
Planarizing Graphs and their Drawings by
Vertex Splitting∗

Soeren Nickel1, Martin Nöllenburg1, Manuel Sorge1,
Anaïs Villedieu1, Hsiang-Yun Wu2, and Jules Wulms1

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
{soeren.nickel|noellenburg|manuel.sorge|avilledieu|jwulms}@ac.tuwien.ac.at

2 St. Pölten University of Applied Sciences, St. Pölten, Austria and
Research Unit of Computer Graphics, TU Wien, Vienna, Austria
hsiang.yun.wu@acm.org

Abstract
The splitting number of a graph G = (V, E) is the minimum number of vertex splits required to
turn G into a planar graph, where a vertex split removes a vertex v ∈ V , introduces two new
vertices v1, v2, and distributes the edges formerly incident to v among its two split copies v1, v2.
The splitting number problem is known to be NP-complete. In this paper we shift focus to the
splitting number of graph drawings in R2, where the new vertices resulting from vertex splits must
be re-embedded into the existing drawing of the remaining graph. We show the NP-completeness
of the splitting number problem for graph drawings, even for its two subproblems of (1) selecting
a minimum subset of vertices to split and (2) for re-embedding a minimum number of copies of a
given set of vertices, which does not need to be a solution to (1). We present an FPT algorithm for
the latter subproblem, parameterized by the number of vertex splits, which reduces the instance to
bounded outerplanarity and then uses dynamic programming on its sphere-cut decomposition.
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1 Introduction

Visualizing dense graphs is a challenging task due to the potentially large number of edge
crossings, which make tracing of individual edges harder and create clutter that negatively
impacts readability [31]. Several approaches have been proposed to mitigate this issue [20],
many aim to achieve readability properties similar to those of crossing-free drawings of
planar graphs [30, 32, 34]. One such technique is to apply a sequence of vertex splitting op-
erations. This approach has been studied from a theoretical perspective [8, 11, 23, 26], and
is used in practice, e.g., by biologists and social scientists [18, 19, 29, 35, 36]. For a given
graph G = (V,E) and a vertex v ∈ V , a vertex split of v replaces v by two non-adjacent
copies v1, v2 and distributes the edges formerly incident to v to v1 and v2. The minimum
number of splits needed to obtain planarity is known as the splitting number of a graph and
computing it is NP-hard [13]. The splitting numbers of complete graphs, complete bipartite
graphs and the 4-cube [12, 16, 17, 22] are known. Similarly, the planar split thickness of a
graph G is the minimum k such that G can be turned into a planar graph by applying a
k-split (which creates k copies v1, . . . , vk) to each vertex v of G. Deciding whether a graph
has split thickness k is NP-complete [11].
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Contributions. Our focus in this paper is on vertex splitting for topological graph drawings
in the plane R2, where the subgraph induced by the non-split vertices retains its drawing.
Similarities can be found with simultaneous embedding problems [5, 14, 15], and planar
drawing extension problems [1, 2, 6, 7, 9, 10]. The underlying algorithmic problem for vertex
splitting in drawings of graphs is two-fold: firstly, a suitable (minimum) subset of vertices
to be split must be selected, and secondly the newly created copies of these vertices must
be re-embedded in a crossing-free way together with a partition of the original edges of each
split vertex into a subset for each copy. We show that both problems are NP-complete, and
present an FPT algorithm for the re-embedding subproblem of the splitting number problem
for graph drawings parameterized by the number of splits. We note that the smallest set of
vertices as computed for the first subproblem is not necessarily the correct set of vertices to
split when solving the complete problem.

Preliminaries. Let G = (V,E) be a graph. We write G[V ′] to denote the subgraph of G
induced by V ′ ⊆ V and NG(v) to denote the neighborhood of a vertex v in G.

Let Γ be a topological drawing (for simplicity, from now on called a drawing) of G, which
maps each vertex to a point in R2 and each edge to a simple curve (a Jordan arc) connecting
the points corresponding to the incident vertices of that edge. We still refer to the points
and curves as vertices and edges, respectively, in such a drawing. We assume Γ is a simple
drawing, meaning no two edges intersect more than once, no three edges intersect in one
point (except common endpoints), and adjacent edges do not cross. A split operation of a
vertex v ∈ V into two copies v̇(1), v̇(2) results in a drawing of the graph G′ = (V ′, E′) where
V ′ = V \ {v}∪{v̇(1), v̇(2)} and E′ is obtained from E by distributing the edges incident to v
among v̇(1), v̇(2) such that NG(v) = NG′(v̇(1))∪NG′(v̇(2)). It assigns new coordinates Γ(v̇(i))
to v̇(1), v̇(2) as well as new curves Γ(e) to all edges e incident to any of the split vertices. If
a copy v̇ of a vertex v is split again, then any copy of v̇ is also called a copy of the original
vertex v and we use the notation v̇(i) for i = 1, 2, . . . to denote the different copies of v.
I Problem 1 (Embedded Splitting Number). Given a graph G = (V,E), a drawing Γ of
G and an integer k, can G be transformed into a graph G′ by applying at most k splits to G
such that G′ has a planar drawing that coincides with Γ when restricted to G′[V (G)∩V (G′)]?

Problem 1 includes two interesting subproblems, namely the candidate selection prob-
lem and the re-embedding problem. The candidate selection problem is related to the NP-
complete problem of deleting at most k vertices from a non-embedded graph to make it
planar [25,28]. However, here we deal with a given drawing of a graph (with crossings).
I Problem 2 (Candidate Selection). Given a graph G = (V,E), a drawing Γ of G
and an integer k, can we find a candidate set Scdt ⊂ V of at most k vertices such that the
drawing Γ restricted to G[V \ Scdt] is planar?

The vertices split in a solution of Problem 1 necessarily form such a candidate set,
however, a minimum cardinality candidate set might not be the set that requires the least
amount of splits to solve Problem 1, as vertices can be split multiple times and we might
have to additionally split vertices whose incident edges are not involved in crossings.

Once a candidate set has been obtained we want to solve the second subproblem:
I Problem 3 (Split Set Re-Embedding). Given a graph G = (V,E), a candidate set
Scdt ⊂ V , a drawing Γ of the subgraph G[V \ Scdt], and an integer k ≥ |Scdt|, can we
perform at most k splits, splitting only vertices in Scdt and splitting each vertex in Scdt at
least once, such that the resulting graph G′ has a planar drawing that coincides with Γ when
restricted to G[V \ Scdt]?
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Figure 1 (a) An example graph G, (b) a planar drawing Γ of G where Scdt has been removed,
and (c) a solution drawing Γ?. Pistils are squares, copies are circles and vertices in Scdt are disks.

While we find that Split Set Re-Embedding is FPT, the parameterized complexity of
Candidate Selection remains open.

2 Embedded Splitting Number Subproblems are NP-Complete

The reduction showing Splitting Number to be NP-complete [13] does not seem to extend
to Embedded Splitting Number. Here we show that Candidate Selection is NP-
complete using a reduction from planar 3-SAT inspired by Hummel et al. [21].1

I Theorem 2.1. Candidate Selection is NP-complete.

We then show that Split Set Re-Embedding also is NP-complete. We reduce from
Face Cover [4], where we are given a planar graph and a vertex subset S and we ask for the
smallest set of faces F such that each vertex in S is incident to a face in F . We construct an
instance of Split Set Re-Embedding with the same graph and an extra vertex v, where
the candidate set is the vertex v and its neighborhood is N(v) = S. A re-embedding of k
copies of v uses faces that induce a face cover and vice-versa, a face cover of size k gives the
faces in which we can re-embed k copies of v.

I Theorem 2.2. Split Set Re-Embedding is NP-complete.

3 Split Set Re-Embedding is Fixed-Parameter Tractable

In this section we propose an FPT algorithm for Problem 3 (Split Set Re-Embedding)
and prove the following theorem.

I Theorem 3.1. Split Set Re-Embedding can be solved in 2O(k2) · nO(1) time, where k
is the number of allowed splits and n is the number of vertices in the input graph G.

Algorithm outline. We aim to re-embed copies of our candidate vertices with the following
setup (Fig. 1). First, from the given set Scdt of candidate vertices (disks in Fig. 1a) we
choose how many copies of each vertex we will make. We initialize a set Sf with one copy of
every candidate vertex, then loop over every possibility of splitting vertices in Scdt k−|Scdt|
times. Note that |Scdt| ≤ k, and thus every computed set Sf is obtained from k split
operations. This creates 2O(k2) different sets. For each such computed set Sf of copies we
determine the connections among them. Next, we transform our input to be able to compute

1 Alternatively, one can reduce from Independent Set on segment intersection graphs [24] as suggested
by a reviewer.
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Figure 2 (a) A graph and (b) its sphere-cut decomposition. Each labeled leaf corresponds to
the same labeled edge of the graph. The middle set of each colored edge in the tree corresponds to
the vertices of the corresponding colored dashed noose in the graph.

a sphere-cut decomposition of the new drawing, as explained in Section 3.1. We then use
dynamic programming on the tree defined by this decomposition as sketched in Section 3.2.
If this algorithm finds that our instance is a yes instance then a solution exists (see Fig. 1c).

We introduce the following terminology. Any vertex v that has a neighbor in Scdt is
called a pistil. Each face that is incident to a pistil is called a petal. Let p be a pistil in the
input graph G with neighbors N(p). Let v̇ be a copy of some v ∈ Scdt, where v ∈ N(p).
Given a drawing Γ̃ of a subgraph of G, we say v̇ covers p if v̇ is adjacent to p in Γ̃.

3.1 Finding a Sphere-Cut Decomposition
Given an instance of Split Set Re-Embedding (SSRE), we transform the induced graph
G[V \Scdt] in the following manner: any vertex v ∈ V \Scdt that is not incident to a petal is
removed. Then, any bridge in that new drawing is transformed into a multi-edge to obtain
G′ and its drawing Γ′. We can show that the instance obtained is a yes-instance if and
only if the original instance is a yes-instance and the graph G′ is 6k-outerplanar. A graph
is `-outerplanar if after ` times removing all vertices on the outer face the graph becomes
empty. This can be exploited algorithmically in the following..

A branch decomposition of a (multi-)graph G is a pair (T, λ) where T is an unrooted
binary tree, and λ is a bijection between the leaves of T and E(G). Every edge e ∈ E(T )
defines a bipartition of E(G) into Ae and Be corresponding to the leaves in the two connected
components of T − e. We define the middle set mid(e) of an edge e ∈ E(T ) to be the set of
vertices incident to an edge in both sets Ae and Be. The width of a branch decomposition
is the size of the biggest middle set in that decomposition. The branchwidth of G is the
minimum width over all branch decompositions of G.

A sphere-cut decomposition of a planar (multi-)graph G with a planar embedding Γ on
a sphere Σ is a branch decomposition (T, λ) of G such that for each edge e ∈ E(T ) there is
a noose η(e): a closed curve on Σ such that its intersection with Γ is exactly the vertex set
mid(e) (i.e., the curve does not intersect any edge of Γ) and such that the curve visits each
face of Γ at most once (see Fig. 2). The removal of e from E(T ) partitions T into two subtrees
T1, T2 whose leaves correspond, respectively, to the noose’s partition of Γ into two embedded
subgraphsG1, G2. Sphere-cut decompositions were introduced by Seymour and Thomas [33],
more details can also be found in [27, Section 4.6]. The length of the noose η(e) for an edge
e ∈ E(T ) is the number of vertices on the noose (or the size of mid(e)) and it is at most
the branchwidth of the decomposition. We defined drawings in the plane, whereas we need
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drawings on the sphere for sphere-cut decompositions. However, if we treat the outer face of a
planar drawing just as any other face, then spherical and planar drawings are homeomorphic.

An `-outerplanar graph has branchwidth at most 2` [3] and a connected bridgeless planar
graph of branchwidth at most b has a sphere-cut decomposition of width at most b that can
be computed in O(n3) time (see [27, Section 4.6]). Since G′ is 6k-outerplanar and bridgeless,
we obtain a sphere-cut decomposition of G′ of branchwidth 12k.

3.2 Dynamic Programming on a Sphere-Cut Decomposition Tree
Initialization. The dynamic program works bottom-up in the sphere-cut decomposition
tree T from the leaves to an arbitrarily chosen root, considering iteratively larger subgraphs
of G′. The algorithm determines how partial solutions look like on the interface between
subgraphs and the rest of G′. We first transform T by defining a root vertex and move the
information of the middle set from each edge to the child vertex (according to the new parent-
child relations). For each vertex t of T , its noose η(t) splits the graph into two subgraphs. We
define the subgraph whose edges correspond to the leaves of the subtree of T rooted at t to be
the graph inside the noose. A partial solution on a subgraph G′

t inside noose η(t) is a planar
drawing of that subgraph, with a subset S′

f ⊆ Sf of copies embedded in it together with
edges to the copies’ neighborhood in G′

t such that all pistils not on the noose are covered. To
describe those partial solutions we build tuples called signatures for each possible solution for
each noose. A signature holds the following information (see Fig. 3): (i) the set of copies Sin
used in faces entirely inside η(t) to cover pistils, (ii) the set Nη of sets Xv of neighbors of
each vertex v ∈ η(t) that do not cover v, (iii) graphs that represent embeddings of copies for
all the faces traversed by the noose, and (iv) for each such graph a pair of pointers ps, pe that
describe which vertices of that embedding are used to cover pistils in G′

t. We find that the
number of signatures is upper bounded by 2O(k2). The embeddings from (iii) are described
by a set Cout of graphs called nesting graphs (see Fig. 4), which are planar graphs Cf ,
where a set of copies are embedded inside a cycle and each vertex of the cycle has exactly
one neighbor that is a copy. The intuition behind a nesting graph is that, when embedded
inside a face f , one can simultaneously traverse the cycle of Cf and the face f in the same
direction, and draw an edge between each cycle vertex and a corresponding pistil. Then,
after removing the cycle edges, and contracting the cycle vertices to pistils edges, we obtain a
planar embedding for f , where some pistils strictly inside η(t) are covered by the copies in Cf .

Figure 3 The information stored in a signature of the partial solution inside the orange noose:
(grey) copies used in these faces are stored in Sin, (blue) noose vertices, for which missing neighbors
(outgoing edges outside the noose) are stored in Nη, (red) an example of a nesting graph for a face
traversed by the noose, with four (dotted) edges connecting to the cycle, (green) ps and pe pointers.
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Figure 4 (a) A face f and the copies inside the orange noose. (b) The corresponding nesting
graph Cf with its ps and pe vertices in orange. The two light blue vertices represent different copies
of the same removed vertex.

Traversing the Sphere-Cut Decomposition Tree. To find a solution we perform bottom-
up dynamic programming on T . For each node t ∈ V (T ) we compute a table of all signatures
with a corresponding partial solution. For a leaf t ∈ V (T ), graph Gt is an edge (u1, u2), and
we can go over all possible signatures and check whether we can cover all neighbors of u1 and
u2 not in Nη = {Xu1 , Xu2}, using for each incident face f the subgraph of Cf ∈ Cout that
lies between ps, pe. For internal nodes we merge some pairs of child signatures corresponding
to two nooses η(t1) and η(t2). We merge when (1) faces not shared between the nooses do
not have copies in common, (2) shared faces use identical nesting graphs and (3) use disjoint
subgraphs of those nesting graphs to cover pistils, and (4) noose vertices in mid(t1) and
mid(t2) do not have remaining missing neighbors. Thus we can find valid signatures for all
nodes of T and notably for its root. If we find a valid signature for the root, we also have a
partial solution. In Γ′ all pistils are covered and it is planar, as the nesting graphs are planar
and they represent a combinatorial embedding that allowed to cover pistils. We verify that
the remaining pistils in Sf \ S′

f form a planar graph which allows us to embed them in a
face of Γ′ to obtain a solution Γ?.
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