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We perform large-scale numerical simulations to study Rayleigh–Darcy convection in
three-dimensional fluid-saturated porous media up to Rayleigh–Darcy number Ra = 8 ×
104. At these large values of Ra, the flow is dominated by large columnar structures –
called megaplumes – which span the entire height of the domain. Near the boundaries,
the flow is hierarchically organized, with fine-scale structures interacting and nesting to
form larger-scale structures called supercells. We observe that the correlation between the
flow structure in the core of the domain and at the boundaries decreases only slightly
for increasing Ra, and remains rather high even at the largest Ra considered here. This
confirms that supercells are the boundary footprint of megaplumes dominating the core of
the domain. In agreement with available literature predictions, we show that the thickness
of the thermal boundary layer scales very well with the Nusselt number as δ ∼ 1/Nu.
Measurements of the mean wavenumber – inverse of the mean length scale – in the
core of the flow support the scaling k̄ ∼ Ra0.49, in very good agreement with theoretical
and numerical predictions. Interestingly, the behaviour of the mean wavenumber near the
boundaries scales as k̄ ∼ Ra0.81, which is distinguishably different from the presumed
linear behaviour. We hypothesize that a linear behaviour can only be observed in the
ultimate regime, which we argue to set in only at Ra in excess of 5 × 105, whereas a
sublinear behaviour is recovered at more modest Ra. The present results are expected to
help the development of long desired reliable models to predict the large- and fine-scale
structure of Rayleigh–Darcy convection in the high-Ra regime typically encountered in
geophysical processes, such as for instance in geological carbon dioxide sequestration.

Key words: convection in porous media, plumes/thermals, buoyancy-driven instability

† Email address for correspondence: alfredo.soldati@tuwien.ac.at

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited. 943 A51-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

46
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:alfredo.soldati@tuwien.ac.at
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.461&domain=pdf
https://doi.org/10.1017/jfm.2022.461


De Paoli and others

1. Introduction

Rayleigh–Darcy convection is observed in fluid-saturated porous media heated from the
bottom and cooled from the top (Horton & Rogers 1945; Lapwood 1948; Graham & Steen
1994). The fluid in contact with the heated bottom boundary becomes warmer, and thus
lighter, than the fluid located above it. This creates an intrinsically unstable vertical density
stratification, with dense fluid lying on top of light fluid: a fluid parcel that, under the
action of a small perturbation is displaced vertically upwards compared with its initial
equilibrium position, will be surrounded by denser fluid, and will consequently experience
a buoyancy force that will tend to push it further away from the initial position. At the
same time, cold and dense fluid is dragged downwards, and convection can start. However,
bottom-up heating does not always give convection: when the supplied heating flux is not
large enough, diffusion (of momentum and heat) is able to dissipate the injected energy and
to keep the flow quiescent, despite the presence of an unstable density stratification. The
single parameter that characterizes the above-mentioned dynamics is the Rayleigh–Darcy
number Ra – the ratio of buoyancy to dissipative forces. When Ra is small, dissipative
forces are large enough to balance the destabilizing effect of buoyancy, and the fluid does
not move. When Ra increases and exceeds a certain threshold, dissipative forces can no
longer counteract buoyancy, and convection sets in. When convection takes place, it can
largely increase the amount of vertical heat flux that can be transferred across the porous
layer. This is usually quantified in terms of the Nusselt number Nu – the ratio of convective
to diffusive heat flux.

In recent years, Rayleigh–Darcy convection has received a lot of attention because of
its relevance in the process of carbon dioxide (CO2) sequestration in geological reservoirs
(Hidalgo et al. 2012; Huppert & Neufeld 2014; Riaz & Cinar 2014; Emami-Meybodi et al.
2015; De Paoli 2021). From a physical viewpoint, the process is as follows: upon injection
into brine-filled geological formations, liquid CO2 – which, when pure, is lighter than
brine – dissolves in the brine (3 % in weight) and forms a heavier solute (CO2 + brine)
that flows downward. Accurate evaluation of the flow field and of the associated transport
flux is crucial to determine the optimal CO2 injection rate into geological reservoirs, which
typically feature Ra up to ∼O(105–106).

The current state of the art in the field is mostly based on two-dimensional computations
(Graham & Steen 1994; Otero et al. 2004; Hewitt, Neufeld & Lister 2012; Wen et al.
2013; Wen, Corson & Chini 2015; De Paoli, Zonta & Soldati 2016; Nield & Bejan 2017;
Hewitt 2020), focusing in particular on the flow stability and on the functional dependence
between Ra – the forcing parameter of the flow – and Nu – the response parameter.
For Ra < 4�2, diffusion (dissipative forces) dominates and keeps the fluid quiescent,
thus yielding Nu = 1. At Ra > 4�2, buoyancy overtakes diffusion, and steady convection
rolls spanning the full thickness of the porous layer appear, thus causing Nu to increase.
When Ra � 400, the steady rolls are affected by the growth of boundary layer instabilities
which, at Ra � 1300, destabilize the organized roll pattern. Beyond this threshold, the flow
enters the high-Ra regime, which is characterized by chaotic formation of small plumes
(protoplumes) within the boundary layer, and by their subsequent merging to form vertical
megaplumes which stretch almost over the entire flow thickness. Reportedly, the scaling
of Nu with Ra in this regime is nearly linear, Nu ∼ Ra.

The dynamics of three-dimensional Rayleigh–Darcy convection remains relatively little
explored. Most available numerical and experimental studies are limited to the low-Ra
regime, Ra ∼ O(1000) – and focus essentially on the stability of the flow and on the
inception of convection (Elder 1967; Schubert & Straus 1979; Kimura, Schubert & Straus
1986; Lister 1990). One of the most important studies in the field is due to Hewitt, Neufeld
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Three-dimensional Rayleigh–Darcy convection

& Lister (2014). By performing a careful characterization of the flow up to Ra = 20 000,
Hewitt et al. (2014) showed that, very much like in the two-dimensional case but with the
additional complication of the third dimension, the flow is dominated by protoplumes –
which take the form of filamentary sheet-like structures – near the boundaries, and by
megaplumes in the interior part of the domain. Measurements of the Nusselt number
showed that, despite the scaling with Ra remaining essentially linear, remarkable increase
(by approximately 40 %) is observed compared with the two-dimensional case. Relevant
to the present study is also the observation that the mean wavenumber of the flow –
which is inversely proportional to the dominant length scale – scales as k ∼ Ra0.52±0.05

in the core part of the domain, and as k ∼ Ra−1 in the near-boundary region. In a recent
study (Pirozzoli et al. 2021), we have pushed the limit of three-dimensional numerical
simulations to Ra = 8 × 104 and, relying also on sound theoretical predictions regarding
the asymptotic behaviour of Nu, we have shown that its variation at finite Ra can be
well characterized in terms of sublinear deviations from the linear asymptotic trend.
The goal of the present work is to exploit the large numerical dataset which we have
generated to offer a thorough characterization of the fine- and large-scale structures of
the flow in three-dimensional domains, at Ra up to 8 × 104. In particular, we focus on
the relationship between large megaplumes dominating the interior part of the domain,
and the persistent supercells observed near the boundaries, and we propose reliable
parametrizations which can help in the development of models for the asymptotic flow
structure and the corresponding heat/mass transfer fluxes.

2. Methodology

With reference to figure 1, we consider a three-dimensional fluid-saturated porous medium
with uniform porosity φ and uniform permeability κ . The origin of the coordinate system
is located at the bottom of the domain, and the x∗, z∗ axes point along the two horizontal
directions, whereas the y∗ axis points along the vertical direction (along which gravity g
is directed). A positive temperature difference �θ∗ = θ∗

max − θ∗
min is maintained between

the top and the bottom boundaries by heating the flow from the bottom and cooling it from
the top. We consider that fluid density, ρ∗, is a linear function of temperature

ρ∗(θ∗) = ρ∗(θ∗
min) − �ρ∗ θ∗ − θ∗

min
θ∗

max − θ∗
min

, (2.1)

with �ρ∗ = ρ∗(θ∗
min) − ρ∗(θ∗

max). Assuming validity of the Boussinesq approximation
(Landman & Schotting 2007; Zonta & Soldati 2018), the flow is incompressible and
governed by Darcy’s law

� • u∗ = 0, u∗ = − κ

μ

�
�P∗ + ρ∗gj

�
, (2.2a,b)

with μ the fluid viscosity (constant), u∗ = (u∗, v∗, w∗) the volume-averaged velocity field,
P∗ the pressure and j the vertical unit vector.

The evolution of the temperature field is controlled by the advection–diffusion equation

φ
∂θ∗

∂t∗
+ � • (u∗θ∗ − φD�θ∗) = 0, (2.3)

where t∗ is time, and D is the thermal diffusivity, which is considered constant here. The
superscript ∗ is used to indicate dimensional variables. The top and bottom boundaries
are impermeable and isothermal. Periodicity is assumed in the directions parallel to the
boundaries.
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Figure 1. Sketch of the computational domain – with dimensions l∗x , l∗y and l∗z – used to study Rayleigh–Darcy
convection. The flow is heated at the bottom, θ∗( y∗ = 0) = θ∗

max and cooled at the top, θ∗( y∗ = l∗y ) = θ∗
min,

and boundaries in the x∗ and z∗ directions are assumed to be periodic. The gravitational acceleration (g) points
downwards. The temperature distribution θ∗ for the case Ra = 8 × 104 is also shown for illustrative purposes
on the side boundaries and in a plane close to the top boundary (specifically, at a distance of 50l∗y/Ra from the
top boundary).

2.1. Dimensionless equations
For the present flow configuration, in which buoyancy forces drive the primary flow
motion in the vertical direction, natural velocity, temperature and length reference scales
are the temperature difference, �θ∗, the buoyancy velocity V∗ = g�ρ∗κ/μ and the
domain height, l∗y , respectively (Fu, Cueto-Felgueroso & Juanes 2013; Wen et al. 2018).
Accordingly, dimensionless variables read as

u = u∗

V∗ , θ = θ∗ − θ∗
min

�θ∗ , t = t∗

φl∗y/V∗ , P = P∗

�ρ∗gl∗y
. (2.4a–d)

Introducing the reduced pressure p∗, we obtain the dimensionless form of the governing
equations (2.3)–(2.2a,b)

∂θ

∂t
+ � •

�
uθ − 1

Ra
�θ

�
= 0, (2.5)

� • u = 0, u = − (�p − θ j) , (2.6a,b)

where Ra = g�ρ∗κl∗y/(φDμ) = V∗l∗y/(φD) is the Rayleigh–Darcy number. The
boundary conditions for velocity and temperature then read as

v( y = 0) = 0, θ( y = 0) = 1, (2.7a)

v( y = 1) = 0, θ( y = 1) = 0. (2.7b)

Naturally, the previous choice of reference scales in not unique. A suitable, alternative
choice is to take x∗

d = φD/V∗ as a reference length scale (while keeping the same reference
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temperature and velocity scales). This gives the so-called diffusive–convective scaling,
in contrast with the convective scaling presented above. From a physical viewpoint,
x∗

d denotes the length over which advection and diffusion balance (Slim 2014), and is
independent of the physical domain thickness. When rescaled in the latter way, dimensions
are bound in the range x∗/x∗

d ∈ [0, Ra], and comparison between simulations at different
Ra is easier. For this reason, lengths in this paper are rescaled with respect to x∗

d.
Furthermore, introduction of this length scale also yields another interpretation of the
Rayleigh–Darcy number, Ra = l∗y/x∗

d, which may be regarded as the dimensionless height
of the domain (Slim 2014).

2.2. Computational details
The numerical simulations rely on a modified version of a second-order finite-difference
incompressible flow solver, based on staggered arrangement of the flow variables (Orlandi
2000), which has been extensively used for direct numerical simulation of wall-bounded
neutrally buoyant and unstably stratified turbulent flows (Pirozzoli 2014; Pirozzoli et al.
2017). The temperature transport equation is advanced in time by means of a hybrid
third-order low-storage Runge–Kutta algorithm, whereby the convective terms are handled
explicitly and the diffusive terms are handled implicitly, limited to the vertical direction.
This approach guarantees that the total temperature variance is discretely preserved
in the limit of inviscid flow. A special strategy is used here for the solution of the
forced Darcy system (2.5)–(2.6a,b). As in the classical fractional-step algorithm for
convection–diffusion equations (Kim & Moin 1985), and exploiting linearity of the
equations, at each Runge–Kutta sub-step a provisional velocity field �u is first determined
by disregarding pressure, namely

�u = θ j, (2.8)

which is then projected to the space of divergence-free vector functions through a
correction step,

u = �u − �ϕ, with ∇2ϕ = � •�u, (2.9)

and ∂ϕ/∂y = 0 at boundaries to satisfy the impermeability condition. It is easy to show
that the fractional-step procedure (2.8)–(2.9) is equivalent to the original Darcy problem,
with ϕ ≡ p and under free-slip boundary conditions. An efficient direct algorithm, based
on Fourier expansions along periodic directions (Kim & Moin 1985; Orlandi 2000), is
used here for solving the resulting Poisson equation.

The mesh spacing in the directions parallel to the boundaries was decided based
on preliminary grid-resolution studies at low Ra and inspection of the temperature
spectra, to prevent any energy pile up at the smallest resolved flow scales. Regarding
the resolution in the vertical direction, we have followed the criterion that twenty points
should be placed within the thermal boundary layer edge, identified through the peak
location of the temperature variance, and grid points are clustered towards the boundaries
using a hyperbolic tangent stretching function. Given the expected linear growth of the
temperature gradients, the number of points in each coordinate direction was increased
proportionally to Ra. The time step is selected so that the Courant–Friedrichs–Lewy
number is about unity for all the simulations herein reported. Calculations, carried out
at Ra ≤ 5 × 103, have shown excellent agreement with the numerical results obtained by
Hewitt et al. (2014), obtained with a different numerical method.
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Simulation Ra lx/ly × lz/ly Nx × Nz × Ny Nu θrms( y = 1/2)

Ra1 1.0 × 103 4 × 4 384 × 384 × 32 11.14 0.1112
Ra2 2.5 × 103 4 × 4 768 × 768 × 64 28.56 0.1094
Ra5 5.0 × 103 4 × 4 1536 × 1536 × 128 52.20 0.1036
Ra7 7.5 × 103 4 × 4 2304 × 2304 × 192 75.73 0.1019
Ra10 1 × 104 1 × 1 768 × 768 × 256 99.84 0.1011
Ra20 2 × 104 1 × 1 1536 × 1536 × 512 193.17 0.0991
Ra30 3 × 104 1 × 1 2304 × 2304 × 768 281.14 0.0972
Ra40 4 × 104 1 × 1 3072 × 3072 × 1024 370.17 0.0966
Ra80 8 × 104 1 × 1 6144 × 6144 × 2048 709.00 0.0950

Table 1. Summary of numerical simulations performed in the present study. For each simulation, we explicitly
report Rayleigh number Ra, domain size lx/ly × lz/ly × 1 and grid resolution Nx × Nz × Ny. Additional
simulations at Ra = 1 × 104, not reported here, have been run for 5 different values of the aspect ratio
(see table 2). Nusselt number, Nu, and time- and space-averaged temperature root mean square (rms) at the
midplane, θrms( y = 1/2), are also reported.

3. Scaling of the Nusselt number with the Rayleigh number

The key response parameter in Rayleigh–Darcy convection is the Nusselt number (Nu),
which controls the relative effect of convection over conduction.

The Nusselt number is evaluated here as the time-averaged value – denoted by angular
brackets – of the mean temperature gradient at the top and bottom boundaries,

Nu = −
�

1
2 (lzlx)

� lz

0

� lx

0

	
∂θ

∂y






y=0

+ ∂θ

∂y






y=1

�

dx dz

�

. (3.1)

Measurements of Nu at various Ra are listed in table 1, and plotted in compensated
form (Nu/Ra) in figure 2(a), for 1 × 103 ≤ Ra ≤ 8 × 104. Together with the numerical
results obtained in the present three-dimensional (filled circles) and two- dimensional
(filled diamonds) studies, we also report results available from previous literature (Hewitt
et al. 2014, for the three-dimensional case); (Hewitt et al. 2012; Wen et al. 2015; De
Paoli et al. 2016, for the two-dimensional case). For the two-dimensional case, all the
results generally agree, indicating that the scaling proposed by Hewitt et al. (2012),
namely Nu ∼ 0.0069Ra + 2.75, reproduces fairly well not only the asymptotic behaviour
of the flow, which sets in already at Ra ∼ 3 × 104, but also the pre-asymptotic behaviour.
The situation is more involved in the three-dimensional case, with our data showing no
attainment of the expected asymptotic linear behaviour, even at Ra = 8 × 104. Hewitt
(2020) provided phenomenological arguments, based on the results of Malkus (1954) and
Howard (1964), that the scaling should be linear. This agrees also with the best known
theoretical upper bound, for which Nu ≤ 0.0297Ra (Otero et al. 2004). Best fitting of
our data, in combination with these observations, yields the scaling (solid line, see also
Pirozzoli et al. (2021), for further details)

Nu/Ra = 0.0081 + 0.067Ra−0.39. (3.2)

Of course, a scaling with a leading term other than linear would result in inconsistent
prediction in the ultimate regime. On the other hand, the additional sublinear correction
in figure 2(a) has influence only at moderate Ra, becoming negligibly small at high Ra,
and leaving the stage to the asymptotic linear trend, which we extrapolate to be Nu =
0.0081Ra. Compared with other correlations found in the literature (Hewitt et al. 2014), the

943 A51-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

46
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.461


Three-dimensional Rayleigh–Darcy convection

0.006

Ra

Nu/Ra = 0.0081 + 0.067 Ra–0.39

Nu/Ra = 0.0069 + 2.75 Ra–1

N
u/

Ra

0.008

0.010

0.012

0.014

0.016

0.018

103 104

3D-asymptote
(Pirozzoli et al. 2021))

105

(d) Ra = 80 000

(c) Ra = 10 000

(b) Ra = 1000

(a)

Figure 2. (a) Compensated Nusselt number as a function of Rayleigh number. Results obtained by Pirozzoli
et al. (2021) and present numerical simulations are shown by filled circles (•) and diamonds (�) for
three-dimensional and two-dimensional simulations, respectively. The black solid line indicates the proposed
correlation Nu/Ra = 0.0081 + 0.067Ra−0.39 (see also Pirozzoli et al. 2021). Data obtained in previous works,
in both two-dimensional (Hewitt et al. 2012; Wen et al. 2015; De Paoli et al. 2016) (�, � and 	, respectively)
and three-dimensional (Hewitt et al. 2014) (
) simulations are shown with open symbols. The scaling law
Nu/Ra = 0.0069 + 2.75/Ra proposed by Hewitt et al. (2012) for the two-dimensional case is shown with a
solid red line. Modifications of the flow structure with Ra are shown in the insets, in terms of the temperature
distribution in vertical slices at Ra = 103 (b), Ra = 104 (c) and Ra = 8 × 104 (d).

present one works fairly well over a rather large range of Ra, starting from Ra ∼ 2.5 × 103.
Some discrepancy between the present correlation and the numerical results is observed
at Ra = 103, which is, however, to be expected, as our fit is constructed to capture the
behaviour of the system in the high-Ra region of the parameter space. It is noteworthy that
we estimate – evaluating the point at which the sublinear correction becomes negligibly
small (less than 5 %) compared with the leading linear term – the ultimate regime to set in
at Ra ≈ 5 × 105, i.e. well beyond previous predictions.

The change of Nu with Ra implies a corresponding change of the flow structure. This
is clearly shown in figure 2, where the temperature distribution in a vertical (z, y) section,
spanning the entire cell height and located at x = 1/2, is plotted for Ra = 1000 (figure 2b),
Ra = 10 000 (figure 2c) and Ra = 80 000 (figure 2d). At Ra = 1000, the flow is dominated
by a pair of rolls with aspect ratio ∼1/2 whose flanks are marked by tall and strongly
coherent ascending and descending plumes. These plumes are generated by boundary
layer instabilities which grow and propagate vertically into the flow (Graham & Steen
1994). At higher Ra, we observe a more complicated flow structure, with small fingers of
light fluid emerging from the bottom boundary and moving upwards, and correspondingly
small fingers of heavy fluid descending from the top boundary and moving downwards.
Coalescence of these fingers generates larger columnar structures – megaplumes – that
dominate the core region of the flow and, driven by buoyancy, reach the opposite boundary.
This dynamics will be further clarified upon inspection of the flow structure in horizontal
planes (see § 5.1).
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Figure 3. (a) Time- and horizontally averaged temperature Θ = |θw − θ |, where θw is the boundary
temperature. Profiles are shown as a function of the vertical coordinate, y (a), and as a function of the vertical
coordinate rescaled by the Nusselt number, y × Nu (b). Colours correspond to the Rayleigh number, from low
(white) to high (black). Due to symmetry of the problem, only half of the domain is shown. In the bulk of the
domain, the profiles exhibit a logarithmic scaling, Θ = A ln (2y) + 1/2, with A = 0.0188 (dashed blue line).
When the wall-normal coordinate is rescaled by the Nusselt number, y × Nu (b), all temperature profiles are
self-similar and are well described by a linear function, Θ = y × Nu (dashed blue line), near the boundary.

4. Temperature statistics

In figure 3(a), we show distributions of the mean temperature Θ = |θw − θ | as a function
of the distance from the boundary (y) in semi-log scale, for the various Ra considered in
this study, limited to the lower half of the domain. The rise of Θ to the centreline value,
Θ = 0.5, occurs almost entirely within a very short distance (say δ) from the boundaries.
This distance, which may be regarded as the effective thermal boundary layer thickness,
is seen to depend on the value of Ra, ranging from δ � 10−1 at Ra = 103, to δ � 10−3

at Ra = 8 × 104. In this outer representation, the temperature profile outside the thermal
boundary layer is well fitted with a logarithmic distribution, Θ = A ln (2y) + 1/2, where
A = 0.0188 (dashed blue line in figure 3a). A similar behaviour has been observed in
classical Rayleigh–Bénard convection (Ahlers et al. 2012). Restricting to a region closer
to the central part of the domain (0.45 ≤ y ≤ 0.55), Hewitt et al. (2014) observed that the
temperature profile scales linearly with y. This observation holds also in the present case.
When Θ is plotted as a function of the rescaled vertical distance, y × Nu (see figure 3b), all
profiles collapse in the near-boundary region, up to y × Nu ≈ 1, where they nicely follow
the expected linear behaviour Θ = y × Nu (dashed line). This is a strong indication that
the thickness δ of the thermal boundary layer scales well with Nu, at all Ra.

Interestingly, the behaviour of Θ is non-monotonic with y, and it develops a local
maximum around the edge of the thermal boundary layer, say 0.5 < y × Nu < 5 in
rescaled units (figure 3b). This maximum is especially visible at Ra = 103, whereas it
weakens at higher Ra. Such non-monotonic behaviour of Θ bears important consequences
on the heat transport mechanisms across the porous domain, as the diffusive heat flux
qθ ∝ dθ/dy may become negative. This is explicitly quantified in figure 4, where we show
the rescaled mean temperature gradient, −Nu−1dθ/dy, as a function of y (figure 4a) and
as a function of y × Nu (figure 4b), at various Ra. Based on these plots, one can evaluate
quite precisely the thickness of the thermal boundary layer δ, identified as the location
where the temperature gradient becomes negligibly small. We are now able to confirm the
estimates given in figure 3, with the boundary layer thickness ranging from δ � 10−1 for
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Figure 4. (a) Vertical temperature gradient (−dθ/dy) normalized by the Nusselt number, Nu (half-domain is
shown). Profiles are shown as a function of the vertical coordinate, y (a), and as a function of the vertical
coordinate normalized by the Nusselt number, y × Nu (b). Colours correspond to the Rayleigh number, from
low (white) to high (black). The dashed blue line denotes the zero value.

Ra = 103, to δ � 10−3 for Ra = 8 × 104. In rescaled units (figure 4b), this corresponds
to δ × Nu � 1, i.e. δ � 1/Nu. As anticipated above, at small Ra the diffusive heat flux
can become negative (at the edge of the thermal boundary layer, around y × Nu � 1), thus
indicating the presence of regions where the local mean temperature gradient is opposite
to the imposed gradient (these regions are usually called counter-gradient flux regions, see
also Zonta & Chibbaro (2016) and Hadi Sichani et al. (2020) for further details). A similar
overshoot in the temperature profiles at the edge of the thermal boundary layer were also
observed in Rayleigh–Bénard convection at high Prandtl number (Schmalzl, Breuer &
Hansen 2002). The existence of such regions may be ascribed to the fact that, when Ra
is small, the vertical plumes carry their momentum and temperature almost unchanged all
across the fluid layer. As a consequence, there are regions close to the bottom boundary
in which the temperature is nearly the same as at the top boundary, and vice versa,
which imply local temperature inversion. This effect tends to vanish as Ra increases, as
a consequence of the vigorous mixing that homogenizes the temperature field, and greatly
weakens the temperature gradients. Alternatively, the absence of counter-gradient flux
regions for increasing Ra can be explained by considering that the height of the porous
domain, in dimensionless diffusive units, is ly = Ra, which suggests that the influence of
one boundary on the other becomes weaker and weaker as Ra increases (i.e. the boundaries
are effectively farther apart).

The root mean square distributions of the temperature fluctuations θrms are shown in
figure 5. Consistently with observations made above regarding the mean temperature and
its gradient, temperature fluctuations increase sharply in a thin region near the boundary,
until they develop a peak at a distance between y � 10−1 for Ra = 103, and y � 10−3

for Ra = 8 × 104. The magnitude of the peak weakly decreases with Ra, as shown in
figure 6a). Past the peak, θrms decreases and it tends to level off towards the centre of the
domain. Universality is near perfect in the central part of the domain, where, in agreement
with the findings of Hewitt et al. (2014), we get θrms ≈ 0.1, quite robustly across the Ra
range. Again, when θrms is shown as a function of y × Nu, all the profiles are satisfactorily
universal towards the boundary. The location at which temperature fluctuations attain
a peak (shown in figure 6b) is frequently used to estimate the thermal boundary layer
thickness (Ahlers, Grossmann & Lohse 2009). In line with our previous estimates based
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Figure 5. (a) Time- and horizontally averaged root-mean-square temperature distributions (half-domain is
shown). Profiles are shown as a function of y (a), and as a function of y × Nu (b). Colours correspond to
the Rayleigh number, from low (white) to high (black). The maximum value obtained for Ra = 2.5 × 103 is
marked with a horizontal dashed line.
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Figure 6. Peak value (a) and peak location (b) of time- and horizontally averaged root-mean-square
temperature distributions, respectively defined as θrms and ym.

on other observables (i.e. mean temperature and mean temperature gradient), we find that
δ ≈ 1/Nu, although the scaling only becomes clear at Ra � 104.

5. Flow structures

5.1. Flow structures near the boundaries
The identification of coherent flow structures is a crucial aspect in many branches of
fluid mechanics. In buoyancy-driven flows, coherent flow structures are often identified
based on the behaviour of temperature fluctuations or of temperature–velocity correlations.
Unlike in Rayleigh–Bénard turbulence – in which use of the different identification
techniques can lead to different results (Krug, Lohse & Stevens 2020) – in Rayleigh–Darcy
convection all these criteria yield similar results (De Paoli et al. 2016). Of specific
importance is the characterization of the flow structure in the region near the flow
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Three-dimensional Rayleigh–Darcy convection
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Figure 7. (a) Temperature distributions in a plane close to the bottom boundary (x, y = 50/Ra, z) for the Ra80
simulation. (b) Close-up view of the temperature distribution in a square subdomain. (c) Filtered temperature
field, highlighting the plume organization in the near-boundary region.

boundary, which we do in figure 7 by inspecting the temperature distribution in a
horizontal plane located near the bottom boundary, at y = 50/Ra, for the Ra80 simulation,
since the flow features we wish to discuss are emphasized at the highest Ra. Short,
thin and bright filaments, corresponding to warm fluid protoplumes ejected from the
bottom boundary, are interconnected and arranged into an organized pattern of small
polygonal-shaped cells (Fu et al. 2013; Amooie, Soltanian & Moortgat 2018). Those
cells enclose dark regions of colder return fluid which replace the ejected hot fluid.
Upon impingement on the boundary, cold fluid is deflected in the horizontal directions
and pushes newly formed protoplumes to interact, giving rise to a dynamic pattern, in
which some of the protoplumes cluster into specific regions – thicker bright ridges,
see figure 7(a) – which define the boundaries of larger superstructures – almost
homogeneously distributed over the plane – from which larger buoyant plumes are ejected.

We now aim at achieving a more quantitative description of the flow structure
organization described above, while leaving detailed characterization of supercells to § 5.3.
For that purpose, in figure 7(c) we only retain those points where θ > 3/4 (see discussion
in the Appendix), yielding a binarized representation in which the protoplumes show up
as black filaments encircling elementary flow cells, which can therefore be considered as
minimal flow units (Fu et al. 2013).

Based on the binarized maps thus obtained (figure 7c), we measure the area of all
subdomains bounded by filamentary protoplumes, and we evaluate their corresponding
probability density distribution P(A), as shown in figure 8(a). Here, lengths are expressed
in dimensionless units as Lx = l∗x/x∗

d and Lz = l∗z /x∗
d, hence areas range in the interval

0 < A < Ra2. Regardless of the specific value of Ra, the probability density distributions
have similar shapes. We found large probability density of regions with very small
area, A/Ra2 ∼ 10−1 ÷ 10−6 (i.e. having side l ∼ 10−1 ÷ 10−3), depending on Ra. The
probability of observing cells with increasing area drops off rapidly. Note that, while
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Figure 8. Characterization of flow structures in the near-boundary region. Structures are identified based on
the binarized temperature maps, as shown in figure 7(c). (a) Probability density distribution of cells area;
(b) probability density distribution of the cell circularity parameter, C = 4�A/Π2, with Π the cell perimeter.
All quantities are expressed in dimensionless units (the domain size is lx = lz = Ra). Examples of shapes,
associated with the corresponding values of circularity, are also reported at the bottom of (b).

the probability density distributions for Ra > 2 × 104 seem to collapse fairly well, some
differences are found at lower Ra, with lower probability of having smaller cells, and
higher probability of having larger cells (this is particularly apparent at Ra = 103). This
observation suggests that the structure and organization of the flow cells near the boundary
are still evolving within the investigated range of Ra, although the evolution becomes
milder and milder as Ra increases. Not only is the extension of flow cells important, but
also their shape, which we characterize by computing the cell circularity parameter, C =
4�A/Π2, with Π the cell perimeter. The corresponding probability density distributions
are shown in figure 8(b). Note that C = 1 in the case of circular regions, whereas C → 0
in the case of highly elongated, needle-shaped regions. All other possible shapes range
between those two limiting values, as visually rendered at the bottom horizontal axis
of figure 8(b). For all Ra here considered, the probability density function of C shows a
qualitatively similar distribution, with maximum probability density of observing regions
with circularity C ∼ 0.8, as is the case for nearly square cells. However, the probability of
observing near-circular regions is non-negligible, as P(C = 1) ∼ 0.3. Elongated regions
(say, C < 0.2) are quite frequent at low Ra, and in particular at Ra = 103, but they become
increasingly rare at high Ra. In line with the previous discussion on P(A), it is interesting
to observe that P(C) is still evolving within the range of Ra investigated here, but it seems
to tend towards an asymptotic distribution for increasing Ra. In § 5.4, the dependence of
our results on the domain size has been tested by performing simulations at Ra = 104 in
boxes with various sizes.

5.2. Identification of supercells and dominant length scales in Rayleigh–Darcy
convection

As previously discussed – and similar to what is observed in classical Rayleigh–Bénard
turbulence (Stevens et al. 2018; Green et al. 2020; Krug et al. 2020; Berghout, Baars
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Three-dimensional Rayleigh–Darcy convection
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Figure 9. Detection of supercells in the near-boundary region: (a) instantaneous temperature distribution
at y = 50/Ra for the Ra80 simulation, in which supercells are identified by their bright, high-temperature
boundaries; (b) time-averaged temperature field. Whereas the boundary of supercells is relatively stable, with
no remarkable change in time and space, the inner portion is controlled by smaller cells, which continuously
form and merge with the existing ones, while remaining mostly confined within bounding supercells.

& Krug 2021) –, the near-boundary region of the Rayleigh–Darcy flow at high Ra
is characterized by the presence of large-scale, long-lived coherent structures called
‘supercells’ resulting from coalescence of smaller primary cells.

To analyse the behaviour of the supercells, we again consider the temperature
distribution in the near-boundary region, θ(x, y = 50/Ra, z), as shown in figure 9(a)
for the Ra80 simulation. Thick, bright ridges identifying high-temperature regions, and
marking the boundary of supercells, emerge rather clearly. Monitoring the time evolution
of the flow, it appears that the boundaries of the supercells are quite stationary, showing
limited lateral shift. However, their interior is characterized by the presence of smaller
cells (figure 9a), which continuously form, move and merge, although remaining confined
within the boundaries of the corresponding supercell. Hence, to better highlight the time
persistence of the supercells, we have computed averages of the temperature field over a
one hundred flow samples, spaced �tav � 0.1 apart. The time window has been carefully
selected to be much larger than the time scale of the small protoplumes populating the
boundary layer (typically, �t ∼ O(10−2)), which will thus be filtered, but smaller than
the time scale of large megaplumes (typically, �t ∼ O(1)). The results of the averaging
procedure are shown in figure 9(b), which makes the boundaries of the supercells much
more evident.

In order to gain a perception to the flow organization along the vertical direction,
in figure 10 we compare the temperature fields in a near-wall plane and at the flow
centreplane, at various Ra. The flanks of the supercells (figure 10a–d) become more
and more evident as Ra increases, and the typical size of cells and supercells decreases
distinctly when expressed in convective units, based on the thickness of the porous
layer and on the buoyancy velocity. Note, however, that, when expressed in terms of the
diffusive–convective scaling (see § 2), the horizontal area of the top and bottom boundaries
for the Ra80 simulation is 64 times larger than for the Ra10 simulation, with obvious
influence on the area of each flow cell. A similar trend for the characteristic size of the
flow structure, i.e. flow structures which reduce in size at increasing Ra when shown in
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Figure 10. Temperature distributions in a near-boundary plane (a–d) and in the flow centreplane (e–h).

dimensionless convective units, is also observed at the flow centreplane, see figure 10(e–h).
However, and different from what happens near the boundary, no signature of small-scale
structures is evident at the centreplane, which is dominated by tall columnar megaplumes
which span the whole flow thickness, and which are clearly visible as vertical yellow
stripes in figure 2(b–d).

Obtaining a quantitative estimate of the size of the dominant flow structures near
the boundaries and at the flow centreplane is obviously important on account of their
influence on the overall heat transfer mechanisms. For that purpose we consider the
two-dimensional spectral density of the temperature field, E(kx, kz), where kx, kz are the
horizontal wavenumbers, and we define a mean radial wavenumber as (Hewitt et al. 2014)

kr( y) =
�

� � 
k2

x + k2
z E(kx, kz) dx dz

� �
E(kx, kz) dx dz

�

. (5.1)
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103 104

Ra

k
–
r

105

101

102

Simulations (centre)
Simulations (near-wall)
Best fit

Near-wall, k
–

r ~
 Ra0.81

Centre, k
–

� ~ Ra0.49

103

Figure 11. Mean radial wavenumber kr (solid lines and symbols) of the temperature distribution, determined
after (5.1). The results computed in the centre (y = 1/2, filled symbols) and in the near-boundary region
(y = 50/Ra, empty symbols) are reported. The best fits obtained (dashed lines) are kr = 0.25Ra0.49 and
kr = 0.045Ra0.81, for the centre and near-boundary regions, respectively.

The latter quantity can then be interpreted as a measure of the inverse size of the dominant
structures at a given vertical position. The values of kr in the near-wall plane and at the
flow centreplane are reported in figure 11 as a function of Ra.

Near the boundary, power-law fitting of the simulation data for 103 ≤ Ra ≤ 8 × 104,
yields the scaling

kr( y = 50/Ra) ≈ 0.045Ra0.81, (5.2)

where taking a 95 % confidence interval, the value of the fitting exponent is 0.8057 ±
0.0174. This result seems to fall short of the linear scaling reported by Hewitt et al.
(2014), which was arrived at by assuming that the horizontal size of the near-boundary
plumes scales with the boundary layer thickness, hence as ∼1/Nu. Given that, in the
ultimate regime, Nu ∼ Ra, it would follow that kr ∼ Ra. However, in our previous work
(Pirozzoli et al. 2021) we noticed that such ultimate regime would probably set in at
Ra ≈ 5 × 105, well beyond the range of Ra currently accessible to numerical simulations.
Hence, deviations from such asymptotic scaling are plausible.

At the flow centreplane, data fitting of our results yields

kr( y = 1/2) ≈ 0.25Ra0.49, (5.3)

where taking a 95 % confidence interval, the fitting exponent is 0.4893 ± 0.0231. This is
now in excellent agreement with previous theoretical predictions (kr ∼ Ra1/2, Hewitt &
Lister 2017) and with simulations (kr = 0.17Ra0.52, Hewitt et al. 2014). This suggests that
the size and spacing of the dominant structures at the centreplane scale well with previous
predictions of the flow structure organization that maximizes the vertical heat transport
(Hassanzadeh, Chini & Doering 2014)

5.3. Supercells and megaplumes
To further connect flow structures near the boundary (supercells) with flow structures
in the core (megaplumes), we apply a low-pass filter (with cutoff wavenumber kc) to
the near-boundary temperature distribution, so as to remove small-scale structures (Krug
et al. 2020). Given our goal of linking the near-boundary flow structures to those at the
core, we set the cutoff wavenumber to coincide with the mean radial wavenumber at the
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Figure 12. Temperature distributions at y = 50/Ra from the top boundary (a–c), corresponding low-pass
filtered distributions (d–f ) and temperature distribution in the centreplane (g–i). Three values of the Rayleigh
number are considered, namely 1 × 103 (a,d,g), 5 × 103 (b,e,h) and 1 × 104 (c, f,i). The θ = 1/2 iso-line in the
centreplane is also shown as a black solid line in the near-wall filtered (d–f ) and centreplane (g–i) temperature
distributions. The domain size is lx = lz = 4ly for all cases.

centreplane, i.e. kc = kr( y = 1/2), as prescribed by (5.3). Results are shown in figure 12
for Rayleigh numbers in the low-to-moderate region, namely Ra = 103, 5 × 103, 104

(with same dimensionless size, lx/ly × lz/ly = 4 × 4, see table 1), in which the flow
changes significantly, whereas changes are minimal at higher Ra. A one-to-one comparison
between the filtered temperature field in the near-boundary region (θf ) and in the flow
centreplane is provided in figure 12(d–i), where a the temperature iso-line θ = 1/2 in
the centreplane is also superposed on the contour maps. At Ra = 103, we note close
correspondence between the filtered near-boundary temperature distribution (figure 12d)
and the unfiltered distribution in the centreplane (figure 12g), which, however, seems to
weaken at higher Ra (see figure 12f,i).

A quantitative evaluation of the similarities between the unfiltered temperature field at
the centreplane (θ ) and the filtered temperature field near the boundary (θf ), is provided
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Figure 13. Correlation factor between unfiltered centreplane temperature and filtered near-wall temperature, as
defined in (5.4), as a function of Ra. Simulations with lx/ly = lz/ly = 1 (Ra > 104) and with lx/ly = lz/ly = 4
(Ra ≤ 104) are reported.

by their correlation coefficient, namely

r =
�

� � �
θ − θ f

� �
θf − θ f

�
dx dz

�� � �
θ − θ f

�2 dx dz

�� � �
θf − θ f

�2 dx dz

�

, (5.4)

which we determine by averaging in time the correlation coefficients found in the
instantaneous temperature fields. This is shown in figure 13 as a function of Ra, and found
to be maximum at the lower Ra (a peak value r ∼ 0.75 is found at Ra = 103), and to slowly
relax to a value r ≈ 0.4 for Ra ≥ 2 × 104. This is a further confirmation that supercells
are the footprint of the megaplumes which dominate the core part of the flow.

5.4. Assessment of domain size effects
A series of additional simulations – whose parameters are summarized in table 2 – has
been carried out to explore the effect of computational box size and aspect ratio. In
particular – figure 14 – we look at the intertwined behaviour of the flow structure near the
boundary and at the domain centre (by looking at the corresponding temperature contour
maps). The strong effect induced by the shrinkage of the domain along the x direction is
clearly visible in figure 14 (see (a–d)). Flow confinement, due to the applied periodicity
in a narrow domain, results in streaky structures that are almost perfectly aligned in x.
Such bias is not present when the aspect ratio is increased (see figure 14g–h). To quantify
the influence of the domain size on the flow structure we compute the mean radial
wavenumber – as defined in (5.1) – near the boundary and at the domain centre, for
different aspect ratios. We recall here that kr – which is proportional to the inverse of
a length scale – provides an estimate of the characteristic size of the dominant flow
structures. The results, shown in figure 14, clearly demonstrate that the typical size of the
flow structures is strongly influenced by the box aspect ratio: going from A = lx/lz = 1/8
to A = 1, kr monotonically increases – in particular when evaluated in the near-boundary
region, until it reaches a maximum value for A = 1. This value then remains almost
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Simulation Ra lx/ly × lz/ly Nx × Nz × Ny

Ra10a 1 × 104 1/8 × 1 96 × 768 × 256
Ra10b 1 × 104 1/4 × 1 192 × 768 × 256
Ra10c 1 × 104 1/2 × 1 384 × 768 × 256
Ra10d 1 × 104 1 × 1 768 × 768 × 256
Ra10e 1 × 104 2 × 2 1536 × 1536 × 256
Ra10f 1 × 104 4 × 4 3072 × 3072 × 256

Table 2. List of simulations at Ra = 1 × 104 to address influence of domain size and aspect ratio.

= 1/8
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Figure 14. Effect of the domain size (horizontal aspect ratio, A = lx/lz) on the flow structure at Ra =
1 × 104. Seven different aspect ratios in the range 1/8 ≤ A ≤ 4 (see table 2 for details) are considered.
(a–h) Instantaneous temperature distribution in the near-boundary region – y = 50/Ra – (a,c,e,g) and at the
flow centreplane – y = 1/2 – (b,d, f,h) for A ≤ 1. Please note that the colour bars are different for the two
regions considered. (i) Mean radial wavenumber kr of the temperature distribution at the flow centreplane
(filled symbols) and in the near-boundary region (open symbols).

constant for further increase of A . A similar behaviour, although less pronounced, is
also observed for the flow structure at the domain centre. We therefore conclude that, at
Ra = 1 × 104, a domain characterized by A = 1 (i.e. lx/ly = lz/ly = 1) is large enough
to properly capture the entire flow structure and therefore to obtain reliable statistics.

6. Conclusions

We used numerical simulations to study three-dimensional Rayleigh–Darcy convection
at Rayleigh–Darcy number, Ra, in the range 1 × 103 ≤ Ra ≤ 8 × 104. We characterized
the flow both qualitatively and quantitatively, and we have been able to clearly link the
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flow structure in the core of the domain to the near-boundary convective cells. The
dependence of the Nusselt number Nu – the main response parameter of the flow –
with the Rayleigh number Ra is well described by a linear correlation plus a sublinear
correction term, whose importance vanishes for increase Ra, and asymptotically relaxes –
for estimated Ra in excess of 5 × 105 – into the expected linear behaviour. Temperature
statistics clearly showed that the thickness of the thermal boundary layer scales very well
with the Nusselt number, δ ∼ 1/Nu. When properly rescaled by the Nusselt number, the
mean temperature profiles exhibit a self-similar behaviour which, within the boundary
layer δ, grows linearly with the vertical distance y. We investigated the near-boundary
flow structure by looking at the temperature field on a horizontal plane very close to the
boundary. The emerging picture is characterized by an organized flow structure composed
by small polygonal-shaped cells hierarchically nested together to form larger supercells.
Looking at the geometrical properties (area and shape) of such cells near the boundary,
we observed that the flow structure near the boundaries is still developing within the range
Ra investigated in this study, although it seems to reach an asymptotic self-similar and
optimal configuration for increasing Ra. Far from the boundaries, the core of the flow is
characterized by large columnar temperature structures, which we characterize by means
of the mean wavenumber, kr. In addition, for the flow cells near the boundary, there is a
discrepancy between the measured mean wavenumber (kr ∼ Ra0.81) and the one predicted
by the theory (kr ∼ Ra), possibly due to the fact that the ultimate regime is not attained
yet. By contrast, similar measurements performed in the centre of the domain are in
excellent agreement with the theoretical predictions kr ∼ Ra1/2, likely indicating that the
core region of the flow has reached its asymptotic, ultimate stage. In addition, we establish
a link between the near-boundary long-lived coherent structures (supercells) and the
columnar structures controlling the interior part of the flow (megaplumes), confirming that
the supercells are nothing but the footprint of megaplumes. Finally, we have considered
the effect of the domain size on the flow structure. By changing the horizontal domain
dimensions, we identified lx = ly = lz as the minimum domain size required to properly
resolve the flow structure for Ra ≥ 1 × 104.
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Appendix. On the identification of plume boundaries

In this appendix we discuss the approach we have followed to identify the plume
boundaries and their corresponding shapes. We focus on a plane close to the bottom
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Figure 15. Temperature (θ , blue) and temperature gradient (∂θ/∂x, red) distributions along a line located on
a horizontal plane near the wall (x, y = 50/Ra, z = 1/2). The values of x corresponding to θ = 3/4 (dashed
line) are also indicated by grey lines, and correlate well with the location of maximum/minimum ∂θ/∂x.

boundary (y = 50/Ra), were we take temperature slices along a horizontal line at z = 1/2.
For ease of discussion, here, we show only a small portion 0 ≤ x/Ra ≤ 0.2, i.e. one fifth
of the full domain along the x direction. At this position, temperature varies in the range
1/2 ≤ θ ≤ 1, as shown by the blue line in figure 15.

We now hypothesize that the boundary of the temperature-carrying flow structures (i.e.
plumes) corresponds to locations where temperature gradients are maximum/minimum.
To support our hypothesis, we show the behaviour of ∂θ/∂x with a red line in figure 15.
Vis-à-vis comparison of θ(x) (blue line) and ∂θ/∂x (red line), makes it clear that locations
where |∂θ/∂x| is maximum provide a good indication for the plume boundary. In addition,
we note that the maximum of |∂θ/∂x| occurs where θ(x) = 0.75 (see dashed line in
figure 15). Hence, this condition is retained to identify the near-wall flow cells.
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