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1 Abstract 
 

This thesis deals with numerical approximation of heat flow in different materials. Besides the 
well-known solution of the heat flow equation the main subjects are possible approaches for the 
approximation of convection in both liquids and gasses. These processes are analysed and 
evaluated with explicit consideration of technical practicability. While doing this physical, 
mathematical and computer scientific problems were examined. Finally, the outcome led to the 
programming of a software application, that was used to calculate and discuss some exemplary 
problems. With the comparison of real measurements and calculated values of similar 
environments the correctness of the software has been validated.   
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2 Introduction 
 

When solving even simple thermodynamic problems, there is a threshold where an 
analytical solution is not practical anymore. The heat equation is a parabolical partial differential 
equation that will get very complex for multidimensional problems and even more considering 
different boundary conditions and materials. There are, however, some straightforward 
methods that can be used to solve these problems numerically.  

Within this diploma thesis not only the heat flow inside solid materials will be taken into 
consideration, but also the heat and particle flow of fluid materials like air and water. Inside fluid 
materials there are totally different parameters that have an impact on the heat distribution 
within the material. So, the methods for the numerical solution of the heat equation may not be 
used for fluid materials. Within this thesis ways to include density, pressure and particle flow 
into the heat flow calculation will be discussed.  

 Therefore, two totally different algorithms must be used for the different materials. But 
still the combination of both shall result in physical correct output and may even be validated by 
comparing it to measurements of real problems.   
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3 Physical Principles 

3.1 Terminology and Material Properties 
This chapter will discuss all terms and definitions needed to describe thermodynamics and heat 
transfer. 

3.1.1 Heat 
Heat is a type of energy. Therefore, its unit is Joule [J]. Heat is created through the conversion 
of other energy types. In each exotherm chemical process heat is created. The movement of a 
body creates, in general, friction. Through this friction some of the kinetic energy in converted 
into heat. Heat is also created by electrical resistance.  

 In the microscopic view heat is explained as motions and interactions of different 
particles (molecules, atoms, electrons…). In this kinetic theory heat is not equal to the kinetic 
energy of the body but it is a part of its internal energy.  1 

3.1.2 Temperature 
Temperature is a physical quantity expressing hot and cold. It is a proportional measure of the 
localized kinetic energy of particles in a body. It is equal to the average kinetic energy of the 
particles inside the body. 

There are different temperature scales, but the most important ones are the Celsius and the 
Kelvin scale.  

 The Celsius scale is based on the boiling and the freezing point of water. The freezing 
point is defined to be at 0°C and the boiling point at 100°C. The temperature difference of 1° C 
is defined as a hundredth of the difference between these two fixed points. 

 The Kelvin scale is the scientific most important temperature scale. The difference of 
1°K is the same as of 1°C, but the Kelvin scale has another zero point. 0K are defined as the 
absolute zero at -273,15°C. This is the lowest possible temperature and can be calculated 
using the laws of thermodynamic.  

 Just like pressure [p], temperature [T] is an intensive property. That means that its value 
is independent from the size of the body you measure. If you divide the body in half the 
pressure and the temperature would not change. An extensive property, like volume [V] or 
particle number [N] would be halved too.  1 
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3.1.3 Heat Flux 

Heat flux [𝒒̇] or heat flux density defines the (heat) energy flow per area per time. Its unit is 
[ 𝑱𝒎𝟐𝒔 = 𝑾𝒎𝟐]. Heat flux is a surface power density and independent from the used material. It is a 
very important quantity for calculating the heat equation.  𝟑 

3.1.4 Heat Capacity 
Heat capacity [𝑐𝑝] is a physical quantity and a material characteristics. It describes how much 
heat you have to add to an object to change its temperature. Its unit is Joule per Kelvin [𝐽𝐾]. 
Heat capacity is an extensive property of matter. 

 Specific heat capacity is the intensive counterpart of the heat capacity. Its unit is Joule 
per Kelvin per kilogram [ 𝐽𝑘𝑔 𝐾]. It defines the heat you need to change the temperature of one 

kilogram of the material for one degree. At high temperature, the specific heat capacity is rather 
constant for each individual material and therefore easier to use.  3 

3.1.5 Thermal conductivity and thermal diffusivity 
Thermal conductivity [λ] is a material property. It describes the heat flow through a body. Its unit 
is watts per meter-kelvin [ 𝑊(𝑚∙𝐾)]. Thermal conductivity measures the transfer of energy.  
If a body has a low thermal conductivity heat transfer occurs at a lower rate than in bodies with 
high thermal conductivity. 

Thermal diffusivity [a] is another material property. It is defined as the thermal 
conductivity divided by density [𝜚] and specific heat capacity.   𝛼 =  λ(𝜚𝑐𝑝) 

It describes the rate of transfer of heat from the hot side of a body to the cold side. Its 

unit is [𝑚2𝑠 ]. Thermal diffusivity measures the timewise change of the spatial temperature 
distribution because of a temperature gradient.  2 

Material Heat conductivity 𝑊𝑐𝑚 ∙ 𝐾 

Density 𝑔𝑐𝑚³ 
Specific heat 

capacity 𝐾𝐽𝑘𝑔 𝐾 

Voluminal specific 
heat capacity 𝐽𝑐𝑚³ 𝐾 

Air 2.6 1,2 ∙  10−6 1 1,2 ∙  10−3 

Water 55 1 4.186 4186 

Gold 32000 19.3 0,13 2509 

Silver 43000 10,5 0,234 2457 

Iron 8000 7,8 0,46 3500 

Lead 3500 11,34 0,129 1463 
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Brass 12000 8,5 0,377 3204 

Soda-lime glass 105 2,52 0,7 1764 

Perforated brick 40 1,9 0,92 1748 

Concrete 210 2 0,88 1760 

Mineral Wool 3 0,1 1 1 

Glass 80 2,5 0,8 2  4 

Table 1: Example materials and their values for selected material properties 

3.2 Kinetic gas theory 
All following considerations on how to describe the movement of particles in fluid materials are 
based on the kinetic theory of gases that shall be described here.  

 According to the kinetic theory of gases all molecules of an ideal gas freely move 
around with a speed derived from the temperature of the gas. They collide with each other and 
with the walls of their vessel.  2 

 

 

3.2.1 Assumptions 
The kinetic theory of ideal gases makes the following 
assumptions: 

• Gas consists of particles with the same mass. 
• The number of particles is so large that they can 

be treated statistically. 
• The particles are constantly moving and colliding 

with each other and the walls of their vessel.  
• Except of collisions, the particles don’t interfere 

with one another. 
• The average kinetic energy of the particles is 

dependent from the temperature of the gas 2 

3.2.2 Collisions and pressure 
When a molecule collides with a solid object, e.g. the wall 
of its vessel, they cause a force by rebounding from the 
surface during the non-elastic collision. The combination of all 
molecules hitting the wall can be measured as gas pressure.  

 If the temperature of the gas increases, also the 
average momentum of each molecule rises. Therefore, the 

Figure 1: visualisation of the 
relation between collisions of 
particle and pressure 
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generated force per impact get bigger and the pressure of the gas rises. 

 If the gas gets compressed without increasing its temperature the generated force per 
impact stays the same. But as the molecules are denser now, the number of collisions during a 
specific time interval rises and thus the pressure increases as well. 

 The unit of the pressure is a Pascal [1 Pa = 1 N/m²]   2 

3.2.3 Ideal gas law 
The ideal gas law can be derived from the assumptions of the kinetic gas theory. It is the state 
equation of an ideal gas but may also be used as approximation of the behaviour of real 
gasses. The equation if often written as 𝑝𝑉 = 𝑁𝑘𝐵𝑇 = 𝑐𝑜𝑛𝑠𝑡. 
Where p is the pressure, V the volume, T the temperature, N the absolute number of particles 
of the gas and 𝑘𝐵 = 1,380 649 𝑥 10−23 𝐽/𝐾 is the Boltzmann constant.  

 If you heat a gas it will ether expand by increasing its volume or the pressure will rise if 
there is no room for expansion. In the opposite direction, the compression of a gas will either 
result in a rise of the temperature and pressure or some particles will leave the vessel to keep 
pressure and temperature constant.   

 The ideal gas law may also be used to calculate the new state of a gas after a 
thermodynamic process. Isobaric and isochoric processes are very important for our 
calculations so they will be discussed shortly.  2 

3.2.4 Isobaric processes 
During an isobaric process the pressure stays constant but all other parameters of a gas may 
change. An everyday example of an isobaric process is the heating of air in a pot with open lid. 
The temperature will rise locally but the pressure will not rise as the gas can expand through 
the opening. So, the state equations before  𝑝1 = 𝑁1𝑘𝐵𝑇1𝑉1   and after the process 𝑝2 = 𝑁2𝑘𝐵𝑇2𝑉2  can 

be combined thanks to 𝑝1 = 𝑝2: 

 𝑁1𝑇1𝑉1 = 𝑁2𝑇2𝑉2  

This equation will be discussed further on. 

  2 

3.2.5 Isochoric processes 
After an isochoric process the volume of the system did not change. Most of the time an 
isochoric process results in a pressure de- or increase. An everyday example is a closed 
pressure cooker on the oven. The temperature rises but the gas cannot expand. Therefore, the 
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pressure increases. Analogical to the isobaric processes the ideal gas law can be used to 
describe these events 𝑁1𝑇1𝑝1 = 𝑁2𝑇2𝑝2   2 

3.3 Fluid Mechanics 
Fluid mechanics is the branch of physics that describes the static and dynamic mechanics of all 
fluids. Static fluids can be described rather easily and be calculated explicitly. Dynamic fluids on 
the other hand are very complex and often cannot be solved explicitly. Many problems 
containing dynamic fluids may only be solved using numerical approximation.  2 

3.3.1 Fluid Statics 
Fluid statics studies fluids at rest as well as the pressure inside the resting fluid.  2 

3.3.1.1 Pressure in Liquids 

Pressure p is defined as  𝑝 =  𝐹𝐴 

where F is the exerted force and A is the affected area. Inside a fluid all molecules can move 
around freely and have no direction. The forces inside of fluids are evenly distributed in each 
direction. So the pressure of a fluid is equal to the force that is exerted to an solid body that 
either surrounds the fluid or is completely submerged by it. The pressure inside a fluid body can 
be examined by dividing it into infinitesimally small cubes.  

Beginning on the top, the only exerting force for the first layer of fluid cells is their own 
weight. The weight force gets distributed in all directions evenly. The sideways force parts 
between two neighboring cells in the same layer cancel each other. All force parts against the 
solid vessel get cancelled by the exerted counter part of the hull. In the second layer of cells the 
external force is equal to its own weight as well as the weight of the cell directly above. Again, 
the exerting force gets distributed evenly in all directions and the force parts exerting in the 
same layer cancel each other.  

As all forces exerting in the same height get cancelled, the geometry of the cells in that 
layer is not important for the resulting force. As a result, the pressure inside an incompressible 
fluid is only dependent from the height of the fluid and not from the amount of fluid or the 
geometry of the vessel that contains the fluid. This is commonly known as the Hydrostatic 
Paradoxon.  2 
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F=ma F=ma F=ma

F=maF=maF=ma

 
Figure 2: Visualization of the Hydrostatic Paradoxon. High pressure is visualized by darker 
arrows. 

 

3.3.1.2 Pressure in Gases 

As gases are compressible the Hydrostatic Paradoxon cannot be applied to ideal nor real 
gases. In a compressible fluid a change in the pressure always leads to a density change. This 
can be calculated using the Barometric Formula: 𝑑𝑝𝑝 =  − 𝑀𝑔𝑅𝑇 𝑑ℎ 

Where M is the molar mass of the gas, g is the gravitational acceleration, R is the gas constant 
and T the Temperature of the gas.   2 

3.3.2 Fluid Dynamics 
Fluid dynamics describes the behaviour of fluids in motion.  

Most calculations in the fluid dynamics are derived from the Navier-Stokes equations. 
The Navier-Stokes Equations are a set of nonlinear partial differential equations and is like the 
momentum equation of moving fluids.  2 

 

3.3.2.1 Continuity Equation 

A continuity equation is a special kind of balance equation for conserved quantities.  

The effect of the continuity equation is best described using a fluid streaming through a pipe. At 
each position of the pipe the same amount of fluids passes through it in given time. For 
incompressible fluids the flow velocity will change with the diameter of the pipe. 𝑑𝑖𝑣(𝑢⃑ ) = 0 

Where ρ is the density of the fluid, 𝑢⃑  is the vector field of the flow velocity. 
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If the flowing fluid is compressible the density of the fluid will also change with the diameter of 
the pipe. 𝜕𝜌𝜕𝑡 +  div(𝜌𝑢⃑ ) = 0 

The continuity equation is valid not only in closed systems but in any flowing fluid. Whenever a 
amount of particles enters any pane on one side, the exact same amount will exit the pane on 
the opposite side.  2 

 
Figure 3: Visualization of the continuity equation  

3.3.2.2 Reynolds Number 

A stream of fluid particles can flow in one of two different ways.  3 

• Laminar Flow 

In laminar flows, particles follow smooth and mostly parallel paths with little or no mixing in 
between. The particle speed of a laminar flow can be compared to a static vector field 𝑣(𝑟 )⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  . 
Each point inside the fluid has a defined velocity that does not change over time.   3 
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Figure 4: Visualization of a laminar flow 

• Turbulent Flow 

In turbulent flows, particles do not follow a described path. Instead they tend to change their 
direction and velocity chaotically.  

The Reynolds number is a dimensionless quantity that is used to describe the behaviour of fluid 
particle flows. It is defined as 𝑅𝑒 =  𝜌𝑢𝐷𝜇 =  𝑢𝐷𝜈  

Where 𝜇 is the dynamic viscosity, 𝜈 is the kinematic viscosity and D is the diameter of the tube.  

The Reynolds number is the ratio of inertial forces to viscous forces.  

At low Reynold numbers, laminar flow occurs while a flow with a high Reynold number will be 
turbulent.   3 

 

3.4 Thermodynamics 
Thermodynamic is the branch of physics that describes the transfer and flow of heat as well as 
the correlations between used physical quantities. There are four fundamental laws of physics 
called the laws of thermodynamics. 2 

Figure 5: Visualization of a turbulent flow 
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3.4.1 The Zeroth Law of Thermodynamics 
The zeroth law of thermodynamics states that if two bodies are in thermal equilibrium with a 
third body, they are also in thermal equilibrium with each other.  2 

3.4.2 The First Law of Thermodynamics 
The first law of thermodynamics is about conversion of energy inside a closed system.  Δ𝑈 =  𝑄 − 𝑊 

Where Δ𝑈 is the change of the internal energy of a closed system, Q is the heat that was 
supplied to the system and W is the amount of physical work done by the system. In other 
words, the energy of a closed system is constant. The energy can be transformed into another 
form, for example from heat into thermodynamic work, but it cannot be created nor destroyed. 2 

 

3.4.3 Second law of thermodynamics 
The second law of thermodynamics is best described using entropy.  

Figure 6: Visualization of the first law of Thermodynamics. The work 
performed to compress a piston is equal to the increase of the heat 
inside the gas. 



 

16 

 

3.4.3.1 Entropy 

Like mass [m], volume [V] and energy [E], entropy [S] is an extensive physical property. These 
properties are dependent on the amount of substance. If you cut the substance in half, among 
others also the values of mass, volume, energy and entropy will be cut in half as well. It is often 
described as a measure of disorder in a physical system. The higher the entropy, the higher the 
disorder. This comparison does not clarify the fact that entropy is an extensive property.   

 In fact, in statistical mechanics entropy is related to the number of microstates Ω. A 
microstate is a complete microscopic description of a thermodynamic system – for example 
location and speed (momentum) of each particle in a system. The higher the amount of 
microscopic states that can describe a thermodynamic system, the higher the entropy of that 
system. If you cut the number of particles in half, it is only logical that also the number of 
microstates – and thus the entropy - will be cut in half. 

 The number of undistinguishable microstates to describe a thermodynamic system 
reaches is maximum, when all particles inside the system have the same temperature. This 
happens when the system is in thermic equilibrium.   2 

3.4.3.2 Second law of thermodynamics 

The second law of thermodynamics states, that the entropy of an isolated system can never 
decrease on its own. The entropy may only decrease if you use external energy to do so.  

If you create any isolated thermodynamic system, the heat will immediately start to flow from 
the hotter to the colder area until the thermic equilibrium is reached. Then the entropy reaches 
it’s maximum and cannot increase any further without external changes on the system.  2 

3.4.4 Third law of thermodynamics 
If a body gets cooled, the entropy decreases. As the entropy is linked to the number of 
microstates Ω, there must be a lowest possible temperature where all particles of the body 
have the same momentum causing Ω = 1. This temperature is defined to be at 0°K.  The third 
law of thermodynamics states that the entropy of a system approaches a constant value as its 
temperature approaches absolute zero. This minimum entropy is unreachable by any finite 
number of operations. As a conclusion, the temperature 0°K is also unreachable.  2 

3.5 Heat conduction 

3.5.1 Thermal conduction in statistic mechanics 
In statistic mechanics heat equals localized kinetic energy of particles. Each particle has a 
momentum and moves in a random, uniformly distributed direction. If we examine a body with a 
constant temperature, the momenta of all particles have the same absolute value. As the 
directions are uniformly distributed, the sum of all momenta in all directions equals zero. No 
heat is transported.  

 Next, we will add a second, cooler body into direct contact with the first body. Inside 
each of those bodies the situation is unchanged. The momenta of all particles cancel each 
other. But on the boundary surface between the two bodies this does not apply. The directions 
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of two adjacent particles with different temperature are still uniformly distributed. But here the 
absolute value of the momenta does not cancel each other. On the contrary the momentum 
that points from the hot into the cold body is bigger than its opposition. As a result, kinetic 
energy is transported from the hot into the cold body. Slowly heat is transferred until all 
particles have the same energy again and the entropy reaches its maximum.  3 

 

3.6 Convection  
In fluids, such as gas or liquids none of the molecules do have a defined location in the fluid. 
They move around inside the body and collide with each other and with the hull of the body. If 
the whole fluid has the same temperature all molecules are identical particles and the statistic 
movement of them does not have any influence on the heat distribution.  

But if there is a temperature difference inside the body the molecules become 
distinguishable as each of them has its own internal kinetic energy. If they move through the 
fluid, they don’t just transfer their own mass but also their own heat. This process is called 
convection.  

As a result, heat transfer in fluid materials is very dependent on the speed of the 
individual particles. Except for laboratory conditions the particles in fluid materials are in motion 
almost every time. They start to move because of pressure differences in the atmosphere that 
cause wind, ventilation systems or simple because of the movement of solid bodies. At the 
latest the particles will start to move when a temperature difference is created, and uplift 

Figure 7: simplified example of how the momenta of the molecules within two solid bodies with 
different temperature interact with one another after getting in contact with one another. 
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applies. In fact, in some situations’ convection contributes much more to the heat transfer than 
heat conduction could.  

Convection is also dependent on the temperature of the fluid. Considering there are two 
vessels filled with gas with different temperatures. If one could make the particles 
distinguishable by colouring half of them red and half of them blue you could observe that the 
gas with the higher temperature will mix faster than the cold one. This is because the individual 
particles in the hot vessel have a higher kinetic energy and move around faster and collide 
more of with each another.  

This effect does not only apply to ideal gasses but also to real fluids like water and can 
be verified using the Mpemba effect. This effect describes that hot or boiling water will freeze 
faster than cold water put in the same freezer. In the hot fluid the particles have a much higher 
speed and the temperature is mixed much better. In the cold one the water will freeze fast close 
to the hull but this only isolates the remaining water in the centre and it takes a lot longer for the 
heat to be transported.  3 

 

3.7 Uplift 
Whenever there is a temperature difference in a fluid medium that is that is affected by 

gravity, uplift will apply and the hot particles will rise. Uplift is caused by the different 
particle densities inside the medium. 

If heat gets transferred into a sub-volume of a gas the temperature of the gas in this 
area will rise. We will neglect the changes of the gravitational acceleration in different altitudes 
and will consider the pressure of the gas as constant. So, the process of heat transfer is a 
isobaric process 𝑁1𝑇1𝑉1 = 𝑁2𝑇2𝑉2  

In the sub-volume the temperature of all N particles rises, so N remains the same. 𝑁1 = 𝑁2 = 𝑁 𝑉2 = 𝑇2𝑉1𝑇1  

Figure 8: Transfer of kinetic energy after the collision between two particles with different 
temperature. 
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As 𝑇2 > 𝑇1 , the resulting volume 𝑉2 is larger than the 
volume before the heating.  

 The volume does increase but as the number of 
particles stays the same the weight does not change. Only 
the density of the sub-module gets smaller. Due to the 
change in the density the expanded volume will start to rise 
inside of the medium with the higher density.  

 Once the hot gas has lifted away from the heat 
source, cold gas will follow to the heat source and absorbs 
heat itself. These it will rise to make room for more cold 
gas. With these convective air flows heat get transferred 
much faster than by pure heat conduction and diffusion.  3   

 

3.8 Thermal radiation 
Thermal radiation is the last kind of heat transfer. It will not be considered during the 
calculations but for the sake of completeness it shall be described shortly. Thermal radiation is 
an electromagnetic radiation. Each body with a temperature higher than the absolute zero 
emits thermal radiation. The internal kinetic energy of the molecules results in charge-
acceleration and produce radiation. Part of these radiation can be absorbed by molecules of 
another body, thus increasing their heat.  

 As thermal radiation does not require any medium it is the only kind of heat transfer in 
every vacuum and in space.  3 

3.9 Heat Equation 
The heat equation is derived from the first law of physics and the Fourier’s law. Fourier’s law 
states, that the rate of heat flow through a material is proportional to the heat gradient and the 
area of the cross-section where the heat flows. 𝑞⃗ = −𝜆∇𝑇 

Where ∇𝑇 is the heat gradient, 𝑞⃗ is the heat flux and 𝜆 the thermal conductivity as described in 
the previous chapter. With the heat capacity and the conversion of energy the general heat 
equation may be formulated as: 𝜕𝑇𝜕𝑡 −  α∆𝑇 = 0 

for homogenous materials and  𝜕𝑇𝜕𝑡 −  α∆𝑇 = 𝑓(𝑥, 𝑦, 𝑧, 𝑡) 

Figure 9 Uplift seen with an 
infrared camera  
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for inhomogeneous materials. Where 𝑇 = 𝑇(𝑥, 𝑦, 𝑧, 𝑡) is the function of the temporal and spatial 
temperature distribution, α  is the thermal diffusivity and ∆ is the Laplace operator. 𝑓(𝑥, 𝑦, 𝑧, 𝑡) is 
the ratio from the heat flux and the thermal conductivity 𝑓(𝑥, 𝑦, 𝑧, 𝑡) =  𝑞̇𝜆.  

 The heat equation is a parabolic partial differential equation. Its the most important tool 
to calculate the timewise heat flow between different bodies. To solve this equation, initial and 
boundary conditions are needed.  3 

3.9.1 Boundary Conditions 
There are three specific boundary conditions that may occur in a thermodynamic system.  

3.9.1.1 Dirichlet Boundary Condition 

The Dirichlet or first-type boundary conditions states, that the hull 𝜕𝑉 of the examined space is 
held at a fixed temperature. T(𝑟, 𝑡) = 𝑇(𝑟)  ∀ 𝑟 𝜖 𝜕𝑉 

This boundary condition may be realized pretty easily with an adjected heat reservoir that is 
much bigger than the observed one. In this way it may absorb heat, but the temperature won’t 
change as you need a huge amount of heat to change its temperature.  3 

3.9.1.2 Neumann Boundary Condition 

The Neumann or second-type boundary condition determines that there is a constant heat flow 
at the hull 𝜕𝑉 of the examined space.  𝜕𝑇𝜕𝑛⃗⃑ (𝑟, 𝑡) = 𝑓(𝑟)  ∀ 𝑟 𝜖 𝜕𝑉 

Where 𝜕𝑇𝜕𝑛⃗⃑  is the derivation of the temperature along the normal line to the surface of the hull. 
This boundary condition can be realized with an external heat source with specific power. If the 
power is positive this might be a heater, if the power is negative a cooling unit can be used.  3 

3.9.1.3 Robin Boundary Condition 

The Robin or third-type boundary condition is a linear combination of the first- and second 
boundary condition.  𝑎 ∙ 𝑇(𝑟, 𝑡) + 𝑏 ∙ 𝜕𝑇𝜕𝑛⃗⃑ (𝑟, 𝑡) = 𝑓(𝑟)  ∀ 𝑟 𝜖 𝜕𝑉 

a and b may be a random scalar.  3 
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4 Mathematical Principles 
For the calculation of the particle flow we will need to solve some linear equation systems. 
Therefore, the basics of linear algebra will be discussed here shortly. 

4.1 Numerical analysis 
Numerical analysis is a branch of mathematics that uses numerical approximations, in contrary 
to symbolic manipulations, for the solution of mathematical problems. Whenever digits are 
applied to an exact symbolic solution, you receive a numerical approximated solution within a 
specific inaccuracy.  

 Numerical analysis is often used when an exact symbolic solution cannot be further 
simplified. Either because the simplification is not possible or, because the small gain in 
accuracy does not justify the complexity and amount of the calculation needed. Especially in 
thermodynamic and fluid dynamic, numerical approximations are very important as the 
mathematical problems tend to be very complex.  5 

  

4.2 Linear algebra 
Linear algebra is a branch of mathematics that deals with linear equations and linear functions 
as well as their representation as matrices and vectors.  5 

4.3 Linear system of equations 
A system of linear equations is a collection of several different equations that all use the same 
variables. An example for a simple 3-dimensional system would be 2𝑎 − 2𝑏 + 𝑐 = 1 𝑎 + 𝑏 + 𝑐 = 6 −𝑎 + 3𝑏 − 2𝑐 = −1 

Using matrices and vectors, this system can be written as 𝐴 𝑥⃗ = 𝑏⃗⃑ where A is the matrix that 
represents the equations and 𝑏⃗⃑ is the vector of its initial conditions.  

[ 2 −2 11 1 1−1 3 −2](𝑎𝑏𝑐) = ( 16−1)  
Especially in computer science it is common to write systems of equations as matrices. The 
vector (𝑎 𝑏 𝑐) contains no information and is therefore not present in most representations. 
The complete system of equation is therefore specified by [𝐴|𝑏]  

[ 2 −2 11 1 1−1 3 −2 | 16−1] 
 5 
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4.3.1 Rank of a matrix 
The rank of a matrix is equal to the number of linear independent equations inside the matrix. 
When a row or column of a matrix can be written as a linear combination of the other rows or 
columns, the matrix is not a set of completely linear independent equations. The matrix  

[1 0 10 1 11 1 2] 
might be a 3-dimensional matrix, but its rank is two because the third column can be written as 
the sum of the first two columns:  

(101) + (011) =  (122) => 𝑟𝑎𝑛𝑘 (1 0 10 1 11 1 2) = 2 

 

The matrix is rank deficient.  5 

 

4.3.2 Solvability of a system of linear equations 
The solvability of a system of linear equations is intimately connected with the rank of the 
matrix that represents the system. There are three different types of solvability in systems of 
linear equations: 

4.3.2.1 One distinct solution 

A system of linear equations does have exactly one distinct solution when the rank of the matrix 
A equals the rank of the combined matrix [𝐴|𝑏] and equals the number of variables in the 
system.  𝑟𝑎𝑛𝑘(𝐴) = 𝑟𝑎𝑛𝑘(𝐴|𝑏) = 𝑛 

where A is a n x n matrix.  

 A set of n variables that are dependent from one another has one distinct solution when 
n linear independent equations can be created.  5 

4.3.2.2 Set of solutions 

If the rank of a matrix is less than its dimension, the matrix is rank deficient. A rank deficient 
system of equations does not have one explicit solution. The system: 𝑥 + 𝑧 = 4 𝑦 + 𝑧 = 5 𝑥 + 𝑦 + 𝑧 = 9 

Is rank deficient because 𝑟𝑎𝑛𝑘(𝐴) = 2. Due to the fact that there is one linear independent 
equation missing the solution looks like 𝑥 = 4 − 𝑧, 𝑦 = 5 − 𝑧 , ∀ 𝑧 ∈ {ℝ}.  5 
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4.3.2.3 Not solvable 

The system 𝑥 + 𝑦 = 1 2𝑥 + 2𝑦 = 3 

Has no solution. 𝑟𝑎𝑛𝑘(𝐴|𝑏) = 2 but 𝑟𝑎𝑛𝑘(𝐴) = 1. Therefore you cannot make any statement 
about the solution what so ever.  

 Another example for not solvable systems, are systems that have more equations than 
variables. These systems are called overdetermined. Either some of the equations are not 
linear independent or the system ends to be not solvable.  5 

4.3.2.4 Overdetermined 

If a system of linear equations has more equations than variables it is called overdetermined. 
Often, these systems cannot be solved. For example, the system  𝑥 = 1 2𝑥 = 3 

cannot be solved.  5 

4.4 Solution of system of equations 
There are many different methods to solve a system of equations. They can be split up in two 
major categories. Analytical and iterative methods. 

4.4.1 Analytical methods 
There are many different analytical methods to solve systems of equations. Each method is 
being used for a different type of matrices. All analytical methods have an algorithm that leads 
directly to the solution of the problem.  

 A well-known example for an analytical or direct method to solve systems of linear 
equations is the Gaussian elimination method. This method is used to solve the system of 
equations for the particle flow in the equilibrium based approach and will be discussed in detail 
later on.  

 Analytical methods tend to be more efficient for small systems less than a few thousand 
dimensions and for special cases like triangular, thin occupied or diagonally dominant matrices.  5 

4.4.2 Relaxation methods 
Relaxation methods are iterative methods to solve equation systems. These methods have 
some advantages over analytical methods. There is no need to analyse or rearrange the 
system to make it fit into the preconditions of several analytical methods. With brute force 
almost every system of equations can be solved with iterative methods. Depending on the 
needed exactness of the solution the calculation is often very fast.  
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 The principle of all iterative methods is quite the same. You start with an arbitrary vector 
x that will be used as a solution of the system. This vector gets inserted into the system of 
equations to calculate a more accurate solution. Then you repeat the process with the just 
calculated values until you have met the defined termination condition.  

 For more than 100.000 dimensions iterative methods tend to be faster to solve the 
system of equations.  5 
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5 Technical Principles 
This chapter will discuss computer scientific topics as well as the technical realization of the 
physical and mathematical considerations. 

5.1 Partition of space 
As all calculations of this diploma theses are numerical approximations, there is no way to get 
continuous values. It is not possible approximate a complete function, you may only get the 
approximated values for specific input values. Therefore, time and space need to be partitioned 
to get some useful results.  

 The simplest way to partition space is to divide the space in cubes of the same size. 
Each cube can be considered as black box. The following assumptions were made for solid 
cubes: 

• There is no temperature difference inside of a single cube. The whole cube always has 
the same temperature.  

• Heat may only flow to adjacent cubes that are in direct contact with one another. 
• The complete cube is made of the same material. The material may not change over 

time. 

For fluid cubes quite similar assumptions were made: 

• The whole cube is made of the same fluid material 
• All particles inside a single cube have the same temperature 
• Particles may only flow into other fluid cubes that are in direct contact to one another 
• The pressure in all fluid cubes in direct contact is the same 

 

To create complex shapes the length of the unit cells hast to be reduced until the desired 
resolution is reached. Still, all unit cells must have the same size to keep the calculation simple. 
As the space is 3-dimensional a small increase of the number of cells can lead to a massive 
boost to the calculation steps. 

 

 

 

 

 

 

 

 

  

Resolution Number of Cells interacting areas Computation time 
10 1000 5400 27s 
12 1728 9504 47,52s 
15 3375 18900 94,5s 
20 8000 45600 228s 
25 15625 90000 450s 
30 27000 156600 783s 
40 64000 374400 1872s 
50 125000 735000 3675s 

Table 2: Example values of the computation 
time for different resolutions. 
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Therefore, the number of cubes needs to be as small as possible. 

The partition of time is tight-knit to the stability of the system and will be discussed later on.   

5.2 Numerical Solution of the Heat Equation 
 

This chapter will derive the numerical solution of the heat equation as well as its approximation 
in time and space. 

5.2.1 Finite difference method 
With the finite difference method the derivation of a continuous mathematical function can be 
approximated through difference quotients in discrete grid points. As long as the function is 
twice differentiable it can be derived at 𝑟 =  𝑟0⃑⃑⃑⃗  using the Taylor series.  𝑓(𝑟0⃑⃑⃑⃗ ± ∆𝑟) =  𝑓(𝑟0⃑⃑⃑⃗ ) ± 𝑓′(𝑟0⃑⃑⃑⃗ ) ∆𝑟22 + 𝑂(∆𝑟3) 
This can be transformed into the forward difference: 𝑓́(𝑟0⃑⃑⃑⃗ ) = 𝑓(𝑟0⃑⃑⃑⃗ +  ∆𝑟) −  𝑓(𝑟0⃑⃑⃑⃗ )∆𝑟 + 𝑂(∆𝑟) 
The backward difference: 𝑓́(𝑟0⃑⃑⃑⃗ ) = 𝑓(𝑟0⃑⃑⃑⃗ +  ∆𝑟) +  𝑓(𝑟0⃑⃑⃑⃗ )∆𝑟 + 𝑂(∆𝑟) 
And the centred difference: 𝑓́(𝑟0⃑⃑⃑⃗ ) = 𝑓(𝑟0⃑⃑⃑⃗ −  ∆𝑟) −  𝑓(𝑟0⃑⃑⃑⃗ −  ∆𝑟)2∆𝑟 + 𝑂(∆𝑟2) 

  6 

5.2.2 Numerical Solution of the Heat Equation 

Looking at the heat equation 𝜕𝑇𝜕𝑡 −  α∆𝑇 = 𝑓(𝑥, 𝑦, 𝑧, 𝑡) there are two terms that have to be 
approximated. 

1. The timewise derivation 𝜕𝑇𝜕𝑡 (𝑥, 𝑦, 𝑧, 𝑡) 
In the timewise derivation of the temperature distribution the time variable start at 𝑡0 and 
increases 𝑡1 < 𝑡2  < 𝑡3 < ⋯ < 𝑡𝑛 where 𝑡𝑛 is the defined end of the calculation. Each 
temperature value 𝑇(𝑡 = 𝑡𝑛) can be calculated with the value of the last temperature 𝑇(𝑡 =𝑡𝑛−1). Therefore it is obvious to use the forward derivation.  𝑇̇(𝑡𝑛) = 𝑇(𝑡𝑛+1)− 𝑇(𝑡𝑛)∆𝑡   

Which can be transformed into:  𝑇(𝑡𝑛+1) = ∆𝑡𝑇̇(𝑡𝑛) +  𝑇(𝑡𝑛) 
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𝑇̇(𝑡𝑛) is the derivation of the temperature function and will be calculated in the spatial derivation 

2. The spatial derivation α∆𝑇(𝑥, 𝑦, 𝑧, 𝑡) 
For the exemplification of the derivation the problem will be reduced to a 1-dimensional 
problem. In a 3-dimensional space only minor adjustments have to be done. 

 As the both adjacent cells 𝑇(𝑥 = 𝑥𝑗±1) influence the cell 𝑇(𝑥 = 𝑥𝑗) the centered 
derivation will be used. This leads to the so called “forward time, centred space” – scheme 
(FTCS). The first order derivation of the temperature  𝜕𝜕𝑥 𝑇(𝑥𝑗) = 𝑇(𝑥𝑗+1) −  𝑇(𝑥𝑗−1)2∆𝑥  

Leads to the second order derivation: 𝜕²𝜕𝑥²𝑇(𝑥𝑗) = 𝑇(𝑥𝑗+2) − 𝑇(𝑥𝑗) 4∆𝑥² − 𝑇(𝑥𝑗) − 𝑇(𝑥𝑗−2) 4∆𝑥²  

With an index shifting 𝑇(𝑥𝑗+2) =>  𝑇(𝑥𝑗+1) 𝑎𝑛𝑑 ∆𝑥=> ∆𝑥 2⁄  this results to: 𝜕²𝜕𝑥²𝑇(𝑥𝑗) = 𝑇(𝑥𝑗+1) − 𝑇(𝑥𝑗) ∆𝑥² − 𝑇(𝑥𝑗) − 𝑇(𝑥𝑗−1) ∆𝑥²  

The thermal diffusivity α is a material property and can be temperature dependent. For the 
calculation in this thesis the temperature difference will be rather small and the thermal 
diffusivity will be considered as constant for each cell. 𝛼(𝑥 = 𝑗, 𝑡) = 𝛼(𝑥 = 𝑗) =  𝛼𝑗 

3. The term 𝑓(𝑥, 𝑦, 𝑧, 𝑡) =  𝑞̇𝜆 

The thermal conductivity and the heat flux are both material properties or boundary conditions 
and are constant for each cell. Here is no calculation needed. 𝑓(𝑥 = 𝑗, 𝑡) = 𝑓(𝑥 = 𝑗) =  𝑓𝑗 = 𝑞̇𝑗𝜆𝑗  

If the two approximations get combined it leads to the timewise derivation of a cell in 
dependency of its adjacent cells: 𝑇(𝑥𝑗 , 𝑡𝑛+1) = 𝑇𝑗𝑛+1 = 𝑇𝑗𝑛 + ∆𝑡𝑓𝑗 + ∆𝑡𝛼𝑗∆𝑥2 [( 𝑇𝑗+1𝑛 − 𝑇𝑗𝑛) − (𝑇𝑗𝑛 − 𝑇𝑗−1𝑛 )] 
This is the 1-dimensional numerical solution of the heat equation. For the 3-dimensional version 
we add two more equations for the x- and y axis. The final form is: 𝑇(𝑥𝑖 , 𝑦𝑗, 𝑧𝑘 , 𝑡𝑛+1) = 𝑇𝑖,𝑗,𝑘𝑛+1 = 𝑇𝑖,𝑗,𝑘𝑛 + ∆𝑡𝑓𝑖,𝑗,𝑘 + ∆𝑡𝛼𝑖,𝑗,𝑘∆𝑟2 [( 𝑇𝑖+1,𝑗,𝑘𝑛 − 𝑇𝑖,𝑗,𝑘𝑛 ) − (𝑇𝑖,𝑗,𝑘𝑛 − 𝑇𝑖−1,𝑗,𝑘𝑛 )] + ⋯ …+ [( 𝑇𝑖,𝑗+1,𝑘𝑛 − 𝑇𝑖,𝑗,𝑘𝑛 ) − (𝑇𝑖,𝑗,𝑘𝑛 − 𝑇𝑖,𝑗−1,𝑘𝑛 )] + ⋯ …+ [( 𝑇𝑖,𝑗+1,𝑘𝑛 − 𝑇𝑖,𝑗,𝑘𝑛 ) − (𝑇𝑖,𝑗,𝑘𝑛 − 𝑇𝑖,𝑗−1,𝑘𝑛 )] = 
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𝑇𝑖,𝑗,𝑘𝑛 + ∆𝑡𝑓𝑖,𝑗,𝑘 + ∆𝑡𝛼𝑙∆𝑟2 ∑ [( 𝑇𝑙+1𝑛 − 𝑇𝑙𝑛) − (𝑇𝑙𝑛 − 𝑇𝑙−1𝑛 )]𝑙=𝑖,𝑗,𝑘  

To use the finite difference method you need a 3-dimensional grid, comparable with a 
cubic crystal structure. Each unit cell of this structure correlates with the grid point from the 
finite difference method. With this partition of the space and the method mentioned it is possible 
to reduce the heat equation to the interaction of adjacent cells.  3 

5.2.3  Partition of time and stability 
To get the ideal partition of time some basic thoughts about the stability of the system need to 
be considered.  

 In the 3-dimensional space a single cell can absorb heat from up to 6 adjacent cells. So 
it is possible, that the temperature of a single cell after the calculation is higher than the 
temperature of all adjacent cells. This is an inconsistency to the laws of thermodynamics: 
Spontaneously heat must always flow from the hotter to the colder place.  

 In addition of being physical impossible< these systems will behave extremely unstable 
and no observation what so ever could be made. 

 To avoid these effects some  thoughts about stability should be made. For illustrating 
purpose, the Heat Equation will be simplified to: 𝑇𝑖,𝑗,𝑘𝑛+1 = 𝑇𝑖,𝑗,𝑘𝑛 + ∆𝑡𝑓𝑖,𝑗,𝑘 + ∆𝑡∆𝑟2 𝜕𝑇 

Where 𝜕𝑇 is the term of the temperature gradient from the adjacent cells. It’s easy to see that 
the change of the temperature is proportional to the value of the timewise partition. ∆𝑇= 𝑇𝑖,𝑗,𝑘𝑛+1 − 𝑇𝑖,𝑗,𝑘𝑛 = ∆𝑡𝑓𝑖,𝑗,𝑘 + ∆𝑡∆𝑟2 𝜕𝑇 = ∆𝑡 (𝑓𝑖,𝑗,𝑘 + 𝜕𝑇∆𝑟2)~∆𝑡 
The physical explanation for this behaviour is simple: The smaller ∆𝑡 is, the less heat will flow in 
this period of time. For the calculation it is irrelevant if one step with ∆𝑡= 1𝑠 or 100 steps with ∆𝑡= 10𝑚𝑠 will be done. As long as the result is a stable condition it has the same value. Only 
the calculation time will increase accordingly.  

 To guarantee a stable solution, the heat must always flow from the hot to the cold cell. 
For the worst-case scenario with 7 positive heat flow contributions this means: 

∆𝑇= 𝑇𝑖𝑛+1 − 𝑇𝑖𝑛 < 𝜕𝑇𝑖  ↔ ∆𝑡𝑓𝑖 + ∑𝜕𝑇𝑖∆𝑟2
6

𝑖=1 ∆𝑡  <  𝑇𝑖𝑛 − 𝑇𝑖+1𝑛       ∀ 𝜕𝑇𝑖 , 𝑓𝑖 > 0 

Where 𝑇𝑖+1𝑛  is the average temperature of an adjacent cell 𝑇𝑖+1𝑛 = ∑ 𝜕𝑇𝑖66𝑖=1  . Therefore, the 
maximum value for stable solutions is dependent from the value of the heat flow from the 
second- or third-type boundary condition and from the highest heat difference of two adjacent 
cells.  
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 After some trials good and stable results were found for ∆𝑡  ≈ 0.005𝑠. This value is very 
dependent from the boundary conditions and geometry of the problem. It is alterable in the final 
program.  

5.3 Heat transport in fluid materials 
 Each fluid cell has two main attributes: The temperature of the cell and the number of 
particles inside the cell. Each particle has a temperature equal to the temperature of the cell it 
is located at.  

5.3.1 Heat Equation 
Inside of solid bodies heat flows according to the numerical approximation of the heat equation. 
This solution also applies for all boundary surfaces between solid and fluid materials. Heat will 
be exchanged between fluid and solid bodies. Inside of fluid bodies, the heat equation does not 
apply, as convection has much more effect on the heat transfer and the approximation of the 
heat equation can be neglected. 

When heat flows from a solid cell into an adjacent fluid cell no particles are transported, 
but only pure energy. Therefore, the number of particles inside the fluid cell does not change. 
Only the temperature of the cell and all particles inside the cell changes. 

For a fluid cell with index 𝑖 and adjacent solid cell with index 𝑗 the new temperature for 
the next step t+1 the temperature 𝑇 and number of particles 𝑁 are: 𝑇𝑖𝑡+1 = 𝑇𝑖𝑡  +  ∆𝑡𝛼𝑖∆𝑟2 ( 𝑇𝑗𝑡 − 𝑇𝑖𝑡) 

𝑇𝑗𝑡+1 = 𝑇𝑗𝑡  + ∆𝑡𝛼𝑗∆𝑟2 ( 𝑇𝑛𝑡 − 𝑇𝑗𝑡) 

 𝑁𝑖𝑡+1 = 𝑁𝑖𝑡 
5.3.2 Convection  
Whenever particles flow from one cell into another the number of particles changes in both cells 
according to the amount of particle flow. In addition, also the temperature changes, as the 
average temperature of the cells changes. 

 For two adjacent fluid cells with index 𝑖 and  𝑗 when 𝑛𝑖→𝑗 particles flow from cell 𝑖 to cell 𝑗  and 𝑛𝑗→𝑖 in the other direction the new numbers of particles 𝑁 for the next calculation step  
t+1 add up to: 𝑁𝑖𝑡+1 = 𝑁𝑖𝑡 − 𝑛𝑖→𝑗 + 𝑛𝑗→𝑖 𝑁𝑗𝑡+1 = 𝑁𝑖𝑡 + 𝑛𝑖→𝑗 − 𝑛𝑗→𝑖 
For the temperature the new average temperature needs to be calculated 
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𝑇𝑖𝑡+1 =  𝑇𝑖𝑡𝑁𝑖𝑡 + 𝑇𝑗𝑡𝑛𝑗→𝑖 − 𝑇𝑗𝑡𝑛𝑖→𝑗  𝑁𝑖𝑡+1 = 𝑇𝑖𝑡𝑁𝑖𝑡 + 𝑇𝑗𝑡𝑛𝑗→𝑖 − 𝑇𝑗𝑡𝑛𝑖→𝑗 𝑁𝑖𝑡 − 𝑛𝑖→𝑗 + 𝑛𝑗→𝑖   
 𝑇𝑗𝑡+1 = 𝑇𝑗𝑡𝑁𝑗𝑡 − 𝑇𝑗𝑡𝑛𝑗→𝑖 + 𝑇𝑗𝑡𝑛𝑖→𝑗 𝑁𝑗𝑡+1 = 𝑇𝑗𝑡𝑁𝑗𝑡 − 𝑇𝑗𝑡𝑛𝑗→𝑖 + 𝑇𝑗𝑡𝑛𝑖→𝑗 𝑁𝑖𝑡 + 𝑛𝑖→𝑗 − 𝑛𝑗→𝑖  

Convection will occur in two different forms diffusion and uplift 

5.3.3 Diffusion 
Diffusion is the slow particle flow that occurs evenly in each direction. The same amount of 
particles will diffuse from each fluid cell into every adjacent fluid cell. The amount of particle 
flow is dependent from the number of particles in a cell, their temperature as well as a 
proportionality factor 𝑝𝑑 and the viscosity 𝜂 of the fluid material. From the cell with index 𝑖 the 
particles 𝑛𝑑 flow in each neighbour cell 𝑛𝑑 = 𝑁𝑖 ∙  𝑇𝑖 ∙ 𝑐𝑑 ∙ 𝜂 

The factor 𝑐𝑑 is constant for all systems and will be set during the calibration of the program.  

   

5.3.4 Uplift 
Uplift is a totally different type of convection and the calculation is not that easy as there are 
many scenarios to consider. In general, uplift from cell I is dependent from the temperature 
difference from a cell I with all adjacent cells in the same height. When the temperature of cell I 
is higher than the surrounding cells uplift applies and is pointing in positive y direction.  

 The volume of each cell is constant and the pressure of the fluid in all cells is the same 
we can use the gas equation 𝑝𝑉 = 𝑁𝑘𝐵𝑇 = 𝑐𝑜𝑛𝑠𝑡 => 𝑁1𝑘𝐵𝑇1 = 𝑁2𝑘𝐵𝑇2 

The acting static uplift force is equal to the difference in the number of particles  Δ𝑁 = 𝑁1 − 𝑁2 = 𝑁1 − 𝑁1𝑇1𝑇2  = 𝑁1 ∙ (1 − 𝑇1𝑇2)  
Again, a proportionality factor 𝑐𝑢 and the viscosity 𝜂  will be used to normalize the particle flow 𝑛𝑦→𝑦+1 = 𝑁𝑖 ∙ (1 − 𝑇1𝑇2)  ∙ 𝑐𝑢 ∙ 𝜂 

5.3.5 Particle Inertia 
During the first attempt to approximate the movement of particles in fluid bodies I created a 
particle flow named particle inertia.  

 The idea behind particle inertia is that all calculations so far are completely static 
calculations based on the kinetic gas theory. It may only be correct for complete turbulent 
streams inside the fluid material. But real flows are much more complicated and have some 
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laminar and some turbulent parts. The particle inertia flow is based on the conversation laws: If 
many particles flow into a cell from one specific adjacent cell, most of these particles will keep 
their kinetic energy and will leave the cell to the cell contrary to its origin. 

The theory sounds quite simple, but there are many things to consider during the 
technical implementation 

• Reduction 

The impact of the particle inertia must not amplify the particle flow. On a long term it should 
reduce the particle flow due to friction produced by viscosity and proportionality factor. 
Therefore, the particle inertia flow only acts on diffusion, uplift and particle inertia flows from the 
last calculation step. Otherwise the inertia flows would amplify itself and ramp up to infinity. 

• Save particle flows 

To realize the particle inertia each cell shall save the number of particles that will flow into and 
out of the cell through each cell border.  

• Calculate the new direction 

If the contrary cell of the adjacent cell where the particle flow origins does not exists or is not 
fluid, the created particle inertia flow is distributed to all other adjacent fluid cells that are not the 
origin of the particle flow 

• Suction 

If uplift applies on a hot cell with coordinates (𝑥, 𝑦, 𝑧), most of the particles will flow up to cell (𝑥, 𝑦 + 1, 𝑧).The four surrounding cells (𝑥 ± 1, 𝑦, 𝑧) and (𝑥, 𝑦, 𝑧 ± 1) do provide some particle 
flow to the cell (𝑥, 𝑦, 𝑧) but much more particles will leave the cell because of the uplift. This can 
be lessen by considering suction, or negative particle flow during the calculation.  

 Cell (𝑥, 𝑦, 𝑧) will lose more particles than it gets during the uplift and diffusion 
calculation. So the cell will have a negative particle inertia flow and will suck in particles from 
the adjacent cells.  

 

In the end, some usable results were calculated using the particle inertia, but only for very 
simple problems, as a burning candle in the open field. For more complex bodies the 
calculation results were not physically defensible. After some tests the particle inertia was 
rejected, and these calculations are not performed during the following examples. 

 Later on, the problem of laminar currents was solved in the equilibrium-based approach 
to calculate the pressure balance.  

5.4 Pressure balance 
So far there are three different possibilities for heat to flow into and out of a fluid cell: Heat 
conduction, diffusion and uplift. These three calculations do not interfere with one another and 
can be performed parallel.  
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 But after all these actions are performed, the pressure in some cells might change due 
to the changed temperature or number of particles. One of the assumptions for fluid cells was 
that the pressure of all cells needs to be the same after each calculation step. So the correct 
pressure needs to be established for each cell by generating a particle flow for each fluid cell in 
the system.  

Assuming the pressure in cell A is to high and the cell has to push 100 particles to cell B 
in order to reach the pressure of all other fluid cells. After applying this particle flow, the 
pressure in cell B is to high because of the recently received 100 particles, so it will have to 
push 100 particles back to cell A and so on. The pressure balance may not be reached with 
sequential calculations. The particle flow from each cell into each cell has to be calculated all at 
once. The only way to do this is, by creating a system of linear equations with the correlations 
of all cells with each other. This equation system shall be created and solved at the end of each 
calculation step. Then the resulting particle flows will be applied to reach the same pressure in 
all cells. 

The algorithm to reach pressure balance is the centre piece of the approximation of heat 
transfer in fluid materials. The creation and resolution of the system of equations takes up to 
90% of the complete calculation time. Two completely different approaches where created to 
do this. Both of them, the pressure based approach and the equilibrium based approach will be 
discussed in detail in the following chapters.  

5.5 Isobar conditions 
There are two main types of bodies of connected fluid cells: Isobaric and isochoric systems. 
Both behave completely different in their pressure management.  

 A fluid cell is considered as open, when at least one border is not connected to a solid 
or fluid cell but to an edge of the calculated system. For the calculation each cell that is open 
has a so called virtual cell to enable particle flow in both directions. The open cell and its virtual 
partner interact with one another identically to two fluid cells. The only difference between a 
virtual cell and a common fluid cell is that the number of particles and the temperature inside of 
a virtual cell cannot change.  

 In isobaric conditions  the pressure is defined to stay constant over time and must not 
change. These conditions are established by creating a space of fluid cells that is not 
completely enclosed by solid cells. The vessel with the fluid is open and particles can be 
exchanged with the reservoir outside of it. This reservoir of particles is considered to have an 
unlimited number of particles with the same temperature. No matter how many particles will 
flow into or out of the reservoir, the pressure does not change any time. Both temperature and 
pressure of the surrounding can be set. 

 If the temperature changes inside of the calculated system, particles have to flow 
through the open cells in and out to keep the pressure inside the vessel constant.  
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5.6 Isochoric conditions 
If a vessel filled with a fluid material does not have a single open cell it is called closed. 

The pressure inside a closed area of fluid cells is not constant and may change over time. The 
pressure is still balanced and needs to be equal in every cell of the area, but the reached 
pressure value may differ over time.  

The calculation of isochoric conditions is highly dependent from the used algorithm for 
the pressure balance and will be discussed in the next chapters.  

5.7 Algorithm 

5.7.1 Exactness 
The performed calculations of the program shall only be used as rough approximation of 
convection. Therefore the temperature dependency is consider as linear and all proportionality 
factors are constant for all temperature areas, and materials. Also, the viscosity is considered 
as constant for all temperatures. 

 

5.8 Number representation 
There are different possibilities to represent numbers in computer science.  

5.8.1 Integral Data Type 
This is the simplest way to show a number in binary. The value of the number is just converted 
in the binary numeral system. As the computer has to know when one number starts and the 
next one begins the number of bits used has to be defined. A series of n bits can display up to 2𝑛 numbers. An integral data type with 4 bits can display 16 numbers. This can either be a 
range from 0 to 15 (unsigned) or from -8 to +7 (signed) depending on the consideration of 
negative numbers. Integral data types can only represent natural numbers within its bit range. 
Otherwise the value cannot be presented. 

 These integral datatypes are implemented into java: 

Name Number Bits Negative Threshold Signed Positive Range unsigned 

Short 16 -32.768 65.535 

Integer 32 -2.147.483.648 4.294.967.295 

Long 64 -9.223.372.036.854.775.808 18.446.744.073.709.551.615 

Table 3: Numerical thresholds of the datatypes implemented in java 

5.8.2 Floating Point Arithmetic 
Floating point arithmetic is a way to represent big or small real numbers on computers. The 
numbers are represented in the following form: 𝑛𝑢𝑚𝑏𝑒𝑟 =  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 × 𝑏𝑎𝑠𝑒𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 
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The base is normally two, ten or sixteen. Both the significant and the exponent are represented 
as binary numbers of defined length. As the significant has a defined bit length, the precision of 
floating point arithmetic numbers is limited. The precision stated below is the number of 
significant digits of the number. 

Name Total Bits Significant Bits Precision Exponent Bits Exponent 
Size 

Float 32 23 24 23 127 

Double 64 52 53 11 1023 

Table 4: Floating point arithmetic datatypes implemented in java.: 

The significant is always normalized.  299792458 

gets normalized to: 2.99792458 × 108. 
Therefore, the first binary digit is always one. As the one in the first digit is implied, there is no 
need to specify it. This bit is called the hidden bit. 

If the reduced denominator of a fraction cannot be written as power of two, it cannot be written 
exactly in in binary. Even simple decimal numbers, such as 0,1 cannot be written exactly using 
floating point arithmetic. This leads to rounding errors during calculations, besides of those 
caused by the limited precision.  

5.8.3 Decimal data type 
Decimal data types are a way to represent rational numbers exact in computer sciences. There 
are different ways how decimal data types can be implemented into programming languages. In 
Java’s standard library the class java.math.BigDecimal is included. A BigDecimal instance is 
always linked to a provided precision. The bit length of each instance is variable. If any 
mathematical operation cannot be calculated exactly with given precision, an exception is 
thrown. Therefore, it is guaranteed that the calculation is always exact.  
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6 Pressure Based Approach  

6.1 Introduction 
This is a first attempt to approximate the movement of particles inside of a fluid material. The 
basic idea of this approach is that it is necessary to reach the same pressure in each cell of a 
fluid area. The calculation consists of three steps and will be demonstrated by a simple 
example: Four fluid cells aligned in a line form a simple fluid area. Cell D on the right end of the 
system starts the calculation with more particles as all the other cells. The number of particles 
is normalized to be 100 for V=1cm³ of an ideal gas in standard conditions  𝑁′ = 2.2687 ∗ 1016 → 𝑁 = 𝑁′2.26871014 = 100 

the temperature T is in Kelvin in the pressure is normalized to 𝑝 = 𝑁 𝑇 =  𝑁′𝑇𝑘𝐵2.26871014  
Cell A
NA = 100
TA = 300

pA = 30000

Cell B
NB = 100
TB = 300

pB = 30000

Cell C
NC = 100
TC = 300

pC = 30000

Cell D
ND = 140
TD = 300

pD = 42000

 
Figure 11: starting conditions of the particle flow calculation 

6.1.1 Pressure calculation 
In the first step the average pressure P of the whole area needs to be calculated.  𝑃 = ∑ 𝑁𝑖𝑇𝑖𝑖=𝐴,𝐵,𝐶,𝐷4 =  1320004 = 33000 

This is the pressure that shall be reached in every cell at the end of the calculation.  

6.1.2 Particle flow calculation 
Next the particle flow needed to reach the pressure P in each cell will be calculated. If the 
particle flow gets calculated cell for cell, you have to repeat the calculation several times. This 
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is best discussed with an example. We will start the calculation from cell D to cell C. 

Cell A
NA = 100
TA = 300

pA = 30000

Cell B
NB = 100
TB = 300

pB = 30000

Cell C
NC = 100
TC = 300

pC = 30000

Cell D
ND = 140
TD = 300

pD = 42000

N D->C
30

 
Figure 12: Step 1 - Cell D has 30 particles too much and transfers them to cell C 

Cell A
NA = 100
TA = 300

pA = 30000

Cell B
NB = 100
TB = 300

pB = 30000

Cell C
NC = 130
TC = 300

pC = 39000

Cell D
ND = 110
TD = 300

pD = 33000

N C->B
10

 
Figure 13: Step 2 - Cell C has 20 particles too much and transfers them to both surrounding 
cells B and D 

Cell A
NA = 100
TA = 300

pA = 30000

Cell B
NB = 110
TB = 300

pB = 33000

Cell C
NC = 110
TC = 300

pC = 33000

Cell D
ND = 120
TD = 300

pD = 36000

N B->A
0

 
Figure 14: Step 3 - Cell B has reached the pressure P and does not have to transfer any 
particles 

Cell A
NA = 100
TA = 300

pA = 30000

Cell B
NB = 110
TB = 300

pB = 33000

Cell C
NC = 110
TC = 300

pC = 33000

Cell D
ND = 120
TD = 300

pD = 36000

 
Figure 15: Step 4 - Cell A is 10 particles short and sucks them in from cell B 
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Cell A
NA = 110
TA = 300

pA = 33000

Cell B
NB = 100
TB = 300

pB = 30000

Cell C
NC = 110
TC = 300

pC = 33000

Cell D
ND = 120
TD = 300

pD = 36000

 
Figure 16: In the end, two cells have the correct pressure, but the others don’t. 

This process would have to be repeated several times until no particles are transferred 
anymore. There are problems that never convergence with this method, and most of those that 
are solvable require a huge amount of repetitions. In a three-dimensional system with several 
thousand cells it is common to have several thousands of repetitions until the pressure is stable 
in all cells. 

 In the end, this method is not practically and all cells need to be solved at once. This 
can only be achieved by creating and solving a system of linear equations with one line for 
each cell.  

Cell A
NA = 100
TA = 300

pA = 30000

Cell B
NB = 100
TB = 300

pB = 30000

Cell C
NC = 100
TC = 300

pC = 30000

Cell D
ND = 140
TD = 300

pD = 42000

N C->BN B->A N D->C

 
Figure 17: Visualization of the created equation system with simultaneous particle flow in all 
directions. 

The exact creation of the system of equations will be demonstrated after defining some 
important assumptions in the following pages.  

6.1.3 Update cells 
In the last step the solution of the system of equation has to be applied to each cell to calculate 
the correct number of particles, temperature and pressure after the normalization.  

 In the example above all cells have the same temperature in order to keep complexity 
smaller. In a actual calculation the cells will hardly have the same temperature. When the 
particles have different temperatures the calculation gets much more complex.  

6.2 Assumptions 
These are the assumptions for the particle flow in the pressure based approach of the pressure 
normalization. 
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6.2.1 Simultaneous 
All particle flows from the normalization happen simultaneous at the exact same moment. 

 In an ideal gas the pressure is always the same for the whole gas area. There is no 
interplay that could interfere and slow down the particle flow so much that there is a pressure 
imbalance somewhere. Also, the average calculation step is around 5 ms long. According to 
the Maxwell-Boltzmann distribution the most probable speed of a particle air is 𝑣𝑝 = 464 𝑚𝑠−1 
at standard conditions of 273.15K and an absolute pressure of 100kPa. So a particle could 
pass through more than 200 cells in each direction during a single calculation step. Therefore 
the pressure will be equalized in every fluid area after 5 ms.  

 To realize the simultaneous particle flow, the number of particles and temperature of 
each cell will be saved before the calculation. These values will be used to calculate the particle 
flow of every cell. Only, when the particle flow of every cell is calculated the particle flow will be 
applied and the values of all cells will be changed at once.  

6.2.2 Even  
If the temperature of the particles inside of any shape rise, the kinetic energy of each particle 
rises. As the movement directions of the particles are distributed uniformly, the shape will 
expand equally in each direction. So, if there are too many particles in a cell, the created 
particle flow will be equally distributed among all neighbour cells.  

 If a cell has 4 neighbour cells, each of them will receive a fourth of the total particle flow. 

6.2.3 Only positive 
As each particle has its own temperature there is a difference between a particle that flows 
from cell A to cell B in positive direction and a particle that flows from cell B to cell A in negative 
direction. The temperature transfer is not the same. It is not possible for a particle from cell A to 
flow from cell B to cell A. Therefore, particle flow is defined to be only positive. 𝑁′ ∈ [0,∞[  
 If there are too few particles in cell A they will flow there from the surrounding cells 
anyway. 

6.2.4 Short distance  
The particles will only flow from one cells to their directly adjacent cells. The most probable 
velocity multiplied with the time period of one calculation step is much higher than the size of a 
cell, but the particles will collide with one another and transfer their energy to one another.  

 If there is a heavy imbalance in a fluid area it is possible for cell B to emit more particles 
than originally located inside the cell. These particles can be considered to be originated from 
another cell, e.g. cell A. The particles from cell A will travel through cell B, transfer some of their 
kinetic energy and will continue to travel to cell C.  
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6.3 Calculation 
 

The principle of the pressure based approach will be explained using the same example from 
6.1.2. As all particles have to be transferred at the same moment, we will have to create a 
system of linear equations to calculate the particle flow. This equation system has to met each 
of the assumptions stated above.  

 The particle flow will be distributed evenly between all adjacent cells of each single cell 
of the system. Therefore, every cell from the fluid area needs exactly one variable that defines 
the particle flow to all adjacent cells. These will be called 𝑁′𝐴, 𝑁′𝐵, 𝑁′𝐶 and  𝑁′𝐷.  

 In the end, we want to calculate the temperature T from the next time step t from the last 
one t-1. This temperature of a fluid cells equals the average temperature of all particles inside 
the cell. 𝑇 =  ∑ 𝑇𝑖𝑁𝑖=1𝑁  

 Therefore, we need to know the number of particles and the temperature of each single 
particle inside the cell. When a particle is transferred into an adjacent cell the average particle 
temperature of both the receiving and the donating cells change.  

Considering only the transfer of particles from cell A to cell B the temperature for both cells 
change according to: 𝑇𝐴𝑡 = 𝑇𝐴𝑡−1𝑁𝐴𝑡−1 − 𝑇𝐴𝑡−1𝑁𝐴′ + 𝑇𝐵𝑡−1𝑁𝐵′𝑁𝐴𝑡−1 − 𝑁𝐴′ + 𝑁𝐵′   ∀ 𝑁𝐴′ , 𝑁𝐵′ > 0 

𝑇𝐵𝑡 = 𝑇𝐵𝑡−1𝑁𝐵𝑡−1 + 𝑇𝐴𝑡−1𝑁𝐴′ − 𝑇𝐵𝑡−1𝑁𝐵′𝑁𝐴𝑡−1 + 𝑁𝐴′ − 𝑁𝐵′  ∀ 𝑁𝐴′ , 𝑁𝐵′ > 0 

The transferred particles and their temperature are added and subtracted to the number or 
particles from the last calculation step. Then the arithmetic average is calculated using the 
resulting number of particles. 

The particle flows 𝑁′𝐴, 𝑁′𝐵, 𝑁′𝐶 and  𝑁′𝐷 are defined to be always positive. Otherwise the 
temperature of the transferred particles would have to change.  

Considering all particle transfers the result for all four cells are:  𝑁𝐴𝑡 = 𝑁𝐴𝑡−1 − 𝑁𝐴′ + 𝑁𝐵′                        𝑇𝐴𝑡 = 𝑇𝐴𝑡−1𝑁𝐴𝑡−1 − 𝑇𝐴𝑡−1𝑁𝐴′ + 𝑇𝐵𝑡−1𝑁𝐵′𝑁𝐴𝑡     
𝑁𝐵𝑡 = 𝑁𝐵𝑡−1 + 𝑁𝐵′ − 2𝑁𝐴′ + 𝑁𝐶′                        𝑇𝐵𝑡 = 𝑇𝐵𝑡−1𝑁𝐵𝑡−1 + 𝑇𝐴𝑡−1𝑁𝐴′ + 𝑇𝐶𝑡−1𝑁𝐶′ − 2𝑇𝐵𝑡−1𝑁𝐵′𝑁𝐵𝑡   
𝑁𝐶𝑡 = 𝑁𝐶𝑡−1 + 𝑁𝐵′ − 2𝑁𝐶′ + 𝑁𝐷′                        𝑇𝐶𝑡 = 𝑇𝐶𝑡−1𝑁𝐶𝑡−1 + 𝑇𝐷𝑡−1𝑁𝐷′ + 𝑇𝐵𝑡−1𝑁𝐵′ − 2𝑇𝐶𝑡−1𝑁𝐶′𝑁𝐶𝑡   

𝑁𝐷𝑡 = 𝑁𝐴𝑡−1 − 𝑁𝐴′ + 𝑁𝐵′                        𝑇𝐴𝑡 = 𝑇𝐴𝑡−1𝑁𝐴𝑡−1 − 𝑇𝐴𝑡−1𝑁𝐴′ + 𝑇𝐵𝑡−1𝑁𝐵′𝑁𝐷𝑡    
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As described above 𝑇𝑖𝑡𝑁𝑖𝑡 needs to be constant for all cell, which leads to 𝑇𝐴𝑡−1𝑁𝐴𝑡−1 − 𝑇𝐴𝑡−1𝑁𝐴′ + 𝑇𝐵𝑡−1𝑁𝐵′ = 𝑝𝑡 𝑇𝐵𝑡−1𝑁𝐵𝑡−1 + 𝑇𝐴𝑡−1𝑁𝐴′ + 𝑇𝐶𝑡−1𝑁𝐶′ − 2𝑇𝐵𝑡−1𝑁𝐵′ = 𝑝𝑡 𝑇𝐶𝑡−1𝑁𝐶𝑡−1 + 𝑇𝐷𝑡−1𝑁𝐷′ + 𝑇𝐵𝑡−1𝑁𝐵′ − 2𝑇𝐶𝑡−1𝑁𝐶′ = 𝑝𝑡 𝑇𝐴𝑡−1𝑁𝐴𝑡−1 − 𝑇𝐴𝑡−1𝑁𝐴′ + 𝑇𝐵𝑡−1𝑁𝐵′ = 𝑝𝑡 
This system of linear equations with the parameters 𝑁′𝐴, 𝑁′𝐵, 𝑁′𝐶 and  𝑁′𝐷 can be written as the 
matrix: 

( 
 −𝑇𝐴𝑡−1       𝑇𝐵𝑡−1          0             0  𝑇𝐴𝑡−1     − 2𝑇𝐵𝑡−1      𝑇𝐶𝑡−1          0     0            𝑇𝐵𝑡−1     − 2𝑇𝐶𝑡−1       𝑇𝐷𝑡−1      0             0            𝑇𝐶𝑡−1      − 𝑇𝐷𝑡−1 ||𝑁′𝐴𝑁′𝐵𝑁′𝐶𝑁′𝐷) 

 = ( 
 𝑝 − 𝑇𝐴𝑡−1𝑁𝐴𝑡−1𝑝 − 𝑇𝐵𝑡−1𝑁𝐵𝑡−1𝑝 − 𝑇𝐶𝑡−1𝑁𝐶𝑡−1𝑝 − 𝑇𝐷𝑡−1𝑁𝐷𝑡−1) 

 
 

Note that in three dimensional areas each cell has up to six adjacent cells and the matrix is 
much more chaotic, even though most of the entries are still zero. 

This system of linear equations needs to be solved to receive the particle flows and to calculate 
the timewise behaviour of the thermodynamic system.  

6.4 Solution of the system of equations 

The resulting system of linear equations is not very special and can be solved using many 
different approaches. The relaxation methods as described in chapter 4.3.2 lead to the fastest 
results.  

 As the pressure based approach was dropped because of the massive technical 
limitations described in the next chapter the solution for this system was not optimized 

6.5 Technical Limitations 
The calculation of the pressure needs to be exact in order to receive a solvable system of 
equations. Using floating numbers for the calculation leads to problems caused by the high 
amount of cells that need to be calculated.  

 Floating numbers have a defined length of significant integers. By adding several 
numbers with different exponents some information is lost. During the calculation of 1,11111111 × 105 + 1,11111111 × 1010  with a floating point arithmetic with 10 significant 
integers, half of the information of the smaller number will be lost, as the integers cannot be 
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displayed within the defined precision. 

1 1 1 1 1 1 1 1 1 1 X 10

10

,

1 1 1 1 1 1 1 1 1 1 X 10

5

,

1 1 1 1 1 2 2 2 2 2, X 10
10

 
Figure 18: Illustration on how information gets list when adding a very big and a very small 
number. 

During the calculation of the average pressure in all cells, the pressure will be calculated in 
each individual cell and added to one another. For a rather small field of 30x30x30 cells, 27.000 
cells will be summed up. The pressure in each of the cells only differs by a very small amount. 
Due to the problem stated before, the last digits of almost all cells are not included in the 
calculation and the resulting sum of all pressures is not correct. The average value that gets 
received after dividing the sum by the number of cells is therefore not exact and the resulting 
system of linear equations is not solveable.  

 Of course, it is possible to perform almost exact calculations on the computer with very 
high precision. In java this could be implemented using the decimal data type BigDecimal. But 
the simulation is only exact, if all performed calculating steps are calculated in decimal data 
type with a precision of several hundred integers. As the computer is not designed to handle 
decimal based calculations, the calculating time increases extremely and the simulation is not 
usable for any relevant areas.  

6.6 Result 
After many calculations and validations I came to the conclusion that in theory it might be 
possible to simulate convection with the pressure based approach. I tried several different 
methods but it was not possible to calculate the average pressure in all cells using floating point 
data types. None of them led to convergent calculations for the simplest areas. As the results 
were not satisfying, I switched to the use of decimal data types.  

With these data types, I only calculated either small areas with 7x7x7 cells for up to a 
minute or medium sized areas with 15x15x15 cells for just a few seconds. In both cases it was 
possible to reach convergent and stable results. The calculation time exceeded eight hours and 
this approach was pretty soon dropped in favour of the equilibrium based approached 
described in the next chapter. 
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7 Equilibrium Based Approach 

7.1 Introduction 
It was not possible to calculate the average pressure in all cells of an area with floating point 
data types as it would have been necessary for the pressure based approach. After several 
throwbacks I decided that I would have to change my system of linear equations. If the 
pressure cannot be calculated, I would have to cancel it from the calculation.  

 The equilibrium based approach was born by a simple consideration that equates the 
zeroth law of thermodynamics using pressure instead of thermal equilibrium. If each cell has 
the same pressure as its neighbour cells, all cells have the same pressure.  

7.2 Assumptions 

7.2.1 Simultaneous 
As described for the pressure based approach, all particle flow happen simultaneous. The 
calculation will be solved using a system of linear equations. 

7.2.2 Pressure Equilibrium 
Particles will flow between the two cells A and B until they are in equilibrium. Since every cell 
has more than one neighbour cell (except for very special areas), one equation per cell is not 
sufficient for the calculation. Therefore, the system of linear equations gets created completely 
different. There needs to be an equation for every boundary surface between two fluid cells.  

7.2.3 Defined direction 
Each equation from the equation system is the representation of the particle exchange between 
two adjacent cells that is needed to establish the same pressure in both cells. As particles can 
flow in both directions, from A to B and from B to A, two equations would be necessary for each 
boundary surface. A system of equations with two equations for each boundary surface would 
be under-determined and could not be solved. The positive direction is always the positive 
direction of the x, y, and z axis. If a boundary surface that is normal to the x-axis has a positive 
particle flow value, the particles would flow in the positive z direction. Otherwise, the particles 
would flow in the negative x direction  

7.3 Calculation 
At first we will examine a small system with two cells and one boundary surface in between. 
The pressure p in two cells A and B is the same, if 𝑝𝐴 = 𝑝𝐵. Using the gas equation and the 
fact that all cells are defined to have the same size the equation can be written as 𝑁𝐴𝑘𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛𝑇𝐴𝑉𝐴 = 𝑁𝐵𝑘𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛𝑇𝐵𝑉𝐵  𝑁𝐴𝑡+1𝑇𝐴𝑡+1 = 𝑁𝐵𝑡+1𝑇𝐵𝑡+1, 
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where 𝑁𝐴𝑡+1 and 𝑇𝐴𝑡+1 are the number of particles and the temperature of cell A at the time t+1. 
Considering the particle flow from the adjacent cell this can be transformed to a function of the 
particles and temperature of the last time t.  𝑁𝐴𝑡+1 = 𝑁𝐴𝑡 + 𝑁𝐵→𝐴 − 𝑁𝐴→𝐵 𝑇𝐴𝑡+1 =  𝑁𝐴𝑡𝑇𝐴𝑡 + 𝑁𝐵→𝐴𝑇𝐵𝑡 − 𝑁𝐴→𝐵𝑇𝐴𝑡𝑁𝐴𝑡 + 𝑁𝐵→𝐴 − 𝑁𝐴→𝐵 = 𝑁𝐴𝑡𝑇𝐴𝑡 + 𝑁𝐵→𝐴𝑇𝐵𝑡 − 𝑁𝐴→𝐵𝑇𝐴𝑡𝑁𝐴𝑡+1  

Where 𝑁𝐵→𝐴 is the number of particles that flow from cell B to cell A and 𝑁𝐴→𝐵 is the number of 
particles that flow in the different direction. 

The shortened pressure 𝑝́ = 𝑁𝑇 can be written as 𝑝́𝐴𝑡+1 = 𝑁𝐴𝑡𝑇𝐴𝑡 + 𝑁𝐵→𝐴𝑇𝐵𝑡 − 𝑁𝐴→𝐵𝑇𝐴𝑡𝑁𝐴𝑡+1 𝑁𝐴𝑡+1 = 𝑁𝐴𝑡𝑇𝐴𝑡 + 𝑁𝐵→𝐴𝑇𝐵𝑡 − 𝑁𝐴→𝐵𝑇𝐴𝑡 
As described before there should only be one variable  𝑁𝐴𝐵 representing both particle flows 𝑁𝐵→𝐴 and 𝑁𝐴→𝐵 depending on its sign. As the particles transferred in both directions have a 
different temperature this step is not trivial. The calculation will be done in two separate steps. 
First, a new variable 𝑢́ is introduced. 𝑢́ is the heat that is transferred over the border. 𝑢́𝐴𝐵 = 𝑁𝐵→𝐴𝑇𝐵𝑡 − 𝑁𝐴→𝐵𝑇𝐴𝑡 
Which leads to  𝑝́𝐴𝑡+1 = 𝑁𝐴𝑡𝑇𝐴𝑡 + 𝑢́𝐴𝐵 

This equation system can be solved for all 𝑢́𝑖. Once the 𝑢́𝑖 were calculated, the new number of 
actual particles transferred will be calculated with 

𝑁𝐴𝐵 =
{  
  |𝑢́𝐴𝐵𝑇𝐴𝑡 |  ∀ 𝑢́𝐴𝐵 < 0
|𝑢́𝐴𝐵𝑇𝐵𝑡 |  ∀ 𝑢́𝐴𝐵 > 00 ∀ 𝑢́𝐴𝐵 = 0

 

When the positive direction is defined to point from cell A to cell B.  

7.3.1 Creation of the system of equations 
The creation of the system of equations will be shown on a simple example of four cells, 
aligned in a 2x2 matrix. There are two boundary surfaces along the x-axis and two along the y-
axis.  
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Figure 19: Visualization of the equilibrium based approach. The boundaries between two cells 

are the focus of the calculation. 

The pressure for different cells add up to 𝑝𝐴𝑡 = 𝑁𝐴𝑡𝑇𝐴𝑡 = 𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑢́𝐴𝐵𝑡 − 𝑢́𝐴𝐶𝑡  𝑝𝐵𝑡 = 𝑁𝐵𝑡𝑇𝐵𝑡 = 𝑁𝐵𝑡−1𝑇𝐵𝑡−1 + 𝑢́𝐴𝐵𝑡 − 𝑢́𝐵𝐷𝑡  𝑝𝐶𝑡 = 𝑁𝐶𝑡𝑇𝐶𝑡 = 𝑁𝐶𝑡−1𝑇𝐶𝑡−1 + 𝑢́𝐴𝐶𝑡 − 𝑢́𝐶𝐷𝑡  𝑝𝐷𝑡 = 𝑁𝐷𝑡𝑇𝐷𝑡 = 𝑁𝐷𝑡−1𝑇𝐷𝑡−1 + 𝑢́𝐵𝐷𝑡 + 𝑢́𝐶𝐷𝑡  

Forming the balance equation for the boundaries leads to: 

Boundary AB : 𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑢́𝐴𝐵𝑡 − 𝑢́𝐴𝐶𝑡 = 𝑁𝐵𝑡−1𝑇𝐵𝑡−1 + 𝑢́𝐴𝐵𝑡 − 𝑢́𝐵𝐷𝑡   
Boundary CD: 𝑁𝐶𝑡−1𝑇𝐶𝑡−1 + 𝑢́𝐴𝐶𝑡 − 𝑢́𝐶𝐷𝑡 = 𝑁𝐷𝑡−1𝑇𝐷𝑡−1 + 𝑢́𝐵𝐷𝑡 + 𝑢́𝐶𝐷𝑡  

Boundary AC: 𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑢́𝐴𝐵𝑡 − 𝑢́𝐴𝐶𝑡 = 𝑁𝐶𝑡−1𝑇𝐶𝑡−1 + 𝑢́𝐴𝐶𝑡 − 𝑢́𝐶𝐷𝑡  

Boundary BD: 𝑁𝐵𝑡−1𝑇𝐵𝑡−1 + 𝑢́𝐴𝐵𝑡 − 𝑢́𝐵𝐷𝑡 = 𝑁𝐷𝑡−1𝑇𝐷𝑡−1 + 𝑢́𝐵𝐷𝑡 + 𝑢́𝐶𝐷𝑡  

As equation system of linear equations this will be transformed to: 2𝑢́𝐴𝐵𝑡 + 𝑢́𝐴𝐶𝑡 − 𝑢́𝐵𝐷𝑡 = 𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑁𝐵𝑡−1𝑇𝐵𝑡−1 2𝑢́𝐶𝐷𝑡 − 𝑢́𝐴𝐶𝑡 + 𝑢́𝐵𝐷𝑡 = 𝑁𝐶𝑡−1𝑇𝐶𝑡−1 − 𝑁𝐷𝑡−1𝑇𝐷𝑡−1 2𝑢́𝐴𝐶𝑡 + 𝑢́𝐴𝐵𝑡 − 𝑢́𝐶𝐷𝑡 = 𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑁𝐶𝑡−1𝑇𝐶𝑡−1 
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2𝑢́𝐵𝐷𝑡 − 𝑢́𝐴𝐵𝑡 + 𝑢́𝐶𝐷𝑡 = 𝑁𝐵𝑡−1𝑇𝐵𝑡−1 − 𝑁𝐷𝑡−1𝑇𝐷𝑡−1 

Or written as a matrix: 

( 
 2           0          1      − 10           2       − 1          11       − 1         2            0−1           1         0            2   ||

𝑢́𝐴𝐵𝑡𝑢́𝐶𝐷𝑡𝑢́𝐴𝐶𝑡𝑢́𝐵𝐷𝑡 ) 
 = ( 

 𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑁𝐵𝑡−1𝑇𝐵𝑡−1𝑁𝐶𝑡−1𝑇𝐶𝑡−1 − 𝑁𝐷𝑡−1𝑇𝐷𝑡−1𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑁𝐶𝑡−1𝑇𝐶𝑡−1𝑁𝐵𝑡−1𝑇𝐵𝑡−1 − 𝑁𝐷𝑡−1𝑇𝐷𝑡−1) 
 

 

This system of equations needs to be solved every iteration to receive the heat and particle 
flow necessary to normalize the pressure within the fluid cells. 

7.3.2 Solution of the system of equations 
Analysing the equation system it is easy to see that all time dependent terms are contained in 
the vector of the starting conditions. The matrix itself is only dependent from the geometry of 
the area and does not change within the calculation. It is rather constant.  

If the problem is solved using the Gaußian Elimination Method, it is possible to avoid solving 
the system of equations every iteration.  

7.3.2.1 Gaußian Elimination Method 

The Gaußian Elimination Method is a rather simple yet very effective method to solve systems 
of linear equations. The idea is to re-arrange the matrix by appling simple mathematical 
operations until it is a normalized diagonalized matrix. If the same steps will also be performed 
for the vector of the starting conditions it equals the solution of the system. The method will be 
explained during the solving process of the matrix from before.  

First, some new parameters get introduced to make the matrix more readable: 𝐴 = 𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑁𝐵𝑡−1𝑇𝐵𝑡−1𝐵 = 𝑁𝐶𝑡−1𝑇𝐶𝑡−1 − 𝑁𝐷𝑡−1𝑇𝐷𝑡−1𝐶 = 𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑁𝐶𝑡−1𝑇𝐶𝑡−1𝐷 = 𝑁𝐵𝑡−1𝑇𝐵𝑡−1 − 𝑁𝐷𝑡−1𝑇𝐷𝑡−1 

This leads to the extended matrix  

( 2           0          1      − 10           2       − 1          11       − 1         2            0−1           1         0            2   |
𝐴𝐵𝐶𝐷) 

Formed by the four lines I, II, III and IV 

First we will eliminate all occurrences of 𝑢́𝐴𝐵𝑡  outside of the first line by adding or subtracting the 
half of the first line.  

( 
 2             0            1         − 10             2         − 1            10         − 1        3 2⁄         1 2⁄0             1         5 2⁄         3 2⁄ || 𝐴𝐵𝐶 − 𝐴 2⁄𝐷 + 𝐴 2⁄ ) 

 || 𝐼 ∗ 1𝐼𝐼 ∗ 1𝐼𝐼𝐼 − 𝐼 2⁄𝐼𝑉 + 𝐼 2⁄  
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Then we will eliminate all occurrences of 𝑢́𝐶𝐷𝑡 outside of the second line 

( 
 2             0            1         − 10             2         − 1            10             0             1            10              0             3             1|| 𝐴𝐵𝐶 − 𝐴 2⁄ + 𝐵 2⁄𝐷 + 𝐴 2⁄ − 𝐵 2⁄ ) 

 || 𝐼 ∗ 1𝐼𝐼 ∗ 1𝐼𝐼𝐼 + 𝐼𝐼 2⁄𝐼𝑉 − 𝐼𝐼 2⁄  

 

Then all occurrences of 𝑢́𝐴𝐶𝑡  will be terminated as well 

(2             0            1           − 10             2         − 1              10              0             1              10              0             0          − 2|
𝐴𝐵𝐶 − 𝐴 2⁄ + 𝐵 2⁄2𝐴 − 2𝐵 − 3𝐶 + 𝐷)| 𝐼 ∗ 1𝐼𝐼 ∗ 1𝐼𝐼𝐼 ∗ 1𝐼𝑉 −  3 ∗ 𝐼𝐼𝐼 

Now the system of linear equations can be solved by calculating 𝑢́𝐵𝐷𝑡  from the last line and 
insert it into the other lines 

(  
 2             0             1                00             2         − 1              00              0             1              00              0             0               1||

0𝐴 + 𝐵 + 3𝐶 2⁄ − 𝐷 2⁄𝐴 + 0𝐵 − 3𝐶 2⁄ + 𝐷 2⁄𝐴 2⁄ − 𝐵 2⁄ − 𝐶 2⁄ + 𝐷 2⁄−𝐴 + 𝐵 + 3𝐶 2⁄ − 𝐷 2⁄ )  
 ||

𝐼 + 𝐼𝑉 −2⁄𝐼𝐼 − 𝐼𝑉 −2⁄𝐼𝐼𝐼 − 𝐼𝑉 −2⁄  𝐼𝑉 −2⁄  

If we do the same for 𝑢́𝐴𝐶𝑡 , 

(  
 2               0              0             00               2              0              00               0              1              00               0              0               1||

−𝐴 2⁄ + 3𝐵 2⁄ + 2𝐶 − 2𝐷3𝐴 2⁄ − 𝐵 2⁄ − 2𝐶 + 𝐷𝐴 2⁄ − 𝐵 2⁄ − 𝐶 2⁄ + 𝐷 2⁄−𝐴 + 𝐵 + 3𝐶 2⁄ − 𝐷 2⁄ )  
 || 𝐼 − 𝐼𝐼𝐼𝐼𝐼 + 𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 1 𝐼𝑉 ∗ 1  

𝑢́𝐶𝐷𝑡 , and 𝑢́𝐴𝐵𝑡  

(  
 1               0              0             00               1              0              00               0              1              00               0              0               1||

−𝐴 4⁄ + 3𝐵 4⁄ + 𝐶 − 𝐷3𝐴 4⁄ − 𝐵 4⁄ − 𝐶 + 𝐷 2⁄𝐴 2⁄ − 𝐵 2⁄ − 𝐶 2⁄ + 𝐷 2⁄−𝐴 + 𝐵 + 3𝐶 2⁄ − 𝐷 2⁄ )  
 ||

𝐼 2⁄𝐼𝐼 2⁄𝐼𝐼𝐼 ∗ 1 𝐼𝑉 ∗ 1  

We have completely solved the system of linear equations with the Gaußian Elimination 
Method.  

7.3.2.2 Solving the system for many iterations 

When analysing a single line of the equation system it is easy to see that the term left term is 
only dependent from the geometry of the cells and not of their temperature or number of 
particles.  2𝑢́𝐴𝐵𝑡 + 𝑢́𝐴𝐶𝑡 − 𝑢́𝐵𝐷𝑡 = 𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑁𝐵𝑡−1𝑇𝐵𝑡−1 
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Therefore, the matrix part of the system of linear equations does not change during a 
calculation. The actions performed during the Gaußian Elimination Method stay the same for 
every iteration of the calculation. It is possible to write the solution calculated with the Gaußian 
Elimination Method as another matrix M.  

𝑀 =
(  
 −1 4⁄          3 4⁄             1       − 13 4⁄        − 1 4⁄          − 1        1 2⁄1 2⁄         − 1 2⁄         − 1 2⁄      1 2⁄−1                 1           3 2⁄     − 1 2⁄ )  

 
 

Finally, the system of linear equations can be solved for each iteration by performing the simple 
matrix multiplication. 

𝑢⃑ = ( 
 𝑢́𝐴𝐵𝑡𝑢́𝐶𝐷𝑡𝑢́𝐴𝐶𝑡𝑢́𝐵𝐷𝑡 ) 

 = 𝑀 ∗ 𝑁𝑇⃑⃑ ⃑⃑  ⃑(𝑡) =
(  
 −1 4⁄          3 4⁄             1       − 13 4⁄        − 1 4⁄          − 1        1 2⁄1 2⁄         − 1 2⁄         − 1 2⁄      1 2⁄−1                 1           3 2⁄     − 1 2⁄ )  

 ∗ ( 
 𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑁𝐵𝑡−1𝑇𝐵𝑡−1𝑁𝐶𝑡−1𝑇𝐶𝑡−1 − 𝑁𝐷𝑡−1𝑇𝐷𝑡−1𝑁𝐴𝑡−1𝑇𝐴𝑡−1 − 𝑁𝐶𝑡−1𝑇𝐶𝑡−1𝑁𝐵𝑡−1𝑇𝐵𝑡−1 − 𝑁𝐷𝑡−1𝑇𝐷𝑡−1) 

 
 

Using this trick, the calculation using the equilibrium based approach is incredible performant, 
especially for longer simulation times. Compared to the pressure based approach using 
decimal data types this calculation is up to 50 times faster.  

Unfortunately, this approach has a big downside that will discussed in detail in the next chapter.  

7.4 Technical Limitations 
The calculation using the described equilibrium based approach to simulate the convection in 
fluids has two big downsides caused by the size of the matrix used. In a 3-dimensional cubic 
system of fluid cells, all cells that are not in contact with any boundary surface have six 
neighbour cells. Those cells next to the boundaries have between three and five boundary 
surfaces each, depending if they are positioned in a corner, along an edge or just somewhere 
on the boundary surface. With a bigger size of the cube, the cells aligned next to the 
boundaries well become less against those inside of the cube. For simplicity reasons the 
number of adjacent cells for each cell will be assumed to be exact five for the following 
calculation.  

 To create the linear system of equations, one equation is needed for every boundary 
surface between two adjacent cells.  𝑑 = 5 × 𝑁 

Where d is the number of equations an N is the number of cells. For a simple cubic alignment 
with side length n this will transform to 𝑑 = 5 × 𝑁 = 5 × 𝑛3 

The matrix that will be formed during the process is a 𝑑 × 𝑑 matrix and has 𝑑2 entries. The size 
of this matrix increases incredible fast with rising side length n as shown in the table below: 
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Side length of the cube Number cells Number equations Entries in the matrix 

n N d d² 

5 125 625 390.625 

10 1.000 5.000 25.000.000 

15 3.375 16.675 284.765.625 

20 8.000 40.000 1.600.000.000 

25 15.625 78.125 6.103.515.625 

50 125.000 625.000 390.625.000.000 

100 1.000.000 5.000.000 25.000.000.000.000 

200 8.000.000 40.000.000 1.600.000.000.000.000 

Table 5: Matrix entries for some cube lengths to demonstrate the growth of the number of 
entries in the matrix. 

7.4.1 Exactness 
During the solving of such a big matrix using the Gaußian Elimination Method the factors used 
during each step get bigger and bigger. The factors get cancelled and normalized after each 
step but at some point the factors just grow too big and cannot be represented using double 
precision floating point arithmetic’s. The point when this happens is strong dependent from the 
geometry of the area but start at around 40.000 equations. This problem could be avoided 
again by using decimal data typed to represent the numbers, but then the limited memory 
would come into play even earlier.  

7.4.2 Limited memory 
As representation of a matrix it is common to use a two dimensional array of floating point 
numbers. In the created program this is realized with a two dimensional array of double 
precision floating point numbers with a memory size of 64 bit each. The memory used in 
computers is usually measured in byte, where 1 byte is equal to 8 bit’s. A single double floating 
point number takes 8 byte memory to save.  

 Due to the enormous number of entries in the matrix used during the calculation, the 
floating point representation takes much memory as shown below.  

Side length of the 
cube 

Entries in the matrix Memory Size in Byte’s Rounded Memory 
Size 

5 390.625 3.125.000 3 MB 

10 25.000.000 200.000.000 200 MB 

15 284.765.625 2.278.125.000 2,2 GB 

20 1.600.000.000 12 800 000 000 12,8 GB 

25 6.103.515.625 48 828 125 000 48,8 GB 
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50 390.625.000.000 3 125 000 000 000 3,125 TB 

100 25.000.000.000.000 200 000 000 000 000 200 TB 

200 1.600.000.000.000.000 12 800 000 000 000 000 12.800 TB 

Table 6: Example values of necessary memory size for calculations for different sized cube 
lengths. 

For the Gaußian Elimination Method there are two matrices of the same size necessary. The 
first one gets transformed and the second one saves all performed steps.  

  

 

7.5 Result  
The equilibrium based approach is a rather easy way to simulate heat transfer in fluid materials. 
As the system of linear equations only has to be solved once it is also extremely efficient. 
Unfortunately, due to the technical limitations it can only be used for rather small areas with < 
3000 cells or cubes with a side length smaller than 15.  

 I made some simulations where I layered several areas with less than 2000 cells over 
one another to calculate a big area with over 10.000 cells. But in the result there were 
discontinuities at the barriers between the individual layers. It was not possible to find a 
calculation where these discontinuous disappeared.  
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8 Software 
This chapter discusses the program that was written during this thesis.  

8.1 Used programming language 
Due to personal experience the following programming languages were open for discussion: 

1. C++ 

C++ is an extension of the programming language C that features object-oriented functionality. 

2. Java 

Java is a class-based and object-oriented programming language intended to support many 
different platforms. Java programs are executed on the Java Virtual Machine (JVM) and mostly 
independent from the underlying operating system.  

8.1.1 Performance 
The basis of decision was the difference in performance for the calculations descried in the 
previous chapters. Therefore, a small program was implemented in both programming 
languages. This demo project was made up of solid cells of the same material aligned in a cube 
of  variable side length. All cells had the same temperature of 300°K except for one cell in the 
corner where the temperature was constant set to 400°K. The heat flow was simulated for 
values between 20 and 300 seconds. The result was the same for both programs but the 
calculation times differed.  

 For small areas (<1000 cells) C++ was faster. Compared to a single thread java 
computation, C++ was faster for all areas. As it is much easier to implement multi thread 
calculation in java the program was modified to split the area in several sub-areas of the same 
size. Each of these sub-areas got calculated by a separate thread. Depending on the number 
of used threads, the computation time of the java program could be reduced by more than 50% 
and ended to be much more performant than the single thread C++ implementation. Of course 
it would also be possible to implement a multi thread solution in C++ too, but in java it is much 
simpler to create a variable number of threads based on the number of available processor 
cores and synchronize all calculations into the same object.  

8.1.2 Decision 
The fact that the multi thread implementation of java was more performant than the c++ 
implementation, combined with the personal experience in both java code and java gui, java 
was chosen as programming language for this thesis.  
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8.2 Configuration 
The program can be configured using different *.json configuration files. Like this, it is not 
necessary to recompile the code for pure reconfiguration.  

8.2.1 Materials 
Any material can be added to the program. The following 
fields needs to be added into the materials.json file: 

• Name – The name that will be displayed in 
the gui 

• Fluid/solid – determines if it is a solid or a fluid 
material 

• HeatCapacity – the volume specific heat 
capacity in 𝑔 𝑐𝑚³⁄  

• HeatConductivity – the heat conductivity in 𝐽 𝑐𝑚³𝐾⁄  

• Color – the color of the material in the gui in 
hex code 

• Viskosivity (only for fluid materials) the 
viscosity  

 

 

 

 

 

 

 

8.2.2 Colors 
By default the temperature is coloured from red, high temperature via 
green to blue for low temperatures. It is possible to use any colour scale 
identified by entering a list of 100 colours in hex code. 

 

 

 

 

 

Figure 20: Excerpt of an 
example configuration file for 
some used materials 

Figure 21: Example how 
color scales are configured. 
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8.3 Creation 
The simulation itself happens in three different phases. The first phase is called creation. 
During the creation the user can create boundary conditions and can assigns materials to each 
cell.  

 

 

 
 

 

 

 

 

 

8.3.1 Initialization 
The first step is the initialization of a new field. The user can set the size in x, y and z direction 
as well as the temperature of surrounding fluid cells in case of an open fluid border. After the 
click on create, the space object with given size is created. Initially all cells are set to iron.  

8.3.2 Visualization 
The cells get visualized in a simple coloured table. The user can select if he wants to view a xy, 
yz or xz layer. After the selection of a layer a slider appears that can be used to select the exact 
layer that shall be displayed.  

8.3.3 Set Materials 
Now the user can assign materials to the different cells. In different tabs you can select if you 
want to assign a fluid or a solid material. Then the different materials can be chosen from a 
drop down menu.  

 To assign a material to one or several cells, you may enter the coordinates of two 
separate coordinates inside the created space. When done the chosen material will be 
assigned to the cuboid that is margined by the two coordinates. 

Figure 22: Screenshot of the dialog to 
create a new system. 
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(𝑥 = 3𝑦 = 5𝑧 = 0)  𝑎𝑛𝑑 (𝑥 = 1𝑦 = 8𝑧 = 5)  𝑤𝑖𝑙𝑙 𝑎𝑠𝑠𝑖𝑔𝑛 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑡𝑜 𝑎𝑙𝑙 𝑐𝑒𝑙𝑙𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 ( 𝑥 ∈ [1,2,3]𝑦 ∈ [5,6,7,8]𝑧 ∈ [0,1,2,3,4,5]) 

The same principle is used to assign different boundary conditions to cells.  

When the material tab is selected the tables in the main view are coloured according to the 
colour code of the selected materials. The table is updated automatically whenever the material 
is set.  

 
Figure 23: Screenshot of the dialog where materials and boundary conditions can be assigned 
to cells. 

8.3.4 Set Boundary Conditions 
In a different tag the user can set the following boundary conditions: 

• Heat flow – a constant heat flow that is assigned to the cell. Can be both positive and 
negative 
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• Starting temperature – The temperature at t=0. The temperature might change during 
the simulation 

• Fixed temperature – The temperature of the cell is set to a fix value and may not 
change during the calculation 

Boundary conditions can only be set to solid materials and will be ignored if a target cell is fluid. 

 During the boundary condition tab is selected the table is coloured according to the 
temperature of the cells. 

 

8.3.5 Save Boundary Conditions 
It is possible to save a generated space and continue to work on it later on 

8.4 Calculation 
Once the user is satisfied with the generated space he can define the calculation parameters 
and start the calculation 

 

8.4.1 Calculation parameters 
The user can edit the following calculation parameters: 

8.4.1.1 Calculation Time 

Calculation time is the amount of seconds that will be calculated until the simulation stops 

8.4.1.2 Delta T 

The value of Delta T is highly dependent from the chosen boundary conditions and temperature 
differences of aligned cells. A good starting value for an average simulation is at 0.005 
seconds. 

8.4.1.3 Number Threads 

The number of Threads hat shall be used during this calculation. The most effizient value is 
highly dependent from the used IT environment. The number should not exceed the number of 
virtual processors of the calculating server. 

Figure 24: Screenshot of the dialog to 
start the calculation. 
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8.4.1.4 Calculation progress 

As the calculation effort remains the same for each simulation step, the duration of the 
simulation can be calculated pretty easy. Therefore, whenever 100 steps are passed the 
average calculation time per iteration gets multiplied by the amount of remaining iterations to 
receive the approximate time that will be necessary to finish the calculation.  

The calculation progress is visualized by a progress bar. 

 

8.5 Examine 
Once the calculation is done, the program switches into the examine view where the results of 
the simulation can be examined.  

8.5.1 Material View 
The material view in the examine display shows the used materials just like during the creation 
of the calculation space.  

8.5.2 Temperature View 
In the temperature view the user can see the calculated temperature distribution of the space. 
In addition the the simple view that is also available during the creation, the view of the 
temperature view features additional features 

8.5.2.1 Details 

Each cell can be selected. Whenever a cell is selected, the following details are shown in the 
right tab: 

• Temperature 
• Boundary Conditions 
• Material 

Figure 25: Screenshot 
of the dialog that shows 
the calculation 
progress. 
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8.5.2.2 Time selection 

The calculation time gets divided into 25 time intervals of the same size. Whenever a time 
intervals ends during the calculation, the program saves a snapshot of the current temperature 
distribution. With a simple slider it is possible to scroll through the 25 snapshots and examine 
the timewise development of the temperature distribution. 

 

 

 

 
 

  

Figure 26: Example plot at t=0. Figure 27: Example plot after 4,5 seconds 

Figure 29: Example plot after 10,5 seconds Figure 28: Example plot after 16,5 seconds 
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8.5.3 Particle View 
The particle view is only available if fluid cells were used for the simulation. The program keeps 
track of each particle movement during every step of the calculation. The particle flows are 
stored as six vectors in the directions +x, -x, +y, -y, +z and -z. The length of the vectors is equal 
to the amount of particles the moved in each direction. Once the simulation is done the 
gathered information is used to visualize the particle flow.  

 First the vectors get summed up to receive the total particle flow vector. This vector gets 
projected on the layer that is currently displayed (xy, xz or yz) and visualized as an arrow. The 
size of the arrows shows the proportions of the different particle flow, not the exact amount of 
particles. The arow of the cell with the most flowing particles within a space always has the 
same size, independent from the length of the vector.  

 
Figure 30: Example of the view that illustrates the particle flow within the system. The heat 
source for this calculation was located at the lower right corner. 

8.5.4 Save and Load 
It is possible to save a space with all boundary conditions, given materials and calculated 
temperatures before and after each simulation. Like this it is possible to change boundary 
conditions after some time and continue the calculation with a different set of conditions.  
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9 Calibration 
During the calculation of the convection two proportionality factors were introduced for both 
diffusion and convection. These must be calibrated first to receive meaningful results.  

9.1 Theory 
The calibration needs to be performed because of two main reasons. The first one is that the 
two factors for diffusion and convection have to be put into relation to one another. Without this 
relation, the simulated systems will differ from real experiments and measurements as the heat 
flow is different.  

 The second reason is that the calculation needs to be normalized for the use of SI units. 
So far, the units of time an length used in the calculations are abstract values.  

9.1.1 Measurement 
The only way to calibrate the factors is to setup an experiment and measure the timewise 
temperature development at relevant coordinates. Then these values have to be compared to 
the calculated ones.  

The two effects of particle flow, the diffusion and the convection are independent from one 
another. To calculate the factors, at least two series of measurements are necessary to 
calculate both factors. To decouple the measurements, the measure points have to be chosen 
correctly. One of the points should be located directly above the heat source so that the heat 
will flow there via diffusion as well as convection while the other measure point shall be located 
somewhere else but in the same distance. In this example, the second measure point will be 
located directly beneath the heat source.  

To receive a static and well reproduceable environment the heat source will be kept at a 
constant temperature. The environment is encapsulated in a box with lower temperature to cool 
the air. After some time, a stationary state will be established and the system is in thermic 
equilibrium.  

Figure 31:Basic geometry of the 
measurement. A heat source is 
placed in the centre, with two 
measure points in the same 
distance. Measure point 1 is 
directly above the heat source 
while measure point 2 is below 
the heat source to eliminate the 
influence of convection. The 
system is cooled by its 
surroundings with constant 
temperature 
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9.1.2 Calculation 
The heat flow is dependent from the temperature in the adjacent cells. The higher the 
temperature difference, the higher the heat flow. So the heat flow will be rather strong at the 
beginning and will lessen quite fast when some heat flew from the heat source. Close to the 
thermal equilibrium almost no heat will flow anymore. So, the timewise temperature 
development will have a form like 𝑇(𝑡) = 1𝑡  

for a cooling system and  𝑇(𝑡) = 1−𝑡 
for a system that gets hotter.  

 
Figure 32: Plot of the T=1/t and T=1/-t functions 

As it is easier to add heat to a system, we will focus on the later equation.  

 To manipulate the shape of the function three variables 𝐴, 𝐵 and 𝐶 will be introduced. 𝑇(𝑡) = 𝐴𝑋 − 𝑡 + 𝑌 𝑌 describes the shift along the temperature axis while 𝑋 described the shift along the time axis. 𝐴 can be described as the amplification of the graph and describes the gradient. In the 
following calculation, 𝐴 corresponds with the sum of the factors for convection and diffusion. 
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 To calculate 𝐴, 𝑋 and 𝑌 we need three measured Temperatures 𝑇0, 𝑇1, 𝑇2  as well as the 
times 𝑡0, 𝑡1, 𝑡2 they were measured at. Then we can create a system of linear equations and 
calculate the variables. To ease up the calculation, 𝑡0 is defined to be 0. 

 𝑇(𝑡0 = 0) =  𝑇1 = 𝐴𝑋 + 𝑌 

𝑇(𝑡1) = 𝑇1 = 𝐴𝑋 + 𝑡1 + 𝑌 

𝑇(𝑡2) = 𝑇2 = 𝐴𝑋 + 𝑡2 + 𝑌 

This system of linear equations can be solved resulting in 𝐴 = − 𝑡2(𝑇2 − 𝑇3)(𝑡1𝑡2 − 𝑡12)(𝑇12 − 𝑇1𝑇2 − 𝑇1𝑇3 + 𝑇2𝑇3)(𝑇1𝑡1 − 𝑇1𝑡2 + 𝑇2𝑡2 − 𝑇3𝑡1)2   
𝑋 = 𝑡1𝑡2(𝑇3 − 𝑇2)𝑇1𝑡1 − 𝑇1𝑡2 + 𝑇2𝑡2 − 𝑇3𝑡1 

𝑌 = −𝑇1𝑇2𝑡1 + 𝑇1𝑇3𝑡2 + 𝑇2𝑇3𝑡1 − 𝑇2𝑇3𝑡2𝑇1𝑡1 − 𝑇1𝑡2 + 𝑇2𝑡2 − 𝑇3𝑡1  

for all 𝑡1 < 𝑡2 and  𝑇1 < 𝑇2 < 𝑇3.  

Inserting three measured temperatures and their relative time after the first measurement, the 
temperature development can be plotted. 

 
Figure 33: Example plot for the solution of the system on linear equations. Both plots start at 
5°C, after 20 seconds both measure 25°C and after 60 seconds they had 30°C in plot B and 
40°C in plot A. 

Note that this calculation is not necessary to calibrate the system. But the calibration gets 
easier as the measurement can be simplified to three measurement points that can be 
compared to the calculated values. There is also a limitation in the selection of measurement 
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points as in the chosen function 𝑇(𝑡) = 1−𝑡 the thermic equilibrium T=1°C is never actually 
reached while in an actual temperature development the thermic equilibrium temperature is 
reached and will then remain constant. Therefore, the measurements must take place before 
the state of thermic equilibrium is reached. Otherwise, the chosen formula cannot describe the 
temperature development correctly.  

 

9.1.3 Normalizing 
To calibrate the program six measured tuples of time and temperature are necessary. Three 
above the heat source and three below the heat source. With these data points the temperature 
development can be plotted. Next, the environment gets rebuilt using the software created and 
the calculation gets started. By comparing the calculated temperature with the measured one’s 
the factors for uplift and diffusion can be set in an iterative process. 

9.2 Execution 
For the creation of this thesis the measurement was not actually performed. Still the calibration 
will be described step by step. 

 For this section the following variables get introduced: 

• The diffusion factor 𝐷 is used as a base amplification of diffusion processes calculated.  
• The uplift factor 𝑈 is used as a base amplification of uplift processes calculated. 
• The amplification factor 𝐴 describes the relation between 𝐷 and 𝑈 to be 𝑈 = 𝐴 ∗ 𝐷 

9.2.1 Thermic equilibrium 
The used diffusion factor 𝐷 doesn’t alter the temperature reached in thermic equilibrium below 
the heat source. This temperature is only defined by the used temperatures. A change of the 
factor 𝐷 only changes the time it takes until the constant temperature is reached.  

A change of the relation between diffusion and uplift on the other hand does change the 
temperature of the thermic equilibrium above the heat source as the warmer particles lift up and 
gather above the heat source. A change of the factor 𝐴 changes the radial distribution of the 
heat around the heat source and therefore influences the end temperature.  

The first step of the calibration is to measure the constant temperature reached in thermal 
equilibrium and alter 𝐴 until the same temperature is calculated.  

As seen in figure 12, the temperature of thermal equilibrium behaves rather linear to changes of 𝐴. The higher 𝐴 is, the higher is also the calculated temperature of thermal equilibrium. The 
calibration can be completed in a few iterations.  
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Figure 34: Calculated values for different amplification values A. The time until the constant 
temperature is reached is not influenced by changes of A but the reached temperature is. It can 
be examined that a change of A also interferes with the constant temperature reached below 
the heat source as some of the heat is shifted upwards.  

 

9.2.2  Thermic development 
Once the temperature of thermic equilibrium is calibrated the timewise development of the 
temperature until it is reached gets calibrated next. By altering 𝐷 the timewise development 
changes. The higher 𝐷, the faster the temperature of thermic equilibrium is reached. As seen in 
figure 13, changes of 𝐷 have a very small influence on the temperature of thermic equilibrium 
above the heat source. 

To calibrate 𝐷 compare the calculated value at one measure point to the measured on at one 
specific time. If the calculated temperature is lower than the measured one, 𝐷 has to be 
increased, otherwise 𝐷 has to be decreased.  

As the starting temperature at 𝑡 = 0 is defined to be the starting temperature and the 
temperature of thermic equilibrium was already calibrated in the first step, it is sufficient to 
calibrate one single measure point for the timewise development.  
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Figure 35: Plots for calculations with different diffusion factors D. The higher D, the faster the 
temperature of thermal equilibrium is reached. 

9.2.3 Starting effects 
For low values of 𝐷 or a low temperature difference between the heat source and the starting 
temperature the calculated and measured functions will align and can be considered as 
calibrated.  

If 𝐷 is high or the temperature difference between the heat source and the starting temperature 
is high, there are some starting effects that influence the fit between the two curves.  

The starting effects can be explained by the fact that the heat from the heat source takes some 
time to reach the measure point. In the algorithm used, heat can only flow from one cell to 
adjacent cells. So the gradient of the plotted calculated temperature at 𝑡 = 0 will always be 0, 
while the gradient of 𝑇(𝑡) = 1−𝑡 is much higher around 𝑡 = 0.  

This starting effects also happens in the measurement; it is just not covered by the chosen 
approximation of the timewise development. If this mismatch happens during the calculation it 
is recommended to reduce the temperature difference between heat source and surroundings 
during the calibration process.  
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Figure 36: The comparison of the calculated values after the calibration and the fitted plot for 
the measured values. At t=25s the temperature of thermic equilibrium was reached. The 
Reference point for the calculation was at t=10s. There is a great mismatch between t=0s and 
t=6s.  
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10 Examples 
This section holds some examples calculated with the created software to illustrate the 
received results. 

10.1 Thermal insulation of windows 
Different kinds of thermal insulation of windows shall be calculated and discussed.  

10.1.1 Experiment setup 
For this experiment the following environment was created.  

• The outside of the window is represented by a pane of air with a constant temperature 
of 260K 

• The inside is represented by a pane of air with a starting temperature of 300K 
• In between there is room for any kind of used thermal insulation 
• The top and bottom of the environment is closed by a layer of concrete 

10.1.2 Solid Glass 
In the first example the thermal insulation is realized by one pane of solid glass. To 
demonstrate to heat flow, the pane was created with a thickness of 7 cm even though this is not 
a realistic value and usual solid glass panels are much thinner. 

Figure 37: Visualization of the experimental setup for the solid glass 
pane 
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Figure 38: Timewise development of the heat flow through a solid glass pane after 30, 90, 240 
and 600 seconds. 

As seen in the material properties of glass (see table in section 3.1.5), glass has a low specific 
heat capacity of 0.8 𝐾𝐽𝑘𝑔 𝐾 but a rather high heat conductivity of 80 𝑊(𝑐𝑚∙𝐾) . Therefore, glass is not 

a good thermal isolator. In the calculation the inside end of the glass cooled down to about 
270K after a few minutes. 

 

10.1.3 Encapsulated Air 
In the second example, instead of the solid glass pane there are two thinner panes of glass. 
The space between the two panes of glass is filled with air.  

 
 



 

67 

 

When comparing the temperature development, the heat insulation works much better using 
encapsulated air between two thin panes of glass instead of one thick layer of glass. Due to the 
low heat conductivity of air, it works as a great thermal isolator. The diffusion and uplift lessen 
this effect but when all particle movements triggered from the outside can be eliminated, e.g. by 
encapsulating the air between two panes of glass, the created increase of the thermal 
conductivity by convection of thermal effects can be neglected for thermal isolation.  

 
Figure 39: Timewise development of the heat inside the window with encapsulated air at 30, 
90, 240 and 600 seconds. 

 

10.2 Enclosed heat sources 
A simple experiment that simulates the heat and particle flow triggered by several heat sources 
in a closed vessel.  

10.2.1 One decentred heat source 
The environment consists of a box made of iron and filled with air. At the bottom of the box, but 
no centred there is a heat source realized by a cell of copper with a constant temperature of 
500K while the rest of the box starts at 300K. 

 
Figure 40: Experimental setup for one enclosed heat source. 

The heat distribution after 600 seconds shows the results of diffusion and uplift in the 
encapsulated air. Examining the heat distribution in combination with the particle flow the 
particles tend to move upwards above the heat source. On the way up they cool down again so 
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the effect of the uplift decreases. When the particles are at the top of the box they are almost at 
the same temperature as the iron box itself and there is no more uplift active. As the stream of 
particles lifting from the heat source does not stop, the particles are pushed to the side where 
no heat source is located. Then they move downwards and get sucked back towards the heat 
source.  

 

10.2.2 Four heat sources 
In this example four heat sources like in the first example are placed evenly distributed on the 
floor of the iron box. 

Figure 43: The four heat sources. The view was changed to XZ for the image. All heat 
sources are placed on the ground at the same level. 

Figure 41: Heat distribution after 600 
seconds for a single heat source. 

Figure 42: Visualized particle flow after 600 
seconds for a single heat source 
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When comparing the heat distribution of the two experiments there is one major difference 
visible. Even though all heat sources are placed in the same distance from the wall, the heat 
distributes differently in the second experiment. In the first experiment, the air directly next to 
the iron side wall is heated up. In the second experiment, the air next to the iron wall stays cool 
for much longer. The reason for this can be seen when examining the particle flow. In the 
second experiment with 4 heat sources, the centre of the box is too hot for the particles to cool 
down and sink back to the heat sources as the heat is concentrated there. As the particles have 
to move somewhere, they can only move to the outside to sink bac to the heat source. 
Therefore, there is a constant movement of air sinking and cooling down next to the heat 
source that prevents heat flowing in that direction.  

 

 

 

 

 

 

 

 

 

 

 

Figure 44: Heat distribution for four heat 
sources after 600 seconds. 

Figure 45: Visualization of the particle flow 
near the heat sources. There are almost no 
cells where most of the particles are moving 
downward. 

Figure 46: Visualization of the particle flow with 4 
heat sources next to the iron wall. Almost all of the 
cells have a majority of particles moving downward. 
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11 Conclusion 
Many physical and chemical effects as well as some material properties are dependent from 
the temperature of a body and its surroundings. Bodies will, for example, change their 
dimensions and density as well as their electrical resistance when they change their 
temperature while some effects will get more or less efficient. Therefore, it is important to know 
the heat flow and temperature gradient in many technical and scientifical environments.  

 The main function of the program described within this diploma thesis is to provide a 
highly configurable and customizable framework to approximate the heat flow within many 
different systems. The creation of an environment to calculate is rather easy and there are no 
limits to the usable materials. Thanks to the solution of the equilibrium based approach using 
the Gaußian Elimination Method, the calculation is very performant, given the complexity of the 
involved linear and nonlinear systems of equations that have to be solved several thousand 
times for a few seconds of heat flow simulation.  

 Unfortunately, the technical issues described are a huge drawback as the size and 
resolution of the calculated systems are limited. It might be possible to build bigger 
environments by separating them into smaller parts that are calculated separately but with the 
used algorithm the heat does not flow consistent between two areas of fluid materials. There is 
always a thermal discontinuity between the calculated areas. The next step to pursue the 
program would be to enhance the used calculations to enable the approximation of bigger 
environments in a higher resolution.  
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materials and boundary 
conditions can be assigned to 
cells.  Own Work 53 

Figure 23 
 Screenshot of the dialog to start 
the calculation.  Own Work 54 

Figure 24 
 Screenshot of the dialog that 
shows the calculation progress.  Own Work 55 

Figure 25  Example plot at t=0.  Own Work 56 

Figure 26  Example plot after 4,5 seconds  Own Work 56 

Figure 27  Example plot after 16,5 seconds  Own Work 56 

Figure 28  Example plot after 10,5 seconds  Own Work 56 

Figure 29 

 Example of the view that 
illustrates the paricle flow within 
the system. The heat source for 
this calculation was located at the 
lower right corner.  Own Work 57 

Figure 30 

 Basic geometry of the 
measurement. A heat source is 
placed in the centre, with two 
measure points in the same 
distance. Measure point 1 is 
directly above the heat source 
while measure point 2 is below 
the heat source to eliminate the 
influence of convection. The 
system is cooled by its Own Work 58 
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surroundings with constant 
temperature  

Figure 31 
 Plot of the T=1/t and T=1/-t 
functions Own Work 59 

Figure 32 

 Example plot for the solution of 
the system on linear equations. 
Both plots start at 5°C, after 20 
seconds both measure 25°C and 
after 60 seconds they had 30°C in 
plot B and 40°C in plot A.  Own Work 60 

Figure 33 

 Calculated values for different 
amplification values A. The time 
until the constant temperature is 
reached is not influenced by 
changes of A but the reached 
temperature is. It can be 
examined that a change of A also 
interferes with the constant 
temperature reached below the 
heat source as some of the heat 
is shifted upwards.  Own Work 62 

Figure 34 

 Plots for calculations with 
different diffusion factors D. The 
higher D, the faster the 
temperature of thermal 
equilibrium is reached.  Own Work 63 

Figure 35 

 The comparison of the calculated 
values after the calibration and 
the fitted plot for the measured 
values. At t=25s the temperature 
of thermic equilibrium was 
reached. The Reference point for 
the calculation was at t=10s. 
There is a great mismatch 
between t=0s and t=6s. Own Work 64 

Figure 36 
 Visualization of the experimental 
setup for the solid glass pane  Own Work 65 

Figure 37 

 Timewise development of the 
heat flow through a solid glass 
pane after 30, 90, 240 and 600 
seconds.  Own Work 66 

Figure 38 

 Timewise development of the 
heat inside the window with 
encapsulated air at 30, 90, 240 
and 600 seconds.  Own Work 67 

Figure 39 
 Experimental setup for one 
enclosed heat source.  Own Work 67 
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Figure 40 

 Heat distribution after 600 
seconds for a single heat source. 
68 Own Work  

Figure 41 

 Visualized particle flow after 600 
seconds for a single heat source 
68 Own Work  

Figure 42 

 The four heat sources. The view 
was changed to XZ for the image. 
All heat sources are placed on the 
ground at the same level.  Own Work 68 

Figure 43 
 Heat distribution for four heat 
sources after 600 seconds.  Own Work 69 

Figure 44 

 Visualization of the particle flow 
near the heat sources. There are 
almost no cells where most of the 
particles are moving downward.  Own Work 69 

Figure 45 

 Visualization of the particle flow 
with 4 heat sources next to the 
iron wall. Almost all of the cells 
have a majority of particles 
moving downward. Own Work 69 
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