
ML-based Power Consumption
Prediction Models for

Edge Devices

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Theresa Christina Müller, BSc
Matrikelnummer 11931212

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Dipl.-Ing. Philipp Raith, BSc

Wien, 10. März 2023
Theresa Christina Müller Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

ML-based Power Consumption
Prediction Models for

Edge Devices

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering & Internet Computing

by

Theresa Christina Müller, BSc
Registration Number 11931212

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Dipl.-Ing. Philipp Raith, BSc

Vienna, 10th March, 2023
Theresa Christina Müller Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Theresa Christina Müller, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. März 2023
Theresa Christina Müller

v

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Schahram
Dustdar and my co-supervisor Philipp Raith. This endeavor would not have been possible
without their continuous and valuable feedback throughout this journey. Their extensive
knowledge and expertise helped me to shape my research approach, sharpen my focus
and finally be able to accomplish this thesis.

Furthermore, I am also extremely grateful to my family for their unwavering emotional
support during my studies and beyond, as well as their belief in me. Words cannot
express my deep thankfulness for their unconditional backing.

Lastly, I want to genuinely thank Daniel for his invaluable patience, his endless support
and his encouragement to pursue my goals. I could never have finished this work without
him.

vii

Kurzfassung

Edge Computing ist ein aufkommendes Paradigma, das darauf abzielt, den Nachteilen
zentraler Cloud Computing-Ansätze in Bezug auf Latenzzeiten entgegenzuwirken. Da
die Anzahl an Geräten innerhalb des Edge-Cloud-Kontinuums stetig wächst, ist der
steigende Energiebedarf von Edge-Computing-Umgebungen eine unvermeidliche Folge.
Aufgrund zunehmender Energiekosten und globaler Stromversorgungsprobleme gewinnt
die Optimierung des Stromverbrauchs von Hardwaresystemen immer mehr an Bedeutung.
Obwohl präzise Strommessungen für die Bestimmung der Energieeffizienz unerlässlich
sind, fehlt es an standardisierten Methoden, um den Stromverbrauch von Edge Devices
einheitlich erfassen zu können. Dieser Mangel ist auf die heterogenen Hardwareeigenschaf-
ten gängiger Edge Devices zurückzuführen, weshalb die Messung des Stromverbrauchs
unterschiedlicher Geräte eine zeitaufwändige, komplexe und kostspielige Aufgabe darstellt.
Dadurch entsteht ein dringender Bedarf an Tools zur Vorhersage des Stromverbrauchs
verschiedener Edge Devices im Kontext realistischer Anwendungsfälle.

In dieser Arbeit wird daher die Entwicklung von Modellen zur Vorhersage des Energiever-
brauchs auf Grundlage von Ressourcenauslastung und unter Verwendung von Machine
Learning Techniken als mögliche Lösung für dieses Problem vorgeschlagen. Um die Anwen-
dung der Modelle in größeren Maßstäben zu ermöglichen, werden diese in den bestehenden
faas-sim Function-as-a-Service Simulator integriert, wodurch die Energieeffizienz von
Edge Devices verglichen werden kann. Zu diesem Zweck werden Experimente mit Hilfe
eines dedizierten Testbeds durchgeführt, um empirische Messungen bezüglich der Res-
sourcennutzung und des Stromverbrauchs verschiedener Edge-Computing-Plattformen
zu erfassen. Die gewonnenen Datensätze bilden anschließend die Grundlage für die
Entwicklung der Vorhersagemodellen anhand eines AutoML-Tools.

Die Evaluierungsergebnisse zeigen die erfolgreiche Implementierung von Machine Learning
Modellen, die in der Lage sind, den Stromverbrauch von Serverless Functions präzise mit
Abweichungen von durchschnittlich 190 bis 620 mW zu prognostizieren. Gleichzeitig wird
die Skalierbarkeit des Simulators durch die Modelle nicht gravierend beeinträchtigt, da
die verlängerten Ausführungszeiten, die aus der zusätzlichen Vorhersagefunktionalität
resultieren, noch vertretbar sind. Die zeitliche Effizienz der Simulationen kann daher
unabhängig vom Overhead, der durch die Modelle entsteht, gewährleistet werden, wobei
eine Vorhersage zwischen 0.8 und 2.6 ms dauert. Infolgedessen weisen die entwickelten
Modelle ein zufriedenstellendes Verhältnis zwischen Performance und Genauigkeit auf.

ix

Abstract

Edge computing is an emerging paradigm that aims at circumventing the disadvantages
that centralized cloud computing approaches exhibit in terms of latency. However, as
the number of interconnected devices that operate within the edge-cloud continuum is
constantly growing, the total energy demand of edge computing environments increases
accordingly. Due to rising energy costs and global power supply issues, optimizing the
power consumption of hardware platforms and therefore reducing operational expenses
becomes a critical and predominant goal. Even though obtaining accurate and uniform
power measurements is therefore crucial for determining the energy efficiency of computing
platforms, there is a lack of uniform methods for profiling the power draw of edge devices
in a platform-agnostic way due to the severe hardware heterogeneity of common edge
devices. This makes power monitoring a very time-consuming, complex and costly task
and thus arises the need for easy to use facilities to forecast the power usage of different
edge computing platforms in the context of realistic use case scenarios.

In this thesis, the development of power prediction models based on resource usage metrics
by using machine learning techniques is proposed as a potential solution to this problem.
For the purpose of applying the models in large-scale edge computing topologies, they are
integrated into the existing faas-sim serverless simulation framework. This allows users
to determine the expected overall energy consumption of a certain scenario and to rapidly
and easily compare the energy efficiency of various devices. To this end, an extensive set
of experiments is conducted by means of a dedicated testbed in order to obtain empirical
measurements regarding the resource usage and power consumption of different edge
computing platforms. The retrieved data sets subsequently form the foundation for
constructing power prediction models using an automated machine learning tool.

The evaluation results demonstrate the successful establishment of generalizable machine
learning models that are able to precisely estimate the power consumption of serverless
function invocations solely based on resource utilization rates with MAEs between 190 and
620 mW. At the same time, they do not severely impair the scalability of the simulator
as the prolonged execution time which stems from the additional power forecasting
functionality is still reasonable. Therefore, the time-efficiency of the simulations can be
guaranteed regardless of the overhead that is caused by the predictions, whereby one
inference call takes between 0.8 and 2.6 ms on average. As a result, the developed models
exhibit a satisfactory performance-accuracy trade-off.

xi

Contents

Kurzfassung ix

Abstract xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Solution Approach . 3
1.4 Research Questions . 5
1.5 Structure of the Thesis . 7

2 Background 9
2.1 Edge Computing . 10
2.2 Faas-sim Serverless Simulation Framework 16
2.3 Serverless Computing . 17
2.4 Artificial Intelligence, Machine Learning and Deep Learning 20

3 Related Work 23
3.1 Power Prediction Models . 23
3.2 Simulation Frameworks for the Edge-cloud Continuum 25
3.3 Energy-aware Resource Management Strategies 27

4 Methodology 29
4.1 Methodological Approach . 29
4.2 Experimental Design and Setup for Empirical Measurements 33
4.3 Analysis of Empirical Measurement Data 46
4.4 Machine Learning Model Construction 63

5 Evaluation 71
5.1 Evaluation Approach . 72
5.2 Evaluation Results . 82

6 Limitations 99
6.1 Measurement-related Limitations . 99

xiii

6.2 Simulator-related Limitations . 100

7 Conclusion 103
7.1 Research Questions . 104
7.2 Future Work . 106

A Scripts 109

B Empirical Experiments 115

List of Figures 123

List of Tables 125

Bibliography 127

CHAPTER 1
Introduction

1.1 Motivation
Due to the continuous increase in the number of physical objects and devices that are
interconnected over the Internet as a result of the profileration of technological trends
like the Internet of Things (IoT), edge or cloud computing, the total energy demand
associated with the edge-cloud continuum is constantly rising [AZS+17]. According to a
report published by IoT Analytics1 in 2022, the total number of connected IoT devices
will rise up to 27 billion by 2025, while 12.3 billion active endpoints were registered in
2021. Since modern applications, such as smart city, smart healthcare or smart transport
systems, are spread all over the spectrum of IoT, edge, fog and cloud computing, the terms
distributed computing continuum and edge-cloud continuum emerged to embrace all of
these domains and to provide a fundamental computational fabric for novel large-scale
distributed systems.
Considering the carbon footprint that results from the ever-increasing energy wastage
caused by the growing number of devices, energy efficiency becomes increasingly important
within the distributed computing continuum [AESI+17, ASA+21]. In addition, the
rising energy costs, energy supply issues and the resulting global energy crisis further
exacerbate the ever-increasing energy demand of the edge-cloud continuum and thus
reinforce the importance of optimizing and reducing power usage as well as operational
expenses [AQPJ21, LAA+21]. Green IoT is a term that arose in this context over the past
few years in order to tackle the steady energy increases within the distributed computing
continuum by developing novel energy-efficient concepts for IoT-based applications.
The overarching goal of green IoT is therefore to reduce the greenhouse gas emissions
and thereby curbing global warming and climate change. As a consequence, the wide
application of such energy-aware concepts will make modern distributed systems deployed
within the edge-cloud continuum more sustainable and eco-friendly [FLLFC21].
1https://iot-analytics.com/number-connected-iot-devices/, Accessed: May 21, 2022

1

https://iot-analytics.com/number-connected-iot-devices/

1. Introduction

Apart from the environmental and monetary aspects, there are other issues that further
intensify the need for innovative energy-efficient strategies, particularly when considering
the fact that resource-constrained mobile devices are widely used in the edge-cloud
continuum. Even though the computational resources of edge devices became more
powerful over the recent years, various platforms are still restricted in terms of energy
supply as compared to high-performance edge or cloud servers [JFG+20]. Specifically,
many of those devices are even only battery-powered due to mobility requirements, so
their power supply and therefore their lifetime is significantly limited, which has to be
taken into consideration when developing edge-based applications [ASA+21]. Extending
the battery lifetime of edge devices should thus be an essential design goal during
application development. As as result, energy efficiency and energy-aware computation
plays a critical role in such scenarios since the limited power supply represents a major
constraint that can impose severe restrictions on certain use cases.

Furthermore, the edge-cloud continuum is characterized by heterogeneous devices with a
wide variety of hardware capabilities regarding computational power and memory capac-
ity [JFG+20]. Due to the diverse hardware characteristics, the electricity consumption of
different types of edge devices can vary significantly. The recent advancements in terms of
specialized compute platforms might even intensify those discrepancies. This new kind of
computing infrastructure is specifically designed for the requirements of edge intelligence
applications, that focus on Artificial Intelligence (AI) tasks, and are thus equipped with
hardware accelerators such as Graphical Processing Units (GPUs), Field Programmable
Gate Arrays (FPGAs) or Tensor Processing Unit (TPUs) [CLX+21, JFG+20]. Conse-
quently, this development of edge device infrastructure leads to the question whether
traditional statistical models, e.g. linear models, that compute the electrical energy
usage in proportion to the CPU utilization, are still adequate or if they are outdated and
inaccurate with respect to modern hardware platforms. This would in turn amplify the
need for revised power calculation models which take additional factors into account.

1.2 Problem Statement
As the number of devices that operate within the edge-cloud continuum rises, the increas-
ing energy demand is an inevitable consequence. The rising energy costs additionally
enhance the need for energy reduction and optimization. Furthermore, the resource
scarcity, as well as the hardware heterogeneity of edge devices regarding computational
power, memory and power supply, require edge computing platforms with high energy
efficiency. These issues elicit the necessity for designing and developing energy-aware
hardware and software artifacts in order to mitigate the growing carbon footprint caused
by the large amount of devices operating within the distributed computing continuum,
to preserve scarce energy resources and to reduce operational costs.

Currently, device profiling in terms of power consumption is very time-consuming, complex
and costly. Obtaining accurate and reproducible power consumption data across different
types of platforms represents a vital but non-trivial task, especially when it comes to

2

1.3. Solution Approach

vendor- or platform-specific measurement facilities [KHH+20]. Even though the power
usage of computing systems is a critical factor, there is a lack of standardized and uniform
methods for measuring the power consumption of devices in a platform-agnostic way.
Therefore, there is a growing demand for easy to use facilities to forecast the power usage
of different edge device types for realistic large-scale scenarios. Such a prediction tool
would also allow users to determine the expected overall energy consumption of a certain
scenario, to rapidly and easily compare the energy efficiency among various devices and
to foster the development and evaluation of novel energy-aware task placement strategies,
routing policies or other resource management algorithms [WT21]. Therefore, a system
that enables the assessment of the power usage of edge devices for a certain use case
configuration and also helps with identifying the most energy-efficient device among a
set of edge devices would be crucial for settings where energy awareness is a key aspect.

1.3 Solution Approach
Power consumption prediction models that are able to estimate the power usage of edge
devices based on given resource utilization metrics could help to solve this issue and
overcome the lack of power measurement and prediction facilities. This way, electrical
energy wastage could be reduced and the selection of appropriate edge device types for
application deployment and execution could be fostered. Moreover, such forecasting
models could support future energy consumption estimation and therefore assist in energy
management and planning, e.g. if the power supply is limited in a certain scenario.

For this purpose, the overall aim of this work is to develop generalizable forecasting
models that are able to predict the power consumption of widely used edge devices solely
on the basis of resource usage metrics. Hence, a resource utilization-based power modeling
approach which incorporates various hardware parameters is used. As a consequence, the
final models should be independent of the underlying application and thus be capable
of making predictions for unknown applications. For this purpose, real-time profiling
of common edge computing hardware using black-box system monitoring and power
measurement facilities are performed during a series of experiments for gathering data
about power draw, CPU utilization, network I/O rate, memory usage, etc. The sample
applications used for the profiling experiments are serverless functions that focus on
Machine Learning (ML) inference workloads as well as controlled stress tests provoked by
a dedicated workload generation tool. While the execution of different serverless functions
on the edge devices can give valuable insights into the impact of hardware heterogeneity
on the resource usage behavior of individual computing platforms, the stress tests can
reveal potential platform-specific variations in terms of power consumption across devices
despite equal workloads. This way, the impact of hardware heterogeneity on the resource
utilization rates and on the power draw of distinct edge devices can be assessed.

Afterwards, machine learning techniques, more precisely regression-based ML algorithms,
are applied to the experimentally obtained data as part of the model development process
to establish sophisticated power prediction models. By incorporating the results of the

3

1. Introduction

stress tests into the model training phase, more generalizable predictions can be achieved,
since the additional samples foster more diverse and more comprehensive data sets. In
order to provide developers with an easy and ready-to-use prediction tool for large-scale
edge computing scenarios, the forecasting functionality is not developed individually as
a standalone artifact, instead, the models are made publicly available as an additional
feature of an existing Function-as-a-Service (FaaS) simulation framework. The prediction
models are therefore developed using a simulator-based energy consumption estimation
approach. As a result, making use of the prediction capability integrated into the existing
simulation framework does not require complicated and laborious experiments for device
profiling and also eliminates the effort of a complex setup.

For this purpose, the faas-sim2, which is a trace-driven FaaS simulation framework
developed by the Distributed Systems Group at TU Wien, is chosen as fundamental
platform for embedding the additional power prediction functionality. The faas-sim
simulator can imitate serverless container-based platforms such as OpenFaaS by simulating
the execution of serverless functions and workloads on cluster nodes. By incorporating the
power models into a simulator platform, simulations of realistic large-scale scenarios are
facilitated, which would not be feasible to carry out on small-scale testbeds. Nevertheless,
using a simulator framework imposes several limitations and thus challenges which need
to be addressed within the model development process.

In order to put the envisaged work into a broader context, the resulting machine learning
models can be used to assess the differences in terms of power consumption between
multiple nodes running the same application and therefore compare the energy-efficiency
of various types of edge devices. However, the applicability of the models is not limited
to their usage for decision support regarding the energy efficiency of edge devices. The
power consumption prediction functionality of the faas-sim simulation platform could
also be used for energy management and planning, e.g. in case battery-powered devices
are employed, so their lifetime can be extended. Furthermore, the developed models
might be helpful for developing intelligent energy-aware scheduling, task offloading or
application placement strategies, so the applicability of the prediction models is not
restricted to the utilized simulator as such. Instead, the models could also be transferred
to other problem domains associated with the distributed computing continuum.

To sum up, the focus of this work lies on the development of power consumption prediction
models for edge devices using ML techniques in order to support energy efficiency and
awareness for applications developed and deployed within the edge-cloud continuum. More
precisely, elaborate models based on various resource usage metrics that have a pivotal
impact on the power draw of a device are targeted. In order to enable power forecasting
for large-scale edge computing scenarios and to provide an easy-to-use prediction facility
for serverless functions, the models are integrated into the existing faas-sim simulation
framework. The accuracy and performance of the developed models is ascertained by
means of several evaluation criteria.

2https://github.com/edgerun/faas-sim, Accessed: May 21, 2022

4

https://github.com/edgerun/faas-sim

1.4. Research Questions

1.4 Research Questions

• RQ 1: What are appropriate methods for measuring the power consumption of
edge devices and how do they differ?
In general, measuring the power consumption of edge computing platforms is a
challenging task due to the hardware platform heterogeneity that is associated
with the edge domain. However, accurate and consistent power measurements
are crucial for optimizing the power demand as well as the energy efficiency of
computer system components and for developing energy-efficient software artifacts.
Especially battery-operated devices, such as mobile platforms, wireless sensors or
wearables, require low power and high energy efficiency in order to maximize the
battery lifetime and therefore the operating time.
Up until now, a wide variety of measurement facilities exists and in many cases var-
ious techniques need to be applied in order to determine the power consumption of
disparate device types with diverse hardware architectures. This makes power mea-
surements on heterogeneous platforms complex and laborious [KHH+20, GCZY21].
As a result, this thesis aims at examining different kinds of measurement instru-
ments for retrieving the power consumption of edge devices. Furthermore, it should
be analyzed how the individual methods differ in terms of granularity, measuring
approach, power data source, profiling overhead, sampling frequency, setup costs
and equipment costs. The chosen measurement facilities can then be used to profile
edge devices at runtime during a series of experiments while also monitoring the
resource usage by collecting black-box system metrics. This way, a relationship
between the power consumption and the resource utilization parameters of edge
devices can be established, which builds the foundation for the development of
machine learning models.

• RQ 2: How severe is the impact of hardware heterogeneity on the resource usage
and power consumption of different devices and what does this mean for power
consumption modeling approaches in the edge domain?
The edge-cloud continuum is characterized by a large number of partially resource-
constrained devices with varying capabilities regarding computational power and
storage capacity, as well as different energy sources. As a consequence, it is presumed
that this infrastructure heterogeneity has a substantial impact on the resource
usage and power consumption of devices. Furthermore, the recent advancements
in terms of hardware accelerator platforms, such as novel computing architectures
equipped with high-end GPUs or TPUs, could potentially even intensify this effect.
Therefore, the level of variation with respect to resource utilization and power draw
between multiple types of edge computing hardware has to be ascertained. For this
purpose, the experiments have to be designed in a way that enables a comparison
of resource usage metrics across devices by executing the same applications on
different platforms. In addition, further experiments have to be defined which focus

5

1. Introduction

on straining the hardware components of heterogeneous edge devices on equal levels
so that the power consumption readings for similar resource utilization rates can
be contrasted. Depending on the results of these analyses, the impact of hardware
heterogeneity might have implications for power consumption modeling techniques
in the edge domain.

• RQ 3: How can the power consumption of edge devices accurately be modeled in a
simulation environment considering the strict performance requirements demanded
by the underlying simulation framework, and how does the chosen energy modeling
approach affect the execution time and scalability of the simulator?
Since the final power prediction functionality is integrated into the faas-sim simula-
tion framework, which already incorporates methods for modeling the performance
and the resource utilization of serverless functions, a suitable energy modeling
technique has to be applied in order to be able to accurately estimate the power
consumption of edge devices during simulations. For the purpose of developing gen-
eralizable models that are capable of making predictions for unknown applications,
the energy modeling approach has to rely solely on resource usage metrics, so no
information about the corresponding serverless function is required. As the aim
of this work is to develop power models based on machine learning algorithms, it
has to be analyzed whether this represents a viable power modeling approach for
heterogeneous edge devices and simulation environments.
By using a serverless simulation platform as the basis for incorporating the power
models, certain limitations caused by inherent simulator characteristics have to be
accepted. As compared to executing a serverless function on a real FaaS platform,
such as OpenFaaS, the faas-sim framework aims at providing a time-efficient
simulation environment, whereby the execution time of the simulator should be
significantly lower than the actual runtime of the simulated scenario in the real
world. Hence, the performance of the developed models plays a crucial role, since
periodically predicting the power consumption of a large number of devices during
a simulation introduces a certain degree of overhead on the execution time.
Depending on the complexity of the models and therefore the computation time per
prediction, the additional computational burden imposed by the forecasting models
might impede the performance and the scalability of the simulator. As a consequence,
the performance requriements imposed by the underlying simulation environment
have to be taken into account during the model development process. The inference
accuracy is thus not the only predominant design goal of the models, instead,
lightweight models that exhibit a satisfactory compromise between prediction
precision and performance need to be established.

6

1.5. Structure of the Thesis

1.5 Structure of the Thesis
The remainder of this thesis is structured as follows. Chapter 2 outlines the fundamental
background with respect to concepts and technologies used in the course of this work.
Afterwards, Chapter 3 presents related work in order to provide an overview of existing
research efforts in this subject area and to highlight key differences in comparison with
the intended approach and outcome of this thesis. The methodological approach applied
for the purpose of establishing machine learning models that are able to predict the power
consumption of edge devices is covered in Chapter 4. Therefore, this chapter encompasses
the design and setup of the experiments, the analysis of the empirical measurement data
and the actual construction of the prediction models. Subsequently, Chapter 5 details
the specific approach and the results of the model evaluation procedure. This includes an
in-depth assessment of the prediction accuracy as well as a profound examination of the
performance of the models. The following chapter, namely Chapter 6, points out known
limitations in terms of the conducted measurements and the resulting power prediction
functionality integrated into the simulation framework. Finally, Chapter 7 concludes the
thesis by summarizing the key findings and contributions of this work and provides an
outlook regarding future work on this topic.

7

CHAPTER 2
Background

This chapter outlines the fundamental background that serves as the basis for this work.
Therefore, the following sections are supposed to put the topic into context and to provide a
basic understanding of the underlying concepts and technologies that are used in this thesis.
Since this work resides in the context of edge computing, Section 2.1 outlines the basics
of the emerging edge computing paradigm by presenting the underlying motivation for
this novel computing model, its benefits and open challenges, as well as different methods
for the evaluation of edge computing components. Furthermore, this section tries to give
a basic understanding of edge intelligence, which represents a recent interdisciplinary
research field that gained interest over the past years, and also deals with the multifaceted
heterogeneous characteristics of edge computing environments. Afterwards, Section 2.1
concludes with the tightly thesis-related notion of energy-awareness in the context of
edge networks.

In order to introduce the existing simulation platform that is used in the course of this
work, the subsequent section, i.e. Section 2.2, presents detailed information about the
faas-sim serverless simulation framework. The faas-sim simulator is ultimately equipped
with a power prediction functionality based on the machine learning models which are
developed throughout this thesis. As the employed simulation framework is based on
the concept of serverless computing, the following section, namely Section 2.3, covers
the basics of the serverless computing paradigm. This section therefore focuses on the
characteristics and benefits of the serverless paradigm, also with special regard to the
usage of the associated concepts in edge computing scenarios. Additionally, Section 2.3
encompasses a non-extensive compilation of challenges that stem from the integration
of serverless into edge computing. Finally, since the solution approach applied in this
work focuses on the establishment on machine learning models for predicting the power
consumption of edge devices, the terms Artificial Intelligence, Machine Learning and
Deep Learning are described in Section 2.4. In order to emphasize the delimitation
between these terms, this section also clarifies their interrelation and differentiation.

9

2. Background

2.1 Edge Computing
Edge computing is a popular computing paradigm that evolved over the last years
in response to the high latency that cloud computing approaches exhibit [Sat17]. In
traditional cloud computing models, IoT devices sense the surrounding environment and
transfer the generated data over a network to a cloud data center for central processing
of the large amounts of sensor data. The cloud data center is thereby located remotely
in the core of the network and comprised of high-performance cloud servers [CLMS20].
However, many IoT-based applications have real-time demands where low latency and
rapid feedback are crucial for successful operation, which cannot be guaranteed by the
cloud computing paradigm due to the considerable delay that is caused by sending all
the data to the cloud and the related high pressure on the network bandwidth [HS19].
Furthermore, due to the constantly rising amount of data generated by IoT devices,
processing all sensor data in the cloud will become infeasible at some point because of the
transmission bottleneck cloud computing exhibits [CCPB21, WT21]. As a result, cloud
computing approaches might not be able to ensure the strict Quality-of-Service (QoS)
guarantees of delay-critical applications [JFG+20].

In order to circumvent the shortcomings that are associated with processing all the
raw sensor data centrally in cloud data centers, edge computing was introduced as a
novel computing paradigm, whereby computational workloads and storage capabilities
are shifted from the cloud to the edge of the network [JFG+20, ZLH+18]. This kind
of computation offloading is achieved by introducing a new layer at the edge of the
network, i.e. between the IoT and the cloud domain, that consists of distributed compute
nodes, which are able to preprocess and aggregate the raw sensor data produced by IoT
devices [WT21]. Edge computing therefore represents a decentralized and local data
processing approach, since edge nodes are highly geographically distributed but still in
close vicinity to the end devices, as compared to the centralized, remote cloud [CCPB21].

By providing computational and storage resources at the edge of the network and thus
in immediate proximity to the end devices and end users, the latency and response
times can be enhanced, since the physical distance between the IoT devices and the
processing unit is minimized. Consequently, the data transmission delay can be reduced
and user experience can eventually be improved [HS19, WT21]. Especially time-sensitive
applications that demand real-time processing and instant feedback in order to fulfil
certain QoS requirements can benefit from the edge computing paradigm and therefore
represent typical edge computing application scenarios.

Additional benefits of decentralized edge computing approaches, that stem from the
inherent characteristics of edge computing environments, are reduced bandwidth require-
ments and usage, high scalability, mobility support, as well as location and context
awareness, which are particularly useful for applications that depend on local context
information such as the location of the user [CCPB21, DDTD19]. Example use cases
that are characteristic for edge computing include smart cities, smart home or smart
healthcare systems as well as augmented reality applications [CCPB21].

10

2.1. Edge Computing

However, edge devices exhibit limited storage and computing capacities in comparison
to high-performance cloud servers. For long-term, permanent storage, in-depth analysis
of pre-processed sensor data, resource-intensive calculations without real-time demands
and for integrating global sensor data information, edge computing approaches can
therefore still rely on powerful cloud data centers. Hence, the emerging edge computing
paradigm should not be considered as a replacement of the cloud computing approach,
but rather as a complement, so the two technologies can coexist and augment each
other [CLMS20, CCPB21].

In summary, edge computing provides the following benefits:

• Low latency and fast response times enabling real-time applications and services

• Less bandwidth utilization and transmission overhead

• Better service delivery, user experience and QoS

• Mobility support

• Location and context awareness

• High scalability

Even though the edge computing paradigm mitigates various disadvantages of cloud
computing approaches, there are several remaining challenges and open issues that
still need to be addressed. These challenges include computation offloading, hardware
and networking technology heterogeneity, security and privacy mechanisms, as well as
reliability [CCPB21]. Computation offloading involves multiple decisions, i.e. when to
process tasks locally and when to outsource them to other devices, how to perform
the offloading process and which nodes to select for offloading. More specifically, these
decisions are influenced by manifold optimization metrics such as energy consumption,
in particular the trade-off between computation energy consumption and transmission
energy consumption, bandwidth, latency, cost and computational performance [CCPB21,
CZS18].

Regarding security and privacy, edge computing can increase data security and privacy
by aggregating, anonymizing and processing the data in close proximity to its source,
but at the same time, the novel architecture of edge computing environments introduces
additional attack surfaces due to their highly dynamic and distributed nature. Moreover,
well-established privacy and security measures are often too heavyweight to be applied to
edge scenarios, so new lightweight mechanisms are required [CLMS20]. Edge computing
environments also evoke new challenges in terms of reliability and fault tolerance because
of potential device failures, network fluctuations, mobility requirements or battery
constraints [CCPB21]. Implications of edge device and edge networking technology
heterogeneity are thoroughly discussed in Section 2.1.3.

11

2. Background

2.1.1 Experimentation and Evaluation Methods for Edge
Environments

In order to be able to design, develop, deploy and evaluate edge computing applications
and scenarios under controlled and repeatable conditions, different methods exist. In
general, they can be classified into three categories, namely testbeds, simulators and
emulators, whereby all of them aim at the experimental evaluation of networking and
computing tasks, e.g. algorithms, protocols or resource management strategies.

Testbeds Physical testbeds provide configurable environments that are similar to
the real deployment environments, so they try to reproduce the actual scenario by
supplying various interconnected nodes, i.e. real devices, that can be used for developing
and evaluating applications. Therefore, testbeds typically represent the most realistic
setup and thus enable accurate analyses. However, they are usually rather costly in
terms of installation and maintenance, which is why testbeds are commonly used for
small-scale experiments, while edge computing environments typically require large-scale
infrastructure evaluation with a huge number of heterogeneous devices. Apart from their
restricted scalability, testbeds often exhibit limited flexibility when it comes to network
topologies and face issues regarding reproducibility and failures of physical hardware
components [ZCS19].

Simulators Simulation frameworks aim at modeling and predicting system behavior
by simulating the execution of code on cluster nodes with configurable topology. As such,
simulations enable convenient and reproducible experiments that can be conducted in
a time- and cost-efficient way [ZCS19, ISH10]. Therefore, realistic large-scale scenarios
with a vast number of devices, including emerging computing infrastructures, can be
modeled which would not be feasible to perform on small-scale testbeds. Furthermore,
the use of simulators does not require an elaborate setup of a physical hardware en-
vironment [GCZY21]. As a result, simulations are widely used to evaluate resource
management strategies. Advantages of such frameworks are therefore low costs, rapidity,
high scalability and ease of use. Nevertheless, they might generate non-realistic results,
which might not be as accurate as testbed outputs, since there is an inherent discrepancy
between the real world and the simulation environment. Furthermore, simulators typically
rely on estimations and assumptions about the real world that often represent imprecise
simplifications [ZCS19, ISH10]. Simulation frameworks thus exhibit a trade-off between
performance and accuracy. Besides general purpose simulators, specialized platforms exist,
e.g. for simulations in the context of edge-cloud continuum the IoTSim-Osmosis [AJH+21]
was proposed, which estimates the battery draining of IoT devices for sensing tasks.

Emulators Emulators represent a middle ground between testbeds and simulators by
combining real components with simulated ones and thereby enabling realistic large-scale
scenarios. Emulations merge the realism of physical testbeds and the configurability,
reproducibility and scalability of simulations. As a result, emulators are able to generate

12

2.1. Edge Computing

more realistic results than simulations and facilitate portability of the used code to real
devices. Nonetheless, emulations are not as time-efficient as simulations and also require
more hardware resources, which is why the costs are typically higher [ZCS19, BRKP22].

In this work, a simulator is used for the development and evaluation of the machine
learning models, which requires the modeling of power consumption for different devices.
Therefore, the method applied in the course of this thesis represents a simulator-based
energy consumption estimation approach. The faas-sim simulation framework that is
employed for this purpose is thoroughly described in Section 2.2.

2.1.2 Edge Intelligence
Edge intelligence (EI) or edge AI is a novel paradigm that describes the symbiosis of edge
computing and artificial intelligence in order to enable the usage of AI capabilities at the
edge of the network by performing model training and inference on edge devices [DZF+20].
As such, edge intelligence represents an interdisciplinary research field. AI applications
can be deployed on the edge and thus taking advantage of edge computing benefits such
as low latency, real-time processing and context awareness. Furthermore, by bringing AI
applications to the edge of the network, the ability of AI techniques for rapid analysis of
large amounts of data can be exploited in order to obtain meaningful insights into sensor
data bulks and to make valuable, high-quality decisions in real time [ZCL+19, DZF+20].

A key enabler for this innovative technological trend is the development of hardware
accelerators for edge devices with novel computing architectures, i.e. specialized com-
puting platforms tailored at AI tasks and applications. The demand for this new
kind of dedicated computing hardware emerged due to the fact that AI applications
are typically very resource-intensive, so they require high computational power that
cannot be provided by conventional resource-constrained edge devices. As a result,
several high-end processors and AI chips that are able to fulfil these specific require-
ments were developed, such as Graphics Processing Units (GPUs) or Tensor Processing
Units (TPUs) [ZCL+19, DZF+20]. The authors of [CLX+21] identified four categories
of specialized edge AI platforms based on their internal physical structure, namely
Application-Specific Integrated Circuit (ASIC) chips, GPUs, Field Programmable Gate
Arrays (FGPAs) and brain-inspired chips.

Commercially available examples for edge devices that are equipped with such hardware
accelerators include Google’s Coral product line1 which encompasses a single-board
computer with an embedded Edge TPU, i.e. an ASIC designed by Google that is able
to conduct high performance on-device inference, as well as an USB accelerator which
can extend existing devices with Google’s Edge TPU. Furthermore, GPU-enabled edge
devices comprise Nvidia’s Jetson boards2 with integrated graphics processing units, such
as the Jetson Nano, Jetson Xavier NX or Jetson TX2, among others. Due to their
1https://coral.ai/products/, Accessed: Sept 5, 2022
2https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/, Accessed:
Sept 5, 2022

13

https://coral.ai/products/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/

2. Background

high processing power, edge devices equipped with hardware accelerators are capable of
efficiently performing AI tasks on the edge of the network and thus pave the way for edge
intelligence applications. Additionally, many of these novel hardware platforms exhibit a
high level of energy efficiency [DZF+20].

Since the model training phase generally requires significantly more resources than
the actual inference, many researchers propose to perform the training of machine
learning models in powerful cloud data centers and only carry out the inference phase
on the edge [KHH+20, WBC+19]. Nevertheless, within the edge-cloud continuum, edge
nodes and cloud servers can collaboratively train and run AI models for performance
optimization, so the domain boundaries become blurred. The decision on whether model
training and inference are carried out at the edge of the network, within the cloud or in a
hybrid fashion is dependent on the application-specific requirements, since the individual
solutions exhibit different trade-offs between latency, bandwidth, privacy and energy
consumption [ZCL+19]. The authors of [ZCL+19] therefore introduce a system to classify
edge intelligence platforms, which comprises six levels that differ in terms of path length
and the amount of data being offloaded from the cloud to the edge devices. The individual
levels range from cloud-edge co-inference with cloud-only model training, i.e. level 1,
to on-device model training an inference, i.e. level 6. As described at a later stage, the
focus of this work lies on level 3, which is characterized by on-device inference at the
edge while the model training is performed in the cloud.

Advanced Driver-Assistance Systems (ADAS) represent a typical edge AI application,
where edge devices are able to carry out AI-based tasks such as vehicle or pedestrian
detection and traffic sign recognition in order to provide instant feedback to the driver as
required in highly dynamic and fast-changing traffic situations. Other examples of edge
AI use cases include real-time video analytics, public transportation planning or traffic
control systems [ZCL+19].

2.1.3 Heterogeneity in Edge Computing Environments

As mentioned earlier, the edge domain is characterized by a vast number of heterogeneous
devices that differ in terms of computational power, storage capacity and energy supply.
Even though edge nodes generally provide more powerful computing and storage resources
than IoT devices, they are still restricted regarding processing power and memory as
compared to high-performance cloud servers.

The diverse hardware capabilities of individual edge nodes range from resource-constrained
mobile devices, that are typically battery-powered and therefore have a limited lifetime,
to more powerful edge servers with higher processing performance for computationally in-
tensive tasks [JFG+20]. Typical edge devices encompass Single Board Computers (SBCs),
such as Raspberry Pis, mobile devices including smartphones, drones or health monitoring
devices, embedded AI hardware like Nvidia’s Jetson board series with GPU support, as
well as conventional server computers, commonly called edge servers [ATC+21, RLF+20].

14

2.1. Edge Computing

Especially battery-powered platforms are significantly impaired due to the limited power
supply and the finite lifetime of batteries, which represents a severe constraint that
can impose serious restrictions on certain use cases. As a consequence, lightweight and
durable devices are required for the deployment of edge-based applications [JFG+20].
The emergence of specialized compute platforms for AI tasks, as described in Section 2.1.2,
even intensifies the computing hardware discrepancy among edge devices.

In cloud computing scenarios, resources are locally clustered and rather homogeneous,
whereas edge computing environments consist of geographically widespread resources that
are highly heterogeneous, so hardware heterogeneity represents a challenge that emerged
due to the novel architecture of edge computing networks. Apart from the device hetero-
geneity, the operating systems and software stacks highly vary between different types
of edge nodes as well, which hampers a seamless integration and interaction [JFG+20].
These varieties lead to several implications and difficulties. For example, the integration
of different device types leads to complex heterogeneous systems with a mix of propri-
etary and open hardware and software from different vendors without uniform standards.
Hence, standardized protocols and well-defined interfaces are necessary in order to ensure
interoperability and compatibility among various platforms [CCPB21].

In addition to heterogeneity in terms of individual hardware and software components, the
networking technologies also vary in edge computing architectures. Wireless networking
technologies might include Bluetooth, Wifi, 3G, 4G (LTE) or 5G networks. Therefore,
a seamless and smooth transfer between diverse networking technologies needs to be
guaranteed, which represents an additional challenge in such scenarios [CCPB21]. This
results in highly heterogeneous systems concerning not only the devices themselves but
also the available networking technologies and software stacks.

With respect to this thesis, which focuses on the energy consumption of edge devices, the
aforementioned hardware disparities presumably lead to considerable differences regarding
the power usage of individual edge device types, especially since hardware accelerators
often incorporate advanced energy efficiency mechanisms in contrast to traditional edge
computing architectures [DZF+20].

2.1.4 Energy-aware Edge Computing
Since the number of edge devices is constantly rising and the total energy consumption
of edge computing environments is tremendous, research regarding energy-aware edge
computing gains more and more interest. Another important factor that promotes
research efforts in this field is the limited power supply as exhibited by battery-powered
devices or power-constrained edge nodes. By deploying energy-efficient hardware and
implementing energy-aware software solutions, the lifetime of devices with limited power
sources can be extended and quality of service guarantees can be ensured. Considering
energy awareness in edge computing environments as an overarching research area,
multiple aspects need to be taken into account, including hardware design, resource
management and scheduling as well as computation offloading, among others [JFG+20].

15

2. Background

Especially energy-aware computation offloading or workload allocation strategies are non-
trivial, since streamlining the power consumption might compete with other optimization
metrics such as latency, bandwidth and cost. Therefore, multi-objective optimization
approaches are crucial in order to meet application demands. Furthermore, there is a
trade-off between the transmission energy consumption and the computation energy
usage, so the transmission overhead that stems from task offloading needs to be compared
to the energy required for processing a workload locally. However, energy-aware workload
allocation strategies should also consider the total power consumption of all devices
involved, including transmission and computation energy consumption, which makes it
an even more complex task [CZS18, JFG+20].

Regarding energy-aware hardware design, the energy efficiency of different edge computing
platforms widely ranges. Due to the ever-increasing computing demands, low power
hardware design gains importance. Because of the widespread deployment of edge devices,
energy efficiency at the hardware level is inevitable in order to achieve power savings
and meet application demands. As mentioned earlier, energy awareness benefits from
the recent advancements in AI-enabled edge devices that are equipped with hardware
accelerators, since they often include energy consumption optimizations, while providing
high computing power at the same time [JFG+20, DZF+20]. In the course of this
thesis, the differences in terms of power consumption between various edge devices are
investigated and assessed, so implications for power modeling approaches can be inferred.
Furthermore, the integration of the power models into an existing simulation framework
foster the development of energy-aware applications and the selection of energy-efficient
hardware infrastructures.

2.2 Faas-sim Serverless Simulation Framework
The faas-sim3,4 represents a trace-driven simulation framework for serverless Function-
as-a-Service platforms, which is employed in the course of this thesis for developing,
validating and deploying of the power prediction models. As such, it can be used to
simulate the execution of serverless functions and workloads of container-based FaaS
platforms like OpenFaaS. Details about the concept of serverless computing can be found
in Section 2.3. The faas-sim framework is developed and maintained by the Distributed
Systems Group at TU Wien within the scope of research efforts targeting serverless edge
computing systems, whereby its design and architecture is strongly coined by OpenFaaS.
As such, it is publicly available under the MIT license.

The open-source simulator supports the development and evaluation of operational
strategies such as load balancing or scheduling, as well as optimization techniques
thereof. It therefore offers plug-in support for self-developed schedulers, load balancers or
autoscalers. In order to be able to simulate function execution on cluster nodes, the faas-
sim simulator provides different node types, such as commonly used mobile edge devices,
3https://github.com/edgerun/faas-sim, Accessed: Sept 22, 2022
4https://edgerun.github.io/faas-sim/, Accessed: Sept 22, 2022

16

https://github.com/edgerun/faas-sim
https://edgerun.github.io/faas-sim/

2.3. Serverless Computing

and already comprises traces from conventional computing devices and representative
workloads for modeling different infrastructure scenarios. Traces are triggered through
requests made by clients and typically refer to program execution or function invocation
logs that record various system actions during a program run including timestamps and
durations, such as the function execution time.

By providing a serverless simulation framework, faas-sim allows for modeling realistic
large-scale scenarios, which would not be feasible on small-scale testbeds. As a result,
users can configure and experiment with different scenarios and use cases in a time-
efficient manner. However, simulation platforms generally exhibit certain challenges that
are caused by inherent simulator characteristics. On the one hand, there is a discrepancy
regarding resource utilization between the simulation environment and the real world,
since the resource usage of devices has to be modeled and thus estimated to a certain
degree during a simulation. On the other hand, simulation frameworks aim at providing
a time-efficient simulation environment, whereby the execution time of the simulation
should be significantly lower than the actual runtime of the simulated scenario in the real
world. Consequently, performance and execution time play a crucial role, especially with
respect to the scalability of the simulator. These aspects have to be taken into account
when developing the power prediction models and also need to be validated afterwards
by evaluating the performance and the inference accuracy of the final models.

In the current version of the faas-sim simulation platform, a power prediction functionality
is not included. Hence, by adding this capability to the simulator, multiple problems
can be addressed. Firstly, the determination of energy efficiency of different edge device
types is facilitated, which eases the selection of appropriate edge devices for application
deployment. This could in turn lead to reduced electrical energy wastage. Regarding the
power prediction models themselves, they could also be exploited for the existing simulator
scheduler in order to take energy efficiency and low power consumption into account as
an optimization goal for scheduling decisions. Other simulation frameworks, such as the
IoTSim-Osmosis [AJH+21], already incorporate power prediction functionalities to some
extend, as detailed in Section 3.2, but some of the power models that are used for this
purpose are rather simple and rigid. Therefore, the final power forecasting feature of the
faas-sim should represent an elaborate and comprehensive approach to precisely estimate
the power usage of edge devices.

2.3 Serverless Computing
Serverless computing represents a cloud-native paradigm that provides a simplified
programming and execution model for deploying applications and services. As such, it ab-
stracts away various operational aspects developers using Infrastructure-as-a-Service (IaaS)
offerings are usually confronted with, e.g. resource provisioning, deployment, scaling,
fault tolerance, maintenance and so on. Serverless computing platforms are able to
execute small pieces of software as the basic computing and deployment unit, i.e. so-
called stateless functions, whereby users are not responsible for managing the underlying

17

2. Background

resources, since they are administered by the service provider. Hence, developers can also
benefit from the dynamic autoscaling capabilities of serverless computing without explicit
resource provisioning. Additionally, due to the pay-per-use or pay-as-you-go billing model
of serverless computing, charges only apply to resources that are actually used instead of
charges based on resource allocation, which typically results in lower costs. The term
serverless in no way signifies that no servers are involved in the process, but rather
that users can deploy application code without the burden of server provisioning and
administration, which significantly simplifies application deployment [BCC+17, JSSS+19].
As described in Section 2.2, the faas-sim simulation framework also relies on the serverless
computing paradigm for function deployment and execution.

Serverless computing evolved due to a lack of paradigm that offers a pay-per-use model
and provides effortless scalability of resources. The emergence of serverless computing was
enabled by technological advances in multiple areas, namely microservice architectures, the
Function-as-a-Service (FaaS) model, event-driven programming as well as containerization,
whereby the serverless concept encompasses all of these technologies [ATC+21]. FaaS
thereby represents a key enabler and the core of serverless computing, which inherently
differs from traditional cloud provider offerings, such as Infrastructure-as-a-Service (IaaS)
or Platform-as-a-Service (PaaS). FaaS platforms provide an additional level of abstraction,
as depicted in Figure 2.1, which outlines the differences of IaaS, PaaS and FaaS in
terms of user responsibilities regarding the control and management of the underlying
infrastructure.

Figure 2.1: Comparison between IaaS, PaaS and FaaS.

18

2.3. Serverless Computing

While the IaaS model provides the most control over hardware resources, users have
to manually configure and manage the underlying infrastructure, i.e. virtual machines
and bare metal servers, as a consequence, including resource setup, provisioning and
administration as well as scaling. This makes IaaS highly customizable, but also very
complex and cumbersome. In PaaS offerings, developers are no longer responsible
for server administration, since this is done by the service provider, but they still
have to configure scaling strategies to some extend, i.e. the number of instances the
application should run on. Furthermore, pre-packaged applications are required to
be deployed on PaaS platforms. The FaaS model offers the least control over the
physical infrastructure, but provides automatic resource provisioning, deployment and
fault tolerance, besides other services, and uses functions as basic deployment units.
Additionally, the dynamic autoscaling mechanisms of FaaS platforms enable resource
allocation on demand [BCC+17].

OpenFaaS5 is a well-known example of an existing open-source serverless platform that
enables the easy deployment of microservices and event-driven functions, which can
be submitted as Docker containers. Furthermore, it can be used to package code,
binaries or containers as serverless functions. OpenFaaS incorporates different container
orchestrators such as Kubernetes or OpenShift and supports various programming
languages like Python, Java, Go or Ruby6. The auto-scaling capability of OpenFaaS
facilitates demand-dependent scaling based on the current workload and also includes
scaling down to zero when the application is idle. With OpenFaaS, developers can run
their code on any public or private cloud, so portability is fostered and vendor lock-in is
impeded.

Serverless Edge Computing

Initially, serverless computing was devised for cloud environments, but since it provides
significant benefits, serverless is adapted and integrated into edge computing scenarios
as well. As IoT-based applications often exhibit unpredictable and varying workloads,
the autoscaling capability of serverless computing models can be harnessed in order to
automatically respond to dynamically changing workloads. Many applications deployed in
edge environments do not require the application to be up and running continuously due
to periodical instead of steady data collection and processing. Therefore, the serverless
scale to zero ability for idle applications and services could lead to reduced energy
consumption, save scarce edge device resources and extend battery lifetime, while the
user only needs to pay for the resources that are actually used [ATC+21]. As a result,
serverless edge computing represents a promising computing paradigm that leverages
both serverless and edge computing.

Nonetheless, integrating the serverless paradigm into edge computing environments raises
certain challenges that need to be addressed in order to fully unleash the potential of

5https://github.com/openfaas/faas, Accessed: Sept 22, 2022
6https://docs.openfaas.com/, Accessed: Sept 22, 2022

19

https://github.com/openfaas/faas
https://docs.openfaas.com/

2. Background

serverless edge computing. Some of these concerns not only stem from the combination
of the two paradigms, instead, they are inherent to serverless computing, but due to
the integration into edge networks, these issues are exacerbated. First of all, cold starts
of serverless functions upon the first function invocation or after scaling to zero might
pose a problem for latency-sensitive applications, since they impose a certain delay which
might lead to performance degradation. Therefore, innovative solutions are required in
order to circumvent the cold start delays for time-critical applications [ATC+21].

Furthermore, edge AI application may not be able to fully benefit from serverless
computing, because they encompass long-running I/O-intensive tasks, whereas serverless
is most cost-efficient for short-running CPU-bound jobs. This cost-efficiency issue
does not only affect edge AI scenarios, but applications with continuous workloads in
general. Moreover, reliability and fault tolerance constitute two major challenges of
serverless edge computing, since appropriate robust and resilient techniques still need to
be adopted in edge computing environments. Security represents another challenge that
serverless edge computing platforms are confronted with, since edge networks are more
vulnerable to attacks and containers are less isolated than virtual machines as used in
the cloud [ATC+21]. Nevertheless, the aforementioned aspects only cover a fraction of
demanding factors that need to be faced in the context of serverless edge computing.

2.4 Artificial Intelligence, Machine Learning and Deep
Learning

2.4.1 Artificial Intelligence
Artificial Intelligence (AI) is a technological trend that aims at enabling machines to
simulate intelligent human behavior by providing rapid analysis of vast data bulks in
order to obtain meaningful insights, identify complex patterns, facilitate reasonable future
predictions and foster real-time decision making [ZCL+19, CLX+21]. Applying AI to
a problem domain is generally reasonable if the solution cannot be implemented by an
explicit set of rules that can be followed straightforwardly.

Simply put, AI tries to generate knowledge from data without human involvement,
whereby the term artificial intelligence represents an umbrella term for the simulation
of human intelligence embedded into machines. Machines are therefore able to mimic
cognitive tasks typically performed by humans like learning, reasoning, problem solving
or natural language processing. As a result of the recent efforts in AI research and
development over the past years, self-driving vehicles and chess playing agents are
becoming part of our daily lives [Ong17].

2.4.2 Machine Learning
Machine Learning (ML) represents a well-established subdomain of AI, which is considered
the most popular subset of AI methods and is focused on building models for classification

20

2.4. Artificial Intelligence, Machine Learning and Deep Learning

and prediction tasks [ZCL+19, CLX+21]. ML models are complex algorithms that are
able to learn from data to make decisions or forecasts based on previous knowledge
and experience. As such, machine learning is tightly intertwined with the field of
computational statistics [Ong17].

Typical examples of traditional and well-known machine learning models are Support
Vector Machines (SVMs), Decision Trees (DTs), Bayesian networks or k-means clusters. In
practice, machine learning models have already been successfully implemented for several
use cases, such as image recognition, text classification or even medical diagnoses [ZCL+19,
CLX+21]. Apart from using machine learning techniques for developing prediction models,
conventional statistical methods, such as time series models like the linear Autoregressive
Integrated Moving Average (ARIMA) model or regression models, can also be used for
this purpose [WLP+19]. Their suitability and prediction accuracy however depends on
the specific application area.

In general, the life cycle of a ML model consists of two main phases, namely model
training and inference [DZF+20]. As mentioned earlier, the model training phase generally
requires significantly more resources than the actual inference [WBC+19, KHH+20].
During the training phase, sample data is used as training dataset and fed into the
ML algorithm so it can learn from it, identify patterns, etc., while the model inference
phase represents the actual usage of the pre-trained machine learning model for making
predictions. Furthermore, pre-defined workflows or pipelines for establishing ML models
encompassing multiple steps and subtasks, such as data preprocessing or model validation,
exist [WCW+17]. A simplified but commonly used version of such a ML pipeline is
comprised of three main steps, namely data preprocessing, model training and model
serving, i.e. model deployment [RRD21]. The machine learning workflow used in the
course of this thesis is thoroughly outlined in Section 4.1.

Basically, there are two major approaches to machine learning, namely supervised and
unsupervised learning. The main difference between these two concepts is the type
of input data they expect. Supervised learning requires the input data to be labeled
in order to make predictions about discrete, categorical or continuous values, whereas
unsupervised learning relies on unlabeled data and strives to identify patterns within the
data set. While classification and regression algorithms represent typical examples for
supervised learning, unsupervised learning techniques include clustering and anomaly
detection [Raj20].

2.4.3 Deep Learning
Deep Learning (DL) is a special machine learning method, i.e. a machine learning
subdomain, that makes use of Artificial Neural Networks (ANNs) in order to solve
tasks like image classification or face recognition with high inference accuracy [ZCL+19].
Neural networks are neuroscience-inspired, multi-layered, hierarchical structures that are
able to extract a deep data representation, whereby the output of each successive layer
serves as the input for the subsequent layer [CLX+21, Ong17]. Different types of neural

21

2. Background

networks exist, e.g. Convolutional Neural Networks (CNNs), Generative Adversarial
Networks (GANs) and Recurrent Neural Networks (RNNs). Typical application areas
of deep learning involve natural language processing, speech recognition and computer
vision [DZF+20].

Due to its outstanding performance regarding big data processing, forecasting and decision
making, deep learning represents one of the most popular AI techniques. As a result, DL
models are often considered superior to other machine learning algorithms. However, the
high-level precision and efficiency comes at the cost of complexity, which is why deep
learning models are typically highly computation- and thus resource-intensive. Therefore,
machine learning models generally exhibit a trade-off between inference performance
and prediction accuracy, which needs to be taken into account when selecting the right
machine learning model for a certain use case [DZF+20, Ong17].

Regarding the ML-based power prediction models that are developed in the course of
this thesis, traditional ML algorithms are used instead of deep learning methods due to
the high resource intensity and complexity of deep learning models, which presumably
makes them impractical for the usage within the faas-sim simulation framework. As
mentioned earlier, faas-sim requires efficient prediction models with high inference speed,
so efficient execution and high scalability can be guaranteed.

22

CHAPTER 3
Related Work

This chapter presents related work on relevant topics in the context of this thesis in order
to give an overview of thematically associated existing research efforts. Furthermore, key
differences compared to the approach of this work can be identified and demonstrated.
Section 3.1 outlines previously published scientific approaches that focus on power
prediction models. Subsequently, simulation frameworks in the context of the edge-cloud
continuum are described in Section 3.2, particularly with regard to their energy prediction
capabilities. Finally, in Section 3.3, energy-aware scheduling and task offloading strategies
are considered as broader domains where power prediction models also play a crucial
role.

3.1 Power Prediction Models
Due to the emergence of green IoT and green edge computing, energy consumption
prediction within the edge-cloud continuum represents an active field of research, including
energy efficiency of cloud data centers or power forecasting methods for energy-aware
edge computing. However, many of the proposed approaches in the context of energy
prediction are trying to predict future energy consumption based on historical data and
previously identified usage patterns. As such, various research projects focus on predicting
the electricity demand of smart homes [CMPR22], buildings [ZWJ+19], or even whole
cities [Oyi21], but not on the application level with regard to hardware utilization-based
power modeling of individual devices that run edge-based applications, as intended by
this work.

Similar to the approach proposed by Lee et al. [LLKP19], multiple other researchers
employ Deep Learning techniques for energy prediction in edge computing environments.
To reach this goal, complex algorithms, such as neural networks, are developed. They
thereby primarily focus on high prediction accuracy when developing and evaluating

23

3. Related Work

their forecasting models and do not consider the applicability of the models in resource-
constrained environments or simulation scenarios. Instead, their energy models are mainly
designed for more powerful computing platforms, such as edge or cloud servers. Even
though prediction precision is an important aspect, it is not the only and predominant
design goal of the envisaged work because of the computational burden the resulting
models would impose, which would be irreconcilable with the inherent simulator limita-
tions. Therefore, model complexity and suitability have to be considered in addition to
high prediction accuracy in the course of this thesis, so more lightweight models can be
developed for utilization within the faas-sim simulator.
The work presented by Carvalho et al. [CCSF19] includes a power model for mobile
devices that is based on a non-linear k-Nearest Neighbors (k-NN) regression algorithm,
which represents a well-known machine learning algorithm. Due to the fact that battery-
powered mobile devices constitute the target platform for the power model, the authors
not only focus on high accuracy, but also on suitability of the algorithm for such devices
in terms of execution time. The proposed power model is validated by comparing it with a
linear regression model and a neural network-based model. The results of their evaluation
show that the k-NN power model exhibits the best trade-off between prediction precision
and computation time. Their approach therefore resembles the approach applied in this
work, since achieving an optimal accuracy-performance trade-off for power models is also
a fundamental part of this thesis.
Shi et al. [SLHM22] also highlight the necessity for considering the complexity-accuracy
trade-off in the algorithm design phase, since their work focuses on edge computing
scenarios, where devices with restricted resources are used. The developed lightweight
forecasting model is thus optimized for minimized complexity as it is implemented on a
Raspberry Pi. The feasibility and suitability of the algorithm for edge devices is verified
afterwards. Although the complexity-accuracy trade-off of forecasting models is also a
key aspect of this thesis, the usage of deep learning methods as applied by Shi et al. is
not anticipated. Additionally, the research domain of the proposed approach differs as it
is based on photovoltaic-assisted charging stations for electric vehicles.
Rodrigues et al. [RRL18] developed a framework for energy measurement and prediction
in order to determine and forecast the power usage of deep neural networks that run
on ARM-based mobile platforms. As such, the resulting framework called SyNERGY
operates on the device level, as planned for this thesis, but further breaks down the energy
consumption to the separate layers of the neural network models that are investigated.
For the actual power consumption forecasting of the individual neural network layers, a
multi-variable linear regression model is used, which considers device-specific hardware
performance counters, namely Single Instruction/Multiple Data (SIMD) instructions and
bus accesses, i.e. main memory accesses. Even though the proposed approach is similar
to the one applied in this thesis, it varies in terms of prediction granularity as well as the
targeted applications, i.e. deep learning applications.
To sum up, the key differences between the related work presented above and the envisaged
approach of this thesis lie in the usage of deep learning methods, i.e. neural networks,

24

3.2. Simulation Frameworks for the Edge-cloud Continuum

for developing power prediction models and the underlying scope of application. Some
of the proposed models are developed for very specific application domains, whereas
the applicability of the power models established in this work should not be limited
to a specific use case but rather be generally usable for various different programs and
scenarios.

3.2 Simulation Frameworks for the Edge-cloud Continuum
As the power prediction functionality is integrated into an existing serverless simulation
platform for edge computing systems, other simulation frameworks in the context of
the edge-cloud continuum are also considered as relevant related work. The existence of
energy models within other simulators is thereby of particular interest.

The CloudSim [CRB+11] is an extensible simulation framework for cloud computing
environments that is able to model and simulate cloud components such as cloud data
centers and Virtal Machines (VMs). Furthermore, it enables the evaluation of different
provisioning policies in terms of resources, VMs and applications by simulating various
allocation strategies. This also allows for testing energy-conscious resource management
techniques, since the CloudSim simulation toolkit includes basic power consumption
models for cloud system components. These models were built upon the assumption
that the total power consumption consists of a static share, i.e. a constant fraction, and
a dynamic share, whereby the dynamic part represents a function that computes the
consumption in proportion to the current CPU utilization. Therefore, this approach is
considered rather simple and rigid as it is solely based on the CPU utilization without
taking other resource metrics into account.

The iFogSim [GVDGB17] and its extension, iFogSim2 [MPGB22], are both simulation
frameworks for IoT, edge and fog environments. The initial iFogSim simulator version is
based upon CloudSim and therefore already incorporates a power prediction functionality
for cloud centers and fog nodes. The resource utilization of each device is thereby
monitored and used as the input for pre-defined power models that are able to predict
the power consumption of each device at the end of the simulation. Like the models used
in the CloudSim, the available iFogSim power models focus on the CPU usage in order
to calculate the electricity consumption and use linear, square or cubic formulae, among
others. The presented approach is in principle similar to the one intended in the course
of this thesis when it comes to incorporating power models into a simulator for providing
an energy consumption prediction at the end of a simulation. But instead of using rather
simple statistical functions, that calculate the energy consumption based on the CPU
utilization, this work aims at developing more elaborate models using machine learning
techniques.

Besides iFogSim, EdgeCloudSim [SOE18] and IoTSim-Edge [JAA+20] are also extensions
of the CloudSim simulator toolkit, which both encompass the simulation of IoT and edge
computing scenarios. While the EdgeCloudSim framework does not include an energy
consumption model in its initial version, the IoTSim-Edge simulator incorporates an

25

3. Related Work

energy calculation feature in terms of battery consumption of portable IoT and edge
devices. The power consumption of the battery is calculated by estimating the energy
necessary for data processing, while also including the size of the data that needs to
be processed, and adding the estimated energy required for the transfer of the data,
which also depends on the transmission protocol that is used. As such, this represents a
more detailed energy consumption prediction approach as compared to the previously
described ones.

IoTSim-Osmosis [AJH+21] is another simulator framework that enables the simulation
of IoT applications within the edge-cloud continuum and focuses on osmotic computing
scenarios. Regarding the power consumption of the IoT layer, IoTSim-Osmosis is able
to estimate the battery draining of IoT devices, which is composed of the draining
rate required for sensor measurements and data transmission, respectively. The battery
consumption of the individual IoT devices is then updated upon every sensing of the
environment. Furthermore, the framework also provides means to estimate the energy
consumption of the edge and cloud layer, but the corresponding scientific work [AJH+21]
does not specify the details for these estimations. Their specific approach concerning the
power consumption of edge devices is therefore not clearly evident from the published
work.

The LEAF simulator [WT21] represents a simulator for large-scale energy-aware fog
computing environments that was developed with a focus on realistic simulations, holistic
and granular energy modeling, support for energy-aware decision making, as well as
simulation performance and scalability. Using the LEAF simulator, each compute node
and each network link is assigned an individual power model, which allows the separate
assessment of the power usage of edge devices, data centers and network links. The
current power consumption of an entity is composed of a static, i.e. load-independent,
and a dynamic, i.e. load-dependent, fraction, whereby the static part can also take
energy-saving mechanisms such as Dynamic Voltage and Frequency Scaling (DVFS) into
account. Depending on the type of entity, the authors apply linear or non-linear power
models. The applicability of the LEAF simulator for simulating the energy consumption
of heterogeneous, distributed environments with resource-constrained devices and for
evaluating energy-aware task placement strategies or energy-saving mechanisms are
demonstrated using a smart city traffic scenario.

In summary, multiple simulation frameworks for the edge-cloud continuum already exist.
While some of them exhibit a lack of energy modeling mechanisms, many of the existing
simulators include approaches for estimating the power consumption of the devices used
during the simulation process. However, the level of comprehensiveness and maturity of
the implemented solutions highly differs, whereby the LEAF simulator [WT21] is assumed
to provide the most extensive energy modeling techniques. Hence, not all of the proposed
approaches are considered adequate in order to obtain realistic results, since some of the
proposed energy models only implement limited and partly rigid forecasting methods, rely
on simplifications and assumptions or neglect the importance of hardware heterogeneity.
The aim of this thesis is thus to develop more elaborate and comprehensive ML-based

26

3.3. Energy-aware Resource Management Strategies

models that incorporate various influencing factors in addition to CPU utilization and
generate satisfactory prediction results.

3.3 Energy-aware Resource Management Strategies
Other domains where energy prediction capabilities play a major role are energy-aware
scheduling algorithms, routing policies and other resource management strategies, which
aim at optimizing a system’s power consumption by using intelligent placement algorithms
that minimize the total energy demand of a system. As mentioned earlier, the final power
consumption prediction models that are developed in the course of this thesis could also
be used as the basis for such energy-aware mechanisms in the future.

Neurosurgeon [KHG+17] represents a dynamic and lightweight scheduler that offers
computation partitioning for the individual layers of Deep Neural Networks (DNNs) for the
sake of low end-to-end latency or low mobile device energy consumption. Therefore, the
Neurosurgeon system is able to determine the optimal partition point for the collaborative
execution of a DNN in order to distribute the computation among cloud data centers
and mobile devices. A partition point can be located after each neural network layer
and represents the delimitation of layers, whereby the one portion is executed on the
mobile devices and the other one on the cloud servers. The partitioning depends on the
primary optimization goal, which can either be low end-to-end latency or low mobile
device energy consumption. The approach is similar for both of the competing goals, i.e.
the latency and energy consumption required for the computation of each DNN layer
is estimated by predefined prediction models and then the optimal partition point is
chosen. For developing the prediction models, the authors profile a state-of-the-art mobile
device, namely an Nvidia Jetson TK1, and a modern server platform and establish a
regression model for each layer type and on each hardware platform based on the layer’s
configuration parameters. As a consequence, the prediction models are platform-specific,
but at the same time, they are reusable for different neural network architectures. The
improvements in terms of latency and energy consumption of the Neurosurgeon scheduler
are verified using an evaluation suite comprising eight DNN applications.

Ale et al. [AZF+21] propose a delay-aware and energy-efficient computation offloading
method for mobile edge computing networks that makes use of Deep Reinforcement
Learning (DRL) techniques. Their approach is able to optimize the number of completed
tasks in order to comply with delay constraints, while the energy consumption is minimized
at the same time due to the intelligent offloading mechanism. The energy consumption
is estimated by calculating the power used for data transmission based on the size of the
data, the transmission rate and the transmission power, and adding up the power used
for computation, which depends on the required CPU cycles for a task and the CPU
frequency. By using a reinforcement learning framework, the system is able to learn from
previous offloading decisions and can thereby optimize itself for future decisions. Besides
the ability to determine the optimal edge server for computation offloading, the system is
also capable of optimizing the computational resource allocation of edge nodes in order

27

3. Related Work

to improve the long-time utilization of the system. The effectiveness of the presented
solution is demonstrated by a simulation analysis.

Furthermore, the work presented by Liu et al. [LCH+18] includes an energy-aware
resource allocation scheme for edge networks, called On-demand Energy-efficient Resource
Allocation (OERA), that aims at minimizing the energy consumption on the network
and the device level. Therefore, a so-called Network Device Power Model (NDPM) based
on empirical measurements is constructed, which serves as the initial groundwork for
the OERA scheme. In order to establish the power model for the network devices, i.e.
routers and switches, a testbed is utilized for obtaining the actual power consumption
data of the devices. For estimating the power drainage of a network device, the authors
consider the energy consumption of the device itself and the corresponding network
interface card that is used to connect the device to the network. Thereby, the energy
consumption of the device is composed of the power required for transmission, reception
and packet processing, respectively. Additionally, the model incorporates the optional
usage of frequency scaling for the network devices as energy saving technique. The final
OERA algorithm, which is developed using Mixed Integer Linear Programming (MILP),
is compared with two other existing algorithms based on three performance metrics,
namely acceptance ratio, total edge network power consumption as well as host and link
utilization. The performance evaluation shows that OERA outperforms the other two
algorithms in all three factors.

In conclusion, power models that are able to predict the power consumption of devices
can be applied to other problem domains, such as scheduling strategies, routing policies or
other resource management algorithms, in order to enable energy-aware decision making
and optimize such algorithms for reduced energy consumption.

28

CHAPTER 4
Methodology

The following sections thoroughly describe the methodology applied in the course of this
thesis to develop machine learning models that are able to predict the power consumption
of edge devices based on resource usage values. Section 4.1 therefore outlines the general
methodological approach as well as the model development process. Subsequently,
Section 4.2 presents the experimental design and setup for the empirical measurements
conducted for the sake of data acquisition. This includes the setup of the dedicated testbed
used for the experiments, the devices being profiled, the system metrics being measured,
the measurement instruments used for obtaining the power consumption of the devices
and the experimental procedure including the individual experiment configurations. After
the experiments are carried out, the empirical measurement data can be used for data
preprocessing and a preliminary, exploratory data analysis, as detailed in Section 4.3,
where key observations are highlighted. Finally, Section 4.4 focuses on the construction
of the envisaged machine learning models by means of automated machine learning tools
such as TPOT. This section concludes the chapter by presenting the results of the model
development procedure, i.e. the final machine learning models, which represent the main
contribution of this work.

4.1 Methodological Approach

4.1.1 Overview
As the objective of this work is to develop machine learning models that are able to
predict the power consumption of edge devices based on resource usage, a data-driven,
empirical approach based on a series of experiments is used as methodology. Ultimately,
the final outcome is a software artifact that extends the existing faas-sim simulation
framework by the additional forecasting capability. Therefore, an experimental method
is considered as an appropriate scientific test and verification procedure for this purpose.

29

4. Methodology

In order to give an overview over the conceptual design of the methodological process,
Figure 4.1 reflects the individual steps of the empirical approach that is applied in this
thesis.

Figure 4.1: Methodology of the empirical approach.

First of all, a series of experiments including real-time measurements is conducted for
gathering power consumption and resource usage data from different edge device types.
This requires a sophisticated design and setup of the individual experiment components,
such as the testbed used for the experiments, the edge devices to be profiled, the resource
usage metrics to be reported, the means of power consumption monitoring and so forth.
All of these experiment components are thoroughly described in Section 4.2. The raw
empirically obtained data is then preprocessed for easier interpretation and for usage
within the faas-sim simulation framework, as explained in Section 4.3. Furthermore,
the preprocessed data serves as the basis for the development of predictive models
using data-driven machine learning techniques. The individual steps required for the
construction of these models are detailed in Section 4.4. Since the developed models need
to be validated, a profound evaluation in terms of model accuracy and performance needs
to be performed, which is covered in Chapter 5. Finally, the validated power models can
be provided as an additional simulator feature for public usage. While the first three
phases of the experimental approach, namely the experimental design and setup for the

30

4.1. Methodological Approach

empirical measurements, the analysis of the empirical measurement data and the machine
learning model construction, are detailed in the following sections, the evaluation of the
developed models is covered in the subsequent chapter, see Chapter 5.

4.1.2 Model Development Process
The development of the machine learning models follows a specific, predefined process.
However, the individual steps of this process can also be mapped to the methodological
approach outlined in Figure 4.1. The model development process used in this work, which
is derived from the well-known and established CRoss-Industry Standard Process for
Data Mining (CRISP-DM) and based on the iterative processes presented in [BB21] and
[WCW+17], respectively, involves several steps. These steps include Data Preparation,
Data Analysis, Model Construction, Model Validation and Model Delivery, as depicted
in Figure 4.2. If necessary, steps 2–4 can be iterated in order to obtain an enhanced
prediction model.

Figure 4.2: The model development process based on [BB21]

Data Preparation As a first step, power consumption and resource usage data is
collected through a series of experiments that are conducted by means of a dedicated
testbed, where different edge device types are profiled at runtime. This way, empirical
real-time measurements can be obtained. During the experiments, the actual power
consumption of the individual hardware platforms that run certain applications will be
measured in combination with other resource utilization parameters that conceivably

31

4. Methodology

have an impact on the energy usage. These metrics might include CPU utilization, GPU
utilization, network I/O rate, memory (RAM) usage, etc. The runtime monitoring of
edge devices during the experiments is achieved by collecting black-box system metrics
using monitoring agents and by monitoring the power consumption of the hardware
platforms accordingly. The ensuing data cleaning step might be required in order to
ensure a good data quality, e.g. if measured values are incomplete, corrupt or incorrect.

Data Analysis The subsequent data analysis step encompasses several tasks, namely
data exploration, feature extraction and data preprocessing. An exploratory data analysis
will take place in order to better understand the structure of the data and to be able to
identify the relevant variables, so-called features, for the upcoming model construction
phase. Feature extraction focuses on identifying and extracting the appropriate, i.e.
the most correlated, factors that have the greatest effect on the power consumption of
the platforms, while the irrelevant ones should be disregarded. Furthermore, the raw
measurement data needs to be preprocessed before it can be fed into the forecasting
models, since the simulator can only model the resource consumption of edge devices
through estimates and therefore the actual resource utilization values cannot be used as
input for the prediction models. So instead of continuously measuring the actual resource
consumption and calculating the power usage based on the measured values, as it would
be possible in the real world, the simulator has to estimate and model the resource
utilization of the individual devices during the simulation in some way. Therefore, the
measured values have to be mapped to inputs the simulator can work with in order to be
able to serve as training data for the ML models. By preprocessing the raw data, the
inherent discrepancy of resource consumption between the real world and the simulation
environment can be taken into account in the model development step, so more accurate
results can be achieved.

Model Construction After the data analysis step, the empirically obtained and
already preprocessed data serves as the basis for a data science-driven approach, where
machine learning techniques are applied to construct a power consumption prediction
model. For this purpose, an Automated Machine Learning (AutoML) tool will be used,
which enables automatized and easy development of high quality ML models, instead
of manually building, training and tuning a prediction model [TWG+19]. Hence, the
model creation process can be accelerated by using an AutoML tool. In the context of
this work, the Tree-based Pipeline Optimization Tool (TPOT) is applied, which is an
AutoML Python library that aims at automating ML pipelines and optimizing the model
accuracy on the basis of genetic programming [OM16]. As such, TPOT is available as an
open-source Python library1. Further details about TPOT in general and the specific
TPOT configuration used in the course of this work in order to construct the predictive
models are included in Section 4.4.1.

1https://github.com/EpistasisLab/tpot, Accessed: Jan 30, 2023

32

https://github.com/EpistasisLab/tpot

4.2. Experimental Design and Setup for Empirical Measurements

Model Validation As a subsequent step, the resulting models have to be program-
matically integrated into the existing faas-sim simulator platform in order to facilitate
the evaluation of the models with respect to prediction accuracy and performance. This
way, the forecasting precision can be investigated by comparing the predicted power
consumption from the simulation with the actual power consumption measured by means
of experiments within the dedicated testbed. Furthermore, the performance can be ana-
lyzed by determining the degree of latency the models impose on the simulator execution
time as a result of the additional computational burden caused by the model complexity.
As the model performance also influences the simulator scalability, the results of the
performance evaluation can also indicate whether the developed models are suitable
for an integration into the existing simulation framework or not. Finally, the resulting
performance-accuracy trade-off needs to be assessed and weighed out. If a model turns
out to generate imprecise predictions or does not perform well in terms of execution
time, the previous three steps, namely data understanding, model creation and model
validation, can be iterated as a result of feedback loops, so an enhanced model can be
obtained.

Model Delivery As a final step, the validated forecasting models are deployed and
made publicly available for developers and users as part of the open source faas-sim
simulation framework. The models can then be used for inference, i.e. for estimating
the power consumption of devices during simulations as an additional simulator feature.
This represents the conclusive step of the process.

4.2 Experimental Design and Setup for Empirical
Measurements

4.2.1 Testbed Setup
As described in the previous section, the empirical measurements represent the data
preparation step, i.e. the first step, of the model development process. It includes the
design of the experiments, the actual execution of the experiments for data acquisition
and a successive data cleaning step if necessary. The empirical measurements are required
as input data for the construction of the machine learning models and are conducted
by means of a dedicated testbed. For this purpose, an existing testbed established by
the Distributed System Group of the TU Wien is used. The present testbed is already
equipped with an open source experimentation framework called Galileo.

The Galileo experimentation framework2,3 enables users to define and execute experiments
on the testbed. As such, the framework is targeted at distributed load testing experiments
and enables users to observe the resource usage and application performance, to perform
profiling tasks and to evaluate certain cluster components like the load balancer or
2https://github.com/edgerun/galileo, Accessed: Oct 3, 2022
3https://github.com/edgerun/galileo-experiments, Accessed: Oct 3, 2022

33

https://github.com/edgerun/galileo
https://github.com/edgerun/galileo-experiments

4. Methodology

scheduler. Furthermore, it aims at easing experiment setup and deployment by providing
different building blocks, for example configurable workload generation, telemetry data
collection, trace recording and a container orchestration adaption [RRP+22]. Telemetry
data represent metrics for system observation, e.g. resource utilization measurements,
whereas traces refer to program execution logs that record various system actions and
are triggered through function calls, i.e. user requests. Trace recording includes several
function invocation-related data, such as various timestamps of a function invocation
lifecycle and the total function execution time. For the usage in edge environments, all
of the experiment components of the Galileo framework can run on resource-constrained
devices. Details about the telemetry data collection are covered in Section 4.2.3, while
the specific workloads used for the experiments are contained in Section 4.2.7.

In the context of the Galileo framework, applications are submitted and deployed as
serverless functions via Kubernetes because the testbed is based on OpenFaaS and uses
a Kubernetes cluster as OpenFaaS runtime as well as container orchestrator. In terms of
Kubernetes, the smallest deployment unit is called a Pod, whereby one or more containers
can run inside a single Pod4. The functions that are deployed as part of the experiments
are described in Section 4.2.5.

In order to reflect the hardware heterogeneity of edge environments, nodes with different
underlying architectures are included in the testbed setup. The testbed is divided into
three zones, i.e. clusters, namely zone A, B and C, whereby each node is statically
assigned to one of these zones. While zone A and B primarily encompass commonly used
edge devices, zone C represents the cloud and therefore comprises virtual machines only.
Zone A and B both include a client node, i.e. an Intel NUC i7, and multiple worker
nodes, i.e. different types of edge computing platforms, for the execution of distributed
load testing experiments by means of the Galileo framework. All nodes in the testbed
are remotely accessible via SSH through the TU Wien VPN. As the focus of this work
lies on edge devices, only nodes in zone A and B are used for the experiments.

In general, the Galileo experiment framework supports two kinds of experiments, namely
profiling and scenario experiments [RRP+22]. Profiling experiments, which are used
in this work, aim at profiling the resource usage and performance of one particular
node that runs one type of application. This also enables cross-device evaluations of
individual applications. Scenario experiments are targeted at large-scale experiments, e.g.
to evaluate the system performance for different resource management strategies. The
workloads, i.e. the client request patterns, for an experiment can either be generated
by existing random probabilistic interarrival time generators or prerecorded arrival time
profiles, such as a constant or a sine-based profile, can be used. Additionally, manually
defining the number of requests and the corresponding interarrival time is also possible.

4https://kubernetes.io/docs/concepts/workloads/pods/, Accessed: Jan 30, 2023

34

https://kubernetes.io/docs/concepts/workloads/pods/

4.2. Experimental Design and Setup for Empirical Measurements

4.2.2 Device Type Specifications
Since different types of common edge computing platforms are being profiled, the
heterogeneous hardware characteristics of the individual devices need to be outlined.
Three device types with diverse architectures are chosen from the pool of nodes included
in the existing testbed that is used for the empirical measurements. Table 4.1 provides
details about the hardware specifications of the selected edge devices. These platforms
include two types of GPU-enabled Nvidia Jetson boards5 with different underlying
physical components and an Intel Xeon PC equipped with an Nvidia GPU6,7. From the
device characteristics displayed in Table 4.1, it can be concluded that the Intel Xeon is
the most powerful edge device in terms of hardware equipment, whereas the Jetson Nano
is the least powerful one in this sense. Besides the heterogeneous hardware specifications,
all of these computing platforms can be considered as high-performance, AI-enabled edge
devices in general.

Device CPU Accelerator RAM
Intel Xeon Quad-core Xeon E-2224

CPU
1408-core Nvidia Turing
GPU (GeForce GTX 1660)

16 GB

Jetson Xavier NX 6-core Nvidia Carmel Arm
v8.2 CPU

384-core Nvidia Volta GPU
with 48 tensor cores

8 GB

Jetson Nano Quad-core Arm Cortex-
A57 MPCore processor

128-core Nvidia Maxwell
GPU

4 GB

Table 4.1: Device type specifications.

In order to be able to uniquely identify the different hardware platforms within the
testbed, hostnames are assigned to the individual nodes. The hostnames typically include
the zone the node resides in. Since the telemetry and power monitoring data make use of
the hostname instead of the device type for the sake of unambiguity, the following table,
i.e. Table 4.2 provides a mapping from devices to hostnames. As shown in this table,
the Xeon GPU node is located in zone B, while the other nodes reside in zone A of the
testbed.

4.2.3 Telemd System Metrics
For the purpose of identifying the factors that have a decisive impact on the power con-
sumption of edge devices, various system metrics regarding resource usage are measured
in addition to the power consumption during the execution of the experiments. Therefore,
5https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/, Accessed:
Sept 29, 2022

6https://www.intel.com/content/www/us/en/products/sku/191036/intel-xeon-
e2224-processor-8m-cache-3-40-ghz/specifications.html, Accessed: Oct 7, 2022

7https://www.nvidia.com/en-us/geforce/graphics-cards/16-series/, Accessed: Oct 7,
2022

35

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.intel.com/content/www/us/en/products/sku/191036/intel-xeon-e2224-processor-8m-cache-3-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/191036/intel-xeon-e2224-processor-8m-cache-3-40-ghz/specifications.html
https://www.nvidia.com/en-us/geforce/graphics-cards/16-series/

4. Methodology

Device Hostname
Intel Xeon eb-b-xeongpu-0
Jetson Xavier NX eb-a-jetson-nx-0
Jetson Nano eb-a-jetson-nano-0

Table 4.2: Device to hostname mapping within the testbed.

telemetry data from each node of the testbed can be collected by observing the platforms
at runtime by means of telemd8, which is part of the Galileo experimental framework
and represents an open-source black-box monitoring agent for gathering time-series
system metrics. The telemd daemon runs on all nodes of the testbed and is thus able to
capture system-wide fine-grained telemetry data. Telemd reports the measured values
into different Redis topics depending on the individual metrics, whereby Redis acts as a
publish-subscribe system and the persistent storage of measured data is accomplished by
the open-source time series database InfluxDB. The Redis topics for telemetry data follow
a predefined scheme, namely telem/<nodename>/<metric>[/<subsystem>]. As
an example, the topic telem/eb-b-xeongpu-0/cpu/0 is used for reporting the CPU
utilization metric of the subsystem CPU core 0 of the host with node name eb-b-xeongpu-0.
Per default, the sampling frequency of all telemd telemetry values is one second, but it
can also be modified if desired.

Telemd Metric Description
kubernetes_cgrp_cpu Total CPU usage time in nanoseconds of indi-

vidual containers inside Kubernetes Pods
kubernetes_cgrp_blkio Total block I/O usage in bytes of individual

containers inside Kubernetes Pods
kubernetes_cgrp_net Total network I/O usage in bytes of individual

containers inside Kubernetes Pods
kubernetes_cgrp_memory Current memory (RAM) usage in bytes of indi-

vidual containers inside Kubernetes Pods
gpu_util Overall GPU utilization in percent (differentia-

tion between common Nvidia GPUs and Jetson
boards)

gpu_power Overall GPU power usage in milliwatts (only
available on common Nvidia GPUs)

Table 4.3: Relevant resource utilization metrics reported by telemd.

8https://github.com/edgerun/telemd, Accessed: Sept 30, 2022

36

https://github.com/edgerun/telemd

4.2. Experimental Design and Setup for Empirical Measurements

The resource utilization metrics recorded by telemd9 that are relevant for this work are
listed in Table 4.3, whereby the default sampling frequency of one second is maintained,
so each metric is reported once per second. The gpu_power metric is additionally added
to the telemd monitoring agent as part of this work, which is thoroughly described in
Section 4.2.4. In general, telemd reports system-wide runtime data on the node level and
therefore aggregates the measured values, e.g. the total CPU utilization of all CPU cores
of a system, but it may also obtain metrics of individual subsystems such as a specific
network device, disk or CPU core. Regarding the system-wide GPU utilization metric,
i.e. gpu_util, it is important to note that the approach to obtaining the relevant values
differs between common Nvidia GPUs and Jetson boards, which is why the definition of
GPU utilization or GPU load also differs depending on the platform10. The interpretation
of the specific GPU utilization values therefore depends on the underlying architecture.
On common Nvidia GPUs, i.e. amd64 systems such as the Intel Xeon PC, the GPU
utilization is defined as the percentage of time during which the GPU was used within
the elapsed sample period11. In contrast, the tegrastats utility of Nvidia Jetson-based
development boards reports the percentage of the GPU that is currently used with respect
to the current GPU frequency12.

Apart from system-wide metrics, telemd can additionally collect certain resource utiliza-
tion measurements for individual Docker containers and for containers inside Kubernetes
Pods running on testbed nodes and thereby enables fine-grained monitoring on the con-
tainer level13. This is done by so-called cgroup metrics, whereby control groups (cgroups)
are hierarchically organized collections of processes, which can be isolated, restricted and
monitored in terms of resource usage14,15. These cgroup metrics include CPU usage time,
total block I/O usage, total network I/O usage and memory, i.e. RAM, usage. Besides
the memory (RAM) usage, i.e. kubernetes_cgrp_memory, all other cgroup param-
eters reported by telemd, which can be identified by the prefix kubernetes_cgrp_,
represent continuous counters instead of current utilization values. For example, the
kubernetes_cgrp_cpu measurements published at a certain point in time indicate
the total CPU usage time of individual containers running inside Kubernetes Pods up
until the time of measurement, not the usage time since the last measurement and not
the current CPU utilization. This differentiation between the cgroup metrics and the
system-wide metrics, such as the GPU utilization, has to be considered when interpreting
the measured values.

9https://github.com/edgerun/telemd/tree/gpu-support, Accessed: Jan 14, 2023
10https://github.com/edgerun/telemd/tree/gpu-support, Accessed: Jan 14, 2023
11https://docs.nvidia.com/deploy/nvml-api/structnvmlUtilization__t.html#
structnvmlUtilization__t, Accessed: Jan 14, 2023

12https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/AT/
JetsonLinuxDevelopmentTools/TegrastatsUtility.html, Accessed: Jan 14, 2023

13https://github.com/edgerun/telemd#instruments, Accessed: Jan 14, 2023
14https://man7.org/linux/man-pages/man7/cgroups.7.html, Accessed: Jan 14, 2023
15https://docs.docker.com/config/containers/runmetrics/#control-groups, Accessed:

Jan 14, 2023

37

https://github.com/edgerun/telemd/tree/gpu-support
https://github.com/edgerun/telemd/tree/gpu-support
https://docs.nvidia.com/deploy/nvml-api/structnvmlUtilization__t.html#structnvmlUtilization__t
https://docs.nvidia.com/deploy/nvml-api/structnvmlUtilization__t.html#structnvmlUtilization__t
https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/AT/JetsonLinuxDevelopmentTools/TegrastatsUtility.html
https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/AT/JetsonLinuxDevelopmentTools/TegrastatsUtility.html
https://github.com/edgerun/telemd#instruments
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://docs.docker.com/config/containers/runmetrics/#control-groups

4. Methodology

4.2.4 Power Consumption Measurement Facilities

In addition to the telemetry data that is automatically obtained by the experimental
framework, power consumption data need to be captured on the individual devices during
the experiments as well, which is not supported by the testbed out of the box. Therefore,
power consumption measurement facilities need to be incorporated into the existing
testbed setup.

Measuring the power consumption of edge computing platforms is a challenging task
due to the hardware platform heterogeneity that is associated with the edge domain.
Nonetheless, accurate power measurements are crucial for optimizing the power demand
and energy efficiency of computer system components and for developing energy-efficient
software artifacts, which is why the energy demand represents an essential design criteria in
modern computing systems. Especially battery-operated devices, such as mobile platforms,
wireless sensors or wearables, require low power and high energy efficiency in order to
maximize the battery lifetime and therefore the operating time. Even though the power
usage of computing systems is a critical factor, there is a lack of standardized and unified
methods or tools for measuring the power consumption of devices in a platform-agnostic
way. Therefore, a wide variety of measurement facilities exists and in many cases various
techniques need to be applied in order to determine the power consumption of different
device types with diverse hardware architectures. This makes power measurements on
heterogeneous platforms complex and laborious [KHH+20, GCZY21].

In general, there are two different types of measurement facilities for retrieving the
power consumption of devices, namely on-board, i.e. internal, and external methods.
These methods differ in terms of granularity, measuring approach, power data source,
overhead, frequency, setup costs and equipment costs. On-board techniques encompass
power monitoring mechanisms that are integrated into the hardware platform, such as
internal power sensors or monitors. The power values of these on-board facilities can
then be obtained using software. Such internal power readings often include fine-grained
power consumption breakdowns for individual subsystems such as CPU, GPU or memory,
which enables a thorough inspection of the system’s power demand based on multiple
components. As such, on-board measurement instruments typically provide accurate
results at a high level of granularity. These methods however impose a certain, potentially
negligible but still present, overhead, since the internal power values need to be retrieved
by the system itself through software. The specific interfaces that can be used to read the
power values and their sampling frequency also differ among devices and are therefore
highly platform-dependent [KHH+20]. Hence, the equipment costs are low, since no
external power measurement instruments are needed, but the setup costs are rather high,
because each device might require a different setup depending on the specific internal
power measurement techniques integrated into the systems, which can be time-consuming
and laborious. Furthermore, some hardware platforms, such as Google’s Coral Dev Board,
do not provide any means to obtain the current power draw through internal power
monitoring mechanisms, so these techniques generally cannot be applied to all devices.

38

4.2. Experimental Design and Setup for Empirical Measurements

External power measurement facilities require auxiliary devices that are connected to the
platform to be measured and can thereby determine and monitor their power consumption.
These measuring instruments include Power Distribution Units (PDUs) and USB sticks
with power metering capabilities, as well as power monitors that intercept the power
supply of a device and meter the power consumed by the corresponding power outlet
or battery, such as smart plugs. Since these external power meters can report energy
consumption data without relying on software that runs on the device under test, they do
not impose a overhead in this regard. As a result, external power sampling tools can be
attached to multiple hardware architectures and can therefore foster uniform, platform-
agnostic power measurements. Using auxiliary measuring instruments involve reasonable
setup costs, since the setup is identical for all devices, but might come along with high
equipment costs depending on the type of instrument used. The sampling frequency of
power meters can also be restricted, so they might not be applicable to certain use cases
where a high sampling frequency is crucial. Additionally, they only provide coarse-grained
power values at the device level as compared to on-board monitoring mechanisms, which
facilitate fine-grained measurements at component level [KHH+20, GCZY21].

Implementation of Power Monitoring in this Work

In order to be able to obtain the power readings of all edge device types in a uniform
and comparable way, external power measuring instruments are used. Specifically, each
platform listed in Table 4.1 is connected to a smart plug16, which uses an open source
software called Tasmota17 to publish the real-time energy values in a predefined interval
via the MQTT18 messaging protocol. In the course of this work, Tasmota version 7.2.0
is used for all smart plugs. In order to store the power measurements gathered by the
smart plugs in a database, two MQTT clients are set up using the Eclipse Paho MQTT
Python client library19, i.e. one on the eb-a-controller node for zone A and one on the
eb-b-controller for zone B, that both connect to an Eclipse Mosquitto MQTT broker20

of their respective zone and publish the power readings reported by the smart plugs to
dedicated Redis channels. Redis in turn automatically forwards the energy values to
InfluxDB, an open-source time series database, where all other system metrics obtained
by the telemd monitoring agent21 are also stored, as described in Section 4.2.3. This way,
all measured metrics are consistently recorded in one database, which eases later data
analysis steps. The source code for the MQTT client scripts can be found in Appendix A.

The smart plugs used in this work are able to report different energy metrics. The metrics
that are of particular relevance for this thesis are the measured voltage and current, since
the power can be calculated using Ohm’s law and the corresponding formula for power
16https://www.reichelt.com/de/en/wifi-outlet-switch-power-measurement-delock-
11827-p262109.html?r=1, Accessed: Nov 28, 2022

17https://github.com/arendst/Tasmota, Accessed: Nov 28, 2022
18https://mqtt.org/, Accessed: Nov 28, 2022
19https://pypi.org/project/paho-mqtt/, Accessed: Jan 13, 2023
20https://mosquitto.org/, Accessed: Jan 13, 2023
21https://github.com/edgerun/telemd, Accessed: Nov 28, 2022

39

https://www.reichelt.com/de/en/wifi-outlet-switch-power-measurement-delock-11827-p262109.html?r=1
https://www.reichelt.com/de/en/wifi-outlet-switch-power-measurement-delock-11827-p262109.html?r=1
https://github.com/arendst/Tasmota
https://mqtt.org/
https://pypi.org/project/paho-mqtt/
https://mosquitto.org/
https://github.com/edgerun/telemd

4. Methodology

calculation, i.e. Power (watts) = V oltage (volts) · Current (amperes). As the internal
power monitors obtain the power consumption in milliwatts, the calculated power is also
converted from watts (W) to milliwatts (mW) in order to facilitate comparability among
the different measurement facilities. Apart from these values, other energy data such as
apparent power or reactive power are also measured and published by the smart plugs.
While the Galileo framework generally reports telemetry metrics once per second, the
shortest telemetry period supported by Tasmota is 10 seconds. In order to bridge this
gap and receive more frequent updates, the PowerDelta22 configuration of Tasmota is
used, which enables the smart plugs to immediately report on power changes via MQTT
telemetry messages that are emitted in addition to the frequent updates defined by the
telemetry period. Therefore, the maximum delta can be set to report on percentage
power change, e.g. 1%, or on absolute power change, e.g. 1 W. In terms of the energy
monitoring devices used in this work, the maximum delta of the PowerDelta configuration
of all smart plugs is set to 1%. This way, it can be assumed that the power consumption
changed less than 1% when no update is issued, which is negligible.
In addition to the external power meters that are connected to each edge device, the
Jetson boards are monitored using an internal, on-board power measurement mechanism
in order to be able to compare the software-based power readings with the power values
reported by the external monitoring instruments. This way, the extent of deviations
between these two inherently different measurement facilities can be determined. The
two Nvidia Jetson boards specified in Table 4.1 can be measured uniformly using their
integrated power monitors. For this purpose, a Python daemon script is developed for
retrieving the power values of the boards using the jetson-stats Python package23,24,
which can be applied for monitoring and controlling Nvidia Jetson boards. Internally,
the jetson-stats package includes jtop, which is a system monitoring utility that
can access the real-time status of Nvidia Jetson boards, such as CPU, GPU, disk and
fan status, as well as power stats25. Using the jetson-stats package, it is therefore
possible to read the current power consumption of a Jetson board in milliwatts, among
other internal values. The sampling granularity for the power readings in the Python
daemon script is set to one second as default value, but it can be modified as desired.
The script, which is contained in Appendix A, is then executed on every Jetson board,
whereby the power consumption overhead of running this program is considered rather
small and can thus be neglected.
Regarding the Intel Xeon PC equipped with an Nvidia GPU, the total power usage is
also measured by the smart plugs as described above. Additionally, similar to the Jetson
boards, internal power measurements of the Intel Xeon are also envisaged. For this
purpose, the Nvidia Management Library (NVML) library26 is applied, which provides
22https://tasmota.github.io/docs/Commands/#power-monitoring, Accessed: Dec 14, 2022
23https://github.com/rbonghi/jetson_stats, Accessed: Oct 3, 2022
24https://pypi.org/project/jetson-stats/, Accessed: Oct 3, 2022
25https://github.com/rbonghi/jetson_stats#jtop, Accessed: Oct 3, 2022
26https://developer.nvidia.com/nvidia-management-library-nvml, Accessed: Nov 28,

2022

40

https://tasmota.github.io/docs/Commands/#power-monitoring
https://github.com/rbonghi/jetson_stats
https://pypi.org/project/jetson-stats/
https://github.com/rbonghi/jetson_stats#jtop
https://developer.nvidia.com/nvidia-management-library-nvml

4.2. Experimental Design and Setup for Empirical Measurements

means to monitor and manage Nvidia GPU devices. NVML thereby includes information
about the power usage of integrated GPUs of the Nvidia Tesla product line. As the GPUs
embedded into the Jetson boards do not belong to this product category, this feature is
only available for the Intel Xeon GPU. In order to be able to obtain the power consumption
of the GPU, a C script that retrieves the internal power usage of the GPU and the
connected circuitry such as memory by means of NVML27 is developed. As mentioned
above, this GPU power reading functionality is integrated into the telemd monitoring
agent as an additional metric, since telemd does not include any power consumption
measurements. Analogous to the jtop script, the source code of the developed C script is
also attached in the appendix, namely in Appendix A.

To sum up, Table 4.4 provides an overview over the specific power measurement mecha-
nisms that are applied to the individual edge devices.

Device Internal External
Intel Xeon Total power: ✗

GPU power: ✓

Total power: ✓

Jetson Xavier NX Total power: ✓

GPU power: ✗

Total power: ✓

Jetson Nano Total power: ✓

GPU power: ✗

Total power: ✓

Table 4.4: Internal and external power measurement mechanisms used for each device.

4.2.5 Profiled Serverless Functions
In order to be able to deploy applications on the testbed, serverless functions are
required. Therefore, different tasks that are implemented as OpenFaaS-based functions are
chosen, since they can be deployed and profiled by means of the Galileo experimentation
framework. All functions that are employed in this thesis are implemented in Python
and are based on TensorFlow (TF), which is a library for machine learning and artificial
intelligence. The specific functions used for profiling generally reside in the context of
deep learning models that perform inference tasks, because all of the targeted devices
are equipped with hardware accelerators.

Inference functions are chosen as reference applications since they reflect data-intensive
serverless edge computing applications and therefore represent typical examples of
edge intelligence use cases. Training ML models generally requires powerful high-end
computing hardware, whereas performing inference with pre-trained models is usually
less computation- and resource-intensive [WBC+19]. As the focus of this work lies on
heterogeneous edge devices that exhibit different levels of resource constraints, only
27https://docs.nvidia.com/deploy/nvml-api/group__nvmlDeviceQueries.html#group_
_nvmlDeviceQueries, Accessed: Mar 6, 2023

41

https://docs.nvidia.com/deploy/nvml-api/group__nvmlDeviceQueries.html#group__nvmlDeviceQueries
https://docs.nvidia.com/deploy/nvml-api/group__nvmlDeviceQueries.html#group__nvmlDeviceQueries

4. Methodology

inference tasks are carried out in order to ensure that the hardware characteristics of the
used platforms are sufficient for processing the given workloads. Revising the classification
system for edge intelligence platforms introduced by the authors of [ZCL+19] as described
in Section 2.1.2, the approach applied in this thesis targets level 3 of the proposed scheme,
i.e. on-device inference at the edge with cloud-based model training. A common use case
for such level 3 applications is cognitive augmentation, which uses augmented reality
and AI methods to perform inference at the edge and thereby enables real-time video
processing for example [RHS+21].

In general, two types of functions are employed in the course of this thesis, namely
TensorFlow 2 and TensorFlow Lite (TFLite) functions. As compared to TensorFlow 2,
TensorFlow Lite is a more lightweight library that is optimized for the deployment of ML
models on mobile, IoT or edge devices. However, TFLite-based functions can only run
on GPUs of Android or iOS devices, besides common CPUs. Hence, these functions do
not support the execution of a ML model on Nvidia GPUs, which is why TensorFlow 2
functions are required in order to be able to profile the Nvidia GPUs of the chosen edge
computing platforms. TensorFlow 2-based functions can be executed on both CPUs and
GPUs, which can be specified using an environment variable, so one TF2 function can be
used for CPU-centered and for GPU-centered profiling.

Regarding the specific functions used for the experiments, existing inference applications
are applied. In general two TF2 functions and one TF Lite function is selected. While
the TF Lite function is already incorporated into the Galileo experimentation framework,
which requires only minor modifications, the TF2 functions have to be manually integrated
into the framework before being able to deploy and profile them. Table 4.5 provides a
summary of the three functions that are used, including the type of task they perform and
the possible execution target, which depends on the usage of TensorFlow 2 or TensorFlow
Lite. All these functions can be found on GitHub in the galileo-experiments-functions
repository28.

Function Task TF Version Execution Target
Resnet Image Classification TensorFlow 2 CPU: ✓

GPU: ✓

Efficientnet Image Classification TensorFlow 2 CPU: ✓

GPU: ✓

Objectdetection Object Detection TensorFlow Lite CPU: ✓

GPU: ✗

Table 4.5: Serverless functions used for the experiments.

28https://github.com/edgerun/galileo-experiments-functions, Accessed: Jan 13, 2023

42

https://github.com/edgerun/galileo-experiments-functions

4.2. Experimental Design and Setup for Empirical Measurements

All inference applications used in this work generally preprocess the input data they
receive from the user via an HTTP request, e.g. an image, load a pre-trained ML
model and perform inference by applying the loaded model to the given input data and
generating an output such as a prediction or classification. The result of the inference is
then transmitted to the user via an HTTP response. In terms of the two TF2 functions
used in this work, loading the model is triggered upon the first user request, while the
loaded model is then cached for successive requests. Therefore, initially calling one of the
TF2 functions by sending an HTTP request generally takes significantly longer than the
subsequent requests. Regarding the TF Lite functions, the model is reloaded upon every
request, so all requests - including the first one - approximately take a similar amount of
time, assuming that there is no overlap between multiple requests.

4.2.6 Stress-ng Workload Generator
In order to generate a more comprehensive and more diverse training data set for the
machine learning models, a versatile stress workload generator is used to execute stress
tests under controlled conditions. To this end, the stress-ng tool is utilized, which is able
to strain a system in many different, highly customizable ways. Stress-ng offers over
290 types of stress test29, which are called stressors and can be arbitrarily combined30.
The different stressors are grouped together into stressor classes, such as CPU for CPU-
intensive stress tests or IO for generic Input/Output stress tests31. The CPU stressor
for example encompasses various stress methods that demand a lot of computing power
and thus CPU resources, such as Fast Fourier Transform (FFT) or matrix multiplication.
If the CPU stressor is used, all related stress methods are performed sequentially in a
round-robin mode. Different stressors can either be executed separately or combined as
desired, while combined stressors run in parallel by default, but can also be invoked one
by one if required. Unfortunately, stress-ng does not support GPU stress tests, so all
computing tasks can only be executed on CPUs.

Using stress-ng within the Galileo experimentation framework enables more targeted
and controlled experiments, since specific workloads can be generated while monitoring
the resource usage and power consumption. This also fosters more heterogeneous data
sets for the model training phase, so that the final prediction models are presumably
more generalizable and as independent from the serverless functions as possible, because
they are solely based on the resource utilization metrics. As a result, the models are
more likely to be able to deal with unknown functions as they do not need to rely on any
information about the serverless function associated with certain resource usage values.

Furthermore, platform-specific variations in terms of power consumption can easily
be identified using stress-ng tests since they can strain the devices equally based on
predefined CPU or memory load for example, so the resource utilization rates should be
on a similar level for all devices. Therefore, the resulting power consumption of different
29https://github.com/ColinIanKing/stress-ng, Accessed: Jan 8, 2023
30https://github.com/edgerun/edge-chaos, Accessed: Jan 8, 2023
31https://wiki.ubuntu.com/Kernel/Reference/stress-ng, Accessed: Jan 8, 2023

43

https://github.com/ColinIanKing/stress-ng
https://github.com/edgerun/edge-chaos
https://wiki.ubuntu.com/Kernel/Reference/stress-ng

4. Methodology

edge devices for the same workload, i.e. for similar resource utilization values, can be
compared, which enables the assessment of the impact of hardware heterogeneity on the
power draw of computing platforms.

4.2.7 Experimental Procedure
All experiments conducted in the course of this thesis are executed by means of the
Galileo experimentation framework as described earlier in Section 4.2.1, whereby every
experiment is submitted as a profiling experiment. The framework is responsible for
deploying the Kubernetes Pods associated with each experiment on the appropriate
testbed nodes.

The empirical measurements are composed of two types of experiments. While the function
invocation experiments are targeted at profiling the resource usage of certain serverless
functions, as detailed in Section 4.2.5, the stress-ng experiments aim at generating
workload under controlled conditions and monitoring the corresponding resource usage,
as introduced in Section 4.2.6. The function invocation experiments therefore focus
on executing identical tasks on different edge devices in order to assess the impact of
hardware heterogeneity on the resource usage of computing platforms, whereas the stress-
ng experiments strain the devices using equal loads, so the influence of the hardware
heterogeneity on the power consumption under similar resource utilization rates can be
ascertained.

Table 4.6 comprises the individual experiment configurations of the function invocation
experiments, whereas Table 4.7 contains the experiment configurations of the stress-ng
experiments. Each row of these two tables therefore represents one separate configuration
that encompasses the specific parameters which are used for the empirical measurements.

Function Execution Target # Requests Request Pattern
Resnet CPU 100 interval.pkl
Resnet GPU 100 interval.pkl
Efficientnet CPU 100 interval.pkl
Efficientnet GPU 100 interval.pkl
Objectdetection CPU 100 IA time: 2s

Table 4.6: Configurations for function invocation experiments (five configurations).

In general, each of the experiment configurations listed in Table 4.6 and Table 4.7 is
executed on every edge device outlined in Section 4.1, namely the Intel Xeon PC, the
Jetson Xavier NX board and Jetson Nano board. Furthermore, in order to ensure
consistency across measurement results, every experiment configuration is sequentially
repeated five times in a row with a 15 seconds break in between the individual runs,
which results in a series of five repetitions of the same configuration on each platform.
The 15 seconds break in between the runs is required so that the Kubernetes Pods

44

4.2. Experimental Design and Setup for Empirical Measurements

Stressor Class Stressor Value Option Value Duration
CPU cpu 1 – – 100s

cpu 2 – – 100s
cpu 4 – – 100s
cpu 8 – – 100s

CPU cpu 0 (all) cpu-load 25% 100s
cpu 0 (all) cpu-load 50% 100s
cpu 0 (all) cpu-load 75% 100s
cpu 0 (all) cpu-load 100% 100s

Virtual Memory vm 1 vm-bytes 20% 100s
vm 1 vm-bytes 40% 100s
vm 1 vm-bytes 80% 100s

Generic input/output iomix 1 – – 100s

Table 4.7: Configurations for stress-ng experiments (12 configurations).

of an experiment run can be terminated and removed before the next experiment
starts, otherwise conflicts may occur. In summary, there are 17 disparate experiment
configurations, five for function invocations and 12 for stress-ng tests, which need to be
carried out on all three devices and are replicated five times. As a result, 255 experiment
runs are conducted in total. A complete list of the experiments performed for the function
invocation configurations can be found in Appendix B, whereas the full set of experiments
carried out for the stress-ng configurations is attached in Appendix B.

Regarding the request patterns used for the function invocation experiments, a distinction
needs to be made between TF2 and TF Lite functions, since the TF2 functions are able
to cache the loaded ML model, while the TF Lite function reloads the model upon every
function call. The request patterns used for each function are also contained in Table 4.6.
In general, the goal is to isolate each request as much as possible in order to facilitate
successive data preprocessing tasks. Therefore, the Round Trip Time (RTT) of a request
is crucial so that the requests do not overlap. As the RTT of all functions is considerably
smaller than two seconds, an interarrival time of two seconds is sufficient to prevent
overlaps. However, since the first request typically takes significantly longer than the
subsequent ones in terms of the TF2 functions, because the ML model is loaded upon the
first request, the interval between the first and the second request is set to 60 seconds for
the TF2 functions. This interval is chosen in order to ensure that the first two requests
do not overlap. As a result, the second request is sent 60 seconds after the first request
and all subsequent requests are sent in a two second interval. This request pattern is
reflected by the interval.pkl file. Regarding the TF Lite function, i.e. the objectdetection
function, this differentiation of interarrival times is not necessary, since the model is
loaded in every request. Consequently, a universal interval of two seconds can be set for
all requests.

45

4. Methodology

Baseline Profiling

In addition to the experiments described above, baseline profiling tests are conducted
for the purpose of determining the average power consumption of each device in idle
state. Therefore, 100 consecutive power measurements by means of the smart plugs are
taken when there is no load on the devices. The resulting values for each edge device are
then aggregated using the mean values. As a result, the mean idle power consumption
can be used as a baseline for comparisons with the power draw measured during the
experiments.

4.3 Analysis of Empirical Measurement Data
4.3.1 Data Preprocessing
Before exploring the empirical measurement data, the raw values need to be preprocessed
in order to facilitate interpretations and comparisons, since especially the resource
usage metrics that represent continuous counters cannot simply be rated without any
preparatory steps. Furthermore, the obtained readings need to be converted into a
simulator-friendly data format, which is also achieved through data preprocessing. This
transformation is required because the final power prediction models are integrated into
the faas-sim simulation framework, which cannot deal with the actual resource utilization
values available as time-series data. Instead, it can only model the resource consumption
of edge devices through estimates and approximations. Consequently, these preprocessing
tasks therefore also enable the models to be trained with samples that have the same
structure as the final input parameters provided by the framework for inference tasks.
This is necessary since the prediction models should be able to perform inference based
on the input they receive from the simulator during a simulation. By preprocessing the
raw measurement readings, the inherent discrepancy between the actual resource usage
values in the real world and the resource modeling of the simulation environment can be
taken into account during the model development step, so more accurate results can be
achieved.

Preparatory Steps

Prior to the actual data preprocessing, which aims to map the raw measured values
to inputs the simulator can work with, can take place, the data has to be cleaned in
preparation for further processing.

The data cleaning step for the function invocation experiments involves eliminating the
first request of every experiment run in order to only consider the relevant measurement
values, because only warm starts of serverless functions are focused in this work. As
mentioned earlier, the first request of an experiment run initially loads the model into the
processing unit and therefore requires significantly longer and also demands more resources
than the subsequent calls, because the model can be cached for successive requests once
loaded. Even though this only holds true for the TensorFlow 2 functions and not for

46

4.3. Analysis of Empirical Measurement Data

the TensorFlow Lite functions, this procedure is applied for every function invocation
experiment for the sake of consistency and convenience. Since the data preprocessing
focuses on determining the function execution time and the average resource usage of
one function call, leaving these traces in the data set would distort the calculated values
for the function execution time as well as the resource consumption per request, which is
why they are omitted. In order to take the removal of the first trace in every function
invocation experiment into account for calculating the resource consumption per request,
the telemetry readings associated with each of the removed traces need to be eliminated
from the data set as well.

Regarding the stress-ng experiments, no data cleaning tasks are required. Due to the
design of the Galileo experimentation framework, the stress-ng experiment runs also
encompass two serverless function invocations, one at the beginning and one at the end
of each run. However, the preprocessing of the stress-ng experiments is designed in a
way that only the resource usage of the container running the stress tests is considered,
not the resource usage of the container hosting the serverless function. This way, solely
the resource usage caused by the stress-ng tests is utilized for further processing, while
the additional computational burden imposed by the two function calls is disregarded.

Data Preprocessing Tasks

Preprocessing the raw measurement data is done by determining the resource usage
of one function invocation based on the type of function and the underlying device on
which the function is executed. The preprocessing therefore consists of three subtasks.
Firstly, since the faas-sim is a trace-driven simulator, the traces of the profiled functions,
more precisely the Function Execution Time (FET) as reported by the traces, need to be
fitted to the simulation framework. This way, the performance of a device on a certain
function invocation can be modeled in the simulation framework. Secondly, the telemetry
readings must be transformed, because the simulator cannot deal with the actual resource
utilization during a simulation but has to rely on approximations thereof for modeling
the resource usage of requests. Hence, the resource usage demanded by a single function
call has to be computed for each kind of function and for every edge device type. Thirdly,
the measured power consumption values have to be preprocessed in order to be able to
analyze the interrelation between resource usage and power consumption. All of these
steps, which are performed in Python by means of Jupyter notebooks32, are thoroughly
described in the following.

Performance Modeling Due to the trace-driven nature of the faas-sim simulation
framework, the traces recorded during the experiments need to be converted into a format
that can be handled by the simulator, whereby one trace represents one function invocation
triggered by a user request. For this purpose, the performance modeling approach of
the faas-sim simulator is applied. Therefore, the Function Execution Time (FET) of a
function call is utilized, which represents the performance of a device on a single function
32https://jupyter.org/, Accessed: Jan 18, 2023

47

https://jupyter.org/

4. Methodology

call in terms of execution speed. The FET is then mapped to a simulator-friendly data
format by taking the execution time of each trace and fitting it using a log-normal
distribution. This way, the FET of a function call can be simulated by sampling from the
distribution, which yields more disparate FETs as compared to only taking the average
over all FETs. Consequently, this makes the simulations more realistic. Since the runtime
of a function invocation highly depends on the function itself, i.e. the program that is
run upon a user request, and the underlying hardware platform the function is executed
on, the preprocessed FET is always associated with a particular function and a certain
device. As a result, the performance of the devices with respect to serverless function
calls can be modeled within the simulation framework.

Resource Modeling As the faas-sim simulates systems based on traces, the mean
resource utilization of a single function invocation, i.e. a single trace, has to be determined
so the simulator is able to model the resource consumption of requests. Therefore, the
traces and telemetry metrics are utilized in order to compute the hardware utilization of
each individual function call before the calculated values are averaged across all requests
belonging to the same function and executed on the same device. As a result, analogous to
the performance modeling, the resource modeling is also conditional on the invocation of
a specific function on a particular node, since the hardware usage strongly depends on the
underlying platform and the executed application. This resource modeling procedure is
thereby derived from the approach applied in [Rai21]. Due to the fact that the simulator
can only estimate the resource usage of function calls, the preprocessing of the telemetry
data is based on the assumption that each request has a constant resource utilization
throughout the whole function invocation. This represents an inherent approximation
and thus simplification made by the faas-sim simulation framework.

Apart from the system-wide GPU utilization metric, all other resource usage measurements
represent Kubernetes cgroup metrics, which means that only the resource consumption
of the container running the serverless function inside a Kubernetes Pod is considered for
the data preprocessing tasks. As mentioned in Section 4.2.3, all cgroup metrics except for
the RAM usage, i.e. CPU usage time, block I/O and network I/O, which are published
by the telemd monitoring agent represent continuous counters. Consequently, for example
the CPU usage time at a certain point can be interpreted as the total usage time of the
CPU so far, not the time of use since the last measurement and not the current CPU
utilization. To retrieve the usage time since the last measurement, the difference between
two consecutive measurements has to be calculated. This way, the average resource usage
for one function invocation can be determined.

Contrarily, the system-wide GPU metric and the cgroup memory (RAM) metric have
to be interpreted and processed in a different manner. The reason for this distinction
is the fact that these two metrics do not report continuous counters, but the current
utilization values at the time of measurement. Hence, they only represent the resource
usage at a certain point instead of the average utilization or the total usage time up to
a specific measurement. This evidently affects the accuracy of the measured values as

48

4.3. Analysis of Empirical Measurement Data

compared to the other metrics and is thus a limitation of telemd. In order to obtain the
mean GPU utilization and RAM usage per request, the corresponding measurements
need to be averaged for each function call and then across all calls.

Telemetry metrics that are reported in bytes, namely block I/O and network I/O usage,
are processed twofold in order to determine the data rate, i.e. the amount of bytes read
or written per second on the one hand, and the total amount of data read or written
per request on the other hand. As listed in Table 4.8, the resource usage preprocessing
includes multiple metrics, namely CPU utilization, block I/O rate, total block I/O per
request, network I/O rate, total network I/O per request, memory (RAM) utilization and
GPU utilization. Regarding the CPU utilization, the resulting percentage can be above
100%, since the CPU usage time is summed up across CPU cores and no normalization in
terms of CPU cores is applied during preprocessing. Consequently, on multi-core hosts,
the CPU usage can reach values up to N · 100%, where N represents the number of cores.

Raw Telemd Metric (Unit) Preprocessed Metric (Unit)
kubernetes_cgrp_cpu:
total CPU usage time (ns)

CPU utilization per request (%)

kubernetes_cgrp_blkio:
total block I/O usage (bytes)

Total block I/O usage per request (kilobytes),
block I/O data rate (kilobytes/second)

kubernetes_cgrp_net:
total network I/O usage (bytes)

Total network I/O usage per request (kilobytes),
network I/O data rate (kilobytes/second)

kubernetes_cgrp_memory:
memory (RAM) usage (bytes)

Memory (RAM) usage per request (megabytes)

gpu_util: GPU utilization (%) GPU utilization per request (%)

Table 4.8: Resource usage preprocessing of individual telemetry metrics.

An additional task of the resource usage preprocessing is to determine the average resource
consumption of the stress-ng stress test in order to be able to incorporate these data
sets into the model development process as well. Although the stress-ng experiments do
not represent serverless function calls, the correlation between resource usage and power
consumption of the stress tests should still be integrated into the prediction models for
the purpose of developing more generalizable models, as described earlier. Hence, the
resource usage of the individual stress tests is averaged for each experiment run. This
way, the stress-ng data sets can also serve as training data for the machine learning
models, which facilitates a more distinct set of training samples. Due to the fact that
stress-ng can only issue stress tests on the CPU and therefore does not provide GPU
support, the GPU utilization can be set to zero.

Power Consumption Preprocessing Since the external measurements performed
by the smart plugs represent the only uniform method of power monitoring across all
devices, the values reported by the smart plugs are used for the development of the
machine learning models. Analogous to the GPU and memory (RAM) measurements,

49

4. Methodology

the power consumption values also represent the current power consumption at the
time of measurement, i.e. a snapshot of the system’s energy wastage. Therefore, the
preprocessing of the power usage is similar to the one applied for GPU and memory
utilization. In order to obtain the mean power consumption of one request, all power
values measured during a function invocation are averaged for each trace and then the
mean across all requests of a function is taken. The number of power readings per
request may differ due to the PowerDelta configuration applied for the smart plugs as
described in Section 4.2.4. Since the plugs can only periodically publish the energy values
in a 10 second interval, the PowerDelta value is set to 1%, which enables additional
recordings in case of power changes over 1%. This way, it can be assumed that the
power consumption between two consecutive measurements diverges at most 1% from the
reported values, which is negligible and therefore supports the preprocessing concept of
averaging the values. As the external power values are recorded in milliwatts, the mean
power consumption per request has the same measuring unit.

Similar to the performance and the resource modeling, the power consumption preprocess-
ing is also dependent on the type of function that is executed as well as the underlying
hardware. However, it has to be noted that the resource modeling focuses solely on the
resource usage of the function invocations or stress-ng tests respectively, but the power
wastage is attributed to the whole device. Hence, the power consumption also takes the
resource utilization of other (sub-)processes running on the system into account, while the
resource usage preprocessing does not. As a result, the interrelationship between resource
usage and power consumption represents an approximation, since the fine-grained power
draw of an individual container running in a Kubernetes Pod cannot be determined by
means of the power measurement facilities used in this work.

To give an example of the structure of the preprocessed data sets in terms of resource
usage and power consumption, Table 4.9 shows the resulting values for the five repetitive
runs of the resnet function executed on the CPU of the Intel Xeon. Therefore, the data
set shown in this table contains the records for one experiment configuration. These
records thus represent the average resource usage and power consumption of one function
invocation on a particular node. The CPU and GPU metric are presented as percentages,
for the block I/O and network I/O the total amount of data in kilobytes is depicted,
the RAM usage is defined in megabytes and the power consumption is illustrated in
milliwatts.

4.3.2 Analysis of Measurement Results
After performing the experiments according to the procedure detailed in Section 4.2.7
and preprocessing the raw data, the empirically obtained measurements can be examined
in the context of a preliminary, exploratory data analysis in order to better understand
the structure of the data and to generate first insights from the preprocessed measured
values. This represents a subtask of the data analysis step in the model development
process. For this purpose, the raw readings could not be used since the resource usage
counters are hard to interpret and to compare across experiments, so the preprocessed

50

4.3. Analysis of Empirical Measurement Data

CPU GPU Block I/O Network I/O RAM Usage Power
112.279074 0.0 0.0 2699.669837 722.561526 17224.894737
120.459088 0.0 0.0 2701.658510 659.388712 16804.000000
120.783417 0.0 0.0 2700.954367 665.511894 17319.720588
124.735307 0.0 0.0 2704.950388 705.664995 17280.012048
119.159790 0.0 0.0 2703.303786 719.569732 17507.196721

Table 4.9: Preprocessed average resource usage and power consumption per request of
five repetitive runs.

values are employed. The preprocessed data sets represent the average resource usage and
power consumption of one function invocation, i.e. one trace, and encompass five records
for each experiment configuration, as shown in Table 4.9. There are several analytical
investigations that are of particular interest for this work, which are discussed in the
following.

Resource Usage and Power Consumption of Repetitive Runs

In order to determine the measurement errors, the measured values of the repetitive
runs of each experiment configuration executed on all edge devices can be examined. As
stated earlier, every configuration is replicated five times on each platform to ensure
consistency and reliability of measured values. By comparing the preprocessed variables
of repeated experiments, the deviations in terms of resource usage measurements and
power readings can be ascertained, which can give indications about the distribution of
the data and the measurement errors.

For this purpose, box plots, or more specifically box-and-whisker plots33, are used to
visualize these discrepancies. The boxes of these plots contain the quartiles of the data
with the bottom and top of a box representing the borders of the first quartile and the
third quartile, respectively. The line inside the boxes shows the median of the distribution,
whereas the whiskers extend the data set based on a function using the inter-quartile
range. Outliers are visualized as individual points beyond the whiskers. Moreover, the
function name contained in these plots describes the serverless function executed on the
testbed node, whereby the suffix indicates the execution target, i.e. whether the function
is carried out on the CPU or on the GPU. The power consumption values come from the
smart plugs and thus represent the externally measured power draw of the devices, since
the smart plugs constitute the only uniform measurement facility across all three types
of edge devices.

Figure 4.3 illustrates the series of repetitive runs conducted for the resnet function on
the GPU of the Intel Xeon PC, i.e. the eb-b-xeongpu-0 node of the testbed, and the
corresponding resource usage and power consumption per request on average. For the

33https://seaborn.pydata.org/generated/seaborn.boxplot.html, Accessed: Feb 14, 2023

51

https://seaborn.pydata.org/generated/seaborn.boxplot.html

4. Methodology

sake of completeness, the mean Function Execution Time (FET) is also integrated. As
the values highly vary, the plots could not be aggregated into a single plot. The average
CPU utilization values across all five runs, which are represented by the second, i.e. the
orange, box range from 106.3% to 110%. The absence of outliers implies an acceptable
distribution of data. As mentioned earlier, the CPU utilization values are not normalized
based on the number of cores, so utilization rates of over 100% are plausible. Nonetheless,
even though the function is executed on the GPU, the GPU utilization is noticeably low
with a median around 0.68%, as indicated by the line inside the third, i.e. the green, box.
However, this observation is verified manually using the NVIDIA System Management
Interface (nvidia-smi) command-line utility tool34, which is able to monitor the real-time
GPU utilization of Nvidia GPUs. In general, the nvidia-smi tool also reports GPU
utilization values between 0% and 1% during the function invocations on the Intel Xeon.
Consequently, the workload caused by the function executions is presumably too low
to heavily stress the available GPU on the Intel Xeon, which is why the GPU is only
minimally utilized.

Figure 4.3: Average FET, resource usage and power consumption of the resnet-gpu
function on the Intel Xeon.

Moreover, the absence of any block I/O in Figure 4.3 indicates that the images that
are used for the input of the functions are so small that they can be stored in-memory.
The network I/O can be attributed to receiving incoming requests including images and
sending back the corresponding responses. Furthermore, it becomes evident that the
average power readings differ across the individual repetitions, since they approximately
range between 15,000 mW and 16,500 mW, which makes up a difference of 1.5 W. This
discrepancy indicates that the power measurements slightly fluctuate, which is also the
case for the resource usage. However, the measurement errors in terms of the power
consumption of these five consecutive runs on the Intel Xeon are still tolerable and fairly
reasonable.

This key finding regarding the consistency and stability of the smart plug measurements
can also be observed in other experiment configurations, where either the serverless
function or the edge device type varies. Figure 4.4 shows the distribution of the data for
34https://developer.nvidia.com/nvidia-system-management-interface, Accessed: Feb

12, 2023

52

https://developer.nvidia.com/nvidia-system-management-interface

4.3. Analysis of Empirical Measurement Data

the same function as shown in Figure 4.3, but executed on a different hardware platform,
namely the Jetson Nano board. From the rightmost plot, which shows the average power
consumption across the five repetitive runs of this function on the eb-a-jetson-nano-0
node, it can be derived that the power values are also not widely scattered but rather
concentrated with a maximum difference of 300 mW. As a result, the distribution of
power consumption data is even lower on the Jetson Nano than on the Intel Xeon.

Another interesting discovery that can be deduced from the plot shown in Figure 4.4 is
that the mean GPU utilization rates of the individual runs are approximately spread
between 31.5% and 43%, which constitutes a considerable difference of 11.5%. Contrarily,
the CPU values only range between nearly 62.5% and 64.5%, so only 2% fluctuation
can be noted here. As a consequence, it can be concluded that the GPU utilization
measurements are presumably more error-prone than the CPU measurements. This
observation can be traced back to the fact that the CPU metric represents a continuous
counter, whereas the GPU utilization constitutes punctual measurements of the current
usage at a certain point in time, which is highly dependent on the timing and the
frequency of the measurements. Since all telemd metrics including the GPU metric are
reported once per second and the function execution takes less than one second with
this experiment configuration, as shown by the mean FET, the GPU utilization metric
of telemd is very volatile and fragile to rapidly changing values as they might not be
captured.

Figure 4.4: Average FET, resource usage and power consumption of the resnet-gpu
function on the Jetson Nano.

In addition, when comparing the FET, resource usage and power consumption of the
resnet function executed on the GPU of the Intel Xeon, see Figure 4.3, with the execution
on the GPU of the Jetson Nano, see Figure 4.4, the results clearly show the impact of the
disparate hardware characteristics of these two computing architectures. The hardware
heterogeneity of edge devices therefore significantly influences the function execution
time of a serverless function executed on two different platforms, as well as the resource
usage, which highly differs across devices, and the power consumption. Regarding the
FET, the resnet-gpu function has a median FET of 0.23 seconds on the Intel Xeon as
compared to roughly 0.7 seconds on the Jetson Nano, so the execution speed deviates
among these two edge devices. Furthermore, besides the CPU utilization which exhibits a

53

4. Methodology

gap of around 45%, the GPU utilization is of particular interest, since the resnet function
is executed on the GPU in these two experiment configurations. While one function
invocation utilizes approximately 0.7% of the GPU on the Intel Xeon, about 35% of the
GPU is utilized when calling the same function on the Jetson Nano. The block I/O and
RAM usage also varies between these two devices. Hence, even though the same task, i.e.
the same serverless function with an equal request pattern, is executed on both platforms,
the resulting resource usage variables indisputably diverge.

Moreover, the power consumption of the two devices also notably differs. With a median
value of 15,700 mW across all five runs, the Intel Xeon has a substantially higher power
consumption per request than the Jetson Nano with not even 3,700 mW. Due to these
severe discrepancies in terms of execution speed, resource usage and power consumption
across hardware platforms, constructing a single, cross-platform predictive model that
achieves sufficient power prediction accuracy across different hardware architectures is
assumed to be unfeasible. Therefore, the establishment of multiple, platform-specific
power prediction models is as it is anticipated that they are able to provide a viable
and more appropriate approach for modeling the power consumption of heterogeneous
edge devices. This way, the considerable impact of hardware heterogeneity on resource
utilization rates and power draw in the edge domain can be taken into account for
energy modeling. As a consequence, this valuable insight is specifically important for the
subsequent machine learning model development phase and is henceforth considered in
this context.

By looking at the average resource usage of the efficientnet experiments conducted on
the CPU of the Jetson Xavier NX board as presented in Figure 4.5, another striking
observation, namely the presence of GPU utilization values above zero, becomes evident.
Since these experiments are executed on the CPU only, the GPU utilization is expected to
be 0.0%. However, since this is not the case, manual verifications of the measured values
are required for proving the authenticity of the data. To this end, the real-time GPU
usage of the Jetson Xavier NX board in idle state is manually monitored by means of jtop.
Hereby, random GPU utilization peaks of up to 30% are registered, although no function
and no stress tests are executed on the device during the validation procedure. Potential
causes for this behavior are other processes that run on the GPU. Therefore, an average
GPU utilization of around 1-1.5%, as measured by the experimentation framework, can
be attributed to this unexpected behavior of the Jetson board. This finding however can
only be observed for the Jetson Xavier NX, not the Jetson Nano.

For the purpose of affirming the inexplicable GPU utilization on the Jetson Xavier NX
board, the five objectdetection runs carried out on this device are visualized in Figure 4.6.
As recognizable in this figure, these experiments also exhibit GPU utilization values
above 1% even though the objectdetection function represents a TF Lite function that
cannot be executed on Nvidia GPUs, because it only provides GPU support for Android
or iOS devices. Consequently, this observation also refutes the potential suspicion that
the efficientnet-cpu function depicted in Figure 4.5 is erroneously executed on the GPU
instead of the CPU.

54

4.3. Analysis of Empirical Measurement Data

Figure 4.5: Average FET, resource usage and power consumption of the efficientent-cpu
function on the Jetson Xavier NX.

Figure 4.6: Average FET, resource usage and power consumption of the objectdetection
function on the Jetson Xavier NX.

In order to be able to compare the extent of fluctuations of the power values across the
respective repetitive runs more easily, the plots in Figure 4.7 and Figure 4.8 provide the
distributions of power readings for each individual function executed on each hardware
platform. Since the Intel Xeon and the Jetson Xavier NX exhibit a similar level of power
consumption, the data sets of these two devices are aggregated into one plot while the
data sets of the Jetson Nano are illustrated in a separate plot due to its significantly lower
level of energy wastage. This way, the quality of the power consumption measurements
and the measurement deviation of the smart plugs can be assessed.

In terms of the mean power draw variations of the Intel Xeon and the Jetson Xavier NX, it
can be noted that the individual distribution vary across devices and also across functions
on the same platform. The most extreme outliers can be identified for the resnet-gpu
function on the Xeon PC, whereas the majority of distributions does not exhibit any
outliers at all. However, as mentioned above, the two outliers of the resnet-gpu function
on the Intel Xeon are still only 1.5 W apart while all other dispersions for both the
Intel Xeon and the Jetson Xavier NX show lower fluctuations of around 0.5-1 W, which
represent tolerable deviations.

With respect to the results of the Jetson Nano, the extend of divergences within repetitive
runs also differs, but the highest discrepancy is around 1.2 W due to an outlier, which is

55

4. Methodology

Figure 4.7: Power consumption distribution of function invocations for Intel Xeon and
Jetson Xavier NX.

Figure 4.8: Power consumption distribution of function invocations for Jetson Nano.

also acceptable. The other variations are generally in the order of 200-400 mW. As a
result, the measurement fluctuations are minor, so the measured values are considered as
relatively stable and consistent in general.

56

4.3. Analysis of Empirical Measurement Data

External vs. Internal Power Consumption

In order to compare the external and the internal power readings of the profiled edge
devices, the power values reported by the different power consumption measurement
facilities are contrasted with each other. Regarding the external power measurements, the
values obtained by the smart plugs are available for all three platform types. As described
in Section 4.2.4, the internal measurement instruments differ, since the two Jetson boards
can be monitored using jtop, which reports the total power usage of the module, while
the Intel Xeon PC only provides internal power readings of the GPU component. As a
result, the comparisons between external and internal power consumption of the Jetson
boards can be combined, whereas the results of the Xeon should be examined separately.

With respect to the Jetson boards, the plots in Figure 4.9 visualize the average external and
internal power wastage per request for the resnet (Figure 4.9a), efficientnet (Figure 4.9b)
and objectdetection (Figure 4.9c) function. Regarding the resnet and efficientnet serverless
functions, both the CPU-based and the GPU-based execution is contained. Since the
objectdetection function cannot be executed on Nvidia GPUs, such a distinction is not
possible for this type of function. The most striking observation is the considerably
difference between the external and internal power values of the Jetson Xavier NX board,
whereby the externally measured power consumption is consistently significantly higher
than the power readings captured by the internal sensors. This mismatch can be observed
in all five plots, i.e. across all functions. However, this observation only holds true
for the Jetson Xavier NX but not for the Jetson Nano board, since the external and
internal power readings do not diverge as much on this device. Although higher external
measurements are expected, the extent of discrepancies of the Jetson Xavier NX is larger
than initially estimated and the behavior of the two Jetson boards unforeseeably differs.

Regarding the Jetson Xavier NX board, the reported power values of the smart plugs
are still plausible, since the Nvidia NVP model35, i.e. the energy-performance profile of
a device, is set to 20W 6CORE on the Jetson Xavier NX, which means that the power
budget of the board is fixed at 20 W and all six CPU cores are online and available
for computing. Hence, an externally measured power consumption of around 15 W is
considered to be realistic. The 20W 6CORE profile of the Jetson Xavier NX thereby
represents the model with the highest power budget and also the highest number of online
cores. For the Jetson Nano board, the NVP model is set to MAXN which imposes a power
budget of only 10 W. Furthermore, the Jetson Nano has less CPU cores in total and a
weaker GPU than the Jetson Xavier NX, so a lower power consumption as compared to
the Jetson Xavier NX is logical. This would therefore explain the significant divergence
of the two hardware platforms in terms of the smart plug measurements. Due to the
power budget imposed by the NVP profiles and the corresponding energy-performance
trade-off, specifying other power profiles for the Jetson boards would potentially yield
different results.
35https://docs.nvidia.com/jetson/archives/r35.2.1/DeveloperGuide/text/SD/
PlatformPowerAndPerformance/JetsonXavierNxSeriesAndJetsonAgxXavierSeries.
html#supported-modes-and-power-efficiency, Accessed: Feb 14, 2023

57

https://docs.nvidia.com/jetson/archives/r35.2.1/DeveloperGuide/text/SD/PlatformPowerAndPerformance/JetsonXavierNxSeriesAndJetsonAgxXavierSeries.html#supported-modes-and-power-efficiency
https://docs.nvidia.com/jetson/archives/r35.2.1/DeveloperGuide/text/SD/PlatformPowerAndPerformance/JetsonXavierNxSeriesAndJetsonAgxXavierSeries.html#supported-modes-and-power-efficiency
https://docs.nvidia.com/jetson/archives/r35.2.1/DeveloperGuide/text/SD/PlatformPowerAndPerformance/JetsonXavierNxSeriesAndJetsonAgxXavierSeries.html#supported-modes-and-power-efficiency

4. Methodology

(a) Resnet function execution on CPU and GPU.

(b) Efficientnet function execution on CPU and GPU.

(c) Objectdetection function execution on CPU.

Figure 4.9: Comparison between external and internal power consumption per request
on Jetson Xavier NX and Jetson Nano.

58

4.3. Analysis of Empirical Measurement Data

In general, the divergence in terms of external and internal measurements is caused by the
fact that the internal power monitors queried by jtop only include the power consumption
of the module itself, while the smart plugs cover additional components, such as the fan,
the carrier board or the power supply [KHH+20]. Furthermore, the measuring frequency
differs between the two measurement instruments and also the measuring points are not
synchronized, so they might acquire the current power draw at different points in time,
which might also lead to discrepancies between the reported values. Since jtop obtains the
current internal power consumption once every second, whereas the smart plugs include
the PowerDelta configuration for instantly reporting power changes above 1%, jtop might
not be able to capture fast-changing power values. For example, if the power consumption
of a device changes for a short period of time between two jtop measurements, i.e. within
a few milliseconds, jtop is not able to ascertain these changes while the smart plugs can
also report such changes if the power value increases or decreases more than 1%.

Regardless of the severe differences in terms of external and internal power consumption,
the plots in Figure 4.9a and Figure 4.9b also show that the average power consumption
of the Jetson Xavier NX board as registered by the smart plugs is slightly higher for the
GPU-based execution of the functions than for the CPU-based execution. This behavior
can be observed for the external as well as the internal power measurements. However,
the difference is only about 0.5-1 W, whereby it has to be noted that the invocation
of functions on the GPU is typically faster than on the CPU. In terms of the Jetson
Nano, this finding does not hold true because the mean external and internal power
consumption values are fairly consistent and independent of the execution target. In
general, as stated earlier, the external power readings of the Jetson Xavier NX and the
Jetson Nano do substantially differ across all experiment configurations as depicted in
Figure 4.9, so they exhibit a considerably different level of power wastage. Therefore, due
to the heterogeneous hardware characteristics of the devices being profiled, individual
power models need to be developed for each device type, as the accuracy of the predictions
would presumably suffer from a joint model.

Concerning the third edge device profiled in the course of this work, the results of
the external and internal power consumption of the Intel Xeon PC are illustrated in
Figure 4.10. Since the internal measurements of the Intel Xeon only incorporate the
power wastage of the GPU, solely the two experiment configurations including executions
on the GPU are presented. From the two plots shown in Figure 4.10, it can be seen
that the internal power readings, which only report the power draw of the GPU and
associated circuits, are noticeably higher than the external measurements conducted by
the smart plugs. This represents a very interesting but counterintuitive finding, since the
assumption would have been the exact opposite, as it is the case for the Jetson boards.
Because the externally measured power values take additional hardware components like
the CPU into account, they should be explicitly higher than the internal GPU power
readings. At this juncture, however, it cannot be determined where this divergence stems
from and whether the external or the internal measurements are more accurate. It can
only be deduced that these two types of measurements do not correspond.

59

4. Methodology

Figure 4.10: Comparison between external and internal (GPU only) power consumption
per request on Intel Xeon.

Power Consumption of Stress-ng Workloads

The different workloads generated by the stress-ng tool can give valuable and additional
insights into the interrelationship between resource usage and power consumption, since
the stress tests enable experiments with controlled resource usages. By comparing the
different parameter sets passed to stress-ng in terms of resource usage and the resulting
power draw, potential correlations might become evident. Furthermore, since the stress
tests provoke similar resource usage values on all devices according to predefined loads,
the impact of hardware heterogeneity on the power consumption of edge computing
platforms can be assessed.

Moreover, for the purpose of contrasting the power draw measured during the stress
tests with the mean baseline power consumption in idle state, additional measurements
are taken for each device. The baseline power consumption is then calculated by taking
the average of 100 consecutive measurements of the respective device in idle state. The
results can be found in Table 4.10. Since the idle power values substantially vary, they
already indicate that the hardware heterogeneity has a significant impact on the power
draw of edge devices.

Device Baseline Power Cons.
Intel Xeon 16,246.60 mW
Jetson Xavier NX 14,699.38 mW
Jetson Nano 3,457.91 mW

Table 4.10: Mean baseline power consumption of the edge devices.

60

4.3. Analysis of Empirical Measurement Data

As previously detailed in Table 4.7, different parameters are used for stress-ng in order
to achieve distinct resource utilization values. Figure 4.11 summarizes the results of the
CPU-centered experiments that include stress-ng CPU stressors for generating 25%, 50%,
75% and 100% load on each online CPU, respectively. This plot shows the mean power
consumption for each stress test configuration on each of the computing architectures
being profiled, and includes the individual error bars indicating the 95% confidence
intervals. All five repetitions of each experiment configuration are considered in this plot.
Additionally, the baseline power consumption of each node, as presented in Table 4.10,
is included and visualized through dashed lines in the appropriate color. The top blue
line therefore represents the baseline power of the Intel Xeon, the middle orange line
indicates the baseline power of the Jetson Xavier NX and the bottom green line displays
the baseline power of the Jetson Nano.

Figure 4.11: Mean power consumption of stress-ng CPU load tests.

When investigating the changes in power consumption depending on the CPU load in
Figure 4.11, it is clearly visible that the power draw consistently increases with rising CPU
load, which represents an expectable behavior. Although the extend of the elevations
varies across platforms, the general tendency can be identified for all three types of edge
devices. While the greatest and most apparent increments can be recorded for the Intel
Xeon, i.e. the eb-b-xeongpu-0 node, only marginal, but still recognizable increases can
be registered for the Jetson Nano board. The results of the Jetson Xavier NX board lie
somewhere in between the Xeon and the Jetson Nano.

Furthermore, by taking the baseline power consumption values into account, it can be
seen that the power draw of the Intel Xeon on 25% CPU load is already about 2 W
higher than the baseline power consumption, which is around 16,250 mW on average. In
case of a CPU load of 100%, the mean power drainage of the Intel Xeon increases up
to 23,600 mW, which makes up a difference of over 7 W compared to the baseline. A
similar behavior but with lower absolute increases can be observed for the Jetson Xavier

61

4. Methodology

NX, whereby the baseline is about 14,700 mW. The average power consumption of this
device on 25% CPU load is around 15,500 mW, whereas it reaches 18,100 mW on 100%
CPU load. The least significant increments can be identified for the Jetson Nano, where
the difference between the baseline and the mean power consumption measured at 100%
CPU load is around 800 mW. This indicates that the Jetson Nano operates in a very
energy-efficient manner. In summary, it can be concluded that the CPU utilization has a
considerable impact on the power consumption of edge devices.

Another observation that can be derived from the plot illustrated in Figure 4.11 is the
high variation in terms of power consumption across devices due to their heterogeneous
hardware characteristics. While the workloads provoked by the stress-ng tests are equal
for all three edge devices, i.e. the load is consistent on each platform, the power readings
significantly differ, especially with respect to the Intel Xeon and the Jetson Nano. This
finding therefore confirms the previous assertions which state that the power consumption
is heavily influenced by varying hardware capabilities. As a result, choosing a multi-model
approach for modeling the power draw of heterogeneous edge devices in order to overcome
the severe power consumption discrepancies is supported by these results.

In addition to the CPU-centered stressors, stress tests targeting the RAM usage are
included in the experiments. These kinds of stress tests are performed by means of
the stress-ng virtual memory stressors and setting the memory usage to 20%, 40% and
80% of the total available memory, respectively. The average power consumption of
the individual nodes is outlined in Figure 4.12, whereby all five repetitive runs of each
experiment configuration are taken into account for this plot. Regarding the Xeon PC,
the power consumption at 80% RAM load is definitely higher than at 20%, but the
lowest power usage is reported at 40%. Since the difference between the readings for
20% and 40% is only about 100 mW on average and the error bars for both values are
comparatively high, this mismatch might results from measurement inaccuracies. The
mean power consumption of the Jetson Xavier NX rises when increasing the RAM usage
from 20% to 40%, but then slightly decreases when incrementing the RAM usage to
80%. Therefore, no clear and consistent trend can be detected for these two devices.
Considering the Jetson Nano, no obvious change in power consumption can be identified
at all. As a result, no universally valid statement about the specific impact of different
RAM usage levels on the power draw of these platforms can be made.

Similar to the CPU load plot, the RAM usage plot illustrated in Figure 4.12 also
incorporates the baseline power consumption of the individual devices, which is indicated
by the dashed lines. Again, the top blue line represents the baseline power of the Intel
Xeon, the middle orange line indicates the baseline power of the Jetson Xavier NX and
the bottom green line displays the baseline power of the Jetson Nano. Even though no
continuous increase in terms of power draw can be observed, the power consumption
values of all devices are consistently higher than the baseline measurements. Hence, it
can be concluded that the RAM usage does indeed influence the power consumption of
devices in general, however, as stated above, an explicit behavioral pattern with regard
to ascending RAM usage rates cannot be determined based on the available data.

62

4.4. Machine Learning Model Construction

Figure 4.12: Mean power consumption of stress-ng memory usage tests.

4.4 Machine Learning Model Construction
4.4.1 AutoML and TPOT
After the raw measurement data is preprocessed for usage within the faas-sim simulation
framework, the data can be used for developing and training the ML models. Since the
preceding data analysis demonstrates the significant impacts of hardware heterogeneity in
terms of resource usage, one machine learning model per device type is developed instead
of one single model that can be applied to all devices. The final ML models should be
able to predict the average power consumption of one function invocation based on the
resource usage of the underlying device, which represents a typical regression problem,
since the purpose of the models is to forecast a continuous value. The model construction
phase of the model development process introduced in Section 4.1.2 and illustrated in
Figure 4.2 consists of three main steps. These include model selection, model training
and model tuning, i.e. model optimization.

For the model construction phase, where machine learning techniques are applied to
develop power prediction models, an Automated Machine Learning (AutoML) tool is used.
Designing efficient and accurate machine learning pipelines is generally very challenging
and requires substantial domain knowledge and ML experience [OM16]. AutoML tools
aim at saving time and effort associated with manually building ML models by automating
certain repetitive and tedious tasks involved in this process [TWG+19]. They therefore
enable an automatized and easy development of ML models with minimal human invention,
which considerably accelerates the model construction process and also facilitates this
process to be carried out by non-experts [OBUM16].

63

4. Methodology

In the context of this work, the Tree-based Pipeline Optimization Tool (TPOT) is chosen
as AutoML system to streamline the model development process. In general, TPOT
supports supervised learning for classification and regression problems36. As the name
indicates, TPOT generates and optimizes tree-based machine learning pipelines for finding
the most suitable pipeline for a given data set, which is achieved by applying genetic
programming techniques. TPOT thus represents a data science wizard that assists with
exploring the provided data set, discovering alternative models, comparing and tuning
the discovered pipelines, as well as recommending the pipeline with the highest score as
representative pipeline to the user. Internally, TPOT uses a k-fold cross-validation strategy
for optimization, which should prevent model overfitting issues, where the generated
models are not sufficiently generalizable37. The score of a pipeline thereby depends on the
scoring function that is utilized in order to determine the quality of a pipeline, whereby
the default scoring function is conditional on the type of problem, i.e. classification or
regression. This way, TPOT enables automating the design and optimization of ML
pipelines and thereby aims to maximize the prediction accuracy for a specific problem
domain. TPOT is available as an open source Python package38 and is based on the
well-known Python machine learning library scikit-learn [OM16, OBUM16, LFM20].
Regarding this thesis, TPOT version 0.11.7 is used.

TPOT already comes with a range of built-in configurations that affect the operators
and parameters used during the automation process. Since the final prediction models
are integrated into the faas-sim simulator, the performance of the models is crucial, so
an appropriate performance-accuracy trade-off is essential. Therefore, not the default
TPOT configuration, but the TPOT Light configuration is applied in this work, which
only takes simple and fast operators and preprocessors into account for the pipelines39.
This way, particularly lightweight and fast-running models can be developed.

Furthermore, TPOT already incorporates multi-objective Pareto optimization into the
model selection step of the process, which aims at enhancing multiple distinct objectives in
order to find efficient solutions by making certain trade-offs. In TPOT Pareto optimization
is implemented by trying to maximize the model performance in terms of prediction
accuracy while minimizing the complexity of the pipeline, i.e. the total number of
operators within the pipeline, at the same time. As a result, TPOT can take model
complexity into account during the model development and is able to discover compact
yet effective pipelines, that also make interpretation easier [OM16, OBUM16].

TPOT Machine Learning Pipeline

As mentioned earlier, according to the defined model development process, the model
construction phase consists of model selection, model training and model tuning. However,
36https://epistasislab.github.io/tpot/using/, Accessed: Jan 30, 2023
37https://epistasislab.github.io/tpot/api/, Accessed: Jan 30, 2023
38https://github.com/EpistasisLab/tpot, Accessed: Jan 30, 2023
39https://epistasislab.github.io/tpot/using/#built-in-tpot-configurations, Ac-

cessed: Feb 2, 2023

64

https://epistasislab.github.io/tpot/using/
https://epistasislab.github.io/tpot/api/
https://github.com/EpistasisLab/tpot
https://epistasislab.github.io/tpot/using/#built-in-tpot-configurations

4.4. Machine Learning Model Construction

using TPOT none of these steps has to be carried out manually, since TPOT is able
to automatically perform these steps without manual human intervention. In order to
illustrate the tasks that TPOT is able to automate, Figure 4.13 displays the TPOT
automation process within a machine learning pipeline. The tasks that are automated
by TPOT include feature selection, feature preprocessing, feature construction, model
selection and parameter optimization. As shown in this figure, the data acquisition and
data cleaning at the beginning, as well as the model validation at the end of the pipeline
have to be done manually [OBUM16, OUA+16]. Since the measurement data obtained
during the experiments is already available in the right format due to the preceding data
preprocessing step, it can directly be used as input data set for TPOT. Furthermore, a
manual feature selection procedure is not required since this task is also automated by
TPOT as shown in Figure 4.13.

Figure 4.13: The TPOT automation process based on [OBUM16].

Developing machine learning models typically requires three data sets, namely the
training, validation and test set, whereby these sets have to be independent and mutually
exclusive. The training set is used as input for the model, so it can learn from the given
data, whereas the validation set is required to evaluate the model in terms of prediction
accuracy during the training phase and is thus essential for the model optimization
procedure. Finally, after the training phase is completed, the data samples contained
in the test set are fed into the final model in order to determine its accuracy on an
unseen data set [ABC+21]. With regard to TPOT, providing a separate validation
set is not necessary, since TPOT automates the optimization procedure and internally
uses a cross-validation strategy to evaluate the individual pipelines during this process.
Therefore, when using TPOT, the data sets only have to be split into a distinct training
and test set.

65

4. Methodology

In general, splitting the data into training and test sets is done randomly based on a
predefined ratio. However, with respect to this work, this step is done manually in order
to ensure comparability and consistency across the individually developed models. Since
three separate models have to developed due to the severe hardware heterogeneity of
edge devices, the training and test sets should be split in the same way. The division of
the data into training and test sets is outlined in Table 4.11, which indicates that specific
workloads are used for training and the remaining ones are used for testing. This division
is applied to all three data sets, i.e. to the data set of each computing platform. In total,
each platform-specific data set encompasses 85 entries, whereby all five repetitions of each
experiment configuration are included. While the training set comprises the resnet-gpu,
efficientnet-cpu and stress-ng experiment workloads, which make up 70 records for each
edge device, the test set consists of the resnet-cpu, efficientnet-gpu and objectdetection
workloads, which encompass 15 records in total for each platform. Each training and test
set is then further split according to the features that should serve as the model input,
i.e. the resource usage data, and the prediction target which represents the output of the
final models, i.e. the power consumption.

Workload Training Set Test Set
Resnet-cpu ✗ ✓

Resnet-gpu ✓ ✗

Efficientnet-cpu ✓ ✗

Efficientnet-gpu ✗ ✓

Objectdetection ✗ ✓

Stress-ng ✓ ✗

Table 4.11: Division of data into training and test set.

Listing 4.1 provides the code that is used for the automated pipeline optimization by
means of TPOT after the data sets are appropriately split. Since three individual models
are developed, these steps have to be executed three times. First of all, the TPOT
parameters have to be defined. For this purpose, the statement in line 2 is required.
As the power prediction represents a regression problem, the TPOTRegressor class is
employed, which can be customized through a number of parameters. The number
of generations is set to 100, while the population size is set to 1000. Since TPOT
generally evaluates population_size + generations · offspring_size pipelines in total40,
whereby the offspring size is equal to the population size by default, 101,000 pipelines,
i.e. 1000 + 100 · 1000 = 101, 000, are analyzed with this set of parameters. The verbosity
parameter is only used to tell TPOT how much information should be printed while
running, whereas the random state variable defines the random number generator seed,
which is intended to improve the reproducibility of a TPOT run.
40https://epistasislab.github.io/tpot/api/, Accessed: Feb 6, 2023

66

https://epistasislab.github.io/tpot/api/

4.4. Machine Learning Model Construction

Furthermore, the configuration dictionary parameter (config_dict) specifies a built-in or
custom TPOT configuration, which defines the operators and parameters TPOT applies.
In this case, the TPOT Light configuration is chosen, as described above. The subsequent
parameter (n_jobs) can be used to define the number of processes TPOT should run
in parallel, whereby the special value -1 indicates that all available cores on the system
should be utilized. Moreover, the negative Mean Absolute Error (MAE) is chosen as
scoring function to evaluate the quality of an individual pipeline, since the default scoring
function applied to regression problems, which is the negative Mean Squared Error (MSE),
is very sensitive to outlier prediction with large errors, while the MAE weights all errors
equally. In general, the MAE indicates the mean absolute error over all predictions and
thus has the same unit of measurement as the data, i.e. milliwatts. The negated value of
the MAE is required because by default the score of the scoring function is aimed to be
maximized, so maximizing the negated value means minimizing the actual MAE.

In order to be able to determine the duration of the TPOT optimization process, the
time is recorded before and after the optimization procedure using the timeit Python
package, as done in line 5 and line 11, respectively. To ensure reproducibility and
comparability of the measured time, all three TPOT runs, i.e. one run for each device,
are executed on the same machine, namely a virtual machine instance with 16-CPU cores
based on 2.1 GHz Intel Xeon processors (Cascadelake) and 32 GB RAM, which is part of
the testbed used for the empirical measurements. The code in line 8 finally starts the
TPOT pipeline optimization process based on the provided training data set. After the
TPOT run finishes, the eventually recommended pipeline can be evaluated by means of
the test set and the previously set scoring function, which is the negative MAE in case
of this work. The corresponding code required for this step is shown in line 17. Lastly,
the pre-trained pipeline represented as a scikit-learn pipeline object can be exported by
means of the joblib Python package. The corresponding code fragments for this final
step can be found in line 20 and 21.

4.4.2 Results of TPOT Runs
Due to the TPOT Light configuration, only a subset of the available preprocessors,
models, parameters, etc. is considered for the optimization procedure, whereby the
focus lies on simple and rapid operators. Futhermore, using the parameters defined in
Listing 4.1 on a multi-core machine, TPOT evaluates pipelines in parallel on all available
cores on the system and thus additionally speeds up the process. Consequently, the
durations of the three TPOT runs are rather low, as shown in Table 4.12. Although the
number of records in the training set is the same for all three devices, the durations of
the individual runs differ. However, different data sets and even repeated runs on the
same data set trigger different pipelines to be explored and evaluated by TPOT, so these
variations are plausible.

Besides the durations of the TPOT runs, Table 4.12 also includes the average internal
cross-validation (CV) score achieved by the recommended pipeline on the training set
of each run. The internal CV score is based on the given scoring function, which is the

67

4. Methodology

1 # Define the TPOT parameters
2 tpot = TPOTRegressor(generations=100, population_size=1000, verbosity=2,

random_state=42, config_dict='TPOT light', n_jobs=-1,
scoring='neg_mean_absolute_error')

3
4 # Record the start time of TPOT pipeline optimization process
5 start_time = timeit.default_timer()
6
7 # Optimize the pipeline based on the given data set
8 tpot.fit(df_train_features, df_train_target)
9

10 # Calculate the duration of TPOT run in minutes
11 elapsed = (timeit.default_timer() - start_time) / 60
12
13 # Print the time TPOT used for the pipeline optimization procedure
14 print(f'Elapsed Time: {elapsed}')
15
16 # Evaluate the final pipeline
17 print(f'Score: {tpot.score(df_test_features, df_test_target)}')
18
19 # Export the pre-trained pipeline
20 filename = 'tpot-model.sav'
21 joblib.dump(tpot.fitted_pipeline_, filename)

Listing 4.1: Python code for the TPOT pipeline optimization process.

Target Device Duration CV Score
Intel Xeon ∼ 55 min. −487.26
Jetson Xavier NX ∼ 100 min. −442.13
Jetson Nano ∼ 135 min. −85.37

Table 4.12: Duration and mean internal cross-validation (CV) score of TPOT runs.

negative MAE as defined in Listing 4.1. Since the power values are recorded in milliwatts
and the MAE has the same unit of measurement as the data, the MAE represents the
mean absolute error over all predictions in milliwatts. For example, regarding the Intel
Xeon, a CV score of around 487 means that on average the error describing the difference
between the predicted and the actual power values is 487 mW, i.e. less than 0.5 W.
The internal CV scores of the Jetson Xavier NX and the Jetson Nano are even smaller.
However, these values cannot be directly projected to the final MAE on the independent
test set, i.e. on a diverse and unseen set of inputs, since the training set is internally used
by TPOT for the cross-validation. The accuracy of the models on the test set samples
therefore has to be evaluated separately, which is covered in the subsequent chapter.

68

4.4. Machine Learning Model Construction

The final pipelines for each device that achieved the best internal score are presented in
Listing 4.2, Listing 4.3 and Listing 4.4, respectively. When comparing all three models,
it becomes clear that they include different operators, which consist of regression models,
preprocessors, transformers and their corresponding hyperparameters41. Furthermore,
also the number of incorporated operators varies between the individual pipelines, whereby
the pipeline for the Jetson Nano contains the most operators. The reason for this outcome
is the fact that each pipeline is tailored to the provided training set and since the training
sets differ between the three edge devices, the final outcomes also diverge. This observation
however supports the previously made decision to develop an individual model for each
platform due to the severe hardware heterogeneity and its implications on resource usage
and power consumption. Furthermore, it can be stated that the Jetson Nano pipeline
has the best internal CV score while it also exhibits the longest training duration and
the highest number of operators, so it represents the most complex pipeline. However,
the exact consequences of these assertions are ascertained in the following chapter.

LassoLarsCV(Normalizer(RidgeCV(ElasticNetCV(MaxAbsScaler(SelectFwe(
ElasticNetCV(input_matrix, l1_ratio=0.15000000000000002, tol=0.1),
alpha=0.026000000000000002)), l1_ratio=0.75, tol=0.0001)), norm=max),
normalize=True)

Listing 4.2: Recommended pipeline for the Intel Xeon.

DecisionTreeRegressor(CombineDFs(PCA(CombineDFs(input_matrix,
SelectPercentile(ElasticNetCV(input_matrix, l1_ratio=0.25, tol=1e-05),
percentile=83)), iterated_power=3, svd_solver=randomized),
ElasticNetCV(input_matrix, l1_ratio=0.25, tol=1e-05)), max_depth=7,
min_samples_leaf=1, min_samples_split=8)

Listing 4.3: Recommended pipeline for the Jetson Xavier NX.

RidgeCV(DecisionTreeRegressor(KNeighborsRegressor(SelectPercentile(
ElasticNetCV(LassoLarsCV(RidgeCV(RobustScaler(ElasticNetCV(
KNeighborsRegressor(SelectFwe(SelectFwe(LassoLarsCV(input_matrix,
normalize=False), alpha=0.01), alpha=0.002), n_neighbors=19, p=1,
weights=uniform), l1_ratio=0.4, tol=0.01))), normalize=False),
l1_ratio=0.9, tol=0.1), percentile=81), n_neighbors=20, p=1,
weights=uniform), max_depth=7, min_samples_leaf=18, min_samples_split=3))

Listing 4.4: Recommended pipeline for the Jetson Nano.

41https://epistasislab.github.io/tpot/api/, Accessed: Feb 18, 2023

69

https://epistasislab.github.io/tpot/api/

CHAPTER 5
Evaluation

This chapter covers the evaluation of the developed machine learning models which is
done by validating the models in terms of prediction accuracy and performance. To
give an overview of the general procedure, Figure 5.1 outlines the individual steps of the
evaluation process. The specific validation approach applied in this work is thoroughly
described in Section 5.1. As stated in this section, a prerequisite for the assessment of
the model precision and inference speed is the integration into the faas-sim simulation
framework, which is elucidated in Section 5.1.1. The simulator thus represents the primary
evaluation environment, as explained in Section 5.1.2. Afterwards, the approach utilized
for the model accuracy evaluation is detailed in Section 5.1.3, whereas the procedure
for evaluating the performance of the models is contained in Section 5.1.4. The results
of the evaluation are then presented in Section 5.2. This section therefore encompasses
the conclusions that can be drawn from the simulations performed by means of the
faas-sim simulator in terms of model precision, see Section 5.2.1, and inference speed,
see Section 5.2.2. While the accuracy has an impact on the level of generalization of
the developed models, their complexity can negatively affect their performance and
thus impede the scalability of the simulator. The trade-off between these two distinct
objectives is of particular interest with respect to the suitability of the power models for
the simulator, which is why the performance-accuracy trade-off is discussed at the end of
this chapter in Section 5.2.3. This section thereby concludes the evaluation.

Figure 5.1: The machine learning model evaluation process.

71

5. Evaluation

5.1 Evaluation Approach
The primary objective of the model validation, which constitutes one of the final steps
in the model development process, is to assess whether the power values predicted by
the models correspond with the actual power consumption of the edge devices in the
real world. Furthermore, the level of overhead the models impose on the simulator due
to inference latency is also of particular interest for determining the performance of
the developed power models. This way, it can be ensured that the predictions can be
generalized to data samples beyond the training sets while they do not severely impede
the scalability of simulations conducted with the faas-sim simulator at the same time. As
a result, the evaluation of the developed ML models is two-fold and consists of multiple
assessments that are carried out separately. The specific findings of these evaluations can
then be combined in order to be able to reason about the inherent performance-accuracy
trade-off of the models. Nevertheless, before the models can be evaluated using the
simulation framework, they have to be integrated into the existing faas-sim project,
which ultimately enables the simulator to make predictions about the power consumption
of devices during the simulation of a scenario. This procedure is thoroughly described in
the following section.

5.1.1 Simulator Integration
Before the power models can be validated, they have to be integrated into the faas-sim
simulation framework, which is introduced in Section 2.2. This enables the assessment
of the prediction accuracy on the hand and the model performance on the other hand.
As a result, the faas-sim simulator represents the main evaluation environment for the
model validation.

As described in Section 4.13, the pre-trained models are already exported to files after
the TPOT training process. In order to use the models during simulations, they have
to be loaded from the files at the beginning of a simulation run. From then on, the
power prediction functionality provided by the machine learning models is ready for
use. For the purpose of making predictions, the resource usage of a function invocation,
namely CPU, GPU, block I/O, network I/O and RAM utilization, must be fed into
the appropriate model according to the device being simulated. The predicted power
consumption associated with each function call can then be accessed after the simulation
finishes. Consequently, the faas-sim framework is extended by an additional power
prediction feature.

However, not only the ML models, but also the preprocessed function execution times
and resource usages of the individual serverless functions have to be incorporated into
the simulation framework in order to be able to simulate the functions used for the
experiments in the faas-sim framework. To this end, the log-normal distribution of the
function execution times is included in the simulator for each device and for each type of
function, i.e. the resnet function executed on CPU and GPU, the efficientnet function
invoked on CPU and GPU, and the objectdetection function, which can only be deployed

72

5.1. Evaluation Approach

on CPUs. Therefore, as stated earlier, the FETs are dependent on the underlying device
and the serverless function being simulated. During a simulation, the function execution
time of a serverless function is sampled from the appropriate log-normal distribution
according to the device that should be modeled. As described before, this approach
reflects the performance modeling method applied by the faas-sim simulator.
Regarding the resource usage required for a function invocation, the values of the five
repetitive runs for each experiment configuration are averaged, so the mean resource
utilization of one function call can be embedded into the simulator. As mentioned before,
the simulator is not able to simulate the real resource consumption of devices, instead,
it uses the preprocessed resource data for estimating and approximating the resource
utilization. Similar to the FET, the resource consumption also depends on the underlying
device and the serverless function that should be simulated. Hence, for each platform, the
average resource usage of every function has to be embedded into the faas-sim framework.
Since there are five serverless functions, namely resnet-cpu, resnet-gpu, efficientnet-cpu,
efficientnet-gpu and objectdetection, five resource usage characterizations are available
for each edge device. The resource usage values can then be passed to the ML models,
so the predicted power consumption for a certain function call can be obtained after
a simulation. In general, the input for the final machine learning models represents
the preprocessed mean resource usage per request, whereas the output should be the
expected power consumption associated with the given resource utilization values.

5.1.2 Evaluation Environment
Besides a rather straightforward accuracy validation performed by means of TPOT,
all other evaluation tasks are conducted using the faas-sim simulator. Therefore, the
faas-sim framework represents the primary evaluation environment of this work. The
results of the simulation runs are then either contrasted among each other or compared
with the measurement results of the experiments carried out by means of the testbed.
Hereby, the most important metrics that need to be considered for validating the models
include the predicted power consumption yielded by the simulator, the actual power draw
measured during the experiments and the execution time of different simulation runs,
among others.
Regarding the faas-sim framework, a simulation is described through a simulation scenario,
whereby a simulation scenario, in turn, is defined by a topology and a benchmark. The
topology encapsulates the configuration of the simulation environment, i.e. the cluster
being simulated, with respect to the specific nodes involved in the simulation and the
network setup. Furthermore, the benchmark specifies the container images, function
deployments and request profiles, which are used for setting up the runtime system of a
simulation1. This way, the simulator is able to simulate serverless workloads, which are
represented by function requests, on cluster nodes. The simulation scenarios are therefore
fully customizable and can contain arbitrary numbers of nodes and functions.
1https://edgerun.github.io/faas-sim/concepts/index.html#simulation, Accessed: Feb
20, 2023

73

https://edgerun.github.io/faas-sim/concepts/index.html#simulation

5. Evaluation

After a simulation run finishes, the time it took to simulate a certain scenario, i.e. the
execution or wall-clock time of the simulation run, and the total period of time that was
simulated can be obtained. Moreover, various metrics are continuously logged during
a simulation, such as the resource utilization for each request, the function execution
time, the timestamps of the individual invocations or the deployed container images.
The predicted power consumption of each function call is also included in the resource
utilization metrics, along with the corresponding CPU utilization, GPU utilization, total
block I/O, total network I/O and RAM usage. The relevant data sets that are necessary
for further processing or analysis tasks can be extracted from the simulator outputs and
saved as CSV files at the end of a simulation. Even though the faas-sim simulator is able
to simulate the download of container images in addition to function invocations, this
feature is not used in the scenarios of this thesis for the sake of comparability, because
the Galileo experimentation framework does not take the image pulling into account for
the total duration of an experiment. Therefore, the focus lies on warm start execution of
functions.

Since the specific simulation scenarios and the pertinent outputs differ across the various
analysis tasks depending on the evaluation goal, the detailed settings of the simulation
scenarios and the particular outputs used for the assessments can be found below in the
appropriate sections. In general, the underlying hardware on which the simulations are
run influences the execution time of the simulator. In order to ensure reproducibility
and comparability across simulation runs, all simulations conducted in the course of the
evaluation are executed on the same local machine, i.e. an Apple MacBook Pro with a
2,8 GHz quad-core Intel Core i7 processor and 16 GB LPDDR3 RAM.

5.1.3 Prediction Accuracy Approach
The main goal of the prediction accuracy evaluation is to ascertain whether the models
can be generalized to inputs that are not contained in the initial training sets or not.
This is done by testing how the models perform on unseen data samples they are not
fitted on and analyzing the difference between the predicted values and the actually
measured ones. The empirical power measurements thereby represent the ground truth
that is used for comparisons. In terms of this work, this validation can be accomplished
in three different ways.

Firstly, TPOT is able to evaluate a predefined test set with respect to the scoring
function specified for the TPOT run. This yields a score that indicates the accuracy of
the predictions on the given test set based on the mean absolute error. Secondly, the MAE
scores of the individual models is contrasted to the MAEs of an existing statistical model
for predicting the power consumption of devices. Therefore, the prediction accuracies
can be compared in order to be able to interpret the results of the ML models more
comprehensively. Thirdly, the precision of the ML models can be assessed by conducting
simulations with the faas-sim framework and comparing the results to the real-world
measurements. This way, the integration of the models can be used to determine whether
the power values predicted during a simulation correspond with the actual power readings

74

5.1. Evaluation Approach

obtained throughout the experiments. Furthermore, the total amount of energy estimated
by the simulator can be contrasted with the overall energy consumed by the experiment
runs. As a result, all three approaches, i.e. a TPOT-based analysis, a comparison with an
existing power model and a simulator-based examination, are applied for the prediction
accuracy evaluation of the developed ML models and are thus detailed in the following.

Accuracy Evaluation using TPOT

For the purpose of evaluating the prediction accuracy of the models by means of TPOT’s
built-in model validation, the required code is already presented in Listing 4.1 on page 68,
specifically in line 17. The score function of TPOT takes the testing features, i.e. the
resource usage values of the test set, and the prediction labels, i.e. the measured power
consumption for the resource usage data, as parameters. As return value this function
yields the score of the previously optimized pipeline on the provided test set based on
the scoring function defined earlier. This score therefore represents the estimated average
inference accuracy on the given test set. As the scoring function is set to the MAE, the
precision score can be interpreted as the mean absolute error of the testing samples.

While the training sets for each edge device type contain the preprocessed records of the
resnet-gpu, efficientnet-cpu and stress-ng experiments, the test sets encompass the data
of the resnet-cpu, efficientnet-gpu and objectdetection functions, as outlined in Table 4.11
on page 66. This way, it can be ensured that the test set only involves records that are
excluded from the training phase of the models. In every data set, five repetitive runs of
each experiment configuration are present. As stated in Section 4.4.1, the test set for
every individual device comprises 15 records, because three functions are used for this set
and five repetitions are carried out per function. Since the code contained in Listing 4.1
is executed for all platforms separately, the score can directly obtained after each TPOT
run. The resulting scores are presented in Section 5.2.1.

Accuracy Evaluation using a Statistical Power Model

In order to be able to rank and interpret the accuracy of the machine learning models
more easily, the prediction precision of the developed models is contrasted with an
existing power model. To this end, a simple statistical model, which calculates the power
consumption linearly according to the CPU utilization rate, is chosen as the basis for
comparison. Since the accuracy of the ML models can be rated using the mean absolute
error as reported by the preceding TPOT evaluation, the MAE is selected as reference
value. Therefore, the MAE of the statistical model has to be computed analogous to the
TPOT model validation.

The existing model computes the estimated power consumption based on a static, i.e.
fixed, and a dynamic fraction, whereby the dynamic share represents a linear function
depending on the CPU utilization [WT21, CRB+11]. Such a statistical power model also
forms the foundation of the energy modeling techniques used by other simulators, for

75

5. Evaluation

example the LEAF simulator2 or the iFogSim3, as introduced in Section 3.2. Consequently,
this model only considers the CPU usage as the sole metric for resource consumption as
compared to the ML models, which incorporate multiple variables. The specific formula
employed by the linear model to predict the power consumption of devices is contained
in Equation 5.1. This formula is applied to the preprocessed data sets of each device,
namely the data samples containing the mean resource usage per request. Similar to the
data sets used for the TPOT evaluation as described above, the records envisaged for
the linear model also encompass all repetitions of individual experiment configurations.
However, while the TPOT evaluation is only targeted at the test samples, the complete
data is taken into account for this kind of accuracy validation.

As a preparatory step, the preprocessed CPU utilization rates need to be divided by 100
to obtain the decimal number instead of the percentage and then normalized based on
the number of CPU cores of each device. While the Intel Xeon and the Jetson Nano
both have four CPU cores, the Jetson Xavier NX comprises six cores. As a result, the
CPU usage required for the formula ranges between zero and one, whereby a value of one
represents full utilization of all cores. Furthermore, the baseline power measurements
of each platform, as carried out earlier, can be used as the idle power, whereas the
maximum power usage values for each device have to be defined initially. For the Jetson
boards, the power budget of the NVP models is applied, so the maximum power usage
of the Jetson Xavier NX is set to 20 W and the power draw of the Jetson Nano is
limited to 10 W. Regarding the Intel Xeon, such power restrictions are not known, so
the maximum power consumption is estimated based on the power readings published
during the stress-ng stress tests. Therefore, 25 W is considered as a realistic value. This
way, the power consumption of every serverless function executed on each edge device
type can be approximated by means of the statistical model.

Idle Power

Static Part
+ (Max. Power − Idle Power) · CPU Util.

Dynamic Part

= Total Power (5.1)

Afterwards, similar to the TPOT evaluation approach, the predicted values can be
compared with the ground truth values for each individual device using the MAE. The
formula used for calculating the MAE of each platform is contained in Equation 5.2,
whereby yi represents the predicted power consumption, xi is the actual power value
and n constitutes the number of samples contained in the data set4. This enables a
comparison between the MAEs of the ML models as returned by TPOT and the MAEs
of the linear power model, which can give insights into the accuracy of the ML models in
contrast to the precision of the statistical model.

2https://github.com/dos-group/leaf, Accessed: Mar 5, 2023
3https://github.com/Cloudslab/iFogSim, Accessed: Mar 5, 2023
4https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-
error, Accessed: Mar 5, 2023

76

https://github.com/dos-group/leaf
https://github.com/Cloudslab/iFogSim
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-error
https://scikit-learn.org/stable/modules/model_evaluation.html#mean-absolute-error

5.1. Evaluation Approach

n
i=1 |xi − yi|

n
= MAE (5.2)

Accuracy Evaluation using faas-sim

The second kind of accuracy evaluation involves different simulations carried out using
the faas-sim simulation framework. After the FET, the average resource usage per
request and the power models are integrated into the simulation framework, as outlined
in Section 5.1.1, simulation scenarios for the accuracy evaluation have to be defined
and implemented. The main objective of these scenarios is to reproduce the profiling
experiments that are initially conducted for data acquisition. This way, comparability
between the simulation results and the measurement results of the experiments can be
ensured. Hence, the simulation scenario parameters used for assessing the accuracy of
the predictions should reflect the experiment configurations defined earlier. As a result,
the same set of scenarios facilitates different analyses regarding the predicted and the
actual power consumption. Since the faas-sim simulator only models serverless functions
and the stress-ng experiment configurations are already utilized for the training of the
models, they are omitted for the evaluation.

Simulation Scenarios For the purpose of guaranteeing comparability, the scenarios
need to reproduce the experiments in terms of 1) the devices used, i.e. the Intel
Xeon, Jetson Xavier NX and Jetson Nano, 2) the serverless functions executed during
the experiments, namely resnet-cpu, resnet-gpu, efficientnet-cpu, efficientnet-gpu and
objectdetection, and 3) the request patterns of the functions. Therefore, each scenario
consists of only two nodes, whereby one node represents the device on which the function
invocations are simulated and the other node is used to simulate the data transmission
caused by the HTTP requests.

Since the resource usage metrics that are integrated into the simulator represent the
average values across five repetitive runs of the same function on the same device, these
values differ from the ones used during the model training phase, where the resource
usages of all five individual runs are taken into account. Hence, all functions can be used
for testing the prediction accuracy by means of the simulation framework. Analogous
to the experiment configurations listed in Table 4.6 on page 44, five different functions
need to be simulated on each of the three devices, which results in 5 ∗ 3 = 15 distinct
scenarios. In order to ensure consistency among the simulation results and the testbed
results, the same request patterns are used for each function.

The implementation of these scenarios facilitates different kinds of examinations, which
are performed on the basis of the simulation outputs, i.e. the exported CSV files. First
of all, the power consumption per request predicted during the simulation runs can
be compared to the average power draw of a function invocation determined by the
measurement results of the testbed experiments. While the predicted power consumption
is based on the resource utilization metrics of a function call, the actual power consumed

77

5. Evaluation

during a request is obtained from the smart plugs. As a second analysis, the total
amount of energy estimated by the faas-sim for a certain scenario and the overall amount
of energy consumed during the associated profiling experiment on the testbed can be
calculated and contrasted. The results of these two assessments can then be used to draw
conclusions about the accuracy of the predictions yielded by the power models.

Comparison of Power Consumption per Request Regarding the comparison
between the predicted and the actual power consumption per request, the approach
is rather straightforward. As described in Section 5.1.1, for each set of experiments,
the average resource usage values across all five repetitive runs are integrated into the
simulator. Therefore, the predicted power wastage per request is based on the mean
resource usage across all repetitions of an experiment configuration. Similarly, the power
consumption per request of the individual runs also have to be aggregated using the
average. As a result, for every type of function invocation experiment, the predicted
power consumption per request returned by the models can be contrasted with the mean
power draw measured by the smart plugs.

Comparison of Total Energy Demand In addition to directly comparing the
power consumption per request between the simulation results and the experimental
measurements, the power values can be used to compute the total amount of energy
consumed by a device over a certain period of time. By calculating the expectable energy
demand estimated by the simulation scenarios as well as the actual energy usage of the
corresponding real-world experiments, further assertions about the accuracy of the power
prediction models can be made. This way, another comparison between the predicted
and the actual values can be established.

In general, the total energy usage of a device over a certain time span depends on two
variables, namely the power consumption of the device and the overall time during which
the device is used. Hence, the formula presented in Equation 5.3 [GA19] can be applied,
which yields the total energy consumed over the associated period of time in watt-seconds,
whereby one watt-second is equivalent to one joule.

Power (watts) · T ime (seconds) = Energy (watt-seconds) (5.3)

However, since the power consumption during a function invocation differs from the
baseline power draw when the device is in idle state, the energy used for function calls
and the energy consumed during idle state have to be computed separately and added
up afterwards to get the total energy demand. The computations therefore involve
several steps. While the energy calculations for the faas-sim scenarios are based on
the estimations derived from the simulations, the computations for the experiments are
based on the actual measurements obtained through the smart plugs and the Galileo
experimentation framework. Even though the origin of the data differs, the procedure, i.e.
the sequence of arithmetic steps, is the same for the simulations and the experiments. In

78

5.1. Evaluation Approach

order to cover all devices and serverless functions, the following steps have to performed
for every simulation scenario and for every series of repetitive experiment runs.

As a first step, the function execution time of every request is taken and added up. The
resulting sum indicates the overall time in which a function was executed. By subtracting
this sum from the total duration, the remaining period in which the node was in idle
state can be determined. With respect to the simulator, the total period of time that was
simulated is used for this purpose, whereas the total runtime of an experiment is utilized
for the actual measurements. Afterwards, the energy usage of these two individual time
frames can be computed by converting the power values of the underlying device from
milliwatts to watts and then multiplying the power in watts with the time in seconds, as
defined by the formula shown in Equation 5.3. For the idle state energy demand, the
mean baseline power readings as measured earlier are applied. These are identical for both
the simulations and the experiments. Regarding the energy used for function invocations,
the predicted power consumption per request is applied for the simulations and the
actual power draw per request is utilized for the experiments. Finally, by summing up
the two energy usage values, the total energy demand can be acquired. In terms of the
experiments, the measured values of repetitive runs are aggregated across all five runs by
using the average.

5.1.4 ML Model Performance Approach
Regarding the model performance evaluation, the primary goal is to ascertain the inference
speed of the predictions and to determine the level of overhead the machine learning
models impose on the execution time of the simulator, which could have negative effects
on the scalability of the simulation framework. Similar to the approach applied for
assessing the prediction accuracy, the model performance evaluation also consists of
multiple investigations.

Initially, the analysis of the inference speed per prediction across models might reveal
differences and can therefore give first insights into the performance of the models.
Furthermore, the execution time of simulations including the power models can be
compared with the runtime of the simulator when the average power consumption is
reported instead of making predictions. Analyzing the results of these two distinct
configurations might indicate the overhead caused by incorporating the machine learning
models into the faas-sim framework. Moreover, the impact of the models on the scalability
of the simulator can be examined by contrasting the wall-clock time of different scaling
scenarios, i.e. scenarios with a varying number of nodes. Since the simulation framework
is able to simulate large numbers of nodes and typical edge computing use cases encompass
topologies consisting of numerous nodes, the scaling behavior of the models is crucial
for time-efficient simulations. While all of these evaluations are based on the faas-sim
simulator and use the same simulation scenarios as their basis, they require individual
modifications regarding the scenarios or the simulator configuration itself, which are
outlined in the following along with the general approaches applied for each kind of
performance analysis.

79

5. Evaluation

Comparison of Inference Speed

As described in Section 4.4, three individual models are developed due to the significant
impact of hardware heterogeneity on the resource usage and power consumption of the
devices. Therefore, the computation time per prediction during a simulation, i.e. the
duration of a single inference call, has to be determined for each model separately. This
however enables the comparison of inference time across models.

Simulation Scenarios Since the execution time of a power prediction depends on the
complexity of the model and the model varies depending on the device being simulated,
one scenario for each edge device type is required, which results in three scenarios in total.
For this purpose, the scenarios reproducing the testbed experiments that are already
implemented for the accuracy evaluation approach as defined in Section 5.1.3 can be
reused. The CPU-based resnet function is chosen as serverless function, however, every
other function could be selected as well because the inference speed is not influenced by
the type of function.

The approach for ascertaining the duration of a single power prediction is rather straight-
forward but requires some small adjustments of simulator source code. The execution
time of each call to the predict method of a model during a simulation is measured using
the timeit Python package, so the predictions for all requests of a scenario are profiled.
Additionally, the individual measurements are logged in order to be able to obtain them
after a simulation finishes. Finally, the values can be aggregated by taking the average
over all reported computation times. The code for profiling the execution time of the
predictions is therefore added to the existing simulation scenarios and removed again
after the simulations are performed. In total, three scenarios have to be simulated for
determining the inference speed for each of the power models.

Overhead of Power Models on Simulator Execution Time

In addition to analyzing the computation time of a single prediction during a simulation,
the total overhead that is caused by the integration of the models into the faas-sim
framework has to be considered for the performance evaluation of the models. This
is essential because the machine learning models do not only delay the runtime of the
simulator by making predictions, but also by initially loading them into the simulator
before they can be used to forecast any power values. Of course, the model loading is only
done once at the beginning of a simulation run, but in case multiple different nodes are
simulated, several models have to be loaded. As a baseline for comparison, the average
power consumption measured during the experiments is integrated into the simulator.
This way, instead of predicting the power consumption upon every function invocation,
the mean power draw is reported along with the resource usage values for each request.

Simulation Scenarios As the model loading time and the prediction duration is
independent of the function that is simulated, only one function is chosen for the simulation

80

5.1. Evaluation Approach

scenarios. Hence, the simulation scenarios previously defined for the comparison of
inference speed can be reused and also serve as the basis for analyzing the overhead of
the power models. These scenarios include one scenario for each device type, i.e. three
scenarios in total, whereby all of them simulate invocations of the CPU-centered resnet
function.

In order to obtain the simulator execution time of the scenarios where the power models
are integrated and used for predictions, the available scenarios can be applied without
any changes. Afterwards, source code modifications are needed in order to implement the
baseline functionality instead of the prediction models. In contrast to the approach of
the inference speed comparison, not the scenarios but the simulator configuration needs
to be adopted, so the power models can be removed and the actual power consumption
per request on average can be embedded in the framework. The scenarios can then be
simulated again with the modified version of the simulator. This enables comparisons
between the wall-clock time of the simulations including the models with the ones that
simply report a predefined value for the power consumption per request. As a result, six
simulation scenarios in total are required for this kind of performance evaluation.

Impact of Models on Simulator Scalability

Assessing the impact of the model integration on the scalability of the simulator can
be achieved by simulating scenarios with a varying number of nodes. By observing
potential changes regarding the simulator execution time, conclusions about the scaling
behavior of the models can be drawn. Since realistic use cases involve topologies that
encompass hundreds of nodes, it must be ensured that the wall-clock time of a simulation
does not significantly increase due to the rising number of predictions before the models
can ultimately be incorporated into the framework. This is particularly important for
assuring the time-efficiency of simulations conducted with the faas-sim simulator.

Due to the fact that an increasing number of nodes automatically leads to a longer
simulator execution time, because more requests have to be simulated, a comparison
with a baseline, i.e. a simulator configuration that does not include the power models, is
inevitable. Such a baseline version is also implemented for evaluating the overhead of the
power models on the simulator execution time as described above, so the changes made
to the source code of the simulator are identical and can therefore be reapplied. This
enables comparisons between the scaling behavior of the simulator with and without
the machine learning models in terms of execution time, which extends the previous
evaluation targeting the overhead of the models to a varying number of nodes.

Simulation Scenarios As the simulation scenarios should represent scaling scenarios
in which the number of nodes is continuously incremented, one scenario per device type
is used as the basis and the subsequent ones are generated by duplicating the topology,
i.e. the amount of nodes being simulated. For this purpose, the same scenarios as before,
i.e. the resnet-cpu function simulated on each device, can be utilized as the starting point
and adapted according to the predefined scaling factors.

81

5. Evaluation

With respect to the existing scenarios, each topology consists of two nodes, namely the
device on which the function invocations shall be simulated and an additional node
that enables modeling the data transmission, i.e. sending a request containing an image
as input to the device. In order to simulate scaling scenarios, these node tuples are
multiplied by 1, 10, 50 and 100. The first scaling scenario therefore represents the existing
one, whereas the other ones encompass a varying number of nodes.

All scaling scenarios are then simulated one by one before adaptations to the simulator
are made that remove the machine learning models from the framework and include the
actual mean power consumption per request instead, as already done for the previous
evaluation. Afterwards, all scaling scenarios have to simulated again with the modified
version of the simulator, i.e. without the power models. In total, 24 scenarios are used
for evaluating the impact of the models on the simulator, since the four scaling scenarios
are executed twice, namely with and without the power models, and on each of the three
devices. Furthermore, for this kind of evaluation, the topologies of the scenarios as well
as the simulator itself have to be adapted.

5.2 Evaluation Results
In the subsequent sections, the results of the individual accuracy and performance
evaluations are presented. If not indicated otherwise, all the values contained in the
following tables are rounded to two decimal places.

5.2.1 Prediction Accuracy
Accuracy Evaluation using TPOT

Regarding the prediction accuracy evaluation in terms of TPOT, the resulting negative
mean absolute error scores of each model on the test data set are summarized in Table 5.1.
Hereby, the term target device is used to distinguish the three machine learning models
based on the underlying edge device the model is tailored to. As mentioned earlier,
negating the scoring function is a TPOT-specific method, which is applied to minimize
the error as scoring functions naturally try to maximize the accuracy scores.

Target Device Negative MAE
Intel Xeon −619.27 mW
Jetson Xavier NX −458.13 mW
Jetson Nano −191.04 mW

Table 5.1: Comparison of negative MAE scores on the test sets across devices.

The MAE scores presented in Table 5.1 can give first insights into the accuracy of the
models by demonstrating the performance of the models on the test data samples, that

82

5.2. Evaluation Results

are distinct from the training data sets. As indicated in the table, the scores are based
on the negative MAE, i.e. the predefined scoring function, and can thus be interpreted
in milliwatts. Hence, a MAE score of 619.27 mW, as achieved by the model for the
Intel Xeon, means that on average the difference between the predicted and the actual
power values is around 620 mW. When comparing the three scores, it becomes clear that
the models exhibit different levels of errors. While the highest MAE can be registered
for the Intel Xeon, the Jetson Nano model attains the lowest mean absolute error with
only about 190 mW. Therefore, the discrepancy between the best and the worst MAE is
around 430 mW.

Nevertheless, it can be pointed out that all scores represent acceptable results considering
the fact that the measurement deviations of repetitive experiments are even higher in
some cases, as identified earlier. For example, previous observations regarding the power
measurements of the smart plug connected to the Intel Xeon show that the maximum
divergences are around 1.5 W. So even though the models for this device has the poorest
rating in terms of prediction accuracy, it is still a promising outcome that is way below the
maximum measurement variation. With respect to the Jetson Nano, most measurement
distributions exhibit a variance of 200-400 mW, which is potentially the reason for the
really good MAE score of the corresponding power model. The results of the Jetson
Xavier NX are located somewhere in between the Intel Xeon and the Jetson Nano. These
observations in terms of the device ranking also correspond to the internal CV scores of
the individual models, as shown in Table 4.12 on page 68. Furthermore, the results of the
TPOT evaluation indicate that more complex model generally leads to more accurate
results, as it is the case with the Jetson Nano model. In summary, all three models are
able to achieve remarkable results on the test set samples, which represent promising
prediction accuracies.

Accuracy Evaluation using a Statistical Power Model

With respect to the comparison between the MAE scores of the machine learning models
with an existing statistical model, i.e. a linear power model, the results are contained in
Table 5.2. In general, the statistical model exhibits a poorer accuracy than the developed
platform-specific models on all three devices. The most striking observations that can be
derived from this table are the significant differences between the mean absolute errors
in terms of the Intel Xeon and the Jetson Nano. While the linear power model exhibits
an MAE of over 2.3 W for the Intel Xeon, which is substantially greater than the MAE
of the corresponding ML model, the discrepancy regarding the Jetson Nano is even more
substantial, since the MAE of the linear model is ten times higher than the one of the ML
model for this device. In contrast, the accuracy of the statistical model for the Jetson
Xavier NX is only slightly worse than the corresponding TPOT model and therefore
also represents the best MAE score across all devices. In fact, the maximum differences
between the predicted and the actual power values are around 3.6 W for the Intel Xeon,
1.2 W for the Jetson Xavier NX and 3.3 W for the Jetson Nano. Especially the prediction
errors of more than 3 W are considered as dissatisfying and inadequate.

83

5. Evaluation

The higher variances between the predicted and the actual power consumption of the
linear model presumably stem from the fact that it only incorporates the CPU utilization
into the computation, whereby all other resource usage metrics are disregarded. Due to
technical advancements of computing infrastructures, particularly in the field of hardware
accelerators such as GPUs or TPUs, solely relying on the CPU usage of a system is
considered as an insufficient approach for accurately predicting the power draw of modern
edge devices.

Target Device ML Model MAE Linear Model MAE
Intel Xeon 619.27 mW 2,343.27 mW
Jetson Xavier NX 458.13 mW 691.03 mW
Jetson Nano 191.04 mW 1,863.72 mW

Table 5.2: Comparison of MAEs between the ML models and the linear statistical power
model.

As a result, the existing linear power model that only takes the CPU utilization into
account for power consumption forecasts cannot keep up with the developed ML models
in terms of prediction accuracy, since these models outperform the statistical model
regarding the mean absolute errors. Hence, the linear model might be reliably applicable
to certain devices, but it is too generic and too rigid because it does not involve the
hardware heterogeneity of different computing platforms. Furthermore, as the power
models of other simulators are based on this linear energy modeling technique, it can be
deduced that the power forecasting functionality provided by the ML models enables
the faas-sim framework to deliver more accurate predictions than the other simulators.
Consequently, it can be concluded that the platform-specific machine learning models
represent a viable and appropriate energy modeling approach for heterogeneous edge
devices that achieves a comparatively low level of mean absolute errors.

Comparison of Power Consumption per Request using faas-sim

After the TPOT accuracy evaluation and the comparison of the developed models with
a statistical power model, the results of the various validations conducted by means of
the faas-sim simulation framework are presented and compared to the measurements
performed during the actual experiments. All of these analyses are facilitated using
several simulation scenarios, which reproduce the testbed experiments as defined in the
evaluation approach in Section 5.1.3.

First of all, the power consumption per request as forecasted by the ML models during
the simulations is compared to the preprocessed power draw measurements obtained of
the actual experiments on the testbed. This comparative analysis is done for each model
separately, starting with the model developed for Intel Xeon.

84

5.2. Evaluation Results

Intel Xeon Model Table 5.3 shows the comparison of results for the Intel Xeon power
model, whereby the predicted and the real power values for each function are displayed
along with the absolute difference between respective values. In order to additionally
visualize the outputs, Figure 5.2 contains a barplot of the power predictions and the actual
power draw per request. From the table it can be deduced that the absolute difference
between the predicted and the true power consumption per request on average on the
Intel Xeon ranges from around 11 mW in terms of the resnet-cpu function to 1,240 mW as
registered for the efficientnet-gpu function. The results for the efficientnet-gpu function
thus represent a large discrepancy. Even though both functions are not contained in the
initial training set, the deviation of the forecasted value from the real measured value
is over 1,2 W more for the efficientnet-gpu function than for the resnet-cpu function.
This behavior is also clearly evident in the plot shown in Figure 5.2. The other three
functions exhibit differences between 200 mW and 400 mW, which represent satisfactory
results. From the plot it can also be derived that the predicted values are higher than the
actual ones regarding the resnet-gpu, efficientnet-cpu and efficient-gpu function, whereas
the true values are higher than the forecasted ones with respect to the resnet-cpu and
objectdetection function. Hence, in this sense, no clear tendency can be observed for the
results of the Intel Xeon-based power model.

Function Pred. Power Actual Power Absolute Diff.
Resnet-cpu 17,216.55 mW 17,227.16 mW 10.62 mW
Resnet-gpu 15,972.78 mW 15,767.98 mW 204.80 mW
Efficientnet-cpu 16,517.23 mW 16,318.54 mW 198.69 mW
Efficientnet-gpu 16,979.84 mW 15,740.80 mW 1,239.04 mW
Objectdetection 16,933.43 mW 17,341.99 mW 408.56 mW

Table 5.3: Comparison between the predicted and the actual power consumption per
request for the Intel Xeon model.

In summary, it is important to highlight that there is one outlier prediction, i.e. the one
for the efficientnet-gpu function, which is considerably inferior compared to the other
predicted values of the Intel Xeon model. However, taking the maximum measurement
error of 1.5 W for the Intel Xeon smart plug into account, this output is still inside the
tolerance range. Sine the measurement variance of 1.5 W is recorded for the resnet-gpu
measurements and this function is contained in the training set, the poor prediction for
the efficientnet-gpu function can be attributed to this mismatch, as both functions are
GPU-centered. The other predictions are all below the MAE as previously determined
by TPOT, so these values are highly satisfactory.

Jetson Xavier NX Model Regarding the power model constructed for the Jetson
Xavier NX, similar findings as observed for the Intel Xeon model can be derived from
the results presented in Table 5.4 and the corresponding plot shown in Figure 5.3. While

85

5. Evaluation

Figure 5.2: Comparison between the predicted and the actual power consumption per
request for the Intel Xeon model.

the predicted power values for four of the functions are satisfactory, since the absolute
difference between the forecasted and the actual power consumption are on a very
low level, the prediction made for the efficientnet-gpu function is striking. Similar to
the previously analyzed model, the power consumption per request predicted for the
efficientnet-gpu function misses the actually measured average value by more than 1 W.
Nevertheless, in contrast to the Intel Xeon model, the machine learning model developed
for the Jetson Xavier NX achieves the best prediction, i.e. the one closest to the true
value, for the resnet-gpu function.

Function Pred. Power Actual Power Absolute Diff.
Resnet-cpu 15,458.15 mW 15,359.42 mW 98.74 mW
Resnet-gpu 16,535.50 mW 16,507.14 mW 28.36 mW
Efficientnet-cpu 15,019.83 mW 15,137.78 mW 117.95 mW
Efficientnet-gpu 16,690.36 mW 15,604.01 mW 1,086.35 mW
Objectdetection 15,019.83 mW 15,078.63 mW 58.80 mW

Table 5.4: Comparison between the predicted and the actual power consumption per
request for the Jetson Xavier NX model.

Besides the single poor prediction, this model also accomplishes outstanding results.
When looking at the plot displayed in Figure 5.3, only minimal differences between the
predictions and the true values can be identified for four out of five functions. The
comparably large discrepancy in terms of the efficientnet-gpu function is clearly visible
in the plot as well. In order to find out the exact cause for this mismatch, additional
investigations regarding the resource usages of the individual functions would be required,
which is out of the scope of this work. However, a prediction error of 1 W is still

86

5.2. Evaluation Results

Figure 5.3: Comparison between the predicted and the actual power consumption per
request for the Jetson Xavier NX model.

considered as tolerable when keeping the measurement deviations in mind. In general,
it can be also be noted that the predictions of the Jetson Xavier NX model are more
accurate than the ones obtained from the Intel Xeon model, which corresponds with the
findings of the TPOT accuracy evaluation.

Jetson Nano Model Finally, the difference between the predicted and actual power
values of the machine learning model tailored to the Jetson Nano is assessed. The
evaluation results are presented in Table 5.5 and Figure 5.4, respectively. As a general
observation, it can be stated that the prediction errors are extremely low for this model
across all functions, whereby the minimum deviation is less than 2 mW and the maximum
divergence is around 26 mW.

Function Pred. Power Actual Power Absolute Diff.
Resnet-cpu 3,820.83 mW 3,838.20 mW 17.36 mW
Resnet-gpu 3,657.88 mW 3,656.06 mW 1.82 mW
Efficientnet-cpu 3,675.70 mW 3,653.22 mW 22.48 mW
Efficientnet-gpu 3,644.82 mW 3,637.37 mW 7.45 mW
Objectdetection 3,607.41 mW 3,581.05 mW 26.36 mW

Table 5.5: Comparison between the predicted and the actual power consumption per
request for the Jetson Nano model.

This behavior can probably be attributed to the fact that the power consumption values
of the Jetson Nano are the most homogeneous ones with a low level of measurement
errors. As clearly evident in the plot in Figure 5.4, the power values of the individual
workloads do not differ as much as they do with respect to the Intel Xeon and the Jetson

87

5. Evaluation

Figure 5.4: Comparison between the predicted and the actual power consumption per
request for the Jetson Nano model.

Xavier NX. Furthermore, the TPOT MAE score already indicates that the predictions of
the Jetson Nano model are the most accurate ones. Another interesting finding is that
except for the resnet-cpu function, all other predictions are higher than the actual power
consumption per request measured for the different serverless functions.

Summary In conclusion, by comparing the predictions yielded by the machine learning
models during simulations with the real-world measurements conducted by means of
the experiments, it becomes clear that the predicted values generally correspond to
the actual power readings for most serverless functions. While there are in total two
outlier predictions, these mismatchs still reside in a tolerable range with respect to the
measurement errors of the smart plugs as determined earlier. Therefore, the power models
are able to predict the power consumption per request with a satisfying accuracy. However,
no generally valid assertion about a tendency of the models to consistently predict values
higher or lower than the real power measurements can be made. Furthermore, the exact
accuracy of the models slightly differ, as already indicated by the TPOT evaluation.

Comparison of Total Energy Demand using faas-sim

Similar to the comparison of the predicted and actual power consumption per request,
assessing the differences between the total energy demand estimated by the simulator
with the total amount of energy actually consumed during the experiments is also done
for each model individually. These differences can help with gaining additional knowledge
about the accuracy of the prediction models. Since joule is the most common unit
of energy, joules (J) are used in the following instead of watt-seconds, but both units
are equivalent in general. Apart from the overall energy, the period of time that is
simulated by the faas-sim framework for a certain scenario can be contrasted with the
real-world duration of the corresponding experiment. This can lead to valuable insights
regarding the comparability of the scenarios simulated through the framework, which

88

5.2. Evaluation Results

should reproduce the experiments conducted by means of the testbed as accurately as
possible.

Intel Xeon Model At first, the results of the model constructed for the Intel Xeon
are analyzed. Table 5.6 therefore comprises the duration modeled by the simulator and
the actual length of the experiment for each function, as well as the total amount of
energy estimated based on the prediction model and the one based on the real-world
measurements.

Function Sim. Time Act. Time Pred. Energy Act. Energy
Resnet-cpu 286.50 s 293.75 s 4,679.80 J 4,796.98 J
Resnet-gpu 286.50 s 293.74 s 4,648.15 J 4,761.55 J
Efficientnet-cpu 286.50 s 293.74 s 4,661.18 J 4,773.84 J
Efficientnet-gpu 286.50 s 293.58 s 4,671.61 J 4,757.27 J
Objectdetection 200.50 s 209.68 s 3,301.40 J 3,476.86 J

Table 5.6: Comparison between the estimated and the actual energy demand for the
Intel Xeon model.

Regarding the total duration, both the simulated and the actual time are very similar
for all resnet and efficientnet functions since the same request pattern is used for these
workloads. The request profile for the objectdetection function differs, which is why the
both durations are lower. When comparing the estimated period of time with the true
execution time of the experiments on average, it becomes clear that the simulated values
are 7-9 seconds lower. This behavior can be observed for all functions and probably stems
from certain setup and teardown tasks that are performed by the Galileo experimentation
framework before the first request and after the last request. This assumption is validated
through manual checks, which confirm that additional 2-3 seconds pass between the start
of the experiment and the transmission of the first request. Additionally, 5-6 seconds
elapse between finishing the last request and stopping the experiment. These setup and
teardown delays are therefore not reflected by the faas-sim framework.

When it comes to comparing the predicted total energy demand with the actually
consumed energy, deviations between 85 J and 175 J can be discovered for the Intel
Xeon model. Therefore, the differences are on a consistently low level, which means that
the simulations are able to accurately estimate the total amount of energy required for
a certain scenario. Since the forecasted energy demand is lower than the real energy
usage for all functions, additional investigations are carried out to find out the reason
for this behavior. As stated above, the duration estimated by the simulator is about
7-9 seconds shorter than the actual execution time of the experiments. Because the total
energy demand is calculated based on the function execution time and the idle duration,
it is assumed that the idle period of the real experiments is higher than the estimated

89

5. Evaluation

idle time due to the experiment setup and teardown delays as identified earlier. This
assumption is verified by comparing the idle periods of the simulations with the ones
registered during the experiments. The results of these additional validations show that
the idle time of the experiments is indeed 7-9 seconds longer than the estimated idle
period. Adapting the computations according to this finding for test purposes yields even
more accurate results for the total energy demand. Since the biggest difference between
the estimated and the true duration can be identified for the objectdetection function, it
is plausible that the predicted and the actual energy values of this function also diverge
more than the ones calculated for the other functions.

Nevertheless, the initial results contained in Table 5.6 already represent very satisfactory
outcomes, which show that the Intel Xeon model can be applied for accurately estimating
the total energy demand of a scenario. In general, it can also be observed that the
function executions on the CPU require slightly more energy than the corresponding
GPU experiments on the Intel Xeon, which represents an interesting finding in terms of
energy efficiency.

Jetson Xavier NX Model Table 5.7 comprises the total energy demand based on
the predicted power values and based on the power consumption measurements of the
experiments on the Jetson Xavier NX. Furthermore, the period of time simulated by
the scenarios as well as the actual execution time of the corresponding experiments on
average is included in the table. Regarding the durations, the conclusions that can be
drawn from the comparison between the simulated and the real-world values are identical
to the findings that are documented for the Intel Xeon model, which is why they are not
repeated at this point.

Function Sim. Time Act. Time Pred. Energy Act. Energy
Resnet-cpu 286.50 s 293.94 s 4,264.14 J 4,366.58 J
Resnet-gpu 286.50 s 294.27 s 4,274.40 J 4,386.84 J
Efficientnet-cpu 286.50 s 293.74 s 4,227.09 J 4,339.26 J
Efficientnet-gpu 286.50 s 293.86 s 4,282.81 J 4,350.87 J
Objectdetection 200.50 s 210.04 s 2,971.09 J 3,115.54 J

Table 5.7: Comparison between the estimated and the actual energy demand for the
Jetson Xavier NX model.

With respect to the total energy demand, the insights that can be gained from the results
of the Jetson Xavier NX model are also similar to the ones of the Intel Xeon model. The
estimated total energy demands are consistently lower than than the actually consumed
energy, which is again caused by the differences in terms of execution time. As discovered
above, the reason for this mismatch is the fact that the simulated duration is shorter than
the real runtime for all functions. The specific discrepancies between the estimated and

90

5.2. Evaluation Results

the actual amount of energy range between 68 J and 145 J, whereby the objectdetection
function again exhibits the biggest deviation. In general, the level of differences is lower
than the ones calculated for the Intel Xeon model, which corresponds with the previous
findings regarding the slightly varying accuracy of the individual machine learning models.

In contrast to the Intel Xeon, the total amount of energy consumed by the CPU-based
functions is lower than the energy required for the GPU-based functions. However, both
devices exhibit a comparable level of energy demand with regard to the experiments
conducted in the course of this work.

Jetson Nano Model Finally, Table 5.8 presents the results of the energy demand
comparison based on the power model developed for the Jetson Nano. In fact, the
differences between the estimated energy demand and the actually consumed energy
range from 24 J to 28 J, so the Jetson Nano model yields even more accurate results
than the Jetson Xavier NX model, which coincides with the key findings of the preceding
accuracy evaluations.

Function Sim. Time Act. Time Pred. Energy Act. Energy
Resnet-cpu 286.50 s 293.58 s 1,025.83 J 1,051.77 J
Resnet-gpu 286.50 s 294.11 s 1,004.22 J 1,030.71 J
Efficientnet-cpu 286.50 s 293.91 s 1,002.62 J 1,027.08 J
Efficientnet-gpu 286.50 s 294.43 s 1,001.11 J 1,027.91 J
Objectdetection 200.50 s 209.52 s 709.62 J 737.97 J

Table 5.8: Comparison between the estimated and the actual energy demand for the
Jetson Nano model.

Since the Jetson Nano has a lower power consumption on average both during idle state
and during function invocations, the total amount of energy consumed by this edge
device is significantly lower than the energy demand of the Intel Xeon and the Jetson
Xavier NX, although the Jetson Nano takes longer for processing a single request. This
represents a notable observation, since the power models embedded into the faas-sim
framework can therefore also be used to compare the energy efficiency of different device
types.

Summary The results of the energy demand comparison represent remarkable outcomes
for all three models, which demonstrate and thus certify that the developed machine
learning models can be applied for accurately estimating the total amount of energy
required for a certain scenario. This in turn confirms that the power models can reliably
be used to determine and compare the energy efficiency of different devices. As elucidated
above, the model tailored to the Jetson Nano performs best in terms of inference accuracy
across all evaluations, whereas the Intel Xeon model exhibits the poorest forecasting

91

5. Evaluation

precision. However, the prediction errors are still very low with respect to the measurement
errors of the smart plugs, so all models are able to yield satisfactory outcomes.

5.2.2 ML Model Performance
The model performance evaluation also consists of multiple parts in order to provide
an in-depth analysis of the complexity of the power models and the resulting level of
overhead they impose on the simulator execution time. If the models turn out to produce
a considerable delay, it could have negative effects on the scalability of the simulation
framework. All the performance assessment results presented in the following are based
on simulations conducted with the faas-sim framework and executed on a MacBook Pro
as described earlier.

Comparison of Inference Speed

The average runtime of a single prediction per model can be found in Table 5.9, whereby
the results are calculated by measuring the inference speed of each prediction within a
scenario comprising 100 requests and aggregating the values using the mean. In general,
it can be noted that all three models make very fast predictions in the range of a few
milliseconds. When comparing the inference time of all three models, clear differences can
be identified. While the Intel Xeon-based model makes the fastest predictions, which only
run for 0.78 ms on average, the model developed for the Jetson Nano takes over three
times longer to perform a single inference call and thus requires 2.6 ms per prediction.
The inference time of the Jetson Xavier NX model lies between these two values.

Target Device Inference Speed
Intel Xeon 0.78 ms
Jetson Xavier NX 1.16 ms
Jetson Nano 2.60 ms

Table 5.9: Comparison of the average inference speed of each model.

These findings correspond with the assertions made about the complexity of the models
in Section 4.4.2, where it is stated that the model pipeline of the Intel Xeon is the
most compact one, whereas the TPOT pipeline for the Jetson Nano has the highest
number of operators. Consequently, as expected, the complexity of the models clearly
has an impact on the inference speed. Furthermore, the length of the model training,
i.e. the duration of the individual TPOT runs, can also be related to these insights,
which leads to the assumption that a longer training period implies a more complex
and thus slower, but also more accurate model. As shown in Section 5.2.1, the Jetson
Nano model exhibits the highest accuracy across all three ML models, but also has the
longest pipeline optimization period, the most exhaustive pipeline and therefore the
slowest inference speed. In comparison, the Intel Xeon model is the most compact one

92

5.2. Evaluation Results

with the fastest training phase and the best inference speed while its predictions are not
as accurate as the ones yielded by the Jetson Nano model. Hence, the results clearly
show the interrelationship between the model training duration, the complexity of the
final pipelines, the inference speed and the prediction accuracy of the models. As a
consequence, these observations are presumably the reason for the varying inference time
of the models. However, the exact implications of the differences in terms of inference
speed only become visible through the subsequent evaluations.

Overhead of Power Models on Simulator Execution Time

The preceding evaluation only considers the computational burden caused by a single
power prediction, but the integration of the models additionally adds overheads to the
simulator execution time, since the models need to be loaded before they can be used
for power forecasting. Therefore, following evaluation takes both delays into account by
determining the overhead of the models in comparison with a baseline approach that does
not include the power models. As described in Section 5.1.4, the baseline configuration of
the simulation framework simply reports a predefined value for the power consumption,
namely the average power draw per request, instead of making predictions.

Table 5.10 includes the results of the simulator execution time of scenarios that are
simulated with and without the machine learning models. In order to illustrate the
differences in terms of simulator runtime, the resulting values are also plotted as shown in
Figure 5.5. The scenarios used for these comparisons involve the simulation of 100 requests
of the same serverless function on each device type. While the wall-clock times of the
scenarios executed without the models are fairly similar across devices, the simulator
runtimes regarding the simulator configuration with the integrated power models exhibit
more variations. Nevertheless, the magnitude of these differences is rather small as the
minimum and maximum value are only about 250 ms apart. These slight discrepancies
certainly stem from the fact that the Jetson Nano model is the slowest model with the
longest inference time of all three devices as indicated in Table 5.9, whereas the Intel
Xeon model is the fastest one in terms of inference speed.

Target Device With Models Without Models
Intel Xeon 306.37 ms 83.91 ms
Jetson Xavier NX 378.44 ms 88.73 ms
Jetson Nano 553.12 ms 86.89 ms

Table 5.10: Comparison of the overhead imposed by the models on the simulator execution
time.

In general, depending on the device and thus the model used for predictions, the execution
time of the simulations in case the models are included is approximately 3.5-6.5 times
higher than the simulator runtime of the baseline configuration without the models. Even

93

5. Evaluation

Figure 5.5: Overhead caused by the models on the simulator execution time.

though the overheads might seem severe at first sight, they have to be considered in
proportion to the overall context. Since the simulations with the power models encompass
100 requests, which implies the computation of 100 predictions and the loading of the
respective model at the beginning, the absolute values of the delays are plausible. Due to
the fact that further functionality is added to the simulator, an increased wall-clock time
is expectable and thus justifiable. Furthermore, the simulator wall-clock times recorded
for the simulations including the models are still extremely low compared to the actual
period of time they simulate. While the simulations run between 300 ms and 550 ms,
the duration that these scenarios are simulating amounts to 286.5 s, so the simulator
operates very time-efficiently despite the overhead caused by the models.

To sum up, the integration of the machine learning models has a reasonable impact on
the execution time of a simulation, since the benefit the models add to the simulation
framework prevails and thus justifies the delays imposed by the predictions and the model
loading time.

Impact of Models on Simulator Scalability

Simulating scenarios with a varying number of nodes represents another interesting
evaluation that can be performed to assess the level of overhead caused by the models.
Since 100 requests are simulated per node tuple and the tuples are multiplied by the
scaling factor, a factor of one implicates scenarios with 100 requests in total, whereas a
factor of 100 implies that 10,000 requests are modeled during a simulation. The scaling
behavior of the models in terms of simulator wall-clock time can therefore be observed
and the results can be compared to the runtimes recorded for the baseline configuration.

94

5.2. Evaluation Results

This way, the impact of the models on the scalability of the faas-sim framework can be
assessed.

The simulator execution time of the individual runs can be found in Table 5.11. For the
purpose of visualizing the results, Figure 5.6 encompasses one plot for each device, i.e.
each machine learning model. According to these plots and the exact values contained in
the corresponding table, the wall-clock times of the scaling scenarios without the models,
which are indicated by the orange lines in the plots, are pretty much identical across all
three devices. However, when comparing the simulator runtimes of the scaling scenarios
where the models are included, as displayed by the blue lines in the plots, it becomes
evident that the Jetson Nano model performs worse than the other two models. The
integration of the Jetson Xavier NX model does not increase the simulator wall-clock
time as much as the Jetson Nano model, but still more than the Intel Xeon model. These
findings again correspond with the previous observations, namely the finding that the
Jetson Nano model has the slowest inference speed, whereas predictions for the Intel
Xeon take the least amount of time.

Target Device Scaling Factor With Models Without Models
Intel Xeon 1 0.31 s 0.08 s
Intel Xeon 10 2.03 s 0.93 s
Intel Xeon 50 11.95 s 7.09 s
Intel Xeon 100 29.87 s 20.49 s

Jetson Xavier NX 1 0.38 s 0.09 s
Jetson Xavier NX 10 2.34 s 0.92 s
Jetson Xavier NX 50 13.64 s 7.37 s
Jetson Xavier NX 100 33.32 s 20.14 s

Jetson Nano 1 0.55 s 0.09 s
Jetson Nano 10 3.39 s 0.91 s
Jetson Nano 50 18.85 s 7.13 s
Jetson Nano 100 45.42 s 20.56 s

Table 5.11: Comparison of the execution time with and without the models based on the
scaling scenarios.

Furthermore, all simulations conducted with the models are considerably slower than
the simulations performed without the models. Regarding the scenarios with a small
number of nodes, the slight delays caused by the integration of the models is considered
as reasonable. The magnitude of the differences however increases with rising numbers of
nodes because of the higher amounts of requests, which in turn imply a larger number

95

5. Evaluation

Figure 5.6: Comparison of simulator execution time across scaling scenarios.

of predictions. Hence, the biggest divergences with respect to the simulator execution
time can be observed for the scenarios with a scaling factor of 100. Regarding the Intel
Xeon model, the integration of the models causes a delay of more than 9 seconds for the
scenario with 100 node tuples. The predictions made with the Jetson Xavier NX model
impose a latency of around 13 seconds, whereas the Jetson Nano model increases the
simulator wall-clock time by nearly 25 seconds. This behavior can also be recognized
in the plots shown in Figure 5.6. Nonetheless, when taking the amount of time that
is simulated by these scenarios into account, it can be concluded that the simulations
conducted with the power models are still very time-efficient. Since the simulations with
a scaling factor of 100 simulate scenarios with a total duration of 28,602 seconds, i.e.
nearly 8 hours, a wall-clock time of 45 seconds is still bearable and thus acceptable.

Summary

In conclusion, the machine learning models impose diverse levels of overheads on the
simulator execution time, which is confirmed by all evaluations results. Especially
in scenarios where large numbers of nodes are simulated, which represents a realistic
scenario with respect to typical edge computing use cases, the delays are clearly perceptible.
However, even though every model negatively impacts the wall-clock time of the simulator,
the scalability of the faas-sim framework is not severly impaired, since the degree of
latencies is still reasonable considering the significant benefit the models add to the
simulations. Furthermore, when taking the amount of time that is simulated by these
scenarios into account, it can be concluded that the simulations are very time-efficient
despite the model overhead and that the extended execution times are therefore acceptable.

5.2.3 Performance-Accuracy Trade-off
After the accuracy of the predictions and the overall performance of the models are
assessed separately, the findings can be combined in order to reason about the inherent
trade-off between these two essential ML model properties. This trade-off can give

96

5.2. Evaluation Results

valuable insights into the applicability and the suitability of the power models for the
given simulation framework. On the one hand, the predictions should exhibit a satisfying
level of precision, which means that the predicted power consumption during simulations
does not significantly diverge from the actual power consumption of the devices in the
real world. However, on the other hand, the complexity of the models is crucial as well,
since this affects the inference speed, i.e. the performance of the models. The models
should therefore only add a minor overhead to the simulations, so that the simulator
scalability is not severely impaired.

While the results demonstrate that the models are able to achieve remarkable outcomes
in terms of accuracy, as thoroughly analyzed in Section 5.2.1, the performance of the
models, which directly impacts the overhead imposed on the simulator execution time,
considerably differs depending on the number of nodes that are simulated in a scenario.
However, in order to correctly interpret the results, they have to be put into perspective
and thus considered in proportion to the overall context, as explained in Section 5.2.2.
Since the prediction functionality is a major enhancement of the simulator and the model
accuracy is in general very satisfactory, the increased wall-clock times of the simulations
are reasonable. Additionally, the simulator can still finish the simulations within an
acceptable amount of time, which is why the simulation runs including the power models
are very time-efficient regardless of the overhead they impose. Therefore, when keeping
the actual period of time these scenarios simulate in mind, even the delays recorded for
larger numbers of nodes are tolerable. As a result, the scalability of the simulator is
slightly affected by the models, but not severely impaired.

Since the models are able to accurately estimate the power consumption of a single
serverless function invocation and can therefore be applied to reliably calculate the
total amount of energy required for a certain scenario, they should be provided as an
additional simulator feature despite the overhead they cause. Due to their ability to
predict the power consumption of a request independent of the underlying serverless
function and solely based on the resource usage metrics, the machine learning models
are generalizable to unknown functions and thus constitute a valuable extension to the
faas-sim framework. Furthermore, the accuracy evaluation results also show that the
platform-specific machine learning models represent a viable and appropriate energy
modeling approach for heterogeneous edge devices, which is able to outperform an existing
statistical power model. The multi-model approach chosen in this work can thus overcome
the device-dependent discrepancy in terms of resource usage and power consumption
that is associated with the edge domain.

As it is anticipated that the majority of scenarios, which are simulated by means of the
faas-sim simulation framework, comprise large-scale topologies with several nodes, the
power prediction functionality of the machine learning models should not necessarily be
activated by default. Instead, it is suggested to offer this feature as an optional simulator
extension that can be enabled if desired. Otherwise, the power models could increase
the simulator execution time even if they are not needed by every user. Hence, as a
compromise, it should be left to the users whether they want to include this additional

97

5. Evaluation

functionality into their simulations or not. Besides that, the implications of integrating
the power models into a scenario on the simulator runtime must be clearly documented
for potential users of the faas-sim framework, since time-efficiency is one of the main
objectives of a simulation.

Moreover, from the results presented in Section 5.2.1 and Section 5.2.2, conclusions
regarding the performance-accuracy trade-off of the individual models can be drawn. The
evaluations clearly show that the Jetson Nano model is the most accurate one, whereby
it also imposes the biggest overhead due to its slower inference speed. These observations
are direct causes of the elevated model complexity as compared to the other two ML
models. In contrast, the more compact model established for the Intel Xeon performs
best in terms of inference time across all evaluations and thus imposes less overhead on
the simulator wall-clock time, but at the same time it exhibits larger, but still bearable,
deviations in terms of forecasting precision. Therefore, it can be stated that a higher
prediction accuracy generally can only be achieved at the cost of model complexity and
therefore weaker model performance. Nevertheless, the models demonstrate that TPOT
enables the construction of lightweight ML models which are able to balance the accuracy-
complexity trade-off, whereby a satisfactory trade-off between model performance and
accuracy is a key requirement imposed by incorporating the models into the faas-sim
simulator. This achievement can be attributed to TPOT’s internal Pareto optimization
and the TPOT Light configuration used for the model establishment phase.

In summary, the integration of the developed machine learning models into the faas-sim
simulation framework proves that it is possible to establish power prediction models with
an acceptable performance-accuracy trade-off. While these models are able to precisely
estimate the power consumption of a function invocation solely based on the provided
resource usage metrics, they do not severely impair the scalability of the simulator. Even
though the overhead imposed by the additional power forecasting functionality increases
with rising numbers of nodes contained in a scenario, which represents a plausible
behavior, the time-efficiency of the simulations can still be guaranteed. As a result,
the applicability and suitability of the models in simulation environments is verified
by the evaluation results. However, the benefit that the models add to the simulation
framework, i.e. providing power predictions for resource planning and energy efficiency
comparisons, needs to be balanced with the extended simulator execution time that is
caused by the computation overhead of the models. Consequently, as a compromise,
the power prediction feature should only be embedded into the faas-sim as an optional
simulator extension.

98

CHAPTER 6
Limitations

In the following, known limitations of the approach applied in this work and restrictions of
the final power models are highlighted and discussed. Thereby the limitations are divided
into constraints related to the power consumption and resource usage measurements on
the one hand, as presented in Section 6.1, and restrictions concerning the integration of
the models into the faas-sim framework on the other hand, as covered in Section 6.2.

6.1 Measurement-related Limitations
Regarding the smart plugs used in the course of this thesis to measure the power
consumption of edge devices, several limitations need to be noted. First of all, the
sampling frequency of ten seconds is in general too coarse, since the telemd resource
usage metrics are reported once per second during the experiments. In an ideal setup,
the time of the power consumption readings should be aligned and therefore synchronized
with the telemd sampling rate, so the timestamps of the power values correspond with
timestamps of the resource usage metrics. Nevertheless, this constraint of the smart
plugs is compensated by using the PowerDelta configuration of the Tasmota firmware
running on the plugs, which is able to publish all energy-related metrics upon power
changes of more than one percent in addition to the periodic reports. Consequently, it
can be assumed that the power consumption between two consecutive measurements
did not change more than one percent. However, this leads to irregular power readings
as compared to the steady resource usage publishments, which represents an inherent
shortcoming of the smart plugs.

Furthermore, two of the smart plugs had to be replaced due to hardware malfunctions
that caused the plugs to report unrealistic power consumption values. Therefore, the
overall reliability and correctness of the power readings returned by the smart plugs
could be questioned and should thus be verified by other external power measurement

99

6. Limitations

instruments. Considering the striking findings derived from the comparisons between the
external and internal measurements, the need for such a verification is further amplified.

Another caveat that needs to be mentioned is the assumption that the Jetson NVP
models, which define the operation mode of the underlying Jetson module, presumably
have an impact on the power consumption of a device. As the specified NVP profile also
determines the power budget, setting a different NVP mode could potentially lead to
power consumption readings that differ from the ones obtained in the course of this work,
which adds another level of heterogeneity. This would imply that the developed power
models for the Jetson boards do not only depend on the platform, but also on the NVP
model that is currently set on the devices, which could result in inaccurate predictions
in case other NVP profiles are chosen. However, this is only a hypothesis, so the actual
implications of changing the operation modes of the Jetson Xavier NX and the Jetson
Nano are unknown at this juncture.

In addition, the data analysis results presented in Section 4.3 indicate that the GPU
utilization metric is rather volatile and more error-prone than the CPU measurements.
Furthermore, since the GPU utilization metric does not represent a continuous counter,
it may not be able to capture rapidly changing values. Hence, this metric is highly
dependent on the timing of the measurements and the sampling frequency. This however
does not present a limitation of this work, but a shortcoming of the telemd monitoring
agent. Reporting the GPU usage time as a continuous counter instead of the current GPU
utilization would therefore be a highly desirable improvement of the telemd daemon.

Moreover, especially the GPU-targeted functions executed on the Intel Xeon exhibit
relatively low utilization rates, since the provided workloads are not sufficient to heavily
stress the powerful GPU. In general, all of the profiled serverless functions represent
inference tasks of deep learning models, so the resource usage and power consumption
of training processes performed on edge devices is not considered in this work. As
the training phase usually takes significantly longer than performing inference with a
pre-trained model, exact measurements of inference applications are more difficult due
to their short runtime. Consequently, as compared to inference, training a ML model
is typically more resource-intensive, so additionally profiling serverless functions that
focus on training on the available edge nodes could be beneficial in terms of measurement
robustness and higher GPU workloads.

6.2 Simulator-related Limitations
With respect to the additional power prediction functionality of the faas-sim simulation
framework, this novel simulator feature is restricted to the three edge devices used in
this work, i.e. the Intel Xeon, the Jetson Xavier NX and the Jetson Nano. Due to the
severe hardware heterogeneity these platforms exhibit, the developed models are tailored
to one type of device. Therefore, predicting the power consumption per request is only
supported for these three devices, whereas other hardware platforms that can also be
simulated by means of faas-sim do not include this functionality.

100

6.2. Simulator-related Limitations

Although the faas-sim framework is able to simulate the parallel invocation of multiple
serverless functions on a single node, this functionality is not utilized in the course of this
work. The reason for this is the fact that the simulations conducted with the faas-sim
simulation for evaluation purposes aim at reproducing the testbed experiments. Since
the testbed experiments focus on profiling single and isolated requests, the simulations
do not need to simulate more than one request at a time. Hence, only single tenancy is
considered in this thesis, while multi-tenancy scenarios are disregarded. Nonetheless, if
the multi-tenancy feature of the simulator is intended to be used in combination with
the power models, taking the resource usage of all parallel function calls, predicting the
power consumption for each one individually and adding them up is most likely not
the correct approach, because the models predict the total power consumption of the
device instead of the difference between the baseline and the function invocation power
draw. As an alternative, the combined resource usage of the parallel requests needs to
be determined and fed into the power models in order to obtain more accurate results.
However, due to the fact that this kind of scenario is not analyzed in the scope of this
work, separate evaluations would be required to assess the correctness and feasibility
of the described approach. As a result, this does not represent a real limitation, but it
should be kept in mind that scenarios with parallel function invocations are not covered
and thus not tested in the course of this thesis.

101

CHAPTER 7
Conclusion

Accurately and consistently measuring the power consumption of edge devices is a chal-
lenging and laborious task due to the high hardware heterogeneity that is associated
with computing platforms operating in the edge-cloud continuum and the lack of uni-
form, platform-agnostic measurement facilities. However, obtaining the power draw of
devices is crucial for optimizing the energy efficiency and reducing operational costs
in edge environments. Therefore, this thesis aims to provide an easy to use prediction
functionality embedded into an existing open-source FaaS simulation framework, which
enables forecasting the power usage of different edge computing platforms in the context
of realistic large-scale scenarios.
To this end, the development of power prediction models based on resource usage
metrics by means of machine learning techniques is proposed for efficiently modeling the
energy consumption of heterogeneous edge devices. This work therefore encompasses the
design, construction and evaluation of ML models which rely on empirical measurements
conducted during a series of experiments on a dedicated testbed. For this purpose, an
AutoML tool, namely TPOT, is applied during the model development process. In order
to enable the utilization of the models in typical edge computing use cases, they are
integrated into the faas-sim serverless simulator.
The evaluation results demonstrate the successful establishment of generalizable ML
models that are able to precisely estimate the power consumption of serverless function
invocations solely based on resource utilization rates. The models therefore generalize
well to new inputs from unknown serverless functions. At the same time, the extended
simulator execution time, which stems from the additional power forecasting functionality,
is still reasonable. Hence, the prediction models do not severely impair the scalability of
the underlying simulation framework. Considering the actual period of time the scenarios
simulate, the time-efficiency of the simulations can thus be guaranteed regardless of
the overhead that is caused by the predictions. As a result, the findings show that
efficient machine learning models with a satisfactory performance-accuracy trade-off can

103

7. Conclusion

be established and therefore represent an appropriate energy modeling technique for
heterogeneous edge devices.

Consequently, the supplementary prediction functionality embedded into the faas-sim
framework represents a major enhancement to the simulator. As such, it can be useful for
energy management and planning, which is crucial for settings where energy awareness
is a key aspect, e.g. due to limited power supply. Furthermore, it allows developers
and researchers to rapidly and easily compare the energy efficiency of various devices
and facilitates the development and evaluation of novel energy-aware scheduling, load
balancing and task placement strategies as well as other resource management algorithms.
In summary, the power models foster the development of energy-efficient solutions and
thus contribute to the goal of optimizing and reducing energy demands as targeted by
research efforts in the context of green IoT.

7.1 Research Questions
This section summarizes the answers to the main research questions that should be an-
swered in the course of this thesis and thereby highlights the key findings and contributions
of this work.

RQ 1: What are appropriate methods for measuring the power consumption of edge
devices and how do they differ?

Since the edge domain is characterized by highly heterogeneous computing platforms,
power profiling of edge devices is typically complex, time-consuming and costly. For
the purpose of finding appropriate methods that are suitable for measuring the power
consumption of various platforms, different types of measurement facilities are described,
classified into external and internal instruments and contrasted by means of various
aspects in the course of this thesis. The factors that build the basis for this comparison
include granularity, measuring approach, power data source, profiling overhead, sampling
frequency, setup costs and equipment costs of the individual techniques.

Furthermore, one external and two internal power profiling methods are chosen and
applied during the series of experiments in order to be able to compare the measurement
values reported by different instruments across devices. Since the internal techniques
cannot uniformly be used for all three devices due to platform-dependent internal sensors,
two distinct measurement facilities have to be implemented, i.e. one for the Intel Xeon
and one for the Jetson boards.

The results of these distinct types of energy measurements show clear differences. While
the smart plug readings are consistently higher than the power consumption captured by
the internal sensors with respect to the two Jetson boards, the external measurements of
the Intel Xeon are lower than the obtained power values of the GPU and its associated
circuits. The findings of the Jetson boards therefore correspond with the expected
behavior, whereas the outputs of the Intel Xeon profiling are counterintuitive and

104

7.1. Research Questions

contradictory. As a consequence, the external power readings conducted by means of the
smart plugs are used for the development of the machine learning models, because it is
considered as infeasible to consistently and comparably monitor all three devices using
internal measurement instruments. Therefore, the smart plugs represent the only uniform
approach for measuring the power consumption of diverse edge computing platforms.

RQ 2: How severe is the impact of hardware heterogeneity on the resource usage and
power consumption of different devices and what does this mean for power consumption
modeling approaches in the edge domain?

In order to ascertain the impact of heterogeneous hardware capabilities on the resource
usage and power consumption of edge computing platforms, two kinds of profiling experi-
ments are conducted. The function invocation experiments, which focus on executing
the same serverless functions on each device type using a consistent workload, clearly
demonstrate that the platform heterogeneity in the edge domain has a severe impact
on the resource usage of devices. For instance, regarding the resnet-gpu function, the
GPU utilization rates of the Intel Xeon and the Jetson Nano exhibit a divergence of
approximately 35%. Furthermore, the stress tests performed by means of the stress-ng
workload generator show that identical loads on different computing infrastructures, i.e.
equal resource utilization rates, result in diverse levels of power consumption. As an
example, while the Intel Xeon exhibits maximum power readings of 23.5 W on 100% CPU
load, the Jetson Nano only consumes 4.2 W under the same load, which is a difference of
nearly 20 W. Therefore, the hardware heterogeneity of edge devices also has a significant
impact on their power draw.

As a consequence, these findings are incorporated into the applied power consumption
modeling method by developing multiple platform-specific models in order to overcome
the severe discrepancies in terms of resource usage and power consumption between
various edge devices. The results of the accuracy evaluation finally confirm the utilization
of a multi-model approach, since the developed models are able to precisely estimate the
power draw of devices.

RQ 3: How can the power consumption of edge devices accurately be modeled in a
simulation environment considering the strict performance requirements demanded by
the underlying simulation framework, and how does the chosen energy modeling approach
affect the execution time and scalability of the simulator?

As the power prediction functionality is integrated into the faas-sim simulation framework,
the final power models have to meet strict requirements regarding the performance-
accuracy trade-off they exhibit due to inherent simulator characteristics. For the purpose
of incorporating this trade-off into the model development process, TPOT is chosen as
AutoML tool, since it internally uses multi-objective Pareto optimization to balance
model complexity and prediction precision. Furthermore, the TPOT Light configuration
enables restricting the set of pipeline operators during the optimization process, so only
fast ones are considered and thus simple and lightweight models can be established.

105

7. Conclusion

The evaluation results show that applying machine learning techniques by using TPOT
to develop platform-specific and resource utilization-based power prediction models
represents an efficient and viable energy modeling approach for heterogeneous edge
devices. While these models are able to achieve accurate predictions with a MAE between
190 and 620 mW, they do not severely impair the scalability of the simulator since the
prolonged execution time caused by the overhead of the models is reasonable. Hence, the
time-efficiency of simulations can still be guaranteed, as the inference speed of the models
varies between 0.8 and 2.6 ms. Moreover, the models are able to outperform a linear
statistical model, which only considers CPU utilization, across all three devices in terms
of MAE scores. As a result, the developed ML models exhibit a satisfactory trade-off
and can therefore be reliably and effectively used to estimate the power consumption of
edge devices during simulations.

7.2 Future Work
While known limitations of the applied approach are already outlined in Chapter 6, this
section proposes future work and research directions on this topic in order to highlight
potentials for optimization and to give a conclusive outlook.

For the purpose of incorporating more distinct resource usage values into the training
data set and therefore potentially enhancing the prediction accuracy, the models could
be re-trained with a larger set of samples. These samples should also include heavier
workloads especially for the Intel Xeon, since the GPU-targeted functions executed
on this device exhibit relatively low utilization rates, so they are not able to heavily
stress the powerful GPU integrated into the Intel Xeon PC. Furthermore, executing
additional stress-ng tests could also help with achieving a more heterogeneous and more
comprehensive data set. Using such a data set for training would probably yield even
better results in terms of accuracy than the available records.

Another optimization of the prediction functionality would be to expand it to other
devices, since the feature is currently limited to the three devices profiled in the course
of this thesis. Nevertheless, supporting power forecasting for a large set of devices would
be beneficial in case heterogeneous topologies with several types of platforms are being
modeled. As edge domain use cases typically encompass numerous nodes with different
hardware characteristics, such topologies are very common in general. In order to expand
the power prediction feature to more kinds of platforms and thereby enabling large-scale,
heterogeneous scenarios, the approach used in this work might be reapplied to other
computing architectures, so additional machine learning models can be developed for
other edge device types. Alternatively, the untrained pipelines of the existing models can
be used and trained with data samples of other platforms. Furthermore, since the ML
algorithms considered in this work do not encompass DNNs, developing deep learning
models could also be an opportunity for future research.

Moreover, in the current version of the simulator extension, the power consumption
is predicted for each request simulated by the framework even though the average

106

7.2. Future Work

resource usage is utilized for every function invocation. However, this constitutes an
intended behavior, since a remaining task that needs to be carried out before the power
models can ultimately be released for public usage is to sample the resource usage values
from a log-normal distribution instead of using the average for each request. Hence,
similarly to the FET sampling, the resource usage of each function call would differ,
which represents a more realistic behavior, and so one prediction per request is logically
necessary. Nevertheless, the implementation of a caching strategy that prevents the
model from repeating the predictions for recurring resource usage metrics would be a
potential optimization for the future.

In addition to the prospective public release of the developed simulator extension, which
facilitates energy management and planning tasks as well as comparisons regarding the
energy efficiency of different edge devices, the power models could serve as the basis for
any kind of energy-aware resource management algorithms. These might include, but are
not limited to, energy-aware scheduling and load balancing strategies, routing policies
or other algorithms where energy efficiency should be considered. However, the data
structure of the inputs fed into the models in other contexts must resemble the one used
for training, which represents an inherent prerequisite imposed by the models. If this
requirement can be satisfied by a certain use case, the general applicability of the power
models to other fields where energy awareness plays a critical role is ensured.

107

APPENDIX A
Scripts

This chapter contains different Python scripts that are developed in the course of this
thesis. For confidentiality reasons, constants that define IP addresses, ports and hostnames
are removed from the scripts.

MQTT Client Script
Since the code for the MQTT client of zone A and B of the testbed is almost identical,
only the script for zone A is included. Since the two Jetson boards are contained in zone
A and the Intel Xeon PC resides in zone B, this script is targeted at publishing the smart
plug power readings of the Jetson Xavier NX and the Jetson Nano.

1 import redis
2 import paho.mqtt.client as mqtt
3 import json
4 import datetime
5
6
7 MQTT_TOPIC_NX = 'tele/eb-a-jetson-nx-0/SENSOR'
8 MQTT_TOPIC_NANO = 'tele/eb-a-jetson-nano-0/SENSOR'
9

10
11 # Client callback for CONNACK response from the server
12 def on_connect(client, userdata, flags, rc):
13 print("Connected with result code " + str(rc))
14
15 # Subscribe to topics
16 client.subscribe([(MQTT_TOPIC_NX, 0), (MQTT_TOPIC_NANO, 0)])
17
18
19 # Client callback for PUBLISH messages from the server

109

A. Scripts

20 def on_message(client, userdata, msg):
21 # Decode message payload
22 try:
23 decoded_payload = json.loads(str(msg.payload.decode("utf-8",

errors='ignore')))
24 except:
25 print("Error during json.loads")
26 return
27
28 print(f'Received message on topic {msg.topic} with payload:

{decoded_payload}')
29
30 # Extract host from MQTT topic
31 host = ''
32 if 'eb-a-jetson-nx-0' in msg.topic:
33 host = 'eb-a-jetson-nx-0'
34 elif 'eb-a-jetson-nano-0' in msg.topic:
35 host = 'eb-a-jetson-nano-0'
36
37 # Convert timestamp
38 datetime_ts = datetime.datetime.strptime(decoded_payload['Time'],

"%Y-%m-%dT%H:%M:%S")
39 unix_ts = datetime_ts.timestamp()
40
41 # Get current and voltage to calculate power consumption
42 value = float(decoded_payload['ENERGY']['Current']) *

float(decoded_payload['ENERGY']['Voltage']) * 1000
43 message = f'{unix_ts} {value}'
44 publish_message_to_redis(host, 'plug-calc-power', message, userdata)
45
46
47 def publish_message_to_redis(host, suffix, message, redis_client):
48 # Assemble Redis channel
49 channel = f'telem/{host}/{suffix}'
50
51 # Publish message to channel
52 redis_client.publish(channel, message)
53
54
55 if __name__ == '__main__':
56 print(f'Starting mosquitto client')
57
58 # Establish Redis connection
59 r = redis.Redis(
60 host=REDIS_HOST,
61 port=REDIS_PORT,
62 password=REDIS_PASSWORD)
63
64 # Create MQTT client
65 client = mqtt.Client()
66 client.on_connect = on_connect
67 client.on_message = on_message
68 client.user_data_set(r)

110

69
70 # Establish MQTT connection
71 client.connect(host=MQTT_HOST)
72
73 # Blocking call that processes network traffic, dispatches callbacks

and handles reconnecting
74 client.loop_forever()

Listing A.1: MQTT client script for testbed zone A.

Jtop Power Monitoring Daemon Script
The following script is used to internally measure the power consumption of the Jetson
boards by means of the jtop utility. This script has to be run on both Jetson boards
during the execution of profiling experiments.

1 import sys
2 import jtop
3 import time
4 import redis
5 import multiprocessing
6
7
8 def read_power_stats(jetson):
9 # Read power data from tegra stats

10 value = jetson.stats['power cur']
11 message = f'{time.time()} {value}'
12 queue.put(message)
13
14
15 def redis_loop(queue, channel):
16 # Establish Redis connection
17 r = redis.Redis(
18 host=REDIS_HOST,
19 port=REDIS_PORT,
20 password=REDIS_PASSWORD)
21
22 while True:
23 # Get item from queue
24 item = queue.get()
25 print(f'Received message with payload: {item}')
26
27 # Publish queue item to Redis channel
28 r.publish(channel, item)
29
30
31 if __name__ == '__main__':
32 # Get node name from command line arguments (if available)
33 nodename = 'jetson'

111

A. Scripts

34 if len(sys.argv) > 1:
35 nodename = sys.argv[1]
36
37 # Define name of Redis channel
38 channel = f'telem/{nodename}/jtop-power-cur'
39
40 # Get monitoring interval from command line arguments (if available)
41 interval = 1
42 if len(sys.argv) > 2:
43 interval = sys.argv[2]
44
45 print(f'Starting jtop monitoring for node with name {nodename} and

interval of {interval}s')
46
47 # Create queue for communication between processes
48 global queue
49 queue = multiprocessing.Queue()
50
51 # Start process for Redis loop
52 redis_process = multiprocessing.Process(target=redis_loop,

args=(queue, channel,))
53 redis_process.start()
54
55 # Open jtop with pre-defined interval
56 jetson = jtop.jtop(interval)
57
58 # Attach function to read board stats
59 jetson.attach(read_power_stats)
60 jetson.loop_for_ever()
61
62 redis_process.join()

Listing A.2: Jtop power monitoring daemon script.

NVML-based GPU Power Script
As the C script used to monitor the power consumption of Nvidia GPUs is mainly based
on existing telemd scripts, only the relevant code fragment is contained here. Specifically,
the nvmlDeviceGetPowerUsage method called in line 18 is required for this purpose.

1 nvmlDevice_t device;
2 char name[64];
3 int i = atoi(argv[1]);
4
5 result = nvmlDeviceGetHandleByIndex (i, &device);
6 if (NVML_SUCCESS != result) {
7 printf ("Error: failed to get handle for device %i: %s\n", i,

nvmlErrorString (result));
8 fail();

112

9 }
10
11 result = nvmlDeviceGetName (device, name, sizeof (name) / sizeof

(name[0]));
12 if (NVML_SUCCESS != result) {
13 printf ("Error: failed to get name of device %i: %s\n", i,

nvmlErrorString (result));
14 fail();
15 }
16
17 int power;
18 result = nvmlDeviceGetPowerUsage (device, &power);
19 printf ("%d-%s-gpu_power-%d\n", i, name, power);

Listing A.3: NVML-based GPU power script.

Baseline Measurement Script
Similar to the MQTT client scripts, the baseline measurements are also dependent on
the testbed zone the corresponding devices belong to. Therefore, only the script used for
zone B, i.e. for the Intel Xeon, is presented.

1 import paho.mqtt.client as mqtt
2 import json
3
4
5 MQTT_TOPIC_XEON = 'tele/eb-b-xeongpu-0/SENSOR'
6
7
8 # Client callback for CONNACK response from the server
9 def on_connect(client, userdata, flags, rc):

10 print("Connected with result code " + str(rc))
11
12 # Subscribe to topics
13 client.subscribe(MQTT_TOPIC_XEON, 0)
14
15
16 # Client callback for PUBLISH messages from the server
17 def on_message(client, userdata, msg):
18 # Decode message payload
19 try:
20 decoded_payload = json.loads(str(msg.payload.decode("utf-8",

errors='ignore')))
21 except:
22 print("Error during json.loads")
23 return
24
25 value = float(decoded_payload['ENERGY']['Current']) *

float(decoded_payload['ENERGY']['Voltage']) * 1000

113

A. Scripts

26 userdata.append(value)
27
28 print(len(userdata))
29 print(f'Baseline average: {sum(userdata) / len(userdata)}')
30
31
32 if __name__ == '__main__':
33 print(f'Starting baseline measurements')
34
35 measurements = []
36
37 # Create MQTT client
38 client = mqtt.Client()
39 client.on_connect = on_connect
40 client.on_message = on_message
41 client.user_data_set(measurements)
42
43 # Establish MQTT connection
44 client.connect(host=MQTT_HOST)
45
46 # Blocking call that processes network traffic, dispatches callbacks

and handles reconnecting
47 client.loop_forever()

Listing A.4: Baseline measurement script for Intel Xeon (zone B).

114

APPENDIX B
Empirical Experiments

The following tables contain the complete set of experiments that are conducted in the
course of this thesis by means of the testbed.

Function Invocation Experiments

Function Node Image
resnet-cpu eb-b-xeongpu-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-b-xeongpu-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-b-xeongpu-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-b-xeongpu-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-b-xeongpu-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-b-xeongpu-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-b-xeongpu-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-b-xeongpu-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-b-xeongpu-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-b-xeongpu-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-a-jetson-nx-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-a-jetson-nx-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-a-jetson-nx-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-a-jetson-nx-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-a-jetson-nx-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-a-jetson-nx-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-a-jetson-nx-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-a-jetson-nx-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-a-jetson-nx-0 resi5/resnet-inference:v1.0.0

115

B. Empirical Experiments

resnet-gpu eb-a-jetson-nx-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-a-jetson-nano-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-a-jetson-nano-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-a-jetson-nano-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-a-jetson-nano-0 resi5/resnet-inference:v1.0.0
resnet-cpu eb-a-jetson-nano-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-a-jetson-nano-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-a-jetson-nano-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-a-jetson-nano-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-a-jetson-nano-0 resi5/resnet-inference:v1.0.0
resnet-gpu eb-a-jetson-nano-0 resi5/resnet-inference:v1.0.0
efficientnet-cpu eb-b-xeongpu-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-b-xeongpu-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-b-xeongpu-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-b-xeongpu-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-b-xeongpu-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-b-xeongpu-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-b-xeongpu-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-b-xeongpu-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-b-xeongpu-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-b-xeongpu-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-a-jetson-nx-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-a-jetson-nx-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-a-jetson-nx-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-a-jetson-nx-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-a-jetson-nx-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-a-jetson-nx-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-a-jetson-nx-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-a-jetson-nx-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-a-jetson-nx-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-a-jetson-nx-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-a-jetson-nano-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-a-jetson-nano-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-a-jetson-nano-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-a-jetson-nano-0 resi5/efficientnet-inference:v1.0.0
efficientnet-cpu eb-a-jetson-nano-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-a-jetson-nano-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-a-jetson-nano-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-a-jetson-nano-0 resi5/efficientnet-inference:v1.0.0
efficientnet-gpu eb-a-jetson-nano-0 resi5/efficientnet-inference:v1.0.0

116

efficientnet-gpu eb-a-jetson-nano-0 resi5/efficientnet-inference:v1.0.0
objectdetection eb-b-xeongpu-0 edgerun/objectdetection:1.1.0
objectdetection eb-b-xeongpu-0 edgerun/objectdetection:1.1.0
objectdetection eb-b-xeongpu-0 edgerun/objectdetection:1.1.0
objectdetection eb-b-xeongpu-0 edgerun/objectdetection:1.1.0
objectdetection eb-b-xeongpu-0 edgerun/objectdetection:1.1.0
objectdetection eb-a-jetson-nx-0 edgerun/objectdetection:1.1.0
objectdetection eb-a-jetson-nx-0 edgerun/objectdetection:1.1.0
objectdetection eb-a-jetson-nx-0 edgerun/objectdetection:1.1.0
objectdetection eb-a-jetson-nx-0 edgerun/objectdetection:1.1.0
objectdetection eb-a-jetson-nx-0 edgerun/objectdetection:1.1.0
objectdetection eb-a-jetson-nano-0 edgerun/objectdetection:1.1.0
objectdetection eb-a-jetson-nano-0 edgerun/objectdetection:1.1.0
objectdetection eb-a-jetson-nano-0 edgerun/objectdetection:1.1.0
objectdetection eb-a-jetson-nano-0 edgerun/objectdetection:1.1.0
objectdetection eb-a-jetson-nano-0 edgerun/objectdetection:1.1.0

Table B.1: Experiments conducted for function invocation configurations.

Stress-ng Experiments

Application Node Parameters
stress-ng eb-b-xeongpu-0 cpu: 1
stress-ng eb-b-xeongpu-0 cpu: 1
stress-ng eb-b-xeongpu-0 cpu: 1
stress-ng eb-b-xeongpu-0 cpu: 1
stress-ng eb-b-xeongpu-0 cpu: 1
stress-ng eb-b-xeongpu-0 cpu: 2
stress-ng eb-b-xeongpu-0 cpu: 2
stress-ng eb-b-xeongpu-0 cpu: 2
stress-ng eb-b-xeongpu-0 cpu: 2
stress-ng eb-b-xeongpu-0 cpu: 2
stress-ng eb-b-xeongpu-0 cpu: 4
stress-ng eb-b-xeongpu-0 cpu: 4
stress-ng eb-b-xeongpu-0 cpu: 4
stress-ng eb-b-xeongpu-0 cpu: 4
stress-ng eb-b-xeongpu-0 cpu: 4
stress-ng eb-b-xeongpu-0 cpu: 8
stress-ng eb-b-xeongpu-0 cpu: 8
stress-ng eb-b-xeongpu-0 cpu: 8

117

B. Empirical Experiments

stress-ng eb-b-xeongpu-0 cpu: 8
stress-ng eb-b-xeongpu-0 cpu: 8
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 25
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 25
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 25
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 25
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 25
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 50
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 50
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 50
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 50
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 50
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 75
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 75
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 75
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 75
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 75
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 100
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 100
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 100
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 100
stress-ng eb-b-xeongpu-0 cpu: 0, cpu-load: 100
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 20%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 20%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 20%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 20%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 20%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 40%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 40%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 40%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 40%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 40%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 80%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 80%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 80%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 80%
stress-ng eb-b-xeongpu-0 vm: 1, vm-bytes: 80%
stress-ng eb-b-xeongpu-0 iomix: 1
stress-ng eb-b-xeongpu-0 iomix: 1
stress-ng eb-b-xeongpu-0 iomix: 1

118

stress-ng eb-b-xeongpu-0 iomix: 1
stress-ng eb-b-xeongpu-0 iomix: 1
stress-ng eb-a-jetson-nx-0 cpu: 1
stress-ng eb-a-jetson-nx-0 cpu: 1
stress-ng eb-a-jetson-nx-0 cpu: 1
stress-ng eb-a-jetson-nx-0 cpu: 1
stress-ng eb-a-jetson-nx-0 cpu: 1
stress-ng eb-a-jetson-nx-0 cpu: 2
stress-ng eb-a-jetson-nx-0 cpu: 2
stress-ng eb-a-jetson-nx-0 cpu: 2
stress-ng eb-a-jetson-nx-0 cpu: 2
stress-ng eb-a-jetson-nx-0 cpu: 2
stress-ng eb-a-jetson-nx-0 cpu: 4
stress-ng eb-a-jetson-nx-0 cpu: 4
stress-ng eb-a-jetson-nx-0 cpu: 4
stress-ng eb-a-jetson-nx-0 cpu: 4
stress-ng eb-a-jetson-nx-0 cpu: 4
stress-ng eb-a-jetson-nx-0 cpu: 8
stress-ng eb-a-jetson-nx-0 cpu: 8
stress-ng eb-a-jetson-nx-0 cpu: 8
stress-ng eb-a-jetson-nx-0 cpu: 8
stress-ng eb-a-jetson-nx-0 cpu: 8
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 25
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 25
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 25
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 25
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 25
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 50
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 50
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 50
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 50
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 50
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 75
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 75
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 75
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 75
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 75
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 100
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 100
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 100

119

B. Empirical Experiments

stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 100
stress-ng eb-a-jetson-nx-0 cpu: 0, cpu-load: 100
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 20%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 20%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 20%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 20%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 20%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 40%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 40%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 40%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 40%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 40%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 80%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 80%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 80%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 80%
stress-ng eb-a-jetson-nx-0 vm: 1, vm-bytes: 80%
stress-ng eb-a-jetson-nx-0 iomix: 1
stress-ng eb-a-jetson-nx-0 iomix: 1
stress-ng eb-a-jetson-nx-0 iomix: 1
stress-ng eb-a-jetson-nx-0 iomix: 1
stress-ng eb-a-jetson-nx-0 iomix: 1
stress-ng eb-a-jetson-nano-0 cpu: 1
stress-ng eb-a-jetson-nano-0 cpu: 1
stress-ng eb-a-jetson-nano-0 cpu: 1
stress-ng eb-a-jetson-nano-0 cpu: 1
stress-ng eb-a-jetson-nano-0 cpu: 1
stress-ng eb-a-jetson-nano-0 cpu: 2
stress-ng eb-a-jetson-nano-0 cpu: 2
stress-ng eb-a-jetson-nano-0 cpu: 2
stress-ng eb-a-jetson-nano-0 cpu: 2
stress-ng eb-a-jetson-nano-0 cpu: 2
stress-ng eb-a-jetson-nano-0 cpu: 4
stress-ng eb-a-jetson-nano-0 cpu: 4
stress-ng eb-a-jetson-nano-0 cpu: 4
stress-ng eb-a-jetson-nano-0 cpu: 4
stress-ng eb-a-jetson-nano-0 cpu: 4
stress-ng eb-a-jetson-nano-0 cpu: 8
stress-ng eb-a-jetson-nano-0 cpu: 8
stress-ng eb-a-jetson-nano-0 cpu: 8

120

stress-ng eb-a-jetson-nano-0 cpu: 8
stress-ng eb-a-jetson-nano-0 cpu: 8
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 25
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 25
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 25
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 25
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 25
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 50
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 50
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 50
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 50
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 50
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 75
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 75
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 75
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 75
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 75
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 100
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 100
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 100
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 100
stress-ng eb-a-jetson-nano-0 cpu: 0, cpu-load: 100
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 20%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 20%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 20%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 20%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 20%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 40%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 40%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 40%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 40%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 40%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 80%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 80%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 80%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 80%
stress-ng eb-a-jetson-nano-0 vm: 1, vm-bytes: 80%
stress-ng eb-a-jetson-nano-0 iomix: 1
stress-ng eb-a-jetson-nano-0 iomix: 1
stress-ng eb-a-jetson-nano-0 iomix: 1

121

B. Empirical Experiments

stress-ng eb-a-jetson-nano-0 iomix: 1
stress-ng eb-a-jetson-nano-0 iomix: 1

Table B.2: Experiments conducted for stress-ng configurations.

122

List of Figures

2.1 Comparison between IaaS, PaaS and FaaS. 18

4.1 Methodology of the empirical approach. 30
4.2 The model development process based on [BB21] 31
4.3 Average FET, resource usage and power consumption of the resnet-gpu function

on the Intel Xeon. 52
4.4 Average FET, resource usage and power consumption of the resnet-gpu function

on the Jetson Nano. 53
4.5 Average FET, resource usage and power consumption of the efficientent-cpu

function on the Jetson Xavier NX. 55
4.6 Average FET, resource usage and power consumption of the objectdetection

function on the Jetson Xavier NX. 55
4.7 Power consumption distribution of function invocations for Intel Xeon and

Jetson Xavier NX. 56
4.8 Power consumption distribution of function invocations for Jetson Nano. . 56
4.9 Comparison between external and internal power consumption per request on

Jetson Xavier NX and Jetson Nano. 58
4.10 Comparison between external and internal (GPU only) power consumption

per request on Intel Xeon. 60
4.11 Mean power consumption of stress-ng CPU load tests. 61
4.12 Mean power consumption of stress-ng memory usage tests. 63
4.13 The TPOT automation process based on [OBUM16]. 65

5.1 The machine learning model evaluation process. 71
5.2 Comparison between the predicted and the actual power consumption per

request for the Intel Xeon model. 86
5.3 Comparison between the predicted and the actual power consumption per

request for the Jetson Xavier NX model. 87
5.4 Comparison between the predicted and the actual power consumption per

request for the Jetson Nano model. 88
5.5 Overhead caused by the models on the simulator execution time. 94
5.6 Comparison of simulator execution time across scaling scenarios. 96

123

List of Tables

4.1 Device type specifications. 35
4.2 Device to hostname mapping within the testbed. 36
4.3 Relevant resource utilization metrics reported by telemd. 36
4.4 Internal and external power measurement mechanisms used for each device. 41
4.5 Serverless functions used for the experiments. 42
4.6 Configurations for function invocation experiments (five configurations). . 44
4.7 Configurations for stress-ng experiments (12 configurations). 45
4.8 Resource usage preprocessing of individual telemetry metrics. 49
4.9 Preprocessed average resource usage and power consumption per request of

five repetitive runs. 51
4.10 Mean baseline power consumption of the edge devices. 60
4.11 Division of data into training and test set. 66
4.12 Duration and mean internal cross-validation (CV) score of TPOT runs. . 68

5.1 Comparison of negative MAE scores on the test sets across devices. 82
5.2 Comparison of MAEs between the ML models and the linear statistical power

model. 84
5.3 Comparison between the predicted and the actual power consumption per

request for the Intel Xeon model. 85
5.4 Comparison between the predicted and the actual power consumption per

request for the Jetson Xavier NX model. 86
5.5 Comparison between the predicted and the actual power consumption per

request for the Jetson Nano model. 87
5.6 Comparison between the estimated and the actual energy demand for the

Intel Xeon model. 89
5.7 Comparison between the estimated and the actual energy demand for the

Jetson Xavier NX model. 90
5.8 Comparison between the estimated and the actual energy demand for the

Jetson Nano model. 91
5.9 Comparison of the average inference speed of each model. 92
5.10 Comparison of the overhead imposed by the models on the simulator execution

time. 93
5.11 Comparison of the execution time with and without the models based on the

scaling scenarios. 95

125

B.1 Experiments conducted for function invocation configurations. 117
B.2 Experiments conducted for stress-ng configurations. 122

126

Bibliography

[ABC+21] Nongnuch Artrith, Keith T Butler, François-Xavier Coudert, Seungwu Han,
Olexandr Isayev, Anubhav Jain, and Aron Walsh. Best practices in machine
learning for chemistry. Nature chemistry, 13(6):505–508, 2021.

[AESI+17] Mahmoud AM Albreem, Ayman A El-Saleh, Muzamir Isa, Wael Salah,
Muzammil Jusoh, MM Azizan, and A Ali. Green internet of things (iot):
An overview. In 2017 IEEE 4th International Conference on Smart In-
strumentation, Measurement and Application (ICSIMA), pages 1–6. IEEE,
2017.

[AJH+21] Khaled Alwasel, Devki Nandan Jha, Fawzy Habeeb, Umit Demirbaga,
Omer Rana, Thar Baker, Scharam Dustdar, Massimo Villari, Philip James,
Ellis Solaiman, et al. Iotsim-osmosis: A framework for modeling and
simulating iot applications over an edge-cloud continuum. Journal of
Systems Architecture, 116:101956, 2021.

[AQPJ21] Muhammad Saidu Aliero, Kashif Naseer Qureshi, Muhammad Fermi Pasha,
and Gwanggil Jeon. Smart home energy management systems in internet
of things networks for green cities demands and services. Environmental
Technology & Innovation, 22:101443, 2021.

[ASA+21] Mahmoud A Albreem, Abdul Manan Sheikh, Mohammed H Alsharif, Muza-
mmil Jusoh, and Mohd Najib Mohd Yasin. Green internet of things (giot):
applications, practices, awareness, and challenges. IEEE Access, 9:38833–
38858, 2021.

[ATC+21] Mohammad S Aslanpour, Adel N Toosi, Claudio Cicconetti, Bahman Javadi,
Peter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Singh Gill, Raj
Gaire, and Schahram Dustdar. Serverless edge computing: vision and
challenges. In 2021 Australasian Computer Science Week Multiconference,
pages 1–10, 2021.

[AZF+21] Laha Ale, Ning Zhang, Xiaojie Fang, Xianfu Chen, Shaohua Wu, and
Longzhuang Li. Delay-aware and energy-efficient computation offloading in
mobile-edge computing using deep reinforcement learning. IEEE Transac-
tions on Cognitive Communications and Networking, 7(3):881–892, 2021.

127

[AZS+17] Rushan Arshad, Saman Zahoor, Munam Ali Shah, Abdul Wahid, and
Hongnian Yu. Green iot: An investigation on energy saving practices for
2020 and beyond. Ieee Access, 5:15667–15681, 2017.

[BB21] Przemyslaw Biecek and Tomasz Burzykowski. Explanatory Model Analysis -
Explore, Explain, and Examine Predictive Models. CRC Press, Boca Raton,
Fla, 1 edition, 2021.

[BCC+17] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Alek-
sander Slominski, et al. Serverless computing: Current trends and open
problems. In Research advances in cloud computing, pages 1–20. Springer,
2017.

[BRKP22] Sarath Babu and Arun Raj Kumar P. A comprehensive survey on simulators,
emulators, and testbeds for vanets. International Journal of Communication
Systems, 35(8):e5123, 2022.

[CCPB21] Gonçalo Carvalho, Bruno Cabral, Vasco Pereira, and Jorge Bernardino.
Edge computing: current trends, research challenges and future directions.
Computing, 103(5):993–1023, 2021.

[CCSF19] Sidartha A.L. Carvalho, Daniel C. Cunha, and Abel G. Silva-Filho. Au-
tonomous power management in mobile devices using dynamic frequency
scaling and reinforcement learning for energy minimization. Microprocessors
and Microsystems, 64:205–220, 2019.

[CLMS20] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on
edge computing research. IEEE access, 8:85714–85728, 2020.

[CLX+21] Zhuoqing Chang, Shubo Liu, Xingxing Xiong, Zhaohui Cai, and Guoqing Tu.
A survey of recent advances in edge-computing-powered artificial intelligence
of things. IEEE Internet of Things Journal, 2021.

[CMPR22] Emanuele Cuncu, Marco Manolo Manca, Barbara Pes, and Daniele Ri-
boni. Towards context-aware power forecasting in smart-homes. Procedia
Computer Science, 198:243–248, 2022. 12th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks / 11th International
Conference on Current and Future Trends of Information and Communica-
tion Technologies in Healthcare.

[CRB+11] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose,
and Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and experience, 41(1):23–50, 2011.

128

[CZS18] Jie Cao, Quan Zhang, and Weisong Shi. Challenges and Opportunities in
Edge Computing, pages 59–70. Springer International Publishing, Cham,
2018.

[DDTD19] Michele De Donno, Koen Tange, and Nicola Dragoni. Foundations and
evolution of modern computing paradigms: Cloud, iot, edge, and fog. Ieee
Access, 7:150936–150948, 2019.

[DZF+20] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram
Dustdar, and Albert Y Zomaya. Edge intelligence: The confluence of edge
computing and artificial intelligence. IEEE Internet of Things Journal,
7(8):7457–7469, 2020.

[FLLFC21] Paula Fraga-Lamas, Sérgio Ivan Lopes, and Tiago M Fernández-Caramés.
Green iot and edge ai as key technological enablers for a sustainable digital
transition towards a smart circular economy: An industry 5.0 use case.
Sensors, 21(17):5745, 2021.

[GA19] Elena Gracheva and Alsu Alimova. Calculation methods and comparative
analysis of losses of active and electric energy in low voltage devices. In 2019
International Ural Conference on Electrical Power Engineering (UralCon),
pages 361–367. IEEE, 2019.

[GCZY21] Chen Guo, Song Ci, Yanglin Zhou, and Yang Yang. A survey of energy
consumption measurement in embedded systems. IEEE Access, 9:60516–
60530, 2021.

[GVDGB17] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar
Buyya. ifogsim: A toolkit for modeling and simulation of resource man-
agement techniques in the internet of things, edge and fog computing
environments. Software: Practice and Experience, 47(9):1275–1296, 2017.

[HS19] Jun-Ho Huh and Yeong-Seok Seo. Understanding edge computing: Engi-
neering evolution with artificial intelligence. IEEE Access, 7:164229–164245,
2019.

[ISH10] Muhammad Imran, Abas Md Said, and Halabi Hasbullah. A survey of
simulators, emulators and testbeds for wireless sensor networks. In 2010
International Symposium on Information Technology, volume 2, pages 897–
902. IEEE, 2010.

[JAA+20] Devki Nandan Jha, Khaled Alwasel, Areeb Alshoshan, Xianghua Huang,
Ranesh Kumar Naha, Sudheer Kumar Battula, Saurabh Garg, Deepak
Puthal, Philip James, Albert Zomaya, et al. Iotsim-edge: a simulation
framework for modeling the behavior of internet of things and edge com-
puting environments. Software: Practice and Experience, 50(6):844–867,
2020.

129

[JFG+20] Congfeng Jiang, Tiantian Fan, Honghao Gao, Weisong Shi, Liangkai Liu,
Christophe Cérin, and Jian Wan. Energy aware edge computing: A survey.
Computer Communications, 151:556–580, 2020.

[JSSS+19] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, et al. Cloud programming simplified: A
berkeley view on serverless computing. arXiv preprint arXiv:1902.03383,
2019.

[KHG+17] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge,
Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence
between the cloud and mobile edge. ACM SIGARCH Computer Architecture
News, 45(1):615–629, 2017.

[KHH+20] Sven Köhler, Benedict Herzog, Timo Hönig, Lukas Wenzel, Max Plauth,
Jörg Nolte, Andreas Polze, and Wolfgang Schröder-Preikschat. Pinpoint the
joules: Unifying runtime-support for energy measurements on heterogeneous
systems. In 2020 IEEE/ACM International Workshop on Runtime and
Operating Systems for Supercomputers (ROSS), pages 31–40. IEEE, 2020.

[LAA+21] Jingyi Liu, Qaiser Abbas, Majed Alharthi, Muhammad Mohsin, Farhat
Rasul, and Nadeem Iqbal. Managerial policy and economic analysis of wind-
generated renewable hydrogen for light-duty vehicles: Green solution of
energy crises. Environmental Science and Pollution Research, 28(9):10642–
10653, 2021.

[LCH+18] Pengcheng Liu, Saqib Rasool Chaudhry, Tao Huang, Xiaojun Wang, and
Martin Collier. Multi-factorial energy aware resource management in edge
networks. IEEE Transactions on Green Communications and Networking,
3(1):45–56, 2018.

[LFM20] Trang T Le, Weixuan Fu, and Jason H Moore. Scaling tree-based auto-
mated machine learning to biomedical big data with a feature set selector.
Bioinformatics, 36(1):250–256, 2020.

[LLKP19] Sang Hyeon Lee, Tacklim Lee, Seunghwan Kim, and Sehyun Park. Energy
consumption prediction system based on deep learning with edge computing.
In 2019 IEEE 2nd International Conference on Electronics Technology
(ICET), pages 473–477. IEEE, 2019.

[MPGB22] Redowan Mahmud, Samodha Pallewatta, Mohammad Goudarzi, and Rajku-
mar Buyya. ifogsim2: An extended ifogsim simulator for mobility, clustering,
and microservice management in edge and fog computing environments.
Journal of Systems and Software, 190:111351, 2022.

130

[OBUM16] Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore.
Evaluation of a tree-based pipeline optimization tool for automating data
science. In Proceedings of the Genetic and Evolutionary Computation
Conference 2016, GECCO ’16, pages 485–492, New York, NY, USA, 2016.
ACM.

[OM16] Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline opti-
mization tool for automating machine learning. In Workshop on automatic
machine learning, pages 66–74. PMLR, 2016.

[Ong17] Pariwat Ongsulee. Artificial intelligence, machine learning and deep learning.
In 2017 15th international conference on ICT and knowledge engineering
(ICT&KE), pages 1–6. IEEE, 2017.

[OUA+16] Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, Nicole A. Laven-
der, La Creis Kidd, and Jason H. Moore. Automating biomedical data
science through tree-based pipeline optimization. In Giovanni Squillero
and Paolo Burelli, editors, Applications of Evolutionary Computation: 19th
European Conference, EvoApplications 2016, Porto, Portugal, March 30 –
April 1, 2016, Proceedings, Part I, pages 123–137. Springer International
Publishing, 2016.

[Oyi21] Tobi Oyinlola. Energy prediction in edge environment for smart cities.
In 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), pages
439–442, 2021.

[Rai21] Philipp Alexander Raith. Container scheduling on heterogeneous clusters
using machine learning-based workload characterization. Diploma thesis,
Technische Universität Wien, 2021.

[Raj20] Bashar Rajoub. Supervised and unsupervised learning. In Walid Zgallai,
editor, Biomedical Signal Processing and Artificial Intelligence in Healthcare,
Developments in Biomedical Engineering and Bioelectronics, pages 51–89.
Elsevier, 2020.

[RHS+21] Thomas Rausch, Waldemar Hummer, Christian Stippel, Silvio Vasiljevic,
Carmine Elvezio, Schahram Dustdar, and Katharina Krösl. Towards a
platform for smart city-scale cognitive assistance applications. In 2021
IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW), 2021.

[RLF+20] Thomas Rausch, Clemens Lachner, Pantelis A Frangoudis, Philipp Raith,
and Schahram Dustdar. Synthesizing plausible infrastructure configurations
for evaluating edge computing systems. In 3rd USENIX Workshop on Hot
Topics in Edge Computing (HotEdge 20), 2020.

131

[RRD21] Thomas Rausch, Alexander Rashed, and Schahram Dustdar. Optimized
container scheduling for data-intensive serverless edge computing. Future
Generation Computer Systems, 114:259–271, 2021.

[RRL18] Crefeda Faviola Rodrigues, Graham Riley, and Mikel Luján. Synergy: An
energy measurement and prediction framework for convolutional neural
networks on jetson tx1. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA),
pages 375–382. The Steering Committee of The World Congress in Computer
Science, Computer . . . , 2018.

[RRP+22] Philipp Raith, Thomas Rausch, Paul Prüller, Alireza Furutanpey, and
Schahram Dustdar. An end-to-end framework for benchmarking edge-cloud
cluster management techniques. In 2022 IEEE International Conference
on Cloud Engineering (IC2E), pages 22–28, 2022.

[Sat17] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[SLHM22] Jiaqi Shi, Nian Liu, Yujing Huang, and Liya Ma. An edge computing-
oriented net power forecasting for pv-assisted charging station: Model
complexity and forecasting accuracy trade-off. Applied Energy, 310:118456,
2022.

[SOE18] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. Edgecloudsim: An environ-
ment for performance evaluation of edge computing systems. Transactions
on Emerging Telecommunications Technologies, 29(11):e3493, 2018.

[TWG+19] Anh Truong, Austin Walters, Jeremy Goodsitt, Keegan Hines, C. Bayan
Bruss, and Reza Farivar. Towards automated machine learning: Evaluation
and comparison of automl approaches and tools. In 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI),
pages 1471–1479, 2019.

[WBC+19] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury,
Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, et al.
Machine learning at facebook: Understanding inference at the edge. In 2019
IEEE international symposium on high performance computer architecture
(HPCA), pages 331–344. IEEE, 2019.

[WCW+17] Mowei Wang, Yong Cui, Xin Wang, Shihan Xiao, and Junchen Jiang.
Machine learning for networking: Workflow, advances and opportunities.
Ieee Network, 32(2):92–99, 2017.

[WLP+19] Nan Wei, Changjun Li, Xiaolong Peng, Fanhua Zeng, and Xinqian Lu.
Conventional models and artificial intelligence-based models for energy

132

consumption forecasting: A review. Journal of Petroleum Science and
Engineering, 181:106187, 2019.

[WT21] Philipp Wiesner and Lauritz Thamsen. Leaf: Simulating large energy-aware
fog computing environments. In 2021 IEEE 5th International Conference
on Fog and Edge Computing (ICFEC), pages 29–36. IEEE, 2021.

[ZCL+19] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang.
Edge intelligence: Paving the last mile of artificial intelligence with edge
computing. Proceedings of the IEEE, 107(8):1738–1762, 2019.

[ZCS19] Yukun Zeng, Mengyuan Chao, and Radu Stoleru. Emuedge: A hybrid
emulator for reproducible and realistic edge computing experiments. In
2019 IEEE International Conference on Fog Computing (ICFC), pages
153–164, 2019.

[ZLH+18] Ke Zhang, Supeng Leng, Yejun He, Sabita Maharjan, and Yan Zhang.
Mobile edge computing and networking for green and low-latency internet
of things. IEEE Communications Magazine, 56(5):39–45, 2018.

[ZWJ+19] Hai Zhong, Jiajun Wang, Hongjie Jia, Yunfei Mu, and Shilei Lv. Vector field-
based support vector regression for building energy consumption prediction.
Applied Energy, 242:403–414, 2019.

133

	Kurzfassung
	Abstract
	Introduction
	Motivation
	Problem Statement
	Solution Approach
	Research Questions
	Structure of the Thesis

	Background
	Edge Computing
	Faas-sim Serverless Simulation Framework
	Serverless Computing
	Artificial Intelligence, Machine Learning and Deep Learning

	Related Work
	Power Prediction Models
	Simulation Frameworks for the Edge-cloud Continuum
	Energy-aware Resource Management Strategies

	Methodology
	Methodological Approach
	Experimental Design and Setup for Empirical Measurements
	Analysis of Empirical Measurement Data
	Machine Learning Model Construction

	Evaluation
	Evaluation Approach
	Evaluation Results

	Limitations
	Measurement-related Limitations
	Simulator-related Limitations

	Conclusion
	Research Questions
	Future Work

	Scripts
	Empirical Experiments
	List of Figures
	List of Tables
	Bibliography

