
D I P L O M A R B E I T

Financial market modeling based on the Kalman Filter in
the setting of a Two-Factor Hull-White Model

ausgeführt am

Institut of Financial and Actuarial Mathematics

TU Wien

unter der Anleitung von

Ao.Univ.Prof.Dipl.-Ing.Dr.techn. Peter Grandits

durch

Marlene Peck

Matrikelnummer: 01609981

Wien, am 06. März 2023



Kurzfassung

In der vorliegenden Diplomarbeit wird die Zinsstrukturkurve mittels eines Momentanzins-
modells modelliert. Als das zugrundeliegende Modell wurde das Two-Factor Hull-White
Model gewählt, welches äquivalent zum Gaussian Two-Factor Model formuliert werden
kann. Damit das Modell mit der initialen Zinsstrukturkurve übereinstimmt, wird das
Nelson-Siegel-Svensson Verfahren angewendet. Aus täglich beobachteten Zinsdaten werden
unter Anwendung des Kalman Filters die Modellparameter geschätzt. Hierfür muss zuerst
das state-space model, welches aus der measurement und transition Gleichung besteht,
für das zugrundeliegende Modell formuliert werden. Danach wird der iterative Prozess
des Filters durchgeführt und die Log-Likelihood Funktion des Modellparametersets wird
zurückgegeben. Dieser Prozess wird so oft wiederholt bis vorgegebene Grenzen des Nelder-
Mead Optimierungsverfahren erreicht werden. Mit den geschätzten Parametern werden
die zukünftigen Pfade der Nullkuponanleihe simuliert. Aus dem Durchschnitt der Pfade
zu jedem Zeitpunkt werden dann mittels der Anleihenformel die Nullkuponanleihenpreise
berechnet.
Um das Modell zu validieren wird zunächst überprüft, ob der Martingaltest erfüllt ist.
Danach wird getestet ob das Modell konsistent ist, also ob die aus den simulierten Pfaden
zukünftiger Momentanzinse erhaltene Modellparameter durch erneute Schätzung der Mo-
dellparameter, wieder gefunden werden. Schlussendlich werden die beobachteten Zinsdaten
in zwei Datensätze aufgeteilt. Das erste besteht aus den Beobachtungen der ersten vier Jah-
re, das zweite aus der Beobachtung des letzten Jahres. Dann wird mit dem ersten Datensatz
und der gewonnenen Modellparameter das nächste Jahr an Momentanzinsen geschätzt, und
überprüft ob die simulierten mit den tatsächlich beobachteten übereinstimmen.



Abstract

This diploma thesis deals with modeling the interest rate term-structure using a short-rate
model. The underlying model is the Two-Factor Hull-White Model, which is equivalent to
the Two-Factor Gaussian model. In order to fit the model with the initial term-structure
the Nelson-Siegel-Svensson method is applied. From daily observed short-rates we further
estimate with the use of the Kalman Filter the set of model parameters. For this purpose
the state-space model, which consists of the measurement and transition equation has to
be formulated for the underlying model. Then the iterative process of the Filter can be
undertaken and the return is the log-likelihood function of the model parameter set. This
process reruns until certain thresholds of the Nelder-Mead optimizer are reached. With the
estimated parameters the future paths of the zero-coupon bond are simulated. The mean
of this paths of each time instant is used to calculate the future zero-coupon bond prices
through the bond-price formula.
To validate the model it is checked whether the Martingale-test is fulfilled. Then it is tested
on consistency, so if the estimated parameters of future short-rates can be re-estimated.
Finally the observed short-rate is split into two sets of data. The first contains the observed
short-rates of the first four years, the second the last year of observation. Then the first set
is used to model the short-rates of the upcoming year with the obtained parameters and
the simulated short-rates can be compared with the actual observed ones.
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1 Introduction

Over the last decades modeling the term-structure of interest rates has been a widely re-
searched topic. It is not only theory where this topic plays a crucial role, but also practice
and especially the gap between theory and practise. Interest rates play an important role
in the financial world for a wide range of matters such as: valuation, investment manage-
ment, or solvency capital requirements. Especially companies with high shares of long-term
liabilities such as insurances or pension-funds bear a high interest rate risk.
In the world of finance exists a variety of prices, which determine not only the current state
of the economy, but are as well an indicator regarding the future development. The most
important measure is the interest rate, which determines the cost of borrowing money, the
return on savings and is a component of the total return on investments. Today we face
the following situation: for the past few years borrowing money was cheap and people
preferably took a variable loan, as the interest rate was very low. With raising interest
rates many people face are major problem with paying alone the raised interest rate of the
loan. So the interest rate not only determines an investors or a banks profit or loss but has
direct influence on the people everyday lifes.
Even though everybody is somehow affected by the development of interest rates, only few
know that a unique interest rate does not exist and is therefore not directly readable. There
exists a variety of interest rates, marked by different maturities, liquidities, risk classes or
other factors of influence. A meaningful comparison with so many different factors of in-
fluence is not possible. Therefore we try to model the term-structure, which represents
interest rates of the same risk class depending on different maturities.
According to the PRIIP-Verordnung (PRIPP = Packaged Retail and Insurance-based In-
vestment Products) for cash value life insurance, whose performance depends or partly
not on the observed factors on the market, the insurances in Austria have to publish the
so called Basisblätter. That is why the AVÖ (Aktuarvereinigung Österreich) published a
guideline, on how to calculate the scenarios which are published in the Basisblätter. Until
today Austrian insurances buy a tool, the PIA tool, which is provided by IFA ULM (In-
stitut für Finanz und Aktuarwissenschaften). The goal of this thesis is to find a way to
calibrate the model parameters for the underlying Two-Factor Gaussian model, and with
them to simulate the future short-rate, and the corresponding zero-coupon bond prices.
In a first step we determine the parameter for the Gaussian Two-Factor model, which de-
scribes the dynamics of the short-rate. With this model we are able to simulate future
short-rates, which can also be expressed as zero-coupon bond prices. To do so several
models are applied. The basis is observed short-rates from the market, which are initially
calculated into zero-coupon bond prices, and then also predicted for a longer time interval
of maturities. Then the Nelson-Siegel-Svensson parameters are calculated with which the
deterministic part of the Gaussian Two-Factor model can be defined. Afterwards we have
to formulate the Kalman Filter equations for the underlying model. Then the procedure
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1 Introduction

starts and returns the maximum log-likelihood of the parameters. This output is then op-
timized through the Nelder-Mead algorithm and the Kalman Filter algorithm is repeated
until a certain threshold is reached. With the estimated parameters the future paths of the
zero-coupon bond are simulated. Using the mean of this paths at each time instant and
applying the bond price formula, we calculate the desired future zero-coupon bond prices.
The thesis is split into eight chapters, which will be shortly introduced. The second chap-
ter is devoted to basic definitions and concepts in the mathematical interest rate world.
It starts with the Brownian motion, which is fundamental when it comes to stochastic
modeling. Another important definition is the one of an Ornstein-Uhlenbeck process, as
its solution will be used to formulate the equation for simulating the future paths of the
zero-coupon bond. We have a closer look at term-structures and their different shapes.
Furthermore, we have a look at the different kind of models, which can be classified into
stochastic and statistical models. We focus on the fundamental definition of a zero-coupon
bond and a bank account, which are expressed through the short-rate. With this knowledge
we continue to define the different kinds of interest rates, as well as their interaction.
Chapter 3 focusses on the formulation of the Two-Factor Hull-White model and shows the
equivalence with the Two-Factor Additive Gaussian model, which formulation will be used
throughout this thesis. It is a no-arbitrage model and can be specified with the short rate
being driven by two correlated factors and a deterministic function. For many years the
fact that this model also produces negative rates has been mentioned as a major drawback.
As there have actually been negative rates on the market in the past years, this property
can now be mentioned as an advantage of the model. As negative rates are admissible in
this model, the following section identifies the probability with which they occur. The last
section of this chapter focusses on the shift of the model formulation from risk-neutral to
the real-world measure. This is an extremely important step, because the real-world model
formulation is used for the Kalman Filter.
Chapter 4 describes the Nelson-Siegel-Svensson technique. In order to fit the underlying
model with the initial term-structure, we need the deterministic part of the short-rate equa-
tion. This again is determined through the modeled Nelson-Siegel-Svensson zero-coupon
bond prices, which are gained through estimating the Nelson-Siegel-Svensson parameters
from the observed short-rates. With these parameters a modeled spot-rate can be defined.
Through the inverse modeled spot-rate plus one with the exponent being the respective
time point, the corresponding zero-coupon prices can be calculated.
Chapter 5 introduces the formulation of the state space model for the Kalman Filter. The
state space model again consists of the measurement and transition equation, which we
formulate for the underlying model. We describe the iterative procedure of the Kalman
Filter. The output of the Filter is the log-likelihood function of the set of parameters, on
which a numerical approach, the Nelder-Mead algorithm is applied until certain thresholds
are met.
Chapter 6 describes the procedure undertaken to obtain the future zero-coupon bond prices
and the future short-rates. At first the observed short-rate is interpolated to enlarger the
time of maturity. With the model parameters estimated through the Kalman Filter, we can
simulate the future paths of zero-coupon bond prices. Applying the bond-price formula to
the mean of each path at each time point, we obtain the future zero-coupon prices, which
can be transformed into the short-rate.

2
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To conclude we validate the output of the estimation with different approaches. One stan-
dard method is the well-known Martingale-test. We also compare the estimated parameters
obtained through the observed market prices, with those simulated with the obtained pa-
rameters which are then reintroduced into the simulation. We confirm this data by using
a different approach by splitting the data into two sets. The first contains the observed
short-rates of the first four years. This is then used as the basis to simulate the short-rates
for the next year using the obtained parameters as input. The results can then be compared
with the second set of data, the observed short-rates from the last year of the observation
period.
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2 Mathematical Background

This chapter outlines the most important definitions, formulas and theories, which are
fundamental for the subsequent chapters. We start this chapter by defining the properties
of the Brownian motion [Definition 2.1], which is fundamental when it comes to modeling
stochastic processes in the world of finance.
Besides the recapitulation of the essentials in terms of stochastic analysis, this chapter
also states the notation. For the about to be specified definitions we keep in mind, that
we regard a complete probability space (Ω,F ,F,P). Where Ω denotes the sample space,
F = (Ft)t∈T denotes the filtration, P denotes the probability measure and let T ∈ R+. The
filtration fulfils the common properties: F0 contains all null-sets and F is right-continuous.

Definition 2.1. (Brownian Motion)1[cf.[3]]. A Rd-valued stochastic process (Wt)t∈T is
called a d-dimensional Brownian motion if the following properties hold:

1. W0 is F0-measurable

2. measurability of past increments, i.e., Ws −Wr is Fs-measurable ∀ r < s ∈ T

3. independence of future increments, i.e., Wt −Ws is independent of Fs ∀ s < t ∈ T

4. stationarity of the distribution of the increments:

L(Wt −Ws) = L(Wt−s −W0) ∀ t ∈ T

5. normality of increments: L(Wt −W0) = N (0, tId) ∀ t ∈ T with Id ∈ Rd×d denoting
the identity matrix

6. W has continuous paths, i.e. for t ∈ T : t −→ Wt(ω) is continuous ∀ω ∈ Ω

if in addition:

7. starting at the origin: P[W0 = 0] = 1 the Brownian motion is called standard

1The Brownian motion is named after the botanist Robert Brown, who studied the irregular motion of
pollen using a microscope in 1827. He was the first who tried to find an explanation for this erratic
behaviour. In 1900 the French mathematician Louis Bachelier used the Brownian motion in a mathe-
matical model in order to describe the price development at the stock market. In 1905 Albert Einstein
published a paper about modeling the motion of the pollen particles which are moved by individual wa-
ter molecules. The direction of the force of atomic bombardment is constantly changing and at different
collisions the particles are hit more on one side than the other, which leads to the seemingly random
nature of the motion. The existence of Brownian motion served as convincing evidence that atoms and
molecules exist. In the 1920s Norbert Wiener found proof for the existence of the Brownian motion and
with this knowledge stochastic processes gained more and more in importance.[cf.[1, 2]]
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Figure 2.1: Realisation of a Standard Brownian Motion

The above given [Figure 2.1] represents a simulation of the Standard Brownian Motion
with ten paths in the time interval [0, 1000]. The x-axis displays the time interval and the
y-axis the corresponding values at each time point of the Brownian motion. The ten paths
were drawn by simulating 1000 points for each path.

Definition 2.2. (Brownian Motion with drift) [cf.[4]]. A process Xt is called Brownian
motion with drift, if it satisfies:

Xt = µt+ σWt, with t ≥ 0, µ ∈ R, σ ∈ R+

where Wt represents the standard Brownian motion.

Definition 2.3. (Martingale) [cf.[3, 4]]. A Martingale is an integrable, (Ft)t∈T -adapted
stochastic process (Mt)t∈T for that holds:

Ms = E[Mt|Fs] a.s. ∀s ≤ t ∈ T

The first condition for the process is just a technical one and the second condition says
that we can actually observe the value Mt at time t. The martingale property describes
that the underlying process is a fair process. To be more precise, the expectation of a
future value of M , given the information available today’s, equals today’s observed value
of M . In fact it can also be stated that a martingale has no systematic drift.

5
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Definition 2.4. (Semi-Martingale) [cf.[3]]. A stochastic process (Xt)t∈R+
0
is called a semi-

martingale, if it can be written in the form of:

Xt = Mt + Ft, t ≥ 0

where (Mt) denotes a local martingale2 and Ft an adapted process of finite variation3 with
F0 = 0.

Definition 2.5. (Stochastic Differential Equation) [cf.[4]]. For the following let M(n, d)
denote the class of n× d matrices and we consider:

• a d-dimensional Brownian motion Wt (see [Definition 2.1])

• a function µ: R+ × Rn → Rn

• a function σ : R+ × Rn → M(n, d)

• a real vector x0 ∈ Rn

The goal is to find a stochastic process Xt which satisfies the stochastic differential
equation (SDE):

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

X0 = x0

Put in other words we want to find a process Xt to satisfy following integral equation:

Xt = x0 +
t

0
µ(s,Xs)ds+

t

0
σ(s,Xs)dWs, ∀t ≥ 0

Definition 2.6. (Quadratic Variation) [cf.[6, 7]]. The quadratic variation of a stochastic
process Xt with continuous paths t → Xt(ω) is defined as:

[X]t = lim
n→∞

∞

i=1

(Xtni
(ω)−Xtni−1

(ω))2

Where tni represents the partition of the time index, therefore we have: tni := it
n , for

i = 0, · · · , n− 1 such that: 0 = t0 < t1 < · · · < tn−1 < tn = t

2M is called a local martingale, if there exists a sequence (τn)n∈N of R+-valued F+-stopping times with
τn ≤ τn+1∀n ∈ N and limn−→∞ τn = ∞ such that each τn reduces M. [cf.[3]]

3A process is called of finite variation if and only if it can be represented as the difference of two increasing
processes: µdt = µ+dt− µ−dt. With µ being any process such that the integral exists. [cf.[5]]
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Definition 2.7. (Stochastic Exponential)[cf.[3]]. The stochastic exponential E(X)t for a
continuous semi-martingale Xt is given as:

E(X)t = exp(Xt −X0 − 1

2
[X]t), t ≥ 0

Where [.] denotes the quadratic variation of the process. The stochastic exponential with
respect to the Brownian motion can be written as:

E(X)t = exp(Xt − 1

2
t)

Definition 2.8. (geometric Brownian Motion) [cf.[4, 8]. A geometric Brownian motion
is a continuous-time stochastic process in which the logarithm of the randomly varying
quantity follows a Brownian motion. In option pricing theory geometric Brownian motions
are frequently used to model general asset price dynamics. Its evolution can be expressed
through:

dXt = µXtdt+ σXtdWt (2.1)

with X0 = x0, µ (”the percentage drift”) and σ (”the percentage volatility”) are positive
constants, and Wt denotes the time derivative of the Brownian motion. Applying Ito’s
Formula on equation (2.1) leads to following solution:

Xt = X0 · e(µ− 1
2
σ2)t+σWt

Definition 2.9. (Equivalent martingale measure) [cf.[4]]. For the following we regard the
probability measure Q on the filtration FT , which is called equivalent martingale measure
for the asset price vector S1, · · · , SN of N risky traded assets over the time interval [0, T ],
with S0 = 0, if following properties hold:

• Q is equivalent to P on FT , i.e. they both have the same null-sets

• all price processes S0, · · · , SN are martingales under Q on the time interval [0, T ]

Theorem 2.1. (Numéraire Dependent Pricing Formula) [cf.[9]]. Before having a look at
the Numéraire Dependent Pricing Formula (NDPF), we recall the most important theorem
in asset pricing theory: the First Fundamental Theorem of Asset Pricing (FTAP). The
theorem states: The market specified by some real-world probability measure P is free of
arbitrage, if and only if, given any numéraire N , there exists a measure QN which is equiv-
alent to P, and which is such that all relative price processes are QN martingales.
The important part of the FTAP is, that it guarantees absence of arbitrage. This is relevant
when it comes to pricing in financial markets, where we wish to price market-consistent if
the market is arbitrage-free. To be more specific when it comes to introducing a new asset
to the market, it is said to be priced market-consistent, if the market with this new asset
included, still does not allow arbitrage. Let C(t) denote the new asset introduced at time t,
then along with the FTAP, the price is market consistent, if and only if, for at least one

7
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equivalent martingale measure, the model allows for:

C(t)

N(t)
= EQN

C(T )

N(T )
|Ft

Therefore we can express the price of an asset as:

C(t) = N(t)EQN
C(T )

N(T )
|Ft

Definition 2.10. (Itô-Process) [cf.[10]]. An Itô-Process is a stochastic process X(t) written
in the form:

X(t) = X(0) +
t

0
K(s)ds+

t

0
H(s)dW (s) (2.2)

= X(0) +
t

0
K(s)ds+

m

j=1

t

0
Hj(s)dWj(s), t ≥ 0

where Wt denotes the Brownian motion and both {K(t)}t∈T and {H(t)}t∈T are progressive
measurable and satisfy:

t

0
|K(s)|ds < ∞,

t

0
H2

i (s)ds < ∞, ∀t ≥ 0, i = 1, · · · ,m

By writing formula (2.2) in differential notation we get following equation:

dX(t) = K(t)dt+H(t)dW (t), t ≥ 0

Definition 2.11. (Itô’s formula for Semi-Martingales) [cf.[3]]. Let Xt be a Semi-Martingale
and f : R+ × R → R one time in the first, and two times continuous differentiable in the
second argument. Then f(t,Xt) is again a Semi-Martingale and can be written as:

f(t,Xt) = f(0, X0) +
t

0
ft(s,Xs)ds+

t

0
fx(s,Xs−)dXs +

1

2

t

0
fxx(s,Xs)d[X]cs

+
0≤s≤t

(f(s,Xs)− f(s,Xs−)− fx(s,Xs−)∆Xs), t ≥ 0

with [.]ct = [X]t − 0≤s≤t(∆Xs)
2

Written in differential notation the continuous Semi-Martingale Xt is given as:

df(t,Xt) = ft(t,Xt)dt+ fx(t,Xt)dXt +
1

2
fxx(t,Xt)d[X]t, t ≥ 0

8
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Definition 2.12. (Ornstein-Uhlenbeck process)4 [cf.[11]]. An Ornstein-Uhlenbeck process
is a temporally homogeneous stationary Gauss-Markov process and is used in interest-rate
modeling. Over the time it tends to drift towards its mean function, therefore it is also
known as a mean-reverting process. The Ornstein-Uhlenbeck process Xt is defined through
following SDE:

dXt = θ(µ−Xt)dt+ σdWt (2.3)

x0 = a

In formula (2.3) we have: a, µ ∈ R, θ, σ > 0, µ is a constant and Wt denoting the Brownian
motion. Furthermore µ describes the equilibrium level, θ the stiffness and σ the diffusion
level. The expected value of this process can be written as:

E(Xt) = ae−θt + µ(1− e−θt)

With corresponding covariance given as:

Cov(Xs, Xt) =
σ2

2θ
e−θ|t−s| − e−θ(t+s)

The solution of the equation (2.3), will be used in [Section 6.3] for the simulation of the
future paths of zero-coupon bond prices, respectively the short-rate and is given as:

Xt = X0e
−θt + µ(1− e−θt) + σ

t

0
e−θ(t−s)dWs (2.4)

The change of measure is a commonly used technique when it comes to pricing theory.
With this tool one can change one probability space to another probability space. Its main
purpose is to change the risk-neutral model formulation to the real-world measure, so that
the theory can actually be applied. The relationship between the real-world measure P and
the risk-neutral measure Q can be described through the Radon-Nikodym derivative.

Definition 2.13. (Radon-Nikodym) [cf.[4]]. Let P and Q be probability spaces or measures
and θ be a random variable such that

EQX = EPθX

for all random variables X, then θ is called the Radon-Nikodym derivative of Q with respect
to P. The Radon-Nikodym process for every 0 ≤ s ≤ t is written as:

EQ
s X(t) = EP

s

θt
θs
X(t)

4The Ornstein-Uhlenbeck process is named after the physicians George Uhlenbeck (1900-1988) and Leonard
Ornstein (1880-1941).
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Definition 2.14. (Girsanov) [cf.[4]]. Let W (t) denote a Brownian motion under Q and
λ(t) be a k-vector process adapted to W (t). If λ(t) fulfils some mild boundedness conditions,
then we can define:

dλ(t) = −θ(t)λ′(t)dW P(t) , λ(0) = 1

That way λ(t) can be regarded as a Radon-Nikodym process that defines a change of measure
from the real world to the risk neutral measure. The process WQ(t) can now be written as:

dWQ(t) = λ(t)dt+ dW P(t), WQ(0) = 0

and is a Brownian motion under Q.

Definition 2.15. (Log-Likelihood Function) [cf.[12]]. Let (X1, · · ·Xn) be independent and
identically distributed (iid) random variables with a common probability density function
(pdf) f(x; θ). For a given outcome x = (x1, · · · , xn)′ the function

l(θ;x) = lnL(θ;x) =
n

i=1

ln f(xi; θ)

is called the log-likelihood function.

Definition 2.16. (Maximum Likelihood Estimation) [cf.[12]]. Given a random sample
x = (x1, · · · , xn) corresponding to the model f(x; θ) and one wants to consider the likelihood
L(θ;x). Although the entire shape of the function yields valuable information about the to
be estimated parameter θ, the goal is to find the parameter value θ̂ = θ̂(x) for which the
likelihood is maximal, which is called its mode. Therefore this value can be understood as
the best estimate of θ and is called the maximum likelihood estimate (MLE). However there
is no guarantee that the MLE always exists. As the mode may not be an interior point
of the parameter space Θ or the likelihood may attain its maximum value at more than
one point. Furthermore it could happen that the global maximum exists but is no sensible
choice, so that a local maximum is chosen (of which however there may be more than one).

Definition 2.17. (Splines) [cf.[13, 14]]. A Spline of degree n is an of piece-wise polyno-
mial composed function with maximum degree of n. The points where two polynomials are
connected are called knots. At these knots the Spline has to be (n − 1)-times continuous
differentiable.
The pioneers of the spline-method are Isaac Jacob Schoenberg, Paul de Faget de Casteljau,
Pierre Bézier and Carl de Boor. Jacob Schoenberg initially described with the term spline
a smooth, harmonic composed curve of degree three.
Splines are mainly used for approximation and interpolation. As Splines are defined piece-
wise, they are more flexible than polynomials, however easier and smoother. Let us first
have a look at the basic element of Splines, the piece-wise polynomials and then define
Splines:

• For the following x is assumed to be univariate and we regard k+1 disjoint intervals,
where each interval (−∞, ξ1), [ξ1, ξ2), · · · , [ξk−1, ξk), [ξk,∞) defines an own polynomial
function of order ≤ M . Where the order of the polynomial describes the degree +1.

10
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By dividing the domain of x into those k+1 disjoint intervals a piece-wise polynomial
function f(x) is obtained. As already mentioned the boundaries of the interval are
called knots. A piece-wise polynomial function of order M = 2 is called piece-wise
linear, M = 3 quadratic, M = 4 cubic etc. In order to determine a piece-wise
polynomial function of order M with k knots, M(k+1) parameters are needed, since
each of these k + 1 polynomial consists of M coefficients.
The basic functions and constraints can be defined through:

h1(x) = 1, h2(x) = x, h3(x) = (x− ξ1)
+, h4(x) = (x− ξ2)

+

Where (.)+ denotes the positive part.

• A piece-wise polynomial function of order M , which has continuous derivatives up to
order M − 2 is called Spline of order M with knots ξi, i = 1, · · · , k. The general form
of the basis function is written as:

hj(x) = xj−1 , j = 1, · · · ,M
hM+l(x) = (x− ξl)

M−1
+ , l = 1, · · · , k

• A Cubic Spline of order M = 4 with two knots has following basis functions:

h1(x) = 1 , h3(x) = x2 , h5(x) = (x− ξ1)
3
+

h2(x) = x , h4(x) = x3 , h6(x) = (x− ξ2)
3
+

• When it comes to Natural Splines, the basic idea is to model a non-linear relationship
with piece-wise Cubic Splines. Natural Cubic Splines are chosen as they can avoid
poor results from cubic splines, which occur as polynomial tend to be erratic near the
lower and upper data range. That is due to having an additional constraint, which
is that the function has to be linear beyond the boundary knots. Therefore the Spline
function f has so satisfy: f ′′ = f ′′′ = 0.

Definition 2.18. (B-Spline) [cf.[15]]. A B-Spline which is the abbreviation of Basis-Spline
is referred to the basis function of Spline functions of the same order and defined over the
same knots. The choice of the basis determines over rounding errors in the spline-space
and therefore over the practical usage. The B-Spline is numerical stable and permits for the
value calculation of the Spline-function a three-term-recursion. The B-Spline of order n is
a piecewise polynomial function with degree n−1. It is defined using n+1 knots, which are
in a non-descending order: tj ≤ tj+1. However the B-Spline only contributes in the range
between the first and the last knot, elsewhere it equalizes zero. Any Spline of order n on a
given set of knots can be expressed through a linear combination of B-Splines:

Sn,t(x) =
i

αiBi,n(x)

The role of the basis function come from the fact the B-Splines have the same continuity
properties at the knots and can be expressed as:

Bi,1(x) :=
1 if ti ≤ x < ti+1

0 else

11



2 Mathematical Background

Bi,k(x) :=
x− ti

ti+k − ti
Bi,k−1(x) +

ti+k+1 − x

ti+k+1 − ti+1
Bi+1,k−1(x)

By adding the additional constraint: iBi,1(x) = 1 ∀x between the first and last knot, the
scaling factor of Bi,n(x) becomes fix. The B-Splines are then the resulting in Bi,n(x) Spline
functions.
The B-Spline function has a compact carrier, in other words they do not equal zero just in
a small interval. A B-Spline function is a combination of flexible bands to create smooth
curves and is controlled by control points. The goal is to create and manage complex
shapes and surfaces using a number of points. B-Splines are used in curve fitting when no
theoretical basis for choosing a fitting is given. In this case the curve is fitted through a
Spline function composed of a sum of B-Splines using the least-square method. The objective
function of a Spline function of degree k is given as:

U =
x

W (x) y(x)−
i

αiBi,k,t(x)
2

W (x) denotes the weight and y(x) the value at x. The coefficients αi are the to be determined
parameters and the knot values are fixed.
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2 Mathematical Background

2.1 Term-Structure

The results for the underlying section are taken from [cf.[6, 16, 17, 18, 19]]. Generally
speaking a term-structure is a function which refers a certain financial variable or parameter
to its maturity. The most common examples are the term-structure of interest rates or
zero-coupon bond prices. Nevertheless there also exist term-structures of option implied
volatilities, credit spreads or variance swaps. The overall rate of interest that an issuer of
a bond pays to the holder at maturity is called the bond’s yield. The graphed relationship
between yield and maturity of interest rates is called the yield curve. The yield curve
represents a measure of the market’s expectations of future interest rates, given the current
market conditions.
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Figure 2.2: different shapes of the term-structure

As depicted in [Figure 2.2] the term-structure can distinguish between three main shapes,
or even a mix of them may occur. A normal shape is referred to when the long-term yields
are expected to be higher than the short-term ones. This is depicted in [Figure 2.2] as
the green line. It is the most common shape and typically suggests a growing economy.
In the case of the flat shape there is hardly no variation between the different maturities
expected. This shape usually occurs in times of transition from the normal to the inverted
shape. The economic interpretation of this transition is, that the market for long-term
bonds is undesirable. In [Figure 2.2] the flat shape is represented as the blue line. The
inverse shape is referred to when short-term yields are higher than the long-term ones. This
occurs when short-term yields increase fast and investors take this as a sign of a temporary
raise, but long-term yields still stay at the same level. In [Figure 2.2] we find this type
shown in the red curve.
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In general term-structure modeling can be split into two frameworks. The first approach
is the equilibrium framework, which initial position is the description of the underlying
economy. It works in a way that agents optimize their life-time utility function and starting
from the aggregation of theses individual preference functions an equilibrium can be derived.
The model is fully specified by these individual preferences, that is why interest rates, prices
for derivatives and market prices of risk are endogenously determined. Moreover as these
utility functions are well-specified e.g., strictly increasing and strictly concave, the model
prohibits arbitrage opportunities. The pioneer of this equilibrium approach in bond- and
derivative pricing was Merton in 1973. Nevertheless there are many other contributors,
such as Vasicek (1977), Dothan (1978) and Cox, Ingersoll& Ross (1985) to name a few.
The second framework is defined through a no-arbitrage approach, which specifies that
interest rates and the market price of risk do not result from individual preferences. That
is why, when applying this approach one cannot determine how the model will behave due
to structural changes. A major advantage of these models is that they fully represent the
initial term structure, as the initial term structure is used as an input. This approach is
frequently used for pricing of financial derivatives, for example: (bond)options, caps, floors
and swaptions.

2.2 Interest Rates

In a financial setting the term interest rate usually describes the rate by which money is
borrowed over a certain time period. In other words it can be understood as the price one
is paying for the use of a unit of another’s money. That is why it has major influence on
the current situation of economies and and then of course on decisions with an impact on
future developments. Besides the macroeconomic importance, the interest rate is the main
price in the world of finance. It is the underlying item when it comes to decisions concern-
ing investing, portfolio composition and even for the valuation of hedging- and speculative
instruments. That is why financial institutions face a major in risk in changing interest
rates.
A unique interest rate does not exist at the market, and is therefore not directly read-
able. Even though there exist a variety of interest rates, which are classified by different
maturities, credit ratings, liquidities and other factors of influence. However it is possible
to depict interest rates of the same credit ranking dependent on the maturity through the
term-structure. Therefore modeling the term-structure of interest rates plays an important
role. This section introduces different kinds of interest rates and their link to zero-coupon
bonds. The concept of interest rates belongs to our every-day life, and the basic ideas are
the following. Firstly everybody expects that lending money should somehow be rewarded.
Secondly receiving a given amount of money today is not equivalent to receiving the exactly
same amount at any future date.
Before defining the different types of interest rates we want to distinguish between interbank
rates and government rates. Interbank rates refer to rates at which deposits are exchanged
between banks and at which swap transactions between banks occur. Government rates,
as the name might suggest, are rates deduced by bonds and issued by governments.
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2 Mathematical Background

Interest rate models are also known as equilibrium term-structure models, or as affine
term-structure models, which are used to estimate the correct theoretical term-structure.
These models are used to describe the stochastic process of the dynamics of the yield
curve. Also the models identify the miss-pricing in the bond market as the estimated term-
structure does not match the actual one. In this thesis we will work with a two factor
short-rate model, assuming that there exist two macroeconomic variables that affect the
term-structure of interest rates.

2.2.1 Types of Models

There exists a variety of interest rate model types. Following criteria can be summed up
as basic properties for all of these types:

• interest rates should follow a mean reversion process

• long-term interest rates should exhibit a smaller volatility than short-term ones

• the correlation between different maturities should always be positive, however the
smaller the difference in maturities, the higher the correlation

• proportionality should exist between value and volatility of interest rates

Interest Rate Models

stochastic model

short-rate forward-rate market

statistical model

parametric

Nelson-Siegel Svensson

non-parametric

Spline method

Two types of interest rate models can in general be distinguished. On the one hand there
exist stochastic models, which is the focus in this thesis as the Two-Factor Hull-White
model, or equivalently the Two-Additive-Factor Gaussian model, belongs to the class of the
short-rate models. However on the other hand there exist static models, which again can be
subdivided into parametric and non parametric models. In order to determine the param-
eter for the underlying short-rate model, we will use the Kalman Filter technique, which
requires the Nelson-Siegel-Svensson Parameter to determine the initial term-structure with
the model parameter and the model bond price. That is why we also describe the para-
metric model in detail in [Chapter 4].
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2.2.2 Zero-Coupon Bond

The following subsection focusses on the most important tool of many financial derivatives,
which are based on interest rates, the (default-free) zero-coupon bond. A zero-coupon bond
is a special type of a bond without any intermediate payments. Therefore until the end of
maturity no payments take place and that is why no reinvestment of the yield is possible.
That again explains the exposure to a high volatility as the interest rate fluctuations have
a strong impact. Zero-coupon bonds serve as a basis for the valuation of other fixed income
instruments. Even though zero-coupon prices are used to directly construct the term-
structure, due to the lack of market liquidity and the unavailability of all desired maturities,
it is necessary to estimate the prices based on observed coupon bond prices. The foundation
of the estimation is distinguished between on the one hand Interest-Rate-Swaps, which is
for maturities shorter than one year. And on the other hand, Government-Bonds, which
is used for maturities larger than one year. Government-Bonds generate every year a fixed
coupon, or fixed interest rate in respect to the notional N . Let Kp(t, T ) denote a coupon-
bond with fixed payments c at times t < t1 < · · · < tn < T and remaining maturity of the
time T − t. Then we can write the the fixed price, which is paid at end of maturity with
the notional, as

Kp(t, T ) = c

n

k=1

P (t, tk) + P (t, T )N

The term P (t, tk) = e−z(t,tk)(tk−t) denotes the price of the zero-coupon bond with maturity
tk − t. That is why the price of a government bond is determined through the price of a
zero-coupon bond. As the price of Government-bonds is observed more frequently than the
one of zero-coupon bonds, the underlying combination has to be estimated. A commonly
used technique is the Nelson-Siegel-Svensson method, which will be discussed in [Chapter
4]. Based on the concept one unit currency today is worth more than one unit of the
same currency tomorrow, the time value of this unit currency is expressed through a zero-
coupon bond. To be more precise it is a secured form of a loan, that guarantees its holder
the payment of one unit at maturity T , without any intermediate payments. In other words
one may describe a bond as a financial instrument in the market where the time value of
money is traded. The time value t of a zero coupon bond with maturity T is denoted by
P (t, T ) and the following assumptions hold:

• there exists a market for T-Bonds ∀ T > 0

• P (t, t) = 1 ∀ t

• for fixed t the price P (t, T ) is differentiable with respect to the maturity T

It has to be mentioned that in reality not all of these assumptions fully hold. There exits
a default risk, that is why P (t, t) might be less than one unit of the underlying currency.
Furthermore zero-coupon bonds are not in general traded for all maturities. The third as-
sumption is a technical one and implies that the term-structure of their prices T → P (t, T )
is a smooth curve, whereas t → P (t, T ) is a stochastic process.
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Definition 2.19. (Zero-Coupon Yield) [cf.[4]]. Considering a zero-coupon bond with mar-
ket price denoted by P (t, T ). If we want to determine the bond’s internal rate of interest,
denoted by z(t, T ), which can be understood as the constant short-rate of interest giving the
same value to the bond as the value given by the market. We want to solve the equation:

P (t, T ) = e−z(t,T )(T−t)

Which brings us to the continuously compounded zero coupon yield given by:

z(t, T ) = − lnP (t, T )

T − t
(2.5)

Therefore the yield corresponds to the spot-rate (which will be introduced in section 2.2.4)
for the interval [t,T].

It has to be mentioned that throughout this thesis, we will work with observed bond-
prices, which will be from now on denoted by: P (0, t), as well as with modeled bond prices,
which are added a superscript M , that is why these kind prices are denoted by: PM (0, t).

2.2.3 Bank Account

The bank account is specified as a risk-less investment, with profit evolving continuously
at the risk-free rate. Let B(t) denote the value of the bank account at time t ≥ 0. Let us
now assume B(0) = 1, then the evolution of the bank account can be determined through
the following SDE:

dB(t) = r(t)B(t)d(t) (2.6)

In equation (2.6) r(t) denotes a positive function of time, and is known as the instantaneous
rate, or more common short-rate. Investing a unit at time 0 yields to the value at time t
defined in the following way:

B(t) = e
t
0 r(s)ds (2.7)

In arbitrarily small time intervals [t, t+∆t), the growth of the bank-account at each time
instant t can be written as:

B(t+∆t)−B(t)

B(t)
= r(t)∆t

When it comes to relating amount of currencies available at different times, it is recom-
mended to look at the bank-account in terms of numeraire. The question that now arises
is formulated as: What is the value at time t of one unit available at time T? Depositing A
units of a currency in the bank-account at time 0, leads at time t to receiving A×B(t) units
of the currency. Wanting exactly one unit at time T , e.g., AB(T ) = 1, leads to initially
investing the amount: A = 1

B(T ) . For simplicity it is assumed, that the interest rate process
r is deterministic, hence B too and therefore the initial investment amount is known. The
value at time t of the amount A invested at the initial time can be written as:

AB(t) =
B(t)

B(T )
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This brings up the definition of the stochastic discount factor D(t, T ) between two time
instants (t, T ) is the amount at time t that is equivalent to one unit payable at time T , e.g.:

D(t, T ) =
B(t)

B(T )
= e−

T
t r(s)ds

As the probabilistic nature of r(t) affects the nature of the bank account numeraire, it is
the key aspect. In various pricing application, i.g., the Black-Scholes Formula in equity
markets, it is assumed that r evolves in a deterministic setting. Then again the bank-
account and the stochastic discount factor at any future date are as well deterministic.
Nevertheless when dealing with interest rate products, the most important parameter is
the interest rate itself. That is why we drop the deterministic setting and the evolution of
the short-rate is modeled as a stochastic process.

Let us first have a look at the relationship between the stochastic discount factor and
a zero-coupon bond. First it is necessary to point out, that the objective of a stochastic
discount factor is being an equivalent amount of currency, whereas of the zero-coupon
bond being a value of a contract. In the case of the rate r being deterministic, it follows:
D(t, T ) = P (t, T ) for each pair of time instants (t, T ). However as mentioned above,
the deterministic assumption is dropped and we rather look at stochastic processes. The
relationship can be written as: the price of a zero-coupon bond is the expectation of the
random variable D(t, T ) under a risk-neutral probability measure.

2.2.4 Types of interest rates

There are various kinds of implied interest rates, depending on the observation date and
the underlying time interval of the rate. In the following we want to define the different
types of interest rates and also point-out how they correlate.

1. the simply-compounded forward rate for [T, S] prevailing at t is written as:

F (t;T, S) =
1

S − T

P (t, T )

P (t, S)
− 1 (2.8)

which is equivalent to:

1 + (S − T )F (t;T, S) =
P (t, T )

P (t, S)

The forward rate is characterized by having three relevant times instants: t ≤ T ≤ S.
Namely at current time t: sell a T-bond and buy P (t,T )

P (t,S) S-bonds, resulting in a zero
net investment. Then at expiry time T : pay one unit of currency. At maturity S:
receive P (t,T )

P (t,S) units of currency. In other terms forward rates are simply interest rates,
locked in today for an investment in an upcoming time period. Moreover they are
set consistently with the current structure of discount factors.
A forward rate can be defined through a forward rate agreement (FRA). This again
describes a contract, within the above mentioned time instants, which gives its holder
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an interest-rate payment for the period between T and S. To be precise this works as
follows: at maturity S a fixed payment based on a fixed rate K is exchanged against a
floating payment based on the spot rate F (T, S), which resets at time T with maturity
S. In other words this contract locks in the interest rate between two time instants at
a desired value K with rates in the contract that are simply compounded. Basically
at time S one receives (S − T )KN units of currency with paying (S − T )F (T, S)N
with N denoting the contract nominal value. Hence for the value of the contract in
S, we have:

N(S − T )(K − F (T, S))

Using formula (2.8) leads to the formula of the value of the contract at time t:

FRA(t, T, S, (S − T ), N,K) = N P (t, S)(S − T )K − P (t, T ) + P (t, S)

2. the simple spot rate for [t, T ], also known as LIBOR spot rate follows the definition:

F (t, T ) = F (t; t, T ) =
1

T − t

1

P (t, T )
− 1

3. the continuously compounded forward rate for [T, S] prevailing at t is given by:

R(t;T, S) = − lnP (t, S)− lnP (t, T )

S − T

which is equivalent to

eR(t;T,S)(S−T ) =
P (t, T )

P (t, S)

4. the continuously compounded spot rate, which will in the following just be called spot
rate, for [0, T ] is:

R(t, T ) = R(t; t, T ) = − lnP (t, T )

T − t
(2.9)

5. the instantaneous forward rate, which will in the following just be called forward
rate, and is intuitively a forward interest rate with its maturity begin very close to
its expiry:

f(t, T ) = lim
S→T+

R(t;T, S) = −∂ lnP (t, T )

∂T
(2.10)

6. the instantaneous short-rate, which is denoted simple as short-rate at time t is defined
as:

r(t) = f(t, t) = limT→tR(t, T ) (2.11)
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We can now find equivalence of formula (2.10) along with the requirement P (T, T ) = 1
as follows:

P (t, T ) = e−
T
t f(t,u)du

with the No-Arbitrage condition it results in the following equation, in terms of the risk
neutral measure:

P (t, T ) = EQ e−
T
t rsds|Ft
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The present chapter describes the Two-Factor Hull-White model and the chapter is based
on [cf.[6, 20, 21]], if not stated otherwise. The Two-Factor Hull-White model is one of
the most important interest-rate models being used for risk-management purposes. It is
a No-Arbitrage short-rate model and is able to fit the current term-structure of interest
rates. Moreover the formulation is equivalent to the Two-Additive-Factor Gaussian model,
which formulation will be used throughout this thesis because it is easier to implement
and to interpret the parameters, as the representation is the sum of two correlated factors
following a mean reverting Ornstein-Uhlenbeck process see [Definition 2.12]. Furthermore
a deterministic function is added in order to fit the initial term-structure. First we will
have a look at the risk-neutral environment in order to determine the arbitrage free process
of contingent claims. However we will also discuss the transition from the risk-neutral
measure, into the real-world measure. This process is also known as change of measure.
Usually the change of measure is applied the other way around, but we need the diffusion
dynamics of the two processes in the underlying model under the real-world measure in
order to apply the Kalman Filter estimation procedure.
But before we will have a closer look at the Two-Factor model, we want to point out the
main characteristics of the One-Factor Hull-White model, and also why we chose the Two-
Factor model over the One-Factor model.
The One-Factor Hull-White model is an extension of the Vasicek1 model and has been
introduced in their papers in 1990. The poor fitting of the initial term-structure of interest
rates brought Hull and White to add a time-varying parameter, which is chosen to be a
deterministic function. Matching the model and the market term-structure of rates to the
current time is equivalent to solving a system with an infinite number of equations, which
is one for each possible maturity. In order to solve such a system, an infinite number of
parameters have to be introduced, or equivalently a deterministic function of time. One
advantage of the model is, that it implies normal distribution for the short-rate process at
each time step. Furthermore zero-coupon bonds and options can be priced explicitly. The
short-rate process evolves under the risk-neutral measure according to:

dr(t) = [ϑ(t)− ar(t)]dt+ σdW (t) (3.1)

In equation (3.1) a, σ are chosen to be positive constants and W (t) denotes the Brownian
motion, see [Definition 2.1]. Furthermore ϑ is determined to fit the term-structure of

1The model describes the evolution of the short-rate process as:

dr(t) = k(θ − r(t))dt+ σdW (t)
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interest rates being currently observed at the market and is therefore expressed through:

ϑ(t) =
∂fM (0, t)

∂t
+ afM (0, t) +

σ2

2a
1− e−2at (3.2)

A more detailed explanation for (3.2) can be found in [[6], p. 72 ff.] The first fraction
on the rhs. of equation (3.2) denotes the partial derivative of the market instantaneous
forward rate with respect to its second argument. The instantaneous forward rate again at
time 0 and maturing at time T is defined as:

fM (0, T ) = −∂ lnPM (0, T )

∂T

Even though the One-Factor model has good tractability, because of the lack of free cali-
bration parameters, the model is not capable of reproducing a satisfactorily large volatility
surface. Furthermore highly negative rates are generated too often. That is why we will
from now on focus on the Two-Factor Hull-White model.
As already mentioned in [Section 2.2] the knowledge of the short-rate r(t) and its distri-

butional properties lead to the bond price formula, which is denoted by:

P (t, T ) = EQ e−
T
t r(s)ds (3.3)

Then again with all bond prices P (t, T ) at a given time t one can reconstruct the whole
zero-coupon interest-rate curve at the same time t. Further the evolution of the whole
curve can be expressed through the evolution of one quantity, the short-rate. That is why
choosing a poor model for the short-rate leads inevitably to a poor model for the evolution
of the yield curve.
Having now a look at the setting of the Two-Factor Hull-White model with the short rate
evolving in the risk-adjusted measure according to:

dr(t) = θ(t) + u(t)− ār(t) dt+ σ1dZ1(t), r(0) = r0 (3.4)

and the stochastic mean-reversion level follows the following SDE:

du(t) = −b̄u(t)dt+ σ2dZ2(t), u(0) = 0 (3.5)

where (Z1, Z2) is a two-dimensional Brownian motion and their correlation can be defined
as follows:

dZ1(t)dZ2(t) = ρ̄dt with − 1 ≤ ρ̄ ≤ 1

In equation (3.4) the deterministic function θ is chosen to fit the initial term-structure. The
remaining parameters in this equation ρ, ā, b̄, σ1 and σ2 are positive constants. Integration
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of equation (3.4) and (3.5) leads to the following representation of the short-rate and
corresponding mean-reversion level:

r(t) = r(s)e−ā(t−s) +
t

s
θ(ν)e−ā(t−ν)dν +

t

s
u(ν)e−ā(t−ν)dν + σ1

t

s
e−ā(t−ν)dZ1(ν), s < t

u(t) = u(s)e−b̄(t−s) + σ2
t

s
e−b̄(t−ν)dZ2(ν)

Assuming that ā ̸= b̄ we can write:

t

s
u(ν)e−ā(t−ν)dν =

t

s
u(s)e−b̄(ν−s)−ā(t−ν)dν + σ2

t

s
e−ā(t−ν)

ν

s
e−b̄(ν−x)dZ2(x)dν

= u(s)
e−b̄(t−s) − e−ā(t−s)

ā− b̄
+ σ2e

−āt
t

s
e(ā−b̄)ν

ν

s
eb̄xdZ2(x)dν

Following integration by parts leads to:

t

s
e(ā−b̄)ν

ν

s
eb̄xdZ2(x)dν =

1

ā− b̄

t

s

ν

s
eb̄xdZ2(x) dν e(ā−b̄)ν

=
1

ā− b̄
e(ā−b̄)t

t

s
eb̄xdZ2(x)−

t

s
e(ā−b̄)νdν

ν

s
eb̄xdZ2(x)

=
1

ā− b̄

t

s
e(ā−b̄)t − e(ā−b̄)ν dν

ν

s
eb̄xdZ2(x)

=
1

ā− b̄

t

s
eāt−b̄(t−ν) − eāν dZ2(ν)

Then again we can write the short-rate as:

r(t) = r(s)e−ā(t−s) +
t

s
θ(ν)e−ā(t−ν)dν + σ1

t

s
e−ā(t−ν)dZ1(ν)

+u(s)
e−b̄(t−s) − e−ā(t−s)

ā− b̄
+

σ2
ā− b̄

t

s
e−b̄(t−ν) − e−ā(t−ν) dZ2(ν)
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This, and using u(0) = 0, brings us to the formulation of the short-rate as:

r(t) = r0e
−āt +

t

0
θ(ν)e−ā(t−ν)dν + σ1

t

0
e−ā(t−ν)dZ1(ν)

+
σ2

ā− b̄

t

0
e−b̄(t−ν)−e−ā(t−ν)

dZ2(ν)

After some integration and transformation and with the definition of:

σ3 = σ2
1 +

σ2
2

(ā− b̄)2
+ 2ρ̄

σ1σ2
(b̄− ā)

dZ3(t) =
σ1dZ1(t)− σ2

ā−b̄
dZ2(t)

σ3

σ4 =
σ2

(ā− b̄)

The short-rate can finally be written as:

r(t) = r0e
−āt +

t

0
θ(ν)e−ā(t−ν)dν +

t

0
e−ā(t−ν) σ1dZ1(ν) +

σ2
b̄− ā

dZ2(ν)

+
σ2

ā− b̄

t

0
e−b̄(t−ν)dZ2(ν)

= r0e
−āt +

t

0
θ(ν)e−ā(t−ν)dν + σ3

t

0
e−ā(t−ν)dZ3(ν) + σ4

t

0
e−b̄(t−ν)dZ2(ν)

In order to find the analogy with the Two-Factor Additive Gaussian Model, we want to set
following parameters:

a = ā

b = b̄

σ = σ3

η = σ4

ρ =
σ1ρ̄− σ4

σ3

φ(t) = r0e
−āt +

t

0
θ(ν)e−ā(t−ν)dν
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The equivalence is extremely useful, as it is easier to interpret the different parameters and
their influence on the price and volatility structure in the setting of the Gaussian model.
That is why from now on we will regard the Gaussian model in this thesis.
The dynamics of the short rate process under the risk-neutral measure Q in the Gaussian
model are expressed as follows:

r(t) = x(t) + y(t) + φ(t) with r(0) = r0 (3.6)

where {x(t) : t ≥ 0} and {y(t) : t ≥ 0} are One-Factor Hull-White processes and they
satisfy following SDEs:

dx(t) = −ax(t)dt+ σdW1(t), x(0) = 0 (3.7)

dy(t) = −by(t)dt+ ηdW2(t), y(0) = 0

where (W1,W2) is a two-dimensional Brownian motion with correlation ρ as follows:

dW1(t)dW2(t) = ρdt

The in equations (3.6) and (3.7) mentioned parameters r0, a, b, σ, η are positive constants.
Furthermore we can specify −1 ≤ ρ ≤ 1 and in particular: φ(0) = r0. The deterministic
function φ(t) is well-defined in the time interval [0, T ∗]. Usually the to be regarded time
horizon T ∗ extends over the duration of 10, 30 or 50 years. Integration of the above stated
dynamics of the short rate see formula (3.7) ∀s < t leads to following representation of the
short rate:

r(t) = x(s)e−a(t−s) + y(s)e−b(t−s) + σ
t

s
e−a(t−u)dW1(u)

+η
t

s
e−b(t−u)dW2(u) + φ(t)

The volatility of the instantaneous forward rate can be written as:

σf (t, T ) = σ2e−2a(T−t) + η2e−2b(T−t) + 2ρσηe−(a+b)(T−t)

Now let Ft denote the sigma-field generated by the pair (x, y) up to time t. That is why
regarding r(t) conditioned on Fs is normally distributed and mean and variance are given
as:

E r(t)|Fs = x(s)e−a(t−s) + y(s)e−b(t−s) + φ(t)

V ar r(t)|Fs =
σ2

2a
1− e−2a(t−s) +

η2

2b
1− e−2b(t−s) + 2ρ

ση

a+ b
1− e−(a+b)(t−s)
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In particular, we can write r(t) as:

r(t) = σ
t

0
e−a(t−u)dW1(u) + η

t

0
e−b(t−u)dW2(u) + φ(t)

As the Brownian motions in equation (3.7) are correlated, the two processes can also be
expressed using independent Brownian motions2:

dx(t) = −ax(t)dt+ σdW̃1(t) (3.8)

dy(t) = −by(t)dt+ ηρdW̃1(t) + η 1− ρ2dW̃2(t)

Therefore it holds:
dW1(t) = dW̃1(t)

dW2(t) = ρdW̃1(t) + 1− ρ2dW̃2(t)

That is why the short rate conditioned on Fs can now be written as:

r(t)|Fs = x(s)e−a(t−s) + y(s)e−b(t−s) + σ
t

s
e−a(t−u)dW̃1(u)

+ηρ
t

s
e−b(t−u)dW̃1(u) + η 1− ρ2

t

s
e−b(t−u)dW̃2(u) + φ(t)

The deterministic shift φ(t) is the remaining part that needs to be solved. This will be
treated in the subsequent section.

3.1 Pricing of a Zero-Coupon Bond

The present section is based on [cf.[6, 16]]. With the use of the numéraire-dependent pricing
formula see [Theorem 2.1], where the money-market account denotes the numéraire. Then
the price of a zero-coupon bond under the risk-neutral measure Q at time t with maturity
T can be written as:

P (t, T ) = EQ e−
T
t rsds|Ft (3.9)

In order to solve the above stated equation, we start by writing the explicit expression
for the two factors x(t) and y(t) and then continue to find φ(t) in formula (3.17). As a

2This procedure is equivalent to undertake a Cholesky decomposition on the variance-covariance matrix
of the pair (W1(t),W2(t)).
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first step we consider the part in the exponential. For each pair (t, T ) the random variable
I(t, T )x can be defined through:

I(t, T )x :=
T

t
x(u)du (3.10)

Rewriting (3.10) and considering x(u) with its expectation given Fs, leads to:

I(t, T )x =
T

t
x(t)e−a(u−t)du+ σ

T

t

t

u
e−a(u−s)dWsdu (3.11)

The first term of equation (3.11) is solved by simple integration, however for the second
term we have:

σ
T

t

t

u
e−a(u−s)dWsdu =

σ

a

T

t
1− e−a(T−u) dWu

Therefore it follows:
T

t
x(u)du =

1− e−a(T−t)

a
x(t) +

σ

a

T

t
1− e−a(T−u) dWu

Analogously I(t, T )y can be expressed through:

I(t, T )y :=
T

t
y(u)du =

1− e−b(T−t)

b
y(t) +

η

b

T

t
1− e−b(T−u) dW2u

The condition expectation mean for the above stated integral is written as follows:

Mx(t, T ) =
1− e−a(T−t)

a
x(t) (3.12)

Having now a look at the corresponding variance:

Vx(t, T ) = V ar
σ

a

T

t
1− e−a(T−u) dWu (3.13)

=
σ2

a2

T

t
E 1− e−a(T−u) 2

du

=
σ2

a2
T − t+

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

Following analogously formula (3.12) for y(t) with replacing the corresponding terms and
combining them afterwards leads to:

M(t, T ) = Mx(t, T ) +My(t, T ) =
1− e−a(T−t)

a
x(t) +

1− e−b(T−t)

b
y(t) (3.14)
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Then again following formula (3.13) for the corresponding variance of y(t) and combining

them afterwards leads to the variance of I(t, T ) :=
T
t [x(u) + y(u)]du:

V (t, T ) = Vx(t, T ) + Vy(t, T ) + 2ρ Vx(t, T ) Vy(t, T ) (3.15)

=
σ2

a2
T − t+

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

+
η2

b2
T − t+

2

b
e−b(T−t) − 1

2b
e−2b(T−t) − 3

2b

+2ρ
ση

ab
T − t+

e−a(T−t) − 1

a
+

e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b

A detailed explanation with proof of (3.15) can be found in [[6], p. 169 ff.]. Along with
the above given formulas, φ(t) being a deterministic function, x(t), y(t) being normally

distributed, the integral of the short rate Z =
T
t r(s)ds is normally distributed with mean

µz = M(t, T ) +
T
t φ(u)du and corresponding variance σ2

z = V (t, T ). Then again eZ is

log-normally distributed with: E{eZ} = eµz+
1
2
σ2
z . Therefore the price of a zero-coupon

bond can be expressed as:

P (t, T ) = exp −
T

t
φ(u)du− 1− e−a(T−t)

a
x(t)− 1− e−b(T−t)

b
y(t) +

1

2
V (t, T ) (3.16)

The model is said to fit the currently-observed term-structure of discount factors for each
maturity T if, the discount factor P (0, T ) matches the corresponding modeled discount
factor PM (0, T ). Therefore the following equation holds:

PM (0, T ) = exp −
T

0
φ(u)du+

1

2
V (0, T )

Assuming that the current market term structure of bond prices is a sufficiently smooth
function T −→ PM (0, T ), the modeled instantaneous forward rate, evaluated at time 0
with maturity T , implied by PM (0, T ) is given as:

fM (0, T ) = −∂ lnPM (0, T )

∂T
= φ(T )− ∂

∂T

1

2
V (0, T )

Therefore we have:

φ(T ) = fM (0, T ) +
σ2

2a2
1− e−aT 2

+
η2

2b2
1− e−bT 2

+ ρ
ση

ab
1− e−aT 1− e−bT

(3.17)
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if, and only if

exp −
T

t
φ(u)du = exp −

T

0
φ(u)du exp

t

0
φ(u)du

=
PM (0, T )exp{−1

2V (0, T )}
PM (0, t)exp{−1

2V (0, t)}

=
PM (0, T )

PM (0, t)
exp −1

2
[V (0, T )− V (0, t)] (3.18)

As a last step of this section the price of a zero-coupon bond is defined. Combining
equation (3.16) with (3.18) leads to following representation of the price of a zero-coupon
bond at time t with maturity T :

P (t, T ) =
PM (0, T )

PM (0, t)
e

1
2

V (t,T )−V (0,T )+V (0,t) − 1−e−a(T−t)

a
x(t)− 1−e−b(T−t)

b
y(t)

(3.19)

3.2 Probability of Negative Rates

Taking a look at the currently-observed term structure of discount factors, the expected
instantaneous short-rate at time t is expressed as:

µr(t) := E[r(t)] = fM (0, t) +
σ2

2a2
(1− e−at)2 +

η2

2b2
(1− e−bt)2 + ρ

ση

ab
(1− e−at)(1− e−bt)

The corresponding variance σ2
r (t) of the instantaneous short-rate at time t is given as:

σ2
r (t) = V[r(t)] =

σ2

2a
(1− e−2at) +

η2

2b
(1− e−2bt) + 2

ρση

a+ b
(1− e−(a+b)t)

For a long time the possibility of attaining negative rates within this model has been
mentioned as a drawback. However due to the current market environment, such as high
implied volatilities and extremely low or even negative interest rates. In the risk neutral
setting at time t the probability of a negative short rate can be written as:

Q[r(t) < 0] = Φ −µr(t)

σr(t)
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Where Φ denotes the standard normal cumulative distribution function. Moreover the limit
distribution of the short rate process is Gaussian with mean µr(∞) and variance σ2

r (∞)
given as:

µr(∞) := limt→∞E[r(t)] = fM (0,∞) +
σ2

2a2
+

η2

2b2
+ ρ

ση

ab

σ2
r (∞) := limt→∞V[r(t)] =

σ2

2a
+

η2

2b
+ 2

ρση

a+ b

3.3 Change of measure - model dynamics under the real world
measure

The diffusion dynamics see equations in (3.7) of the underlying Two-Additive-Factor Gaus-
sian model are formulated in the risk-neutral world, in other terms under the probability
measure Q. However when it comes to the application of the Kalman Filter the estimated
bond prices are given under the real world measure P. That is why the dynamics of the
stochastic process also have to be formulated under the real world measure and therefore
need to undertake a change of measure. That is why we want to change the measure from
the risk-neutral to the real-world measure. Usually the change of measure is defined the
other way round and follows the rule of Girsanov’s Theorem see [Definition 2.14]. The
concept for the other way round is still the same. What we aim to accomplish is to find
the factor of the asset’s volatility by which the drift of every asset is corrected, which can
be understood as the asset’s exposure to risk. Which is commonly called the market price
of risk, as it describes the price investors are willing to pay to run a certain level of risk.
However in the risk-neutral setting every asset has the same drift. In order to see how
this works,we will now consider the diffusion dynamics of the factors with independent
Brownian motions W1 and W2 under Q, analogously to formula (3.8):

dx(t) = −ax(t)dt+ σdWQ
1 (t) (3.20)

dy(t) = −by(t)dt+ ηρdWQ
1 (t) + η 1− ρ2dWQ

2 (t)

Formulating the model dynamics from equation (3.20) in general vector notation, which is
written in a 2-factor SDE, we have:

dF (t) = Λ∗(F (t)− µ∗)dt+ S(t)dW (t)Q (3.21)

with F (t) =
x(t)
y(t)

, W (t)Q denoting a 2-dimensional independent standard Brownian mo-

tion, is a 2× 2 and possibly non-diagonal and asymmetric, and S(t) a diagonal matrix,
with the k-th diagonal element written as:3

[S(t)]kk =
√
αk

3This thesis only considers constant volatility however if this restriction is dropped the diagonal matrix is
stated as:

[S(t)]kk = αk + β′
kFt
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With the diffusion dynamics specified under Q and considering the constant volatility case
of S(t) we can plug in those formulas into the general vector notation, and get following
values for the parameters:

Λ∗ = −a 0
0 −b

µ∗ = 0
0

=
1 0
ηρ
σ 1− ρ2

S(t) = S =

√
σ2 0

0 η2
=

σ 0
0 η

Regarding the vector λ(t) as a well-defined Radon-Nikodym process, then according to Gir-
sanov’s theorem see [Definition 2.14], the independent vector process W P(t) can be defined
as a 2-dimensional Brownian motion under P. The definition of the change of measure
from the risk-neutral measure Q to the real-world measure P can now be represented in
the following way:

dW (t)P = −λ(t)dt+ dW (t)Q , W P(0) = 0

The process λ(t) however governs the transition form the risk-neutral to the real-world
measure. Let us now regard this transition in the model definition, we have that:4

Λ∗ = Λ (3.22)

−Λµ = Ψα (3.23)

The general vector notation of the model definition under the real-world measure following
formula (3.8) and (3.21) is given as:

dF (t) = Λ(F (t)− µ)dt+ S(t)dWt
P (3.24)

For equation (3.24) we can specify the parameters as:

Λ =
−a 0
0 −b

,−Λµ =
λ1σ

λ1ηρ+ λ2η 1− ρ2
=

ψ1σ
2

ψ1σηρ+ ψ2η
2 1− ρ2

4Again if the assumption of constant volatility is dropped, we would write:

Λ∗ = Λ− ΨB′ and − Λµ = Ψα
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The newly introduced market price of risk for factor k which is proportional to its instan-
taneous standard derivation, is now chosen to be:5

ψk :=
λk√
αk

We follow the insurance industry standard by assuming the market price of risk to be
constant. However as we will see in (3.26), the market price of risk itself depends on the
local long run risk premium functions dx(t) and dy(t) which technically can also be chosen
as step or linear functions. We assume the market price of risk is time-invariant and will be
reformulated in (3.26). In fact modeling the market price of risk in such a way, assumes that
the price investors pay for a certain risk is constant for the whole modelling horizon. To be
more precise it assumes that the market price of risk is stays always the same regardless
the time, or to be more precise the market situation. This does not match reality, anyhow
this notation is preferred, as its intuitive and good tractable in the model.
Applying the theorem of Girsanov see [Definition 2.14] on the two correlated processes,
they can be formulated under the real-world measure as:

dx(t) = ψ1σ
2 − ax(t) dt+ σdW P

1 (t)

dy(t) = ψ1σηρ− ψ2η
2 1− ρ2 − by(t) dt+ ηρdW P

1 (t) + η 1− ρ2dW P
2 (t) (3.25)

In order to specify ψ1, and ψ2 from formulas (3.25), we follow [[21], p.681, ff.] The market
price of risk is there defined in a way that the two processes x(t) and y(t) are again
formulated as Ornstein-Uhlenbeck processes.

ψ1

ψ2
=

adx(t)
σ2

bdy(t)

η2
√

1−ρ2
+ ρadx(t)

ση
√

1−ρ2

(3.26)

In general three types of functions for dx(t) and dy(t) can be distinguished: the constant,
the step and the linear function. These functions represent the long run risk premium for
each risk factor and may depend on t. The three types are:

• constant:
dx(t) = dx

dy(t) = dy

5Again if constant volatility is not assumed we would consider:

ψk =
λk

αk + β′
kFt
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• step:
dx(t) = ✶t≤τdx + ✶t>τ lx

dy(t) = ✶t≤τdy + ✶t>τ ly

• linear:
dx(t) = ✶t≤τ (1−mxt)dx + ✶t>τ lx

dy(t) = ✶t≤τ (1−myt)dy + ✶t>τ ly

Where dx, dy, lx, ly,mx and my are real valued constants and ✶A represents the indicator
function of a subset A. As already mentioned we follow the industry standard by defining
the market price of risk through a constant function. The reformulation of the dynamics
see (3.25) of the processes has following representation:

dx(t) = a dx − x(t) dt+ σdW P
1 (t) (3.27)

dy(t) = b dy − y(t) dt+ ηdW P
2 (t)

with W1 and W2 denoting two correlated Brownian motions under P.
The processes x(t) and y(t) are still Ornstein-Uhlenbeck processes and their solution is
given as:

x(t) =
t

0
e−a(t−u)adxdu+ σ

t

0
e−a(t−u)dW P

1 (u)

y(t) =
t

0
e−b(t−u)bdydu+ η

t

0
e−b(t−u)dW P

2 (u)

In general notation the mean reversion level of each process at time t is denoted by dx(t),
respectively dy(t). We recall that the sum of x(t) and y(t) and the deterministic function
φ(t) under the risk neutral measure adds up to the instantaneous short rate r(t). That
is why changing the measure, leads also to another mean reversion level at time point
t from 0 to dx(t) for the process x, and analogously to dy(t) for the process y. Hence
dx(t)+ dy(t) can be interpreted as the local long run risk premium of the short rate, which
is the amount added in the real world to the risk-neutral short rate, if dx(t) + dy(t) is
chosen to be constant over time. If this amount is negative, it means that future bond
prices increase in expectation compared to the risk-neutral setting. Therefore a risk averse
investor gets compensated for the risk he takes. This means in a market where investors
are risk averse, future interest rates tend to be lower under the real world measure than in
the risk-neutral. That is why dx(t) and dy(t) can be called the local long run risk premium,
where the corresponding risk factor is mean reverting to at time t.
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3.4 Bond price formula under the real world measure

The underlying section uses results from [21]. In the following we want to validate that
the price of a zero-coupon bond under P is obtained through the same analytic formula as
under Q, see (3.19). The price of a zero-coupon under the real-world measure is calculated
using the conditional expectation:

P (t, T )

XP (t,T )(t)
= EP P (T, T )

XP (t,T )(T )
|Ft

Where XP (t,T )(t) represents the cash-flow, that discounts the zero-coupon bond such that
the discounted price-process is a martingale under P. The dynamic of XP (t,T )(t) coincides
with the deterministic part of the zero-coupon price dynamic and is specified by the change
of measure:

dXP (t,T )(t) = XP (t,T )(t)[r(t)−Bx(t, x)adx −By(t, y)bdy]dt , XP (t,T )(0) = 1

With the specification of Bx(t, x) =
1−e−a(t,T )

a and analogously By(t, y) =
1−e−b(t,T )

b .
The solution is given as:

XP (t,T )(t) = e
t
0 (r(u)−Bx(u,x)adx−By(u,y)bdy)du (3.28)

The proof for the above stated formula, (3.28) can be found in [[21], p. 699 f.].Therefore
the price of a zero-coupon bond at time t is given by:

P (t, T ) = EP XP (t,T )(t)

XP (t,T )(T )
|Ft

The ratio in the expectation amounts to:

XP (t,T )(t)

XP (t,T )(T )
= e

T
t −(r(u)−Bx(u,x)adx−By(u,y)bdy)du

The distribution of the integral in the exponent is given as:

J(t, T ) :=
T

t
(r(u)−Bx(u, x)adx −By(u, y)bdy)du

Then J(t, T ) is normally distributed with mean:

N(t, T ) =
T

t
φ(u)du+

1− e−a(T−t)

a
x(t) +

1− e−b(T−t)

b
y(t)
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The corresponding variance is given as:

V (t, T ) =
σ2

a2
T − t+

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a

+
η2

b2
T − t+

2

b
e−b(T−t) − 1

2b
e−2b(T−t) − 3

2b

+2ρ
ση

ab
T − t+

e−a(T−t) − 1

a
+

e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b

The variance is equivalent to the variance in the risk-neutral world, see (3.15). It can
be shown that also the mean has the same form as in the risk-neutral world as the terms:
Bx(u, x)adx and By(u, y)ady in J(t, T ) cancel out in calculations. The proof can be found
in [[21], p. 700 ff.]. Therefore the expression e−J(t,T ) is log-normally distributed and the
zero-coupon bond price under P is given by the same formula as under Q, see (3.19) with
the equation of (3.18):

P (t, T ) = EP[e−
T
t (r(u)−Bx(u,x)adx−By(u,y)bdy)du|Ft]

= e−M(t,T )+ 1
2
V (t,T )

= e−
T
t φ(u)du+ 1−e−a(T−t)

a
x(t)+ 1−e−b(T−t)

b
y(t)+ 1

2
V (t,T )
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4 Nelson-Siegel-Svensson

The present chapter is based on [cf.[22, 23, 24, 25, 26, 27, 28]]. As already specified in
[Section 2.2], the Nelson-Siegel and the extended Svensson model belong to the class of
parametric methods. This type of method represents explicitly the function in form of
a single-piece function. The form of the function depends on the time to maturity, but
also on selected k parameters, which are chosen to approximate as good as possible. The
drawback of this method is the lack of flexibility, which is due to the choice of a pre-specified
function. However the advantages of this method are the easy application and the good
interpretability of the model parameters.

4.1 Nelson-Siegel model

The Nelson-Siegel model is commonly used when it comes to fitting the term-structure
of interest rates and was introduced in 1987. The model has little parametrization, but
provides statistically and economically precise results. Initially Nelson and Siegel described
a simple model containing three latent factors to fit the yield curve of the bond market.
Nelson and Siegel faced the challenge of using only three variables to describe this com-
plex curve with great performance. The described factors are also known as the level, the
slope and the curvature of the yield curve. However since the introduction many researches
contributed different versions to this model in order to improve the prediction. The differ-
ent contributions can be classified as the Dynamic Nelson-Siegel model, the Arbitrage-free
Nelson-Siegel model and the Dynamic Generalized Nelson-Siegel model. Moreover some re-
searchers also extended the model to some more factors. To name the four-factor Svensson
model, with which we will work with, or the five-factor dynamic generalized model.
The background of this model is the cognition of Nelson, that interest rates, such as the for-
ward rate f(t, T ), can easily be modeled as differential equations of second order. Therefore
the approximation function is written as a Laguerre Differential equation:

t · L′′(t) + (1− t) · L′(t) + nL(t) = 0 (4.1)

In equation (4.1) we have n ∈ N and t ∈ R. The Laguerre Function is chosen to represent
the approximation functions, as they represent the solution of the differential equation.
Moreover the class of this functions is able to represents the majority of term-structure
shapes.
The spot-rate is defined via differential equations, therefore the solutions relate to the
forward-rates. The forward-rate function is represented as a Laguerre-Function of first
order and a constant λ is added. In the following we will denote the forward rate f(t, T )
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4 Nelson-Siegel-Svensson

as f(τ), where τ represents the time to maturity, which is (T − t).

f(t, T ) = f(τ) =

β0β1
β2

′  1

e−
τ
λ

τ
λe

− τ
λ

 =

β0β1
β2

′ f0f1
f2

 (4.2)

With the to be estimated parameters in equation (4.2) fulfilling: β0, β1, β2, λ > 0. The
parameter 1

λ represents the rate of the exponential decline of the other parameter in the
model. Given m observed yields with different maturities T1, · · · , Tm we get m equations,
where τm represent the time to maturity, which is Tm − t. In order to obtain these param-
eters we follow the subsequent strategy: fix λ and then estimate the βs using Least Square
method. The parameter in the model are not assumed to be constant, but do change over
time. However due to simplicity subscripts are neglected in the following.
Therefore in the Nelson-Siegel model the yield of a certain maturity can be written as
the sum of different components: The model consists of a constant (f0), which represents
the interest rate level. The parameter β0 is independent of time to maturity and can be
interpreted as a constant interest rate for the various maturities. The exponential decay
function, denoted by (f1), reflects the second factor, a downward (β1 < 0) or upward
(β1 > 0) slope. The parameter β1 however is scaled with τ , resulting in dependence of the
maturity. The larger the maturity, the smaller the influence of β1 and vice-versa. Therefore
β1 influences on the short end of the curve. Furthermore a Laguerre function (f2) of the
form xe−x is added to the parameter β2. Then again β2 is weighted with τ . The influence
of β2 works the other way round compared to β1. The lager the maturity, the greater
the influence of β2 on the term-structure. Moreover β2 adds the hump to the curve. As
the parameter λ affects the weight function of β1 as well as of β2 it actually determines
the position of the hump. The constraints of the parameters for equation (4.2) are set as
follows:

β0 > 0, β0 + β1 > 0 and λ > 0

In general the parameters can be estimated by minimising the difference between the mod-
eled rates, denoted by: f(τ)M and the observed rates, which are denoted by: f(τ). The
optimisation problem can be stated as:

minβ,λ f(τ)M − f(τ)
2

(4.3)

In order to gain the spot rates, see [Definition 2.9], the forward-rate function, see [Definition
2.10] has to be integrated and then dividing the result by the remaining time to maturity.
This leads to following equation:

R(t, T ) = R(τ) =
1

τ

τ

0
f(u)du (4.4)

We recall the relationship between the spot-rate (R(t, T )) and the short (r(t)) as: r(t) =
limT−→tR(t, T )
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Then again following equation (4.2) and (4.4) the spot-rates are written as:

R(τ) =

β0β1
β2

′  1
λ(1−e−

τ
λ )

τ
λ(1−e−

τ
λ )

τ − e−
τ
λ

 =

β0β1
β2

′ r0r1
r2

 (4.5)

However the parameter β0, β1, β2 have to be estimated from the market. The corresponding
discount-function, which adjusts the data points is written as:

d(τ) = e−τ ·R(τ)

The discount-function represents the usual shapes of the function, which is either normal,
inverse or with an extremum. Due to simplicity when it comes to the interpretation of the
parameters, we take a look at the limes.

limτ→∞R(τ) = β0 + limτ→∞
λβ1(1− e−

τ
λ )

τ
+

λ2β2(1− e−
τ
λ )

τ
= β0

With maturity going to infinity the limes of the function is b0, and can be interpreted as
the long-term interest level. However looking at the maturity tending to zero, we get with
the use of the rule from l’Hospital

limτ→0R(τ) = β0 + limτ→0
λβ1(1− e−

τ
λ )

τ
+

λ2β2(1− e−
τ
λ )

τ
− β2e

− τ
λ = β0 + β1

Therefore β1 can be interpreted as the term, which determines the difference between the
long-term and short-term interest level. The sum of β0 and β1 results in the short-rate.

4.2 Svensson method

The Svensson model is an extension from the just regarded Nelson-Siegel model see formula
(4.2). It was introduced in 1994. Svensson added two parameter to the model with the
purpose to increase flexibility and to improve the fit. It resulted in a convexity effect which
improved the bond-rating for large maturities. To the function of the forward rates a second
hump term is added, and can be written as:

f(τ) =


β0
β1
β2
β3


′ 

1

e−
τ
λ

τ
λe

− τ
λ

e
− τ

λ2
τ
λ2

 =


β0
β1
β2
β3


′ 

f0
f1
f2
f3

 (4.6)

The restriction for equation (4.6) are the same as for (4.2) with additional: λ2 > 0.
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The spot-rate function, which we obtain again by integrating the forward-rate function is
now defined as:

R(τ) =


β0
β1
β2
β3


′


1
λ(1−e−

τ
λ )

τ
λ(1−e−

τ
λ )

τ − e−
τ
λ

λ(1−e
− τ

λ2 )
τ − e

− τ
λ2

 =


β0
β1
β2
β3


′ 

r0
r1
r2
r3

 (4.7)

The properties of the limes of τ of (4.7) are the same as in the Nelson-Siegel model see
(4.5), and that is why the interpretation of each parameter does not change either.
However the to be estimated parameters are: β1, β2, β3, β4, λ and λ2. To gain the param-
eters one could apply the same methodology as in the Nelson-Siegel method, fix the λ,
λ2 values and then again use Least Square method to minimise the difference between the
model and observed rates. However when applying this method due to collinearity problem
many different parameter values give similarly-good fits.

4.3 Nelson-Siegel-Svensson parameter for latest observation

The following section explains the applied methodology in this thesis in order to gain
the Nelson-Siegel-Svensson parameter, which will be used as input for the Kalman Filter
procedure see [Chapter 6].
Even though the model of Nelson-Siegel-Svensson is widely used for modeling the yield
curve, many authors reported numerical difficulties when it comes to calibrating the model.
The problem is mentioned as twofold: on the one hand the optimisation problem is not
convex and on the other hand it has a variety of local optima. Moreover as the Nelson-
Siegel-Svensson model can also be interpreted as a factor model another problem occurs:
collinearity. The β coefficients are the factor realisations. However the factor loadings are
also the weight functions of these parameters. For the Nelson-Siegel-Svensson model the
loadings for a maturity τ are determined through:

1;
1− e−

τ
λ

τ
λ

;
1− e−

τ
λ

τ
λ

− e−
τ
λ ;

1− e
− τ

λ2

τ
λ2

− e
− τ

λ2

′

By setting λ and λ2 we impose fixed factor loadings on a specified maturity. Regarding
m different maturities, we would have to solve m linear equations in order to estimate the
parameters.

1 1−e−
τ1
λ

τ1
λ

1−e−
τ1
λ

τ1
λ

− e−
τ1
λ

1−e
− τ1

λ2
τ1
λ2

− e
− τ1

λ2

.

.

.

1 1−e−
τm
λ

τm
λ

1−e−
τm
λ

τm
λ

− e−
τm
λ

1−e
− τm

λ2
τm
λ2

− e
− τm

λ2




β0
β1
β2
β3

 =


f(τ1)
.
.
.

f(τm)
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The system of equations is over identified, therefore the norm of the residuals would have to
be minimised by applying Least Square method. Which results in many different parameter
values giving a similar good fit.
That is why commonly used methods available in statistical packages, like deviation of the
objective function, is not useful in order to obtain the desired parameter values. Therefore
Gilli M, Große S. and Schumann E. came up with a different approach. They implemented
an optimisation heuristic, to be more precise Differential Evolution. They also tested this
methodology and were able to show that it is reliably solving the model.
The technique used is a stochastic technique for optimisation and is called Differential
Evolution (DE) and was introduced by Storn and Prices in the 1990s. The goal is to solve
the underlying optimisation problem, see formula (4.3) using DE. It is a useful way to find
the global optimum of a real-valued function of real-valued parameters but with the function
not forcedly being either continuous or differentiable. DE belongs to the class of genetic
algorithm which use biology-inspired crossover operations, mutation, and even a selection
of a population in order to minimize an objective function over various generations.
Since the invention of DE it has been applied in a variety of fields from computational
physics to operation research. The DE method in general works in the following way: a
problem is optimized by iteratively trying to improve a candidate solution with regard to
a given measure of quality. DE uses floating point encoding of population members and
arithmetic operations when it comes to mutation.
This method is also known as metaheuristics as none or only few assumptions are made
and therefore the space of possible candidates for the solution is large. Furthermore it
does not guarantee that an optimal solution is ever found. The problem is optimized by
maintaining a population of candidate solutions and creating new candidates by combining
the existing ones according to a specific scheme. It keeps whichever candidate has the best
score on the problem. The procedure is repeated until a pre-specified termination criterion
is satisfied.
As a first step the true yield curve, y is created with given parameters for the β values.
The aim is to fit a smooth curve through these points. As the model is initially used
to create these points, a perfect fit should be found. The objective function takes two
arguments: param, which is a vector containing candidate solution, and a list data, which
stores the other variables. As return we get the maximum absolute difference between a
vector of the observed yields y and the model’s yields yM for the parameters from param.
Then a model, which is here the Nelson-Siegel-Svensson is added to describe the mapping
from parameters to a yield curve. Moreover possible constraints are added. One could also
include a penalty function to determine whether parameters should met certain constraints.
If a solution violates these constraints, a specified parameter controls how heavily it is
penalised. The restriction for a valid solution is to have a penalty of zero. Afterwards the
DEOptim function is called, with input as the objective function, the list data and also
a list algo, which contains information about the population size, number of generations,
step size, the probability of crossover, constraints and the penalty.
To be more preciseDEOptim searches for minima of the specified objective function between
upper and lower bounds on each of the to be optimized parameters. That is why vectors
that compromise the lower and upper bounds have to be specified. And of course have
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4 Nelson-Siegel-Svensson

to be the same length as the parameter vector. The first argument in the function is the
vector of the to be optimized function. The lower and upper bounds are specified as scalar
for each parameter. The control argument stores intermediate populations from the first
generations onwards. The term population refers to the set of parameter vectors, which is
transformed at each generation. In order to generate an updated parameter vectors, DE
disturbs the old one with a scaled difference of two randomly selected parameters vectors.
However this pre-defined function relies on repeated evaluation of the objective function in
order to move the population toward a global minimum.
Having a look at the output of the function, following elements have to be mentioned: a set
of the best parameters found, the value of the function corresponding to the best values,
the number of function evaluations and of the procedure iterations.

4.4 Bond price from the NSS-model

We recall that the short rate r(t) from the underlying model under the real world measure
follows the dynamics, see (3.27):

r(t) = x(t) + y(t) + φ(t)

Where we can write that two processes are solution to the SDEs, with two uncorrelated
Brownian motions: Wx and Wy:

dx(t) = a dx(t)− x(t) dt+ σdWx(t) , x(0) = 0

dy(t) = b dy(t)− y(t) dt+ η ρdWx(t) + (1− ρ)2dWy(t) , y(0) = 0

Moreover as we want to make sure, that initially the prices of zero coupon bonds of the
model actually fit the obsvered bond prices from the market, which are induced through
the initial term structure, the factor φ is added:

φ(t) = fM (0, t) +
σ2

2a2
1− e−at

2

+
η2

2b2
1− e−bt

2

+ ρ
ση

ab
1− e−at 1− e−bt

However the instantaneous forward rate, fM (0, t) results from the initial term structure,
respectively the corresponding prices PM (0, t). With PM (0, t) denoting the pre-specified
price at time 0 of the simulation for a zero coupon bond with maturity t, in other words
the initial term structure of the model.
For the first years of the simulation is the Nelson-Siegel-Svensson method used in order
to determine the initial term-structure. However after passing the first years, a flat term-
structure is assumed. To be more precise after a maturity of t̂ years a constant spot rate
is applied. The spot rate R(0, t), at time 0 with maturity t is modelled as follows:

R(0, t) =
β0 + β1(1− e

− t
τ1 ) τ1t + β2(1− e

− t
τ1 ) τ1t + β3((1− e

− t
τ2 ) τ2t − e

− t
τ2 ) , if t ≤ t̂

R̂ , else
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With the parameter β0, β1, β2, β3, λ and λ2 estimated as in the previous section described.
We still need to determine the model bond-prices. In order to do so, we calculate them, by
applying following formula:

PM (0, t) = 1 +R(0, t)
−t
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5 Kalman Filter

The underlying chapter describes the Kalman Filter in general and we will then define the
Two-Additive-Factor Gaussian model in Kalman Filter formulation. The results are used
from (cf.[9, 18, 29, 30, 31, 32]).
The Kalman Filter was developed by Rudolph Kalman in 1960. The Kalman Filter is
a mathematical technique commonly used in digital computers of control and navigation
systems, avionics and outer-space vehicles with the purpose to extract a signal from a long
sequence of noisy or incomplete measurements. When Kalman initially published his ideas
he was faced scepticism. Therefore he was just given the opportunity to present his results
in mechanical engineering instead of electrical or system engineering. However when he
presented his ideas at the NASA Ames Research Center, they included the algorithm for
the Apollo program, and then further in the NASA space shuttle, the Navy submarine and
in aerospace vehicles and weapons.
For statistic and control theory the Kalman Filter is also known as a linear quadratic
estimation (LQE). The Kalman Filter consists of a set of mathematical equations providing
an efficient recursive computational technique for optimally estimating the state of the
unobservable processes. The technique is split into two phases: the prediction and the
update phase. During the prediction phase the Filter produces estimates of the current
state variables and their uncertainties. Followed by the measurement of the observed
outcome, where these estimates are updated using a weighted average.
When it comes to estimating the term-structure of the underlying short-rate model, the
Kalman Filter is applied under the real-world measure. In general the Kalman Filter is used
to study the relationship between a series of possibly noisy observed measurements (here:
yields) and the theoretical predictions of those measurements based on unobservable state
variables. The state space model consists of the measurement and transition equations.
Therefore as a first step one has to formulate the underlying model description into these
equations. State space models allow to model an observed time series zt as being explained
by a vector of (possibly unobserved) state variables Ft, which are driven by a stochastic
process. Moreover measurement errors are considered, in a way that an observable process
is used to estimate the unobservable. The Filter uses previous data in order to predict the
non-predictive process. The prediction is updated with the observed information becoming
available at each time step. The updated version is then used to make a new prediction for
the next time step. The observations are weighted through the variance of the measurement
errors in a way that the biggest measurement errors are weighted the least.
All in all the Kalman Filter is a recursive algorithm of a set of equations which allows an
estimator to be updated as soon as new information becomes available. The observation
that we consider are zero-coupon yields with fixed maturities from one year up to 30 years.
The state variables describe the factors. These are unobservable and require an initial set
of values in order to start the recursive algorithm.
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5.1 Kalman Filter specification

The Kalman Filter algorithm is an iterative procedure which consists of two stages: predic-
tion and update. Before defining these stages in the next subsections we want to formulate
the state space model. The state space model consists of the measurement and the tran-
sition equation. The measurement model describes the relationship between the state and
the measurement at the current time step t as:

zt = At +BFt + ϵt, where ϵt|Ft−1 ∼ N (0,H) (5.1)

Equation (5.1) relates an unobserved variable (Ft) to an observed variable zt. In general
there are K yields and two factors. Therefore A and z represent a vector of length K, B a
K × 2 matrix and Ft a vector with two entries, xt and yt. The term BFt+ ϵt is interpreted
as the disruption term, ϵ denotes the measurement errors, which are normally distributed
with mean zero and variance matrix H. The measurement error matrix H represents the
accuracy of the observed yields in the market. Put in other words it describes how much
noise there is in the market yields. Furthermore the measurement errors are restricted
to be equal for all maturities in order to limit the number of estimated parameters to
eight. Hence H is a diagonal with the time-independent vector of (h, ..., h) of size K × 1
on the diagonal. Let us now take a look at the other part of the state equation, which
is the transition equation. The transition equation is based on a model that allows the
unobserved variable to change over time:

Ft = C +ΦFt−1 + νt, with νt|Ft−1 ∼ N (0,Q) (5.2)

The term Φ represents a 2 × 2 matrix, and C a vector with two entries. The errors νt
are zero mean normally distributed, with corresponding variance matrix defined in formula
(5.9) and they are uncorrelated with ϵt.

5.1.1 Prediction Step

The measurement and transition equation are now being specified but how works the algo-
rithm actually?. In the first step, is called prediction step, and this is where the Kalman
Filter produces an optimal estimate of the state vector Ft based on the information till
t − 1, hence restricted on Ft−1. The optimal estimator for Ft is its conditional mean.The
operator˜denotes the estimate of the variable. Hence we have following formulation for the
predicted state estimate:

1. F̃t|t−1 = Et−1[Ft] = C +ΦF̃t−1

The predicted state estimate results from the updated previous predicted state estimate.
The corresponding predicted error covariance describes the error covariance that the Filter
thinks the estimate error has. It is given as:

2. P̃t|t−1 = Et−1[(Ft − F̃t|t−1)(Ft − F̃t|t−1)
′] = ΦP̃t−1Φ

′ +Q
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5.1.2 Updating Step

In the next step, the updating step, new information of time t becomes available. In other
words the yield of time t is observable. So that the predicted yield of t from t − 1 can
be compared with the actual occurred one. The measurement residual, also called the
innovation represents the difference between the observed measurement and the estimated
measurement as follows:

3. ξt = zt − z̃t|t−1, where z̃t|t−1 = A+BFt|t−1

The corresponding conditional variance of the prediction error is denoted by:

4. Ṽt = BPt|t−1B
′ +H

With the definition of the prediction error the estimation of the state variables is updated.
In a way that the so called Kalman gain Kt is added as a factor of the error to the initial
estimate of Ft|t−1.

5. F̃t = Ft|t−1 +Ktξt

Finally we come to determine the Kalman gain, which can be interpreted as the weight
given to the additional information available at the time step between t− 1 and t:

Kt = Pt|t−1B
′V −1

t

As the conditional expectation of the factors are updated, the conditional variance of the
state system is also updated and is written as:

6. P̃t = (I −KtB)Pt|t−1

After repeating each of the six steps for every discrete time step in the data set, and under
the assumption, that the measurement prediction errors are Gaussian, the log-likelihood
function see [Definition 2.15] for the entire data set is returned and calculated as stated
below:

l(z1, ..., zn; θ) = −nK ln(2π)

2
− 1

2

n

t=1

(ln |Ṽt|+ ξ′tṼ
−1
t ξt) (5.3)

The Kalman Filter is based on the assumption that the process and measurement models
are linear and that the process and measurement noise are additive Gaussian. That is why
the Kalman Filter provides optimal estimate only if the assumptions are satisfied.
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5.2 Formulation of the equations for the underlying short-rate
model

In the current section we want to formulate the Two-Additive-Factor Gaussian model as a
state space model for the Kalman Filter. As a first step we recall that the relation between
zero-coupon yields and bond prices can be written as, see (2.5):

zt(τK) =
− ln(P (t, Tk))

Tk − t
(5.4)

To improve readability the time indicator of z(t, T )we will from not on denote the time
indicator t as a subscript. Furthermore as we denote the time to maturity as τK = TK − t.
We recall formula (3.19) which state the price of the zero-coupon given as:

P (t, T ) =
PM (0, T )

PM (0, t)
e

1
2

V (t,T )−V (0,T )+V (0,t) − 1−e−a(T−t)

a
x(t)− 1−e−b(T−t)

b
y(t)

We now want to continue with the definition the measurement equation (5.1) for the un-
derlying two-factor additive Gaussian model. Combining the measurement equation (5.1)
with the formulation of (5.4) brings us to following definitions:

zt =


zt(τ1)

.

.

.
zt(τK)



At =



− ln
PM (0,T1)

PM (0,t)

τ1
+

− 1
2
(V (t,T1)+V (0,T1)−V (0,t))

τ1
.
.
.

− ln
PM (0,TK )

PM (0,t)

τK
+

− 1
2
(V (t,TK)+V (0,TK)−V (0,t))

τK


(5.5)

B =


B′(t,T1)

τ1
.
.
.

B′(t,TK)
τK

 =


Bx(t,T1)

τ1

By(t,T1)
τ1

.

.

.
Bx(t,TK)

τK

By(t,TK)
τK

 =


1−e−aτ1

aτ1
1−e−bτ1

bτ1
.
.
.

1−e−aτK

aτK
1−e−bτK

bτK

 (5.6)
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Ft ≡ xt
yt

By regarding once again the measurement equation see formula (5.1), the vector A, which
is defined as in equation formula (5.5) can actually be decomposed into a time independent
and a non-stochastic time-dependent part. The time dependent part arises from the fact
that the variance V (t, Tk) in A(t, Tk) only depends on the difference Tk − t and in dealing
with fixed maturities, this is a vector of constants. The time-depend part reveals because we
are dealing with a no-arbitrage model. The Variance from equation (5.5) follows definition
of (3.15).
The measurement equation for the underlying Gaussian Two-Factor model is formulated
as follows:


zt(τ1)

.

.

.
zt(τK)

 =



− ln
PM (0,T1)

PM (0,t)
− 1

2
(V (t,T1)+V (0,T1)−V (0,t))

τ1
+

.

.

.

− ln
PM (0,TK )

PM (0,t)
− 1

2
(V (t,TK)+V (0,TK)−V (0,t))

τK


+ (5.7)


1−e−aτ1

aτ1
1−e−bτ1

bτ1
.
.
.

1−e−aτK

aτK
1−e−bτK

bτK


x(t)
y(t)

+


ϵ1
.
.
.
ϵK


In the next step we want to define the transition equation (5.2) for the underlying short
rate model. We recall formula (5.2):

Ft = C +ΦFt−1 + νt, with νt|Ft−1 ∼ N (0,Q) (5.8)

The errors νt are zero mean normally distributed, with corresponding variance matrix
defined in formula (5.9) and they are uncorrelated with ϵt.
In order to determine C,Φ and Q we have to take a look at the model dynamics specified
under the real-world measure, P. We recall formula (3.24) which states:

dFt = Λ(Ft − µ)dt+ StdWt
P

As this process belongs to the class of Ornstein-Uhlenbeck processes, we recall that we
have already seen in [Definition 2.12], how to obtain a solution. Therefore we directly write
the solution, which is:

Ft+∆t|Ft = eΛ∆tFt +
t+∆t

t
eΛ∆t(−Λµ)ds+

t+∆t

t
eΛ∆t StdWs
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5 Kalman Filter

The expectation for the factors at t+∆t given Ft is defined through:

Et[Ft+∆t] = eΛ∆tFt +
t+∆t

t
eΛ∆t(−Λµ)ds) =

e−a∆t 0
0 e−b∆t

Φ

Ft +
ψ1σ2

a (1− e−a∆t)
ψ1σηρ+ψ2η2

√
(1−ρ2)

b (1− e−b∆t)

C

Hence we can calculate Matrix Q from the transition equation as follows:

V art(Ft) = Et[Ft+∆tF
′
t+∆t] =

t+∆t

t
eΛ(t+∆t−s) St( St)

′(eΛ(t+∆t−s))′dW P
s

=
σ2

2a (1− e−2a∆t) ρση
a+b(1− e−(a+b)∆t)

ρση
a+b(1− e−(a+b)∆t) η2

2b (1− e−2b∆t)

Q

(5.9)

The state space model is fully specified but before starting the iterative procedure, the
initial values have to be determined:

F0 =
x0
y0

=
0
0

The initial value of the variance is defined through the variance of the factors:

Q0 =
σ2

2a
ρση
a+b

ρση
a+b

η2

2b

With having now the state space model and the initial values declared, we can insert the
above gained information about the specifications in each step of the Kalman Filter, which
is described in the following subsections.
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6 Modeling of the future bond prices

Since the previous chapters cover the basic theory for this thesis, the underlying chapter
focusses on the application of the theory and describes the methodology to estimate a set
of parameters for the Two-Additive-Factor Gaussian model. With which we further model
the future zero-coupon prices. The methodology is implemented in the statistic-software
R, which is a free software environment for statistical computing and graphics.
As already mentioned in [Chapter 5] the Kalman Filter is a recursive algorithm, therefore
an initial set of parameters has to be specified. However these parameters can be randomly
chosen, they just have to full fill a certain criterion of the optimizer function, which is
explained in [Subsection 6.2.1].
To start with the specification of the setting: we do 10.000 path simulations, choose a
maximum maturity of 30 years, the widest simulation horizon represents 40 years, and
the time-delta between the maturities, as well as between the simulation horizons is one
year, the observed maturities of the short-rate is also up to 30 years. However as we have
daily-observed short-rates the observed time-delta is 1/254.
For the Kalman Filter we have to specify the initial values x0, y0, furthermore the drifts,
volatilities, correlation, and market prices of risk. We chose them to have following values:

x0
y0
a
b
σ
η
ρ
ψ1

ψ2


=



0
0

0.05
0.05
0.0101
0.0101
−0.5
0.0009
0.0009


Despite the specification of the criterion for the optimizer this guideline for the initial set
of parameters is advisable: a, b ∈ [0, 2], the mean reversion should not be grater than 1,
hence σ, η ∈ [0, 1], the correlation should be in-between [−1, 1] and the measurement error
should not exceed 150 basis points, and is chosen to be 10−3.
We then start the routine by loading the observed interest rates data, which is daily ob-
served short-rates in the time period between 01.01.2015 and 31.12.2019. As week-ends
and holidays are excluded we get a total of 1272 observations.
As a next step we just filter on the latest observation date and interpolate the correspond-
ing spot curve. This is needed as we only have observed maturities for 30 years, but we
want to have a predicted model with maturities of 70 years, which is the widest horizon we
regard. The subsequent section describes the applied procedure.
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6 Modeling of the future bond prices

6.1 Interpolation of the spot curve

The underlying section uses results from [cf.[13, 33, 34, 35, 36, 37]]. In a mathematical
sense interpolation is referred to a kind of estimation, which constructs or finds new data
points based on a set of given data points. We distinguish piece-wise, linear, polynomial
spline and mimetic interpolation. As natural cubic splines belongs to the class of piece-
wise interpolation, we will have a closer look at this method. Piece-wise interpolation fits
a large number of data points with low-degree polynomials. It works in a way that, given
a set of data points, which is in this case short-rates with different maturities, a different
polynomial for each interval is used to interpolate several interpolants at successive points.
Therefore the terms such as knots, breakpoints or control points are derived, as these are
abscissas at which the interpolant changes from one polynomial to another. The goal is to
find an interpolation function that is smooth and does not change too much between the
node points. The natural cubic spline is defined as a piece-wise cubic polynomial that is
twice continuously differentiable.
For the interpolation of the spot curve, the lm function from the R-package stats1(version
3.6.2) with a cubic spline proceeding is applied. The main purpose of the lm function is to
fit linear models. Linear models are used to predict the value of an unknown variable, with
the basis being independent variables. Therefore it should find the relationship between
the given variables and a forecast. The function lm is usually applied when it comes to
carry out regression, single stratum analysis of variance or analysis of covariance to predict
the missing values of the underlying data. A typical model hast the form response ∼ terms,
with the first argument being a (numeric) response vector and the other specifies a linear
predictor for the response. The response term in this case is the short-rate, with the linear
predictor being specified as a natural spline procedure. The function natural spline (ns) is
from the package Epi2 (version 2.46) and generates a B-spline basis matrix for a natural
cubic spline. The ns function consists of following arguments: a predictor variable, which
is in our case time, the degrees of freedom, which is 30 in our case. Moreover one could
specify knots, which represent the breakpoints that define the spline, however we have not
defined any knots. Also one could determine an intercept included in the basis, but we have
not chosen to do so. Furthermore there is the possibility to set boundary knots. These
are boundary points at which to impose the natural boundary conditions and anchor the
B-spline bases.
Afterwards the predict function is applied on the data within the interpolated model. The
function evaluates a pre-defined spline basis, given the input values. The predict function
takes two arguments as input: the object, which is in our case the interpolated spot model
and the new values at which evaluations are required, which is a data frame with maturities
from 1 to 70 years. After applying the function on the short-rates, we have expanded the
observation period of with corresponding short-rates from the initial 30 years to 70 years
of maturities.
Then before we continue with the estimation procedure, the column bond price is added to
the underlying data frame. Applying following formula on the spot rates returns, we get

1The package can be found, following: https://rdocumentation.org/packages/stats/versions/3.6.2
2The package can be found, following https://rdocumentation.org/packages/Epi/versions/2.46
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6 Modeling of the future bond prices

an addition column with the corresponding bond prices:

P (0, t) = 1 + r(t)
−t

(6.1)

So far we have a data frame containing short-rates with maturities from 1 to 70 years and
corresponding bond prices.

6.2 Estimation process

When it comes to the estimation procedure, we continue with the calculation of the Nelson-
Siegel-Svensson parameters for the latest yield. We recall that we obtain the latest yield
by applying following formula on the obtain bond-prices, see formula (6.1):

zt(τK) = −
ln Pobs(t, T )

τK

With the latest yield we can continue to calculate the Nelson-Siegel-Svensson parame-
ter: β1, β2, β3, β4, τ1, τ2, see (4.7). In order to obtain the NSS parameters an optimisation
heuristic method, Differential Evolution is implemented. However parameter identification
is only possible if specific parameters are restricted to certain ranges. The exact procedure
is explained in [Chapter 4].
We then start with the procedure which returns the log-likelihood function, see (5.3). The
procedure has following input parameters: the initially defined model parameters, the
maturities, the observed yields, the observed time steps and the Nelson-Siegel-Svensson
parameters.
In a first step the variance of the function is calculated, following formula (3.15):

V (t, T ) =
σ2

a2
T−t+

2

a
e−a(T−t)− 1

2a
e−2a(T−t)− 3

2a
+
η2

b2
T−t+

2

b
e−b(T−t)− 1

2b
e−2b(T−t)− 3

2b
+

2ρ
ση

ab
T − t+

e−a(T−t) − 1

a
+

e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b

As a next step the model bond prices are calculated using the Nelson-Siegel-Svensson
parameters. The corresponding modeled short-rate with maturity t is calculated, following
equation (4.7):

R(0, t) = β0 + β1(1− e
− t

τ1 )
τ1
t
+ β2(1− e

− t
τ1 )

τ1
t
+ β3((1− e

− t
τ2 )

τ2
t
− e

− t
τ2 ) (6.2)

Then again with the knowledge of the modeled short-rate, the bond prices for the model,
which are denoted by: PM (0, t) are calculated, applying formula (6.1) on the modeled
spot-rates from (6.2):

PM (0, t) = 1 +R(0, t)
−t
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6 Modeling of the future bond prices

To continue with the application of the Kalman Filter, we recall that we need to formulate
the state equation, which consists of the measurement and transition equation. With the
measurement equation once again specified as:

zt = At +BFt + ϵt

With the equation for the short-rate model specified:

zt(τK) =
− ln(P (t, Tk))

Tk − t
=

− ln(A(t, Tk)) +Bx(t, Tk)x(t) +By(t, Tk)y(t)

Tk − t

The other part of the state equation, the transition equation is once again formulated:

Ft = C +ΦFt−1 + νt

Afterwards we switch to the model dynamics under P in order to determine C,Φ and Q:

dFt = λ(Ft − µ)dt+ StdW
P
t

With having now all input parameter specified, we call the function fkf 3 from the same
labelled package, which routine is described in [Chapter 5]. The output is the log-likelihood
function of the set of parameters from the Kalman Filter, which is defined in (5.3).
As a next step, the yield from the observed bond prices are calculated by applying following
formula on the observed bond prices:

z(t, T ) = − lnP (t, T )

(T − t)

The observed yields are needed as input for the optimizer for the estimated model param-
eters, which is described in the subsequent subsection.

6.2.1 Optimizier

The underlying section uses results from [cf.[38, 39, 40]]. In the following we regard the
numerical approach for the MLE for the set of parameters. For this the R-Function con-
strOptim from the packages ”stats” (version 3.6.2) is applied. It provides a method to
minimise a function subject to linear inequality constraints with the use of an adaptive
barrier algorithm. The here applied method is called Nelder-Mead method, which is also
known as a downhill simplex. It is a numerical method used to find the minimum or max-
imum of an objective function in a multidimensional space. The method was introduced
by John Nelder and Roger Mead in 1965. The algorithm is a deterministic search strat-
egy relying on function evaluations only. Moreover it can be regarded as an optimization
method for non-linear problems using a simplex of n + 1. The aim of the algorithm is to
find a minimum by evaluating the objective function and moving the simplex until just
the minimum is found. Doing so it rescales the simplex based on local behaviour of the
function while three basic procedures are applied: reflection, expansion and contraction.

3The package can be found, following: https://rdocumentation.org/packages/FKF/versions/0.2.4
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6 Modeling of the future bond prices

The ConstrOptim function takes following inputs: numeric starting values, which is in this
case the initial set of parameters, the to be minimised function, which is the negative log-
likelihood function from the estimation step, see (5.3), a constraint matrix ui, a constraint
vector ci of row length from ui, the iterations of the barrier algorithm is set to 200 and
the relative convergence tolerance is set to: 10−6. The starting vector, which contains the
initial set of parameters has to full-fill following condition:

ui ∗ θ − ci ≥ 0

Where ∗ represent a matrix multiplication. Furthermore θ represents a vector containing
the initial set of parameters.
The output of this procedure is the set of parameters for the Two-Additive-Factor Gaussian
model. In particular we obtain the beneath stated values for the parameters:

x0
y0
a
b
σ
η
ρ
ψ1

ψ2


=



0
0

0.9136051683
0.9989999468
0.0101236500
0.0126402162
−0.9988806370
0.0009724382
0.0009983962


(6.3)

With the modeled parameters we can finally start the path simulation of the future zero-
coupon bond prices, which is explained in the next section.

6.3 Simulation

With the estimated set of parameters we want to continue to create possible paths of the
future development. As already mentioned at the beginning of this chapter, we chose to
do a simulation of 10.000 paths, and the mean of these is used to calculated the future
zero-coupon bond prices.
We want to mention again, that we regard two correlated Ornstein-Uhlenbeck processes
which are given as:

dx(t) = ψ1σ
2 − ax(t) dt+ σdW1(t)

dy(t) = ψ1σηρ− ψ2η
2 1− ρ2 dt+ ηρdW1(t) + η 1− ρ2dW2(t)

We recall that the solution of an Ornstein-Uhlenbeck process is of the form, see equation
(2.4):

Xt = X0e
−θt + µ(1− e−θt) + σ

t

0
e−θ(t−s)dWs

Which leaves us to determine the parameters for the underlying model. Which brings us
to following solutions of the processes:

xt+1 = xte
−a(t+1) +

ψ1σ
2

a
(1− e−a(t+1)) + σ

t+1

t
e−a(t+1−s)dW1(s)
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yt+1 = yte
−b(t+1) +

ψ1σηρ− ψ2η
2 1− ρ2

b
(1− e−a(t+1)) + ηρ

t+1

t
e−b(t+1−s)dW1(s)

+η 1− ρ2
t+1

t
e−b(t+1−s)dW2(s)

Following the above stated formulas we get 10.000 paths for each of these processes at each
time-step.

6.4 Calculate zero-coupon bond prices

With now having the simulated paths of the processes we calculate the mean of these bond
prices for every time instant and every maturity. We follow the zero-coupon bond price
formula, see (3.19):

P (t, T ) =
P (0, T )

P (0, t)
e

1
2
(V (t,T )−V (0,T )+V (0,t)− 1−e−a(T−t)

a
x(t)− 1−e−b(T−t)

b
y(t)

Where V (., .) represents the variance, which is determined in equation (3.15). The zero-
coupon bond prices P (0, T ) and P (0, t) are determined through the relationship between
zero-coupon-bonds prices and the short-rate. Which is given by:

P (0, t) = 1 + r(t)
−t

(6.4)

The above stated formula (6.4) is applied on the initial observed short-rate data from
the latest observation date. The factor a and b are the estimated model parameters. With
having every part of the zero-coupon bond price formula determined, the mean at each time
of these prices is calculated. The output is a matrix, containing the mean zero-coupon bond
prices with maturities from 1 year up to 30 years and a simulation horizon up to 40 years.
These zero-coupon bond prices can then again be transformed to the corresponding short-
rates, see (6.4). To model this short-rate was the goal of this thesis. That is why with this
output we have reached it. However it is still left to validate the output, which is the focus
of the subsequent chapter.
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So far we have the estimated set of model parameters and with those estimated the future
zero-coupon bond prices respectively the corresponding short-rates. But is our output
valid? There are various ways to check, whether the model is stable and calibrates good
results. In the underlying chapter we use different approaches to validate the model and
the output.

7.1 Martingale-Test

A simple and frequently used technique is the Martingale-test. The Martingale-test proves
if the underlying modeled bond-prices are a martingale see [Definition 2.3]. To be more
precise this means that one unit of currency invested at time t0 at the end of maturity tn
and being discounted, should match in average one unit of the currency again. Actually
discounted at every time instant ti it should match the one unit of currency. The underlying
plot [Figure 7.1] represents the output of the martingale test for the simulated bond prices.
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Martingale Test of the simulated bond prices

Figure 7.1: Martingale Test of the simulated bond prices

We can identify that the for the first ten years, we meet the martingale property quite
perfectly. However as maturity grows, we can recognize a falling tendency. However it is
important to pay a close look at the scale, as the lines of y-axis are represented with step-
size of 0.01. The discounted prices stay in an interval of [0.9999998; 0.99973412]. That is
why we can say that we fit the Martingale-test quiet well, as the requirement is to stay close
to the value of 1. The deviations of the Martingale.test stay in between of a 1 percent range
of the expected value of 1. Therefore the outcome of the modeled short-rates is satisfying.
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This makes us suggest that with the estimated set of parameters, the underlying short-rate
model fulfils the martingale property for the modeled short-rate.

7.2 Simulation with the estimated parameters

7.2.1 Parameter comparing

For an admissible model we expect that the model is able to reproduce its set of parameters.
To be more precise with the gained set of parameters we have already simulated the future
short-rates. This time the observation period, which represents the time delta, represents
one year, the maturities we regard are from 1 to 30 years. The initial set of parameters
for the Kalman Filter, is the obtained set of parameters from the observed short-rates, see
equation (6.3). With those parameters we rerun the Kalman Filter algorithm. Then again
the Nelder-Mead optimizer is applied and the output is the following set of parameters.

a
b
σ
η
ρ
ψ1

ψ2


=



0.94050491442
0.99899980290
0.01620579552
0.01618853236
−0.99899155700
0.00099996790
0.00009498986


(7.1)

By comparing these two sets of parameters ((6.3) and (7.1)) we assert that the absolute
difference between those sets is small. The behaviour of the terms is pretty similar. The
volatility terms, σ and η are not exactly the same, however those are also influenced through
the random behaviour of the Brownian motion. Therefore it can be said that in sum the
parameters are quite good replicated. Which makes us suggest that the implementation
of the Kalman Filter, as well as of the path simulation is right. However to be sure we
repeat the methodology and estimate on basis of the parameter of (7.1) the zero-coupon
bond prices, respective the future short-rates again. On basis of this short-rates we rerun
the Kalman Filter algorithm with this set of parameters again. The output this time is:

a
b
σ
η
ρ
ψ1

ψ2


=



0.94050490000
0.99899980000
0.01622942747
0.01650635754
−0.998991600
0.00099996790
0.00009498986


By comparing the three sets of parameters we come to the conclusion that model is able to
reproduce its parameters, as we expect it to do. Therefore we conclude that the procedure
is implemented correctly.
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7.3 Model bond prices compared to the observed bond prices

The last approach to validate the model is as follows: The observed interest-rates data is
split into two sets. The first set contains the first four years of observation, and the other
the last year of observation. We then take the first set and start with the parameters of
(6.3) a path simulation of the zero-coupon bond prices for the next year with maturities
from 1 to 30 years. We then compare the actual observed bond prices from the latest
observation, with the simulated one. The output is represented in the above given plot, see
[Figure 7.2].
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Figure 7.2: Model Bond Price and Observed Bond Price

As we can see in the above given plot, see [Figure 7.2], the bond prices match quite well for
the first 17 years. Then however the modeled prices have a more downward tendency than
the observed ones. Regarding the difference for a maturity of 30 years, it has the value
of about 0.033. The gap for the longer maturities could be explained, through the fact
that for the underlying short-rates we regard four years of observed short-rates, however
the simulation here is for maturities to 30 years. That means for the first years we have a
quite good fit, however as the maturities grow, the observed data for the underlying model
should as well be extended. To sum up we can say that the model fits short-term maturities
well, however as the maturities grow the more the values spread. Even tough the fit is not
perfect, we can say that all in all we have a quiet accurate fit with the model.
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8 Conclusion

We successfully demonstrated to calibrate a short-rate model. With the Brownian motion,
see [Definition 2.1] and the stochastic differential equation, see [Definition 2.5] we have the
basis tools for the short-rate model. Through the Ornstein-Uhlenbeck process, see [Defi-
nition 2.12] we have a solution of the process, which will be used for the path simulation
for the future zero-coupon bond prices. With the definition of the zero-coupon bond in
[Section 2.2.2] we are able to identify the corresponding yield. Through the representation
of the different kinds of interest rates we are able to show their interaction.
When focussing on the underlying short-rate model we first take a look at the One-Factor
Hull-White model and the problems, which may arise from depending on just one fac-
tor. This brings us to the conclusion to extend the model to another factor. The Two-
Factor Hull-White model can equivalently be formulated as a Gaussian-Additive Two-
Factor model, which is represented as the sum of two correlated Gaussian factors plus a
deterministic function. With Girsanov’s theorem the model formulation under the risk-
neutral measure can be transformed to the real-world measure, which we will need for
the Kalman Filter. The deterministic function is added to fit the initial term-structure
and in order to define this function we need the Nelson-Siegel-Svensson technique. To be
specific we need the Nelson-Siegel-Svensson parameters which are estimated through the
latest observation of the observed short-rates. With these parameters the corresponding
modeled zero-coupon bond-price can be calculated. In order to receive the set of Nelson-
Siegel-Svensson parameter the optimisation heuristic Differential Evolution is applied.
The Kalman Filter is recursive algorithm and is used to obtain the set of model parameters
for the Two-Factor Gaussian-Additive model. After formulating the state-space equation
for the underlying model, we focus on the methodology: with an initial set of parameters,
the equations for the underlying model and the estimated Nelson-Siegel-Svensson param-
eters the Kalman Filter algorithm can start. The output is the log-likelihood function of
the parameters. Through the Nelder-Mead optimizer the Kalman Filter algorithm reruns
until a certain threshold is reached.
With the basis theory for this thesis covered, we describe the process it takes in order to
obtain the model parameters and then estimate the paths of the future zero-coupon bond
prices. Those zero-coupon bond prices can also be transformed into the short-rate. To
continue with the interpolation of the short-rates in order to enlarger the 30 observations
to 70, as the simulation horizon corresponds to 40 years. We continue with the estimation
process, which first identifies the Nelson-Siegel-Svensson parameters, and the correspond-
ing model prices. We then start the Kalman Filter with the output being the optimized
log-likelihood function of the to be estimated parameters. With the just estimated pa-
rameters we can start the simulation of the paths, of which we calculate the future mean
bond-prices.
The goal of this thesis is to find a reasonable set of parameters for the short-rate model. We
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wanted to confirm the validity of the output using the estimated set of parameters. For the
validation of the output we used different approaches. Fulfilling the martingale property
is evaluated using the Martingale-test. It states that the average future zero-coupon bond
price discounted at each time point should match one unit of currency. As the discounted
price range stays within one percent of one unit, we conclude that the Martingale property
is fulfilled. As a second approach we want to recalibrate the set of model parameters. To do
so we transform the obtained zero-coupon bond prices into short-rates. These short-rates
are handled as the observed-short rates and the obtained set of model parameters is chosen
to be the initial set of parameters for the Kalman Filter algorithm. The output of the model
parameters of the second procedure fits quite well the output from the first procedure. We
also tried to rerun the routine again: Using the data from the second procedure as input
parameters we simulated paths and calculated the mean of future zero-coupon prices, which
then again are transformed into short-rates and handled as the observed short-rates. This
time the initial set of parameters for the Kalman Filter is the second set of parameters.
The output matches again quite well with the other two sets, which makes us suggest that
the implementation is correct, as the model behaves as expected. Last but not least the
observed short-rates are divided into two data-sets so that one contains the observations
of the first four years, and the other set of the last year. Then we take the first set as the
short-rate basis and the estimated set of parameters as input for the path simulation. Then
again we calculate the mean of this paths into zero-coupon bond prices. By comparing the
modeled set with the actual observed one we see quite a perfect fit for the first 17 years of
maturities. Until the end of maturity, which is year 30, the gap widens and the modeled
short-rates are lower than the observed ones. We still regard the test as passed, as the
first years fit quiet well and the observation period was short. In a next step one could
widen the range of observed years to improve the fit, but this is beyond of the scope of this
thesis. In summary we can say that we found a way to estimate a set of model parameter
for the Gaussian-Additive Two Factor model. With those parameters future zero-coupon
bond prices and the short-rate is modeled successfully.
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