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Abstract
In the present work, a novel class of planar cable driven parallel robots is designed,
analyzed and mathematically modelled.

For conventional cable driven robots, the cables are rigidly attached to the end effector.
This results in a very limited capability of rotating the end effector. To overcome this
limitation and allow an arbitrary amount of rotation, the proposed design uses cables
which are wrapped around a cylindrical fixture on the end effector. In contrast to the
state of the art, this results in a simple and robust design without any additional moving
parts attached to the end effector.

All possible cable configurations are subsequently analyzed using Burnside’s lemma
known from group theory. A closed-form solution for the number of all possible configu-
rations is derived. The workspace of different configurations is analyzed in detail and a
suitable cable configuration for a prototype is selected.

Furthermore, a closed-form analytical solution for the inverse kinematics is derived
and a solution for the forward kinematics is presented. Both the inverse and the forward
kinematics are implemented on a real-time system and validated experimentally on a
prototype robot. The convergence behavior and the robustness of the forward kinematic
algorithm are studied in detail via simulations.

Based on the robot kinematics, a control-oriented dynamical model is derived and a
trajectory following controller for the robot is designed. Experiments are conducted to
validate the theoretical considerations and demonstrate the performance and capabilities
of the novel cable driven robot concept.

II



Kurzfassung
Diese Arbeit beschäftigt sich mit dem Entwurf sowie der mathematischen Modellierung
eines neuartigen planaren Seilroboters. Bei klassischen Seilrobotern ist der Endeffektor an
festen Punkten mit Seilen verbunden und wird von diesen bewegt, wodurch die Möglichkeit
den Endeffektor zu drehen sehr eingeschränkt ist. Um diese Einschränkung zu überwinden
und beliebig große Rotationen des Endeffktors zu ermöglichen, wird eine neue Klasse von
Seilrobotern entwickelt, bei der die Seile den Endeffektor umschlingen.

Dadurch entsteht ein sehr vielseitiger planarer Roboter, welcher sich durch einen
einfachen, kostengünstigen und robusten Aufbau auszeichnet. Alle möglichen Seilkonfi-
gurationen des Konzepts werden systematisch analysiert, und basierend auf Burnside’s
Lemma, welches aus der Gruppentheorie bekannt ist, wird eine Formel für die Anzahl
aller möglichen Seilkonfigurationen hergeleitet. Der Arbeitsraum des Seilroboters wird
anhand verschiedener Gütekriterien beleuchtet, um in weiterer Folge einen geeigneten
Prototyp zu konzipieren. Eine geschlossene analytische Lösung für die Rückwärtskine-
matik wird hergeleitet, sowie eine Lösung der Vorwärtskinemaik präsentiert. Sowohl die
Rückwärtskinematik als auch die Vorwärtskinematik werden auf einem Echtzeitsystem
implementiert und an einem Prototyp des Roboters validiert. Die Konvergenzeigenschaften
der Vorwärtskinematik sowie die Robustheit gegenüber Messrauschen werden anhand von
Simulationen untersucht.

Basierend auf der Kinematik des Roboters wird ein dynamisches Robotermodell ent-
wickelt und ein Trajektorienfolgeregler entworfen. Durch verschiedene Versuche und
Messungen am experimentellen Prototyp werden die theoretischen Überlegungen validiert
sowie die Leistungsfähigkeit des neuartigen Konzepts demonstriert.
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1 Introduction
Due to the high and increasing demand for a cost-effective, flexible and fast production of
goods, the number of industrial robots deployed worldwide has been steadily increasing
in the past years [1]. In 2021, the number of industrial robots in operation reached 3.4
million and is still expected to grow steadily in all major markets [2]. Due to various
emerging trends, the demand for robotics in the logistics and warehouse sector has been
growing especially quickly in the recent years and the market for warehouse robotics is
expected to double until 2030 [3].

These recent developments create a high demand for industrial robots which are capable
of very fast and dynamic motion as well as manipulators which feature large and extensible
workspaces. Due to their structure, parallel kinematic robots are generally superior to
serial kinematic robots in terms of low inertia and high ratio of payload to moving mass
and can thus be used for tasks with the most demanding dynamic requirements. A special
type are cable-driven parallel robots (CDPRs), where the end-effector platform (EE) is
suspended by cables instead of rigid links [4]. This allows the robot to access very large
workspaces and enables high flexibility in the deployment of the robot. However, because
cables can only exert pulling forces on the EE, additional challenges in the robot design
and control are introduced which make CDPRs an active field of research [5]. In particular,
planar CDPRs, characterized by two translational degrees of freedom, are employed in
a wide field of applications. Among them are storage and retrieval systems [6], laser
engraving [7] and exoskeletons for limb rehabilitation [8]. Even systems without active
control, where the trajectory of the EE is defined by non-cirular pulleys, are used for
performing repeating haulage tasks [9].

In many designs of planar CDPRs, the pose of the EE is limited in the rotation angle.
This maximum rotation angle is defined by kinematic constraints such as collisions of the
cables and depends on the position of the EE [10]. A rotation of the EE is required in
many applications, e. g. for the construction of a rotary coordinate table. This is why
significant research effort is dedicated to enlarging the rotation angle of the EE of CDPRs.

In this thesis, a novel kinematic structure of a planar CDPR is studied which allows for
arbitrary rotation of the EE. By wrapping the cables around a circular fixture attached
to the EE, simultaneous rotation and translation can be enabled. This results in a
mechanically simple and robust CDPR design without auxiliary moving parts. Thus,
the robot is simple and inexpensive to manufacture and to maintain. The limits for
the rotational degree of freedom are pre-defined by the number of turns around the EE
but can be arbitrarily chosen. In the present work, the kinematic structure of a novel
class of CDPRs is investigated and all different possible cable winding configurations
are considered and classified. The kinematics of the robot are studied and solutions for
both the inverse- as well as the forward kinematic problem are presented. Based on the
kinematics of the robot, a dynamic kinetic robot model is derived. The workspace of
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1 Introduction 1.1 Literature review 2

the CDPR concept for different numbers of cables and different cable configurations is
analyzed using different quality criteria. Based on the results, a suitable candidate for a
hardware prototype is selected. Finally, a prototype robot is constructed and the previous
theoretical results are experimentally validated on the hardware prototype.

Parts of this thesis have been published in [11]. An upcoming master’s thesis will
extend the present work by designing and implementing a control strategy for the CDPR
prototype. Using a dartboard mounted at the EE and a camera tracking system, the
resulting control system will be capable of catching a flying dart thrown by a human such
that the dart hits any desired field on the dartboard. Thus, a technology demonstrator
will be created which showcases the potential and capabilities of the novel CDPR design.

1.1 Literature review
The aim of this section is to provide an overview of existing approaches, which can be
found in the literature, to achieve large rotations in a CDPR. An extensive study of the
possible rotation angle of the EE of a CDPR is performed by Reddy [12]. To extend
the maximum rotation angle of the EE, Reddy et al. [13] propose an approach using a
spindle mounted on the EE of a conventional planar CDPR which performs translational
movement. The spindle provides additional rotation and is actuated by a mechanism
consisting of a spring, a winch, and an additional cable.

Miermeister and Pott [14] proposed a similar approach for a spatial CDPR. Here,
multiple platforms are individually actuated by cables and joined via a crank mechanism
as illustrated in Figure 1.1. By coordinating the movement of the platforms, the crank

(a) 3D model of the crank mechanism. (b) Kinematic model.

Figure 1.1: CDPR design proposed by Miermeister and Pott [14].

can be turned and an endless rotation angle of the EE can be achieved.
Hirosato and Harada [15] studied a planar design, where a pentagonal EE houses a

spindle. The EE is driven by a cable which is fixed on the EE in combination with two
cable loops, which are connected to the spindle and form rotational pairs. Each rotational
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pair is wound around the spindle inside the pentagonal EE and is actuated by a pair of
winches. To facilitate translational movement, the rotational pairs must change in length.
This is enabled by adding a cable reservoir which is tensioned via a spring and stores the
excess cable in the loop. The structure of the pentagonal robot SEIMEI by Hirosato and
Harada is shown in Figure 1.2.

Figure 1.2: SEIMEI planar CDPR featuring endless rotation [15].

These approaches found in the literature introduce a significant additional mechanical
complexity to the CDPR to extend the rotational range of the EE. To the best of
the authors knowledge, there exist no other approaches which systematically combine
arbitrarily large rotation and translational movement without adding weight, complexity
or moving parts to the EE.

To analyze the capability of a robot to achieve a manipulation task within the workspace,
many manipulability indices have been proposed in the literature, see, e.g., [4, 16]. The
well-known manipulability measure quantifies a balance between achievable twists and
wrenches of the EE, see [17]. For CDPRs, the requirement of a minimal tension in all cables
leads to the notion of the wrench-closure workspace and, when problem-specific wrench
directions and torque limits are considered, to the so-called wrench-feasible workspace,
see [18–20]. These workspace definitions, however, do not provide information about the
quality of their interior. In [16], it is shown that the manipulability is no intrinsic property
of a kinematic structure and hence a suitable measure has to be chosen to address a
specific problem.
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1.2 Structure of the thesis
In Chapter 2, the mechanical design of the proposed planar CDPR concept is presented
and explained in detail. First, in Section 2.1 some design considerations are investigated.
Based on Burnside’s Lemma known from group theory, the number of all possible unique
cable configurations is derived and calculated in Section 2.2.

Consecutively, in Chapter 3 the kinematic structure is studied and the inverse kinematics
are derived for the CDPR. For this, the inverse kinematic problem is formulated and all
the basic modeling assumptions are introduced in Section 3.1. The CDPR geometry is
studied in order to derive the inverse kinematic transformation function in Section 3.2.
The differential kinematics are briefly discussed and the Jacobian Matrix is derived in
Section 3.3, which relates forces and velocities of the cables to the forces and velocities of
the EE.

Chapter 4 deals with the forward kinematics of the novel CDPR. The forward kinematic
problem is introduced and discussed in Section 4.1. A solution approach for the forward
kinematics is presented in Section 4.2. Simulations concerning the convergence behavior of
the forward kinematics solution are presented in Section 4.4 for different CDPR designs.

In Chapter 5, the workspace of different CDPR designs is examined and evaluated. For
this, a classical manipulability measure from the literature is used in Section 5.1. Because
the manipulability measure shows some weaknesses and drawbacks for CDPRs, the force
efficiency is employed as another quality measure in Section 5.2. The force efficiency in
different directions is computed for different robot designs. Finally, in Section 5.3 the
possibility of using alternative configurations with uneven numbers of cables is analyzed
and discussed.

Based on the inverse kinematics and the Jacobian matrix, a dynamic model of the
CDPR is developed in Chapter 6. The winch mechanics are described in Section 6.2 and
the equations of motions are derived using the Newton-Euler equations in Section 6.3.

A controller for the CDPR is designed and implemented on a real-time computer system
in Chapter 7. The controller will be further elaborated and studied in an upcoming
master’s thesis.

The novel CDPR concept is validated by realizing a hardware prototype, which is
presented in Chapter 8. First the experimental setup is briefly outlined and introduced in
Section 8.1. Using a commercial motion tracking system based on infrared cameras, the
forward kinematics positioning accuracy is evaluated in Section 8.2. The force efficiency
measure, discussed in Section 5.2, is experimentally validated for a given task in Section 8.3.
Finally, the achievable dynamic positioning performance is assessed in Section 8.4 for both
translational and rotational motion.

The thesis ends with a summary of the findings and an outlook on possible extensions
and improvements in Chapter 9. Additional derivations and a list of parameter values of
the robot prototype are provided in Appendix A.



2 Mechanical Design
The pose x of the EE of a planar robot is fully defined by the translational positions
xC and yC of the EE centerpoint and its rotation angle φ. Thus, the pose x in matrix
notation reads as

x =
[
xC yC φ

]T
. (2.1)

For a CDPR, the joint space is parameterized by the length of the cables which connect
the EE to the rigid frame. The number of cables nq and consequently the necessary
winches to actuate these cables, is an open design parameter. For a planar robot with
nx = 3 degrees of freedom (DOFs), a minimum of nq = nx + 1 = 4 cables is necessary to
completely restrain the robot and guarantee that all cables remain under tension without
relying on external forces such as gravity. For any larger number nq > nx +1 of cables, the
resulting robot is called redundantly restrained and the degree of redundancy increases
with an increasing number of cables nq [21]. In general, increasing nq increases the
complexity and cost of the robot. At the same time, increasing nq causes more cables to
contribute to the EE motion and thus increases the stiffness and manipulation capabilities
of the CDPR. To compare different robot designs and geometries in a meaningful way, it
is assumed in the following without loss of generality that the winches are placed equally
spaced on a circle with radius rw, where the center of the circle defines the origin of
the workspace. In Figure 2.1(a), the kinematic diagram of a conventional planar 4-cable

zC
y xC

yC

z x

φ

rw

(a) Conventional CDPR.

y

z x

zC
xC

yC

φ
r

rw

(b) Proposed CDPR.

y

z

x

(c) Vertical offset.

Figure 2.1: Kinematic diagram of (a) a conventional CDPR, (b) the proposed CDPR
design and (c) the vertical displacement of the cables in the guiding grooves.

CDPR is shown. The EE collides with a cable if φ exceeds a lower or upper limit. This
constrains the available workspace. The limits depend not only on the geometry of the
frame and the EE, but also on the EE position and are not trivial to compute [10].

5
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2.1 Circular end effector
A collision between the EE and the cables can be avoided when the EE is designed in a
circular shape with radius r < rw, as shown in Figure 2.1(b). Here, the cable is wrapped
(possibly more than once) around the EE and is fixed at the EE as depicted. Each cable is
guided in a groove which is offset to the winches in z-direction (out-of-plane), consequently
collisions of cables are avoided as illustrated in Figure 2.1(c). In order to block forces in
z-direction and rotations around the x- and y-axes, the EE glides on a guiding surface,
which is installed parallel to the xy-plane.

When a cable touching a convex surface is under tension, it leaves the surface in a
direction tangential to the surface as shown in Figure 2.2. The angle between the normal
on the tangent and the vertical axis is denoted γ.

y

yC

x
z

xC

zC

φ
s = −1

C

B

lr

ls

r

−γ

φ + γ

Figure 2.2: Circular EE wrapped by a cable.

It is possible to wrap the cable clockwise (CW) or counterclockwise (CCW) around the
EE, which is indicated by the wrapping direction s = −1 or s = 1, respectively.

The length l′ of the cable in contact with the EE can be partitioned into a part which
depends on φ in the form

lr = −sr(φ + γ) (2.2)
and a spare length ls in the form

l′ = lr + ls , (2.3)
see Figure 2.2. The value of ls defines the limits of φ. A possible range of φmin < φ < φmax
can be ensured in the whole workspace if the condition

ls = r

(
max(−φmin, φmax) + π

2

)
(2.4)

is met when the EE is at the origin. The limits φmin and φmax are design variables and
can be chosen arbitrarily. Note that φmax is not limited to a full rotation.

The force transmitted by a cable also exerts a torque on the EE. To enable rotations in
both directions, at least one cable has to be wrapped CW and at least one cable CCW,
respectively. If the number of CW cables is equal to the number of CCW cables and
they exert the same force, the torque around the z-axis vanishes. In the following, in
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order to achieve forces of similar magnitude in the cables, only equal numbers of CW
and CCW cables are considered. Consequently, nq is an even number. The possibility of
using asymmetric configurations with uneven numbers of cables is briefly discussed and
investigated in Section 5.3, where the workspace of a design with nq = 5 cables is studied.

2.2 Unique balanced cable configurations
Under the given constraints, two unique balanced cable configurations exist for the 4-cable
CDPR, see Figure 2.3. It can be shown that all other balanced cable configurations may
be achieved by a circular shifting of those two cable configurations.

s1 = 1s2 = −1

s4 = −1s3 = 1

s1 = 1s2 = 1

s4 = −1s3 = −1

Figure 2.3: Possible cable configurations for nq = 4.

To generally investigate the total number of unique balanced cable wrapping configura-
tions, Burnside’s lemma [22] known from group theory is applied in the following. For
this, the set of admissible balanced configurations with an equal number of si = 1 and
si = −1 can be defined as

B =
{

s |
nq∑
i=1

si = 0
}

, (2.5)

where s = [s1, . . . , snq ]T denotes the vector of wrapping directions which defines a configu-
ration. Furthermore, let σk(s) denote a circular shift of the configuration s by k places,
which corresponds to a rotation. The circular shifting operator σk(s) can be defined
recursively in the form

σ1(
[
s1 . . . snq

]
) =

[
snq s1 . . . snq−1

]
(2.6)

σk(s) = σ1(σk−1(s)) . (2.7)

All possible nq circular shifts of a configuration s ∈ B form a group denoted by S.
According to Burnside’s lemma, the total number of unique orbits of the set B under the
group S denoted as |B/S| is

|B/S| = 1
|S|

∑
σk∈S

|Bσk | , (2.8)

where | · | denotes the cardinality of set · and Bσk is the set of all elements in B which are
invariant with respect to the circular shift σk i.e.

Bσk = {s ∈ B | σk(s) = s} . (2.9)
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In other words, Bσk contains all possible configurations which are unchanged with respect
to k circular shifting operations.

To be invariant with respect to a circular shifting operation, a configuration s needs to
be rotationally symmetric, which means that it needs to be composed of equal blocks of
length k such that a circular shift by k places leaves the configuration unchanged. Thus,
for a configuration to be invariant with respect to σk, its length nq needs to be a multiple of
k. Because of the constraint that the configuration must be an element of B, all the equal
sub-blocks of length k must also be elements of B. In other words, if the configuration s
should be balanced and if it is composed of identical blocks, then each block must also
be balanced. Thus, k must be even and there are no invariant combinations for uneven
block lengths that are elements of B. Figure 2.4 shows an example for the symmetry of a
balanced cable configuration with nq = 12, with respect to the shifting operation σk for
k = 4. For any even block length k, there are subsequently

( k
1
2 k

)
possibilities for forming

s = σ4(s) =

σ4

Number of possible balanced blocks:
(

k
1
2k

)
=

(
4
2

)
= 6

1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

Blocks with length gcd(k, nq) = gcd(4, 12) = 4

σ4 σ4

Figure 2.4: Example of rotational symmetry of a balanced cable configuration.

a balanced block. The longest possible block length for a configuration of nq cables can be
expressed using the greatest common divisor gcd(k, nq). Additionally, all possible smaller
blocks are shifted representations of the longest possible block and are thus contained
within the largest possible block. Hence, for a shift of k = 2i, i ∈ N using the largest
possible block size yields a total number of

|Bσk | =
(

gcd(k, nq)
1
2 gcd(k, nq)

)
(2.10)

different configurations which are invariant with respect to k circular shifts.
Finally, by inserting Eq. (2.10) into Eq. (2.8), the general expression

|B/S| = 1
nq

nq
2∑

i=1

(
gcd(2i, nq)

1
2 gcd(2i, nq)

)
(2.11)

for the number of unique cable wrapping configurations for nq cables is obtained.



3 Inverse kinematics

3.1 Inverse kinematics problem formulation
When solving the inverse kinematics problem of a CDPR, the EE pose x defined in
Eq. (2.1) and the geometry of the robot are known and the cable lengths

q =
[
l1 l2 . . . lnq

]T
(3.1)

have to be calculated. Note that for a cable driven robot the vector q, which combines the
cable lengths li, is considered the joint vector. Hence the inverse kinematic transformation
function ϕik : Rnx → Rnq can be expressed in the form

q = ϕik(x) . (3.2)

Since a CDPR belongs to the very large class of so-called multi-body systems, there exist
many model structures for describing such a system in the literature. In this work, the
classical standard kinematic model for CDPRs is used which follows the conventions and
assumptions of a multi-body system with rigid bodies and limp cables. The standard
kinematic model is described and discussed in detail in [21]. The following assumptions
are employed in the model:

• Limp cables: It is assumed that the cables can only pull and not push. There are
no bending moments or forces other than pulling forces.

• Inelastic cables: The lengths of the cables do not change significantly depending
on the tension applied. This assumption is critically evaluated and justified for the
hardware prototype in Section 8.2.

• Massless cables: The cables are considered massless. Hence, cables suspended in
the air form straight lines and there is no sag.

• Rigid bodies: All deformations in solid bodies are neglected and thus all bodies
are assumed to be perfectly stiff.

• Ideal cable guiding: The dimensions of cable guides are small compared to the
dimensions of the robot. Nonlinear effects in the cable guiding system are neglected
(geometry, hysteresis, creep).

In Section 3.2, the cable geometry is used to derive the inverse kinematic transformation
function ϕik from Eq. (3.2). Subsequently in Section 3.3, the inverse kinematics Jacobian
matrix Jik, which relates the cable forces to the generalized forces acting on the EE in
Cartesian space is derived from this relation. The Jacobian matrix provides the foundation
for deriving a dynamical model in Chapter 6.

9
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3.2 Inverse kinematic transformation
Let C denote the centerpoint of the circular EE, A the anchor point of a cable and B the
point where the cable contacts the circular EE as depicted in Figure 3.1. The cable is
guided in a groove which lies at a height hC with respect to the xy-plane, and the distance
to the winch anchor point is denoted by hA, respectively. Projecting the anchor point A
to the groove-plane, which is parallel to the xy-plane, yields point A′, and projecting the
center C onto the groove-plane yields C ′. The tangential connection of the cable and the
circular EE results in a right triangle formed by A′, B and C ′.

groove plane

A

A′

A′
ψ

rA′B

rA′C′

rAB

B

C
x

z

B

r

hA

hC

C ′ rBC

C ′

y

x

y

zs = −1

Figure 3.1: Cable geometry for the inverse kinematic problem.

The angle ψ shown in Figure 3.1 can be calculated in the form

ψ = arcsin r

∥rA′C′∥2
. (3.3)

The unit vector eA′B pointing in the direction of the vector rA′B is found by rotating the
unit vector eA′C′ , which points in the direction of the known vector rA′C′ , by the angle ψ
around the z-axis. This rotation can be performed using the rotation matrix Rz

eA′B = Rz(sψ)eA′C′ , Rz(α) =

[||cos sψ − sin sψ 0
sin sψ cos sψ 0

0 0 1

]|| , (3.4)

where the direction of the rotation is defined by s = ±1 indicating CW or CCW windings
as introduced in Section 2.1.

The length of rA′B is obtained by using

∥rA′B∥2 =
√

∥rA′C′∥2
2 − r2 . (3.5)
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Combining Eqs. (3.4) and (3.5) leads to

rA′B = Rz(sψ)rA′C′

√
1 − r2

∥rA′C′∥2
2

. (3.6)

Finally, rAB is found by respecting the offset between the anchor point and the groove in
z-direction

rAB = rA′B − hAez . (3.7)
Substituting Eq. (3.3) and Eq. 3.6 into Eq. (3.7) and rearranging terms, the vector rAB

can be written in the form

rAB =

[||(1 − ρ2)(xA − xC) − sρ
√

1 − ρ2(yA − yC)
(1 − ρ2)(yA − yC) + sρ

√
1 − ρ2(xA − xC)

−hA

]||, ρ = r

∥rA′C′∥2
. (3.8)

The total cable length can be obtained as the sum of the free cable length ∥rAB∥2
suspended in the air and the cable length l′ which is in contact with the EE disk

l = ∥rAB∥2 + l′ , (3.9)

where l′ is a function of the angle γ, see Eqs. (2.2), (2.3) and Figure 2.2. The angle γ can
be computed in the form

γ = atan2
(
rT

BCex, rT
BCey

)
, (3.10)

utilizing the four-quadrant arc-tangent function [4] and the vector rBC from Eq. (3.12).
This computation can be carried out for all nq cables and combined to obtain the vector
of joint coordinates q.

As it can be seen from Eqs. (3.8) to (3.10), the computation of the joint coordinates q
from the pose x is straightforward and computationally inexpensive. Furthermore, the
number of operations is strictly deterministic and only standard arithmetic operations are
required. Because each cable length only depends on the pose of the EE and since there
is no coupling between the individual cable lengths, the inverse kinematics can be solved
one cable at a time. Hence, the computational costs only scale linearly with the number
of cables and the solution can be easily implemented on a real-time computer system,
even for robots with a large number of cables nq. The solution of the inverse kinematics
is always unique and always exists, although the length rA′B and the angle ψ can become
complex when the winch lies inside the circular EE disk and thus ∥rA′C′∥2 < r. This case
is considered physically impossible and meaningless.

3.3 Jacobian matrix of the inverse kinematics
To subsequently investigate the kinetics of the robot and develop a dynamical model, the
kinematic transmission function of the cable forces to the generalized forces acting on
the EE is required. In the context of robotics, the collection of generalized forces, i.e. all
forces and torques acting on the EE in the task space, is called wrench [23]. The wrench
f ∈ Rnx

f =
[
Fx Fy Mz

]T
(3.11)
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is created as a result of the strictly positive cable forces τ ∈ (
R+)nq acting on the rigid EE

disk. Each individual cable force τi acts in the direction of the vector eAiBi and generates
a torque around the centerpoint C with the lever arm

rBC = rAC − rAB . (3.12)

Hence, the total forces and torques transmitted from the cables to the EE are given by[||||||||

Fx

Fy

Fz

Mx

My

Mz

]||||||||
=

[
eA1B1 . . . eAnq Bnq

rB1C1 × eA1B1 . . . rBnq Cnq
× eAnq Bnq

]
. .. .

AT(x)

[|| τ1
...

τnq

]||
. .. .

τ

, (3.13)

where Fx, Fy and Fz denote the total resulting forces in the x, y and z-direction respectively
and Mx, My and Mz denote the torques acting around the x, y and z-axis respectively.
The resulting kinematic transmission matrix AT ∈ R6×nq is called structure matrix in the
literature [21] and relates the cable forces to the wrench applied to the EE. Note that AT

is a function of the EE pose x.
The relation of the cable forces τ and the task-space wrench f can be formally de-

rived using the d’Alembert’s principle i. e. the principle of virtual work. According to
d’Alembert’s principle, the virtual work done by the constraint forces acting between EE
disk and guiding plane is always zero [24]. Thus the virtual work done by the wrench δWf
must be equal to the virtual work done by the cable forces δWτ

δWf = δWτ

fTδx = −τ Tδq
(3.14)

for any arbitrary virtual displacement δq and δx respectively, which is compliant with
the constraints imposed by the guiding plane. The minus sign in Eq. (3.14) is a result of
the convention that pulling cable forces are considered positive. In order to do positive
work, a cable must contract (δqi < 0) under a positive cable force (τi > 0). The variation
of Eq. (3.2) yields a relation of the virtual displacement of the EE δx and a virtual
displacement of the cable lengths δq in the form

δq = ∂ϕik
∂x δx . (3.15)

Inserting Eq. (3.15) into Eq. (3.14) leads to the relation

fTδx = −τ T ∂ϕik
∂x. .. .

Jik(x)

δx . (3.16)

Here, Jik ∈ Rnq×nx is the so-called Jacobian matrix of the inverse kinematics [21] which is
a function of the pose x. Because the virtual displacement δx is arbitrary, Eq. (3.16) can
be rewritten as

f = −JT
ikτ . (3.17)



3 Inverse kinematics 3.3 Jacobian matrix of the inverse kinematics 13

Comparing the force transmission relations Eq. (3.13) and Eq. (3.17) reveals the direct
connection between the structure matrix AT and the Jacobian Jik of the inverse kinematics,
which can be expressed by

JT
ik = −

[||1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

]||AT . (3.18)

In other words, the constraints imposed by the guiding plane blocks the force Fz and the
tilting torques Mx and My imposed on the EE by the cables. Thus, the corresponding
columns of the structure matrix AT and the Jacobian Jik are identical but have opposite
signs due to the convention that pulling cable forces are positive and contracting cables
result in negative changes of the joint coordinates q.

By definition, the Jacobian matrix of the inverse kinematics establishes the relation
between the generalized EE velocity ẋ and the joint velocity q̇ in the form

dq(t)
dt

= dϕik(x(t))
dt

= ∂ϕik
∂x. .. .

Jik(x)

dx
dt

q̇ = Jikẋ .

(3.19)

Note that Jik is in general a nq × nx matrix and for any over-constrained robot, in
particular the present CDPR where nq > nx, the matrix is rectangular and cannot be
inverted.



4 Forward kinematics

4.1 Forward kinematics problem formulation
In the forward kinematics problem, the cable lengths i. e. joint coordinates q are known
and the pose x of the EE has to be calculated. Thus, the forward kinematics problem can
be formulated as a transformation function ϕfk : Rnq → Rnx in the form

x = ϕfk(q) . (4.1)

To find this function, the standard model for a CDPR is used and the same modelling
assumptions as discussed in Section 3.1 are applied. In contrast to the inverse kinematics
problem studied in Chapter 3, the forward kinematics problem of the present planar
CDPR is over-constrained because the number of cables nq > nx and hence the robot
has to be kinematically over-constrained in order to guarantee tension in all cables. For
parallel robots, where all the limbs of the robot are kinematically connected to the EE in
parallel, the forward kinematics is in general much more complicated than the inverse
kinematics [25]. It can be shown that for CDPRs, the inverse kinematic transformation
function ϕik always has a unique solution, but the forward kinematics transfer function
ϕfk might have one, multiple, infinite or no solution for given joint coordinates q [21].

In particular, the presence of measurement errors in the joint coordinates can cause
the forward kinematics to have no exact solution at all and thus approximate solutions
ϕ̂fk(q), e. g. in a least-squares sense, must be considered instead. The problem can be
formulated as an optimization problem for an error measure ε(q, x̂) such that

ϕ̂fk(q) = arg min
x̂

∥ε(q, x̂)∥2
2 (4.2)

is fulfilled.
To be useful for controlling the robot in a practical implementation, special care must

be taken that the forward kinematics solution satisfies the following requirements:
• Real-time capability: To implement an algorithm for the forward kinematics on a

computer system, the worst-case computational time must be bounded and it must
be sufficiently low to achieve practically useful cycle times.

• Error detection: If the algorithm fails to find a valid solution for the forward
kinematics problem, the error must be detectable in order to guarantee safe operation.

• Stable convergence: The algorithm must converge to the same solution in a stable
way without jumping back and forth between solutions, in case multiple solutions
exist.

A more in-depth discussion on different approaches for solving the forward kinematics
problem in a CDPR as well as the challenges and requirements can be found in [21].

14
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4.2 Forward kinematics solution approach
In a first step in Section 4.2.1, only the planar geometry in the xy-plane is considered
and all vertical displacements in z-direction are assumed to be zero, i. e. hA = hC = 0.
For the sake of simplicity, this planar problem is analyzed first. Based on the geometric
constraints, a solution for the forward kinematics problem is formulated as a nonlinear
least-squares problem in Section 4.2.2. In Section 4.2.3, the solution is extended by taking
the offsets in z-direction into account. Subsequently, the error introduced by the offsets in
z-direction is analyzed and its significance is evaluated.

4.2.1 Planar geometry
To solve the forward kinematics problem, a mathematical formulation of the constraint
imposed on the translational movement of the EE in the xy-plane is sought. First, the
constraint imposed by a single cable is formulated and then the constraints of all nq cables
are combined to find the EE pose.

The EE can rotate around the z-axis and translate in the xy-plane independently.
However, by considering these two types of motion separately, their relation with respect
to the cable length l and the rotation angle φ can be analyzed. In the following, only the
planar geometry is considered. Thus, the point A′, which is the projection of point A
onto the groove plane as shown in Figure 3.1, is used instead of A. Similarly, the point C ′

is used instead of C. Combining the relations from Eqs. (2.2), (2.3) and (3.9) yields the
expression

l = ∥rA′B∥2 + ls − srγ − srφ . (4.3)

In a first step, consider keeping φ and l fixed while moving the EE translationally. This
causes the cable to constrain the motion of the EE to a curve of admissible positions,
as visualized in Figure 4.1. The curve of admissible positions, which is traced by the
centerpoint C ′ as the cable is wrapped around the circular EE, is called an involute curve.

C ′

x

y

z

xC
yC

ls

zC

φ

φ

γ

L

r

B

A′

admissible
positions

l
rC′

φ

s = −1

Figure 4.1: Admissible EE positions for constant φ and l.
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Equation (4.3) shows that any change in the distance ∥rA′B∥2 is directly proportional to
a change in the wrapping angle γ between the vertical and the tangent contact point B,
when l and φ are fixed. Here, the spare cable length ls is a constant parameter. It can be
concluded, that the EE is constrained to a certain involute curve, which depends on the
choice of l and φ. The aim is to find a mathematical formulation for all admissible EE
positions as a function of l and φ.

In a second step, consider only rotating the EE by changing φ while keeping its position
rC′ fixed. When the EE position rC′ is constant, the location of the cable contact point
B must also be constant. As a result, the length ∥rA′B∥2 and the angle γ are constant as
well, see Figure 4.1. Thus, Eq.(4.3) shows that the cable length l increases or decreases
when changing φ, depending on the wrapping direction s. This is a result of the cable
being wrapped around or unwrapped from the EE, respectively. However, while both
l and φ change, the set of admissible poses remains unchanged in this case. Hence, it
can be concluded, that the constraint determining the admissible EE positions must be a
function of the quantity

lφ0 = ∥rA′B∥2 + ls − srγ = l + srφ . (4.4)

In other words, if both l and φ change in such a way that lφ0 is unchanged, then the
constraint determining the set of admissible EE positions rC′ in the xy-plane also remains
unchanged. When comparing Eqs. (4.3) and (4.4) it can be seen that the length lφ0 can
be interpreted as the cable length, which is obtained when rotating the EE such that
φ = 0.

To find out how a single cable constrains the EE motion, consider disconnecting the
cable from the winch at point A′ and winding it fully onto the EE starting from its
attachment point L until it contacts the EE at point E. This is visualized in Figure 4.2
where the dashed lines indicate intermediate positions of the cable when wrapping it
around the EE. In the process of winding the cable onto the circular EE, its endpoint

A′

E(lφ0)

l B

C ′

rA′C′rEC′(lφ0)

x

y

z

xC
yC

zC

φ

L

r
rA′B

cable involute

s = −1

Figure 4.2: Geometry for the forward kinematics.
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traces an involute curve which will be called the cable involute subsequently. Note that
the cable involute always has the same shape which is fully defined by the radius r of
the circular EE. This radius is called the generating base-radius of the involute. Only
the position of the so-called base-point E on the EE depends on the length lφ0. This
circumstance can be used to find a parameterization for all points on the cable involute.

To derive such a parameterization, a generic involute curve with the same base-radius r
can be parameterized first and then rotated accordingly such that it matches the cable
involute. For this, consider the base-point Q located at [r, 0, 0]T as a starting point for
the involute curve and the generic point P which lies on the involute. The geometry of
the generic involute curve is visualized in Figure 4.3.

x

y

z

O

P

Q

−sθ
r

rθ

B

rP B

rP O

e′
BO

β

s = −1

Figure 4.3: Involute curve geometry.

The involute can be parameterized by finding an expression for the location of P (θ)
as a function of the curve parameter θ. Because P is connected to the base-circle via
a cable, the corresponding contact point B between cable and circle can be utilized to
construct the location of point P . To achieve this, the contact point B on the circle can
be parameterized using the angle θ, respecting the winding direction which is given by
s ∈ {−1, 1}. This yields the vector rBO and its tangent unit vector e′

BO in the form

rBO(θ) = r

[||cos (−sθ)
sin (−sθ)

0

]|| = r

[|| cos (sθ)
− sin (sθ)

0

]|| (4.5)

e′
BO(θ) = r′

BO(θ)
∥r′

BO(θ)∥2
=

[||−s sin (sθ)
−s cos (sθ)

0

]|| . (4.6)

By following the tangent direction e′
BO and applying the unwound cable length rθ, the

vector rP B is obtained as

rP B(θ) = rθ

[||s sin (sθ)
s cos (sθ)

0

]|| . (4.7)
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Finally, a parametrization for the involute curve is found by

rP O(θ) = rBO + rP B = r

[|| cos (sθ) + sθ sin (sθ)
− sin (sθ) + sθ cos (sθ)

0

]|| . (4.8)

This formulation in Cartesian coordinates is useful for later combining multiple involute
curves in a common Cartesian reference frame. However, the shape of the generic involute
curve can be alternatively represented in a polar coordinate system centered at point
O, which marks the center of the base-circle. In this polar reference frame, the generic
involute can be represented using ∥rP O∥2 and β which are defined by the relations

∥rP O∥2 = r
√

1 + θ2 (4.9)

tan (θ − β) = ∥rP B∥2
r

= θ

β = θ − arctan θ .
(4.10)

The relations from Eqs. (4.9) and (4.10) are useful for converting different quantities
within an involute but less convenient for combining multiple involute curves.

In order to find an expression for the cable involute shown in Figure 4.2, the generic
involute rP O(θ) must be rotated until its base point Q coincides with E(lφ0). In a practical
robot implementation, the total cable length l is not measured directly but instead inferred
from the winch position. Thus, it is expedient to decompose l into a reference length
l0 which is calibrated once and a change from that length ∆l which is measured by the
winches such that

l = l0 + ∆l . (4.11)

In the following, the required rotation angle for rotating the generic involute such that it
matches the cable involute is calculated in two steps. First, the rotation angle corresponding
to the reference length l0 is determined. Second, the additional rotation from this reference
configuration, caused by a change of ∆l, is computed.

For the first step, let x0 = [x0, y0, 0]T denote the reference pose for which the cable
length equals l0. In this reference pose, the EE centerpoint C ′ is located at r0. The
required rotation angle of the generic involute to obtain the reference involute shown in
Figure 4.4 is denoted α0. The angle α0 can be found by calculating the angle between the
horizontal and the point E(l0) as illustrated in Figure 4.4. To find the value of α0 for a
reference pose x0, it can be expressed as

α0 = βA0 − β0 , (4.12)

using the auxiliary polar angles βA0 and β0 as shown in Figure 4.4. Since the robot
geometry and the reference position r0 are known, the angle βA0 is known and θ0 can be
calculated using the relation from Eq. (4.9). Equation (4.10) yields the angle β0 which
can be used in Eq. (4.12) to obtain α0.

In the second step, the additional rotation of the reference involute, caused by the
change in cable length ∆l, is considered. The location of the base-point E on the circular
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Figure 4.4: Involute in the reference position.

EE is determined by completely wrapping the cable around the EE in the winding direction
given by s. Thus, any change ∆l will cause the point E to rotate by the angle s∆l

r on the
circumference of the EE.

Finally, the previously derived components are combined and a parameterization for
the cable involute is obtained by rotating the generic involute from Figure 4.3 around the
z-axis. To arrive at the reference configuration, a rotation by the angle α0 from Eq. (4.12)
is required. In addition, the change in cable lengths ∆l corresponds to a rotation by s∆l

r .
Finally, a change in φ is related to a rotation of sφ as shown in Eq. (4.4). Combining
these three rotation terms yields the expression

rA′C′(θ, ∆l, φ) = Rz

(
α0 + s

∆l

r
+ sφ

)
r

[|| cos (sθ) + sθ sin (sθ)
− sin (sθ) + sθ cos (sθ)

0

]|| (4.13)

for the cable involute. Here, the rotation matrix Rz(·) from Eq. (3.4) is used. With
Eq. (4.13) an expression which formulates the constraint imposed by a single cable is
found. This constraint parameterizes all admissible EE positions using the parameter θ.
These admissible EE positions can be formulated explicitly in the form

rC′(θ, ∆l, φ) = rA′ − rA′C′(θ, ∆l, φ) , (4.14)

using the known winch position rA′ . This results in an involute on which the EE can lie,
subsequently called the constraint involute. The constraint in the xy-plane is visualized
in Figure 4.5. Either changing the angle φ or changing the length ∆l corresponds to
a change of lφ0, see Eqs. (4.4) and (4.11). As a consequence, the base-point of the
constraint-involute given by rEC′ rotates on the base-circle. Figure 4.5 visualizes the
base-circle of the constraint-involute using a dash-dotted line and intermediate positions
of the EE centerpoint C ′ along the constraint-involute using dashed lines. The angle θ
parameterizes all points which lie on the involute.
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Figure 4.5: Constraint in the xy-plane imposed by one cable.

In other words, rC′(θ, ∆l, φ) from Eq. (4.14) describes a family of involute curves. Each
specific involute curve is parameterized by the curve parameter θ whereas the rotation of
the individual involute curve is determined by the combination of ∆l and φ.

4.2.2 Nonlinear least-squares problem
To find the EE pose, the constraints of all nq cables must be combined i. e. the intersection
of all constraint involutes rC′i(θi, qi, φ) for i = 1, . . . , nq given by Eq. (4.14) must be found.
To gain a better understanding of the present situation, an example for nq = 4 is shown
in Figure 4.6. To facilitate translational movement of the board, the constraint involutes
rotate around the winch locations Ai. Changing the cable lengths corresponds to rotating
the respective constraint involute which causes the EE to move closer or further away due
to the spiral shape of the constraint involute.

As discussed in Section 4.1, the joint coordinates i. e. the cable length differences ∆l
are subject to measurement errors. Hence, in general an exact solution, i. e. intersection
of all nq involute constraints, does not exist. Let

θe =
[
θ1, . . . , θnq , φ

]T
(4.15)

denote the extended vector of involute parameters for all constraint involutes. Solving the
forward kinematics problem corresponds to finding the solution θ∗

e = [θ∗
1, . . . , θ∗

nq
, φ∗]T

for the extended involute parameters which causes the points rC′i(θ∗
i , qi, φ∗) to coincide.

In this case, all constraints are satisfied and all constraint involutes intersect at a single
point. This intersection can be written in the form

rC′1(θ∗
1, q1, φ∗) = rC′2(θ∗

2, q2, φ∗) = · · · = rC′nq (θ∗
nq

, qnq , φ∗) . (4.16)

The intersection of all nq constraint involutes can be rewritten as nq − 1 equations for the
x-coordinates and nq − 1 equations for the y-coordinates which yields a total number of
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Figure 4.6: Constraints imposed by the cables.

2(nq − 1) scalar equations. The unknown vector θ∗
e contains nq + 1 variables and thus the

system of equations is over-determined for nq > nx = 3.
Although in general an exact solution θ∗

e cannot be found for the over-determined
system due to measurement errors, finding an approximate solution θ̂e is of interest. Using
the coordinates of the mean point of the involute constraints

r̄C′(θe, q) = 1
nq

nq∑
i=1

rC′i(θi, qi, φ) , (4.17)

the approximate solution for the involute parameters can be formulated as a nonlinear
least-squares problem in the form

θ̂e = arg min
θe

nq∑
i=1

∥r̄C′(θe, q) − rC′i(θi, qi, φ)∥2
2 . (4.18)

Note that the chosen formulation of the optimization problem Eq. (4.18) minimizes the
variance of the points rC′i in the xy-plane.

Applying the optimal solution θ̂e(q), the mean involute constraint point r̄C′(θ̂e, q) can
be computed using Eq. (4.17) and then utilized to obtain the EE pose in the form

x̂(q) =

[||
[
1 0 0
0 1 0

]
r̄C′(θ̂e, q)

φ̂

]|| . (4.19)

Thus, the forward kinematics problem is solved.
The nonlinear least-squares problem in Eq. (4.18) is a nq + 1 dimensional unconstrained

optimization problem, which can be solved using a variety of algorithms for which numerical



4 Forward kinematics 4.2 Forward kinematics solution approach 22

libraries are readily available in many programming languages. To find the optimal solution
via a numerical iterative scheme, a sufficiently close initial estimate θ0

e is required for
which the optimization problem is locally convex. If the initial guess is too far away
from the global optimum or the cost-function is locally non-convex in the vicinity of the
starting point, the algorithm might diverge or converge to a local optimum which is not
the desired solution for the forward kinematics problem.

So far, a forward kinematics solution algorithm for computing the approximate pose
x̂ from the cable lengths q was derived. For this, the constraints imposed by the cables
were formulated and then combined in a nonlinear least-squares problem, to find an
approximation of the EE pose even in the presence of measurement errors. Until now,
the problem was treated as a planar problem in the xy-plane only. In the following
Section 4.2.3, the offsets in z-direction are taken into account. Thereafter in Section 4.3,
a systematic method to find an initial estimate for the EE pose is proposed, which can
be converted to a suitable initial estimate θ0

e for the optimization variables. A robust
and widely used algorithm for solving nonlinear least-squares problems is the Levenberg-
Marquardt method. Using this method, the convergence behavior of the outlined forward
kinematics solution approach is studied in Section 4.4.

4.2.3 3D geometry extension
In this section, the offsets hA in z-direction shown in Figure 4.7 are taken into account
and the forward kinematics are adapted accordingly. The offsets are introduced because
the cables are utilized to pull the EE towards the guiding surface, to ensure stable and
reliable contact and guidance.

Due to these offsets, the involute curves arising in the forward kinematics problem are
skewed in z-direction. Each cable, which forms an involute curve when being rolled onto
the EE disk, must additionally overcome the distance hA in z-direction as depicted in
Figure 4.7. As a result, the distance in the groove plane rA′B is modified to

√
r2θ2 − h2

A

groove plane

A

A′

rAB

rθ

B

C
x

z

hA

hC

C ′

y

rA′B

√
r2θ2 − h2

A

Figure 4.7: Offset in z-direction.

and the involute shape is skewed. Respecting the offsets hA and hC , the cable involute
from Eq. (4.13) can be modified to obtain a curve which is subsequently called modified
cable involute

rAC(θ, ∆l, φ) = Rz

(
α0 + s

∆l

r
+ sφ

)
r

[|||||
cos (sθ) + s

√
θ2 −

(
hA
r

)2
sin (sθ)

− sin (sθ) + s

√
θ2 −

(
hA
r

)2
cos (sθ)

hC − hA

]||||| (4.20)
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for θ > hA
r . Here, the rotation matrix Rz(·) from Eq. (3.4) is used. The modified terms

are highlighted in red color. Following the same steps as for the planar case, a modified
constraint involute on which the point C must lie can be derived using Eq. (4.20) in the
form

rC(θ, ∆l, φ) = rA − rAC(θ, ∆l, φ) . (4.21)
A comparison of the constraint involute for the planar case rC′(θ, ∆l, φ) and the modified
constraint involute rC(θ, ∆l, φ) respecting the offsets is visualized in Figure 4.8 for the
parameter ratio hA

r = 1
3 . Intuitively, the offset hA has the greatest influence on the shape
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Figure 4.8: Comparison of the modified and planar constraint involutes.

of the modified involute when the EE is close to the winch i. e. the distance ∥rC′A′∥2 is
small. For large distances from the winch, i. e. θ → ∞, the error between the modified
constraint involute and the constraint involute for the planar case tends to zero.

To quantify the error introduced by neglecting the offset hA in the forward kinematics,
the distance in the xy-plane between the constraint involute and the modified constraint
involute is considered. Because the z-coordinate of the EE is prescribed by the guiding
plane, only the error in the xy-plane is of interest. Hence, the position error eC,xy is
defined in the form

eC,xy =
|||||
[
1 0 0
0 1 0

]
(rAC − rA′C′)

|||||
2

. (4.22)

This error in the xy-plane directly impacts the solution of the forward kinematics and
must be sufficiently small to justify neglecting the offset hA. Combining Eqs. (4.13) and
(4.20) and considering that s2 = 1, the involute position error eC,xy can be written as

eC,xy = r

()θ −
√

θ2 − hA

r

2
)) . (4.23)

To find a more intuitive expression for the error eC,xy, it can be rewritten as a function of
the distance from the winch in the xy-plane instead of the involute parameter θ. For this
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purpose, the distance between the EE and the winch anchor point A in the xy-plane can
be expressed in the form

rAC,xy =
|||||
[
1 0 0
0 1 0

]
rAC

|||||
2

= r

√
1 + θ2 −

(
hA

r

)2
. (4.24)

Substituting Eq. (4.24) into Eq. (4.23) yields the relation

eC,xy(rAC,xy) =
√

r2
AC,xy + h2

A − r2 −
√

r2
AC,xy − r2 , (4.25)

which expresses the error introduced by neglecting the offset hA in z-direction. The error
is visualized for different ratios of hA

r in Figure 4.9.
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Figure 4.9: Involute error when neglecting the offset in z-direction.

From this figure, it can be concluded that the magnitude of eC,xy assumes a significant
percentage of the EE height hA. While the error is bounded by hA and drops off quickly
for positions further away from the winch, it remains in the order of several percent of
the distance hA for a wide range. To ensure that the EE is guided reliably by the guiding
plane, the ratio hA

r must be chosen sufficiently large to ensure a sufficiently large contact
force between the EE and the guiding plane. Hence, the offset hA cannot be chosen
arbitrarily small and must be carefully considered when designing a robot of this type. For
most applications relying on the forward kinematics to obtain the EE position, considering
the offset is crucial for obtaining a high positioning accuracy.

4.3 Initial pose estimation
For the iterative numerical solution of the nonlinear least-squares problem derived in
Section 4.2.2, a suitable initial guess for the optimization variables θ0

e is necessary to
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ensure convergence to the global optimum. In this section, a systematic algorithm for
finding a suitable initial estimate of the EE pose x0, given the cable length i. e. joint
coordinates q, is presented. Note that the estimated EE position xC and yC can be easily
converted to the involute parameters θi using the relation from Eq. (4.24) to obtain the
initial guess for θ0

e.
The algorithm presented in this section can be seen as an extension of the method

described in [21] using axis-aligned bounding boxes. The basic idea of the algorithm is to
strictly bound the position of the EE with low computational effort. Using the maximum
possible distance from each winch, bounding boxes which are aligned with the coordinate
axes can be created with very low numerical effort. The intersection of all bounding boxes
then yields a region that certainly contains the EE location. The center of this region is
subsequently used as an estimate for the EE location. This estimate is finally converted
to an initial guess θ0

e for solving the optimization problem shown in Eq. (4.18).
First, an estimate for the rotation angle φ is calculated by treating the rotation and

the translational movement of the EE separately. Using Eq. (4.4), the cable lengths i. e.
joint coordinates q can be decomposed into

q =
[
lφ0,1 . . . lφ0,nq

]
. .. .

lφ0

T −
[
s1 . . . snq

]
. .. .

s

T
rφ , (4.26)

where the vector s defines the cable configuration of the robot and lφ0 is the vector
of cable lengths without any rotation. Pure rotation of the EE causes a pattern in
the joint coordinates which is a result of the winding configuration s while the cable
lengths associated with translational movement are given by lφ0. It is assumed, that for
a robot with an even number of cables wrapped CW and CCW, the correlation of the
pattern caused by s and lφ0 is small. Hence, by correlating i. e. projecting − s

nqr onto the
joint vector q, an approximation of the rotational component can be extracted with low
numerical effort and an estimate φ0 for the EE rotation angle φ can be obtained in the
form

φ0 = − sT

nqr
q = − 1

nqr
sTlφ0. .. .

≈0

+ 1
nq

sTs....
nq

φ ≈ φ . (4.27)

To find the longest possible distance between the EE and a winch, consider the winch
anchor point Ai and its first neighboring anchor point Aj which has the opposite winding
direction such that si = −sj . Starting from the reference position r0, the EE can move
along the modified constraint involute to the point where the cable vectors rA′Bi and
rA′Bj are aligned with each other as shown in Figure 4.10. This position is the boundary
of the so-called wrench-closure workspace [19]. The robot is not able to move beyond this
point in a controlled way, because the direction of available forces at the EE becomes
limited.

The angle ∆γi denotes the angle between the cable vector rA′Bi,0 in the reference
configuration and the straight line between the anchor points Ai and Aj and can be
calculated using

∆γi = arccos
eT

AiAjrA′Bi,0

∥rA′Bi,0∥2
, (4.28)
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Figure 4.10: Maximum possible distance from the winch.

where eAiAj denotes the unit vector which points from Aj to Ai. Respecting the maximum
difference of the cable length from the reference position due to the measured length
difference ∆li as well as the unwound cable length r∆γi, the length

lbox,i =
√

(∥rA′Bi,0∥2 + ∆li + srφ0 + r∆γi)2 + r2 (4.29)
is the maximum possible distance between the winch anchor point Ai and the EE center-
point C.

Using the upper bound for the distance from the EE to each winch, bounding boxes in
the form

rlow
i = rAi − lbox,i

[
1 1 0

]T

rhigh
i = rAi + lbox,i

[
1 1 0

]T (4.30)

can be created. The intersection of the nq axis aligned bounding boxes can be calculated
in the form

rlow = max
i

rlow
i rhigh = min

i
rhigh

i . (4.31)

Finally, the centerpoint of the intersection bounding box is used to obtain an estimate for
the pose

x0 =

[||
[
1 0 0
0 1 0

]
1
2(rlow + rhigh)

φ0

]|| . (4.32)

Note that the quantities ∥rA′Bi,0∥2 and ∆γi can be pre-computed for the reference
position and all steps involved in the initial pose estimation algorithm can be implemented
computationally very efficiently on a real-time computer system. An example of the
bounding boxes for nq = 4 is shown in Figure 4.11. The intersection of the 4 bounding
boxes is colored in grey and its center C0, which represents the position estimate, is
marked using a black square.
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Figure 4.11: Pose estimation using axis aligned bounding boxes.

4.4 Convergence analysis
In this section, the convergence behavior of the presented forward kinematics solution is
analyzed. Both the 3D geometry extension from Section 4.2.3 as well as the initial pose
estimation algorithm from Section 4.3 are used if not stated otherwise. For solving the
nonlinear least-squares problem, the Levenberg-Marquardt-Fletcher (LMF) method is
used. The LMF method is a variation of the classical Levenberg-Marquardt algorithm
where the damping parameter is adapted using the method proposed by Fletcher [26]. An
implementation of the LMF algorithm in Matlab is provided by Balda [27]. The library
was slightly modified to make it suitable for code generation in Matlab/Simulink for
the deployment on a real-time computer system. The typical execution time of a single
iteration of the LMF algorithm on the hardware prototype presented in Section 8.1 was
found to be approximately 2.5 µs.

For the following convergence analysis, the LMF algorithm is used with a tolerance
εf = εx = 10−10, where εf denotes the stopping threshold for changes in the quality
function value and εx denotes the stopping threshold for changes in the optimization
variables. The maximum number of iterations was chosen as nmax = 50, which was never
reached during practical operation.

Throughout this work, three different designs of CDPRs are studied in detail and
compared. For all robot designs, alternating winding directions are chosen in the form

si = (−1)i+1 i = 1, 2, . . . , nq , (4.33)
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but they differ in the number of cables nq. For Design A, the number of cables is nq = 4,
resulting in the configuration shown in Figure 4.12(a). For Design B, the number of
cables is nq = 6 as shown in Figure 4.12(b) and for Design C the number of cables nq = 8
resulting in the CDPR configuration depicted in Figure 4.12(c).

s2 = −1 s1 = 1

s3 = 1 s4 = −1

(a) Configuration A
nq = 4 cables.

s3 = 1

s2 = −1 s1 = 1

s4 = −1 s5 = 1

s6 = −1

(b) Configuration B
nq = 6 cables.

s1 = 1s2 = −1

s4 = −1

s5 = 1 s6 = −1

s7 = 1

s8 = −1s3 = 1

(c) Configuration C
nq = 8 cables.

Figure 4.12: Cable configurations studied in detail.

For all robot designs, the geometric design parameters rw = 1 m, r = 0.3 m, hA = hC =
0 m are used (see Figure 2.1(b) and Figure 3.1 for reference). These designs were chosen as
candidates for the practical implementation of a general purpose manipulator prototype
due to their symmetry. Different numbers of cables are studied with the aim of gaining
insight into the effect of increasing the number of cables on the behavior of the resulting
CDPR.
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4.4.1 Convergence region
In this section, the convergence region of the forward kinematics solution is analyzed.
The inverse kinematics are used to generate the joint vectors q on a grid of points xC , yC

and for different EE angles φ. The forward kinematics algorithm is then applied to the
simulated joint coordinates in order to retrieve a solution for the EE pose x̂. If the original
pose x can be reconstructed with a position error eC < 10−6 m defined as

eC = ∥rC − r̂C∥2 , (4.34)

the forward kinematics algorithm is considered to have converged successfully. The results
for Design A are depicted in Figure 4.13. On the left side, Figure 4.13(a) shows the
convergence region of the forward kinematics using the origin as initial pose estimate
x0 = 0. In comparison, Figure 4.13(b) shows the convergence region using the initial pose
estimation algorithm presented in Section 4.3.

(a) Origin as initial pose estimate. (b) Initial pose estimation algorithm.

Figure 4.13: Convergence region of Design A.

Without any systematic initial pose estimation, the convergence region rapidly contracts
for increasing values of φ. Also note that the convergence region is not continuous but has
holes and there are spurious points where the algorithm converges. Using the proposed
systematic initial pose estimation algorithm, convergence can be achieved even for large
EE rotation angles φ and the convergence region is significantly improved.

The same behavior is confirmed for Design B and C and the resulting convergence
regions with and without the initial pose estimation algorithm are shown in Figure 4.14
and Figure 4.15 respectively.
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(a) Origin as initial pose estimate. (b) Initial pose estimation algorithm.

Figure 4.14: Convergence region of Design B.

(a) Origin as initial pose estimate. (b) Initial pose estimation algorithm.

Figure 4.15: Convergence region of Design C.
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4.4.2 Impact of measurement noise
In this section, the impact of measurement noise on the forward kinematics solution is
investigated. For this purpose, joint coordinates are generated for uniformly random EE
positions with −r < xC < r, −r < yC < r and φ = 0. The simulated cable lengths q are
disturbed by adding Gaussian noise with zero mean and different values for the standard
deviation σ. For each noise level σ, a number of N evaluations of the forward kinematics
algorithm are computed to gain insight into the statistical behavior of the algorithm.

Figure 4.16 shows the average position error and the average number of iterations using
N = 1000 for a wide range of different noise values.
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Figure 4.16: Impact of noise on the position error and number of iterations.

The position error is linearly proportional to the noise in the joint space and intuitively
decreases with a larger number of cables used. While the average number of iterations
necessary for the forward kinematics algorithm to converge is around 5 for small noise
levels σ < 10−6 m, it increases steadily for larger amounts of noise.

The distribution of the position error and the number of iterations is studied for three
selected values for the standard deviation σ = 0.1 mm, σ = 0.5 mm and σ = 2.5 mm. The
position error as well as the number of iterations required by the algorithm are evaluated
for N = 10000 EE positions. The results for Design A, B and C are shown in Figure 4.17.
Here it is confirmed, that the position error decreases as the number of cables increases
as the peaks of the position error distribution shift slightly to smaller values and the
distributions become narrower with an increasing number of cables.

It can be concluded, that the forward kinematics algorithm is very robust with respect
to measurement noise and converges reliably in the presence of noise.
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Figure 4.17: Convergence behavior for different noise levels (σ = 0.1 mm, 0.5 mm, 2.5 mm).
Design A (top), Design B (center) and Design C (bottom).



5 Workspace analysis
In this chapter, the workspace and its quality are studied for the novel CDPR concept.
There exist many different notions and definition of a robot’s workspace as well as
performance criteria to judge the quality of its interior. CDPRs exhibit the fundamental
limitation that the cables always need to remain under tension, which has a defining effect
on the workspace of a CDPR.

As previously discussed, CDPRs inherently need to be overactuated to achieve tension in
all cables without having to rely on external forces. The relation between the cable forces
τ and the resulting task-space wrench f is given by the Jacobian matrix of the inverse
kinematics JT

ik as shown in Eq. (3.17). As a consequence of the kinematic redundancy,
the matrix JT

ik is rectangular. Thus, there exists a nullspace in which additional cable
forces can be added without affecting the resulting wrench f . Using these null space cable
forces, tension in all cables can be achieved and the magnitude of the tension forces can
be adjusted as desired.

This intuitive notion leads to the so-called wrench-closure workspace, which is the set of
all EE poses, for which any wrench can be exerted by positive cable forces using appropriate
forces in the null space of JT

ik. Here, positive cable forces correspond to pulling forces by
convention. This means that the CDPR loses its general manipulation capabilities outside
the wrench-closure workspace, because forces cannot be generated in some directions. The
wrench-closure workspace originates from purely kinematic constraints and can thus be
investigated by analyzing the null space of JT

ik, e. g. using the method described in [28].
The problem of finding a suitable cable force distribution and thus choosing appropriate

null space cable forces is a major challenge for CDPRs. For the special case of so-called
completely restrained CDPRs which have exactly nq = nx + 1 cables, the nullspace is
1-dimensional and the problem is comparatively simple. A closed-form algorithm to find
suitable forces and choosing the desired tension in the cables is presented in [29]. In [21],
different force distribution methods for redundantly restrained robots with nq > nx + 1
are discussed and compared.

A unique choice of τ can be found by the solution of the optimization problem

min
τ

∥τ − τ d∥2

s.t. τ min ≤ τ ≤ τ max,

fd = −JT
ikτ ,

(5.1)

where τ d defines the desired pre-tension forces of the cables, which is a design parameter.
For the analysis of the workspace τ d = τ min = 0 and τ max = 1τmax is chosen and the
geometric parameters rw = 1 m and r = 0.3 m are selected. In the following, all figures of
the workspace are restricted to the wrench-closure workspace, indicating the theoretical
limit of achievable EE positions due to the kinematic constraints.
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5.1 Manipulability
The so-called manipulability is a measure of how close a robot is to a singular configuration.
To derive this measure, the reachable task-space velocities for all joint velocities of unit
length are investigated, see [4]

E = {ẋ | ∥q̇∥2 = 1} . (5.2)

Explicitly, this set can be expressed as

q̇Tq̇ = 1 (5.3)
ẋTJT

ikJikẋ = 1 . (5.4)

Thus, Eq. (5.2) defines an ellipsoid, also called the manipulability ellipsoid.
A multitude of manipulability indices based on this ellipsoid have been proposed in the

literature, see, e.g., [16, 17]. Here, the manipulability measure

m1 =
√

det
(
JT

ikJik
)−1 (5.5)

is used for the following investigations. This measure is proportional to the volume of
the manipulability ellipsoid and vanishes at singular configurations. If the achievable
task-space velocities are evenly distributed in all directions, Eq. (5.5) yields large values.
Due to the inverse relation between the force ellipsoid and the manipulability ellipsoid,
this also implies that wrenches can be realized evenly in all task-space directions, see
Eq. (3.17) and [17].

In Figure 5.2(a), the manipulability measure for Design A is shown. Here, the wrench-
closure workspace, i. e. the set of poses where an arbitrary wrench can be achieved, is
characterized by one principal direction. This directionality is a consequence of the pairs
(s1, s2) and (s3, s4) wrapped around the EE platform, as illustrated in Figure 5.1(a). These
cable pairs are considered strong pairs because they facilitate forces in the corresponding
y-direction. In contrast, the cables of the pairs (s1, s4) and (s2, s3) cross between the
winches and the EE as indicated in Figure 5.1(b), and thus the feasible forces in x-direction
are limited which is why these cable pairs will be referred to as weak pairs.

In general, the manipulability measure varies only slightly in the whole reachable task
space. The generality of the manipulability measure does not allow for a more detailed
analysis of the capabilities of this design.

Figure 5.2(b) shows the manipulability measure of Design B. Again, the manipulability
measure varies only slightly in the whole reachable task space. Furthermore, it would be
expected that the EE is best to manipulate in the center of the workspace where in fact
the manipulability measure is lowest.

The manipulability measure of Design C, depicted in Figure 5.2(c) shows a similar
behavior as for Design B. While the CDPR is intuitively expected to perform best in the
center of its workspace, the manipulability measure is lowest there and reaches its peak
values just at the edges of the wrench-closure workspace.

In contrast to robots consisting of rigid links, the workspace of CDPRs is not limited
by singularities but by the inability of the cables to exert pushing forces. This directional
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s2 = −1 s1 = 1

s3 = 1 s4 = −1

strong
pair

(a) Strong pair (s1, s2).

s2 = −1 s1 = 1

s3 = 1 s4 = −1

weak
pair

(b) Weak pair (s1, s4).

Figure 5.1: Strong pair and weak pair of cables.

constraint is not captured by the classical manipulability measure m1. This is why JT
ik

is well conditioned even at the borders of the task space, which also leads to a high
manipulability measure. Therefore, the classical manipulability measure presented in
Eq. (5.5) is not well suited to analyze the feasible forces close to the borders of the
workspace of a CDPR and does not allow a detailed analysis of the given wrench directions.
This is why a different measure of manipulability for this type of robot kinematics is
presented in the following section.

5.2 Force efficiency
From a practical perspective, the minimum tension required in each cable and the highly
nonlinear directional dependence of the achievable wrenches are the determining factors
for the workspace of a CDPR. For the robot to move effectively in the largest possible
workspace area, the maximum load on a single cable is the limiting factor. Thus, the
force efficiency index is proposed to measure the ratio between a given wrench and the
maximum cable force to realize this wrench [11].

Similar to the well-known force manipulability ellipsoid, see, e.g., [4, 17], for a chosen
cable force τs on the most stressed cable

τmin < τs < τmax , (5.6)

all achievable wrenches form a polytope

PF = {f | ∥τ∥∞ = τs ∧ τ min ≤ τ} (5.7)

where the elements of PF are defined by Eq. (5.1). For any chosen direction d, where
∥d∥2 = 1, the wrench

fd = fd (5.8)

with unique magnitude f is achievable, such that fd ∈ PF. The force efficiency η in
direction d is defined in the form

η = f

τs
. (5.9)
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(a) Manipulability measure of Design A. (b) Manipulability measure of Design B.

(c) Manipulability measure of Design C.

Figure 5.2: Manipulability measure m1 of Design A, B and C.
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This definition is similar to the manipulator mechanical advantage, see [30], but respects
the fundamental limits in the tension of the cable forces. The force efficiency can be
interpreted as the kinematic transmission of cable forces to given task-space wrenches.
Thus η > 1 indicates that multiple cables facilitate the given task-space wrench and
η = 0 indicates that x is outside the wrench-feasible workspace. Note that in general the
force efficiency depends on the cable forces in the nullspace of JT

ik, which are defined by
Eq. (5.1) and depend on the parameters τ min, τ max and τ d. Hence, it is a very practical
measure of the CDPR performance to predict the feasible magnitude of wrenches in any
given direction of interest d. For the idealized case τ min = τ d = 0 the force efficiency
does not depend on the desired force fd, but measures a kinematic property. The isolines
of the force efficiency are closely related to the wrench-feasible workspace, see e.g. [18].
In addition, the interior of the wrench-feasible workspace can be analyzed by the force
efficiency.

In the following, the force efficiency defined in Eq. (5.9) is analyzed for wrenches acting
in different directions in a cylindrical coordinate system centered in the origin as depicted
in Figure 5.3.

rC

C

x

y

z

er

eφ

Figure 5.3: Basis vectors er and eφ for cylindrical coordinates.

The radial basis vector er and the azimutal basis vector eφ are given by

er = 1√
x2

C + y2
C

[||xC

yC

0

]|| , eφ = 1√
x2

C + y2
C

[||−yC

xC

0

]|| . (5.10)

Figure 5.4 provides an overview of the force efficiency of Design A for different directions
d. In Figure 5.4(a) the force efficiency for an outward motion away from the origin using
d = er is shown. Here, it is confirmed that the radial outward movement is achieved
by two pulling cables with a force efficiency η > 1.5 in the central axes between the
kinematically strong pairs of cables, which do not cross between the winches and the EE.
Due to the strong pairs of cables, the CDPR has two favorable directions which are clearly
visible using the force efficiency. In contrast to the manipulability measure, see Figure 5.2,
the force efficiency decreases towards the boundaries of the wrench-feasible workspace.

Figure 5.4(b) depicts the force efficiency for d = −er which corresponds to a radial
inward motion towards the origin. Movements towards the centerpoint of the robot are
highly efficient over the whole workspace because multiple cables can always participate
in pulling the EE towards the origin.
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The force efficiency for azimutal motion around the origin with d = eφ is depicted in
Figure 5.4(c). Here the favorable regions are clearly visible and it is confirmed that for a
large region of the workspace a force efficiency of η ≈ 1 can be achieved.

Finally in Figure 5.4(d), the force efficiency for a rotational motion of the EE using
d = [0, 0, 1]T is presented. Pure rotation in CCW direction without translational movement
can be achieved best along an axis which is diagonal to the preferred axis for translational
motion.

Comparing Design A, B and C it can be concluded that intuitively, adding more cables
provides more favorable directions of motion. However, increasing the number of cables
also increases the cost and complexity of the CDPR. Design B using nq = 6 cables is
considered to be a good trade-off between cost and quality of the resulting workspace for
the realization of a general planar manipulator. For this reason, Design B is selected for
implementing a hardware prototype.
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(a) Force efficiency in direction d = er

(radially outward from the origin).
(b) Force efficiency in direction d = −er

(radially inward towards the origin).

(c) Force efficiency in direction d = eφ

(CCW around the origin).
(d) Force efficiency in direction d = [0, 0, 1]T

(rotation of the EE).

Figure 5.4: Force efficiency η in different directions d for Design A.
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(a) Force efficiency in direction d = er

(radially outward from the origin).
(b) Force efficiency in direction d = −er

(radially inward towards the origin).

(c) Force efficiency in direction d = eφ

(CCW around the origin).
(d) Force efficiency in direction d = [0, 0, 1]T

(rotation of the EE).

Figure 5.5: Force efficiency η in different directions d for Design B.
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(a) Force efficiency in direction d = er

(radially outward from the origin).
(b) Force efficiency in direction d = −er

(radially inward towards the origin).

(c) Force efficiency in direction d = eφ

(CCW around the origin).
(d) Force efficiency in direction d = [0, 0, 1]T

(rotation of the EE).

Figure 5.6: Force efficiency η in different directions d for Design C.
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5.3 Uneven numbers of cables
So far, only CDPR designs with even numbers of cables have been considered in this work.
In this section, the possibility of creating a robot with an uneven number of cables is
investigated and briefly discussed. Figure 5.7 shows the studied Design D using nq = 5
cables.

s3 = 1

s2 = −1

s1 = 1

s4 = −1 s5 = −1

Figure 5.7: Cable configuration D using nq = 5 cables.

Computing the force efficiency η and applying the previously gained understanding of
kinematically strong pairs of cables, the workspace of Design D can be analyzed. For
Design D, cables (s1, s2) and cables (s3, s4) form strong pairs. These strong pairs are
neighboring cables with different winding directions which are capable of very efficiently
pulling the EE radially outwards i. e. away from the origin in the direction er. As a result

(a) Force efficiency in direction d = er

(radially outward from the origin).
(b) Force efficiency in direction d = eφ

(CCW around the origin).

Figure 5.8: Force efficiency η in different directions d for Design D.
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of the strong pairs, the force efficiency in the direction d = er depicted in Figure 5.8(a)
shows two favorable directions. Figure 5.8(b) shows the force efficiency for azimutal
motion around the origin in direction d = eφ. Comparing Design D with Designs A and B
(see Figure 5.4 and 5.5) it can be seen that Design D exhibits features from both Design
A and Design B. Intuitively, using nq = 5 cables can be seen as either an extension of
Design A (nq = 4) or an incomplete version of Design B (nq = 6). While Design D has
two strong pairs, the additional cable s5 extends the workspace and adds a useful part of
the wrench-closure workspace. However, cable s5 does not form a strong pair and thus a
third favorable direction such as in Design B is lacking.

Figure 5.9 shows the force efficiency for pure rotation in both CCW and CW directions.
This reveals the strong asymmetry in the design which is caused by the uneven number
of cables. There are 3 cables which can participate in rotating the EE in CW direction
as revealed in Figure 5.9(b). At the same time there are only only 2 cables which can
participate in CCW rotation of the EE as shown in Figure 5.9(a). With respect to pure

(a) Force efficiency in direction d = [0, 0, 1]T
(CCW rotation of the EE).

(b) Force efficiency in direction d = [0, 0, −1]T
(CW rotation of the EE).

Figure 5.9: Force efficiency η for rotation of Design D.

rotation of the EE, it can be seen that Design D performs similarly to Design A for CCW
rotation and exhibits a similar behavior as Design B for CW rotation.

It can be concluded that CDPR designs using uneven numbers of cables show strong
asymmetry and can be seen as an intermediate design between their counterparts with
even numbers of cables. While the asymmetry in the manipulation capabilities is not
desirable for a general manipulator, specialized robots are conceivable which can benefit
from the asymmetric characteristics.



6 Dynamic robot model
A CDPR is a mechatronic system consisting of many interacting parts and subsystems
from different physical domains. In this chapter, a control-oriented dynamic robot model
is derived focusing on the mechanical domain. In Section 6.1, an overview over the model
structure and the interacting components is provided. A simple mechanical model for
the cable winch is discussed in Section 6.2. Based on the inverse kinematics presented in
Chapter 3, the equations of motion for the robot are derived in Section 6.3. The dynamic
model is then used in Chapter 7 to design a controller for the CDPR.

6.1 Mechatronic structure
Figure 6.1 shows the different mechatronic elements and physical interfaces between the
elements in a schematic view. The robot is actuated by an electric drivetrain which

Ti,d

ui

ii

Ti

τ f
xq

x
ẋ
ẍ

ξi

ξi fext

Current
Sensing

Drivetrain Model Mechanical Robot Model

Electric
Motors

Motor
Controller

Robot
Controller

Winch
Mechanics

Position
Sensing

Cables Endeffector

Environment

Figure 6.1: Mechatronic structure of the robot.

operates as a cascaded control loop. The motor controller receives a desired torque signal
Mi,d for each electric motor from the high-level robot controller. In the inner control loop,
the voltage ui is controlled by the motor controller using the measured current ii and
the motor angles ξi as feedback. The torque produced by the electric motor (typically
a permanent magnet synchronous motor) can be either inferred using an observer or
measured directly using a dedicated torque sensor. Thus, the electric drivetrain provides
the actual torques Ti to the mechanical robot system. In this work, the electrical drivetrain

44
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is not further investigated, more details on modelling and controlling electrical drives can
be found in the literature such as [31, 32].

The winch mechanics relate the torques Ti and angles ξi of the electric motors to the
vector of cable forces τ and the cable lengths q. As a result of the cable forces, a wrench
f on the EE is generated as derived in Eq. (3.17). Together with the external forces fext,
the wrench f dictates the EE motion x, ẋ, ẍ. The EE position x is related to the cable
length q via the inverse kinematic transformation function ϕik.

6.2 Winch mechanics
The winch converts the rotary motion of the electric motor into a linear motion of the
cable. Figure 6.2 shows a conceptual drawing of the winch mechanism. The cable is
deflected by a guiding pulley between the cable spool and the workspace. Since the
radius of the guiding pulley is small compared to the dimensions of the workspace, this
offset is neglected, see, e.g., [21]. For the sake of simplicity it is assumed that the winch
mechanisms for all cables are identical and hence the index i is omitted in the following.

ps

rs lp

cable spool

guiding pulley

motor

αp

Figure 6.2: Cable winch mechanism.

The electric motor directly drives the cable spool, which has a helical groove that guides
the cable when coiling it onto the spool. The helical groove has a pitch of ps and an
effective coiling radius of rs which need to be taken into account for the calculation of the
cable lengths. Thus, turning the motor by an angle of ξ will result in coiling the cable
inside the helical groove by the length

∆l = ξ

√
r2

s +
(

ps
2π

)2

. .. .
νw

= ξνw . (6.1)

The resulting winch transmission ratio νw establishes the relation between the motor angle
ξ and the change of the cable length ∆l.

Due to the pitch of the helical groove, an additional nonlinear change of the cable length
is introduced by the change of the cable angle αp, see Figure 6.2. Hence, the total change
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of the cable length can be written in the form

∆l = ξνw +
√

l2p +
(

ps
2π

ξ

)2
− lp. .. .

ep

. (6.2)

Subsequently, the nonlinear pulley error ep is neglected since the distance between the
cable spool and the guiding pulley lp is assumed to be large compared to the total height
of the cable spool. In particular, this assumption is valid for the winch system employed
in the prototype robot presented in Section 8.1. Based on this assumption, the relation
between the rotary motion of the motors and the linear motion of the cables can be
considered linear according to Eq. (6.1).

The inertia of all rotating components inside the motor (including couplings etc.) and
the cable spool can be added. Thus, the total moment of inertia of the winch drivetrain

Iw = Imotor + Is (6.3)

is obtained where Imotor denotes the moment of inertia of the electric motor and Is the
moment of inertia of the spool.

6.3 Equations of motion
To derive the equations of motion for the mechanical system, the Newton-Euler equations
can be applied. Alternatively to the method shown in the following, d’Alembert’s principle
can be used to obtain the equations of motion [33]. The derivation using d’Alembert’s
principle is shown in Appendix A.1.1. This formulation is particularly convenient when
the model should be extended or when multiple physical domains should be integrated
into the model at a later time.

To apply the Newton-Euler equations, the multibody system can be separated at
the cables to obtain single body subsystems. Figure 6.3 depicts the resulting free-body
diagram for the single body systems. The same assumptions as listed in Section 3.1 are
employed for deriving the dynamic model. In particular, all bodies including the cables are
considered rigid and thus all elastic deformations are neglected. In addition, the guiding
pulley and the cables are considered massless and thus do not affect the transmission
of the cable forces τ from the cable spool to the EE. Hence, the guiding pulley can be
omitted from the free-body diagram. In the control-oriented model, all dissipative effects
are neglected and it is assumed that the inertial forces are large compared to dissipative
forces. This includes the friction in the bearings of the winch system, the friction between
the EE and the guiding plate as well as any aerodynamic effects. This assumption is
relatively limiting because it is only valid if the accelerations of the EE are sufficiently
large.

The balance of angular momentum for the cable spools reads as

Iwξ̈ = T + νwτ , (6.4)

with the vector of motor torques T ∈ Rnq and the moment of inertia Iw from Eq. (6.3),
which is identical for all winches and accounts for all rotating parts.
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Figure 6.3: Free body diagram.

Similarly, the balance of momentum for the EE takes the form, see Eq. (3.17),

MEEẍ = f − g = −JT
ikτ − g (6.5)

with the diagonal mass matrix

MEE =

[||mEE 0 0
0 mEE 0
0 0 IEE,z

]|| (6.6)

consisting of the mass mEE and the moment of inertia IEE,z with respect to the z-axis of
the EE. Moreover, g describes the gravitational force acting on the EE, i. e.

g =
[
0 mEEg 0

]T
, (6.7)

with the gravitational acceleration g.
Combining the relations from Eqs. (3.19) and (6.1), the vector ξ̈ can be expressed as

ξ̈ = d
dt

( 1
νw

Jik(x)ẋ
)

= 1
νw

(
J̇ikẋ + Jikẍ

)
. (6.8)

Note that the time-derivative of the Jacobian of the inverse kinematics J̇ik is a function
of x and ẋ. It can be computed analytically in a closed form from the Jacobian matrix
using Eq. (3.18).

Substituting Eq. (6.8) into Eq. (6.4), calculating τ and inserting it into Eq. (6.5) results
in the equations of motion(

MEE + Iw
ν2

w
JT

ikJik

)
. .. .

M(x)

ẍ +
(

Iw
ν2

w
JT

ikJ̇ik

)
. .. .

C(x,ẋ)

ẋ + g = 1
νw

JT
ik. .. .

Λ(x)

T , (6.9)

with the positive definite mass matrix M(x), the Coriolis matrix C(x, ẋ) and the torque
transformation matrix Λ(x).



7 Controller design
In this section, a trajectory following control strategy for the novel CDPR type is presented.
The controller is based on the dynamic robot model from Chapter 6 and is used in Chapter 8
to demonstrate the performance of the novel CDPR concept and to validate the theoretical
considerations. The control concept will be further elaborated in a follow-up master’s
thesis, where more details will be provided and an analysis of the controller’s performance
will be conducted. A more general discussion of different control concepts for robots can
be found in [4, 34].

The controller follows a trajectory in the task space and stabilizes the trajectory tracking
error defined as

ex = x − xd , (7.1)
where xd(t) ∈ Rnx denotes the desired trajectory of the EE pose. Due to the fundamental
limitation that cables can only transmit pulling forces, special care must be taken when
designing a controller for a CDPR. The control strategy must guarantee, that the constraint
τ > τ min is never violated to ensure sufficient tension in all cables at all times.

7.1 Control strategy
A valid cable force distribution, which satisfies the constraints while achieving a desired
task-space wrench fd, can be found by solving the optimization problem from Eq. (5.1).
The cable force distribution function τ ∗ : Rnx → Rnq can thus be defined in the form

τ ∗(fd) = arg min
τ

∥τ − τ d∥2

s.t. τ min ≤ τ ≤ τ max,

fd = −JT
ikτ .

(7.2)

Applying this cable force distribution function τ ∗ to the desired wrench fd, guarantees valid
cable forces and resolves the kinematic redundancies of the kinematically underdetermined
system. More details on the numerical implementation of the force distribution function
can be found in an upcoming follow-up thesis.

By rearranging Eq. (6.5), the desired wrench acting on the EE can be chosen in
such a way, that the inertial forces for accelerating the EE given by MEEẍ and the
gravitational force g are compensated. A type of PD controller in the task space using
these compensation terms thus takes the form

fd = MEEẍd + g − KPex − KDėx , (7.3)

where KP and KD denote the P (proportional) and D (derivative) gain matrices of the
controller, respectively. In the literature, such a control scheme is often referred to as a
so-called PD+ controller [35].

48



7 Controller design 7.1 Control strategy 49

To compensate the inertial forces required to accelerate the rotating parts Iw, a com-
pensation component is added by combining Eqs. (6.4) and (6.8). This results in the
control law

Td = −νw τ ∗....
Force
Dist.

(
MEEẍd + g − KPex − KDėx. .. .

PD+ for EE
Eq. (7.3)

)
+ Iw

νw

(
J̇ikẋd + Jikẍd

)
. .. .

Winch Inertia
Compensation

. (7.4)

Here, the control variable Td denotes the desired torque, which acts as an input to the
cascaded torque control. The PD+ control law for the EE from Eq. (7.3) corresponds to
the forces, which must be transmitted by the cables. Thus, the force distribution function
τ ∗ must be applied to these forces to ensure that the resulting cable forces satisfy the
constraints imposed by the cables. In contrast, the winch inertia compensation term
in Eq. (7.4) can be applied directly to the motors without having to comply with any
constraints. The structure of the resulting control system is visualized in Figure 7.1.
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Figure 7.1: Structure of the control concept.

It is assumed in the following, that the torque dynamics of the drivetrain are significantly
faster than the robot dynamics. Thus, the dynamics of the inner control loop can be
neglected and it can be assumed T ≈ Td.

Furthermore, it should be noted that the EE pose x cannot be measured directly
and only the motor angles ξ are available as a measurement. Hence, the pose must
be determined using the forward kinematics and x̂ must be used instead of x. In the
following, measurement errors are neglected and it is assumed that x̂ ≈ x. de In case
the optimization problem from Eq. (7.2) is infeasible and no valid solution τ ∗(fd) can be
found, the CDPR must be halted to prevent damage due to inappropriate cable forces. To
avoid this, special care must be taken that the trajectory is feasible within the dynamical
capabilities of the robot.
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7.2 Error dynamics and stability
To investigate the behavior of the closed loop system, the temporal evolution of the
trajectory tracking error ex(t), defined in Eq. (7.1), is of great interest.

The control law from Eq. (7.4) can be substituted into the equations of motion from
Eq. (6.9). Simplifying and grouping terms, assuming x = x̂ and T = Td, yields the
ordinary differential equation

M(x)ëx + (C(x, ẋ) + KD)ėx + KPex = 0 . (7.5)

In control theory, this equation is referred to as error dynamics and the present form of
Eq. (7.5) is characteristic and well-known for a PD+ controller.

By choosing the controller matrices KP and KD appropriately, the error dynamics can
be adjusted as desired. Here, the term (C(x, ẋ) + KD) can be interpreted as damping
and KP represents the stiffness of the error system. Because the damping and the stiffness
can be directly influenced, the PD+ controller in the task space can also be interpreted as
a so-called compliance controller where the mechanical compliance of the robot along the
trajectory can be chosen as desired.

It can be shown, that the trajectory tracking error ex is globally asymptotically stable
for a symmetric and positive definite choice of KP and a positive definite KD. The
proof found in [36] uses a suitable Lyapunov function and a theorem of Matrosov. Note
that the global asymptotic stability is retained even if the matrices KD and KP are
time-variant. Thus, the controller matrices can be chosen such that the error dynamics
become independent of the pose x. For simplicity, the controller matrices KD and KP
used in the prototype CDPR, presented in Section 8.1, are chosen constant and diagonal.
The selected values are listed in Table A.3 found in the Appendix A.2.



8 Experimental results
In this chapter, experimental measurement data validating the theoretical considerations
are presented. The experimental setup is outlined in Section 8.1. Thereafter, in Sec-
tion 8.2, the measured positioning accuracy achieved using the forward kinematics solution
from Chapter 4 is shown and discussed. The force efficiency studied in Section 5.2 is
experimentally validated in Section 8.3 for a given task-space wrench. Finally the dynamic
positioning performance of the prototype CDPR is evaluated in Section 8.4 for both
translation and rotation.

8.1 Experimental robot prototype setup
In this section the implemented prototype robot, which demonstrates the performance
and capabilities of the novel CDPR design, is presented. Mechanical aspects and details of
the implementation of the robot are briefly outlined in the following. A list of parameters
of the prototype CDPR can be found in Appendix A.2.

Figure 8.1 shows a photograph of the laboratory experiment. Here, the circular EE is
realized by a common tournament dartboard with a mass of 4.45 kg which is actuated
by six winches. The design is based on a square frame, on which the winches and the
guiding surface are mounted. The highlighted area in Figure 8.1 represents the theoretical
wrench-closure workspace. Due to collisions with structural elements, the useful workspace
of the prototype is smaller.

8.1.1 Winch design
The aim of the winch design is to actuate the cables in a mechanically simple but
reliable way. Figure 8.2 provides an overview of the winch system. The winches are
attached to the aluminum robot frame via mounting plates which are machined from
stainless steel. The electrical drive system consists of Beckhoff AM8033 permanent magnet
synchronous servomotors with a rated torque of 2.7 Nm and a rated power of 1.7 kW
driven by Beckhoff AX8206 inverters in a cascaded torque control. Each motor directly
drives a spool which has a helical groove and is 3D-printed from silver polylactide (PLA).
The spool is reinforced with a steel tube and connected to the motor shaft via a clamping
set. Additional considerations for choosing an appropriate winch transmission ratio are
documented in Appendix A.1.2. The cable is guided by the 3D-printed PLA guiding pulley
which is equipped with a ball-bearing and mounted directly to the aluminium frame.
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Figure 8.1: Front view of the robot prototype. The white cables are colored for better
visibility.
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Figure 8.2: Winch design. The white cable is colored red for better visibility.
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8.1.2 End effector design
The EE is composed of a tournament dartboard equipped with a fixture which incorporates
guiding grooves for the cables, see Figure 8.3. The circular fixture is divided into six

cables

guiding
grooves

sliding elements

guiding segment

Figure 8.3: Design of the EE. The white cables are colored for better visibility.

segments which together create a circular shape. Each cable is attached to one segment
and then wrapped around the designated groove. All guiding grooves must be shaped
appropriately to ensure robust, stable, and reliable guidance of the cables withing the
entire workspace of the robot. To prohibit the rotation of the EE around the x- and y-axis,
the EE must be pushed towards the guiding surface with a sufficiently high force and
hence the offset hA, see Figure 3.1, must be chosen sufficiently large. However, large offsets
cause larger deflection angles of the cables which need to be tolerated by the guiding
grooves. Hence, the shape of the groove must ensure a reliable operation in the whole
workspace. Finally, the depth of the guiding grooves must be chosen to accommodate the
wrapped cable length l′, see Section 2.1.

In the implemented CDPR prototype, each cable is wrapped around the EE in its own
guiding groove. As a result, each cable has a different offset in z-direction from the guiding
surface. To achieve an equal deflection angle for all cables when the EE is at the origin,
the respective guiding pulleys are offset in z-direction accordingly, see Figure 8.4. The

Figure 8.4: Guiding surface. The white cables are colored for better visibility.

cable arrangement on the EE is chosen such that the tilting moments around the x- and
y-axis, caused by the cable forces, have opposing directions for cables forming a weak
pair. Two crossing cables form a weak pair as discussed in Section 5.1 and depicted in
Figure 5.1. Consequently, very large forces are required to move the EE in the direction of
a weak pair, which is also reflected by the low force efficiency in these directions as shown
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in Section 5.2. Therefore, it is desirable to avoid tilting moments when moving in such a
direction. For the presented CDPR configuration, the cables (s1, s6), (s2, s3) and (s4, s5)
form weak pairs. Thus, with the cable layout shown in Figure 8.5 the dominating tilting
moments around the x- and y-axis caused by the weak pairs are reduced for symmetrical
forces in the associated cables of the weak pairs.

groove planes
symmetry plane 5

z

3
1
6
2
4

weak
pairsC

y x

Figure 8.5: Cable arrangement.

To reduce the friction between the EE and the guiding surface, the EE is equipped
with sliding elements. Figure 8.3 shows the location and design of the sliding elements
attached to the EE. These sliding elements can be easily replaced for maintenance and can
be adapted for the specific task by choosing designs with appropriate damping, stiffness
and friction coefficients for the sliding elements.

8.1.3 Material choices
In the following, the most important material choices for the design and reliable operation
of the proposed CDPR design are outlined. The cables are made of the material Dyneema
SK78 (high-modulus polyethylene) which offers very high tensile strength, high stiffness,
low creep and high durability under cyclic bending [37]. Because of these properties,
Dyneema is very suitable and commonly used in CDPR applications [38]. The rated
breaking load of the chosen cables (Liros D-Pro 1mm) is 1950 N. The maximum working
load τmax = 280 N ensures that the cable force does not exceed 15% of its breaking load
to guarantee safe operation and long fatigue life of the cables.

For the guiding surface, the material polyethylene with high molecular weight (PE-
HMW) was chosen. This material offers a low coefficient of friction while being scratch
resistant and durable [39]. To reduce the amount of friction between the EE and the
guiding surface, different sliding elements can be used. Figure 8.6 shows two optional
sliding elements used for the robot. While the polymer ball transfer units (igus xiros)
offer low rolling friction and high stiffness in z-direction, the felt sliding pads exhibit a
lower stiffness, but achieve higher damping and allow for silent operation with a very low
increase in friction. For all subsequent experiments, the felt sliding pads are employed.

8.2 Forward kinematics positioning accuracy
In this section, the positioning accuracy of the forward kinematics presented in Chapter 4
is investigated. Thus the modeling assumptions used to derive the forward kinematics
algorithm are evaluated and the solution is validated.



8 Experimental results 8.2 Forward kinematics positioning accuracy 55

Figure 8.6: Sliding elements compared to a 1 Euro coin.

The accuracy is evaluated via the position error eC defined in Eq. (4.34). For this
purpose, the position of the EE rC is measured using a commercial motion tracking camera
system consisting of six Optitrack Prime 17W cameras. The cameras are positioned around
the robot and reflective infrared (IR) markers are attached to the EE and the robot frame.
Figure 8.7(a) indicates the placement of the optical markers on the EE with green squares
and the location of the markers on the aluminium frame of the CDPR using red circles.
While the markers attached to the EE are used to track its location and orientation
very robustly, the markers on the frame are used for aligning the coordinate system
of the optical tracking system with the CDPR coordinate system during calibration.
Furthermore, the markers on the CDPR frame are used to compensate for coordinate
system drift and vibrations of the frame.

The estimated position r̂C is computed from the cable lengths measured by absolute
encoders connected to the motor shafts of the driving motors using the forward kinematics
algorithm presented in Chapter 4.

Measurements are taken on a grid of 20 × 20 equidistant points in the inner workspace
U which is defined as

U = {x | xC ∈ [−0.25 m, 0.25 m], yC ∈ [−0.25 m, 0.25 m]} . (8.1)

(a) Placement of the optical markers.

U
V

W

(b) Overview of the examined workspace.

Figure 8.7: Experiment design for measuring the positioning accuracy.
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For all poses in the inner workspace U , the collision region V corresponds to the outer
boundary which contains all points of the EE and thus serves as a tool to analyze collision
margins between the EE and other structural components. The set V can be formally
defined as

V = {x + [x, y, φ]T | x ∈ U , x2 + y2 ≤ r} . (8.2)

The examined inner workspace U , the corresponding collision region V as well as the
wrench-closure workspace W are visualized in Figure 8.7(b).

The position error on the measured grid in the region U is depicted in Figure 8.8 as
a heatmap. Here it is visible that a positioning accuracy of < 1 mm can be achieved
in a large portion of the workspace. For the center of the workspace U , the positioning
accuracy is similar to the accuracy of the optical measurement system of ±0.3 mm. The
position error close to the top corners reaches values of ≈ 1.2 mm and reaches a peak
value of 2.3 mm in the top right corner. This sharp increase in the position error eC

can be explained by the increasing cable forces in the weak cable pair (s1, s6), which are
necessary to counteract gravity. These forces are the cause for two main effects which are
considered the main source of the position error. First, the large cable forces cause an
elastic elongation in the cables which is neglected in the standard model used to derive
the forward kinematics. Second, the large cable forces cause tilting moments Mx and
My which cause the felt sliding pads to deform slightly and even to visibly lift off the
guiding surface in point x = [0.25 m, 0.25 m, 0 rad] located in the top right corner of the
investigated workspace U .
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Figure 8.8: Error map of the forward kinematics error.

The experimental results show that a sub-millimeter positioning accuracy can be
achieved by the CDPR developed in this work which is sufficient for many general purpose
positioning tasks. To obtain higher accuracy, the stiffness of the sliding pads could be
increased and the robot model could be extended to take the deformations of the cables
into account. To avoid tilting of the EE, the sliding elements could be enlarged or more
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sliding elements can be added to the EE which would result in a higher robustness with
respect to tilting torques.

8.3 Force efficiency experiment
In this section, the force efficiency measure η discussed in Section 5.2 is applied and
validated using experimental data. The gravitational force on the EE is used as loading
force to demonstrate that the predicted force efficiency is actually achieved in practice.
Hence, it is shown that the force efficiency measure can be applied as a useful tool to
analyze the capabilities of the robot inside its workspace.

A positioning task with a small and constant velocity is performed, such that the inertial
forces on the EE are negligible and the dominant force is the gravitational force.

The EE is moved from the pose x1 to the pose x2 which are chosen as

x1 =
[
0 m −0.3 m 0 rad

]T
, x2 =

[
0.3 m 0.2 m 0 rad

]T
. (8.3)

A linear task-space trajectory with a constant desired velocity of vd = 0.1 m/s is used as
shown in Figure 8.9(c). The poses of the robot are depicted in Figure 8.9(a). To analyze
this task, the force efficiency for the wrench according to Eq. (5.9)

fd = g =
[
0 mEEg 0

]T
=

[
0 43.65 N 0

]T
(8.4)

is shown in Figure 8.9(b). Here, the limit of the cable forces τmin = 10 N, and the desired
cable forces τd = 50 N are considered in the cable force-distribution function, see Eq. (7.2),
which is part of the controller outlined in Chapter 7.

The experiment can be divided into three sections. In section 1 , the pose of the EE is
constant at x1. In this pose, the cables are symmetrical with respect to the y-axis due to
the symmetry of the robot as visualized in Figure 8.9(a). The force due to the gravitational
acceleration on the EE acts along this axis of symmetry in negative y-direction. As a
consequence, the cable forces of the corresponding pairs (s1, s2), (s3, s6), (s4, s5) are equal.
The measured cable forces τi, i = 1, . . . , 6 are shown in Figure 8.9(d). Some very small
deviations between the corresponding cables are visible which are caused by static friction
effects.

In section 2 , which is divided in 2a and 2b , the EE moves with a constant velocity
as shown in Figure 8.9(c).

During the movement across the workspace the force efficiency gradually changes as
visible in Figure 8.9(b) and Figure 8.9(e). The change in the force efficiency is directly
related to the change in the maximum cable force which is necessary to counteract the
gravitational force on the EE. The relation becomes apparent when comparing the cable
forces shown in Figure 8.9(d) with the force efficiency depicted in Figure 8.9(e).

In section 2b , the force efficiency decreases rapidly, consequently the cable forces
increase at the same rate. This decrease in efficiency is caused by the cable forces τ3 and
τ4 reaching the lower limit τmin. A reduction of the opposing cable forces τ3 and τ4 can
be interpreted as instantaneous pushing forces on the EE. As soon as these forces reach
the lower limit and no more reduction is possible, the cables s1 and s6 need to exert even
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higher forces to counteract gravity as the trajectory progresses. Due to the geometry
of the robot, (s1, s6) form a weak pair and thus very large forces are required in these
cables. Since the force distribution algorithm is considered in the computation of the
force efficiency, the aforementioned cable force limits are accurately reflected in the force
efficiency value.

In section 3 , the pose of the EE is constant at x2. The force efficiency in this pose is
approximately half the force efficiency of pose x1 as shown in Figure 8.9(e). Consequently,
the maximum of the cable forces is approximately twice as high, see Figure 8.9(d). In
this pose, the load caused by gravity is distributed asymmetrically between the cables
because the cable geometry in the pose x1 is asymmetric and thus there are no cable pairs
exerting the same force.

Between section 1 and 2a as well as 2b and 3 the EE has to be accelerated and
decelerated respectively, as depicted in the velocity profile in Figure 8.9(c). Hence, the
required inertial forces are provided by the cable forces shown in Figure 8.9(d).

The force efficiency from Eq. (5.9) along the trajectory can be estimated by using the
measured cable forces and the known force due to gravity. In Figure 8.9(d), the measured
force efficiency ηm is compared to the theoretical value. The measured progression of the
force efficiency ηm is slightly lower than the theoretical η calculated for a pure gravitational
load in negative y-direction. This discrepancy can be explained by the friction forces
between the EE and the guiding surface and friction torques in the bearings which result
in smaller effective forces available for counteracting the gravitational force on the EE.
The cable force is measured indirectly utilizing the motor current, which also introduces
some uncertainty. In general, the measured curve matches the expected theoretical force
efficiency and validates the observations made in the system analysis.

8.4 Dynamic positioning performance
To demonstrate the performance of the novel CDPR design, different highly dynamic
positioning tasks are performed and compared. In Section 8.4.1, the EE is moved along
a linear trajectory in two selected directions in order to demonstrate that the EE can
be positioned quickly inside the workspace. The capabilities of the CDPR to facilitate
rotational motion are demonstrated in Section 8.4.2.

8.4.1 Translational motion
Starting from the origin x0 = 0, the EE is moved along a linear trajectory in the task
space to the poses

xA =
[
0.26 m 0.15 m 0 rad

]T
, xB =

[
0 m 0.3 m 0 rad

]T
. (8.5)

The motion to xA shown in Figure 8.10(a) corresponds to the motion towards the weak
pair (s1, s6) against gravity and can be interpreted as the most undesirable positioning task
for the CDPR prototype. For comparison, the motion to xB depicted in Figure 8.10(b)
corresponds to the motion towards the strong pair (s1, s2) but in this case the full
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gravitational force has to be overcome. Hence the two positioning tasks can be seen as
worst-case scenarios and are representative for all other possible positioning tasks.

The velocity profiles for the linear trajectories are shown in Figure 8.10(c) where vd
denotes the desired velocity along the trajectory. The chosen trajectory xd is three times
continuously differentiable such that the jerk along the trajectory is bounded and well
defined at all times. The acceleration along the trajectory is limited to 30 m/s2 and the
velocity is limited to 2 m/s. This results in a total duration of less than 250 ms for the
positioning task. The cable forces for the motion to xA are depicted in Figure 8.10(d)
and the cable forces for xB are shown in Figure 8.10(e).

The motion can be divided into three steps. In 1 the EE accelerates with a maximum
acceleration of 30 m/s2. To achieve this acceleration and also overcome gravitational
and friction forces, the cable forces must deviate from the desired cable force τd = 50 N
such that a resulting net force on the EE is created. While the forces in cables opposing
the EE motion must be reduced, the cable forces in the direction of motion must be
increased for this purpose. For trajectory A which is shown in Figure 8.10(a), the strong
cable pair (s3, s4) is opposing the motion whereas the weak cable pair (s1, s6) acts in the
direction of motion. As a result, the forces (τ3, τ4) are reduced and (τ1, τ6) are increased
as shown in Figure 8.10(d). In contrast, for trajectory B depicted in 8.10(b), the weak
pair (s4, s5) opposes the direction of motion while the strong pair (s1, s2) acts in the
direction of motion. Hence, the forces (τ4, τ5) are reduced and (τ1, τ2) are increased as
visible in Figure 8.10(e). When comparing the forces for the two trajectories shown in
Figure 8.10(d) and 8.10(e), it can be seen that higher magnitudes of forces are necessary
for trajectory A than for trajectory B despite the necessity of overcoming a larger portion
of the gravitational force in trajectory B. This difference is a result of the direction of
motion which lies in the direction of a weak pair for trajectory A and in the direction of a
strong pair in trajectory B. The CDPR is able to apply wrenches more efficiently in the
direction of trajectory B than in the direction of trajectory A, as predicted by the force
efficiency shown in Figure 5.5(a).

Because trajectory B follows the vertical symmetry axis of the CDPR, the cable forces
are also symmetrical and act in pairs as visible in Figure 8.10(e). The discrepancy at
the beginning of the motion when the EE is stationary at the origin x0 is caused by
asymmetrical friction forces. Trajectory A does not follow any symmetry and hence the
cable forces only form pairs at the origin x0.

8.4.2 Rotational motion
To demonstrate the performance of the CDPR for rotational motion, the EE is rotated by
90 deg at the center of the workspace from the origin x0 = 0 to the pose

xφ =
[
0 m 0 m π

2 rad
]T

. (8.6)

The trajectory of the angular velocity φ̇d and the measured angular velocity φ̇ are depicted
in Figure 8.11(a). The maximum angular acceleration φ̈d is limited to 120 rad/s2 and
the angular velocity limit is chosen as 12 rad/s. Figure 8.11(b) shows the cable forces
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τi, i = 1, . . . , 6 for following the trajectory. Using these dynamic limits, the motion
requires approximately 250 ms to complete.
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Figure 8.11: Experimental results: (a) Angular velocity φ̇. (b) Cable forces.

The motion can be divided into 3 sections. In 1 the EE accelerates until it reaches the
maximum angular velocity. Due to the symmetry at the origin, the cable forces (τ1, τ2),
(τ3, τ4) and (τ5, τ6) form pairs and start with equal values. The two cables in each pair
have opposing winding directions i. e. (s1 = −s2), (s3 = −s4) and (s5 = −s6). Thus the
torque Mz acting on the EE vanishes for equal forces in the pairs, see Eq. (3.13). To
achieve a net torque Mz > 0 on the EE to overcome friction and provide the required
inertial forces, the cable pairs need to exert different forces on the EE i. e. the forces
in cables wrapped CCW (s1 = s3 = s5 = 1) need to increase while the forces in CW
cables (s2 = s4 = s6 = −1) need to decrease. This is clearly visible in Section 1 in
Figure 8.11(b).

In 2 , the maximum angular velocity is reached and the EE rotates at constant velocity
as visible in Figure 8.11(a). The net torque Mz decreases but is still greater than zero
because the EE must overcome friction forces to maintain its angular velocity. Hence
the difference of the cable forces in the pairs (τ1, τ2), (τ3, τ4) and (τ5, τ6) decreases in 2
compared to 1 as shown in Figure 8.11(b).

In Section 3 the EE decelerates until it reaches a velocity of zero. During deceleration
the net torque Mz < 0 to provide the necessary inertial forces to follow the trajectory.
However, the friction forces actively slow down the EE in 3 and thus the magnitude of
the torque is lower than in Section 1 . This is clearly visible in Figure 8.11(b).

When the EE reaches a velocity of zero, the cable forces reach an equilibrium at which
they remain until the end of the experiment. Note that these equilibrium forces are not
equal to the forces at the beginning of the experiment and there is a net torque Mz > 0
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acting on the EE at the end of the experiment. This is caused by static friction which
causes the EE to stop at an angle φ which is slightly deviates from the target angle π

2 .



9 Conclusion and outlook
In this work, a novel planar cable driven parallel robot (CDPR) concept was investigated
which allows for arbitrary rotation of the end effector (EE). By wrapping the cables around
a cylindrical fixture attached to the EE, the CDPR achieves large rotations without adding
any moving parts to the robot which results in a mechanically simple and robust design.

The geometry of the CDPR concept was analyzed and the inverse kinematic problem
was solved in Chapter 3. The inverse kinematics solution is computationally inexpensive
and because each cable can be treated independently, the computational effort scales
linearly with the number of cables. The inverse kinematics algorithm always has a unique
real-valued solution for feasible poses and yields complex solutions for poses which are
not physically feasible. Furthermore, a differential kinematic description of the robot in
the form of the Jacobian matrix of the inverse kinematics was derived.

A solution of the forward kinematics was presented in Chapter 4 which demonstrated
that the forward kinematics for the novel CDPR concept can be geometrically interpreted
as the intersection of modified involute curves. The forward kinematics problem was
formulated as a nonlinear least-squared problem and a robust solution algorithm was
developed which uses bounding boxes to obtain an initial estimate for the EE pose. The
convergence behavior and the impact of measurement noise on the forward kinematics
solution was investigated using simulations. The algorithm showed very robust convergence
behavior and a convergence region which almost covers the entire wrench-closure workspace.
Furthermore, the algorithm was found to be robust with respect to noise. If the forward
kinematic algorithm fails to find a valid solution, the error is detectable via the residual
error value and the robot can be safely halted.

To analyze the workspace of the CDPR concept, classical manipulability measures
found in the literature were found to be unsuitable and thus the force efficiency measure
was applied to investigate the workspace of different CDPR designs in Chapter 5. Three
different candidate designs were studied and the structure of the workspace was generalized
for the novel CDPR concept via strong and weak cable pairs. The workspace of CDPRs
using uneven numbers of cables was considered and compared to the workspace of CDPRs
with even numbers of cables. Based on the theoretical considerations, a design candidate
was selected for the realization of a prototype robot.

A control-oriented dynamical model was developed in Chapter 6 and used in Chapter 7
to design a trajectory following controller for the CDPR. The control concept has a
so-called ’PD+’structure and exhibits global asymptotic stability.

In Chapter 8 an experimental prototype robot was designed and presented. The forward
kinematics solution algorithm and the force efficiency were validated using experimental
data and the performance and practicality of the CDPR design was demonstrated. A
positioning accuracy of < 1 mm could be achieved within most of the workspace.

64



9 Conclusion and outlook 65

In a follow-up master’s thesis, the CDPR prototype will be successfully applied to catch
a flying dart thrown by a human. For this purpose, the controller outlined in Chapter 7
will be discussed in more detail and a trajectory generator will be presented which is
able to dynamically adapt and recalculate the trajectory. A tracking algorithm will be
proposed to predict the impact location of the dart. The trajectory can then be adapted
in real-time such that the dartboard attached to the EE is moved accordingly to hit any
desired field.

Further development of the CDPR concept could focus on extending the dynamical
model. By incorporating cable deformations, the positioning accuracy could potentially
be improved significantly. Furthermore, dissipative effects such as friction could be
considered, to improve the fidelity of the model in particular for slow movements with
small accelerations.

In future work, the design of the guiding system could be improved to reduce friction
between the EE and the guiding system and avoid tilting of the EE. The possibility of
using different gliding elements, air bearings or magnetic levitation could be investigated.
Further research effort could be assigned to study possible methods for using cables
wrapped around the EE of a three dimensional CDPR.



A Appendix

A.1 Additional derivations
A.1.1 Equations of motion using d’Alembert’s principle
To derive the equations of motion, d’Alembert’s principle in the Lagrangian formulation

δW....
external

=
∫

m
r̈P · δrP dm. .. .

inertial

+ δV....
potential

(A.1)

can be used [33]. Here, m denotes the mass of the moving parts including the EE and
all spinning parts of the winches. The principle states that the virtual work done by the
external forces δW is equal to the virtual work done by the inertial forces and the variation
of the potential δV of all conservative forces present in the system, for an arbitrary virtual
displacement which is compliant with the kinematic constraints.

The variation of equation (3.15) yields a relation between a virtual displacement δx of
the EE and a virtual displacement of the cable lengths δq in the form

δq = Jikδx . (A.2)

The relation between a virtual displacement of the motor angles δξ and a virtual displace-
ment of the joint coordinates δq is defined in (6.1) and reads as

δξ = 1
νw

δq . (A.3)

Thus, the virtual work introduced into the system by the electric motors driving the
winches can be written as

δW = δξTT = 1
νw

δxTJT
ikT , (A.4)

where T ∈ Rnq is the vector of motor torques. Dissipative effects like friction between the
EE and the guiding surface, friction in the motor bearings and air resistance are negligible
compared to the inertial forces. Thus, these effects are neglected in the model.

Considering both the rotation of the winches and the movement of the EE, the virtual
work of the inertial forces can be written as∫

m
r̈P · δrP dm = IwδξTξ̈ + δxTMEEẍ , (A.5)
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where MEE denotes the mass-matrix, see (6.6). The rotating parts of the winches (i. e.
shafts, couplings and the rotor of the driving motor) can be represented by the inertia Iw,
see (6.3).

Finally, the variation of the gravitational potential reads as

δV = δxTg , (A.6)

with the force g, see (6.7).
Substituting equations (A.4), (A.5), and (A.6) into equation (A.1) yields the expression

1
νw

δxTJT
ikT = IwδξTξ̈ + δxTMEEẍ + δxTg . (A.7)

Using (6.8) to eliminate ξ̈,

δxT
( 1

νw
JT

ikT
)

= δxT
(

Iw
ν2

w
JT

ik
(
J̇ikẋ + Jikẍ

)
+ MEEẍ + g

)
(A.8)

is obtained. Equation (A.8) must hold true for any arbitrary virtual displacement δx.
Thus, the terms in the brackets must be identical. Rearranging the terms finally yields(

MEE + Iw
ν2

w
JT

ikJik

)
. .. .

M(x)

ẍ +
(

Iw
ν2

w
JT

ikJ̇ik

)
. .. .

C(x,ẋ)

ẋ + g = 1
νw

JT
ik. .. .

Λ(x)

T . (A.9)

Using the symmetric mass-matrix M, the Coriolis matrix C and the torque transformation
matrix Λ, the equations of motion can be written in the standard-form

M(x)ẍ + C(x, ẋ)ẋ + g = Λ(x)T . (A.10)

A.1.2 Transmission ratio design
The winch transmission ratio νw can be designed to optimally facilitate a given acceleration
starting from a constant configuration. To this end, the motor torques are partitioned in
the form

T = Ts + ∆T (A.11)

where Ts is chosen uniquely by (5.1) such that the gravitational forces are compensated
in the form

fd = g = ΛTs . (A.12)

Consequently, a constant operating point xs is defined by ẋs = ẍs = ∆Ts = 0. Insertion
of (A.11) into (6.9), and linearization around this operating point yields(

νwMEE + Iw
νw

JT
ikJik

)||||
x=xs. .. .

Ms(νw)

ẍ = JT
ik∆T . (A.13)
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The winch transmission ratio νw can be chosen such that for a given desired acceleration
ẍd the motor torque ∆T is minimized in the form

min
∆T, νw

∥∆T∥2

s.t. (νwτ min − Ts) ≤ ∆T ≤ (νwτ max − Ts),
Ms(νw)ẍd = JT

ik∆T,

νw > 0 .

(A.14)

For the chosen parameters, solving the optimization problem (A.14) yields the value
νw = 19.283 mm. Due to manufacturing tolerances in the production of the spool, the
actual value of νw = 19.53 mm was obtained, which was identified from measurement data.
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A.2 Parameters

Parameter Symbol Value Unit
Degrees of freedom nx 3, 1R2T 1
Number of cables nq 6 1
Size of robot frame − 1.56 × 1.56 m
End effector radius r 0.235 m
End effector mass mEE 4.45 kg
End effector moment of inertia Iz,EE 0.12 kgm2

Winch transmission ratio νw 19.53 mm
Winch moment of inertia Iw 1.81·10−4 kgm2

Cable force limits τmin, τmax 10, 280 N
Cable force target τd 50 N
Cable type − Liros D-Pro 01505-0100 −
Cable diameter − 1 mm
Number of Motors − 6 −
Electric Motors − AM8033-0FB1 −
Inverters − AX8206-0000 −
Rated motor power − 1.7 kW
Control system − TwinCAT 3 −

Table A.1: Prototype CDPR parameters.

Cable
i

Anchor point
rA,i in m

Groove offset
hC,i in mm

Winding dir.
si

1 [0.447, −0.760, 0.038]T 13.75 1
2 [0.760, 0.004, 0.026]T −2.75 −1
3 [0.445, 0.760, 0.032]T 2.75 1
4 [−0.445, 0.760, 0.020]T −8.25 −1
5 [−0.760, 0.005, 0.038]T 8.25 1
6 [−0.442, −0.760, 0.014]T −13.75 −1

Table A.2: Prototype CDPR geometry parameters.

Parameter Symbol Value Unit
Sample time Ts 125 µs
Controller Matrix KP diag([20, 20, 400]) N/mm, N m/rad
Controller Matrix KD diag([150, 150, 8]) N s/m, N m s/rad

Table A.3: Controller parameters.
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