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Abstract: In an agile power grid environment, hydroelectric power plants must operate flexibly
to follow the demand. Their wide operating range and high part-load efficiencies allow for multi-
injector Pelton turbines to fulfil these demands as long as the water jet quality is maintained. The
water jet shape is governed by the flow in the distributor system. Pelton distributor systems with
axial feed can potentially reduce the costs of the power station. Providing the flow quality at the
nozzle outlet challenges the design of such Pelton distributors. Therefore, numerical simulations
are performed to optimise a parameterised Pelton distributor system with axial feed. The effects of
geometric parameter variations on its performance are studied. The criteria to evaluate the flow in
distributor systems are presented, which are applied to quantify the power losses and secondary
flows. Additionally, the second law analysis illustrates where the losses are generated. Due to various
pipe bends, all designs exhibit a distinct S-shaped secondary flow pattern at the nozzle inlet. The
simulations reveal that the power losses are greatly reduced by shaping the initial part of the branch
line as a conical frustum. Deviation angles of the branch line close to 90◦ allow for lower secondary
flow magnitudes at the nozzle inlet.

Keywords: Pelton turbine distributor; axial inflow; second law analysis; parametric study;
secondary flow

1. Introduction

The environmental goals of the European Union and the Austrian federal government [1]
motivate the expansion of renewable energy sources. Photovoltaic and wind power are
intermittent renewable energy sources, where the supply does not necessarily coincide
with the demand. Storage and pump-storage hydropower plants, together with locally
distributed small hydropower, ensure the capability of storing surpluses from intermittent
renewable energy sources and compensating for slack periods in the electricity market.
Thereby, hydropower can stabilise the power grid, where excellent controllability and
part-load operability must be provided. Multi-injector fed Pelton turbines are exceptionally
suitable for such applications due to their wide operating range and high part-load efficien-
cies (Figure 1) as long as a high-quality free-surface jet can be maintained. Past research
has proved the correlation between water jet quality and turbine efficiency [2,3].

With conventional Pelton turbine distributors feeding the flow to the injectors, a high-
quality free surface flow is only achieved when the turbine is operated close to its design
conditions. Potential tear and water jet deformation in off-design operating conditions
induce additional momentum transfer losses during jet–bucket interactions, resulting in
reduced efficiencies [4–6]. The conventional Pelton turbine distributor design is disadvan-
tageous regarding manufacturing effort and costs, e.g., each of the five branches, from B1 to
B5, have different hydraulic shapes. This, in particular, is a burden for small hydropower
plants where construction and manufacturing costs are a decisive factor. Hence, a design
providing the same inflow conditions to every injector yet all the same consisting of simple,
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standardised pipe sections is desirable. A possible design approach for such Pelton turbine
distributors has been shown by Erlach and Staubli [7], as well as Erlach and Erlach [8,9].
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Figure 1. Curves of turbine efficiency ηT against the flow rate Q normalised by the maximum flow
rate Qmax for common turbine types, recreated and modified from [10] (a). Explanatory sketch for
Pelton turbines with conventional distributor system (b).

The present contribution focuses on the flow quality assessment in Pelton turbine
distributor systems with axial inflow. The criteria for comparing the system losses and
the amount of secondary flow are presented. By numerical flow simulation, four basic
manifold designs are evaluated. The impact of parametric design changes on the flow in
the distributor system is discussed thereafter.

2. Materials and Methods
2.1. Pelton Turbine Distributor System with Axial Inflow—AxFeeder

In contrast to conventional Pelton turbine distributor systems, this new approach of
a distributor system, which we call AxFeeder, first described in a patent from 2008 [7], ex-
hibits some significant differences that shall be explained by a universal sketch as depicted
in Figure 2. In the flow direction, the penstock line with a diameter D1 is directly connected
to the manifold element, where the incoming flow is divided into n equal portions while
inducing as few losses and secondary flows as possible. Unlike in conventional distributor
systems, where only one branch line separates from the main line at a certain time, here,
all n branch lines separate from the manifold at once. The n branch lines, ranging from
station 51 (5n) to station 101 (10n), are connected to the manifold with the diameter ALk
and the deviation angle δ. The last branch line component is the injector bend, ranging
from stations 81 to 101. It is pivoted by the angle γ relative to the branch line. The exact
value of γ can be adjusted according to the pitch cycle diameter Dp of the runner.

2.2. Description of Investigated Basic Manifold Designs

The AxFeeder design should be compact and deliver excellent jet flow quality. Four
different distributor designs were investigated, mid-section cuts of which are shown in
Figure 3. Starting from a basic model (Figure 3a), which was also used for the grid re-
finement and symmetry study, these four designs can be mainly distinguished by the
manifold body; while the basic designs shown in Figure 3a,b have a diffuser-shaped mani-
fold, the variants (c) and (d) have spherical and cylindrical manifold bodies, respectively.
The first branch line section is shaped similarly to a conical frustum (except for the basic
model (a)). This allows for a smoother transition between the manifold and the branch
lines. While the diffuser-shaped manifold in designs (a) and (b) decelerate the flow before
dividing it into n = 6 equal portions, the overall length of the spherical (Figure 3c) and
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the cylindrical manifold (Figure 3d) is significantly shorter than for the designs (a) and (b).
Therefore, the one main goal of the parameter study presented in Section 3 is to evaluate
the effects of these four different designs on the flow quality at the interface of the injector
(station 101).
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Figure 2. Generic sketch of the AxFeeder (Pelton turbine distributor system with axial inflow) with
the individual components and evaluation stations from 1 to 101.
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Figure 3. Sketch of the four basic investigated manifold designs: (a) basic model (for mesh and sym-
metry study), (b) basic model with conical frustum, (c) spherical manifold, (d) cylindrical manifold.

2.3. Flow Quality in Piping Systems

For Pelton turbines, the flow quality in the distributor pipe is determined by both
the pressure losses and the flow disturbances. These flow perturbations are generated at
bends and bifurcations of the distributor pipe. Thereby, the jet shape is deteriorated [11],
which ultimately worsens the water jet–bucket interaction. While pressure sensors can
directly measure the pressure losses in the distributor, the losses due to disturbances cannot
be evaluated directly. Thus, many researchers opted to measure the turbine efficiency
instead [2,3,5,12]. Investigations in the framework of Pelton turbines that compute the
pressure losses in the distributor typically describe the losses in the form of a normalised
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total pressure drop similar to Equation (1). This normalised total pressure drop is fre-
quently labelled as "energy loss" [13] or "head loss" [12,14]. In other industrial applications,
e.g., reactor design [15] and piping systems [16,17], the total pressure drop is expressed as
a "pressure resistance coefficient", similar to Equation (2).

To understand the mechanisms leading to the disturbances in the flow, often local quan-
tities, such as velocity profiles [11,12], contour plots of secondary velocity [12], vorticity [11],
or streamlines, are analysed qualitatively. Attempts to quantify these local quantities for
Pelton turbine distributors are rare. Patel et al. [14] analysed a non-dimensionalised form
of the secondary kinetic energy.

We introduce two forms to compute the power losses in addition to the total pressure
drop. A criterion to rate the flow disturbances is formulated by defining the secondary
velocity ratio. These quality criteria are ultimately applied to rate the design variants
described in Figure 3.

2.3.1. Total Pressure Drop

For the assessment of the “quality” of internal flow systems, i.e., Pelton turbine
distributors, a commonly used quantity is the total pressure drop ∆pt = pt,inlet − pt,outlet
between inlet and outlet station. This total pressure drop is often normalised by the geodetic
head, H, of the power station resulting in the expression

ηdistributor = 1− ∆pt

ρgH
= 1−

pt,inlet − pt,outlet

ρgH
=

pt,outlet

ρgH
, (1)

which represents the hydraulic efficiency. For the purpose of defining loss quantities,
we assumed that pt,inlet ∼ ρgH. The dependency on the geodetic head illustrates the
proportional losses of the total supplied energy. Due to the referencing to a specific
supplied energy level, the hydraulic efficiency, ηdistributor, is not suitable for comparing the
quality of different Pelton turbine distributor designs.

2.3.2. Power Loss—Classical Approach

Alternatively, the total pressure loss coefficient, Kpt, can be defined in the form [16,17]

Kpt = 2 ·
pt,inlet − pt,outlet

ρ~u2
inlet

, (2)

which is commonly used for piping systems. For systems with one inlet and n outlets, like
all Pelton turbine manifolds, a better way is to extend the definition of Kpt by using the
fluxes of total pressure pt = p + 0.5 ρ~u2. Integrated over the entire surface area A with unit
normal vector~n at the station i,

PmTE,i =
∫

Ai

(
p +

ρ

2
~u2
)
~u · d~A (3)

the flux can be also interpreted as the power of mechanical total energy (hence the
symbol PmTE), where ~u = (u, v, w)T is the vector of the flow velocity with magnitude
||~u|| =

√
(u2 + v2 + w2). Furthermore, the kinetic energy flux PKE is likewise defined as

the area integral of the dynamic pressure pdyn = pt − p = 0.5 ρ~u2 at a station i,

PKE,i =
∫

Ai

(ρ

2
~u2
)
~u · d~A . (4)

Combining Equations (3) and (4) according to the concept of Equation (2), one arrives
at the definition of the power loss coefficient between a reference station ref and station i
for an arbitrary Pelton turbine distributor pipe

ζPmTE1i =
PmTE,ref − PmTE,i

PKE,ref
=

∫
Aref

(
p + ρ

2~u
2)~u · d~A− ∫Ai

(
p + ρ

2~u
2)~u · d~A∫

Aref

( ρ
2~u

2
)
~u · d~A

. (5)



Energies 2023, 16, 2737 5 of 20

This definition is independent of the pressure level (head), and therefore, allows for the
comparison between different distributor pipes without specific application. Equation (5)
can be employed to evaluate a single branch line. A lumped power loss coefficient can be
obtained by summing all n individual branch line outlets:

ζPmTE1i =

∫
Aref

(
p + ρ

2~u
2)~u · d~A−∑n

i=1
∫

Ai

(
p + ρ

2~u
2)~u · d~A∫

Aref

( ρ
2~u

2
)
~u · d~A

∼= 2 ·
ṁref · pt,ref −∑n

i=1 ṁi · pt,i

ṁref · ρ~u2
ref

= 2 ·
pt,ref −∑n

i=1
ṁi

ṁref
· pt,i

ρ~u2
ref

. (6)

In this form, which was already employed in [18], the power loss coefficient is computed
by weighing the individual contributions of every branch line by their mass flow rate.

2.3.3. Power Loss—Second Law Analysis

Instead of computing the losses by balancing the power of mechanical total energy
between two stations, the irreversible entropy produced within the system’s borders can
be integrated. This approach is based on the second law of thermodynamics. Follows
its name the second law analysis (SLA), which was elaborated in [19,20]. Applications of
this method have been shown for analysing and optimising conduit components such as
bends [21,22], diffusers, nozzles [23], and external flows [24]. The following paragraph
gives an overview of the implementation of the SLA concept in the present study. Brief
general introductions to this concept in the context of hydraulic machinery can be found
in [18,25].

Analogously to Equation (5), a dissipation power coefficient ζΦ can be defined as

ζΦ =
PTurb + PVis

PKE,1
, (7)

with PTurb and PVis being the power of turbulent (Turb) and viscous (Vis) dissipation,
respectively. These two terms are computed by the volume integrals of the corresponding
dissipation terms over the volume of interest

PTurb =
∫

V
ΦTurb dV and PVis =

∫
V

ΦVis dV . (8)

With Reynolds averaging, the viscous (direct) dissipation ΦVis follows from inserting the
time-averaged velocity components ū, v̄, w̄ into the product of shear stresses τij and velocity
gradients ∂ui/∂xj

ΦVis = τ̄ij ·
∂ūi
∂xj

= µ ·

 2 ·
[(

∂ū
∂x

)2
+
(

∂v̄
∂y

)2
+
(

∂w̄
∂z

)2
]
+

+
(

∂ū
∂y + ∂v̄

∂x

)2
+
(

∂v̄
∂z +

∂w̄
∂y

)2
+
(

∂ū
∂z + ∂w̄

∂x

)2

 . (9)

The turbulent (indirect) dissipation is calculated using k, ε, and ω (turbulence kinetic energy,
turbulent eddy dissipation, and turbulent eddy frequency) as well as the turbulence model
coefficient β∗ = 0.09 as defined in Menter’s k-ω shear stress transport (SST) model [26]

ΦTurb = ρ · ε = β∗ρωk . (10)

2.3.4. Secondary Flows

In Pelton turbine distributor systems, secondary flows are mainly caused by (a) changes
in flow direction in the distributor pipe and branch lines, (b) flow divisions in the manifold
or the branches, and (c) by the interior parts of the injector. Installations, such as baffles or
guides, may trigger additional secondary flows. These secondary flows are the primary
source of the free water jet disturbances [27]. The typical quantification criteria of the water
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jet quality, as defined in [27], are jet dispersion, jet deviation, and "out of roundness". Hence,
the lowest amount of secondary flow generation is desirable for Pelton turbine distributors.

The secondary velocity ratio at an arbitrary station i (of an internal flow system) can
be defined as

φI I,i =

(
||~uI I ||
||~uI ||

)
i
=

(√
u2

I I + v2
I I + w2

I I
u2

I + v2
I + w2

I

)
i

, (11)

with ||~uI || = ~u ·~n being the magnitude of the primary flow velocity ~uI = (~u ·~n) ·~n and
||~uI I || being the magnitude of the secondary flow velocity ~uI I = ~u− ~uI = ~u− (~u ·~n) ·~n.
The primary flow velocity is the velocity component in principal flow direction~n and the
secondary flow velocity is the velocity component orthogonal to the principal flow direction,
such that ~uI I ·~n = 0. Equation (11) can be evaluated by comparing the momentum fluxes

φI I,i =

∫
Ai
(ρ||~uI I ||)~u · d~A∫

Ai
(ρ||~uI ||)~u · d~A

(12)

at a station of interest. The secondary flow ratios can be summed over all injectors and
weighted by the corresponding mass flow rate to obtain a lumped evaluation parameter
for rank the overall manifold performance [18]

φI I,i =
Σn

i=1

∫
Ai
(ρ||~uI I ||)~u · d~A

Σn
i=1

∫
Ai
(ρ||~uI ||)~u · d~A

∼=
Σn

i=1ṁi · ||~uI I,i||
Σn

i=1ṁi · ||~uI,i||
. (13)

The implementation of the equations necessary to compute the secondary velocities in
the post-processing utility is explained in Appendix A.1.

2.4. Computational Domain and Simulation Setup

The aim of this study is the optimisation of the hydraulic design of the manifold
and the branch lines. Thus, the injectors were not considered. Instead of the injectors,
an outlet body was fitted at the downstream end of each of the branch lines. To ensure a
fully developed inflow, the inlet pipe was extended upstream of station 1. The complete
model with six branch lines was tested in the grid sensitivity study. For the subsequent
parametric optimisation, rotational symmetry was used, i.e., the domain was reduced to
a 60◦ sector model including only one branch line. The differences in the head losses were
below 0.5% and the differences in the predicted secondary velocity ratios were about 5%.
The computational domain is shown in Figure 4a.

All simulations were conducted with the commercial solver ANSYS CFX 19.2. A top
hat velocity profile corresponding to a Reynolds number of 106 was specified at the inlet of
all cases. Only for the cases presented in Section 3.1 the Reynolds number was changed.
The pressure boundary condition was set to 1 bar at the outlet. A turbulence intensity
of 5% together with a turbulent length scale corresponding to the hydraulic diameter of
station 1 were set as turbulence boundary conditions at the inlet. At all walls, a no-slip
boundary condition was employed and all walls were set to be hydraulically smooth.
The flow is assumed to be steady, incompressible, and isothermal. The density and dy-
namic viscosity of water at 25 ◦C were set to ρ = 997 kg/m3 and µ = 8.899× 10−4 Pa s.
The k-ω SST model [26] was employed as turbulence closure. The advection terms were
solved using the high-resolution scheme, which is a second-order scheme that automatically
blends to a first-order formulation if stability issues arise [28]. The advection of turbulence
was discretised by a first-order upwind scheme.
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Figure 4. Computational domain (a), results of mesh study for integral values (b), and local
velocities (c).

2.5. Grid Refinement Study

A grid resolution study was performed according to the procedure proposed in [29].
Three meshes were composed of hexahedral elements for the pipe segments and the tetra-
hedral elements in those zones of the manifold were the branch lines attached. The overall
node counts for the three meshes were 2.7× 106, 6.6× 106 and 16.9× 106. The maximum
y+ value at the walls was below 1 for all investigated cases. The discretisation uncertainties
were computed for ζPmTE,1001, ζΦ, and φI I,100.

While both head loss coefficients converge monotonically towards their extrapo-
lated values, the secondary velocity ratio exhibits oscillatory convergence (see Figure 4b).
The grid convergence index (GCI) for ζPmTE is just above 1%, indicating excellent conver-
gence, whereas both ζΦ and φI I,100 are more sensitive to mesh refinements, thus yielding a
GCI of 14.6% and 13.7%, respectively. One reason for the higher GCI of the secondary flow
can be seen in Figure 4c, in which the normalised velocity magnitude at a horizontal line
in station 101 is plotted for the three meshes. At this station, directly downstream of the
injector bend there is a velocity deficit at the inner wall of the bend. The exact prediction
of this deficit poses an inherent challenge for flow modelling. Therefore, the local GCI
values, indicated by the error bars in Figure 4c, are significantly higher than at the rest
of the profile. The mean value of the order of accuracy poa lies above three. In order to
maintain an adequate balance between computational times and numerical accuracy, the
medium mesh was chosen for all subsequent simulations.

3. Results

In this section, the results of the parametric study are described in detail. At first,
the operating regime of the AxFeeder is discussed and then, for each of the basic models,
the effects of geometric variations on power losses and secondary flows are elaborated.
Table 1 provides an overview of the parameters varied for the four basic design models.
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Table 1. Overview of cases and varied parameters.

Basic Design Varied Parameters Shown in

(a) basic model diameter ratio D51/D1, fillet radius R40/D51, diffuser angle β Figures 5, 6 and 11
(b) basic model with conical
frustum

diameter ratio D40/D51, deviation angle δ, diameter ratios D51/D71 and
D51/D101, pivot angle ϕ

Figures 7, 11 and 12

(c) spherical manifold sphere radius SR40/D1, deviation angle δ, diameter ratio D51/D101 Figures 8 and 11
(d) cylindrical manifold axial position T4/D51, deviation angle δ, fillet radius R40/D51 Figures 9 and 11

3.1. Operating Regime

For determining the operating regime of the distributor system, the model designs as
shown in Figure 3 are fully parameterised. This means that the only independent geometric
parameter is the diameter D1 of the penstock line. All other lengths can be scaled with
respect to D1. The second quantity to be varied is the Reynolds number Re1 at station 1.
By specifying Re1 and D1, the operating point and all dimensions of the AxFeeder are set.
The power loss coefficient ζPmTE,1011 and the dissipation power coefficient ζΦ between
stations 1 and 101 as well as the secondary velocity ratio φI I,101 at station 101 for an expected
Reynolds number range from 2× 105 to 2× 106 are plotted in Figure 5 for five different
diameters D1 ranging from 100 mm to 500 mm. From these data, three characteristic
curves are computed by interpolation, resulting in one trend-line for each, the power loss
coefficient, the dissipation power coefficient, and the secondary velocity ratio. All three
trend lines follow a power function, e.g., y = k · Rea

1. They gradually decline, which seems
to level off at higher Reynolds numbers. The approximate exponents of the trend lines are
−1/9 for the power loss, −1/8 for the dissipation, and −1/16 for the secondary velocity
ratio. While the variations of ζPmTE and ζΦ are almost negligible, the data points for
φI I,101 display a much wider spread. This observation further indicates that the secondary
flow reacts more sensitively to parameter changes. A detailed analysis of the cause of
this behaviour will be subject to future studies. The subsequent parameter studies were
conducted for a diameter D1 of 300 mm and a Reynolds number Re1 of 1× 106, as the
operating charts show that these values provide for a realistic operating point. The values
of the power loss coefficient ζPmTE and the secondary velocity ratio φI I,101 at this operating
point are further used as reference values for normalising the variables in Section 3.6.
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Figure 5. Operating charts of the AxFeeder basic model (part (a) of Figure 3) showing the power loss
coefficients (a) and the secondary velocity ratio at station 101 (b) against the inlet Reynolds number.

3.2. Parametric Variations of the Basic Model

For the basic model as shown in part (a) of Figure 3, three parameters, namely the di-
ameter ratio D51/D1 (D1 was kept constant), the fillet radius R40/D51, and the diffuser
angle β, were varied. The impact of an individual parameter change on the quality criteria is
plotted in Figure 6. While the power losses decline with larger values of D51, the secondary
velocity ratio increases. This decrease in power losses can be attributed to the constriction
reduction at those locations where the branch lines are attached to the manifold. Likewise,
bigger diameters of D51 cause a reduced principal flow velocity in the branch lines and,
thus, higher secondary velocity ratios. The magnitude of the secondary flow velocity
exhibits higher dependency on how the branch lines are connected to the manifold and the
branch lines’ flow path rather than the diameter ratio D51/D1. Figure 3c,d reveal that even
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a relatively small fillet radius of about 5% of D51 can reduce the power losses by about
50%, but in turn, this also increases the secondary flow in the system by the same amount.
Therefore, a fillet at the connection edge of the branch lines and the manifolds does not
seem applicable. The choice of diffuser angle is crucial. For opening angles in the range of
about 20◦ to 36◦, the flow starts to asymmetrically separate from the diffuser wall, which
leads to unsteady flow phenomena. The peak of secondary flow for β = 24◦ results from
these phenomena. As we know that steady-state simulations cannot precisely capture this
flow behaviour, we recommend that the opening angle β shall not exceed 16◦ to avoid flow
separation securely. Optimum pressure recovery and, thus, minimum power losses are
achieved for opening angles of 12◦–14◦.
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Figure 6. Line plots of the power loss coefficients and secondary velocity ratios of basic model.
Charts (a,b) show the effect of a variation in the diameter ratio D51/D1, (c,d), the fillet radius
R40/D51, and (e,f) of the diffuser angle β.

3.3. Parametric Variations of the Basic Model with Conical Frustum

In contrast to the basic model (Figure 3a), the branch lines are connected to the
manifold by a conical frustum (Figure 3b). The deviation angles α and δ coincide for
this configuration. The merged deviation angle will be referred to as deviation angle δ.
A variation of the ratio of the base diameter D40 to the top diameter D51 of the conical
frustum (Figure 7a,b) reveals that for all deviation angles, δ, the power losses drop rapidly
with an increasing diameter ratio D40/D51. Compared to the effect of other parameters,
the frustum, as a connecting part between the manifold and the branch lines, has the largest
impact on the power losses. The secondary velocity ratio reacts sensitively to combinations
of the D40/D51 and δ. A clear trend of secondary flow reduction at station 101 can be noted
with steeper deviation angles. Furthermore, the curve for δ = 90◦ has a parabolic shape
with a minimum at D40/D51 ≈ 1.5–1.6. This indicates that a "smooth" (low losses) parting
of the incoming flow into six equal portions becomes more likely if the flow can choose
its path freely in the manifold part and the connecting frustum. For configurations with a
deviation angle δ = 90◦, the effect of pivoting the entire branch line by an angle ϕ = 15◦
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around the vertical axis was investigated. Pivoting the entire branch line by 15◦ would
result in the same pitch cycle diameter as pivoting only the injector bend by an angle γ.
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Figure 7. Line plots of the power loss coefficients and secondary velocity ratios of the basic model
with conical frustum. Charts (a,b) show the effect of a variation of the diameter ratio D40/D51 of
the frustum for different deviation angles δ. Charts (c,d) show the effect of a variation of the same
diameter ratio for a horizontal pivot angle ϕ = 15◦. Charts (e,f) show the effect of a variation of the
diameter ratios D51/D101 and D51/D71 for converging pipe bend sections 61–71 (configuration C)
and 81–91 (configurations A, B).

The power loss chart, shown in Figure 7c, does not reveal a difference between these
two designs. However, the secondary velocity ratio (Figure 7d) is about 20 to 30% higher
for the design with ϕ = 15◦.

The charts shown in Figure 7e,f indicate a possibility for reducing both power losses
and secondary flow by implementing convergent bend sections in the branch line. Three
cases were tested: A—converging bend from 81 to 91, axial length z fixed; B—converging
bend section from stations 81 to 91, the curvature radius of this bend section fixed;
C—converging bend section from 61 to 71, the curvature radius of this bend section fixed.
The diameter ratios D51/D101 (A and B) and D51/D71 (C) were varied between 1.0 and
1.6 in all three cases. Parabolic power loss curves can be observed with minima at about
a diameter ratio of 1.4 for cases A and B, and 1.3 for case C. Only configuration B, with the
converging bend between station 81 and 91, just upstream of the injector, reduces the sec-
ondary flow for diameter ratios between 1.2 and 1.3. This is a result of the fixed curvature
of this bend type, in contrast to configuration A, where the curvature radius of the bend
becomes smaller (hence more prone to flow separations) if the diameter ratio increases.

3.4. Parametric Variations of the Distributor Model with Spherical Manifold

For this model, the diffuser-shaped manifold of the previously shown designs was
replaced by a sphere. A spherical manifold has two potential advantages compared to
a diffuser-shaped manifold. First, the axial length is reduced (as notable by comparison
of the designs in Figure 3). Secondly, a more even distribution of the stresses should
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result theoretically from the hydrostatic pressure. However, these potential advantages
are only relevant if the spherical shape of the manifold does not adversely affect the
flow quality. Figure 8a shows that for small sphere diameters SR40/D1, the power losses
are similar to the previously discussed designs, but the losses rise dramatically when
increasing sphere diameters. The secondary velocity ratios (depicted in Figure 8b) are
similar to previous designs for small spheres. Furthermore, the decrease in φ101 with steeper
deviation angles δ can be observed again. However, for big sphere radii, the secondary
velocity curves start to oscillate. This behaviour can be attributed to flow separation at
the entrance of the sphere, causing an unsteady swirl in the entire downstream branch
line. Therefore, a sphere diameter of SR40/D1 > 2

3 should be avoided. For studying
the effect of a frustum connecting the sphere and the branch lines, SR40/D1 = 0.6 was
chosen. Although a reduction in the power losses can be observed when increasing the
base diameter D40/D51 of the frustum (Figure 8c), the secondary flow ratio is not affected
much by the frustum. However, as seen before in Section 3.3, increasing the deviation
angle δ of the branch lines again contributes severely to a reduction in the secondary flow
(Figure 8d).
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Figure 8. Line plots of the power loss coefficients and secondary velocity ratios of the model with
spherical manifold. Charts (a,b) show the effect of a variation of the deviation angle δ for five different
sphere radii SR40/D1 for a configuration without a frustum. Charts (c,d) show the effect of a variation
of the frustum diameter ratio D40/D51 for different deviation angles δ and a fixed sphere radius of
SR40/D1 = 0.6.

3.5. Parametric Variations of the Distributor Model with Cylindrical Manifold

Similar to the design with a spherical manifold, the design with a cylindrical manifold
has a reduced axial length compared to the basic manifold designs (Figure 3a,b). Another
advantage of the cylindrical manifold is the simpler manufacturing process, as most
components can be made from standardised pipes. However, the power loss is higher
compared to the basic manifold designs. This observation is emphasised by Figure 9a,
in which the power loss is plotted against the deviation angle δ. For all three axial positions
T4/D51, the curves show a parabolic shape with their minima at about δ = 60◦. Figure 9b
depicts the secondary velocity ratio exhibiting a linear trend towards lower values of
φ101 for steeper deviation angles. Again, the power loss is reduced if a fillet radius at the
connecting edge of the manifold and the branch line is considered (Figure 9c), but the
secondary velocity ratio increases.
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Figure 9. Line plots of the power loss coefficients and secondary velocity ratios of the model with
cylindrical manifold. Charts (a,b) show the effect of a variation of the deviation angle δ for different
axial positions T4/D51 of the branch line. Charts (c,d) show the effect of applying a fillet of radius
R40/D51 to smooth the connection between the cylindrical manifold and the branch lines for four
different deviation angles.

3.6. Comparison of the Four Design Variants

While the preceding subsections focused on investigating the effect of geometric
changes on the flow quality of the four basic designs, this subsection provides an overall
comparison of the simulated AxFeeder configurations. Therefore, the secondary velocity
ratio φI I,101 at station 101 is plotted in Figure 10 against the power loss coefficient ζPmTE,1011
between stations 1 and 101 for each of the tested configurations. Both quantities are nor-
malised by the corresponding reference values acquired from the basic model as specified
in Section 3.1. In this figure, each of the four basic designs is assigned a dedicated colour,
red for design (a), green for (b), blue for (c), and pink for (d). Within a basic design, different
parameter sets are indicated by different marks. The best configurations, i.e., the ones with
the smallest distance value rζφ of each basic design are indicated by an enlarged mark.
In the present case, the marks for all four best configurations happen to be triangles.

Since low power losses and a low level of secondary flow are desired for Pelton turbine
distributor systems, we assume that both criteria are equally important. Hence, the overall
quality of a design is measured by its distance rζφ from the centre point (0, 0) of Figure 10.
This distance requires an equal weighting of both criteria, power losses, and secondary flow
ratio, and hence the use of the normalised quantities ζPmTE,1011

ζPmTE,1011,re f
and φI I,101

φI I,101,re f
is necessary.

With the help of Pythagorean addition, the distance rζφ is then defined as

rζφ =

√√√√( ζPmTE,1011

ζPmTE,1011,re f

)2

+

(
φI I,101

φI I,101,re f

)2

. (14)

In Figure 10, the radial distances of the best configuration (identifiable by the enlarged
triangle mark) of each of the four basic designs from (a) to (d) to the origin are indicated by
dashed quarter circles. The distances from the best configuration of design (a) to the best
configuration of the three improved designs are computed by

∆rζφ = 1−
rζφ,(b,c,d)

rζφ,a
(15)

and also shown in this figure.
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Figure 10. Scatter plot of normalised secondary velocity ratio at station 101 φI I,101
φI I,101,re f

against normalised

power loss coefficient ζPmTE,1011
ζPmTE,1011,re f

. The best configuration of each of the four basic designs is marked
by an enlarged triangle and the minimum distance of this point to the centre is indicated by dashed
quarter circles. The Pareto front, linking all non-dominated design configurations, is sketched as
a dash-dotted black line.

A comparison of the four basic designs reveals that the majority of the design con-
figurations of basic design (a) (red marks) lie in the upper right part of the scatter plot.
Thus, these design points are expected to demonstrate unfavourably increased power
losses and secondary flows, which may lead to unwanted effects in Pelton turbine ap-
plications. The green marks of basic design (b) are significantly moved towards the left,
exhibiting reduced power losses. Furthermore, a shift to lower secondary velocity ratios
is observed. The design points of basic design (c) spread across the upper right of the
plot, where most configurations display undesirably high power losses or secondary flow
ratios. Nonetheless, the best design points are closer to the origin than the basic design (d).
The basic design configurations (d) are concentrated in the lower plot area. However, due
to significantly higher power losses, this can be largely attributed to the transition from the
manifold to the branch line (see Figure 11), as the distance rζφ,d of the best configuration of
design (d) to the origin is greater than for the best configuration of (b) and (c). The most
suitable design within this comparison is basic design (b), with its best configuration being
44% better than the best configuration of basic design (a). While the best configuration
of (b) demonstrates lower power losses and secondary flow ratios than the other three
best configurations, there are some non-dominated configurations of design (d) that have
similar or even lower values for the secondary velocity ratio. Likewise, there are some
non-dominated configurations of (b) that have similar or even lower values for the power
losses. All these non-dominated configurations form the Pareto front, which is shown in
Figure 10.
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Figure 11. Contour plot of viscous (left column) and turbulent dissipation (right column) in the
mid-plane of the best configurations of the four basic designs. The quantities are normalised by the
density-weighted turbulent eddy dissipation at the inlet. Subfigures (a,b) show basic design a), (c,d)
show basic design b), (e,f) show basic design c), (g,h) show basic design d).

For the best configurations of each basic design, the local losses in the mid-plane,
expressed in the form of viscous and turbulent dissipation, are compared in Figure 11. The
losses caused by the oncoming flow are comparable for all four cases. A difference in the
local dissipation becomes visible as soon as the flow enters the manifold part. The diffuser
angle in configuration (a) appears to be overly steep, and therefore the losses in this section
of the manifold are slightly higher than in design (b). In all configurations, the most
significant production of entropy occurs at the throat, where the branch line is connected to
the manifold, while the contours of the dissipation are qualitatively similar. It is design (b),
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where the magnitudes of both viscous and turbulent dissipation are considerably lesser
than for the three other designs. This can be attributed to a combination of factors. First,
as a result of the combination of the diffuser-shaped manifold and the frustum-shaped
first segment of the branch line, the flow velocities in the areas where the flow changes its
direction are lower. Hence, less shear stress and less turbulent kinetic energy are induced
in the flow. Second, the hemispherical shape of the manifold end cap allows for the flow
to enter the frustum part of the branch line more evenly than in designs (a) or (d). Third,
the diameter of the branch line of the best configuration of design (b) is larger than that of
designs (a), (c), and (d). Therefore, the flow velocity in the first part of the branch line is
lower, and less entropy is produced in the straight pipe sections as well as in the two bends.

4. Discussion

The quality criteria for evaluating the flow in distributor systems with one inlet and
multiple outlets are presented. These criteria were applied to rate different manifold
designs. How changes in the geometric parameters affect the flow quality for each of these
four designs was analysed. This final section highlights the core findings of the parametric
study and provides additional insights.

4.1. Core Findings

The key aspects are as follows:

• The transition from the penstock to the manifold is crucial, while the model with
a spherical manifold becomes susceptible to unsteady flow phenomena if the sphere
radius exceeds a certain value, similar unsteady effects were observed for the model
with a diffuser-shaped manifold and too-steep diffuser angles β.

• The first component of the branch line in the flow direction should be shaped as a
conical frustum. It reduces power losses by over a third and decreases the secondary
flows for branch lines with steep deviation angles.

• A steeper deviation angle (ideally δ = 90◦) has multiple advantages: First, the sec-
ondary velocity ratio is lowered significantly (see Figure 12). Second, the axial length
of the distributor system is shortened, and third, the connection between the manifold
and the branch lines becomes easier to manufacture. The slight increase in power
losses for steeper deviation angles becomes negligible.

• An injector bend with a converging diameter from station 81 to 91 and a fixed curvature
radius allows for a reduction in both quality criteria of up to one-third.

• Only the conical frustum and the converging injector bend reduce power losses and
secondary flows simultaneously. The majority of the geometric parameters decrease
one but increase the other target quantity. For example, a fillet radius at the connection
of the branch lines and the manifold greatly reduces power losses, but amplifies the
secondary velocity.

4.2. Additional Insights
4.2.1. On the Secondary Flows at Station 101

The detail plots of the secondary velocity ratio at station 101 in Figure 12 reveal an S-
shaped secondary velocity pattern. The secondary flow patterns are commonly symmetric
with respect to the bucket with conventional Pelton manifold distributors. The significance
of the S-shaped secondary velocity pattern on the Pelton turbine performance calls for
further investigations.

The secondary flow magnitudes at station 101 in Figure 12 are significantly lower for
designs with the steeper deviation angle. The hypothesis that turbulence dissipates the
secondary flow magnitude at this station is disproved by the plots encircled by the dashed
lines. Only subtle differences between the two designs can be observed at this station.
A red dot with increased turbulent intensity can be spotted only at the curvature inside.



Energies 2023, 16, 2737 16 of 20

Figure 12. Contour plots of the basic model with conical frustum (basic design b). The plots on the
left show the model with a deviation angle of δ = 50◦, and the model on the right has a deviation
angle of δ = 90◦. The contours on the mid-plane show normalised velocities, the contours encircled
in solid black show secondary velocity ratios, and the contours encircled by dashed black lines show

the turbulent intensity TI =
√

2k
3‖~u101‖2 .

4.2.2. On the Power Losses

The charts of Figures 5–9 reveal a particular offset of the power loss curves ζPmTE
computed with the classical approach and the power loss curves ζΦ computed via the
second law analysis. This offset appears similarly in all charts. The second law analysis
seems to systematically underestimate the power losses compared to the classical approach
with the k-ω shear stress transport model. More accurate results of ζΦ can be achieved
by extending the evaluation domain of the dissipation further downstream of the region
of interest. Herwig and Schmandt [24] extended the domain well over ten times the
conduit diameter for the case of a T-junction. Although quantitative loss assessment may
be challenging when applying the second law analysis, source locations of loss generation
can be visualised qualitatively (see Figure 11).

4.3. Outlook

The presented findings are applied to the development of a novel test rig at the hy-
draulic laboratory of the Institute of Energy Systems and Thermodynamics at TU Wien,
which is currently under construction. In this construction phase, the trade-off between
hydraulically perfect design and manufacturing effort is closely monitored to keep manu-
facturing costs, especially for possible future small hydro applications, at an economically
feasible level. After the distributor system test rig has been fully commissioned, in the next
phase of the research project, experimental investigations are scheduled to validate the
numerical simulations and to gain an even deeper understanding of the flow phenomena
in the manifold and the branch lines that ultimately lead to low-quality jets.
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Nomenclature
The following symbols and abbreviations are used in this manuscript:

Latin symbols
Ai Surface area of station i m2

ALk
Diameter at which the branch lines are connected to the
manifold

m

D1 Penstock diameter m
Di Diameter of pipe segment at station i m
Dp Pitch cycle diameter of the runner m
H Geodetic head m
Kpt Total pressure loss coefficient 1
k Turbulence kinetic energy m2/s2

Li Length of pipe segment starting from station i m
ṁ Mass flow rate at station i kg/s
~n Normal vector of surface ~A = A ·~n 1
n Number of branch lines 1
nq Specific speed rpm
PKE Power of kinetic energy W
PmTE Power of mechanical total energy W
PTurb Power of turbulent dissipation W
PVis Power of viscous dissipation W
p Pressure Pa
poa Order of accuracy 1
pdyn Dynamic pressure Pa
pt Total pressure Pa
Q Volumetric flow rate m3/s
Re Reynolds number 1
rζφ Non-dimensional distance from center point to design point 1
TI Turbulence intensity 1
~u = (u, v, w)T Flow velocity and its components m/s
~uI Primary flow velocity m/s
~uI I Secondary flow velocity m/s
V Integration volume m3

y+ Non-dimensional wall distance 1

Greek symbols

α
Deviation angle of first segment of the branch line of design
a), see Figure 2

°

β Diffuser angle °
γ Pivot angle of the injector bend °
∆ Difference between quantities misc.
δ Deviation angle of the branch line °
ε Turbulence eddy dissipation m2/s3

ζPmTE Power loss coefficient 1
ζΦ Dissipation power coefficient 1
ηdistributor Distributor efficiency 1
ηT Turbine efficiency 1
ϕ Pivot angle of the branch line, see Figure 2 °
ΦTurb Turbulent dissipation W
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ΦVis Viscous dissipation W
φI I Secondary velocity ratio 1
τij Shear stress tensor in index notation Pa
ω Turbulence eddy frequency 1/s

Constants (within the framework of this study)
g Gravitational acceleration 9.807 m/s2

β∗ Coefficient of k-ω SST turbulence model 0.09
µ Dynamic viscosity of water at 25 ◦C 8.899× 10−4 Pa s
ρ Density of water at 25 ◦C 997 kg/m3

Common indices
dyn Dynamic
i Station i
KE Kinetic energy
max Maximum
min Minimum
mTE Mechanical total energy
ref Reference
T Turbine
Turb Turbulent
t Total
Vis Viscous
I Primary
II Secondary
101 Quantity evaluated at station 101

1011
Quantity evaluated as difference of values at stations 1
and 101

Abbreviations
FFG Österreichische Forschungsförderungsgesellschaft
GCI Grid convergence index
SLA Second law analysis
SST Shear stress transport

Appendix A

Appendix A.1. Script for Creating Secondary Flow Variables in CFD-Post

The code snippet provided in Listing A1 displays a minimum working example of how
to implement the algorithm to compute secondary velocities introduced in Section 2.3.4
in the post-processing utility CFD-Post. The code was tested with CFD-Post 19.2 and
CFD-Post 2022 R1.
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Listing A1: Minimal working example for creating secondary flow variables in CFD-Post.

# Definition of Perl variables
! @Coordinates = (’X’,’Y’,’Z’);
! @VelocityComponents = (’u’,’v’,’w’);

# Create Expressions
LIBRARY:
CEL:
EXPRESSIONS:
Velocity projected to surf normal = Velocity u * Normal X + Velocity

↪→ v * Normal Y +Velocity w * Normal Z

# loop through every member of @Coordinates
! for ($i=0; $i<@Coordinates; $i++) {

Primary Flow Velocity $Coordinates[$i] = Velocity projected to
↪→ surf normal* Normal $Coordinates[$i]

Secondary Flow Velocity $Coordinates[$i] = Velocity
↪→ $VelocityComponents[$i] - Primary Flow Velocity
↪→ $Coordinates[$i]

!}
END

END
END

# Create User vector variables
USER VECTOR VARIABLE:V Primary Flow Velocity
Boundary Values = Conservative
Calculate Global Range = On
Recipe = Expression
Variable to Copy = Pressure
Variable to Gradient = Pressure
X Expression = Primary Flow Velocity X
Y Expression = Primary Flow Velocity Y
Z Expression = Primary Flow Velocity Z

END
USER VECTOR VARIABLE:V Secondary Flow Velocity
Boundary Values = Conservative
Calculate Global Range = On
Recipe = Expression
Variable to Copy = Pressure
Variable to Gradient = Pressure
X Expression = Secondary Flow Velocity X
Y Expression = Secondary Flow Velocity Y
Z Expression = Secondary Flow Velocity Z

END
# End of script

References
1. Bundesministerium für Nachhaltigkeit und Tourismus. Integrierter Nationaler Energie-und Klimaplan für Österreich; Bundesminis-

terium für Nachhaltigkeit und Tourismus: Wien, Austria, 2019.
2. Staubli, T.; Abgottspon, A.; Weibel, P.; Bissel, C.; Parkinson, E.; Leduc, J.; Leboeuf, F. Jet quality and Pelton efficiency. In

Proceedings of the Hydro-2009, Lyon, France, 26–28 October 2009.



Energies 2023, 16, 2737 20 of 20

3. Staubli, T.; Weibel, P.; Bissel, C.; Karakolcu, A.; Bleiker, U. Efficiency increase by jet quality improvement and reduction of
splashing water in the casing of Pelton turbines. In Proceedings of the 16th International Seminar on Hydropowerplants,
Laxenburg, 24–26 November 2010.

4. Sick, M.; Drtina, P.; Schärer, C.; Keck, H. Numerical and experimental analyses of Pelton Turbine Flow Part 1: Distribu-
tor and Injector. In Proceedings of the 20th IAHR Symposium on Hydraulic Machinery and Systems, Charlotte NC, USA,
6–9 August 2000.

5. Peron, M.; Parkinson, E.; Geppert, L.; Staubli, T. Importance of Jet Quality on Pelton Efficiency and Cavitation. In Proceedings of
the International Conference on Hydraulic Efficiency Measurements, Milan, Italy, 3–6 September 2008.

6. Santolin, A.; Cavazzini, G.; Ardizzon, G.; Pavesi, G. Numerical investigation of the interaction between jet and bucket in a Pelton
turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2009, 223, 721–728. [CrossRef]

7. Erlach, J.; Staubli, T. Pelton Turbine with a Supply System. WO 2008/003390 A1, 14 June 2007.
8. Erlach, J.; Erlach, P. We proudly present the first up to Six Jets Horizontal Pelton Turbine. In Proceedings of the Hidroenergia

2014, European Small Hydropower Association (ESHA) Congress, Istanbul, Turkey, 21–23 May 2014.
9. Erlach, J.; Erlach, P. Neues Pelton-Konzept—bis zu sechs Düsen in horizontaler Anordnung. WasserWirtschaft 2016, 106, 18–24.

[CrossRef]
10. Giesecke, J.; Heimerl, S.; Mosonyi, E. Wasserkraftanlagen: Planung, Bau und Betrieb; Springer: Berlin/Heidelberg, Germany, 2014.
11. Han, L.; Duan, X.; Gong, R.; Zhang, G.; Wang, H.; Wei, X. Physic of secondary flow phenomenon in distributor and bifurcation

pipe of Pelton turbine. Renew. Energy 2019, 131, 159–167. [CrossRef]
12. Parkinson, E.; Lestriez, R.; Chapuis, L. Flow Calculations in Pelton Turbines—Part 1: Repartitor and Injector Numerical Analysis.

In Proceedings of the 19th IAHR Symposium on Hydraulic Machinery and Systems, Singapore, 9–11 September 1998; pp. 285–293.
13. Lei, H.; Gaofu, Z.; Ruzhi, G.; Hongda, W.; Wei, L. Physics of bad-behaved flow in 6-Nozzle Pelton turbine through dynamic

simulation. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 240, p. 022018.
[CrossRef]

14. Patel, K.; Patel, B.; Yadav, M.; Foggia, T. Development of Pelton turbine using numerical simulation. In IOP Conference Series:
Earth and Environmental Science; IOP Publishing: Bristol, UK, 2010; Volume 12, p. 012048. [CrossRef]

15. Shiraishi, T.; Watakabe, H.; Sago, H.; Konomura, M.; Yamaguchi, A.; Fujii, T. Resistance and fluctuating pressures of a large elbow
in high Reynolds numbers. J. Fluids Eng. 2006, 128, 1063–1073. [CrossRef]

16. Dixon, S.L.; Hall, C. Fluid Mechanics and Thermodynamics of Turbomachinery; Butterworth-Heinemann: Oxford, UK, 2013.
17. Idelchik, I.E. Handbook of Hydraulic Resistance, 3rd ed.; Jaico Publishing House: Mumbai, India, 2005.
18. Hahn, F.; Semlitsch, B.; Bauer, C. On the numerical assessment of flow losses and secondary flows in Pelton turbine manifolds. In

IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1079, p. 012082. [CrossRef]
19. Kock, F.; Herwig, H. Local entropy production in turbulent shear flows: A high-Reynolds number model with wall functions. Int.

J. Heat Mass Transf. 2004, 47, 2205–2215. [CrossRef]
20. Kock, F.; Herwig, H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes. Int. J.

Heat Fluid Flow 2005, 26, 672–680. [CrossRef]
21. Schmandt, B.; Herwig, H. Internal flow losses: A fresh look at old concepts. J. Fluids Eng. 2011, 133, 051201 . [CrossRef]
22. Schmandt, B.; Herwig, H. Losses due to conduit components: An optimization strategy and its application. J. Fluids Eng. 2016,

138, 031204. [CrossRef]
23. Schmandt, B.; Herwig, H. Diffuser and nozzle design optimization by entropy generation minimization. Entropy 2011,

13, 1380–1402. [CrossRef]
24. Herwig, H.; Schmandt, B. How to determine losses in a flow field: A paradigm shift towards the second law analysis. Entropy

2014, 16, 2959–2989. [CrossRef]
25. Böhle, M.; Fleder, A.; Mohr, M. Study of the losses in fluid machinery with the help of entropy. In Proceedings of the 16th

International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, 10–15 April 2016;
pp. 1–9.

26. Menter, F.R. Improved Two-Equation k-Omega Turbulence Models for Aerodynamic Flows; Technical Report NASA-TM-103975;
National Aeronautics and Space Administration: Moffett Field, CA, USA, 1992.

27. Staubli, T.; Bissel, C. Jet Improvement for Swiss Pelton Plants; Technical Report; swisselectric (defunct as of 2017): Bern,
Switzerland, 2009.

28. CFX 19.2: CFX-Solver Theory Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2023.
29. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD

applications. J. Fluids Eng. 2008, 130, 078001. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1243/09576509JPE824
http://dx.doi.org/10.1007/s35147-016-0148-z
http://dx.doi.org/10.1016/j.renene.2018.06.116
http://dx.doi.org/10.1088/1755-1315/240/2/022018
http://dx.doi.org/10.1088/1755-1315/12/1/012048
http://dx.doi.org/10.1115/1.2236126
http://dx.doi.org/10.1088/1755-1315/1079/1/012082
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.11.025
http://dx.doi.org/10.1016/j.ijheatfluidflow.2005.03.005
http://dx.doi.org/10.1115/1.4003857
http://dx.doi.org/10.1115/1.4031607
http://dx.doi.org/10.3390/e13071380
http://dx.doi.org/10.3390/e16062959
http://dx.doi.org/10.1115/1.2960953

	Introduction
	Materials and Methods
	Pelton Turbine Distributor System with Axial Inflow—AxFeeder
	Description of Investigated Basic Manifold Designs
	Flow Quality in Piping Systems
	Total Pressure Drop
	Power Loss—Classical Approach
	Power Loss—Second Law Analysis
	Secondary Flows

	Computational Domain and Simulation Setup
	Grid Refinement Study

	Results
	Operating Regime
	Parametric Variations of the Basic Model
	Parametric Variations of the Basic Model with Conical Frustum
	Parametric Variations of the Distributor Model with Spherical Manifold
	Parametric Variations of the Distributor Model with Cylindrical Manifold
	Comparison of the Four Design Variants

	Discussion
	Core Findings
	Additional Insights
	On the Secondary Flows at Station 101
	On the Power Losses

	Outlook

	Appendix A
	Appendix A.1

	References

