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Abstract

The exponential function maps the imaginary axis to the unit circle and, for many appli-
cations, this unitarity property is also desirable from its approximations. We show that this
property is conserved not only by the (k, k)-rational barycentric interpolant of the exponential
on the imaginary axis, but also by (k, k)-rational barycentric approximants that minimize a
linearized approximation error. These results are a consequence of certain properties of singu-
lar vectors of Loewner-type matrices associated to linearized approximation errors. Prominent
representatives of this class are rational approximants computed by the adaptive Antoulas–
Anderson (AAA) method and the AAA–Lawson method. Our results also lead to a modified
procedure with improved numerical stability of the unitarity property and reduced computa-
tional cost.

Keywords: exponential, unitary, rational approximation, barycentric formula, Loewner matrix, AAA
algorithm, AAA–Lawson algorithm
2020 MSC: 15A23 41A20 65D15

1 Introduction
Polynomial and rational approximations to functions have a wide range of applications [Tre19]. Ra-
tional approximations have some advantages compared to polynomial approximation [Sal81, SW86,
Ber88], two main strengths being strong performance for approximating functions near singularities
and on unbounded domains [Tre19].

In the present work we are concerned with (k, k)-rational approximants to the imaginary expo-
nential,

r(x) =
p(x)

q(x)
≈ eix, x ∈ I ⊂ R, (1.1)

where I is a bounded interval in R, and p(x) and q(x) are complex polynomials of degree k each.
This is closely related to the time integration of ordinary differential equations (ODEs), and different
approximations to the exponential function yield different numerical methods for time integration.
In this context, boundedness of the underlying rational function on a specific subset of the complex
plane results in stable numerical integrators [HW02].

In particular, in context of the application specified in (1.1), i.e. the approximation of the expo-
nential function on an interval on the imaginary axis, the main advantage of rational approximation
over polynomial approximation is that there exist rational approximants that satisfy the unitarity
property,

|r(x)| = 1, x ∈ R. (?)

Unitarity of the rational approximants to the imaginary exponential has strong benefits for ODEs
with a skew-Hermitian structure [HLW06]. The requirement for unitarity (?) often arises in the
context of equations of quantum mechanics [Lub08, Fao12], for instance.
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Figure 1: This figure shows the error in two different rational approximations to the imaginary
exponential. The error of the diagonal Padé approximant of degree 13 is marked by the symbol (×),
while the symbols (◦) mark the error of a rational approximant generated by the AAA–Lawson
method. Namely, the AAA–Lawson method is applied to approximate the imaginary exponential
on the interval [−13.9, 13.9] using a (13, 13)-rational function. The error of the AAA–Lawson method
is less than 10−12 uniformly on the interval, and this error bound is illustrated by a dashed line.

An important class of (k, k)-rational approximants which satisfy the unitarity property (?) are
(diagonal) Padé approximants [BGM96]. Padé approximants have a high order of accuracy around
the origin. However, being Taylor based and thus asymptotic in nature, they prove inadequate when
a more uniform accuracy over the interval I in (1.1) is desired, or other interpolation properties
have to be satisfied.

A more flexible approximation is provided by rational fitting algorithms such as the adaptive
Antoulas–Anderson (AAA) method [NST18] and the AAA–Lawson method [NT20], which can pro-
vide more accuracy over a relevant interval I (or a discrete set of points) than a diagonal Padé
approximant of the same degree. For instance, in Figure 1 we find that a (13, 13)-rational approx-
imant produced by the AAA–Lawson algorithm provides uniformly high accuracy (< 10−12) over
the interval of interest. While the diagonal Padé approximant of degree 13 has a very high accuracy
in the neighborhood of x = 0, its accuracy towards the extremes of the interval is substantially
lower (roughly 10−5 near x = −13.9, for instance).

In the present paper, we consider (k, k)-rational approximants in barycentric rational represen-
tation of three types:

(i) rational interpolants of eix at exactly 2k + 1 nodes,

(ii) rational approximants of eix that interpolate eix at k + 1 support nodes and minimize a lin-
earized error at a larger number of so called test nodes, and

(iii) non-interpolatory rational approximants of eix that minimize a linearized error at test nodes.

In particular, rational approximants produced by the AAA algorithms fall under type (ii). AAA
can also generate approximants with uniform accuracy over an interval I by adaptively choosing

2



(test and support) nodes. Rational approximants generated by the AAA–Lawson algorithm fall
under type (iii). The AAA–Lawson algorithm further increases the accuracy of the approximant
generated by AAA by iteratively solving re-weighted least-squares problems. Using a barycentric
rational representation for the rational approximation yields two benefits. The first advantage of
this representation is strong stability properties [FNTB18, Subsection 2.3]. The other advantage
is that the rational approximants of types (i)-(iii) can be found by computing a singular value
decomposition of a Loewner matrix [Bel70, Ber00] or an expanded Loewner matrix [NT20].

We show that, while being much more flexible, rational approximants of the type (i)–(iii) share
an important property with diagonal Padé approximants: Unitarity (?), which is highly desirable
for applications. In contrast, while the rkfit procedure [BG15] can produce rational approximants
with an accuracy comparable to the AAA and AAA–Lawson methods, the approximants generated
by rkfit are not unitary in general. This makes AAA and AAA–Lawson methods better suited to
applications in (1.1).

Outline of the paper. In Section 2 we recall barycentric rational representations and show, in
Proposition 1, that rational interpolants that interpolate eix at a maximal number of distinct nodes
– i.e., of type (i) above – are unitary.

In Section 3, we consider an interpolatory barycentric representation, and express a linearized
error in terms of a Loewner matrix. In Subsection 3.1, we consider the case where the linearized
error is zero. This corresponds to barycentric rational interpolation which falls under type (i), and
consequently, unitarity follows from Proposition 1.

The remaining manuscript is concerned with types (ii) and (iii) – i.e., rational approximants that
minimize a linearized error. In Subsection 3.2, we consider interpolatory barycentric approximants
of type (ii). Specifically, the approximants generated by the AAA method fall in this class. In
Proposition 3, Subsection 3.3, we show that approximants in this class are unitary. These results
are generalized to the case of a weighted linearized error in Subsection 3.4. In Section 4 we consider
approximants in a non-interpolatory barycentric representation – i.e., type (iii) – as used in the
AAA–Lawson method. Unitarity for such approximants is shown in Proposition 5.

Despite the theoretical unitarity of rational approximants of types (ii) and (iii), due to the finite
precision of computer arithmetic, in practice these approximants tend to deviate significantly from
unitarity away from the domain of approximation (see Figure 2). To remedy this situation, we
describe a slight modification to the original AAA and AAA–Lawson algorithms in Section 5. In
particular, our approach replaces complex SVD with real SVD, reducing computational cost, and
we resort to a Cayley representation, expressing the numerator as the complex conjugate of the
denominator. In particular, as illustrated in Figure 2, the modified algorithms, Algorithm 1 and 2,
show unitarity at machine precision even away from the domain of approximation.

In Section 6 we briefly sketch the AAA and AAA–Lawson method to illustrate that unitarity
indeed holds for approximants generated by these methods. The unitarity results presented in the
present paper are based on certain properties of singular vectors of Loewner-type matrices, which
are derived in Appendix A.

2 Barycentric rational representation
In the present work we consider rational approximations to the imaginary exponential function. In
particular, we make use of barycentric rational representations of rational functions. Approximants
in the representations (2.1) and (2.5) below are topic of Section 3 and 4, respectively.

The following barycentric rational representation relies on distinct support nodes y1, . . . , ym ∈
R and coefficients w1, . . . , wm ∈ Cm. For the imaginary exponential function evaluated at the
support nodes we also use the notation fj = eiyj . In Section 3 we consider barycentric rational
representations given by the quotient of partial fractions

r(x) =

m∑
j=1

fj wj
x− yj

/ m∑
j=1

wj
x− yj

=: n(x)/d(x). (2.1)
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Figure 2: This figure shows the deviation of the unitarity property in computer arithmetic for
different barycentric rational approximants. Namely, for the barycentric rational approximants r
generated by the original (◦) and modified (�) AAA algorithms, and rb generated by the origi-
nal (+) and modified (×) AAA–Lawson algorithms. The modified algorithms are introduced in
Section 5. The approximants r and rb are (14, 14) and (13, 13)-rational functions, respectively, and
all approximants are generated to approximate eix for x ∈ [−13.9, 13.9] with an approximation error
≤ 10−12 on this interval. The approximation error of rb is also illustrated in Figure 1. All of these
approximants are unitary in theory, however, in computer arithmetic this property is not exactly
preserved when using the original AAA and AAA–Lawson methods. In particular, the deviation
in unitarity is below 10−14 on the domain of approximation, x ∈ [−13.9, 13.9], but at x = 35 it
is nearly 10−5 for the original AAA and AAA-Lawson methods. Unitarity can be maintained uni-
formly on R in computer arithmetic by using the modified algorithms – particularly, the deviation
of the unitarity property for the modified algorithms is approximately 10−16 or exactly zero (not
visible in this figure).
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The poles of the partial fractions n and d coincide with the support nodes. However, for the function
r these singularities are removable. Assuming wj 6= 0, we have the identity

r(yj) = eiyj , j = 1, . . . ,m, (2.2)

as a limit, so that r interpolates the imaginary exponential at the support nodes.
In the sequel, the notation (m− 1,m− 1)-rational function refers to a rational function r = p/q,

where p and q are polynomials of degree ≤ m − 1. A function in barycentric rational representa-
tion (2.1) with m support nodes corresponds to an (m− 1,m− 1)-rational function. Let

`(x) =

m∏
j=1

(x− yj)

denote the polynomial with zeros located at the poles of the partial fractions n and d. We introduce
functions p and q as

p(x) := `(x)n(x) =

m∑
j=1

fjwj
∏
k 6=j

(x− yk), and

q(x) := `(x)d(x) =
m∑
j=1

wj
∏
k 6=j

(x− yk).

(2.3)

Indeed, p and q correspond to polynomials of degree ≤ m − 1. Multiplying the numerator and
denominator of the barycentric rational representation r by `, we observe

r(x) =
`(x)n(x)

`(x) d(x)
=
p(x)

q(x)
, (2.4)

which shows that r is an (m− 1,m− 1)-rational function.
For non-interpolatory approximants in Section 4 we also consider barycentric rational represen-

tations

rb(x) =

m∑
j=1

αj
x− yj

/ m∑
j=1

βj
x− yj

, (2.5)

where α1, . . . , αm ∈ C and β1, . . . , βm ∈ C denote coefficients, and y1, . . . , ym ∈ R denote support
nodes. In the case of αj = fjwj and βj = wj , this representation coincides with (2.1). In contrast
to r in (2.1), rb does not necessarily interpolate eix at the support nodes (2.2). In particular, this
interpolation property does not hold if αj 6= fjβj . Expanding rb similar to (2.4), shows that rb
corresponds to an (m− 1,m− 1)-rational function.

We refer to a rational function r = p/q as irreducible if the polynomials p and q have no common
zeros. Furthermore, the poles of r refer to the zeros of q. These terms are used in an equivalent
manner for a rational function given in barycentric rational representation.

We proceed with some general results concerning (m − 1,m − 1)-rational interpolations to the
imaginary exponential function. Similar results are specified for barycentric rational interpolation
in Subsection 3.2.

General remarks on interpolation by (m−1,m−1)-rational functions. For an (m−1,m−1)-
rational function r = p/q, the numerator and denominator polynomials are of degree ≤ m− 1 and
have m coefficients each. However, the resulting rational function only has 2m− 1 free parameters
(this result can be observed via partial fraction decomposition). It is natural to consider (m−1,m−
1)-rational functions to interpolate the imaginary exponential at 2m − 1 given nodes in a general
setting. At this point we assume that such a rational interpolation function exists and is irreducible,
for further details we refer to [Bel70, Section 2]. The following proposition shows unitarity for this
class of rational interpolants.
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Proposition 1. Let r be an irreducible (m− 1,m− 1)-rational function, and let θ1, . . . , θ2m−1 ∈ R
be distinct nodes such that r satisfies the interpolation property

r(θj) = eiθj , j = 1, . . . , 2m− 1. (2.6)

Then r has no poles on the real axis, and satisfies

|r(x)| = 1, for x ∈ R. (?)

A proof of this proposition is provided in Appendix B.

3 Interpolatory rational approximation and Loewner matrices
We proceed to consider rational approximants of eix in barycentric rational representation (2.1). In
the present section, we consider (m−1,m−1)-rational approximants wherem is fixed. Approximants
of a moderate degree are favourable due to various reasons, e.g., computational cost. Furthermore, a
certain approximation accuracy over a given interval or discrete set of nodes is desirable in practice.
Due to limitations of the methods discussed in the present work, our focus is on the discrete case.
This includes discretized intervals, e.g., [NST18, NT20]. We introduce the notation x1, . . . , xn ∈ R
for the test nodes, over which the rational approximant r needs to approximate eix,

r(xk) ≈ eixk , k = 1, . . . , n, (3.1)

with a prescribed accuracy. In addition, the interpolation property at the support nodes (2.2) is
desirable in an interpolatory setting. In the sequel, we assume that the support nodes y1, . . . , ym ∈
R and the test nodes x1, . . . , xn ∈ R are disjoint sets of distinct nodes, unless explicitly stated
otherwise.

A special case occurs for n = m − 1, i.e., we have m given support nodes and m − 1 given
test nodes. This yields a total of 2m − 1 nodes, and as remarked at the end of the previous
section, rational interpolation is viable in this setting. Similar interpolation problems have been
studied earlier in [Bel70, AA86, Ber00]. As a new result, we prove unitarity of such interpolants in
Corollary 2 in Subsection 3.1 based on Proposition 1.

If a larger number of test nodes is given (namely, n > m− 1), then interpolation at all test and
support nodes is no longer viable in general. In this case, we replace the interpolation property
at the test nodes by a near-best approximation property. In particular, we consider barycentric
rational approximants that minimize a linearized error over the test nodes, see Subsection 3.2. This
approach is also utilized in the AAA method [NST18]. For the case n > m−1, Proposition 1 does not
apply due to non-interpolatory nature. However, in Subsection 3.3 we prove that the approximants
that minimize the linearized error are unitary – a new result which is based on properties of singular
vectors of a re-scaled Loewner matrix.

We remark that the AAA method also includes an outer iteration to determine the support nodes
y1, . . . , ym. However, in this paper we show unitarity for arbitrary support nodes, and therefore we
may consider them fixed. A sketch of the AAA method is also given in Section 6 further below.

Barycentric rational approximants that minimize a weighted linearized error satisfy similar uni-
tarity properties, as shown in Subsection 3.4. This setting is motivated by [NST18, Subsection 10],
and its applications. Weighted problems also appear in [BG15, BG17].

Non-interpolatory near-best approximants using the representation rb in (2.5) are discussed in
Section 4 further below. Approximants therein are related to the AAA–Lawson method [NT20].

We proceed to introduce common notation concerning the Loewner matrix, which is relevant for
barycentric rational approximation in the present section.

Loewner matrix. Assuming y1, . . . , ym ∈ R are given support nodes and x1, . . . , xn ∈ R are
given test nodes, we define the Loewner matrix

L ∈ Cn×m, with Lkj =
eixk − eiyj

xk − yj
, (3.2)
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k ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. The Loewner matrix can be written as a product of matrices: Let
C ∈ Rn×m denote the Cauchy matrix

C ∈ Rn×m, with Ckj =
1

xk − yj
, (3.3a)

and let SF and Sf denote the diagonal matrices

SF = diag
(
eixj
)
∈ Cn×n, and Sf = diag

(
eiyj
)
∈ Cm×m. (3.3b)

Then the Loewner matrix can be expressed as

L = SFC − CSf ∈ Cn×m. (3.4)

For the given support nodes, we consider a barycentric rational approximant r(x) = n(x)/d(x) as
in (2.1). We consider w = (w1, . . . , wm)> ∈ Cm to be the vector of the underlying coefficients
in (2.1), which have not been specified yet. The matrices in (3.3) satisfy the following identities
when applied to w,

(SFCw)k = eixk

m∑
j=1

wj
xk − yj

= eixkd(xk), and,

(CSfw)k =

m∑
j=1

fj wj
xk − yj

= n(xk), where fj = eiyj .

(3.5)

Making use of the representation (3.4) and the identities (3.5), we conclude

(Lw)k = eixkd(xk)− n(xk). (3.6)

3.1 An (m− 1,m− 1) rational interpolation at 2m− 1 nodes
We proceed with an overview on barycentric rational interpolation of eix at given nodes. Similar
interpolation problems are studied earlier in [Bel70, AA86, Ber00] and others. We assume that
2m − 1 distinct nodes are given; specifically, we assume that we are given m support nodes and
m− 1 test nodes, i.e., we have the case n = m− 1. For an example concerning interpolation of eix

at preassigned test and support nodes we also refer to [Kno08, Subsection III.B].
In the present setting the Loewner matrix L given in (3.2) has the dimension m− 1×m. Thus,

L has a non-trivial nullspace. Let the vector of coefficients w = (w1, . . . , wm)> be in the nullspace
of L, i.e.,

Lw = 0.

Then, due to (3.6), the partial fractions n and d satisfy

n(xk) = d(xk)eixk , k = 1, . . . ,m− 1. (3.7)

Furthermore, if the resulting barycentric rational approximation r is irreducible, then (3.7) implies

r(xk) = eixk , k = 1, . . . ,m− 1. (?)

In the following corollary, we summarize the interpolation properties of r, together with a uni-
tarity property which follows Proposition 1.

Corollary 2. Let y1, . . . , ym ∈ R and x1, . . . , xm−1 ∈ R be given support and test nodes, respectively,
L be the corresponding Loewner matrix (3.2), and let w = (w1, . . . , wm)> ∈ Cm denote a vector of
coefficients that satisfies Lw = 0. Assume wj 6= 0, and assume the generated barycentric rational
function r is irreducible. Then r interpolates eix at the support and test nodes, has no poles on the
real axis, and satisfies

|r(x)| = 1, x ∈ R. (?)
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Proof. The barycentric rational function r interpolates at the support nodes due to (2.2) and the
assumption wj 6= 0. Following (?), the choice of w implies that r interpolates at the test nodes.
Thus, r interpolates at a total of 2m − 1 distinct nodes. By construction, r is an (m − 1,m − 1)-
rational function. Following Proposition 1, the interpolation properties of r imply that r has to no
poles on the real axis and is unitary.

In Subsection 3.3 further below, we provide an alternative proof that the interpolant r considered
in Corollary 2 is unitary. This involves a Cayley-type representation for r.

3.2 Minimizing a linearized error
We consider test nodes x1, . . . , xn ∈ R, where, in contrast to the previous subsection, n > m − 1.
In the present subsection, we replace the interpolation property at the test nodes by a near-best
approximation property. Namely, we aim to minimize a linearized error over the test nodes; a
practical approach which is utilized in the AAA method [NST18].

We recall r(x) = n(x)/d(x) ≈ eix, and we linearize this approximation property by multiplying
by d(x) on both sides,

n(x) ≈ eixd(x). (3.8)

For the underlying test and support nodes we consider the Loewner matrix L ∈ Cn×m as
given in (3.2). Let w = (w1, . . . , wm)> ∈ Cm refer to the vector of coefficients of r as in (2.1).
Following (3.6), the entries of Lw evaluate the deviation in (3.8) at the test nodes, and the Euclidean
norm of the vector Lw yields

‖Lw‖2 =

(
n∑
k=1

|eixkd(xk)− n(xk)|2
)1/2

. (3.9)

This representation is referred to as the linearized error.
We aim to choose coefficients w = (w1, . . . , wm)> ∈ Cm with ‖w‖2 = 1 such that the linearized

error (3.9) is minimized, i.e.,
w = arg min

u∈Cm, ‖u‖2=1

‖Lu‖2. (3.10)

Such coefficients are accessible by exploiting the singular value decomposition of the Loewner matrix
L. We have the factorization

LV = US, (3.11)

where V ∈ Cm×m and U ∈ Cn×m refer to orthonormal bases of right and left singular vectors,
respectively, and S = diag (σ1, . . . , σm) ∈ Rm×m refers to a diagonal matrix containing singular
values of L. We assume the ordering

σ1 ≥ . . . ≥ σm ≥ 0.

A weight vector w which minimizes the linearized error norm as in (3.10) is attained by a right
singular vector of L, e.g.,1 w = V em with ‖Lw‖2 = σm. In particular, the smallest singular value
of L satisfies

σm ≤ ‖Lu‖2 for any u ∈ Cm with ‖u‖2 = 1.

The generated barycentric rational approximation r interpolates at all test nodes if and only if
σm = 0. In general we have the case σm > 0, and interpolation at test nodes is not guaranteed.
Thus, Proposition 1 does not apply. Nevertheless, unitarity of the barycentric rational approximant
which minimizes the linearized error is shown in the following subsection.

1We use the notation ek = (0, . . . , 0, 1)> ∈ Ck.
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3.3 A re-scaled Loewner matrix and unitarity
The coefficients of the barycentric rational approximants discussed in the previous subsections cor-
respond to singular vectors of the Loewner matrix L ∈ Cn×m. This includes the case n = m− 1 in
Subsection 3.1; a vector in the nullspace of L can be understood as a singular vector corresponding
to the singular value σm = 0.

The Loewner matrix is of the form (3.4), where the Cauchy matrix C given in (3.3a) is a real
matrix. Thus, the Loewner matrix satisfies the representation (A.2) in Appendix A, and we can
define a re-scaled Loewner matrix,

L̂ = −iRLK ∈ Rn×m, (3.12a)

which is a real matrix as in (A.9), and

K = diag (K11, . . . ,Kmm) ∈ Cm×m, and R = diag (R11, . . . , Rnn) ∈ Cn×n, (3.12b)

are diagonal matrices as in (A.4), with entries

Kjj =

{
(1− e−iyj )/|1− e−iyj |, e−iyj 6= 1 and,
i, otherwise, (3.12c)

and
Rkk =

{
(1− e−ixk)/|1− e−ixk |, e−ixk 6= 1 and,
i, otherwise. (3.12d)

Following (A.10), we also note the identity

L̂ = 2 Im(RCK∗), (3.13)

where Im(X) denotes the matrix of entry-wise imaginary parts of X.
The diagonal matrices R and K are unitary, and thus, the matrices L and L̂ are similar up to a

complex phase and their singular values coincide. Furthermore, let the singular value decomposition
of the matrix L̂ ∈ Rn×m be given by

L̂V̂ = ÛS, (3.14)

where V̂ ∈ Rm×m and Û ∈ Rn×m refer to orthonormal bases of right and left singular vectors,
respectively, and S = diag (σ1, . . . , σm) ∈ Rm×m as in (3.11). We define

w̃ = iKV̂ em. (3.15)

As a corollary of Proposition 8 in Appendix A, the vector w̃ is a singular vector of L corresponding
to the singular value σm, and as a consequence,

‖Lw̃‖2 = σm.

Let r̃ = ñ/d̃ denote the barycentric rational approximant with coefficients w̃. Then r̃ minimizes the
linearized error (3.9), since w̃ is the singular vector corresponding to the smallest singular value,
σm. This also includes the case n = m− 1 with σm = 0, which is discussed in Subsection 3.1.

Let w̃ = (w̃1, . . . , w̃m) be given as in (3.15) and fj = eiyj . Then Proposition 7 in Appendix A
implies

fjw̃j = w̃∗j , j = 1, . . . ,m. (3.16)

As a consequence, the partial fractions ñ and d̃ satisfy

ñ(x) =

m∑
j=1

fjw̃j
x− yj

=

m∑
j=1

w̃∗j
x− yj

= d̃(x)∗, for x ∈ R, (3.17)
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and r̃ has the representation

r̃(x) = ξ(x)∗ξ(x)−1, with ξ(x) = d̃(x). (3.18)

Let r̃ be irreducible, then this further implies that r̃ has no poles on the real axis. Furthermore, r̃
is unitary, i.e., it satisfies

|r̃(x)| = 1, x ∈ R. (?)

Concerning uniqueness of w in (3.10), we remark that singular vectors are unique up to a complex
phase for the non-degenerate case, σm−1 > σm. If the smallest singular value is degenerate, any
normalized linear combination of singular vectors corresponding to σm minimizes (3.10), where in
addition, each of these singular vector has an arbitrary complex phase.

In the following proposition we consider barycentric rational approximants that minimize the
linearized error but do not necessarily have coefficients w̃.

Proposition 3. Let x1, . . . , xn ∈ R and y1, . . . , ym ∈ R be given test and support nodes, respectively,
with n ≥ m − 1. Assume the smallest singular value of the corresponding Loewner matrix is non-
degenerate, i.e., σm−1 > σm. Let r(x) = n(x)/d(x) denote the barycentric rational approximant with
coefficients w1, . . . , wm such that the linearized error (3.9) is minimized. Furthermore, assume r is
irreducible. Then r has no poles on the real axis and satisfies

|r(x)| = 1, x ∈ R. (?)

Proof. The underlying vector of coefficients w = (w1, . . . , wm)> corresponds to a singular vector
of L which is unique up to a complex phase due to σm being a non-degenerate. Namely, we have
w = eiφw̃ for w̃ as given in (3.15) and some complex phase φ ∈ R. Due to (3.16), the entries
of w satisfy fjwj = e2iφw∗j . Similar to (3.17), this implies n(x) = e2iφd(x)∗ and we conclude
r(x) = e2iφd(x)∗d(x)−1. Thus, if r is irreducible it has no poles on the real axis, and satisfies
|r(x)| = 1 for x ∈ R.

Remark 4. Proposition 3 does not apply if the smallest singular value of L is degenerate, i.e., σm =
σm−1. To clarify this remark we consider the following example. Let V denote the basis of right
singular vectors of L, then the vector w = (eiψ1V em+eiψ2V em−1)/

√
2 with arbitrary phases ψ1, ψ2 ∈

R minimizes ‖Lw‖2. Thus, the barycentric rational approximant with coefficients w minimizes the
linearized error (3.9). However, this approximant is not necessarily unitary.

On the other hand, the vector w̃ given in (3.15) also satisfies (3.16) in case of σm being degener-
ate, which entails unitarity of the respective barycentric rational approximant even in the degenerate
case.

Following Proposition 7 in Appendix A, w̃ = iKV̂ ζ for any ζ ∈ Rm satisfies fjw̃j = w̃∗j . Thus,
coefficients corresponding to this vector also generate a unitary rational approximant. However,
such an approximant does not minimize the linearized error. Similar results hold for w̃ = iKV̂ ζ
with ζ ∈ iRm.

3.4 Minimizing a weighted linearized error
We proceed to generalize results of the previous subsections by considering barycentric rational
approximants of the form (2.1) that minimize a weighted linearized error over the test nodes. In
the unweighted case, the deviation in the approximation r(x) ≈ eix at a test node xk is r(xk)− eixk .
In the weighted case, we are given weights,

µ1, . . . , µn > 0, (3.19)

and consider a weighted deviation at test nodes,

µ
1/2
k (r(xk)− eixk). (3.20)
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We slightly modify the Loewner matrix (3.2) to include the weights µk. Namely, we define

Lµ ∈ Cn×m with (Lµ)kj =
µ
1/2
k (eixk − eiyj )

xk − yj
.

Similar to (3.4), this matrix satisfies the representation

Lµ = SFM −MSf , with M = SµC ∈ Rn×m, (3.21)

where C denotes the Cauchy matrix as given in (3.3a) and Sµ = diag
(
µ
1/2
1 , . . . , µ

1/2
n

)
∈ Rn×n.

Similar to (3.6), applying a vector of coefficients w = (w1, . . . , wm)> ∈ Cm to the weighted Loewner
matrix yields

(Lµw)k = µ
1/2
k (eixkd(xk)− n(xk)),

where d and n are partial fractions of the respective barycentric rational representation as in (2.1).
Thus, we have

‖Lµw‖2 =

(
n∑
k=1

µk|eixkd(xk)− n(xk)|2
)1/2

. (3.22)

This corresponds to a weighted linearized error which is related to the weighted deviation (3.20).
Considering a barycentric rational approximant r(x) = n(x)/d(x) which minimizes (3.22), we

let coefficients w1, . . . , wm ∈ C of r correspond to a right singular vector of Lµ, namely, the right
singular vector corresponding to the smallest singular value of Lµ. The matrices L and Lµ both
satisfy the representation (A.2) in Appendix A. Thus, the results of the previous subsections –
in particular, Proposition 3 and the Cayley-type representation given in (3.18) – also apply when
considering a weighted linearized error.

4 Non-interpolatory rational approximation
In the present section we consider a barycentric rational approximant rb based on the representa-
tion (2.5) that satisfies some accuracy conditions at n test nodes, where n > m − 1. We proceed
with a setting similar to Section 3: Let the degree m be fixed, and let y1, . . . , ym ∈ R and x1, . . . , xn
be given support and test nodes, respectively. In contrast to the barycentric rational approximant
r based on the representation (2.1), which is the topic of the previous section, the approximant rb
does not necessarily interpolate at the support nodes. On the other hand, rb has more coefficients
which are free to be chosen such that a higher accuracy at the test nodes can be achieved for this
representation. We aim to choose the coefficients of rb such that a weighted linearized error is
minimized in the progress. This approach is motivated by the AAA–Lawson algorithm [NT20]. The
AAA–Lawson algorithm runs in two phases. First, the AAA method is applied, which results in an
approximant r of the form (2.1), and support nodes y1, . . . , ym. In the second phase, these support
nodes are put in the representation rb in (2.5), and the coefficients α1, . . . , αm and β1, . . . , βm are
determined such that a weighted linearized error is minimized. This phase runs iteratively, adapting
the weights of the underlying linearized error with each iteration. A similar approach is already
suggested in [NST18] and appears in [FNTB18, Section 8] for the approximation of real functions.
Focusing on the unitarity of the generated approximant, we assume the support nodes y1, . . . , ym
and the weights to be given.

We recall the barycentric representation given in (2.5),

rb(x) =

m∑
j=1

αj
x− yj

/ m∑
j=1

βj
x− yj

=: nb(x)/db(x), (4.1)

where α1, . . . , αm ∈ C and β1, . . . , βm ∈ C denote coefficients which have to be chosen to minimize
the linearized error. Let

µ1, . . . , µn > 0

11



denote given weights which represent scaling factors of the deviation in the approximation r(x) ≈ eix

at the test nodes,
µ
1/2
k (rb(xk)− eixk).

In the current setting, rb does not necessarily interpolate eix at the support nodes, and it is reason-
able to include support nodes in the set of test nodes such that accuracy at the support nodes can
also be enforced. Thus, in the present section we allow test nodes to coincide with support nodes.

To derive a weighted linearized error for the barycentric rational approximant rb = nb/db in (4.1),
we first simplify rb(x) ≈ eix to nb(x) ≈ eixdb(x). Evaluated at a test node xk which is not a support
node, we consider the linearized deviation

µ
1/2
k (nb(xk)− eixkdb(xk)). (4.2a)

If the test node xk is also a support node, there is an index jk such that xk = yjk , and the
representation rb as given in (4.1) can not be evaluated at x = xk in a direct manner due to the
presence of the partial fractions αjk

x−yjk
and βjk

x−yjk
. However, in the limit x→ xk we attain

lim
x→xk

rb(x) = αjk/βjk ,

and (4.2a) is replaced by
µ
1/2
k (αjk − eixkβjk), for xk = yjk . (4.2b)

The deviations in (4.2) can be represented as a matrix-vector product of an expanded Loewner
matrix with the coefficient vectors α = (α1, . . . , αm)> ∈ Cm and β = (β1, . . . , βm)> ∈ Cm. We
introduce a modified Cauchy matrix C ′ ∈ Rn×m as follows.

• Let k be an index with xk /∈ {y1, . . . , ym}. Then we define the k-th row of C ′ analogously to
the k-th row of the Cauchy matrix C in (3.3). This yields

(C ′α)k =

m∑
j=1

αj
xk − yj

= nb(xk), and (C ′β)k =

m∑
j=1

βj
xk − yj

= db(xk). (4.3a)

• Otherwise, for an index k with xk ∈ {y1, . . . , ym} we have an index jk such that xk = yjk , and
we define the k-th row of C ′ by

C ′kj =

{
1, for j = jk, and
0, for j ∈ {1, . . . ,m} \ {jk},

for k, jk with xk = yjk .

For this index k, the matrix-vector products in (4.3a) yield

(C ′α)k = αjk , and (C ′β)k = βjk . (4.3b)

Furthermore, let SF ∈ Cn×n denote the diagonal matrix with diagonal entries eixk as in (A.1),
and let M = SµC

′ ∈ Rn×m where Sµ = diag
(
µ
1/2
1 , . . . , µ

1/2
n

)
∈ Rn×n. The matrix-vector products

Mα and Mβ can be evaluated similar to (4.3). For the concatenated vector γ = [α;β] ∈ C2m we
have

([M | − SFM ]γ)k =

{
µ
1/2
k (nb(xk)− eixkdb(xk), xk /∈ {y1, . . . , ym} and,
µ
1/2
k (αjk − eixkβjk), xk = yjk for some jk,

(4.4a)

where [M |−SFM ] is to be understood as the n×2m complex matrix obtained by concatenating the
n×m matricesM and −SFM . The Euclidean norm of [M |−SFM ]γ quantifies the deviations (4.2)
over the test nodes (which may include support nodes) and is also referred to as linearized error in
the present section.
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In the following, we consider barycentric rational approximants rb that attain a minimal lin-
earized error. Namely, the vector γ = [α;β] ∈ C2m, where α and β refer to the coefficients of rb,
satisfies

γ = arg min
v∈C2m, ‖v‖2=1

∥∥[M | − SFM ]v
∥∥
2
. (4.4b)

Similar to the coefficient vector w in (3.10), the vector γ in (4.4b) is accessible using a singular value
decomposition of the matrix [M | − SFM ] ∈ Cn×2m.

We proceed with some auxiliary properties of right singular vectors of [M |−SFM ]. These results
are given in detail in Appendix A.1. Let R = diag (R11, . . . , Rnn) ∈ Cn×n be given as in (A.4) in
Appendix A, i.e.,

Rkk =

{
(1− e−ixk)/|1− e−ixk |, e−ixk 6= 1 and,
i, otherwise, (4.5)

and let
B̂ = [Re(R)M | − Im(R)M ] ∈ Rn×2m, (4.6)

where Re(R) and Im(R) refer to the matrices of entry-wise real and imaginary parts of R, respec-
tively. The matrix B̂ satisfies (A.18) in Appendix A.1 with Θ = RM . Let V̂B ∈ R2m×2m denote a
real orthonormal basis of right singular vectors of B̂ as in (A.21), and let

γ̂ = V̂Be2m ∈ R2m, γ̂ = [α̂; β̂], (4.7a)

denote a right singular vector of B̂ corresponding to the smallest singular value of B̂. We introduce
the vector

γ̃ =
1√
2

(
α̂+ iβ̂

α̂− iβ̂

)
∈ C2m, γ̃ = [α̃; β̃], (4.7b)

which corresponds to the vector γ̃ in (A.24) in Appendix A.1. Following Corollary 10 in Ap-
pendix A.1, γ̃ satisfies (4.4b), and we have the identity

α̃j = β̃∗j , j = 1, . . . ,m. (4.7c)

Thus, the barycentric rational representation r̃b = ñb/d̃b with coefficients α̃ and β̃ minimizes the
linearized error, and ñb and d̃b satisfy

ñb(x) =

m∑
j=1

α̃j
x− yj

=

m∑
j=1

β̃∗j
x− yj

= d̃b(x)∗, for x ∈ R. (4.8)

As a consequence, we have the Cayley-type representation

r̃b(x) = ξ(x)∗ξ(x)−1, with ξ(x) = d̃b(x), (4.9)

and for the case that r̃b is irreducible, this implies that r̃b has no poles on the real axis and

|r̃b(x)| = 1, x ∈ R. (?)

If the smallest singular value of [M |−SFM ] is non-degenerate, then a similar result carries over
to any barycentric rational approximant that minimizes the respective linearized error.

Proposition 5. Let the smallest singular value of [M |−SFM ] be non-degenerate, and let γ = [α;β]
satisfy (4.4b). Assume the generated barycentric rational approximant rb is irreducible. Then rb
has no poles on the real axis and satisfies

|rb(x)| = 1, x ∈ R. (?)
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Proof. For the case that the smallest singular value of [M | − SFM ] is non-degenerate, coefficients
α and β that satisfy (4.4b) correspond to α = eiφα̃ and β = eiφβ̃ for a phase φ ∈ R, and α̃ and β̃
as given in (4.7b). Due to (4.7c), we have αj = e2iφβ∗j for j = 1, . . . ,m. Similar to (4.8), this yields
nb(x) = e2iφdb(x)∗ for nb and db given in (4.1). Thus, the zeros of db and nb located on the real
axis coincide. Together with the assumption that rb = nb/db is irreducible, this entails that rb has
no poles on the real axis. Furthermore, we have |rb(x)| = 1 for x ∈ R.

Considering the restriction to a non-degenerate case in Proposition 5, we also refer to Remark 4
in the previous section.

Remark 6. Analogously to the barycentric rational approximant r̃b with coefficients corresponding
to γ̃ as given in (4.7b), a barycentric rational approximant with coefficients corresponding to γ̃′ =

QV̂Bζ ∈ C2m (with Q and V̂B as in Proposition 9 in Appendix A.1) with ζ ∈ R2m or ζ ∈ iR2m is
unitary as well. This also holds true when singular values of [M | − SFM ] are degenerate.

5 Advantages of Cayley-type representations
In the present section we give some remarks concerning the computation of the interpolatory and
non-interpolatory approximants introduced in the previous sections. We have shown the unitarity
property (?) for approximants which minimize linearized errors in the previous sections. The coef-
ficients of the respective barycentric rational approximants are unique up to a complex phase. In
practice, we suggest computing coefficients using the re-scaled Loewner matrix L̂ ∈ Rn×m (3.12a)
instead of the original Loewner matrix L ∈ Cn×m in the context of the AAA method, or the mod-
ified Loewner-type matrix B̂ ∈ Rn×2m (4.6) instead of [M | − SFM ] ∈ Cn×2m in the context of
the AAA–Lawson method. Furthermore, we suggest utilizing a Cayley-type representation of the
rational approximant. These modifications can be implemented for the AAA and AAA–Lawson
methods [NST18, NT20], as illustrated in Algorithm 1 and 2 below, which gives some advantages
in terms of computational cost and numerical stability of the unitarity property.

We first consider the interpolatory case and the approximant r̃ (3.18) of the representation (2.1)
with coefficients w̃1, . . . , w̃m as given in (3.15).

(i) The coefficients w̃1, . . . , w̃m can be computed via a singular value decomposition of the re-
scaled Loewner matrix L̂ using real arithmetic. This typically reduces computational cost
compared with the original AAA algorithm, which uses a singular value decomposition of a
complex Loewner matrix.

(ii) Exploiting the Cayley-type representation r̃ = ξ∗ξ−1 reduces computational cost when r̃ has
to be evaluated, or zeros and poles of r̃ are required. In particular, the zeros of r̃ are the
complex conjugate of its poles.

(iii) The complex phases of the coefficients w̃1, . . . , w̃m originate from applying the complex diag-
onal matrix iK in (3.15) on the real vector V̂ em. Thus, these complex phases are exact up
to machine precision, and are not affected by errors that occur from the underlying singular
value decomposition. As a consequence, the identity fjwj = w∗j (3.16) is true up to machine
precision. This results in an improved numerical stability on the unitarity of r̃ compared to r.
For the deviation of the unitarity property of approximants generated by the original and
modified AAA algorithms in computer arithmetic, see Figure 2.

(iv) In a degenerate or close to degenerate case, the approximant r̃ with coefficients w̃1, . . . , w̃m
remains unitary, see also Remark 4.

In Algorithm 1, we illustrate the modifications (i) and (ii) for the AAA method, which yields a
modified AAA algorithm utilizing (i)–(iv). This algorithm is based on a simplified version of aaa.m
in the chebfun package [DHT14]. Note that only a minimal version of the original AAA algorithm
– adequate for illustrating the modification based on the Cayley-type representation – is described
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in the present work. For further details of AAA we refer to [NST18], and the short summary given
in Section 6.

Algorithm 1 Pseudocode for a modified AAA algorithm generating a barycentric rational approx-
imant of eix. See aaa.m in the chebfun package and [NST18, Fig. 4.1] for the original code in full
detail.
Require: (x1, . . . , xN ),mmax, nlawson
1: F ⇐ (eix1 , . . . , eixN )
2: R⇐ diag

(
(1− e−ix1)/|1− e−ix1 |, . . . , (1− e−ixN )/|1− e−ixN |

)
3: for all j with (e−ixj == 1) set Rjj = i . the matrix R as in (3.12d)
4: r ⇐ mean(F ) · (1, . . . , 1) ∈ CN
5: for m = 1, . . . ,mmax do
6: j ⇐ arg max(|F − r|)
7: ym ⇐ xj
8: fm ⇐ Fj
9: km ⇐ Rjj

10: remove xj from the list of test nodes, i.e., x⇐ (x1, . . . , xj−1, xj+1, . . . , xN−m+1)
and remove the respective columns of C and F and entries of R

11: cnew ⇐
(

1
x1−ym , . . . ,

1
xN−m−ym

)>
12: C ⇐ [C | cnew]
13: K ⇐ diag(k1, . . . , km)

14: L̂⇐ 2 Im(R · C · conj(K)) ∈ R(N−m)×m . the re-scaled Loewner matrix (3.13).
15: (Û , S, V̂ )⇐ svd(L̂)

16: w̃ ⇐ iKV̂ em ∈ Cm . see (3.15)
17: ξ ⇐ C · w̃
18: r ⇐ (ξ∗1/ξ1, . . . , ξ

∗
N−m/ξN−m) . = (r(x1), . . . , r(xN−m)) using r = ξ∗/ξ

19: end for
20: if nlawson > 0 then . run Algorithm 2
21: w̃ ⇐ minimax_lawson(x = (x1, . . . , xN−m), y = (y1, . . . , ym), nlawson)
22: end if
23: return x 7→ r(x) =

∑m
j=1

w̃∗
j

x−yj /
∑m
j=1

w̃j

x−yj . using the Cayley-type representation (3.18)

. for the case nlawson > 0 with w̃j = β̃j , the generated r(x) corresponds to (4.9)

We proceed to discuss advantages of utilizing the non-interpolatory approximant r̃b in (4.9) with
the coefficients α̃1, . . . , α̃m and β̃1, . . . , β̃m given in (4.7). The following points are similar to (i)-(iv)
above.

(i-b) The coefficients α̃1, . . . , α̃m and β̃1, . . . , β̃m can be computed via a singular value decomposition
of B̂ ∈ Rn×2m (4.6) using real arithmetic. This reduces computational cost compared with the
original AAA–Lawson algorithm which uses the singular value decomposition of the complex
matrix [M | − SFM ] ∈ Cn×2m.

(ii-b) Exploiting the Cayley-type representation r̃b = ξ∗ξ−1 given in (4.9) reduces computational
cost when r̃b has to be evaluated, or zeros and poles of r̃b are required.

(iii-b) Using the formula (4.7) to compute the coefficients α̃1, . . . , α̃m and β̃1, . . . , β̃m helps avoid
errors on the complex phases of the coefficients, which can occur during the computation of
a singular value decomposition of [M | − SFM ]. This also results in an improved numerical
stability on the unitarity of r̃b compared to rb. For the deviation of the unitarity property of
approximants generated by the original and modified AAA–Lawson algorithms in computer
arithmetic, see Figure 2.

(iv-b) In a degenerate or close to degenerate case, the approximant r̃b with coefficients α̃1, . . . , α̃m
and β̃1, . . . , β̃m remains unitary, see also Remark 6.
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In Algorithm 2, we illustrate the modifications (i-b) and (ii-b) for the minimax iteration which is
part of the AAA–Lawson method. This algorithm is based on a simplified version of aaa.m in the
chebfun package [DHT14]. In combination with Algorithm 1 (and ‘nlawson > 0’), Algorithm 2 yields
a modified version of the AAA–Lawson algorithm utilizing (i-b)–(iv-b).

Algorithm 2 Pseudocode for a modified minimax iteration which is called by Algorithm 1 to
generate coefficients of a near-best rational approximant of eix. This algorithm is based on aaa.m
in the chebfun package and yields a modified version of the AAA–Lawson method.
Require: x = (x1, . . . , xn), y = (y1, . . . , ym), nlawson
1: N ⇐ n+m
2: x⇐ (x1, . . . , xn, y1, . . . , ym) ∈ RN . include support nodes to the set of test nodes
3: µ⇐ (1, . . . , 1) ∈ RN
4: F ⇐ (eix1 , . . . , eixN )
5: R⇐ diag

(
(1− e−ix1)/|1− e−ix1 |, . . . , (1− e−ixN )/|1− e−ixN |

)
6: for all j with (e−ixj == 1) set Rjj = i . the matrix R as in (4.5)
7: C ⇐ 0 ∈ CN×m . the Cauchy matrix C ′, some test and support nodes coincide
8: for j = 1, . . . , n do
9: Cj,: ⇐

(
1

xj−y1 , . . . ,
1

xj−ym

)
10: end for
11: for j = 1, . . . ,m do
12: Cn+j,j ⇐ 1
13: end for
14: A⇐ [Re(R) · C| − Im(R) · C] ∈ RN×2m
15: for steps = 1, . . . , nlawson do
16: Sµ ⇐ diag(

√
µ1, . . . ,

√
µN )

17: (Û , Ŝ, V̂ )⇐ svd(Sµ ·A) . svd of B̂ = Sµ ·A, see (4.6)
18: γ̂ ⇐ V̂ e2m ∈ R2m . see (4.7a)
19: β̃ = (β̃1, . . . , β̃m) with β̃j ⇐ (γ̂j − iγ̂j+m)/

√
2 . see (4.7b)

20: ξ ⇐ 0 ∈ CN
21: for ` = 1, . . . , n do
22: ξ` ⇐

∑m
j=1

β̃j

x`−yj
23: end for
24: for ` = 1, . . . ,m do
25: ξn+` ⇐ β̃`
26: end for
27: r ⇐ (ξ∗1/ξ1, . . . , ξ

∗
N/ξN ) . using the Cayley-type representation (4.9)

28: ε⇐ F − r
29: µ⇐ (µ1|ε1|, . . . , µN |εN |)
30: µ⇐ µ/‖µ‖∞
31: end for
32: return β̃ = (β̃1, . . . , β̃m)

6 Unitarity of AAA and AAA–Lawson methods
We briefly sketch the AAA and AAA–Lawson algorithms to illustrate that Proposition 3 and 5
apply in these settings, respectively. This shows unitarity (?) of the generated approximants.

6.1 Unitarity of the AAA method
Let us consider the application of the AAA algorithm [NST18] to the approximation of eix. This
algorithm aims to generate a barycentric rational approximant r using the representation (2.1)
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which is accurate at a given set of test nodes x1, . . . , xn ∈ R, while the degree m of the approximant
is increased in an iterative manner. The initial iteration step uses an approximant with a single
support node, i.e., m = 1, and, the iteration proceeds as follows.

(a) The number of support nodes, i.e., the degree m, is increased. In particular, the test node for
which the previously computed approximant yields the largest deviation from eix is added to
the set of support nodes, and removed as a test node.

(b) The coefficients w1, . . . , wm ∈ C are computed such that the linearized error is minimized (3.10),
which generates a new approximant.

(c) Accuracy conditions are tested for the new approximant. If error tolerances are satisfied, AAA
returns the generated approximant. Otherwise, the iteration proceeds with (a).

In addition, Froissart doublets can be detected by AAA. If Froissart doublets occur, specific nodes are
removed from the set of support and test nodes, and the coefficients are re-computed by minimizing
the linearized error for the new sets of nodes.

Due to the fact that coefficients w1, . . . , wm minimize the linearized error as in (3.10), Proposi-
tion 3 applies and shows that the generated approximant has no poles on the real axis and is unitary.
This requires further conditions of Proposition 3 to hold true. Namely, the smallest singular value
of the underlying Loewner matrix has to be non-degenerate, and the generated approximant has to
be irreducible.

6.2 Unitarity of the AAA–Lawson method
We proceed to sketch the application of the AAA–Lawson method, which is introduced in [NT20],
to the approximation of eix. We show that Proposition 5 applies in this case and the generated
approximant is unitary. The AAA–Lawson method first runs the AAA method, which is summarized
in the previous subsection. This returns a set of support nodes y1, . . . , ym ∈ R which is fixed for
the following procedure. The algorithm then proceeds to find a near-best approximant using the
barycentric rational representation rb given in (2.5). This requires determining proper coefficients
α1, . . . , αm and β1, . . . , βm, which is done in an iterative procedure as summarized below. In contrast
to the AAA algorithm, the support nodes are included in the set of test nodes in the AAA–Lawson
algorithm.

As an initial iteration step, the algorithm introduces weights µ1, . . . , µn = 1.

(a) The coefficients αj and βj are computed to satisfy (4.4), where µk in (4.4a) refers to the
current weights. This provides an approximant rb which minimizes the respective weighted
linearized error.

(b) A new set of weights is computed. Namely, we update the weights µk to µk|rb(xk)− eixk |. In
addition, weights are normalized. Then the iteration proceeds with (a) until a given number
of iteration runs are done or other conditions are satisfied.

In any case, the coefficients of the generated approximant rb minimize a weighted linearized error
as in (4.4) and Proposition 5 applies in this setting, assuming further conditions given therein hold
true. This shows the approximant generated by the AAA–Lawson method has no poles on the real
axis and is unitary.

Appendix

A Properties of singular vectors of Loewner-type matrices
In the present section we show properties of singular vectors of matrices related to the Loewner
matrix (3.4). Namely, we first consider matrices of the type (A.2) introduced below. In Subsec-
tion A.1 below, we consider singular vectors of matrices which are related to expanded Loewner
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matrices, namely, matrices of the type (A.15) introduced below. Similar to previous sections, we let
x1, . . . , xn ∈ R and y1, . . . , ym ∈ R denote given test and support nodes, respectively, and we define
the diagonal matrices

SF = diag
(
eixj
)
∈ Cn×n, and Sf = diag

(
eiyj
)
∈ Cm×m. (A.1)

Let M ∈ Rn×m be a given real matrix, and let

A = SFM −MSf ∈ Cn×m. (A.2)

The singular value decomposition of A yields the factorization

AV = US, (A.3)

where V ∈ Cm×m and U ∈ Cn×m denote orthonormal bases of right and left singular vectors,
respectively, and S = diag (σ1, . . . , σm) denotes a diagonal matrix of singular values. For the
singular values we assume the ordering

σ1 ≥ . . . ≥ σm ≥ 0.

We proceed with some auxiliary results. Define the diagonal matrices

K = diag (K11, . . . ,Kmm) ∈ Cm×m, and R = diag (R11, . . . , Rnn) ∈ Cn×n, (A.4a)

with diagonal entries

Kjj =

{
(1− e−iyj )/|1− e−iyj |, e−iyj 6= 1 and,
i, otherwise, (A.4b)

where i refers to the imaginary unit, and

Rkk =

{
(1− e−ixk)/|1− e−ixk |, e−ixk 6= 1 and,
i, otherwise. (A.4c)

The diagonal entries of K satisfy

eiyjKjj = eiyj
(1− e−iyj )

|1− e−iyj |
=

eiyj − 1

|1− e−iyj |
= −K∗jj , for e−iyj 6= 1. (A.5a)

The identity eiyjKjj = −K∗jj directly holds true for the case e−iyj = 1 with Kjj = i. In a similar
manner, diagonal entries of R satisfy

eixkRkk = eixk
(1− e−ixk)

|1− e−ixk |
=

eixk − 1

|1− e−ixk |
= −R∗kk, for e−ixk 6= 1. (A.5b)

and this identity also holds true for the case e−ixk = 1. In matrix form, (A.5a) implies

SfK = −K∗, (A.6a)

where Sf refers to the diagonal matrix with diagonal entries eiyj . In a similar manner, (A.5b)
implies

SFR = −R∗, (A.6b)

where SF refers to the diagonal matrix with diagonal entries eixk .

Proposition 7. Let ζ ∈ Rm be given, then a vector w = iKζ with w = (w1, . . . , wm)> ∈ Cm
satisfies

fjwj = w∗j , for j = 1, . . . ,m, (A.7)

where fj = eiyj .
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Proof. Rewriting both sides of (A.7) in matrix-vector form, and substituting w therein yields

fjwj = (Sfw)j = (iSfKζ)j , and w∗j = (−iK∗ζ)j ,

where Sf denotes the diagonal matrix with diagonal entries fj . Making use of the identity (A.6a),
we conclude (A.7).

We proceed to rewrite the matrix-product RAK: Substituting (A.2) for A and making use
of (A.6), we observe

R(SFM −MSf )K = −R∗MK +RMK∗ = 2i Im(RMK∗) ∈ iRn×m, (A.8)

where Im(X) denotes the entry-wise imaginary part of a matrix X. We define

Â = −iRAK ∈ Rn×m. (A.9)

The matrix Â is real due to (A.8). In particular, (A.8) shows

Â = 2 Im(RMK∗). (A.10)

The matrices A and Â are similar up to a complex phase, and thus, these matrices share the same
set of singular values. Let the singular value decomposition of the matrix Â ∈ Rn×m be given by

ÂV̂ = ÛS, (A.11)

where V̂ ∈ Rm×m and Û ∈ Rn×m denote orthonormal bases of right and left singular vectors,
respectively, and the diagonal matrix S ∈ Rm×m consists of the singular values of Â. Here, S
in (A.11) is the same as that in (A.3), since A and Â are similar. For the real matrix Â, sets of real
right and left singular vectors are accessible and unique up to a change of signs. The bases of left
and right singular vectors are orthonormal, i.e., the matrices V̂ and Û are unitary2,

V̂ ∗V̂ = I and Û∗Û = I. (A.12)

Proposition 8. The matrices

U = −R∗Û ∈ Cn×m, and V = iKV̂ ∈ Cm×m (A.13)

correspond to orthonormal bases of right and left singular vectors of A, respectively.

Proof. The matrices K and R given in (A.4) satisfy

R∗R = I, and K∗K = I. (A.14)

As in (A.12), the matrices Û and V̂ are unitary, and together with (A.14) this implies that U and
V as given in (A.13) are unitary.

With (A.13), we have
Û = −RU, and V̂ = −iK∗V.

Substituting these identities in (A.11), we arrive at

iR∗ÂK∗V = US.

Substituting the identity (A.9) therein, we conclude that V and U given in (A.13) satisfy a singular
value decomposition of A which completes the proof.

2In this paper we consider orthogonality with respect to the Hermitian inner product 〈v, u〉 = v∗u, so that a matrix
with (complex) orthonormal columns is unitary. This is to be distinguished from the more common convention where
orthogonal matrices are defined with respect to the inner product 〈v, u〉 = vTu, and real orthogonal matrices are
distinct from unitary matrices.
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A.1 Auxiliary results for the non-interpolatory case
We recall some previously introduced notation. In the present section, the matrix M ∈ Rn×m refers
to a given real matrix and SF ∈ Cn×n denotes the diagonal matrix with diagonal entries eixk as
in (A.1). Our main interest in the present subsection lies in the singular value decomposition of

[M | − SFM ] ∈ Cn×2m (A.15)

and properties of its right singular vectors.
Let R be the diagonal matrix given as in (A.4). With RSF = −R∗ as given in (A.6b), we have

R[M | − SFM ] = [RM |R∗M ].

Due to R being unitary, the matrices [M | − SFM ] and [RM |R∗M ] share the same set of right
singular vectors and singular values.

We proceed to show results in a slightly more general setting: For a given matrix Θ ∈ Cn×m,
we consider the matrix

B = [Θ| conj(Θ)] ∈ Cn×2m,

where conj(Θ) denotes the matrix with complex conjugate entries of Θ. Considering the present
work, the case Θ = RM with B = [RM |R∗M ] is the most relevant one.

For the singular value decomposition of B we write

BVB = UBSB , (A.16)

where SB = diag (σ1, . . . , σ2m) ∈ R2m×2m is the diagonal matrix of singular values, and VB ∈
C2m×2m and UB ∈ Cn×2m are the matrices of singular vectors. For the singular values we assume
the ordering

σ1 ≥ . . . ≥ σ2m ≥ 0.

To determine properties of the entry-wise complex phases of the singular vectors of B, we proceed
to introduce the unitary transformation3

Q =
1√
2

(
Im iIm
Im −iIm

)
∈ C2m×2m, which satisfies Q∗Q = I2m. (A.17)

Furthermore, we introduce the matrix B̂ ∈ Rn×2m as

B̂ =
[

Re(Θ) | − Im(Θ)
]
∈ Rn×2m. (A.18)

The matrices B and B̂ satisfy the relation

B̂ =
1√
2
BQ. (A.19)

Thus, the matrices B and B̂ share the same set of singular values up to a factor
√

2. We introduce
the matrix

ŜB =
1√
2
SB , (A.20)

where SB refers to the diagonal matrix of singular values of B as in (A.16). The singular value
decomposition of the real matrix B̂ yields a factorization

B̂V̂B = ÛBŜB , (A.21)

where ÛB ∈ Rn×2m and V̂B ∈ R2m×2m denote real orthonormal bases of left and right singular
values, respectively, and ŜB is given in (A.20).

3The notations I and Ik refer to the identity matrix throughout the present work. Here, Ik explicitly refers to the
k × k-dimensional identity matrix.
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We proceed to re-scale V̂B by Q to construct a basis of right singular vectors of B. To this end
we introduce the matrix

ṼB = QV̂B ∈ C2m×2m, (A.22)

with V̂B ∈ R2m×2m as in (A.21).

Proposition 9. Let ŜB (A.20), ÛB ∈ Rn×2m and V̂B ∈ R2m×2m satisfy (A.21), and let ṼB ∈
C2m×2m be given as in (A.22). Then, ṼB and ÛB correspond to orthonormal bases of right and left
singular vectors of B, respectively. Namely, according to (A.16) we have the factorization

BṼB = ÛBSB . (A.23)

Proof. Substituting (A.19) for B̂ and (A.20) for ŜB in the factorization (A.21), we have

BQV̂B = ÛBSB .

Substituting ṼB = QV̂B therein we arrive at (A.23). Concerning the unitarity of ṼB and ÛB , we
recall that V̂B and ÛB refer to orthonormal bases of right and left singular values of B̂. Thus,
ÛB is unitary, and with Q being an unitary transformation, we also conclude that ṼB = QV̂B is
unitary.

The right singular vector of B corresponding to the smallest singular value is of some interest in
previous sections. In the setting of Proposition 9, the vectors γ̂ = V̂Be2m ∈ R2m and γ̃ = ṼBe2m ∈
C2m yield singular vectors of B̂ and B, respectively, each corresponding to the smallest singular
value of the respective matrix. With ṼB = QV̂B we have γ̃ = Qγ̂. Substituting (A.17) for Q and
writing γ̂ = [α̂; β̂] ∈ R2m, we arrive at

γ̃ =
1√
2

(
Im iIm
Im −iIm

)(
α̂

β̂

)
=

1√
2

(
α̂+ iβ̂

α̂− iβ̂

)
∈ C2m. (A.24)

Corollary 10. Let B = [RM |R∗M ], i.e., the case Θ = RM . Let γ̃ = ṼBe2m ∈ C2m where
ṼB satisfies Proposition 9. We also write γ̃ = [α̃; β̃] with α̃ = (α̃1, . . . , α̃m)> ∈ Cm and β̃ =

(β̃1, . . . , β̃m)> ∈ Cm. Then,

• the vector γ̃ attains the minimum∥∥[M | − SFM ]γ̃
∥∥
2

= min
v∈C2m, ‖v‖2=1

∥∥[M | − SFM ]v
∥∥
2
, (A.25)

and

• its entries satisfy
α̃j = β̃∗j , j = 1, . . . ,m. (A.26)

Proof. As stated previously in the present subsection, the set of right singular vectors and singular
values of the matrices [M | − SFM ] and B = [RM |R∗M ] coincide. Following Proposition 9, the
vector γ̃ corresponds a right singular vector of B corresponding to the singular value σ2m, which is
the smallest singular value of B. This carries over to [M | − SFM ], thus, ‖[M | − SFM ]γ̃‖2 = σ2m
minimizes (A.25). Following (A.24), we have

α̃ = (α̂+ iβ̂)/
√

2, and β̃ = (α̂− iβ̂)/
√

2,

where α̂, β̂ ∈ Rm correspond to γ̂ = V̂Be2m. This implies the identity (A.26).
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B Unitarity of (m − 1,m − 1) rational interpolation at 2m − 1
nodes

Proof of Proposition 1. The interpolation property (2.6) for r = p/q implies

|p(θj)| = |q(θj)|, j = 1, . . . , 2m− 1.

Applying Proposition 11 given below, we conclude |p(x)| = |q(x)| for x ∈ R. As a consequence, the
sets of real zeros of p and q coincide, and assuming that p and q have no common zeros, we further
conclude that r has no poles on the real axis. These properties entail |r(x)| = 1 for x ∈ R which
completes the proof.

The proof of Proposition 1 requires the following auxiliary result.

Proposition 11. Let p and q denote polynomials of degree ≤ m− 1, and let θ1, . . . , θ2m−1 ∈ R be
distinct points with

|p(θj)| = |q(θj)|, j = 1, . . . , 2m− 1. (B.1)

Then,
|p(x)| = |q(x)|, x ∈ R. (B.2)

Proof. Define χ = |p|2−|q|2. Due to p and q being polynomials of degree ≤ m− 1 and x being real,
the functions |p(x)|2 and |q(x)|2 conform to polynomials of degree ≤ 2m− 2. Thus, χ : R→ R is a
polynomial of degree ≤ 2m− 2. The identity (B.1) implies that χ has 2m− 1 distinct zeros on the
real axis, and as a consequence, χ is the zero polynomial which further implies (B.2).
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