a decreased forced vital capacity [1]. This is
associated with increased lung stiffness. Patients have a diminished ability for carbon
monoxide diffusion, which is one of the few clinically meaningful signals throughout the
disease’s early and middle stages. A PFT will be conducted during the examination to
identify the severity of the condition and predict the outcome [5].

2.4.3 Lung biopsy

Histological diagnosis of IPF was a crucial tool for determining the presence and progres-
sion of the disease. The diagnosis involves an examination of lung tissue samples obtained
through a biopsy, either through a surgical procedure or a less invasive transbronchial
biopsy. These samples are evaluated under a microscope to identify the characteristic
patterns of fibrosis and cellular changes indicative of IPF. However, in recent years, a
histological examination has lost its reference as the gold standard for IPF diagnosis, as
imaging findings are now sufficient for diagnosis in approximately 50% of IPF patients,
providing adequate levels of precision and reliability. This has led to a decrease in the
necessity for histologic confirmation in most cases [3].

2.4.4 Medical imaging

Medical imaging plays a crucial role in the diagnosis of IPF [5]. In vivo imaging techniques,
such as computed tomography (CT) and chest radiographs (x-rays), can provide valuable
information regarding the presence and severity of lung fibrosis in IPF patients. Typically,
idiopathic pulmonary fibrosis is diagnosed solely based on clinical or radiological imaging
findings. This is due to the fact that CT has a high true positive diagnosis accuracy
in diagnosing with only imaging findings. The CT scans of IPF patients typically show
the pattern of usual interstitial pneumonia (UIP), which is a distinguishing morphologic
characteristic of IPF. The UIP pattern is characterized by a honeycomb-like reticular
structure and is often associated with traction bronchiectasis. Nevertheless, in more
than 90% of cases, high-resolution CT could be used during assured diagnosis of IPF,
as demonstrated in Figure 2.1. However, there are some limitations in diagnosing IPF
using CT, including inter-observer variability and difficulties in differentiating IPF from
other fibrotic lung diseases [5]. Chest radiographs, on the other hand, are more widely
available, but have lower diagnostic accuracy for IPF compared to CT scans. In chest
x-rays, IPF patients may exhibit small reticular changes, and asymptomatic individuals
may also have similar changes. As a result, chest x-rays may not be able to provide
a definitive diagnosis of IPF, and further imaging tests or biopsies may be necessary.
In conclusion, while medical imaging plays a crucial role in the diagnosis of IPF, both
CT and x-ray have their own advantages and limitations. As such, a comprehensive
approach that incorporates multiple diagnostic tools is necessary to achieve an accurate
and reliable diagnosis of IPF.
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2.5. Pharmacological Treatment

Figure 2.1: The left image shows a high-resolution CT from a healthy person. The
right one is a high-resolution CT of an idiopathic pulmonary fibrosis patient. It shows
a characteristic combination of predominantly bibasilar reticular abnormalities with
associated honeycomb change and traction bronchiectasis.

2.5 Pharmacological Treatment

The most recent evidence-based guidelines from the American Thoracic Society (ATS)
GRADE do not include any treatment recommendations for IPF illnesses [5] [23]. The
ATS does not recommend the use of all forms of therapies in practice due to insufficient
evidence and a lack of sufficient quality reports. There have only been a few medicinal
therapies for which there has been received weak approval by FDA and the ATS. [3].

Up until 2014, pirfenidone was the only medication permitted for use as a treatment for
IPF in nations such as Japan, Europe, Canada, and India. It is a compound containing
anti-inflammatory, anti-fibrotic, and antioxidant components [24].

Nintedanib is an inhibitor of intercellular tyrosine kinase, capable of inhibiting both
receptor and non-receptor tyrosine kinases [25] [26]. In vitro tests [27] demonstrate
that it inhibits receptor tyrosine kinases for vascular endothelial growth factor receptors.
G. Keating assessed the efficacy and tolerability of oral nintedanib in IPF patients[28].
In worldwide, randomized, double-blind phase-1 and phase-2 clinical investigations,
nintedanib was demonstrated to be superior to placebo in its ability to reduce the pace
of forced vital capacity loss. This indicated that the progression of the disease had
slowed. On October 15, 2014, the FDA approved the use of Nintedanib as a treatment
for idiopathic pulmonary fibrosis.

Computed tomography (CT) imaging is commonly used to monitor the progression of
IPF and to guide treatment decisions. CT scans can provide detailed images of lung
tissue, allowing physicians to assess the extent of fibrosis and determine the stage of the
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2. Medical background

disease. This information can then be used to make informed decisions about the best
course of treatment for the patient [29].

Studies have shown that changes in lung density and fibrosis seen on CT scans are
correlated with changes in lung function and clinical outcomes in IPF patients [30]. As a
result, CT scans are often used to assess the efficacy of therapeutic interventions and
monitor disease progression over time [31]. In this way, CT imaging plays a crucial role
in the management of IPF, helping physicians to make informed treatment decisions and
track the progression of the disease in individual patients.
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CHAPTER 3
Chest Imaging

Medical imaging modalities capture detailed information about the human body and
disease. They include Magnetic Resonance Imaging (MRI), Computer Tomography (CT),
ultrasound, positron emission tomography (PET), and others. In this thesis, we are
primarily concerned with the most widely used 3D modalities for chest imaging: MRI
and CT images. The following chapter gives insight into the generation process of the
images.

3.1 Chest MRI
Chest MRI is commonly used to detect the following disorders: abnormal lymph nodes,
blood vessel problems, thymus tumour, lung masses, oesophagal mass, congenital dis-
abilities of the heart, swollen glands and enlarged lymph nodes in any location of the
chest, staging of tumours including invasion of blood vessels, distinguishing between
malignant and benign of solitary pulmonary nodules, pulmonary thromboembolic disease,
pulmonary hypertension, pneumonia, cystic lung lesions, etc.

In a healthy lung, the tissue density is 0.1g/cm3, which is only 1
10 in comparison with

the other soft tissue organs. MRI image quality and signal intensity are indirectly
proportional to tissue density. Therefore even under the perfect imaging environment, an
MRI image from the lung is still ten times weaker than that from adjacent tissues.

The study from Koyama et al. has shown that non-contrast-enhanced MRI of the lung
is as efficient as thin-section CT in distinguishing malignant and benign lung nodules.
Even though there is no significant difference between the malignant or benign nodules
detection rate, they state the overall detection rate of nodules is lower with MRI images
(82.5%) than CT images (97.0%)[32]. Figure 3.1 and 3.2 can visually approve that the
image quality is better in a CT image than in MRI images.
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Figure 3.1: A patient with lung cancer in the left lower lobe. a: Thin-section CT shows
a partly solid nodule with a diameter of 25.5 mm in the left lower lobe. b: T1-weighted
shows low signal intensity for the nodule. c: T2-weighted shows high signal intensity for
the nodule. [32]

Typical MR imaging artifacts[33] are radio frequency noise that causes an image’s non-
uniform, washed-out appearance and can be seen in (Figure 3.3A). Susceptibility artefacts
Figure 3.3B) share distortions or local signal change. Zipper artifacts (Figure 3.3C) are a
type of artifact where one or more spurious bands of electronic noise extend across the
image. Motion artefacts (Figure 3.3D) can occur during scans and result from tissue/fluid
movement. Aliasing on MRI occurs when the field of view is smaller than the imaged
body part, as seen in Figure 3.3E. Gibbs Ringing typically appears as multiple fine
parallel lines immediately adjacent to high-contrast interfaces and can be seen in Figure
3.3F.

MR imaging systems have several primary benefits, including excellent soft tissue imaging
capability, a very high resolution of about 1mm cubic voxels, and a good signal-to-noise
ratio. Additionally, MR imaging allows for the acquisition of multi-channel images with
variable contrast using different pulse sequences, which can be used for segmenting and
classifying different structures.

However, MR imaging also has some disadvantages. The acquisition time for MR imaging
is significantly longer than that of CT imaging. Additionally, obtaining uniform image
quality in MR imaging can be more challenging. MRI for the lung has limitations due to
low proton density and fast signal decay from artefacts and air-tissue interfaces. The
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Figure 3.2: A patient with a pathologically unidentified benign nodule in the left upper
lobe. a: Thin-section CT shows a solid nodule with a diameter of 9.8 mm in the left
upper lobe. b: T1-weighted shows low signal intensity for the nodule. c: T2-weighted
shows high signal intensity for the nodule. [32]

lengthy exam time can lead to reduced diagnostic accuracy for patients unable to stay still,
additionally the 8mm thickness chosen for MRI in the study [35][36] may not adequately
evaluate interstitial changes, as recommended by guidelines and other studies. A thicker
slice may fail to detect early signs of fibrosis. Therefore CT scans provide clearer images
of lung tissue over MRI, making it easier to identify specific features, such as nodules,
which are important in the diagnosis of IPF.

3.2 Chest CT
Computed Tomography (CT) is a diagnostic imaging technique that uses X-rays to
produce detailed 3D-reconstructions of internal organs and tissues. CT works by rotating
an X-ray source around the patient’s body and measuring the amount of X-rays that
pass through the tissue. These measurements are then used to generate a series of 2D
cross-sectional images of the body, which can be combined to form a 3D-reconstruction.

The CT scan captures multiple X-ray images of the body at different angles. The data
collected from these images are processed using specialized algorithms to produce the
final 3D image. This image can then be viewed and analyzed by a radiologist to identify
any abnormalities or diseases.

13



3. Chest Imaging

Figure 3.3: Examples of MRI artifacts. A: RF noise, B: Susceptibility artifact, C: Zipper
artifacts, D: Motion, E: Aliasing on MRI, and F: Gibbs Ringing.[34]

In CT, exposure to ionizing radiation can increase the risk of developing cancer. However,
the benefits of CT scans in diagnosing life-threatening diseases often outweigh the
potential risks. CT scans are a non-invasive diagnostic tool that can provide detailed
images of internal organs and tissues, making it an essential tool for the diagnosis and
treatment of many medical conditions.

High-resolution CT of the lungs has been the tool of choice during the past four decades
for evaluating whether or not a patient has a diffuse pulmonary parenchymal abnormality.
By combining a large number of two-dimensional chest x-rays with a measurement range
of one to two millimeters, high-resolution CT is designed to provide images with great
spatial lung information. In 1975, a radiologic-pathologic correlative examination of
postmortem lungs was the first application of this technique. In 1978, Itoh et al.[37]
published their results about the correlations of minute lung nodules. They concentrated
their attention on peribronchiolar. Todo et al.[38] from Kyoto University were the first to
disclose high-resolution CT for diagnosing diffuse lung illness in 1982. Their article, which
was published in the Japanese Journal of Clinical Imaging, examined the use of CT scans
on 21 patients with diffuse panbronchiolitis, lymphangitic cancer spreads, sarcoidosis, or
TB. All of the individuals were diagnosed with one of these illnesses. Very carefully and
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thoroughly, this investigation demonstrated the link between the image abnormalities
and the inflation-fixed lung specimens. High-resolution CT scans have been utilized to
establish a radiologic-pathologic correlation relationship between abnormalities and the
architecture of the secondary pulmonary lobule ever since they were established almost
fifty years ago.

3.2.1 CT: How it is used for diagnosing ILD/IPF

CT scans are commonly used to diagnose ILD/IPF, as they provide a clear and precise
visual representation of the lung tissue, which is essential in identifying characteristic
features of IPF. In a study by Raghu et al.[5], it was reported that CT scans are an
essential tool in the diagnosis of IPF, with a high level of accuracy, and are considered
the gold standard for the assessment of interstitial lung disease.

One of the key advantages of CT scans over other imaging techniques is the ability to
produce a 3D reconstruction of the lung tissue, which allows the physician to view the
internal structures from multiple angles, providing a more comprehensive understanding
of the condition. In the diagnosis of IPF, CT scans are used to evaluate the lung
parenchyma for the presence of specific patterns of fibrosis, such as the reticular pattern
and honeycombing. The reticular pattern is characterized by the thickening of the
interlobular septa, which are the fibrous tissue dividers between lung lobes, leading to a
"honeycomb" or "net-like" appearance in the lung parenchyma. This pattern is considered
a hallmark of IPF and can help differentiate IPF from other interstitial lung diseases.
Honeycombing refers to the characteristic, irregular cystic spaces that are formed in the
lung tissue as a result of fibrotic tissue growth. Another feature that is commonly seen
on CT scans in IPF is traction bronchiectasis, which is characterized by the thickening
of the bronchial walls and widening of the bronchial lumen due to the pull of fibrotic
tissue. Those abnormalities usually involve the secondary pulmonary lobule of the lung
and can be seen in Figure 3.4. Those patterns are often associated with decreased lung
attenuation or air-filled lesions.[39] In addition to identifying these key features, CT
scans can also be used to assess the extent and severity of lung involvement in IPF. For
example, the CT scan can be used to determine the proportion of lung tissue affected,
the thickness of the fibrotic tissue, and the degree of lung volume loss, which are all
critical indicators in the diagnosis and management of IPF.
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Figure 3.4: Low Attenuation pattern. Most diseases with a low attenuation pattern can
be distinguished on the basis of HRCT scans.

CT scans play a crucial role in the diagnosis of ILD/IPF, providing a detailed, clear, and
precise image of the lung tissue, which is essential in identifying the hallmark features
of the disease. With the ability to produce 3D reconstructions of the lung tissue and
assess the extent and severity of lung involvement, CT scans are a valuable tool for the
diagnosis and management of IPF.

3.2.2 Artifacts in CT imaging
The majority of high-resolution CTs are performed with the patient supine. When the
lung anomaly is widespread in the distribution or severe in profusion, inspiratory pictures
are usually adequate [40]. Inspiratory pictures are often performed during complete
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inspiration, which is easier for the majority of patients to regulate. A notable exception
is dynamic and ultrafast CT scans with an electron beam CT scanner, which may be
used to monitor the respiratory cycle. End-exhalation is accompanied by a reduction in
lung size. During expiration, the posterior membranous wall of the trachea looks concave,
in contrast to its convex appearance during inspiration (Figure 3.5 and Figure 3.6).
Expiratory pictures may be especially useful for distinguishing the etiology of mosaic
attenuation from airway illness, vascular disease, and infiltrative lung disease [41][42].

Figure 3.5: A female patient with idiopathic bronchiolitis obliterans. (Left) Inspiratory
high-resolution CT scan shows diffuse cylindric bronchiectasis, with bronchi larger than
adjacent arteries; signet ring sign of bronchiectasis (arrows); and subtle mosaic attenuation.
All are findings of small airway disease. (Right) Expiratory high-resolution CT scan at
the same anatomic level as left image reveals that the expected decrease in lung size is
absent, and lungs remain low in attenuation, indicating severe diffuse air trapping, with
only normal lung parenchyma found as a few individual secondary pulmonary lobules
that increased in attenuation (arrowheads).[40]
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Figure 3.6: A female patient with hypersensitivity pneumonitis. (Left) Inspiratory
high-resolution CT scan shows a few scattered thickened interlobular septa and a very
faint pattern of mosaic attenuation. (Right) Expiratory high-resolution CT scan at the
same anatomic level as left image reveals multifocal bilateral air trapping represented by
low-attenuation lung parenchyma. High-attenuation areas represent normal lung that has
developed atelectasis with expiration. Note internal bowing of posterior wall of bronchus
intermedius as evidence that scan was taken at expiration.[40]

CT imaging has several artifacts [43] that may appear in the images, such as streak
artifacts (Figure 3.7A) that occur when the object of interest is moved during the scanning
process. Motion artifacts (Figure 3.7B) are seen when the boundaries of the object are
ill-defined and can result in a blurred appearance. Beam hardening artifacts (Figure
3.7C) are due to the nonlinear nature of the x-ray beam and can cause an unnatural
appearance in the images. Ring artifacts (Figure 3.7D and E) may be influenced by gain
variations, radiation damage to the detector, or irregularities in linearity. Bloom artifacts
(Figure 3.7F) result from partial-volume effects or high-density structures, appearing as
a bright halo around the object of interest.
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Figure 3.7: Examples of CT artifacts, streak artifacts (A), motion artifact (B), beam-
hardening (C), ring artifacts (D and E), and bloom artifacts (F).[44]

CT imaging has several advantages that make it a commonly used diagnostic tool in
radiology. These advantages include its cost-effectiveness and accessibility, as well as its
high spatial resolution due to the implementation of multi-slice scanners. Furthermore,
the short scan duration of CT imaging is a convenient aspect for patients. In terms
of imaging sensitivity, CT scans have demonstrated greater detection abilities for sub-
arachnoid hemorrhages compared to MRI, as well as superior abilities for detecting
cerebral calcifications.

However, the CT imaging system also has some limitations that must be considered.
The most notable disadvantages include the lower soft tissue contrast compared to MRI,
which is a result of its X-ray-based imaging method, and the exposure of patients to
radiation. Despite these limitations, the advantages of CT imaging have allowed it to
remain a widely used diagnostic tool for the examination of the brain, liver, and thorax.

3.2.3 Reconstruction kernel

Computed Tomography (CT) image reconstruction is a statistical process that involves
transforming X-ray projection data collected from multiple angles into images. The
objective of this process is to produce images that are free of noise, maintain spatial
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resolution, and have a correct representation of the underlying anatomy while being
obtained with the least possible radiation exposure.

There are two main categories of CT image reconstruction techniques, namely Analytical
Reconstruction and Iterative Reconstruction. Filtered Back Projection (FBP) is the most
widely used analytical reconstruction method. In FBP, a one-dimensional filter is applied
to the projection data prior to back projection onto the image space. FBP is favored for
its computational efficiency and numerical stability.

Different reconstruction kernels are utilized in CT image reconstruction to enhance the
quality of images. The selection of the reconstruction kernel is a crucial step in the
process, and must be tailored to the specific clinical application. For instance, sharper
kernels are typically employed for examinations of skeletal structures, while smoother
kernels are often utilized in brain scans and liver tumor evaluations to reduce noise and
improve low-contrast detection.

Slice thickness is another key aspect of CT image reconstruction that has a significant
impact on the trade-off between resolution, noise, and radiation dose. The CT user
must determine the optimal combination of reconstruction kernel and slice thickness to
minimize radiation exposure while preserving image quality. Higher spatial resolution
can be obtained by increasing slice thickness [45], but it comes at the cost of increased
image noise (Figure 3.8).

Figure 3.8: CT chest image (sagittal view) with different CT slice thickness.

In our data set, the CT scanner manufacturer provides five types of reconstruction
kernels: soft (figure 3.9 A), standard (figure 3.9 B, boneplus (figure 3.9 C), lung (figure
3.9 D, and bone (figure 3.9 E). These kernels can be selected based on specific clinical
requirements. Additionally, commercial CT scanners and third-party solutions offer
noise reduction algorithms to minimize background noise. Although these algorithms
can effectively reduce noise while preserving high-contrast resolution, their diagnostic
performance should be thoroughly evaluated before widespread deployment in clinical
settings.
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Figure 3.9: Examples of different reconstruction kernels. SOFT kernel (A), STANDARD
kernel (B), BONEPLUS kernel (C), LUNG kernel (D) and BONE kernel (E).

The reconstruction kernel plays a crucial role in diagnosing IPF as it determines the
quality of images produced by a CT scanner. The selection of a reconstruction kernel has
a major impact on the final image quality, as a smooth kernel will produce images with
lower noise and smoother tissue boundaries but may also result in the loss of important
details, such as small fibrotic changes in the lungs. On the other hand, a sharper kernel
may produce images with greater details but may also introduce more noise and artifacts.

Therefore, when diagnosing IPF, it is essential to choose the most appropriate reconstruc-
tion kernel to ensure that the CT images produced are of sufficient quality to accurately
detect and diagnose the disease. This requires a thorough evaluation of the diagnostic
performance of different reconstruction kernels, taking into consideration the trade-off
between image quality and radiation exposure.

Ultimately, the selection of the reconstruction kernel will depend on several factors,
including the type and stage of the disease, the specific imaging requirements, and the
clinical context in which the images will be used.
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3.3 Discussion
This chapter provides a comprehensive examination of the underlying principles and
technological aspects of chest imaging modalities, as well as their respective advantages
and limitations. The two primary chest imaging modalities, which form the basis for
radiologists’ daily clinical examinations, are thoroughly examined. Despite the widespread
use of high-resolution computed tomography (HRCT) as a diagnostic tool for diffuse lung
diseases for over two decades, the interpretation of HRCT images remains a challenge for
many radiologists. To address this issue, medical education courses continue to be in
high demand, as evidenced by the large attendance at events such as the annual meetings
of the European Radiological Society and the Radiology Society of North America. It
is noteworthy that the distinction between HRCT patterns of various interstitial lung
disorders remains a challenging task.
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CHAPTER 4
State of the Art

Section 4.1 describes the fundamental concepts and types of machine learning, a subfield
of artificial intelligence that enables computers to learn from data and make predictions
without human intervention. It covers the three main types of machine learning meth-
ods: supervised, unsupervised, and reinforcement learning and explains their respective
applications and algorithms. Section 4.2 provides an introduction to regression, a type
of supervised machine learning algorithm that is used to determine the statistical rela-
tionship between a dependent variable and one or more independent variables. Principal
component analysis is introduced in section 4.3, a technique for reducing the dimensions
of a data set by identifying the principal components that account for the bulk of the
variance in the data. Section 4.4 explains the objective of clustering, a machine learning
technique for grouping similar items together, and introduces k-means clustering, one of
the most widely used clustering methods that involve an iterative procedure to minimize
the sum of squared errors within clusters. Random Forest is a machine learning algorithm
that uses a combination of decision trees to make predictions and is widely used for image
classification, prediction, and feature selection tasks. It is introduced in section 4.5. A
hand-crafted feature extraction technique used in computer vision and image processing,
Bag of Visual Words, is presented in section 4.6. In the context of CT scans, local
features such as SIFT or SURF descriptors are extracted to create a visual vocabulary,
which is then quantized into visual words using a clustering algorithm. Other feature
extraction techniques, such as Haralick features, can also be used in BoVW to describe
the gray-level co-occurrence matrix of an image. Section 4.7 provides an overview of
image segmentation in medical imaging and computer vision, which involves dividing
an image into multiple regions based on shared characteristics. The focus is on lung
segmentation, which entails identifying the lung regions in medical images such as CT
scans and presents the challenges of accurately distinguishing lung tissue from other
structures in the image. Over-segmentation, outlined in section 4.8, is a technique used
to divide an image into smaller, spatially coherent regions (supervoxels) that correspond
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to meaningful objects or structures in the image for more efficient processing, improved
accuracy, and reduced noise. As explained in section 4.9, Deep Learning refers to the use
of neural networks with multiple layers and has roots dating back to the 1940s, but only
gained popularity in the early 2000s due to the availability of more powerful hardware,
large labelled datasets, and new training algorithms. Convolutional Neural Networks
(CNNs) and Generative Adversarial Networks (GANs) are two popular types of deep
learning neural networks used for tasks such as image classification and generative tasks
respectively. There are several quantitative texture analysis tools, explained in section
4.10, that diagnose diffuse lung diseases, including DTA and CALIPER, which are the
main state-of-the-art methods using machine learning in the context of IPF and combine
supervised and unsupervised machine learning algorithms. The Kaplan-Meier analysis
(section 4.11) is a method for estimating the survival function of a population over time
by determining the probability that an individual in the population has not experienced
an event of interest after a certain time period. A brief summary of the state-of-the-art
algorithms is given in Section 4.12.

4.1 Fundamental of Machine Learning

Machine learning (ML) is a subfield of artificial intelligence that deals with the devel-
opment of algorithms and models that enable computers to learn and improve their
performance without being explicitly programmed. It involves the development of algo-
rithms and models that enable computers to learn from their experiences and enhance
their performance.

In the context of machine learning, the term "experience" refers to the data and knowledge
that is provided to the learning algorithms. The more data and knowledge that is available,
the better the algorithms can estimate the outcome of a given task [46]. However, it is
important to note that the outcome is not always an exact calculation.

Machine learning algorithms do not begin with a pre-defined system. Instead, they
discover patterns and relationships within the provided data sets. The fundamental
concepts of ML include representation, generalization, and optimization. Representation
refers to the way data and knowledge are presented to the learning algorithm, such as
feature extraction and feature engineering. Generalization refers to the ability of the
algorithm to make accurate predictions on new, unseen data. Optimization refers to the
process of finding the best parameters for the algorithm, such as minimizing the error or
maximizing the performance.

There are three main types of machine learning methods: supervised, unsupervised, and
reinforcement learning.

Supervised learning is the most common type of machine learning, where the algorithm
is trained on a labeled dataset, where the correct output is provided for each input.
The algorithm learns to map inputs to outputs, and can be used for tasks such as
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classification and regression. Examples of supervised learning algorithms include decision
trees, k-nearest neighbors and logistic regression.

Unsupervised learning is where the algorithm is trained on an unlabeled dataset, where
the correct output is not provided. The algorithm must discover the underlying structure
of the data. This type of learning is used for tasks such as clustering, anomaly detection
and dimensionality reduction. Examples of unsupervised learning algorithms include
k-means and hierarchical clustering, and principal component analysis.

Reinforcement learning (RL) is a type of machine learning where an agent learns to
make decisions by interacting with an environment and receiving feedback in the form
of rewards or penalties. RL can be used for tasks such as game-playing, robotics, and
decision-making.

In summary, machine learning is a field that deals with the development of algorithms and
models that enable computers to learn from data, identify patterns and make predictions
or decisions without human intervention. The fundamental concepts of ML include
representation, generalization and optimization. There are three main types of machine
learning methods: supervised, unsupervised and reinforcement learning. Each type of
learning is used for specific tasks, and different algorithms can be used for each type.

4.1.1 Supervised Learning

The most important thing is that supervised learning uses labeled dataset for training,
where each input is given with a correct output [47]. Supervised learning aims to learn a
mapping function that can be used to make predictions or decisions on new, unseen data.
This mapping function is often represented as a model, which can be represented as a
mathematical equation or a neural network. Typically, datasets for supervised learning
contain sets of input-output pairs, where the input is a set of features, and the output is
the corresponding label or class. A chosen model is used to learn the mapping function
from the input to the output. There are a wide variety of models that can be used
in supervised learning, including linear regression, decision trees, k-nearest neighbors,
and neural networks. The choice of model will depend on the specific problem and the
characteristics of the data.

On the other hand, unsupervised learning, as defined by Alpaydin (2010), is a type of
machine learning where the algorithm is trained on an unlabeled dataset, where the
correct output is not provided. The goal of unsupervised learning is to discover the
underlying structure of the data, such as identifying patterns, grouping similar data
points together or detecting anomalies. Unsupervised learning can be used for tasks
such as clustering, anomaly detection, and dimensionality reduction. The model is not
provided with any specific output, it is up to the model to identify patterns and structure
in the data. Examples of unsupervised learning algorithms include k-means, hierarchical
clustering, and principal component analysis.
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4.1.2 Unsupervised Learning
Unsupervised machine learning is a type of machine learning when the outputs are
unknown. It puts its model through training with unpredictable outcomes. These
models search for patterns and categorize the data within the supplied sets into groups.
When it comes to unsupervised learning, we have no means of knowing if the outcomes
are correct or erroneous. These models are capable of identifying pattern correlations.
An unsupervised model in the field of bioinformatics, for instance, may establish the
relationship and closeness between several gene symbols. Still, it cannot tell which
character is the cause of a particular disease. Humans do not yet know which gene
mutations cause IPF. Using unsupervised machine learning techniques, it is feasible that
physicians may discover that essential gene. Clustering is one of the most often employed
techniques in unsupervised learning.

Unsupervised learning, is where the algorithm is trained on an unlabeled dataset, where
the correct output is not provided. The algorithm must discover the underlying structure
of the data. This type of learning is used for tasks such as clustering, anomaly detection
and dimensionality reduction. Examples of unsupervised learning algorithms include
k-means and hierarchical clustering, and principal component analysis.

4.1.3 Reinforcement Learning
Reinforcement learning is a type of machine learning where an agent learns to make
decisions by interacting with an environment. The agent receives rewards or penalties
based on its actions, and the goal is to learn a policy that maximizes the cumulative
reward over time. Reinforcement learning can be used for tasks such as game playing,
robotics, and recommendation systems. The agent is not provided with any specific
output, it learns through trial and error and updates its policy based on the rewards or
penalties it receives. Examples of reinforcement learning algorithms include Q-learning,
SARSA and DDPG.

4.2 Linear regression
Linear regression, an algorithm of supervised ML, determines the statistical relationship
between two or more variables. This technique is used in many ML modelling and
analyses for identifying the correlation between a dependent variable y and one or more
independent variables x. A regression model relates a dependent variable to a function
of independent variables, and unknown parameters β can be written as:

y ≈ f (x, β) (4.1)

The type of regression employed is determined by the examined function. In linear
regression, f represents the linear function. Simple linear regression is a kind of linear
regression that only evaluates a single feature. Multiple linear regression, as opposed to
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fundamental linear regression, contains several distinctive properties. It is the most often
employed statistical and machine learning method for predicting the dependent variable
y based on the independent variable x.

4.3 Principal Component Analysis
The premise underlying principal component analysis (PCA), commonly abbreviated as
PCA, is the reduction of the dimensions of a data set into k main components. A vector
v1 with the most significant variance in the linear function vT

1 x represents the principal
component of a data vector x containing p variables. This is the definition of a principal
constituent. This method is done j times, where j can vary from 1 to n, for v2 when it is
uncorrelated with v1. The purpose of this analysis is to discover k components that may
account for the bulk of the variance in x. The solution to the eigenvalue problem will
result in the identification of the principal components, indicated by vj

(C - λIn)vj = 0 (4.2)

C is the covariance matrix Cij = cov(xi, xj), and In is the identity matrix (nxn).
Consequently, it is an eigenvalue of C, and vj is the corresponding eigenvector.

Principal component analysis (PCA) is a powerful technique for dimensional reduction
for analyzing medical data, such as chest X-Ray analysis of lung cancer, classification of
the pulmonary lesion, and classification of malignancy degree for lung cancer [48][49][50].
The principal component analysis is not restricted limited to lung disease analysis. For
neurology, PCA can be used to detect brain signal spikes and action potentials [51][52].
For non-medical utility, it is being applied for facial identification and face analysis
[53][54].

4.4 K-mean clustering
The objective of clustering is to group things that are linked to one another but separate
from other groups. The aim is to identify a set of n in k groups by collecting n data points
in R d-dimensional space and an integer k. Among the various clustering approaches,
k-means clustering is one of the most widely used and studied. K-means is a clustering
method that requires an initial set of cluster centers. The number of cluster centers is
fixed and pre-defined. The k-means method is an iterative procedure that minimizes the
sum of squared errors within clusters [55]. The centers have the smallest mean squared
distance between each of the n locations and the center that is closest to them. The
algorithm can be mathematically represented as follows:

Initialize K centroids µ1, µ2, ..., µK randomly from the data points. Assign each data point
xi to the cluster whose centroid it is closest to. This can be represented mathematically
as:
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ci =
K

argmin
j=1

|xi - µj |2 (4.3)

where ci is the cluster assignment for data point i and | · |2 is the squared Euclidean
distance. Update the centroids by taking the mean of all data points assigned to each
cluster. This can be represented mathematically as: µj = 1

|Sj |
Σ

iεSj
xi where Sj is the

set of data points assigned to cluster j and |Sj | is the number of data points in that
cluster. Repeat steps 2 and 3 until the cluster assignments no longer change or a stopping
criterion is met. The K-means algorithm is sensitive to the initial centroid and the
final clusters are dependent on the initial centroids. To counter this problem, K-means
is usually run multiple times with different initial centroids and the final clusters are
chosen based on the lowest sum of squared distance of points from their respective cluster
centroids.

K-means is a widely used algorithm in various fields, such as image compression, image
segmentation, speech recognition, and market research.

4.5 Random forest
Random Forest(RF) is a machine learning algorithm that is widely used in image
classification, prediction and feature selection tasks. It is a type of ensemble learning
method that creates multiple decision trees, which are combined to form a forest of
decision trees. Random Forest is a non-parametric method and is flexible to handle
complex data structures.

The basic idea behind RF is to use a combination of decision trees to make predictions.
Each decision tree in the forest is trained using a random subset of the input data and
features. This leads to diversity among decision trees, as each tree is trained on different
data and features. The final prediction is made by aggregating the predictions of all
decision trees, which can be done by taking a majority vote or averaging the predictions.

Mathematically, let’s consider the input data to be a matrix X with m samples and n
features. The output target variable Y is a vector with m values. For each tree, we first
randomly select a subset of samples with replacement, called bootstrapped samples, and
denote this subset as Xboot. Then, we randomly select a subset of features for each node
in the tree and build the decision tree using Xboot and Y . This process is repeated for a
specified number of trees, say T .

The prediction for a new sample Xnew is made by aggregating the predictions of all T
decision trees. Let’s denote the prediction of the i-th decision tree as fi(Xnew). The
final prediction is given by:

f(Xnew) = 1
T

TΣ
i=1

fi(Xnew) (for regression problems) (4.4)
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or
f(Xnew) = majorityvote(f1(Xnew), f2(Xnew), ..., fT (Xnew))

(for classification problems)
(4.5)

RF has been successfully applied to medical image analysis, especially in the context
of disease diagnosis and prognosis. In medical imaging, it has been used for image
classification, such as classifying CT images into normal or abnormal, and segmentation,
such as segmenting lesions in MR images.

One of the benefits of RF in medical imaging is that it can handle large amounts of data,
including images, which can be high-dimensional. Additionally, Random Forest is robust
to noisy and missing data, which is common in medical imaging, and can handle complex
relationships between features.

RF is a powerful machine learning algorithm that has been successfully applied to medical
image analysis. Its ability to handle high-dimensional data, robustness to noise and
missing data, and flexibility to handle complex relationships between features make it a
popular choice for medical imaging tasks.

4.6 Bag of Visual Words
Bag of Visual Words (BoVW) [56] is a feature extraction technique commonly used in
computer vision and image processing. It involves creating a visual vocabulary from a set
of training images and then representing each image in the dataset as a histogram of visual
words. In the context of CT scans, the visual vocabulary is created by extracting local
features from the images, such as Scale-Invariant Feature Transform (SIFT) or Speeded
Up Robust Features (SURF) descriptors. These descriptors capture the distinctive local
characteristics of the image, such as shape, orientation, and texture.

In the context of CT scans, the visual vocabulary is created by extracting local features
from the images, such as Scale-Invariant Feature Transform (SIFT) or Speeded Up
Robust Features (SURF) descriptors. These descriptors capture the distinctive local
characteristics of the image, such as shape, orientation, and texture. SIFT is designed to
extract distinctive features from images that are invariant to changes in scale, orientation,
and affine distortion. In the context of 3D CT scans, 3D-SIFT is an extension of SIFT
that operates on 3D image volumes rather than 2D images.

3D-SIFT features are computed using the following steps. The first step is to detect the
scale-space extrema in the 3D volume. This is done by constructing a scale-space
representation of the volume, where the intensity values of each voxel are filtered using a
Gaussian filter with different standard deviations. The scale-space extrema correspond
to the local maxima or minima of the filtered volume. The scale-space extrema are then
refined to determine the exact location and scale of the keypoints. This is done by
computing the 3D Hessian matrix at each scale-space extrema and using the eigenvalues
of the matrix to determine the scale and orientation of the keypoint. Once the keypoints
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have been localized, a descriptor is computed for each keypoint to describe its local
appearance. In 3D-SIFT, this is done by dividing the 3D volume around each keypoint
into a set of orientation histograms. These histograms capture the gradient information in
different directions, and are combined to form a compact and descriptive representation
of the local appearance of the keypoint.

The 3D-SIFT descriptor is a vector of orientation histograms, typically represented as a
128-dimensional feature vector. Mathematically, the 3D-SIFT descriptor di for keypoint
i can be represented as:

di = [hi,1, hi,2, ..., hi,k],
where hi,j is the jth orientation histogram of keypoint i and k is the number of orientation
bins. The orientation histograms are computed using gradient information in the vicinity
of the keypoint, and are combined to form a compact and descriptive representation of
the local appearance of the keypoint.

Once the visual vocabulary has been created, the feature descriptors from each image
are quantized into the visual words using a clustering algorithm, such as k-means.
The resulting histogram of visual words for each image can be used as a compact and
informative representation of the underlying visual content, capturing the unique patterns
of lung tissue appearance and texture.

In addition to SIFT and SURF, other feature extraction techniques can also be used
in BoVW, such as Haralick features [57]. Haralick features are a set of texture features
that describe the gray-level co-occurrence matrix (GLCM) of an image. The GLCM is a
matrix that represents the probability of observing a specific gray-level pair in a given
direction at a certain spatial distance. Those four points are mainly used as parameters
for GLCM [57]. The GLCM can be used to calculate the symbiotic grayscale pixel values
of i and j at a specified direction theta and distance d, expressed as the number of
co-occurrence matrix element.

GLCM = p(i, j|d, θ)Σ
i

Σ
j p(i, j|d, θ) (4.6)

Image contrast can be defined as the sharpness of the picture. Contrast increases with
the depth of image grooves [58]

Constrast =
Σ

i

Σ
j

(i - j)2P (i, j) (4.7)

Energy can be represented as the measure of gray distribution of an image [58].

Engery =
Σ

i

Σ
j

[P (i, j)2] (4.8)

30



4.7. Image segmentation

Entropy is defined as the amount of information contained in an image. Low entropy
images are blacker; a perfect image would have zero entropy [58].

Entropy =
Σ

i

Σ
j

[P (i, j)]logP (i, j) (4.9)

Image correlation can be described as the degree of similarity of the elements of CT
scans [58].

Correlatio(d, θ) =
Σ

i,j(i - µx)(j - µy)P (i, j)
σxσy

(4.10)

,where

µx =
Σ

i

Σ
j

iP (i, j), µy =
Σ

i

Σ
j

jP (i, j), (4.11)

σx =
Σ

i

Σ
j

(i - µx)2(i, j), σy =
Σ

i

Σ
j

(j - µy)2(i, j). (4.12)

The Haralick features can capture the subtle variations in texture and pattern in an
image, and have been successfully used in medical imaging applications to distinguish
between different tissue types.

4.7 Image segmentation
Image segmentation is a crucial task in medical imaging and computer vision, as it
entails dividing a medical image into multiple regions with shared characteristics, such as
color, texture, form, and intensity. This division simplifies the analysis and study of the
image, allowing the examination of each region’s traits. Despite extensive research and
development over the years, image segmentation remains a challenging problem due to
the complex anatomy of human bodies and the diverse modalities of medical images [59].

There are several methods employed in image segmentation, including edge detection,
thresholding, region growing, and clustering. The choice of method is dependent on the
type of image and the task’s specific requirements. Lung segmentation, in particular,
refers to the identification of lung regions in a medical image, such as a CT scan. This
process is essential for studying and analyzing the lungs, aiding in disease detection,
diagnosis, and treatment planning. However, lung segmentation is challenging due to the
presence of other structures in the image, such as the chest wall, diaphragm, and heart.
Therefore, the segmentation algorithms must accurately distinguish between lung tissue
and these other structures.
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In 2D images, segmentation is relatively simple, and most methods utilize contrast-
sensitive information obtained from the gray-level information. Conversely, in 3D images,
segmentation can be more challenging, and manual settings and adjustments are often
required to achieve accurate results [60] [61] [62]. The segments generated in 3D images
are known as supervoxels, which are 3D pixels that represent a small volume of the
image. The division of the image into smaller parts facilitates analysis and study, as
the traits of each region can be compared [63]. Recent advancements in algorithms,
such as MonoSLIC [64], have significantly improved the accuracy and efficiency of image
segmentation, particularly in lung segmentation.

Image segmentation and lung segmentation, including supervoxel segmentation, are crucial
tasks in medical imaging and computer vision. Accurate and effective segmentation
algorithms are vital for the analysis and study of medical images, enabling the detection
and diagnosis of diseases. The utilization of image segmentation has the potential to
significantly enhance our understanding of human anatomy and aid in medical treatment
planning.

4.8 Over-segmentation
Supervoxel is a term used in computer vision and image processing to describe a group
of connected 3D voxels (units of 3D pixels) in a volumetric image that represents a
contiguous region. Over-segmentation is a technique used to over-segment an image into
smaller, spatially coherent regions with the aim of creating supervoxels that correspond
to meaningful objects or structures in the image. The current state-of-the-art over-
segmentation techniques are primarily designed for 2D real-world images, with only
a limited number utilized for medical images. One approach, MonoSLIC, created by
Holzer et al. [64], uses k-means clustering in the feature space of spatial coordinates
and monogenic local phase extracted from the monogenetic signal [65] [66] and does
not require parameter tuning for contrast and brightness, making it more suitable for
medical imaging data. Utilizing over-segmentation can address image processing problems
in certain applications by grouping pixels into larger, semantically meaningful regions,
resulting in more efficient processing, improved accuracy and reduced noise.

4.9 Deep learning
Deep learning, which refers to the use of deep neural networks with multiple layers, has
its roots in the 1940s and 1950s with the work of Warren McCulloch and Walter Pitts on
artificial neural networks and in the 1960s and 1970s with the work of Frank Rosenblatt
and others on perceptrons and backpropagation [67]. However, the development of deep
learning was hindered by the lack of computational power and the limited availability of
large labeled datasets.

The resurgence of interest in deep learning in the early 2000s can be attributed to
several factors. Firstly, the availability of more powerful hardware, such as GPUs, made
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it possible to train deeper and larger neural networks. Secondly, the release of large
labeled datasets, such as ImageNet[68], made it possible to train and evaluate deep neural
networks on challenging tasks. Thirdly, the development of new training algorithms,
such as Dropout and Rectified Linear Unit (ReLU), made it possible to train deeper and
larger neural networks more efficiently.

Convolutional Neural Networks (CNNs) have a long history in computer vision and image
processing. The first CNNs were developed in the late 1980s and early 1990s by Yann
LeCun, Yoshua Bengio, and their colleagues at AT&T Bell Labs and the University of
Montreal [69]. These early CNNs were primarily used for handwritten digit recognition,
and they were inspired by the biological visual system of animals and the mathematical
concept of convolution.

Generative Adversarial Networks (GANs) were introduced by Ian Goodfellow and his
colleagues in 2014 [70]. They proposed a new approach to generative modeling, where two
neural networks, a generator and a discriminator, are trained in an adversarial manner.
The generator tries to generate new samples that are similar to the real samples, while the
discriminator tries to distinguish between the real and generated samples. This approach
has been shown to be effective in several generative tasks, such as image synthesis, style
transfer, and data augmentation.

CNNs and GANs are both types of deep learning neural networks that have been used
for different tasks in computer vision and other fields.

CNNs are designed to perform tasks such as image classification, object detection, and
semantic segmentation by learning to extract and classify local features from input images.
They consist of multiple layers of convolutional and pooling operations, which are used
to extract and down-sample the features, and one or more fully connected layers, which
are used to make a final prediction.

GANs, on the other hand, are designed to generate new samples that are similar to a given
dataset. They consist of two main components: a generator network and a discriminator
network. The generator network learns to generate new samples from a random input,
while the discriminator network learns to distinguish between the generated samples
and the real samples from the dataset. The two networks are trained in an adversarial
manner, where the generator tries to generate samples that the discriminator cannot
distinguish from the real samples, and the discriminator tries to improve its ability to
distinguish them.

The main use cases of CNNs are image and video recognition tasks, such as object
detection, semantic segmentation, and image classification, while GANs are mainly
used for generative tasks such, as image and video synthesis, style transfer, and data
augmentation.

In recent years, both CNNs and GANs have undergone a lot of developments by intro-
ducing new architectures and techniques, such as ResNet[71], Inception Networks [72],
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and Wasserstein GANs[73], and Transformer-based architectures for CNNs [74], Spectral
Normalization GANs [75], and Style-based GANs for GANs [76].

Both CNNs and GANs are key components of deep learning, and they have a rich
history of developments and advancements that have led to their current state-of-the-art
performance in image and video recognition tasks and generative tasks respectively, while
CNNs are used for discriminative tasks, trying to classify or segment an input, GANs are
used for generative tasks, creating new samples that can imitate the real ones.

4.9.1 Convolutional Neural Networks
CNNs have been particularly successful in the image and video recognition tasks. They
are inspired by the visual system of animals and are designed to automatically and
adaptively learn spatial hierarchies of features from input images.

The main building block of a CNN is the convolutional layer, which applies a set of
learnable filters (also called kernels or weights) to the input data, in order to extract
local features. The filters are small in size (e.g. 2x2 or 3x3 pixels) and slide over the
entire input image, computing the dot product between their weights and the overlapping
image patches. This operation is called convolution, hence the name of the network.

The output of a convolutional layer is a set of feature maps, which are the same size as
the input image, but have a reduced number of channels (e.g. from 3 RGB channels to 64
or 128 feature maps). The feature maps are then passed through a non-linear activation
function, such as ReLU, which introduces non-linearity in the network.

Another key component of CNNs is the pooling layer, which performs down-sampling
of the feature maps by taking the maximum or average value of small non-overlapping
regions (e.g. 2x2 pixels). This reduces the size of the feature maps, reducing the number
of parameters and computational cost, while also making the feature maps more robust
to small translations of the input image.

After several convolutional and pooling layers, the feature maps are passed through one
or more fully connected layers (also called dense layers), which learn a linear combination
of the features and output a final prediction. The parameters of the network are learned
through backpropagation and stochastic gradient descent.

CNNs have achieved state-of-the-art performance on several image and video recognition
benchmarks, and are widely used in computer vision tasks such as object detection,
semantic segmentation, and image generation.

4.9.2 Generative adversarial networks
A GAN framework is composed of at least two components: a discriminative model D
and a generative model G. The number of inputs may vary. For training purposes, the
discriminator is trained on actual examples and random batches of samples generated
by the generative model. The goal of the discriminative model D is to reliably identify
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authentic samples as much as possible (with an output value of "True" or 1), while also
recognizing the manufactured samples, also known as the false samples, as much as
feasible (output is "False", or 0). These objectives correspond to the first and second
terms of the objective function shown below. The goal of the generator is to generate
as realistic images as possible so that the discriminative model cannot recognize it as a
counterfeit. Therefore, G and D create a min-max game in which both sides optimize
themselves during the training process until they achieve equilibrium. Hence, the fake
samples are indistinguishable from the actual ones. The following equation illustrates
the mathematical theory underlying this game of min-max:

min
G

max
D

V (D, G) = Ex~pdata(x)[logD(x)] + Ez~pz(z)[log(1 - D(G(z)))] (4.13)

Where G represents the generator, D represents the discriminator, x represents the real
images, z represents the random noise vector, pdata(x) represents the distribution of real
images, and pz(z) represents the distribution of the random noise vector. We define
the mapping to data as G(z; θg), which means that G maps the input noise to the data
based on some optimization-sensitive parameters θg. In addition, a mapping D(x; θd)
is defined from the data space to a scalar output. This is the Discriminator, which
assigns the probability that x originated from the data as opposed to pdata. For training,
the two models compete in a min-max game in which D maximizes the likelihood of
correctly labelling data samples from pg and training data. G is trained to minimize
log(1-D(G(z))), which is formalized along with D’s objective in the following expression
with value function V (G, D).

The result of V , is at its maximal in D, when it is assigned 1 to x and 0 to D(G(z)).
This can be interpreted as labelling training data as "real" and synthetic data produced
by G as "fake". V is minimal in G, which would means that it is able to fool D, a G
generated data is labelled as coming from actual data input. With such a clever design,
GAN possesses attractive properties. G in GAN, as a generative model, does not require
a strict expression for the generated data, as in traditional graph models. This avoids the
incomputability that results from excessive growth in complexity when the information is
very complex. Also, it does not require some of the substantial computational summation
computations of the inference model. The only thing it needs is a noisy input, a bunch
of real data without criteria, and two networks that can approximate the function.

4.9.2.1 StyleGan

As chapter 4.9.2 mentioned, GANs are a popular deep learning technique for generative
tasks, such as image and video synthesis. A common example of a GAN application
is the generation of artificial face images. Over time, GAN images have become more
realistic, but one of their main challenges is controlling the output of the generated
images, particularly when it comes to specific features such as pose, face shape, and
hairstyle. To address this challenge, a new model called StyleGAN was proposed by
NVIDIA [76]. This style-based generator architecture for GAN, proposes a new model to
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address this challenge. It gradually generates artificial images, starting from very low
resolution and working up to high resolution (1024x1024). By modifying the input at
each level separately, it can control the visual features expressed in that level, from coarse
features (pose, facial shape) to fine details (hair color), without affecting the other levels.

The basic components of a GAN are two neural networks: a generator (G) for new
samples, and a discriminator (D) that extracts samples from the training data and
the generator output and predicts whether they are "true" or "false". The input of the
generator is a random vector (noise), so its initial output is also noise. As training
progresses, it learns to synthesize more "real" images as it receives feedback from the
discriminator. The discriminator also improves as training progresses by comparing the
generated samples with the real ones, making it more difficult for the generator to fool it.

The network structure of StyleGAN consists of two parts, the first is the Mapping network,
the process of mapping the input to an intermediate latent vector w from the noise
variable z. This latent space W is used to control the style of the generated image, the
style. The Mapping Network consists of 8 fully connected layers and its output W is the
same size as the latent code Z. The second is the Synthesis network, which is used to
generate images. The innovation is that each layer of the sub-network is fed with A and
B. A is the affine transformation obtained from w conversion, which is used to control
the style of the generated image, and B is the converted random noise, which is used to
enrich the details of the generated image, i.e., each convolutional layer can adjust the
"style" according to the source A.

For the Synthesis network, a key module AdaIN (Adaptive Instance Normalization), is
used to control the style of the generated images. This operation adjusts the mean and
standard deviation of the feature map of the intermediate latent code to match that of the
reference image. This allows the synthesis network to generate images with similar styles
to the reference image, while maintaining the structure and content of the intermediate
latent code. This module is added in each level of resolution and can define the visual
feature changes in each layer of image resolution. The AdaIN algorithm is defined as:

AdaIN(xi, y) = ys,i
xi-µ(xi)

σ(xi) + yb,i (4.14)

Where xi represented the normalized feature map.
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Figure 4.1: Two sets of lung images were generated from their respective latent codes
(sources A and B); the rest of the images were generated by copying a specified subset of
styles from source B and taking the rest from source A.

xi is the feature map of the intermediate latent code at a particular layer of the synthesis
network.

yi is the feature map of the reference image at the same layer.
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µ(xi) and σ(xi) are the mean and standard deviation of the feature map xi, respectively.
They are calculated along the channel dimension of the feature maps.

ys,i and yb,i are the scaling and bias factors, respectively, calculated from the reference
image feature map yi. These factors are used to adjust the mean and standard deviation
of the intermediate latent code feature map xi to match that of the reference image
feature map yi.

xi-µ(xi)
σ(xi) is the normalization step, it normalize the feature maps by subtracting the mean

and dividing by the standard deviation.

The final step is to adjust the normalized feature maps by the scaling and bias factors
ys,i and yb,i, respectively. This is done by element-wise multiplication and addition,
represented by the . and + operators, respectively. Figure 4.1 presents examples of
images synthesized by mixing two latent codes at various scales. We can see that each
subset of styles controls meaningful high-level attributes of the image.

4.10 Existing analysis approaches in context of IPF
There are currently several quantitative texture analysis tools[77][78][79][67][80], including
DTA[81] and CALIPER[80], which are the main state-of-the-art methods using machine
learning in the context of IPF. Both DTA and CALIPER use a combination of supervised
and unsupervised machine learning algorithms to diagnose diffuse lung diseases. DTA
starts by performing unsupervised clustering analysis on randomly sampled parenchyma
from CT images of patients with IPF and non-smoking controls to produce a dictionary of
low-level features that distinguish fibrosis from non-fibrotic lungs. The radiologist-labeled
regions of interest (ROIs) are then used to train a supervised support vector machine
classifier to distinguish fibrosis from normal lungs. The DTA fibrosis score is calculated
based on the number of ROIs classified as fibrosis.

CALIPER, on the other hand, begins with supervised learning. Thin-section CT images
of patients with pathologically proven ILD are used and divided into volumes of interest
(VOIs). The VOIs are then categorized by expert radiologists, and multidimensional
scaling is used to discriminate among the different categories. The VOIs are then clustered
using an unsupervised machine learning algorithm, and the results are summarized for
the entire lung. These findings can be used for statistical analysis or visually represented
as a color overlay or summary glyph.

4.11 Kaplan-Meier analysis
The Kaplan-Meier analysis is a statistical method used in medical research to estimate
the survival function of a population over time. The survival function represents the
probability that an individual in the population has not experienced an event of interest
(e.g. death, disease progression) after a certain time period.
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Mathematically, the Kaplan-Meier estimate of the survival function S(t) at time t is
defined as:

S(t) =
Π
ti<t

(
1 - di

ni

)
(4.15)

where ti is the time of the ith event in the population, di is the number of events that
occurred at time ti, and ni is the number of individuals at risk of experiencing the event
at time ti.

In the medical field, the Kaplan-Meier analysis is widely used to study the survival of
patients with a specific disease or condition. It provides a way to estimate the average
survival time and the probability of survival for a population of patients. The results of
the analysis can be used to compare the survival of different patient groups, for example,
those receiving different treatments or those with different demographic characteristics.

4.12 Discussion
In this chapter, we have reviewed state of the art in machine learning, covering the
fundamental concepts of supervised, unsupervised, and reinforcement learning. We then
explored linear regression, principal component analysis, K-mean clustering, random
forest, and deep learning. Deep learning, in particular, has seen tremendous growth and
success in recent years, with convolutional neural networks and generative adversarial
networks playing a key role.

It is worth noting that while deep learning has achieved impressive results in various
applications, it is not without limitations. Deep learning models require a large amount
of data and computation resources to train, and may not perform well in cases with
limited or noisy data. Furthermore, the lack of transparency in deep learning models can
pose a challenge in understanding and interpreting their predictions.

Despite these limitations, the continued advancements in deep learning and other ma-
chine learning techniques show promise for future advancements and applications. For
example, the recent development of StyleGan in generative adversarial networks has
shown significant improvements in synthesizing high-quality images.

In conclusion, state of the art in machine learning is rapidly evolving, with deep learning
playing a significant role in driving this growth. Further research is needed to address
the limitations of deep learning and other machine learning techniques, to make them
more widely accessible and applicable for medical images.
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CHAPTER 5
Methodology

This chapter provides a detailed description of the methodology used in this thesis. The
objective is to use unsupervised learning to predict longitudinal imaging of idiopathic
pulmonary fibrosis. Figure 5.1 displays a workflow for the method. Section 5.2 outlines
the notation for mathematical objects used in work and provides a brief explanation of
their characteristics. Section 5.3 is about the selection of CT scans from a pseudonymized
dataset, with statistics showing the most commonly used kernel is BONEPLUS, resulting
in the decision to conduct the experiment using only that kernel, with the majority
of the CT scans containing background or non-lung organs. Section 5.4, focusing on
the segmentation of the lung region, defines and explains this image preprocessing step.
Section 5.5 describes the process of extracting hand-crafted image features of texture
and shape after over-segmentation to gather complementary visual information that
represents the image. The feature extraction from StyleGAN (section 5.6) is achieved by
modifying the open-source code from the original StyleGAN paper to fit a training dataset
of CT slices, utilizing the generated latent space representation of the images. Section
5.7 describes a study aimed at identifying pattern signature characteristics associated
with the development of radiological illness through analyzing consecutive CT scans and
utilizing a 500-tree random forest classification model to predict the temporal order of
the scans, with the objective of finding markers associated with the onset of radiological
disease. Section 5.8 details a process for aligning multiple scans of the same patient
to achieve spatial correspondence. The two volumes are initially registered using the
ANTs and Ezys software, with an additional affine transformation from ANTs for a
good non-rigid transformation initialization. The section 5.9 focuses on the local tissue
transition pathway. The goal is to track changes in lung tissue patterns as the illness
progresses, and this is done by comparing the image signature components of one scan
with the equivalent component in another scan. The section describes the calculation of
transition probabilities between different lung tissue clusters by counting the occurrences
of tissue transitions between two scans. A network is then created to illustrate these
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transition probabilities. Section 5.10 introduced a statistical method used to estimate
the probability of survival for a population based on subgroup divisions and taking into
account censoring events.

Figure 5.1: Overview of the algorithm

5.1 Outline of the method
The methodical approach can be separated into the following steps:

• Image segmentation is a two-step approach. The first step uses a simple threshold-
based method where the threshold is set at -700HU. The next step removes small
structures with a morphological area opening. The segmentation is then expanded with
a morphological closing operation. If the first approach fails, a second approach is
used, which is a multi-template atlas-based segmentation approach. The optimal lung
segmentation template is selected from 16 full-body CTs in the VISCERAL Anatomy 3
dataset.

• Features extraction using bag of visual words describes a process of hand-
crafted image feature extraction for the purpose of determining complementary visual
characteristics. The Bag of Visual Words paradigm is used to reduce local features
into global volume descriptions, and two vocabularies are trained for microSIFT and
macroSIFT features. The hand-crafted features are then mapped to one cluster through
the K-means algorithm to minimize the within-cluster sum of squares and obtain the
global volume descriptions. The extracted features are reduced using PCA due to the
high computation cost.

• Feature extraction using StyleGAN illustrates a method for feature extraction
from StyleGAN for predicting disease features, specifically for IPF. The process involves
modifying the original StyleGAN code to fit a training dataset of CT slices, and mapping
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the input noise vector to a feature space representation through linear mapping. The
resulting feature is then used for prediction and classification tasks.

• The aim of identifying diseases progression markers is to predict the temporal
order of consecutive CT scans and identify pattern signature characteristics related to
the development of radiological illness using a random forest classification model and
feature difference between pattern signatures of the scans and the hypothesis was that
high RF Gini significance markers indicate the onset of radiological disease.

• Image registration process involves aligning multiple examination images of the
same patient to establish spatial correspondence. This is achieved by using ANTs and
Ezys registration software, which calculates the transformation Tsij between two volumes
of a patient. This transformation is based on a deformation parameter uij that transforms
the coordinates from one reference frame to the next. The goal is to bring images from
previous series into the frame of subsequent series, a process known as intra-subject
registration. The aim is to achieve spatial correspondence from one series to the next for
a maximum of four examination images of each patient.

• Local tissue transition pathway in lung tissue patterns is discussed as the illness
progresses. It identifies image signature components at each lung location in two scans
and creates a network of transition probabilities based on the counts of the matching
components. The network is calculated as the ratio of the matching components to the
sum of all components for each transition.

• Risk progression Survival outcome prediction based on the pattern marker identified
in previous steps is evaluated.

5.2 Notation
In order to offer a clear notation throughout the equations used in this work, the most
significant characteristics of all mathematical objects utilized are outlined shortly below.
Additional background and detailed explanations are provided wherever equations are
introduced.
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µ Mean of the population

σ Standard deviation of the population

F t
i features extracted from image of individual subject i of time point t using Bag of

Visual Words

FStyle
t
i features extracted from image of individual subject i of time point t using

StyleGAn

It+1
i lung mask of individual subject i of the following acquisition series t + 1

It
i image of individual subject i at the acquisition series t

Lt+1
i lung mask of individual subject i at the following acquisition series t + 1

Lt
i lung mask of individual subject i at the acquisition series t

nsv number of supervoxel

P t+1
i global volume description of individual subject i of the following acquisition series

t + 1

P t
i global volume description of individual subject i of the acquisition series t

St+1
i supervoxels of individual subject i of the following acquisition series t + 1

St
i supervoxels of individual subject i of the acquisition series t

t Index of acquisition time point

tn number of acquisition time series

X dataset matrix of all subjects with size n x m

x Data point of the population

z z-scores
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5.3 Data
The first step is the selection of the CT scans from the data set. All the scans are
pseudonymized and are received in DICOM format. The statistics of the data set in
table 6.1 show that for the recommended thin-section CT < 1.5mm, the most commonly
used kernel is the BONEPLUS kernel. Therefore we decided to perform the experiment
with only the BONEPLUS kernel. The given CT scans from the dataset contain mostly
background or non-lung organs (eg. bones, heart, spine). Each patient i has image series
It

i . . . Itn
i , where the maximum number of tn is 4. A patient must undergo a minimum

of t > 2 scans using the boneplus kernel to be eligible for inclusion in the study. To
effectively process the radiology information within the lung, it is necessary to perform
image segmentation to accurately identify and isolate specific structures or areas of
interest.

5.4 Image Segmentation
The initial process of the method described in this thesis is the execution of a lung mask
segmentation.

flungSeg : It
i (x) -→ Lt

i(x) (5.1)

This lung mask segmentation Lt
i(x) ε Rmxnxh operates automatically via a two-step

approach. Human lungs contain mostly air and consequently have a low signal intensity
on the HRCT scans. For a given image I of individual subject i at t acquisition time
point, It

i (x) ε Rmxnxh the initial lung mask segmentation is obtained via a simple
threshold-based method, where the entry for Bt

i(x) ε Rmxnxh is set at -700HU on the
CT images[82].

Bt
i(x) =

(.{.,
1, It

i (x) ≤ -700HU

0, It
i (x) > -700HU

(5.2)

The next step is to remove small structures At
i ε R3 such as small bronchi and vessels

with a morphological area opening.

Bt
i(x) ° At

i = (Bt
i(x) ° At

i) ° At
i. (5.3)

This operation removes connected components with a pre-defined number of voxels.
Additionally, connected components attached to the image border are not considered in
the analysis. We divide the airways according to the Lee and Reeves proposed region-
growing process with leakage detection and prevention [83]. By selecting the largest two
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connected components with a volume of at least 200cm3, we are able to segment the
lungs. The lungs can sometimes touch each other and come together to form a single,
connected organ. To find the best cut separating the two lungs in this instance, we
employ a graph-cut method developed by Pinho et al. [84]. Lastly, a morphological
closing operation with a 3-dimensional spherical structure Dt

i ε R3 with a radius of 7
mm was performed on each part of the segmented lung (left and right lung).

Bt
i(x) • Dt

i = (Bt
i(x) ° Dt

i) ° Dt
i . (5.4)

The segmentation of the lung L̂t
i(x) ε Rmxnxh is expanded by this operation to include

small, previously unsegmented structures (such as vessels).

L̂t
i(x) =

(.{.,
Bt

i(x), Σ
Bt

i(x) ≥ 200cm3

0,
Σ

Bt
i(x) < 200cm3

(5.5)

For a healthy subject, this method works flawlessly. Our dataset, however, consists of
patients diagnosed with pulmonary fibrosis; in the later stages of the disease, lung fibrosis
and high density lung patterns such as ground-glass-opacity appear. Figure 6.3 provides
an example. In many cases, the described method of lung mask segmentation fails. Upon
failure, a second approach automatically takes over for the lung mask segmentation. We
use a multi-template atlas-based segmentation approach to correct the segmentation [85]
if the algorithm fails, especially in cases of substantial high density areas and lung scarring.
The atlas approach automatically selects an optimal lung segmentation template. The
lung transformation template is selected from 16 full-body CTS from the VISCERAL
Anatomy 3 dataset [86].

For a given image of individual subject It
i and a set of manually annotated template

candidates (16 full-body CTs from the VISCERAL Anatomy 3 dataset [86]) E1, · · · , EE ,
which are previously registered to an atlas.

Tie : It
i (x) -→ Ee, (5.6)

where Tie indicate a non-linear transformation from It
i to a template out of the 16

full-body CTs Ee

TeA : Ee -→ A, (5.7)

47



5. Methodology

and TeA the transformation from Ee to atlas A. It
i is then mapped to A by concatenating

both non-linear transformations so that

A ≈ TeA(Tie(It
i )) (5.8)

Normalized Cross Correlation (NCC) criteria is chosen as the quality criteria to optimizes
the non-linear transformation.

Lt
i(x) =

(.{.,
L̂t

i(x), L̂t
i(x) > 0

arg max1<e<E NCC(A, TeA(Tie(It
i ))), L̂t

i(x) = 0
(5.9)

5.4.1 Over-segmentation
We adapted the concept of MonoSLIC(Section 4.8) to over-segment the lung after lung
mask segmentation. The supervoxels St

i ε
{

1, ..., nsv

}nxh
is written as:

fMonoSLIC :
<
It

i (x), Lt
i(x)

>
-→ St

i (x) (5.10)

, where nsv represents the number of supervoxels.

This approach was used since it produced a four-dimensional feature space for a three-
dimensional picture. The result of the entire image segmentation pipeline can be seen
in figure 5.4. The original CT slice scan It

i (figure 5.4 A) sized 512x512 pixels is shown
before the image segmentation, after applying the lung mask segmentation Lt

i (figure 5.4
B), and lastly the mapped to St

i with the over-segmentation method (figure 5.4 B).

Figure 5.2: The first image shows an example of a CT image It
i before segmentation(A).

The middle image shows a high-resolution CT image after lung mask segmentation (B)
Lt

i. The last image shows the image segmentation with supervoxel St
i
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5.5 Feature extraction with bag of visual words
Hand-crafted image feature extraction is performed after over-segmentation. For the
purpose of the method two types of features were extracted; texture and shape features.
This is done in order to determine complementary visual characteristics and to gather
visual information that represents the image:

ffeats :
<
It

i , St
i

>
-→ F t

i (5.11)

We adopt a paradigm known as the Bag of Visual Words (Section 4.6) to effectively reduce
the specifics of local features into global volume descriptions. Enhancing the characteristics
beforehand by assigning them a location in the reference space enables us to be prepared
for any circumstance. As a direct result of this, it is possible to cultivate spatial-visual
vocabularies. We train two distinct vocabularies, one for microSIFT (3D-SIFT features
with a diameter < 2cm) and one for macroSIFT (diameter ≥ 2cm), in order to account
for the varied occurrence frequencies of tiny and big 3DSIFT features. MicroSIFT
characteristics have a diameter less than 2 cm, whereas macroSIFT characteristics have
a diameter greater than 2 cm. The word count feature representations for an over-
segmented image St

i are designated by the notations fH
t
i (Haralick)(Section 4.6) and fS

t
i

(SIFT)(Section 4.6). These notations are interchangeable in practice. The extracted
hand-crafted features Ft

i =
(fH

t
i

fS
t
i

) ε Rnf xnsv contains nf statistical value from the texture
fH

t
i and shape features fS

t
i. PCA (Section 4.3) is used for dimensional reduction, due to

the computation cost of high dimensional calculation. The extracted features are mapped
to one cluster k, which represents the global volume descriptions:

fdescriptions :
<
St

i , F t
i

>
-→ P t

i (5.12)

Let f = f1, f2, . . . , fN be the set of N feature observations in an M-dimensional feature
space, where fj ε RM . The K-means algorithm (Section 4.4) assigns each observation fi

to one of the K clusters Ck, where k = 1, 2, . . . , K. The goal is to find the partition of
the observations into clusters C = C1, C2, . . . , CK such that the within-cluster sum of
squares (WCSS) is minimized. The WCSS is defined as:

WCSS(C) = argmin
KΣ

k=1

Σ
fjεCk

|fj - µk|2 , (5.13)

where µk is the mean of the observations in cluster Ck.

P t
i = WCSS(F t

i ) (5.14)
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,

Figure 5.3: The left image shows an example of a CT image after applying the calculated
lung mask Lt

i of the usable volume within the lung (A). The middle image shows a
high-resolution CT image after over-segmentation St

i , where each voxel is define for
5x5mm space resolution (B). The image on the right shows the over-segmentation voxel
mapped to one clusters , which represents the global volume descriptions P t

i .

5.6 Feature extraction using StyleGAN

Feature extraction from StyleGAN can be achieved by leveraging the fact that the model
does not require pre-defined latent space input. This allows us to learn disease features
from the latent space generated by StyleGAN, thereby enabling the reverse engineering
of specific disease features, such as those associated with IPF. To accomplish this, we
modified the open-source code from the original StyleGAN paper by Karras et al [73] to
fit our training dataset. Our training dataset is comprised of 2D images of CT slices,
and after applying the previous lung mask segmentation, each image has a size of 512
X 512 pixels. The number of possible CT slices per subject is represented by s. The
input to the StyleGAN model is a noise vector z ε R which is used to generate a latent
space W representation of the image. This latent space representation is then used to
generate an output image. The feature extraction process is accomplished by mapping
the input noise vector z to the feature space FStyle

t
i through linear mapping. The feature

extraction process can then be expressed as

FStyle
t
i = Wz(

<
It

i , Lt
i

>
) + b (5.15)

where W ε R and b ε R are the weights and bias of the mapping, respectively. The
output feature FStyle

t
i is then used as parameter for outcome prediction and classification

tasks.
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5.7. Identify diseases progression marker

Figure 5.4: Data input from the training of the StyleGAN

5.7 Identify diseases progression marker
In order to identify pattern signature characteristics associated with the development of
radiological illness, we analyzed available pairs of consecutive over-segmented CT scans
P t

i and P t+1
i .

Qt
i(j) = count

{
P t

i = j
}

, Aj = 1, ...ncl (5.16)

, where ncl is the number of k-mean clusters.

Our objective was to predict the correct temporal order of these scans. To achieve this
goal, we utilized a 500-tree random forest (RF) classification model (section 4.5) that
was trained on the variance in the pattern signatures of the CT scans. The feature
difference (ΔQ = Qt+1

i - Qt
i) between the pattern signatures served as the basis for this

prediction, resulting in the categorization of the scans as either It
i acquired after It+1

i or
It+1

i acquired after It
i .

The ground truth for the training data was obtained from the DICOM header of the
CT scans, which recorded the acquisition dates. We evaluated the contribution of each
feature to the correct categorization of the scans by determining its Gini significance.
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Based on this analysis, we assigned a score to each feature to reflect its importance in
the prediction.

Our working hypothesis was that markers with high RF Gini significance would be
strongly associated with the onset of radiological disease. We supported this hypothesis
by observing that IPF is an irreversible illness, and thus the scarring of the lungs shown
on the CT scans does not worsen or improve over time. As a result, the features that
enable accurate temporal sorting are believed to indicate the development of radiological
progression.

An illustration of a training patient’s consecutive CT pair is shown in Figure 5.5.

Figure 5.5: The image on the left shows an indication of the global volume description
P t

i , occurring chronologically prior to the image on the right. The image on the right
shows the global volume description of P t+1

i .

5.8 Image Registration
After clustering, image registration is the next processing step. The two volumes of each
patient are first registered affine. The transformation Tsij is calculated by the ANTs
registration software [87], followed by the application of the Ezys[88]. However, the affine
transformation calculated using Ezys[88] alone results in too weak an initialization for
the non-rigid transformation, which partially invalidates the results. This occurs because
Ezys[88] automatically performs an affine transformation before the non-rigid registration.
To get a good initialization for the non-rigid transformation portion, ANTs [87] performs
an additional affine transformation. After the registration step we have for each follow-up
acquisition series j a transformation Tsij from a previous acquistion series i, based on a
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deformation parameter uij that transforms the coordination from each patient reference
to the image:

Tsij(x) = x + uij(x), AxεΩs (5.17)

For each patient we have e examinations, where e = 2, ...4, which can be aligned. The
data processed for each patient in this section consists of the initial images It of each
acquisition timepoints t, and the following acquisition images It+1. The parameter t
identifies the acquisition series by its chronological order starting at one and ending with
the number of acquisition series available for the actual patient, in our case a maximum
of four. The aim is to reach spatial correspondence from series t to series t + 1 of the
same patient i, which is also called intra-subject registration. The source frame is the
chronologically previous scan. If e examinations are available for the subject i, then the
goal is to bring It

i (x) into the frame of It+1
i (T (x)), At < e - 1.

5.9 Local tissue transition pathway
Lung tissue patterns change from cluster to cluster as the illness progresses. These
changes are visible over single or several sequences. To identify the image signature
component at each lung location in one scan P t

i and the equivalent component in the
second scan P t+1

i .

M(k, l) = counts
{

P t
i (x) = k A P t+1

i (T (x)) = l
}

, Ai, Ate - 1 (5.18)

As a direct result, a network illustrating transition probabilities M̂(k, j) ε Nnclxncl was
created.

M̂(k, l) = M(k, l)Σncl
l=1 M(k, l)) , Ak = 1, .., ncl, Al = 1, .., ncl (5.19)

5.10 Risk prediction
The Kaplan-Meier analysis(section 4.11) is a statistical method used to estimate the
probability of survival (or time to event) for a population over a certain period of
time. In this analysis, the population is divided into subgroups based k-means (section
6.2), and the probability of survival for each subgroup is estimated and plotted over
time. The Kaplan-Meier curve represents the accumulated probability of survival for
the population, taking into account censoring, which refers to cases where the event of
interest (such as death or disease progression) has not occurred at the time of analysis.
The result of the Kaplan-Meier analysis is often used in medical research to estimate
survival probabilities for patients with different diseases, treatments, or risk factors and
to compare the outcomes of different interventions.
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5.11 Discussion
The methodology utilized in the creation of this thesis has been detailed in this chapter.
It consists of several steps, including image segmentation, features extraction, identifying
disease progression markers, image registration, local tissue transition pathways, and risk
progression.
Image segmentation is the first step in the process, as it involves separating the CT scans
into meaningful structures. The first step of this process uses a simple threshold-based
method, where the threshold is set at -700HU, followed by a morphological area opening
to remove small structures. If the first approach fails, a second approach, which is a multi-
template atlas-based segmentation approach, is used. The optimal lung segmentation
template is selected from 16 full-body CTs in the VISCERAL Anatomy 3 dataset.
Features extraction using bag of visual words and StyleGAN are also important com-
ponents of the methodology. The bag of visual words paradigm is used to extract
hand-crafted image features and reduce local features into global volume descriptions,
which are then mapped to one cluster through the K-means algorithm. On the other
hand, the StyleGAN method is used for feature extraction from StyleGAN for the purpose
of predicting disease features, specifically for IPF.
The next step involves identifying disease progression markers by predicting the temporal
order of consecutive CT scans and identifying pattern signature characteristics related to
the development of radiological illness using a random forest classification model and
feature differences between pattern signatures of the scans. The hypothesis is that high
RF Gini significance markers indicate the onset of radiological disease.
Image registration is the subsequent step in the process, as it involves aligning multiple ex-
amination images of the same patient to establish spatial correspondence. This is achieved
by using ANTs and Ezys registration software, which calculates the transformation Tsij

between two volumes of a patient based on a deformation parameter uij .
The local tissue transition pathway in lung tissue patterns is a crucial aspect of the
process, as it identifies image signature components at each lung location in two scans
and creates a network of transition probabilities based on the counts of the matching
components. This network is calculated as the ratio of the matching components to the
sum of all components for each transition.
Finally, the risk progression step involves evaluating the survival outcome prediction
based on the pattern marker identified in previous steps. The results of this analysis can
provide valuable insights into the progression of radiological diseases and support the
development of effective treatments and interventions.
In conclusion, the method presented in this thesis is a complex and multi-step process,
which involves image segmentation, features extraction, identifying disease progression
markers, image registration, local tissue transition pathways, and risk progression. These
steps work together to provide a comprehensive and detailed analysis of disease progression
and support the development of effective treatments and interventions.
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CHAPTER 6
Experiments and Results

In this chapter, we explain the experiments undertaken for this study. In Section 6.1,
the dataset used in this thesis is discussed. The way how the images are acquired and
collected can be found in Section 6.2. The application of image segmentation of the
proposed method can be found in Section 6.3. Features extracted with different methods
is in Section 6.4 and Section 6.5. Identification of the disease related progression marker
is demonstrated in Section 6.6. The likelihood of a lung texture pattern changing from
the prior pattern to another pattern is interpreted in Section 6.7. A survival prediction
of the Kaplan-Meier study is analyzed in Section 6.8. Finally, the whole experiment and
results are briefly summarized in Section 6.9.

6.1 Study cohort
The study dataset used for this thesis was retrospectively retrieved from the electronic
registers of an Italian referral center (Ospedale Morgagni di Forlì, Italy). It contains a
dataset of 106 patients diagnosed with IPF between December 2011 and October 2014.
The following inclusion criteria were in place: (1) availability of at least two consecutive
HRCT examinations per patient performed at least six months intervals; (2) use of a
high-frequency reconstruction kernel (BONEPLUS) with slice thickness =1.25 mm for
both exams. Following these inclusion criteria, 76 patients (f/m: 19/57) were included,
as follow-up scans with the same reconstruction kernel were only available in these cases.
For 74 patients in a sub-cohort, survival data were available. Another retrospective
cohort from a different center and country (n=18, Vienna General Hospital, Austria) was
used as a validation dataset. This dataset includes patients diagnosed with IPF between
April 2007 and April 2017. The inclusion criteria were the same as those of the study
referral center. However, the CT reconstruction kernel was different (B60f, B70f, B70s,
I70f, I80s) due to the different manufacturers of the scanners. For both cohorts, two
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expert radiologists determined the CT diagnosis. The multi-disciplinary ILDs boards
made the diagnosis of the IPF for both institutions [89].

6.2 Imaging data collection and acquisition

Two CT scanners, a Lightspeed Pro 16 and a BrightSpeed 16, were utilized in order to
collect the data for the study’s cohort in Italy (both GE Healthcare). The CT exams
were carried out with the patients lying in the supine position while maintaining a steady
level of deep inspiration. If a patient underwent more than two CT tests, each pair
of successive CT scans was considered for inclusion. As a result, a single patient may
experience anywhere from one to four sets of scans. Data were collected for the validation
cohort using a Siemens Sensation Cardiac 64 scanner while the subjects were in the
supine position and taking deep breaths. Each patient underwent two scans: the first
one was performed at the time of diagnosis, and the second one was performed at the
next hospital visit [89]. The acquired thin-section CT for the study in this work has a
slice thickness between 1.25 - 3.75 mm.

Figure 6.1: Examples of how various slice thicknesses can be combined with different
reconstruction kernels. The same patient and same examination were reconstructed with
different thicknesses and kernels: (A) 3.75 mm with the standard kernel, (B) 2.5 mm
with lung kernel, (C) 1.25 mm with boneplus kernel

According to the official clinical practice guideline for the diagnosis of IPF by Raghu et
al.[5], the recommended thin-section CT should be < 1.5mm. Table 6.1 summarizes the
essential properties of thickness and kernel from the collected data.
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6.3. Lung segmentation

Possible kernels and thickness combination
Slice thickness 1.25 mm 2.5 mm 3.75 mm
STANDARD 7 8 198
SOFT 2 37 85
LUNG 12 18 5
BONE 98 - -
BONEPLUS 227 - -

Table 6.1: Properties of the data set. 106 patients diagnosed with IPF between December
2011 and October 2014. 76 patients with at least two consecutive BONEPLUS kernel
scans were selected.

The experiments were done based on the guideline of the recommended thickness of
< 1.5mm. Therefore the reconstruction kernel was chosen for BONEPLUS kernel.

6.3 Lung segmentation

All volumes are transformed into isotropic voxels with a resolution of 0.7mmX0.7mmX0.7mm
to allow homogeneous processing afterwards. A lung mask is created for each volume
by applying the simple threshold-based method. The threshold is set at -700HU on
the lung CT scans as viewing windows, or in the case of high-density lung patterns, a
multi-template atlas-based segmentation approach is used [85]. In theory, the threshold-
based methods use morphological area opening can have two most significant connected
elements with a volume of ≥ 200cm3; if there is no or ≤ 2, the segmentation for lung
mask will change to the atlas-based method. After the lung mask, an over-segmentation
is created utilizing a 3-D adaption modified by the mono-SLIC superpixel algorithm [85].
The voxel size of the supervoxel is set to be 0.5cm3. The total number of supervoxels
across the study cohort is N = 1, 578, 788. Figure 6.2 demonstrated the segmentation
result of a subject’s lung using the simple threshold method

For the patient with late-stage IPF (Figure 6.3) the simple threshold method fail the
segmentation, therefore the lung mask segmentation is based on the second method, the
multi-template altlas-based approach.
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Figure 6.2: The left image shows an axial plane cut of a patient with an early stage
of idiopathic pulmonary fibrosis, where the simple threshold method works. The right
image showcases the lung foreground images after applying the lung mask.

Figure 6.3: A patient in the late-stage of the disease progression. The high-resolution CT
images before lung mask segmentation (left). The masked image after multi-template
atlas based segmentation.
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6.4 Feature extraction with bag of visual words

The aim is to evaluate lung appearance patterns in CT scans to identify disease progression
markers. For each supervoxel of size 0.5cmX0.5cmX0.5cm, a 56-dimensional feature
was extracted using Haralick and SIFT features. The total number of supervoxels is
1,578,788, and the feature dimension is 9 after PCA. To determine the optimal number
of clusters for the k-means clustering algorithm, a range of values from 2 to 40 clusters
were tested. The optimal number of clusters was determined by the Jaccard score [90].
The results showed that the optimal number of clusters was k = 20. Each supervoxel
was assigned a lung appearance pattern based on its 9-dimensional feature space. Every
lung scan was represented by the volume fraction covered by each of the 20 appearance
patterns, and this information was used as input to a random forest classifier to identify
disease progression markers. The overall texture information of the lung volume was
represented as a vector of 20 elements.

6.5 Feature extraction using StyleGan

The training process of the proposed method took a total of 18 days and resulted in a
92% accuracy rate for the training dataset. However, a comparison between the real CT
scans(Figure 6.4) and the generated images (Figure 6.5) showed a noticeable difference
between the two. This discrepancy suggests that the initial approach of learning and
extracting the disease progression features from the high dimensional latent space of
the StyleGAN was not effective. The high dimensionality of the latent space and the 18
layers of output may have contributed to this result.

In order to achieve more accurate results, it will be necessary to involve IPF lung expert
radiologists in the training process. These experts can provide input and guidance to
ensure that the disease progression features are correctly understood from the images.
Unfortunately, this collaboration was not possible during the period of this thesis. As
a result, future efforts will focus on the extraction of features from the bag of visual
words, which may provide a more effective and reliable method for identifying disease
progression patterns in CT scans.
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Figure 6.4: The real training image of the styleGAN[76].

Figure 6.5: The generated image with the latent space space w of figure ??
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6.6 Identify diseases progression marker

In general, the quality of prediction outputs of a model requires ground truth labels.
However, due to the lack of labels for this particular dataset, an alternative solution to
the challenge of constructing an unsupervised model has been proposed. This solution
utilizes the characteristic of an abnormal growth path of lung scarring for IPF patients,
which tends to increase over time. This characteristic was used to evaluate the model’s
performance and ensure that its clusters of predictions exhibited commonality. This
characteristic was utilized to evaluate our model.

The evaluation was carried out by building a radiological disease progression model that
used the overall texture information of the lung volume from pairs of subsequent CTs.
To validate this model, we tested if the machine learning model alone could correctly
determine the temporal sequence of the scans. The most informative radiological disease
progression marker candidates were identified by training a random forest classification
model with 500 trees. The stability of the model was evaluated using 20-fold cross-
validation with a 95%-5% (training and testing) split on patients.

The measure of the evaluation was the classification accuracy of accurately sorted scans
compared to two experts. The average accuracy of the model was 83% for correctly
predicting the sequence of CT pairs. The GINI Importance across the 20 runs was ranked
by its importance, with the average ranking and the rank standard deviation shown in
figure 6.6. The four top candidates (11 - 7 - 10 - 17) consistently ranked as the top four
across all runs.

To further illustrate the results, figure 6.7(lower) shows the top four ranked cluster’s
volume representations from a patient at four different time points, as well as example
patches (Figure 6.7(upper)) of those four patterns from the same patient. The top-ranked
prototypes were assessed and evaluated as image patches (250x250 pixels) by an expert,
with possible biological interpretations provided.
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Figure 6.6: Evaluation of the stability of the progression markers. Most informative
progression markers identified by the model, and the repeatability of this ranking after
20 runs of random 95%-5% patient splits. The top 4 ranked patterns are stable across all
runs. The ranking of less informative patterns fluctuates across runs.
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Figure 6.7: (Upper) The pattern example among the top 4 ranked pattern.(Lower) The
top 4 ranked cluster volume representation from a patient at 4 different time points.
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Reader 1 Reader 2 Overlap errors
R1 = expert 1, R2 = expert 2 19 38 9(47.3%ofR1,23.6%ofR2)
R1 = expert 1, R2 = ML
model

19 19 7 (36.8% of R1)

R1 = expert 2, R2 = ML
model

38 19 12 (31.57% of R1)

Table 6.2: Comparison of errors of machine learning models with expert readers

The results show that the model provides a reliable temporal sorting of scans compared
to experts. The model was able to correctly sort 95 out of 114 CT scan pairs using the
leave-one-patient-out method, and the accuracy was compared to two radiology experts
in Table 6.2. The model’s ability to correctly sort the scans highlights its potential as a
valuable tool in the diagnosis and treatment of IPF.

6.7 Local tissue transition pathway

The evaluation performed in this section focuses on the transition probabilities between
different patterns of lung tissue observed in two timepoints (Figure 6.8) of the radiological
scans throughout the evolution of a radiological illness. A network of these transition
probabilities was found through an exploratory investigation of progression paths. The
data used in this analysis includes multiple scans of patients with radiological illness, and
the patterns observed in these scans serve as the reference for determining the likelihood
of transitions between different patterns. The measurement performed in this section
is a qualitative evaluation of the transition probabilities between the different patterns
of lung tissue. Three types of patterns were identified by the latent transition network:
stable patterns, volatile patterns, and transitory patterns. The stability or likelihood
of transitions between these patterns is determined through the use of a simulation
of particles undergoing a random walk. The results of the qualitative evaluation are
presented in two figures, Figure 6.9 and Figure 6.10. Figure 6.9 presents the transition
probabilities between the different patterns of lung tissue, with stable patterns, volatile
patterns, and transitory patterns indicated. Figure 6.10 presents two visualizations of
potential pathways for the evolution of disease patterns along the transition network. The
first visualization launches particles in cluster 9 and monitors their network transitions
through 10 patterns, with the most prevalent routes being 9 - 10 - 13 - 17 or 9 - 10 -
13 - 7. The second visualization requests paths that terminate in cluster 17, with the
predominant sources being pathways 10 - 13 - 17 or 10 - 13 - 7 - 17, indicating that 7 is
a likely intermediary step before 17.
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Figure 6.8: From the population of spatially matched follow-up pairs of lungs, we can
observe local change of lung tissue from one to another pattern.
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Figure 6.9: This enables obtaining a network of transition probabilities of lung patterns
changing to others from one to the next examination time point. The matrix shows how
likely a source pattern transitions to a target pattern. Red indicates high probability,
blue low probability. These probabilities are generated by an underlying latent transition
network that exhibits transition pathways shown in this figure. For the top ranked most
informative patterns we plot two pathways to illustrate this model.
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Figure 6.10: (Right) Pathways originating from a healthy pattern (Cluster 9), and (left)
pathways ending in vessels and ground glass pattern (Cluster 17). Arrows point at
dominant directions in the graph.

6.8 Risk prediction

The study evaluated the radiological illness progression signature using the top four
components (11-7-10-17) and their evolution over two scans. The patients were split
into two groups based on disease progression signs using k-means clustering. The overall
survival rate for each cluster of patients was determined using Kaplan-Meier analysis[91].

The results showed that clustering individuals on the basis of their radiological illness
progression profile yielded two patient groups with distinct outcomes. The Kaplan-Meier
analysis was based on the four static disease progression clusters and yielded a hazard
ratio of 3.56 (p<.01). By adding the dynamic components (the variation between scans),
the hazard ratio increased to 4.14 (p<.01). In the replication cohort, using the same
progression signatures and clusters, the static components and the whole progression
signature provided hazard ratios of 1.10 and 1.44,(same trend as in study cohort, but
not significant), respectively. However, these results were not significant. The training
was only done using the study cohort, and no re-training of the cluster patterns was
performed on the replication cohort.

The results are presented in Figure 6.11.
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Figure 6.11: The survival study of Kaplan-Meier (KM) estimation of the most informative
progression markers. a The KM curve based on markers of the scan B on the study
cohort. b The KM curve based on markers of the scan B and the difference of the scan
A and B on the study cohort. c The KM curve based on markers of the scan B on the
replication cohort. d The KM curve based on markers of the scan B and the difference of
the scan A and B on the replication cohort

6.9 Discussion
In this thesis, a study was conducted on patients diagnosed with IPF using HRCT
scans. The study dataset was retrospectively retrieved from two referral centers in
Italy and Austria, containing 106 and 18 patients respectively, with diagnoses made by
multi-disciplinary ILD boards. CT scans were taken using GE Healthcare’s Lightspeed
Pro 16 and BrightSpeed 16 in Italy and a Siemens Sensation Cardiac 64 in Austria,
with a slice thickness of 1.25-3.75 mm. The data was transformed into isotropic voxels
with a resolution of 0.7mmx0.7mmx0.7mm. A lung mask was created using a threshold-
based method (-700HU) or a multi-template atlas-based segmentation approach. Over-
segmentation was done using the mono-SLIC superpixel algorithm to create supervoxels
of size 0.5cm3. For each supervoxel, a 56-dimensional feature was extracted using Haralick
and SIFT features and reduced to 9 dimensions using PCA. The optimal number of
clusters for k-means clustering was determined using the Jaccard score, and the final
number of clusters was 20. The bag of visual words was created using the clustered
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6.9. Discussion

supervoxels, and a machine learning classifier was used to identify markers of disease
progression. Random forest classification model were used to identify the most informative
radiological progression marker candidates and achieved an average accuracy of 83% in
correctly predicting the sequence of CT scan pairs. The study also evaluated the transition
probabilities between different patterns of lung tissue and found stable, volatile, and
transitory patterns. The study found that clustering patients based on their radiological
illness progression profile yielded two groups with distinct outcomes. The hazard ratio
was 3.56 for the static components and 4.14 for the dynamic components. The results
were not significant in the replication cohort.
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CHAPTER 7
Conclusion

This chapter provides a summary of the main points of this thesis. Additionally, sugges-
tions on prospective future work are provided.

7.1 Summary
The main objective of this thesis is to demonstrate the potential of unsupervised machine
learning in identifying CT patterns related to the progression of Interstitial Pulmonary
Fibrosis disease. The study aims to address three crucial questions regarding the use of
machine learning for IPF diagnosis.

The first question is about identifying new disease progression markers in IPF patients
beyond the known ones such as ground glass opacities and honeycombing. This is
significant because existing markers have limited power in diagnosing IPF, and data-
driven models have the potential to expand the marker patterns, thereby improving the
accuracy and reliability of IPF diagnosis through imaging. The results from this study
indicate that it is possible to discover additional, reliable disease progression markers.

The second question is about visualizing the IPF disease progression transition pathway.
The extracted texture pattern signatures provide a visual representation of the disease’s
transition pathway, which can be used to understand the changes in image features that
occur at different stages of the disease. Further investigation of these biologically and
pathologically meaningful hypotheses might reveal the histological changes that occur
during the disease’s progression.

The final question concerns the relationship between different radiological disease progres-
sion patterns and future survival outcomes. The study finds that patients with similar
pattern signatures have similar survival outcomes, and the reliability of this statement is
confirmed through the external validation set. The results of this study highlight the
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7. Conclusion

potential of machine learning in identifying and analyzing disease progression patterns
and predicting survival outcomes in IPF patients.

7.2 Future Work
The results of this thesis indicate that unsupervised machine learning has the potential
to be a valuable tool for the diagnosis and prediction of IPF progression. However, there
is much room for future improvement and expansion.

One area for future work is to expand the dataset used for testing. By using a larger
dataset with a larger number of patients and scans, the reliability of the results can be
further strengthened. Additionally, it would be interesting to test the method on other
interstitial lung diseases beyond IPF, to see if the results can be generalized to other
diseases. Given the current COVID-19 pandemic, it is also of great interest to explore if
these methods can be applied to predict patient outcomes in COVID-19 patients.

Another avenue for improvement is to involve expert radiologists in the evaluation of
the image segmentation results. This could involve having the radiologists annotate a
subset of the CT scans, which could then be used to evaluate and refine the accuracy
of the segmentation. Additionally, the use of K-means clustering is based on Euclidean
distance, which is a heuristic metric. Future work could explore the use of alternative
metrics for clustering, which may result in improved accuracy and clustering results.

Overall, the results of this thesis provide promising initial results for the use of unsu-
pervised machine learning for the diagnosis and prediction of IPF progression. However,
there is much room for further exploration and improvement, and the results of this
thesis provide a foundation for future research in this area.
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