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We study the incoherent transport of bosonic particles through a one dimensional lattice with
di�erent left and right hopping rates, as modelled by the asymmetric simple inclusion process (ASIP).
Speci�cally, we show that as the current passing through this system increases, a transition occurs,
which is signi�ed by the appearance of a characteristic zigzag pattern in the stationary density
pro�le near the boundary. In this highly unusual transport phase, the local particle distribution
alternates on every site between a thermal distribution and a Bose-condensed state with broken
U(1)-symmetry. Furthermore, we show that the onset of this phase is closely related to the so-
called non-Hermitian skin e�ect and coincides with an exceptional point in the spectrum of density
�uctuations. Therefore, this e�ect establishes a direct connection between quantum transport, non-
equilibrium condensation phenomena and non-Hermitian topology, which can be probed in cold-
atom experiments or in systems with long-lived photonic, polaritonic and plasmonic excitations.

Transport phenomena are of relevance for almost all ar-
eas of physics and technology with transport of electric
currents and heat conduction in solids being two proto-
typical examples. While electric currents are carried by
electrons, i.e., massive fermionic particles, heat transfer
can be understood as the emission and reabsorption of
quantized lattice vibrations, i.e, non-conserved bosonic
excitations. However, despite relying on very di�erent
microscopic mechanisms, both transport scenarios share
many similarities. For example, depending on the mean
free path, transport can either be ballistic or di�usive,
where in the latter case Ohm's law and Fourier's law de-
scribe a similar linear relation between the current and
the applied voltage or temperature gradient. Therefore,
a general question of interest is under which conditions
`anomalous transport' with a qualitatively very di�erent
phenomenology can be observed.
In this paper, we consider the setup shown in Fig. 1

(a) as an elementary model to study dissipative transport
of bosons. Here, bosons injected from a hot reservoir on
the right can incoherently hop between neighboring sites
of a one dimensional lattice, before being dumped into a
second reservoir on the other end. This process has two
key features: First, in the presence of a bias, the hop-
ping rates to the left and right, Γl and Γr, are in general
di�erent, in which case the transport is asymmetric, i.e.,
directional. Second, the hopping rates toward sites that
are already occupied are enhanced by the bosonic parti-
cle statistics. Therefore, this process can be seen as the
bosonic counterpart of the celebrated asymmetric sim-
ple exclusion process (ASEP) [1�4]�a common model
for directed transport of fermions or classical hard-core
particles�and one speaks of an asymmetric simple inclu-
sion process (ASIP) instead [5].
Compared to fermions as the carriers for electric cur-

rents, the dissipative transport of bosonic particles has
attracted considerably less attention so far. This can
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Figure 1. Asymmetric bosonic transport. (a) Sketch of the
ASIP setup studied in this work. Bosons injected from a ther-
mal particle reservoir with mean occupation number n̄r on the
right can incoherently hop along the lattice with asymmetric
rates Γl and Γr, before being emitted into a second reservoir
with occupation number n̄l on the left. A directional hopping
can be imposed, for example, by applying a potential gradient
with an energy o�set U between neighboring sites. (b) Un-
der stationary conditions, this hopping asymmetry combined
with the bosonic particle statistics results in the bosonic skin
e�ect, i.e., the formation of a �nite boundary region with a
staggered density pro�le. The two insets show sketches of the
Wigner distribution for individual lattice sites, indicating that
within this boundary region, the odd sites are in a condensed
state with broken U(1) symmetry, while all other lattice sites
exhibit a thermal distribution. See text for more details.

be attributed to a lack of conventional solid-state sys-
tems where this physics could be observed. However,
this situation has changed recently and a variety of ex-
perimental platforms have now become available where
non-equilibrium processes with bosonic particles can be
probed. This includes, for example, cold atoms in opti-
cal lattice potentials, where di�erent techniques to study
transport have already been demonstrated [6�10]. Fur-
thermore, it has been shown in various experiments that
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long-lived photonic [11�13], polaritonic [14�20] or plas-
monic [21] excitations can behave as massive bosonic par-
ticles and equilibrate with the surrounding material, be-
fore they eventually decay. The ongoing experimental ad-
vances in these platforms naturally raise the question of
how transport in such settings is a�ected by the bosonic
particle statistics of the carriers.

In the following analysis, we investigate the properties
of the ASIP in a thermal transport scenario, where we
focus primarily on the stationary current and the den-
sity pro�le along the lattice. In the absence of asym-
metry, we recover the usual di�usive transport in this
model as well, characterized by a linear population gra-
dient and a Fourier law for the current. However, as
soon as a �nite degree of asymmetry is introduced, the
transport becomes ballistic and particles accumulate in a
�nite boundary region near the drain. Moreover, as the
total current through the system increases, we observe a
transition from a smooth pile-up to a zigzag structure, as
depicted in Fig. 1 (b), with odd (even) sites being highly
(weakly) populated. This phase represents a rather un-
usual non-equilibrium con�guration, where the particle
distribution alternates on every lattice site between a
thermal distribution and that of a coherent state with
broken U(1)-symmetry. This emergence of coherences
in a purely dissipative and thermal transport scenario is
very surprising and related to non-equilibrium conden-
sation phenomena [11, 16, 22�25] that have no counter-
part in fermionic transport. Therefore, we identify this
boundary condensation as a unique feature of the ASIP
model and call it the bosonic skin e�ect.

The observed accumulation of particles in a dissipa-
tive transport scenario is indeed very reminiscent of the
so-called non-Hermitian skin e�ect (NHSE)[26�40]. This
e�ect refers to the boundary localization of the eigen-
functions of certain non-Hermitian lattice Hamiltonians
and is thus frequently discussed in connection with their
topological classi�cation [29, 32, 39, 41, 42]. However,
such non-Hermitian models do not conserve the norm of
the wavefunction nor the particle number. Therefore,
beyond their mathematical interest, the relevance of the
NHSE and other spectral features of non-Hermitian sys-
tems for actual quantum transport processes is not im-
mediately clear and still a subject of ongoing investiga-
tions [28, 33�38, 40]. Here, by mapping the dynamics
of density �uctuations in our system onto the paradig-
matic Hatano-Nelson model (HNM) [26, 32, 39, 42], we
establish a direct correspondence between the eigenvalue
structure of this non-Hermitian Hamiltonian and the sta-
tionary states of the ASIP transport problem. This cor-
respondence relies on a subtle di�erence between Dirich-
let and Neumann boundary conditions for the HNM and
provides important additional insights into the nature of
the predicted boundary transition. In particular, we �nd
that the onset of condensation coincides with the appear-
ance of a higher-order exceptional point in the HNM and
occurs without a closing of the dissipative gap. This dis-
tinguishes the bosonic skin e�ect from other dissipative

quantum phase transitions [43, 44] and, in summary, re-
veals an unexpectedly rich interplay between transport,
non-equilibrium condensation e�ects and non-Hermitian
physics.
The remainder of the paper is structured as follows.

In Sec. I, we introduce the ASIP model and the main
transport equations that we use to describe it. In Sec. II,
we present the bosonic skin e�ect and discuss the on-
set of the zigzag phase within mean-�eld theory, before
investigating the full particle distribution and condensa-
tion e�ects in Sec. III. Finally, in Sec. IV, we discuss the
connection between the ASIP and the HNM, before sum-
marizing our main �ndings in Sec. V. Additional details
about the analytic derivations and numerical methods
are presented in the appendices.

I. MODEL

We consider the transport of bosons in a 1D lattice, as
depicted in Fig. 1 (a). Here, the bosons are injected from
a thermal reservoir on the right and propagate along a
chain of L lattice sites through incoherent hopping pro-
cesses, before being emitted into a second reservoir on the
left. In the following we are primarily interested in asym-
metric transport, Γl > Γr, where Γl and Γr denote the
hopping rates to the left and to the right, respectively.

A. The ASIP master equation

We model the dynamics of this system by the Lindblad
master equation

dρ̂

dt
= (Lhop + Ll + Lr) ρ̂, (1)

where ρ̂ is the system density operator. Here, the �rst
term describes the incoherent hopping of bosons along
the lattice. This process is described by the Liouville
superoperator [37, 45�47]

Lhopρ̂ =

L−1∑
p=1

ΓlD[â†pâp+1]ρ̂+ ΓrD[â†p+1âp]ρ̂, (2)

where âp (â
†
p) are the bosonic annihilation (creation) op-

erators for lattice site p and we have introduced the short
notation

D[ĉ]ρ̂ = ĉρ̂ĉ† − 1

2

(
ĉ†ĉρ̂+ ρ̂ĉ†ĉ

)
. (3)

In Eq. (2), the jump operator â†p+1âp (â†p−1âp) destroys

a boson at site p and creates a boson at site p+ 1 (p− 1)
instead. This process conserves the total particle number
and it is thus di�erent from particle loss or gain. As a
direct consequence of this particle number conservation,
each jump operator is quadratic in â and â†, and therefore
the hopping process is nonlinear.
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The second and the third term in Eq. (1) represent the
coupling to the thermal particle reservoirs to the left and
to the right, which we model by

Llρ̂ = κl(n̄l + 1)D[â1]ρ̂+ κln̄lD[â†1]ρ̂,

Lrρ̂ = κr(n̄r + 1)D[âL]ρ̂+ κrn̄rD[â†L]ρ̂.

Here κl and κr denote the coupling rates to the two reser-
voirs and n̄l and n̄r are the corresponding thermal occu-
pation numbers. Note that while we will only consider
thermal baths in this work, other pumping mechanisms,
such as incoherent gain, would result in a behavior that
is qualitatively very similar to what is discussed below.

B. Asymmetric hopping

Before we proceed, let us brie�y comment on the phys-
ical motivation behind this asymmetric transport model.
A very generic scenario is depicted in Fig. 1 (a), where
bosons are con�ned to a lattice with an energy gradient,
for example, an optical lattice for cold atoms [7, 9], a
nanophotonic lattice for exciton polaritons or plasmons
[18, 21], etc. In this case, due to a large energy o�-
set U > 0 between neighboring sites, coherent tunneling
is suppressed, but in the presence of a phononic bath,
the bosons may still transition between neighboring sites
by emitting or absorbing vibrational excitations. Such a
process can be modelled by a phonon-assisted tunneling
term of the form

Ĥint ∼
∑
p

(â†p+1âp + âp+1â
†
p)(b̂p + b̂†p), (4)

where the bosonic operators b̂p represent local bath exci-
tations. Roughly speaking, for a particle to jump to the
left, it must lose the energy ∼ U by emitting it into the
environment. Conversely, to jump to the right, it must
absorb the same amount of energy. Therefore, a bath
at low temperature, where emission processes are more
likely than absorption, favors hopping to the left.
More precisely, under the assumption that the bath is

su�ciently Markovian, its dynamics can be eliminated to
derive an equation of motion for the reduced system den-
sity operator ρ̂ only. While some details may depend on
the speci�c implementation (see Appendix A for a more
detailed derivation), this master equation will be, quite
generically, of the form given in Eq. (1), with hopping
rates satisfying

Γl
Γr

= exp

(
~U

kBTphon

)
. (5)

Here, Tphon is the temperature of the phononic bath,
which determines the asymmetry in this setting.
Apart from such naturally occurring dissipative hop-

ping mechanisms, there are also many systems where this
asymmetric hopping processes can be engineered. For
example, in optical lattices, directed dissipative hopping

can be implemented via Raman processes [37, 48�50],
which involve atomic or cavity decay as a source of dis-
sipation and directionality. Ideas for realizing number-
conserving dissipation processes for photons have also
been discussed for optomechanical systems [51, 52] and
circuit QED [53], and can be readily adapted for the im-
plementation of directed hopping processes as well. In
the following we do not consider any of these possible
implementations speci�cally, but rather address the gen-
eral properties of the transport model given in Eq. (1).

C. Transport

In this work we focus primarily on the stationary trans-
port of particles between two thermal reservoirs. In the
absence of asymmetry, transport would be solely driven
by the temperature gradient between the reservoirs, i.e.,
by the di�erence between n̄r and n̄l. For asymmetric
rates, Γl 6= Γr, a directed particle �ow develops even
without any external temperature bias. To character-
ize transport in di�erent parameter regimes, we consider
the average stationary current J as well as the station-
ary density pro�le np = 〈n̂p〉 = 〈â†pâp〉 along the chain.
Throughout this paper we adopt the convention that
symbols with hats represent quantum operators, while
symbols without hats denote their averages.
Starting from the master equation in Eq. (1), the mean

occupation number np of any of the sites changes in time
as

dnp
dt

= Jp,p+1 − Jp−1,p. (6)

This equation has the form of a conservation law, where,
for any p ∈ [1, N − 1],

Jp,p+1 = Γl〈n̂p+1(1 + n̂p)〉 − Γr〈n̂p(1 + n̂p+1)〉 (7)

is the average particle current between sites p and p+ 1.
Note that we have adopted the convention that a positive
Jp,p+1 implies a current �owing from right to left, i.e.,
from site p + 1 into site p. From Eq. (7) we already
see that the current depends non-linearly on the density,
due to bosonic bunching: indeed, the probability for a
particle on site p + 1 to jump to site p is enhanced by
a factor 1 + n̂p, which depends on the population of the
target site. On the boundaries, the currents

J0,1 = κl(n1 − n̄l), JL,L+1 = κr(n̄r − nL) (8)

represent the �ow of particles into the left bath and from
the right bath, respectively.
In the steady state, the particle current is conserved

along the chain and we obtain

Jp,p+1(t→∞) = J ∀p. (9)

Note, however, that this uniformity of the current does
not imply a uniform density pro�le np.
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D. Mean-�eld dynamics

Although Eq. (1) contains only dissipative terms and
no additional coherent interactions between the bosons,
these incoherent processes are nonlinear and therefore do
not permit a closed set of equations for the mean occupa-
tion numbers. In addition, since the number of possible
bosonic con�gurations scales exponentially with the num-
ber of lattice sites L, brute-force numerical solutions of
the master equation are also inaccessible for the param-
eter regimes of interest. Therefore, to proceed we resort
to a mean-�eld decoupling of the equations of motions by
factorizing expectation values as 〈n̂pn̂p+1〉 ≈ 〈n̂p〉〈n̂p+1〉.
Under this approximation, the average current reads

Jp,p+1 ' Γlnp+1(1 + np)− Γrnp(1 + np+1). (10)

The system is then described by a set of L nonlinear
di�erential equations, which can be solved e�ciently nu-
merically and also permit exact analytical solutions in
the steady state.
To benchmark the validity of the mean-�eld approxi-

mation, we compare these predictions with exact Monte-
Carlo simulations for small systems sizes and low oc-
cupation numbers np . 1 and with phase-space simu-
lations based on the Truncated Wigner Approximation
(TWA) [54] for larger occupation numbers. Within their
respective regimes of validity, we �nd almost perfect
agreement between the numerical results and the station-
ary distributions obtained from mean-�eld theory. Fur-
ther details about these numerical methods and some of
the benchmarks can be found in Appendix B.

E. Hydrodynamic limit

Additional insights about the transport dynamics in
our system can be obtained by considering the continuum
(or hydrodynamic) limit. To do so, we rewrite the mean-
�eld equations of motion as

dnp
dt

=
ΓA
2

(np+1 − np−1)(2np + 1)

+ ΓS(np−1 − 2np + np+1),
(11)

where ΓA = Γl − Γr and ΓS = (Γl + Γr)/2. Then, under
the assumption that the np vary slowly between neigh-
boring sites, we can replace them by a continuous �eld
n(x, t), where x is the dimensionless position along the
lattice. Away from the edges, this �eld obeys the partial
di�erential equation

∂tn = ΓA(1 + 2n)∂xn+ ΓS∂
2
xn. (12)

This is, in essence, the well-known Burgers' equation [55�
57], a simpli�ed version of Navier-Stokes equation in hy-
drodynamics. The parameters ΓA and ΓS can thus be
interpretated as non-linear advection and di�usion rates,
respectively.

With the left side of the lattice being initially empty,
the possible solutions of Eq. (12) include propagating
shock fronts of the form [57]

n(x, t) =
n̄sw

2

[
1 + tanh

(
x− L+ cswt

wsw

)]
, (13)

where n̄sw is the height, csw = ΓA(n̄sw +1) the speed and
wsw = 2ΓS/(n̄swΓA) the width of the wavefront. These
solutions clearly illustrate how the bosonic enhancement
factor a�ects transport. First, the velocity of the density
wave scales with the typical density n̄sw. Second, the
bosons in the high density region propagate faster than
the bosons at the front, which leads to a compression of
the wave and wsw going to 0 for very large n̄sw.

While the Burgers' equation provides valuable intu-
ition about the transport dynamics in our system, it is
based on a continuum approximation and is only ex-
pected to hold in a `laminar' regime, i.e., when the ef-
fective Reynolds number

Re =
ΓAn̄sw

ΓS
(14)

associated with a typical occupation number n̄sw is small
[58]. In the opposite limit, the characteristic length scale,
wsw ∼ O(1), becomes of the order of the lattice spacing
and new features can arise from the discreteness of the
lattice and the presence of boundaries.

F. Relation to the ASEP

By replacing the bosonic operators in Eq. (1) by oper-
ators âp that obey fermionic anti-commutation relations,
i.e., {âp, â†p} = 1, we obtain the master equation describ-
ing the ASEP. In this case, the site occupation numbers
np obey the same equation as in Eq. (6), but with a
fermionic current

JASEP
p,p+1 = Γl〈n̂p+1(1− n̂p)〉 − Γr〈n̂p(1− n̂p+1)〉. (15)

Here, rather than being enhanced, the hopping to neigh-
boring sites is prohibited by the Pauli exclusion principle,
if the site is already occupied.

The properties of the ASEP have been extensively
studied in the literature [1�4]. This includes, most no-
tably, the scaling of current �uctuations [59, 60] in in�nite
lattices, which falls into the Kardar-Parisi-Zhang (KPZ)
universality class [4, 61, 62]. The ASEP is thus closely
connected to surface growth and related non-equilibrium
phenomena. It is therefore interesting to understand how
the change from an exclusion to an inclusion process af-
fects these properties. These aspects, however, will be
discussed in more details elsewhere [63]. Instead, here
we focus on novel e�ects that are unique to the ASIP
and reveal themselves already at the mean-�eld level.
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Figure 2. Plots of the steady-state occupation numbers np

for a lattice of L = 15 sites and di�erent degrees of asym-
metry: ΓA/Γl = 0 (a), ΓA/Γl = 0.05 (b), ΓA/Γl = 0.17 (c),
and ΓA/Γl = 1 (d). For all plots n̄r = 10 and two di�erent
values of n̄l = 0 (blue lines) and n̄l = 20 (yellow lines) have
been considered. The insets show the current J versus the
lattice size L, in log-log scale and for three di�erent values
of n̄l = 0, 5, 9. For ΓA = 0 we recover a linear population
gradient and the Fourier law for the current, as expected for
di�usive transport. For any ΓA > 0 and large L, the current
becomes independent of both L and n̄l, indicating ballistic
transport. In this regime, we observe the formation of a �nite
boundary region of size ξ, as indicated by the shaded area.
As the asymmetry increases, the width ξ shrinks and vanishes
for ΓA/Γl ' 0.17. Beyond this point, a �nite boundary re-
gion, but with an oscillating density pro�le, reappears. For
all plots, we have set κr = κl = Γl.

II. THE BOSONIC SKIN EFFECT

In the following section, we explore in more details
the stationary state of the transport master equation in
Eq. (1), which we describe in terms of the mean occupa-
tion numbers np and the current J .

A. Transport regimes

In a �rst step, we show in Fig. 2 examples of the sta-
tionary density pro�le np for a lattice of L = 15 sites,
together with the scaling of the current J as a function
of L. From these plots we identify three qualitatively
di�erent transport regimes.

1. Di�usive transport

In Fig. 2 (a) we �rst consider the symmetric case
Γl = Γr, where the stationary density pro�le along the

chain is simply a linear interpolation between n̄l and n̄r.
This is also expected from Burgers' equation in the con-
tinuum limit, Eq. (12), which for symmetric hopping de-
scribes pure di�usion. In this regime, the current obeys
the Fourier law and decreases with system size, i.e.,

J ∝ n̄r − n̄l
L

. (16)

Interestingly, this di�usive transport is independent of
the particle statistics and it is the same for bosons,
fermions and noninteracting classical particles.

2. `Laminar' asymmetric transport

For a su�ciently large lattice, L � 1, the di�usive
transport turns into directional transport for any �nite
hopping imbalance, ΓA 6= 0. In this case, the station-
ary density pro�le is �at and assumes a constant value
of np ' n∞ across most parts of the lattice. The excep-
tion is a region of size ξ close to the left reservoir, where
the density gradually adjusts to a boundary value, which
depends on the occupation number of the left bath, n̄l.
Most importantly, for a lattice size L� ξ, the stationary
current J > 0 is completely independent of both n̄l and
the length of the chain [see the inset of Fig. 2 (b)]. This
is true even though Γr is still �nite. This is in contrast
to ballistic transport in coherent systems [64�67], where
the stationary current depends on the properties of both
reservoirs.
While the quantitative details in this regime are

already a�ected by the bosonically-enhanced hopping
rates, the population pro�le is still qualitatively similar to
what one would obtain for asymmetric hopping of inde-
pendent classical particles. Moreover, since the e�ective
Reynolds number introduced in Eq. (14) is still small,
this behavior is well described by the continuous Burg-
ers' equation in Eq. (12) and we can draw a close analogy
with the regime of laminar �ow in �uid dynamics.

3. `Turbulent' asymmetric transport

When either the asymmetry or the right bath occupa-
tion n̄r are further increased, the size of the boundary
region, ξ, decreases and reaches ξ = 0 at a critical value
ΓcA ≡ ΓcA(n̄r). At this speci�c point, the density pro�le
is completely �at, with the exception of site p = 1, which
is coupled to the left reservoir. As shown in the inset of
Fig. 2 (c), since the relevant length scale vanishes, the
current at this critical value is independent of the system
size and adopts the value

J = κrn̄r
Γl

Γl + κr
. (17)

Remarkably and somewhat unexpectedly, this situation
occurs already for �nite Γr, i.e., under conditions where
particle �ow in both directions is still possible.
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As the directed particle �ow is further increased, a
boundary region of �nite size ξ reappears. In this regime,
however, the occupation numbers vary strongly between
neighboring sites and we observe a zigzag con�guration
with a decaying envelop. Counter-intuitively, as we keep
increasing ΓA, we �nd that the extent of this zigzag con-
�guration increases in the direction opposite to the prop-
agation. The transport in this regime is ballistic as well,
i.e., for su�ciently large L the current

J ≈ κrn̄r > 0 (18)

is independent of both n̄l and the system size. How-
ever, in contrast to the smooth pile-up observed above,
this rapidly oscillating density pro�le is no longer cap-
tured by the Burgers' equation. This behavior is found
for high e�ective Reynolds numbers and in analogy with
turbulent �ow in �uid dynamics, we observe a build-up
of excitations at small length scales. In our discrete lat-
tice setting, this leads to a breakdown of the continuum
approximation [68].
This staggered accumulation of particles in alternat-

ing lattice sites, rather than being distributed smoothly
across the lattice, does not appear in analogous models
for directed transport of fermions or classical particles.
Since it arises from a purely dissipative process, this pat-
tern must also be distinguished from the formation of
standing waves in coherent channels [67]. It is thus a
unique consequence of bosonic bunching.

B. Stationary density pro�le

Let us now proceed with a more in-depth analysis of
the stationary density pro�le. In the steady state, the
current J is uniform across the lattice and we can use
Eq. (10) to relate the occupation numbers between neigh-
boring sites by

ΓAnpnp+1 + Γlnp+1 − Γrnp = J (19)

for all p. For a large enough lattice, L� 1, and p large,
the occupation numbers near the right reservoir approach
a constant value np ∼ np+1 = n∞, which is determined
by the �xed point of this equation. This leads to the
following general relation,

J = ΓAn∞(1 + n∞), (20)

between the stationary current and the asymptotic par-
ticle density. The boundary condition for the reservoir
on the right also gives us J = κr(n̄r −n∞), which allows
us to compute explicitly the asymptotic density,

n∞ =
1

2

√(
1 +

κr
ΓA

)2

+
4n̄rκr

ΓA
− 1

2

(
1 +

κr
ΓA

)
, (21)

and from it the stationary current J .

Note that both quantities are smooth functions of all
the system parameters and don't exhibit any sharp fea-
tures. For large n̄r we obtain n∞ ∼

√
n̄r and a current

J ≈ κrn̄r, which is limited by the in�ux of particles from
the right reservoir.

The left boundary condition imposes J = κr(n1− n̄r),
meaning that np 6= n∞ for small site numbers p. In
Appendix C we show in more details how the relation in
Eq. (19) can be used to determine the full density pro�le
np in the limit L→∞, which for Γl > Γr can be written
in the form

np − n∞
n1 − n∞

=

(
ΓS − c
ΓS + c

)p−1 1 +
(

ΓS−c
ΓS+c

)
µ

1 +
(

ΓS−c
ΓS+c

)p
µ
. (22)

Here, µ is a constant that depends on the properties of
the left reservoir, but its precise dependence is not im-
portant for the following discussion. In Eq. (22) we have
also introduced the parameter

c = ΓA

(
n∞ +

1

2

)
, (23)

which is the bosonically-enhanced speed of propagation.
Indeed, c is closely related to the speed of the shockwaves
discussed in connection with the Burgers' equation (12),
but determined by the self-adjusted, stationary density
n∞.

By looking at the �rst term on the right side of
Eq. (22), we see an exponential decay of the excess pop-
ulation, which can be re-expressed as

(
ΓS − c
ΓS + c

)p−1

=

{
e−

p−1
ξ for c < ΓS ,

e−( 1
ξ+iπ)(p−1) for c > ΓS .

(24)

Therefore, in both regimes, we can de�ne the character-
istic decay length

ξ =
1

log
∣∣∣ΓS+c

ΓS−c

∣∣∣ . (25)

As we increase ΓA or n̄r, ξ decreases, and goes to zero
for c = ΓS . This allows us to identify the critical value
of the hopping imbalance,

ΓcA
Γl

=
Γl + κr

Γl + κr(1 + n̄r)
, (26)

at which point ξ = 0 and the system changes between the
smooth and the zigzag boundary con�guration observed
above. Beyond this point, we acquire an extra phase π,
which explains the alternating occupation numbers for
values of ΓA > ΓcA. The full dependence of ξ on ΓA and
n̄r is plotted in Fig. 3, which clearly shows a sharp drop
to zero along the transition line ΓA = ΓcA.
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Figure 3. Dependence of the skin length ξ as de�ned in
Eq. (25) on the hopping asymmetry ΓA and on the thermal
population of the right reservoir, n̄r. When ΓA is exactly zero
(thick dark line at the bottom of the diagram), we recover
the usual di�usive behavior. The dashed line corresponds to
ΓA = Γc

A, at which point ξ = 0. Below (above) this line,
the steady-state population exhibits a smooth (zigzag) pro�le
near the left boundary. The inset shows ξ along the horizontal
green line at ΓA = 0.5Γl. For all points in this plot a value of
κr = Γl has been assumed, and the results are independent
of both n̄l and κl.

C. Nonlinear transport and the Fibonacci sequence

While the �rst term in Eq. (22) de�nes the character-
istic size of the boundary region, it is important to keep
in mind that the full density pro�le is not described by a
simple exponential decay. This deviation, represented by
the second term in Eq. (22), is due to the nonlinear nature
of transport arising from the bosonic particle statistics.
To obtain additional insights about this pro�le, we show
in Appendix C that the stationary occupation numbers
can be rewritten in the form

np = a
yp−1

yp
+ d, (27)

where the new quantities yp obey the recursion relation

yp+1 = ayp−1 + byp, (28)

with constants a = (JΓA − ΓlΓr)/Γ
2
A, b = 2ΓS/ΓA and

d = Γr/ΓA.
This reformulation shows that rather than being de-

scribed by an exponential decay, the mathematical struc-
ture of np is given by the ratio of successive coe�cients
of a generalized Fibonacci sequence de�ned by Eq. (28),
also known as a Lucas sequence. For example, in the
special case of Γr = 0 and a current J = Γl, we obtain
a = b = 1 and d = 0 and the populations np then oscil-

late toward n∞ = (1 +
√

5)/
√

2 in the same way that the
ratio of successive coe�cients of the Fibonacci sequence
oscillates towards the golden ratio.
This observation is not just a purely mathematical cu-

riosity, but a very generic feature of nonlinear transport.

Indeed, any transport model with a next-neighbor non-
linear recursion relation of the type αnpnp+1 + βnp +
γnp+1 = δ will lead to a density pro�le of the form given
in Eq. (27). By contrast, recursion relations of the type
βnp+γnp+1 = δ, as encountered in linear transport mod-
els, give rise to a simple exponential population pro�le.

III. BOUNDARY CONDENSATION

The strong bunching of the bosons in certain lattice
sites, as observed for ΓA > ΓcA, is somewhat similar to
the formation of a Bose-Einstein condensate, where at
low temperatures bosons tend to accumulate in a single
momentum mode. However, in our setting this e�ect is
observed under conditions where a large thermal current
passes through the system, and locally one would expect
a thermal distribution of particles instead. To resolve
these two con�icting physical pictures, we must go be-
yond mean-�eld theory and take a closer look at the full
particle number distributions and the coherence proper-
ties of our system.

A. Density �uctuations

To study e�ects beyond mean-�eld theory, we use nu-
merical simulations based on the TWA.Within the TWA,
the Wigner distribution is sampled by complex phase-
space variables αp that follow stochastic trajectories.
Symmetrically-ordered expectation values of the form
〈â†np âmq 〉sym are then approximated by the corresponding
stochastic averages 〈α∗np αmq 〉. We refer to Appendix B for
more details about this method. In Fig. 4 (a) we use the
TWA to evaluate the equal-time two-particle correlation
function

g(2)
p (0) =

〈â†pâ†pâpâp〉
〈â†pâp〉2

(29)

for each of the lattice sites, and once the system has
reached a steady state. The phase space plots below this
curve show the corresponding distributions of the αp, as
obtained from the individual trajectories in the numerical
simulation. These sample the Wigner distribution of that
site.
We see that, near the right reservoir, the value of this

correlation function is g(2)(0) ' 2, as expected for a ther-
mal state [69]. The corresponding Wigner distributions
are very close to a Gaussian distribution centered around
α = 0. Near the left boundary, however, g(2)(0) decreases
for all odd sites and approaches a value of g(2)(0) ≈ 1,
which indicates a coherent state. In this case the cor-
responding phase-space distribution has the shape of a
symmetric ring with a maximum at a �nite value of
|αp| ≈

√
np. In contrast, on all even sites the distribu-

tion remains Gaussian-like and centered around αp = 0,

although values of g(2)(0) > 2 indicate small deviations
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Figure 4. (a) Plot of the second-order correlation function

g(2)(0) for a lattice of L = 10 sites, as obtained from a TWA
simulation with 5000 trajectories. The phase-space distribu-
tions below each point indicate the distributions of the am-
plitudes αp, in the complex plane, at the �nal time of the
simulation. (b) Distributions of the values of |αp|2 and (c)

plots of the coherence function g(1)(τ) for odd (left) and even
(right) sites near the boundary. For all plots we have set
κ = Γl, Γr = 0, n̄r = 30 and n̄l = 0. For the plots in (c), we
have used a reference time of t = 10Γ−1

l , which is su�cient to
reach the steady state.

from an exact thermal distribution. This overall behav-
ior is further con�rmed by the probability distributions
P (|αp|2) plotted in Fig. 4 (b).

B. U(1) symmetry breaking and phase coherence

The ASIP describes a purely incoherent hopping pro-
cess. This means that the full master equation given
in Eq. (1) is diagonal in the number basis and it is in-
variant under the local U(1) symmetry transformations
âp → âpe

iφp . This symmetry is also clearly visible in
the phase-space plots in Fig. 4 (a), which are fully sym-
metric under rotation. However, the density operator ρ̂
only describes an ensemble average, while within a given
experimental realization the U(1) symmetry can still be
spontaneously broken.
To analyze potential symmetry-breaking e�ects in our

system, we are interested in how long information about

the phase in a given site is preserved. This is quanti�ed
by the coherence function

g(1)
p (τ) = lim

t→∞

〈â†p(t+ τ)âp(t)〉sym

〈â†p(t)âp(t)〉sym

. (30)

In Fig. 4 (c), we show the evolution of g
(1)
p (τ) as a func-

tion of the delay time τ . We see that for odd sites near
the left reservoir, this correlation function decays over a
timescale τcoh & 10Γ−1

l , which is multiple times longer
than the typical relaxation timescales in this system. In
contrast, for even sites, no such extended phase corre-
lation can be observed and the coherence vanishes on
timescales much faster than Γ−1

l . Note that we do not
observe any signi�cant cross-correlations between any of
the lattices sites, either.
To understand this emergence of coherence in more

details, we consider the totally asymmetric case, Γr = 0,
and also assume n̄l = 0 for simplicity. Under these as-
sumptions, the phase-space variable α1 of the �rst lattice
site obeys the stochastic equation (see Appendix B 2)

dα1 =
Γln2 − κl

2
α1dt+

√
κl + Γln2

2
dW, (31)

where dW is a Wiener process. For the current discussion
we have also adopted the convention n2 ≡ |α2|2 − 1/2
to be consistent with symmetrized expectation values,
〈â†pâp〉sym = np + 1/2 = 〈|αp|2〉, even on the level of a
single trajectory. Close to the steady state, the occupa-
tion number of the second site can be expressed in terms
of the recursion relation in Eq. (19) and approximated
by

n2(t) ' J/Γl
1 + n1(t)

. (32)

After reinserting this results into Eq. (31), we obtain a
closed di�usion equation for the variable α1, which is of
the form

dα1 =

(
J

|α1|2 + 1/2
− κl

)
α1

2
dt+

√
D(α1)dW. (33)

From the deterministic part of this equation, we see that
the nonlinear hopping process acts like an e�ective sat-
urable gain. For su�ciently large J , this leads to a
growth of the initial amplitude, which then saturates at a
value n1 = |α1|2−1/2 ∼ J/κl, consistent with the steady
state result obtained from the mean-�eld analysis in this
regime.
For J/κl � 1 and once the amplitude α1 has been am-

pli�ed to a large value, it can be approximately written
as α1(t) ' √n1e

iφ1(t), with a �xed n1 and a phase φ1(t)
that obeys

dφ1 '
√
κ2
l

2J
dW. (34)
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Figure 5. (a) Evolution of the Wigner distribution of site
p = 1, when the system is initially prepared in a symmetry-
broken state with |〈αp〉| =

√
3 and a random phase. The three

plots show the resulting phase-space distributions obtained in
a TWA simulation for times Γlt = 0, 2, 40 and for n̄r = 80.
On a short timescale, the initial displacement is ampli�ed,
while phase di�usion is observed over much longer times. (b)
Logarithmic plot of the ensemble-averaged amplitude of the
�rst site for the same initial conditions, but assuming di�erent
thermal occupation numbers of the right reservoir. After a
short ampli�cation, we observe an exponential decay of the
average amplitude due to phase di�usion. The dashed lines
represent the analytic prediction for this decay, as given in
Eq. (35). For all plots, Γl = κr, Γr = 0, L = 10 and n̄l = 0.

This phase di�usion equation predicts a decay of the
ensemble-averaged amplitude according to

|〈α1〉| ∝ e−t/τcoh , (35)

with a coherence time of τcoh = 4J/κ2
l ' 4n̄r/κl.

In Fig. 5 we consider a scenario in which the lattice is
initialized in a symmetry-broken state with each ampli-
tude αp(t = 0) slightly displaced in a random direction.
For this initial con�guration, the plots in Fig. 5 (a) show
the successive evolution of the Wigner distribution of site
p = 1. We clearly see that the small initial displacement
is quickly ampli�ed to its steady-state value, after which
the phase di�uses on a much longer timescale. Eventu-
ally, we recover the ring-shaped pro�le shown in Fig. 4
(a). In Fig. 5 (b) we plot the evolution of |〈α1〉| for dif-
ferent values of n̄r. The long-time decay of this quantity
agrees very well with the analytic prediction in Eq. (35).

C. Summary

In summary, the results presented in this section show
that the zigzag structure observed at the mean-�eld level
is consistent with the picture of an alternating lattice

of condensed and thermal-like bosonic states. Consis-
tently with other non-equilibrium condensation phenom-
ena or closely related lasing e�ects [11, 16, 22�25], the
Bose-condensed sites in our system are characterized by
a spontaneously broken U(1)-symmetry with a phase co-
herence time that is long compared to the typical re-
laxation timescales in this system. The most surprising
�nding in our setting is that this e�ect occurs only in
every other site near the boundary, while neighboring
sites and other parts of the lattice remain close to a ther-
mal state. This con�guration is speci�c to the current
transport scenario, where the stationary populations are
determined by the nonlinear recursion relations discussed
in Sec. II C, rather than by energetic considerations or an
external gain mechanism.
Note that condensation e�ects have also been discussed

for zero-range [70] and other attractive transport pro-
cesses [70, 71], where even on a periodic lattice all par-
ticles eventually accumulate in a single site. This is not
the case for the ASIP considered here, where for periodic
boundary conditions the system would simply evolve into
an in�nite-temperature state with all particle con�gura-
tions being equally likely. Therefore, the presence of a
boundary is essential to observe this type of condensa-
tion, which would not follow from an analysis of bulk
properties only.

IV. ASYMMETRIC BOSONIC TRANSPORT

AND THE HATANO-NELSON MODEL

As already pointed out in the introduction, the ac-
cumulation of particles near one end of the lattice in
a dissipative transport model shares many similarities
with the NHSE. This e�ect refers to the fact that the
eigenfunctions of certain non-Hermitian lattice Hamil-
tonians, which are extended over the whole lattice for
periodic boundary conditions, become exponentially lo-
calized when open boundary conditions are introduced.
A prominent example where this e�ect occurs is the
HNM [26], which, indeed, has originally been introduced
to describe directional transport of bosons. However,
in contrast to the full ASIP master equation consid-
ered here, the HNM is formulated in terms of a tight-
binding Hamiltonian with asymmetric tunnelling ampli-
tudes. Such a Hamiltonian is necessarily non-Hermitian,
meaning that it does not preserve probabilities, particle
numbers or operator commutation relations. Therefore,
despite a considerable interest in the spectral properties
of the HNM and related non-Hermitian Hamiltonians,
their relevance for actual quantum transport problems
often remains unclear.
While consistent embeddings of the HN Hamiltonian

into a proper master equation have been discussed [28,
34�36, 38, 40], these works have considered linear jump
operators, which describe particles being exchanged with
the environment. In this case, the evolution does not
obey a conservation relation with a well-de�ned current,
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and the connection to the original dissipative hopping
problem is lost. In the following we show instead how
an explicit connection between the HNM and the ASIP
transport problem can be established at the level of den-
sity �uctuations. This discussion complements the single-
particle analysis of Ref. [37], and provides a new interpre-
tation of the HNM at the level of a many-body transport
problem. It also reveals a surprising relation between the
dynamics of �uctuations and the stationary state of this
system.

A. The non-Hermitian skin e�ect

The HNM is the simplest model to study boundary
localization in non-Hermitian systems. It is described by
the lattice Hamiltonian

ĤHN = i
∑
p

Jlâ
†
pâp+1 − Jrâ†p+1âp =

∑
p,q

â†p(hHN)p,qâq,

(36)

where the âp represent non-interacting bosons or
fermions, whose dynamics is then fully described by the
tunneling matrix

hHN =



0 iJl 0 0 . . . −ixJr
−iJr 0 iJl 0 0 . . .

0 −iJr 0 iJl 0 . . .

0 0 −iJr 0 iJl . . .
...

...
...

. . .
. . .

. . .


. (37)

Here, x = 1 for periodic boundary conditions and x = 0
for an open chain. For Jr = Jl we recover the usual
tight-binding Hamiltonian with real-valued single parti-
cle eigenenergies, Ek = 2Jr sin(k). The corresponding
momentum eigenstates are extended over the whole lat-
tice, both for open and periodic boundary conditions.
For Jr 6= Jl, by contrast, the tunneling to the left and to

the right is no longer the same, and Ĥ†HN 6= ĤHN. Still,
when assuming periodic boundary conditions, the eigen-
functions of hHN remain plane waves, ψk(p) ∼ e−ikp,
where k ∈ [−π, π), but with a complex spectrum

Ek = (Jl + Jr) sin(k) + i(Jl − Jr) cos(k), (38)

which describes an ellipse in the complex plane. In con-
trast, for open boundary conditions, all eigenmodes are
exponentially localized near one end of the chain [72],

ψk(p) = (−i)p−1

(
Jr
Jl

) p−1
2

sin(pk), (39)

and are no longer orthogonal to each other. The corre-
sponding spectrum is given by

Ek = 2
√
JrJl cos(k). (40)

Thus, the spectrum changes from a closed loop to a line
in the complex plane (see Fig. 6 and the discussion be-
low). This transition from an extended to a localized set
of wavefunctions when changing from periodic to open
boundary conditions occurs in many other related lattice
models, and has been dubbed NHSE [26�40].
From Eq. (40) we see that when Jr and Jl have the

same sign, i.e., JrJl > 0, the single-particle energies
are real and therefore describe solutions that oscillate
in time. However, when JrJl < 0, the spectrum is purely
imaginary, i.e., it describes decaying or ampli�ed solu-
tions. These two regimes are separated by a so-called ex-
ceptional point (EP) at Jr = 0, where the Hamiltonian
of Eq. (36) becomes defective and cannot be diagonalized
anymore. Instead, the tunneling matrix adopts a Jordan
normal form

hHN = iJl



0 1 0 0 0 . . .

0 0 1 0 0 . . .

0 0 0 1 0 . . .

0 0 0 0 1 . . .
...
...
...
. . .

. . .
. . .


, (41)

which has only a single eigenmode with energy EEP = 0
and a wavefunction ψEP(p) = δp1, which is fully localized
on the �rst site. The other basis elements are so-called
generalized eigenvectors, i.e., they are transformed into
ψEP through the action of hHN. The NHSE and the pres-
ence of exceptional points have recently attracted a lot
of attention, in particular in connection with the classi�-
cation of topological properties of non-Hermitian lattice
systems [29, 32, 39, 41, 42].

B. Linearized boson transport

Let us now return to our mean-�eld model in Eq. (6)
and consider a situation where at some initial time t = 0
the whole lattice is prepared in a state with a �at density
distribution np(0) = n∞. For the successive evolution we
make the ansatz

np(t) = n∞ + εp(t), (42)

and assume that the �uctuations εp remain small com-
pared to n∞. This is justi�ed for short times and, more
generally, under the condition n̄r + n̄l ≈ 2n∞. We can
then linearize the mean-�eld equations of motion and ob-
tain

dεp
dt

= c(εp+1 − εp−1) + ΓS(εp+1 + εp−1 − 2εp)

+ [(c+ ΓS − κ) εp + κm̄] δp1 − (c− ΓS + κ) εpδpL, (43)

with m̄ = (n̄l + n̄r − 2n∞) and δij the Kronecker delta,
and we have set κl = κr = κ for simplicity.
To connect this result to the HNM discussed above,

we introduce the vectors ~ε = (ε1, .., εL)T and ~r(~ε) = (m̄−
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ε1, 0, . . . ,−εL)T , such that

d~ε

dt
= −ih~ε+ κ~r, (44)

with a non-Hermitian Hamiltonian

h = i



ΓS + c ΓS + c 0 0 . . .

ΓS − c 0 ΓS + c 0 . . .

0 ΓS − c 0 ΓS + c . . .

0 0 ΓS − c 0 . . .
...

...
...

. . .
. . .


− 2iΓS1.

(45)

Therefore, ignoring the coupling to the reservoirs for now,
i.e. κ → 0, we see that the density �uctuations εp obey
an e�ective Schrödinger equation with a non-Hermitian
Hamiltonian h, which, by identifying Jr ↔ c − ΓS and
Jl ↔ c + ΓS , is very similar but not identical to hHN.
In particular, the diagonal elements of h are shifted by a
constant imaginary part −2iΓS and, compared to hHN,
there is an additional term c + ΓS in the �rst entry of
h. The �rst change merely shifts all the eigenenergies
in the complex plane towards negative imaginary values,
enforcing stable dynamics. The second change, as we will
see, arises from the boundary conditions.

C. Neumann boundary conditions and the steady

state

To understand the di�erences between h and hHN, we
emphasize that the dynamics of the �uctuations εp in
Eq. (43) can still be written as a continuity equation,

dεp
dt

= jp,p+1 − jp−1,p, (46)

with currents

jp,p+1 = (ΓS + c) εp+1 − (ΓS − c) εp. (47)

This set of currents, ~j = (j1,2, j2,3, . . . )
T , then obeys the

equation of motion

d~j

dt
= −i[hHN − 2iΓS1]~j. (48)

We see that, up to a global shift, it is the dynamics of cur-
rent �uctuations that is governed by the non-Hermitian
lattice Hamiltonian hHN with Dirichlet boundary condi-
tions

j0,1 = 0. (49)

In other words, the linearized dynamics in our system
is indeed governed by the HNM, but imposing Neumann

boundary conditions for the density �uctuations εp. This

is physically consistent with the assumption κ = 0 made
in this analysis.
This subtle change in the boundary conditions has an

important consequence for the spectrum of h, namely the
existence of a steady state. More precisely, in Appendix
D we show that

Spec{h}L = Spec{hHN − 2iΓS}L−1 ∪ {Ess = 0}, (50)

where Spec{A}L is the spectrum of matrix A in L dimen-
sions. This means, �rst of all, that the spectrum of den-
sity �uctuations in the ASIP model shares all the spectral
features of the HNM, which we discussed in Sec. IVA
above. In addition, there exists a unique steady state
with Ess = 0 and a wavefunction

ψss(p) =

(
ΓS − c
ΓS + c

)p−1

. (51)

Up to nonlinear corrections, which have been omitted in
the current analysis, this wavefunction agrees with the
stationary density pro�le derived in Eq. (22). Note that
the existence and the shape of this steady state does not
change when the coupling to the reservoirs is no longer
neglected, since the term ∼ κ(ε1− m̄) in Eq. (43) merely
�xes the magnitude of the �uctuation at the �rst site and
εL ∼ ψss(L)→ 0.

D. Discussion

In Fig. 6, we plot the eigenvalues of hHN − 2iΓS , for
Dirichlet and periodic boundary conditions, and compare
them with the spectrum of h. These plots con�rm that
the eigenvalue structure of h mimics that of the shifted
HNM, except for the existence of a steady state with
Ess = 0. For open lattices, the non-zero eigenvalues co-
alesce near c = ΓS , which corresponds to the (L − 1)-th
order exceptional point EP for Jr = 0 in the HNM. By
contrast, the steady-state mode remains well isolated and
pinned at the origin. The explicit form of the steady-
state solution in Eq. (51) con�rms that this exceptional
point coincides with the transition point into the zigzag
phase in the full ASIP master equation. Hence, we have
found a situation in which an EP for the higher-energy

modes is directly connected with an observable con�gu-
ration change in the steady-state.
In Ref. [37], this exponentially localized steady-state

was also obtained, but only in the 'smooth' phase, by
considering the full spectrum of the hopping Liouvillian
Lhop restricted to the single-particle subspace. For a sin-
gle boson, there are no nonlinearities, which corresponds
to the limit n∞ → 0 and c = ΓA/2. In this case, even
in the fully asymmetric limit, Γr → 0, the EP can be
approached, but not crossed. A closely related analysis
has also been performed for generalizations of the HNM
with purely linear jump operators [36]. Here, the many-
body stationary states for bosons and fermions exhibit an
accumulation of particles near one boundary, but these
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Figure 6. Complex spectrum of shifted HNM, h̃HN = hHN −
2iΓS1, for di�erent boundary conditions. The green squares
(`periodic') and the blue dots (`Dirichlet') represent the eigen-

values of h̃HN on a lattice of L = 19 sites with periodic and
open boundary conditions, respectively. The red triangles
(`Neumann') are the eigenvalues of h as given in Eq. (45) for
a lattice of L = 20 sites. The four lower panels show the
complex spectra of these Hamiltonians for di�erent values of
c, increasing counter-clockwise. The spectrum of h coincides
with the one of h̃HN, plus the isolated steady-state at the
origin. The two insets at the top depict the shape of the
steady-state eigenmode ψss before and after crossing the EP
at a value of c = ΓS . These results show that the transition
into the zigzag structure of the steady state of h coincides
with the EP for its higher-energy modes.

features are rather broad and the direct connection to the
NHSE has not been found there. We conclude that while
many of these models show formally similar excitation
spectra, the crossing of the EP and the transition into
the zigzag phase is related to the nonlinearity of the un-
derlying transport equations, which allows us to ful�ll the
condition c > ΓS through a bosonically enhanced propa-
gation speed. At the same time, while being a many-body
e�ect, for Γr → 0 the zigzag pattern can already be ob-
served deep in the quantum regime, i.e., for an average
density of n∞ < 1 (see Fig. B 3).

The correspondence between the EP in the �uctua-
tion dynamics and the transition in the stationary den-
sity pro�le is actually quite surprising. Naively one
would expect that the EP, which occurs at an imagi-
nary o�set of −2iΓS , mainly in�uences the transient dy-
namics of decaying �uctuation modes. Instead, it sig-
ni�es a sharp transition in the stationary �uctuation

mode, which remains spectrally well isolated from the EP.
This is in stark contrast to what is usually assumed for
non-equilibrium phase transitions in dissipative systems,
where the phase transition point coincides with a closure
of the dissipative gap [43, 44]. The origin of this paradox-
ical situation can be traced back to the conservation of
�uctuations, which, when decaying in site p, reappear in
site p− 1. Fluctuations thus propagate across the chain,
and fully decay only when they reach the edge. There-
fore, while near the EP there is only a single eigenvalue
that sets the timescale of the dynamics, it can still take
a (diverging) time τrelax ∝ L for the system to fully re-
lax (see also Refs. [33, 37, 40]), which corresponds to the
time required for the excitations to propagate along the
chain. This distinguishes the analysis of such transport
transitions from other non-equilibrium phase transitions
in unbiased systems.

V. SUMMARY AND CONCLUSIONS

In summary, we have studied the dissipative thermal
transport of bosons through a lattice with asymmetric
hopping rates, as described by the ASIP. Compared to
analogous models for fermions or distinguishable parti-
cles, dissipative transport of bosons is characterized by
hopping events that are accelerated by the presence of
other particles. Our analysis showed that despite the
simplicity of this process and without including any ad-
ditional coherent interactions, this bosonic enhancement
already gives rise to a highly non-standard transport phe-
nomenology including ballistic currents, the formation
of a boundary region with coexisting thermal and Bose-
condensed sites, as well as the spontaneous development
of coherence in a purely dissipative system.
In contrast to other condensation mechanisms that

have been investigated for various (classical) inclusion
processes [70, 71], the predicted transition for bosonic
transport relies on the presence of a boundary and would
be absent in an in�nite or periodic lattice. This cre-
ates a natural connection to the HNM and related non-
Hermitian lattice models, which we discussed in full de-
tails in Sec. IV. This analysis establishes a direct cor-
respondence between the EP in the complex excitation
spectrum of the HNM and the transition point in the
stationary density pro�le of the ASIP. It also shows that,
while closely related to the NHSE, the formation of the
zigzag phase is a genuine many-body e�ect that does not
appear for single-particle or linear transport models.
In conclusion, this bosonic skin e�ect creates an in-

teresting connection between transport physics, non-
equilibrium phase transitions and non-Hermitian physics.
For highly asymmetric hopping rates, which can be engi-
neered, for example, for cold atoms in optical lattices, the
predicted zigzag phase is already observable at the level
of a few atoms. Instead, in nanophotonic lattices for
optical photons or exciton polaritons, where one might
only achieve a small, temperature-induced bias, the nec-
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essary condition c ∼ ΓS can still be reached by assum-
ing pumped reservoirs with a considerably higher den-
sity. Therefore, since the main features associated with
this transition are rather robust with respect to the de-
tails of the model, they should be observable in a variety
of bosonic lattice systems, whenever hopping is predom-
inantely incoherent.
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Appendix A: Derivation of the transport master

equation

In this section, we outline the derivation of the ASIP
master equation in Eq. (1) for the case of a tilted lattice
potential, where the bosons in each site are coupled to
a bath of localized phonon modes. The Hamiltonian for
this system can be written as

Ĥ = −ta
L−1∑
p=1

(â†p+1âp + â†pâp+1) +

L∑
p=1

pUâ†pâp + Ĥphon,

(A1)
where ta is the tunneling amplitude and U is the energy
o�set between two sites. The third term, Ĥphon, accounts
for the presence of the phononic bath, and we assume it
to be of the form

Ĥphon =

∫ ∞
0

dω
[
ωb̂†p,ω b̂p,ω + g(ω)â†pâp(b̂p,ω + b̂†p,ω)

]
.

(A2)
Here, the �rst part is the energy of the phononic modes

with annihilation (creation) operators b̂p,ω (b̂†p,ω) satis-

fying [b̂p,ω, b̂
†
q,ω′ ] = δpqδ(ω − ω′), and the second part

describes a phonon-induced shift of each lattice site with
some smooth coupling function g(ω).
In the limit U � ta, coherent tunneling between neigh-

boring sites is energetically suppressed and we can diag-
onalize the bare lattice Hamiltonian to lowest order in
ε = ta/U . We do so by introducing the new bosonic
operators

ĉp = âp + ε(âp+1 − âp−1) +O(ε2), (A3)

and write the full Hamiltonian as

Ĥ '
∑
p

pUĉ†pĉp +

∫ ∞
0

dω ωb̂†p,ω b̂p,ω + Ĥint. (A4)

To understand the e�ect of the remaining interaction
term, Ĥint, we move to the interaction picture and de�ne

x̂p(t) =

∫ ∞
0

dω g(ω)
(
b̂p,ωe

−iωt + b̂†p,ωe
iωt
)
. (A5)

Then,

Ĥint(t) =
∑
p

x̂p(t)
{
ĉ†pĉp + εV̂ (t) +O(ε2)

}
, (A6)

with

V̂ (t) =
(
ĉ†p−1ĉp − ĉ†pĉp+1

)
e−iUt + H.c. (A7)

We see that to zeroth-order in ε, we only obtain an o�-
resonant energy shift ĉ†pĉp, which does not change the site
occupation numbers and only leads to dephasing e�ects
that depend on the bath spectral density at ω ≈ 0. To
�rst order in ε we obtain a phonon-mediated hopping
term, similar to Eq. (4).
After making a rotating wave approximation and keep-

ing only the resonant terms in Eq. (A6), we can eliminate
the bath degrees of freedom and derive a master equation
for the lattice bosons only. It is given by

dρ̂

dt
' (Ldeph + Lhop) ρ̂, (A8)

where

Ldeph =
∑
p

ΓΦD[n̂p] (A9)

is a pure dephasing term and

Lhop = ΓlD[ĉ†p−1ĉp − ĉ†pĉp+1] + ΓrD[ĉ†p−1ĉp − ĉ†pĉp+1]

(A10)
accounts for the incoherent, phonon-mediated hopping
between neighboring sites. In these expressions, ΓΦ =
Cxx(0) and

Γl = ε2Cxx(U), Γr = ε2Cxx(−U), (A11)

where

Cxx(ω) =

∫ ∞
0

dseiωs〈x̂(t)x̂(t− s)〉 (A12)

is the correlation spectrum of the phonon bath. When
the bath is in a thermal state with temperature Tphon,
we obtain

Cxx(ω)

Cxx(−ω)
= e~ω/(kBTphon), (A13)

which leads to the relation between the hopping rates
given in Eq. (5). Note that in Eq. (A8) we have omitted
additional cross-site dephasing terms, which scale as ∼
ε2ΓΦ and can therefore be neglected compared to Ldeph.
Due to the simple structure of the bath considered in

this model, Eq. (A10) still contains cross-terms of the
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form (ĉp−1ĉ
†
p)ρ̂(ĉp+1ĉ

†
p), which involve the coherences of

the density matrix. These coherences, however, will be
washed out under the in�uence of Ldeph or any additional
dephasing terms that might appear in a more realistic
setting. We emphasize that the presence of such dephas-
ing terms has no in�uence on the population dynamics,
the particle currents or the stationary density pro�les in-
vestigated in this work. Therefore, we conclude that the
master equation given in Eq. (1) is indeed a rather generic
model to study dissipative bosonic transport. Note that
this does not apply to the coherence functions evaluated
in Sec. III, which are sensitive to ΓΦ and thus to speci�c
details of the environment.

Appendix B: Numerical methods

1. Low density regime: Monte-Carlo simulations

In the absence of any additional Hamiltonian terms,
the master equation in Eq. (1) is diagonal in the Fock
basis |{~n}〉 = |n1, n2.., nL〉. The con�guration is encoded
by the vector ~n = (n1, .., nL)T , where the np denote the
number of bosons in each site. Therefore, we can restrict
our analysis to the diagonal elements of the density op-
erator, P ({~n}, t) = 〈{~n}|ρ̂(t)|{~n}〉, which describe the
probabilities of di�erent particle con�gurations. These
probabilities evolve as

Ṗ =Γl
∑
p

np(1 + np+1)P ({~n+ ~δp,p+1})− (1 + np)np+1P

+Γr
∑
p

np+1(1 + np)P ({~n− ~δp,p+1})− np(1 + np+1)P

+κl

{
n̄ln1P ({~n− ~ε1}) + (n̄l + 1)(n1 + 1)P ({~n+ ~ε1})

− [n̄l(1 + n1) + (n̄l + 1)n1]P
}

+ (l↔ r),

where the last term is obtained by doing the substi-
tution (l ↔ r), ~ε1 ↔ ~εL, and n1 ↔ nL. Here, εjp = δpj ,
~δp,p+1 = ~εp+1−~εp, we used a short notation P = P ({~n}),
and omitted time dependence to lighten the notations.
Due to the exponentially growing con�guration space,

the exact dynamics of P ({np}, t) can only be calculated
for very small lattices and low occupation numbers. In-
stead, for larger lattices we sample the probability dis-
tribution via a Monte-Carlo simulation. To do so, the
boson numbers np(t) for each site are treated as stochas-
tic variables, which during an in�nitesimal time step dt
evolve according to

dnp = dN l
p − dN l

p−1 + dNr
p−1 − dNr

p . (B1)

Here, the dN l,r
p = 0, 1 are independent random variables

and indicate that a boson has hopped to the left (right)
when dN l

p = 1 (dNr
p = 1). The probabilities for these

events are

p(dN l
p = 1) = Γlnp+1(1 + np)dt, (B2)

p(dNr
p = 1) = Γr(1 + np+1)npdt, (B3)

and p(dN i
p = 0) = 1 − p(dN i

p = 1). By starting from
a given initial con�guration, {np(t = 0)}, and evolving
a total number of Nt stochastic trajectories in time, we
can approximate the expectation value of any function of
operators n̂p by an ensemble average. For example,

〈n̂pn̂q〉(t) '
1

Nt

Nt∑
i=1

np(t)nq(t) =: 〈np(t)nq(t)〉. (B4)

This method becomes exact in the limit Nt → ∞,
and therefore also accounts for cross-site correlations,
Cpq(t) = 〈n̂pn̂q〉(t) − 〈n̂p〉(t)〈n̂q〉(t), which are neglected
in mean-�eld theory. It cannot, however, be used to pre-
dict quantities such as cross-site coherences of the form
〈â†pâp+1〉, because those involve o�-diagonal elements of
the density matrix. Furthermore, this method is lim-
ited to low average occupation numbers, since otherwise
the rate of jumps, and therefore also the total simulation
time, increases signi�cantly.

2. High density regime: Truncated Wigner

Approximation

The TWA is a technique for simulating the dynamics
of bosons in phase space, which is spanned by complex
amplitudes αp and α∗p de�ned on each site p. The state
of the full lattice is then fully described by a multi-mode
Wigner distribution W ({αp}, t) on this space and expec-
tation values of symmetrically-ordered operator products
can be obtained from the moments of this function. For
example,

〈â†np âmq 〉sym =

∫
d2Lα (α∗p)

nαmq W ({αp}). (B5)

To obtain the equation of motion forW ({αp}) we use the
substitutions [54]

â†pρ̂→
(
α∗p −

1

2
∂αp

)
W, âpρ̂→

(
αp +

1

2
∂α∗p

)
W,

etc., to convert the master equation (1) for the density
operator into a partial di�erential equation for W . To
illustrate this approach, let us consider only a single term,
dρ̂
dt = ΓlD[â†1â2]ρ̂, which translates into

∂W

∂t
=

Γl
2

{
∂1

(α1

2
− α1|α2|2

)
+ ∂2

(α2

2
+ α2|α1|2

)
+∂∗1∂1

(
|α2|2

2
− 1

4

)
+ ∂2∂

∗
2

(
|α1|2

2
+

1

4

)
−∂1∂2α1α2 +

1

4
∂1∂
∗
1∂2α2 −

1

4
∂2∂
∗
2∂1α1 + c.c.

}
W,

(B6)
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where we have used the short-hand notation ∂i = ∂αi ,
and ∂∗i = ∂α∗i . Note that the same equation was de-
rived in [73], where the two bosonic modes represented
Schwinger bosons describing a d-level system.

The TWA consists in neglecting in this equation all
third-order derivatives. This approximation is expected
to be accurate when the number of bosons in the chain is
high (see [54, 74] for a more detailed discussion). Hence,
this method provides a complementary treatment to the
one presented in the previous section. After we per-
formed the TWA, we obtain a Fokker-Planck equation,

governed by a drift vector ~A and a di�usion matrix D,

∂W

∂t
= −∂λ(AλW ) +

1

2
∂λ∂

∗
µ(DλµW ), (B7)

where we have used Einstein's sum convention and the
2L greek indices run over all αp and α

∗
p.

For the example given in Eq. (B6) above, the corre-
sponding di�usion matrix is given by

D =
Γl
2


|α2|2 −α1α2 0 0

−α∗1α∗2 |α1|2 0 0

0 0 |α2|2 −α∗1α∗2
0 0 −α1α2 |α1|2

 ,

where we have ordered the four independent variables as
(α1,α

∗
2,α
∗
1,α2). We have also omitted the constant terms

±1/4, which cancel when adding the contributions from
all lattice sites, expect at the boundaries. For any other

site, the di�usion matrix is positive semi-de�nite and can
therefore be written as D = BB† with

B =

√
Γl
4


α2 −α2 0 0

−α∗1 α∗1 0 0

0 0 α∗2 −α∗2
0 0 −α1 α1

 .

Therefore, it is possible to unravel the Fokker-Planck
equation in terms of stochastic trajectories in phase
space, which follow the (Ito) equations

d~αλ = ~Aλdt+
∑
ν

Bλµd ~Wµ. (B8)

Here, ~W = (W1,W
∗
2 ,W

∗
1 ,W2), where the dWi are

complex-valued Wiener processes satisfying 〈dWidW
∗
i 〉 =

1 and 〈dWidWi〉 = 〈dWi〉 = 0. By de�ning dV =

(dW1 − dW ∗2 )/
√

2, we can write the stochastic equations
as

dα1 =
Γl
2
α1

(
|α2|2−

1

2

)
dt+

√
Γl
2
α2dV,

dα2 = −Γl
2
α2

(
|α1|2+

1

2

)
dt−

√
Γl
2
α1dV

∗.

This derivation can be generalized in a straightforward
manner to all lattice sites and including the hopping to
the right and the coupling to the reservoirs. Altogether
we end up with the following set of stochastic di�erential
equations

dαp =
ΓA
2
αp
(
|αp+1|2 − |αp−1|2

)
dt− ΓSαpdt+

√
ΓS

(
αp+1dVp − αp−1dV

∗
p−1

)
, (B9)

dα1 =
ΓA
2
α1|α2|2dt−

ΓS
2
α1dt+

√
ΓSα2dV1 −

κl
2
α1dt+

√
κl
2

(2n̄l + 1)− ΓA
4
dVl,

dαL = −ΓA
2
αL|αL−1|2dt−

ΓS
2
αLdt−

√
ΓSαL−1dV

∗
L−1 −

κr
2
αLdt+

√
κr
2

(2n̄r + 1) +
ΓA
4
dVr,

where all the dVi are independent complex Wiener pro-
cesses.

Note that in the equation for α1, the di�usion rate in
the last term can become negative, when the coupling to
the left reservoirs is too weak. This problem does not
occur in any of the presented results, where we assume
κl = Γl. In this case, the noise processes ∼ dV1 and ∼ dVl
can be combined in a single stochastic process, and for
Γr = n̄l = 0 we obtain Eq. (31).

3. Benchmarking the mean-�eld approximation

In Fig. B 3, we compare the results obtained with these
two numerical methods with the predictions from mean-
�eld theory in the limits of low and high occupation num-
bers. These plots show that all the features in the station-
ary density pro�le discussed in the main text are accu-
rately reproduced by both methods, within their respec-
tive range of applicability. In particular, the exact results
from the Monte-Carlo simulations demonstrate that the
predicted density patterns are already visible in parame-
ter regimes where there is on average less than one boson
per site. We also �nd that the mean-�eld prediction for
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Figure 7. Top row: Comparison between the steady-state
populations as predicted by mean-�eld (MF) theory and by
the TWA, for n̄r = 10 and for Γr/Γl = 0.95 (left) and Γr = 0
(right). Bottom row: Comparison between the steady-state
populations as predicted by mean-�eld theory and by exact
Monte-Carlo (MC) simulations, for n̄r = 1 and Γr/Γl = 0.5
(left) and Γr = 0 (right). For these results we simulated
5× 103 trajectories for the TWA and 5× 105 trajectories for
the Monte-Carlo method. For all plots, κr = κl = Γl, n̄l = 0,
and L = 10.

the transition point ΓcA is well reproduced by both meth-
ods (not shown here).

Appendix C: Derivation of the stationary density

pro�le

In this section we provide additional details about the
derivation of the steady-state occupation numbers np
within the mean-�eld approximation. The starting point
for this derivation is Eq. (19), which for L→∞ already
determines the relation between the current J and the
asymptotic occupation number n∞, as given in Eq. (20).
To solve the full recursion relation, we �rst introduce a
new variable vp = np − Γr/ΓA, which obeys

vp+1 =
a

vp + b
(C1)

with a = (JΓA − ΓlΓr)/ΓA
2 and b = 2ΓS/ΓA. In a next

step, we make the ansatz vp = ayp−1/yp to obtain a new
sequence of numbers yp, which satisfy

yp+1 = ayp−1 + byp. (C2)

Hence, the yp are given by a generalization of the Fi-
bonacci sequence (known as the Lucas sequence). We
can express the elements of this sequence as

yp = αφp+ + βφp−, (C3)

where the constants α and β depend on the initial con-
dition and

φ± =
b±
√
b2 + 4a

2
=

1

ΓA
(ΓS ± c) (C4)

with c = ΓA(1+2n∞)/2. To obtain this last equality, we
used the boundary condition J = ΓAn∞(1 + n∞), from

which it follows that
√

4a+ b2 = 2n∞ + 1. Therefore, in
terms of these quantities, we obtain a general expression
for the mean occupation number of each site,

np = a
αφp−1

+ + βφp−1
−

αφp+ + βφp−
+

Γr
ΓA

=

(
n∞ −

Γr
ΓA

) 1 +
(

ΓS−c
ΓS+c

)p−1

µ

1 +
(

ΓS−c
ΓS+c

)p
µ

+
Γr
ΓA

, (C5)

where µ = β/α. By rewriting the above result in terms of
the ratio (np − n∞)/(n1 − n∞) we obtain Eq. (22), from
which the decay of the zigzag structure becomes more
obvious.
At this point, the parameters n∞ and µ are still un-

known and must be determined by the boundary condi-
tions. Since in the steady-state the current is constant
we obtain

J = κl(n1 − n̄l) = κr(n̄r − nL) = ΓAn∞(1 + n∞).

In the limit of a large lattice, we can set nL = n∞, which
gives us a quadratic equation for n∞,

ΓAn
2
∞ + (ΓA + κr)n∞ = κrn̄r,

with a solution displayed in Eq. (21). Finally, from the
current into the left reservoir and the result for np=1 in
Eq. (C5) we can determine the value of µ. For n̄l = 0
and Γr = 0, its explicit expression is

µ =

(
ΓS + c

ΓS − c

)
2n∞ − n̄r
n̄r − n∞

.

In the most general case, its precise functional depen-
dence on all the system parameters is complicated and of
limited interest.

Appendix D: Eigenstates of HNM with Neumann

boundary conditions

In this appendix we derive the relation between the
spectra of hHN and h, which correspond to the HNM
with Dirichlet and Neumann boundary conditions, re-
spectively. An alternative derivation, and further re-
sults on these kinds of matrices, can be found in [72].
We introduce here the L-dimensional current vector
~j = (j0,1, j1,2, j2,3, ...)

T , which includes the component
j0,1 = 0. Then, according to Eq. (47), we obtain the
linear relation

~j = V~ε (D1)
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between current and density �uctuations, where

V =



0 0 0 0 . . .

c− ΓS ΓS + c 0 0 . . .

0 c− ΓS ΓS + c 0 . . .

0 0 c− ΓS ΓS + c
. . .

...
...

...
. . .

. . .


. (D2)

By comparing Eq. (D1) with the continuity equa-
tion (46), we �nd that

h = i∇V, (D3)

where ∇ with ∇ij = δij−1 − δij is the discrete gradient.
It follows that

d~j

dt
= −i(iV∇)~j, (D4)

where the e�ective Hamiltonian for the current is of the
form

iV∇ =


0 0 0 . . .

c− ΓS

0
...

hHN − 2iΓS

 . (D5)

This is the result given in Eq. (48), but with the j0,1
component included.

Let us now consider a vector ~Φk = (0, ~ψk)T , where
~ψk is an eigenmode of hHN for L − 1, with energy EHN

k .
Then, from Eq. (D4) it follows that

iV∇~Φk = (EHN
k − 2iΓS)~Φk, (D6)

and, after multiplying both sides by ∇,

i∇V (∇~Φk) = h(∇~Φk) = (EHN
k − 2iΓS)∇~Φk. (D7)

This means that for each of the L−1 eigenfunctions ~ψk of
hHN we obtain an eigenvector of h, with a modefunction

∇~Φk, and eigenenergy Ek = EHN
k −2iΓS . Moreover, since

det(V ) = 0, there is one additional eigenstate ψss with
energy Ess = 0, which satis�es V ψss = hψss = 0. It is
straightfoward to check that this eigenstate is of the form
given in Eq. (51). Putting these two sets of eigenstates
together, we �nally obtain the result of Eq. (50).
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