
D I P L O M A R B E I T

Deep Mean-Variance Hedging using
LSTM RNNs

ausgeführt am

Institut für

Stochastik und Wirtschaftsmathematik

TU Wien

unter der Anleitung von

Univ.Prof. Dipl.-Math. Dr.rer.nat. Thorsten Rheinländer

durch

Philipp Ladislaus Wilhelm Knoll, BSc

Matrikelnummer: 01617936

Wien, am 27. Jänner 2023
Autor Betreuer

Kurzfassung

Die Suche nach Hedging-Strategien für Derivate ist ein zentrales Problem der Finanzma-
thematik und sowohl für institutionelle als auch für private Investoren von großem Inter-
esse. Herkömmliche Hedging-Verfahren erfordern in der Regel die Spezifikation und Kali-
brierung eines Asset-Preis-Modells, bevor eine Hedging-Strategie berechnet werden kann.
Als Alternative zu diesen Ansätzen haben Buehler et al. das Deep Hedging Framework
[3] basierend auf neuronalen Feed-Forward-Netzwerken eingeführt. Die vorliegende Arbeit
adaptiert dieses Framework in zwei Bereichen. Erstens ist das Netzwerk, das zur Bestim-
mung der Hedging-Strategie verwendet wird, nicht mehr eine Folge verbundener neuronaler
Feed-Forward-Netzwerke. Stattdessen wird eine echte rekurrente Topologie verwendet, die
aus hierarchisch angeordneten long short-term memory (LSTM) Zellen besteht. Zweitens
wird das Hedging-Optimierungsproblem als ein Mean-Variance-Hedging-Problem formu-
liert, bei dem das Ziel darin besteht, den erwarteten quadratischen Hedging-Fehler unter
einem äquivalenten Martingal-Maß zu minimieren. Dieser Ansatz kann auch Marktfriktio-
nen in Form von Transaktionskosten und Handelsrestriktionen in das Optimierungsproblem
einbeziehen, d.h. Phänomene der realen Welt, die in traditionellen Hedging-Ansätzen nor-
malerweise nicht berücksichtigt werden. Eine Implementierung des LSTM-basierten Ansat-
zes wird in numerischen Experimenten unter vier verschiedenen Rahmenbedingungen und
zwei verschiedenen Klassen von Asset-Preis-Modellen illustriert und bewertet, wobei das
neuronale Netzwerk basierend auf dem Loss bei Out-of-Sample-Testdaten ähnliche oder
bessere Performance erzielt als die Benchmark-Strategien.

Abstract

Finding hedging strategies for derivatives is a central problem of mathematical finance and
of great interest for both institutional and retail investors. Traditional hedging techniques
usually require specification and calibration of an asset price model prior to calculating
a hedging strategy. As an alternative to these approaches Buehler et al. introduced the
Deep Hedging framework [3] based on feed-forward neural networks. This thesis adapts
this framework in two areas. First, the network used to determine the hedging strategy
is no longer a sequence of connected feed-forward neural networks. Instead, a truly re-
current topology consisting of hierarchically organized long short-term memory (LSTM)
cells is used. Secondly, the hedging optimization problem is formulated as a mean-variance
hedging problem, where the aim is to minimize the expected squared hedging error under
an equivalent martingale measure. This approach can also incorporate market frictions in
the form of transaction costs and trading constraints into the optimization problem, i.e.,
real-world phenomena which are usually not considered in traditional hedging approaches.
An implementation of the LSTM-based approach is illustrated and evaluated in numerical
experiments under four different settings and two different classes of asset price models,
where the neural network performs similarly or better than the benchmark strategies, based
on the loss on out-of-sample test data.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 27. Jänner 2023
Philipp Ladislaus Wilhelm

Knoll, BSc

Contents

1. Introduction 1

2. Deep Learning and RNNs 2
2.1. Feedforward Neural Networks . 2

2.1.1. Training feedforward neural networks 4
2.2. Recurrent Neural Networks . 8

2.2.1. Forward propagation equations . 9
2.2.2. Training recurrent neural networks 10
2.2.3. Deep Recurrent Networks . 11
2.2.4. LSTM . 12

3. Mean-Variance Hedging 15
3.1. Prerequisites . 15

3.1.1. Stochastic Calculus . 15
3.1.2. Mathematical Finance . 19

3.2. Mean-Variance Hedging . 23
3.2.1. Laplace Method for Exponential Lévy Processes 24

4. Using Deep Learning for Mean-Variance Hedging 29
4.1. Setting . 29

4.1.1. Trading Constraints . 30
4.1.2. Transaction Costs . 30
4.1.3. Portfolio Value and Loss . 31
4.1.4. Mean-Variance Hedging . 31

4.2. Stacked LSTM Model . 32
4.2.1. Model Architecture . 32
4.2.2. Cost Function . 33
4.2.3. Implementation . 34

5. Numerical Experiments 37
5.1. Exponential Lévy Model . 37

5.1.1. Setting . 37
5.1.2. Experiment . 39

5.2. Exponential Lévy Model - Transaction Costs 43
5.2.1. Setting . 43
5.2.2. Experiment . 43

5.3. Stochastic Volatility Model . 46
5.3.1. Setting . 47
5.3.2. Experiment . 47

i

Contents

5.4. Stochastic Volatility Model - Trading in additional Option 51
5.4.1. Setting . 51
5.4.2. Experiment . 51

5.5. Hardware, Software and Runtimes . 54

6. Conclusion 57

A. Code 58

List of Figures 73

List of Tables 74

List of Source Codes 75

Bibliography 76

ii

1. Introduction

Option pricing and finding optimal hedging strategies is a central problem in financial
mathematics. In general, this problem can be stated as

inf
c,ϑ

ρ(H − c− (ϑ · S)T)

for a given claim H, tradable asset S and risk measure ρ. The value c ∈ R denotes the
amount of initial cash injection and ϑ ∈ L(S) a self-financing strategy. The space L(S)
consists of all integrands for which the stochastic integral w.r.t S is well defined.
Solving this optimization problem is usually not straightforward and computationally inten-
sive. Additionally, the solutions depend on the risk measure ρ as well as on the underlying
asset price model, necessitating previous model choice and calibration of model parameters.
As an alternative to theses techniques, Buehler et al. introduced the“Deep Hedging” frame-
work in [3]. This approach uses deep learning methodology in the form of feed-forward
neural networks to numerically solve the hedging optimization problem for convex risk
measures ρ. The neural network uses a “semi-recurrent” topology with separate feed-
forward networks for each time step and the output for each time step being part of the
input vector for the next time step. The framework also allows for market frictions in the
form of transaction costs and trading constraints, real-world features that are often not
accounted for in traditional hedging approaches.

This thesis adapts this framework in two fundamental ways:
First, the model topology in this thesis is “fully recurrent”, using gated recurrent neural
networks in the form of hierarchically organized long short-term memory (LSTM). This
choice of topology is intuitive, as recurrent neural networks are specifically designed and
specialized to process sequence data such as time series.
Second, instead of the hedging problem being formulated for convex risk measures, the
optimization problem is stated as a mean-variance hedging problem which uses a quadratic
criterion. Only mean variance hedging under the risk-neutral measure is considered.

The “LSTM Hedging” approach is illustrated and analysed in numerical experiments for
two different classes of asset price models: an exponential Lévy model (Normal Inverse
Gaussian Model [2]) and a stochastic volatility model (4/2 stochastic volatility model [9]).

Regarding the structure of the thesis, Chapter 2 serves as an introduction into deep learning
and recurrent neural networks. Chapter 3 first treats the mathematical prerequisites (3.1)
to later formulate the mean-variance hedging optimization problem (3.2) and its explicit
solution in the case of exponential Lévy models (3.2.1). Next, Chapter 4 combines the def-
initions and results from the previous chapters, discusses the discrete-time mathematical
setting including trading restrictions and transaction costs (4.1) and illustrates how LSTM
RNNs can be used to find close-to-optimal mean-variance hedging strategies (4.2). Finally,
this approach is examined and evaluated within the numerical experiments in Chapter 5.

1

2. Deep Learning and RNNs

This chapter introduces the models and algorithms used in later chapters, and discusses
the mechanisms used for training these models. First, feedforward neural networks are
introduced, followed by an explanation of the training process using gradient descent, back-
propagation and the Adam optimization algorithm. In the next step, recurrent neural
networks and their properties are discussed, before this chapter is concluded by introducing
the LSTM-Cell as a modern RNN-Architecture.

2.1. Feedforward Neural Networks

Feedforward neural networks, also referred to as multilayer perceptrons, are among the
most simple and straightforward deep learning models. They are used to approximate some
function f∗ which is usually not explicitly given. Depending on the problem at hand, this
could be a classifier mapping inputs to a category or class, or, in the case of a regression
problem, a function with real-valued outputs. This specific type of neural network is called
“feedforward”, because the values are propagated forward from input to output without
any kind of feedback or recurrence.

A feedforward neural network can be represented as a composition of multiple functions
Fl : Rn → Rm, which are commonly referred to as layers The outputs of each layer,
with exception of the last one (the so-called output layer), are passed as inputs to the
next layers. All layers except the input and output layers are referred to as hidden
layers. The computations done in each layer consist of an affine transformation of the
input values, followed by the application of a non-linear activation function. The purpose
of this activation function is to introduce non-linearity into the model. This is done ,because
only performing affine transformations between layers would ultimately lead to the model
output being an affine transformation of the model inputs, which would limit the neural
network’s ability to approximate arbitrary functions f∗. [8]
A possible layout for a feedforward neural network with 3 input nodes, two hidden layers
with 4 nodes each, and a 3-node output layer is shown in Figure 2.1. All this information
can be combined in the following mathematical definition of a neural network [3]:

Definition 1. Let L,N0, N1, ..., NL ∈ N, σ : R → R and for any l = 1, ..., L let Wl :
RNl−1 → RNl denote an affine function. A function F : RN0 → RNL defined as

F (x) = WL ◦ FL−1 ◦ · · · ◦ F1 with Fl = σ ◦Wl for l = 1, . . . , L− 1

is called a feedforward neural network. The activation function σ is applied component-
wise. L denotes the number of layers, N1, ..., NL−1 denote the dimensions of the hidden
layers and N0, N1 of the input and output layers, respectively.

2

2. Deep Learning and RNNs

Figure 2.1.: Example architecture of a feedforward neural network

The affine functions Wl are given as Wl(x) = Alx+bl for some Al ∈ RNl×Nl−1 and bl ∈ RNl .
The number Al

ij is interpreted as the weight of the edge connecting the node i of layer l−1
to node j of layer l.
The set of all neural networks mapping from Rd0 → Rd1 with activation function σ is
denoted by NN σ

∞,d0,d1
Feedforward neural networks are appropriate tools for function approximation, due to the
introduction of non-linearity via applications of the activation function and the multi-layer
architecture. The following theorem ([13],[3]) shows the exact approximation properties
that these networks offer.

Theorem 1. (Universal Approximation) Suppose σ is bounded and non-constant. The
following statements hold:

• For any finite measure µ on (Rd0 ,B(Rd0)) and 1 ≤ p < ∞, the set NN σ
∞,d0,1

is dense

in Lp(Rd0 , µ)

• If in addition σ ∈ C(R), then NN σ
∞,d0,1

is dense in C(Rd0) for the topology of uniform
convergence on compact sets.

This theorem’s results only concern the set NN σ
∞,d0,1

. However, as any output component
within a neural network inNN σ

∞,d0,d1
can be thought of as a neural network fromNN σ

∞,d0,1
,

the results generalize to neural networks with higher-dimensional output.

3

2. Deep Learning and RNNs

2.1.1. Training feedforward neural networks

Training a neural network refers to the process of repeatedly updating the network param-
eters (weights and biases) to achieve a “better” approximation of the target function f∗.
The goal is to find model parameters that locally minimize the cost function associated
with the problem at hand. The cost function is chosen based on the specific problem for-
mulation and task. Popular choices include mean-squared-error for regression and cross
entropy for classification tasks.
While, from a mathematical standpoint, aiming to find a global minimum of the cost func-
tion might seem reasonable, in a machine learning setting, global minima often lead to
over-fitting, meaning a model performs well on training data, but comparatively poorly
on unseen testing data. This, in combination with the fact that for non-convex cost func-
tions the predominantly used algorithms have neither a guarantee of convergence towards
a global minimum nor a way to determine if an achieved minimum is local or global, means
that the goal of finding a local minimum is not only more realistic but also more desirable
for prediction.
In the case of neural networks, cost function minimization is usually achieved through some
version of gradient descent, while the updates of the model parameters are calculated using
back-propagation.

Gradient descent

Gradient descent is a numerical method to find a (local) minimum of a real valued function
f : Rn → R. The gradient at a point x0 ∈ Rn indicates the direction of maximum rate of
increase. Consequently, if ∇f(x0) is the direction of maximum rate of increase, the negative
gradient −∇f(x0) points in the direction of maximum decrease of f at x0. Assuming a
starting point x(0), consider the point x(0) − α∇f(x(0)). Then, Taylor’s theorem implies

f(x(0) − α∇f(x(0))) = f(x(0))− α||∇f(x(0))||2 +O(α)

Therefore, if α is sufficiently small and ∇f(x(0)) ̸= 0 this leads to

f(x(0) − α∇f(x(0))) ≤ f(x(0))

meaning that the point x(0) − α∇f(x(0)) is an improvement over x(0) when trying to find
a (local) minimum of f .
This leads to the following minimization algorithm [4]:

1. Choose a starting point x(0) ∈ Rn

2. Calculate the step size αk for (k + 1)-th iteration

3. Given the result x(k) of the k-th iteration, calculate x(k+1) = x(k) − αk∇f(x(k))

4. Repeat steps 2 and 3 until some kind of stopping criterion is reached

The scalar value αk is referred to as step size in this context, while it is usually called
learning rate when talking about neural network training. This value is allowed to be

4

2. Deep Learning and RNNs

non-constant, as many improved versions of this basic gradient descent algorithm adapt
the step size for each step to avoid numerical problems and “bad” local minima.

In machine and deep learning applications, the cost function often decomposes into a sum
over the training samples of a per-sample loss function, for example:

J(θ) = Ex,y∼p̂dataL(x, y, θ) =
1

N

N
i=1

L(x(i), y(i), θ)

with the per-sample loss function L, input data x, target data y , number of samples N
and θ denoting the vector of trainable model parameters. The gradient to be calculated is
the gradient w.r.t θ:

∇θJ(θ) = ∇θ
1

N

N
i=1

L(x(i), y(i), θ) =
1

N

N
i=1

∇θL(x
(i), y(i), θ)

In this case, one gradient descent step would require looping over the entire dataset, which
can be quite large with millions of samples in many cases. Instead, one can approximate
the gradient by sampling a so-called minibatch {x(1), x(2), ..., x(m)} of size m << N from
the training data, calculating the gradient of the (normed) sum of losses for the minibatch

∇θ
1

m

m
i=1

L(x(i), y(i), θ) =
1

m

m
i=1

∇θL(x
(i), y(i), θ)

and using this gradient in the gradient descent update step. This way, the parameters are
updated more often, but the updates only use a approximation of the true gradient. This
algorithm is usually referred to as (minibatch) stochastic gradient descent (SGD) [8].

Back-propagation

In feedforward nerual networks, the inputs are propagated from the input layer to the first
hidden layer, then to the the following hidden layers (if they exist), and eventually to the
output layer. During training, this propagation continues from the output layer to the
cost function J(θ). This process is called forward-propagation, as the results of each
calculation are propagated forward through the network.
The back-propagation algorithm then propagates the cost information backwards through
the network to calculate the gradients used to update the network parameters. Using the
algorithm one can calculate the partial derivatives of the cost function J w.r.t. to each
model parameter and adjust the parameters accordingly using some variation of gradient
descent.
In order to understand this algorithm, one has to think of a neural network as a computa-
tional graph. In these graphs, each node represents a variable which can be either a scalar,
vector, matrix or even a tensor. Operations are functions of one or more variables returning
a single variable. If a variable results from applying an operation to one or more variables,
a directed edge is drawn from these variables to the result of the operation.
The back-propagation algorithm is based on repeated application of the chain rule [8]:

5

2. Deep Learning and RNNs

Theorem 2. Let x ∈ Rm, y ∈ Rn and g : Rm → Rn, f : Rn → R be sufficiently differen-
tiable functions. If y = g(x) and z = f(y) then

∂z

∂xi
=

n
j=1

∂z

∂yj

∂yj
∂xi

Rewritten in vector notation this reads

∇xz =

�
∂y

∂x

�T

∇yz

where ∂y
∂x denotes the Jacobi matrix of g.

Applying this theorem allows one to find algebraic expressions for the gradients. However,
directly using this theorem to compute gradients may be infeasible for larger network
architectures. Often, there are reoccurring expressions within the gradient calculation that
can be stored instead of recomputed to speed up this process at the cost of higher memory
usage.
To illustrate this, consider a computational graph describing the computation of a scalar
u(n). The goal is to calculate the gradients with respect to the input nodes u(i), i ∈ 1, ...ni.
Assume that each output can be calculated one after the other, starting from u(ni+1) up to
u(n). The gradients can then be calculated using the chain rule

∂u(n)

∂u(j)
=

i:j∈Pa(u(i))

∂u(n)

∂u(i)
∂u(i)

∂u(j)
(2.1)

with Pa(u(i)) denoting the set of parent nodes of u(i).

When calculating the gradients backwards from ∂u(n)

∂u(n) = 1, each gradient should be saved

and used in place of ∂u(n)

∂u(i) in Equation 2.1 to avoid recalculation of reoccurring expressions
and allow for a computational cost proportional to the number of edges in the graph.
Assuming a feedforward neural network as defined in Definition 1 with loss function L, the
back-propagation steps for this network can now be derived. Let al denote the activation of
the l-th layer, meaning the result of Alx+ bl without application of the activation function.
and let hl denote the post-activation layer outputs, meaning hl = σ(al). The example
above then leads to the following algorithm:

• Assign ∇ŷJ = ∇ŷL(ŷ, y) to the variable g

• For l = L,L− 1, ..., 1:

– Convert gradient on the layer output to pre-activation:
Assign ∇alJ = g ⊙ σ′(al) to variable g

– Calculate gradients w.r.t weights and biases:
∇blJ = g

∇AlJ = ghl−1T

6

2. Deep Learning and RNNs

– Propagate gradients backwards to the next lower layer’s outputs:

Assign ∇hl−1J = AlT g to the variable g

The gradients ∇blJ and ∇AlJ can then be used immediately for the parameter update
step, or used with the chosen gradient-based optimization method. The symbol ⊙ once
again denotes the component-wise product, which in this case stems from σ being a scalar
function being applied component-wise. [8]

Adam Optimizer

Adam (Adaptive Moment Estimation) is an optimization algorithm first introduced in
[15]. As it is one of the most used optimization algorithms in deep learning today, it will
be the algorithm of choice for the models used in later chapters. Adam is a variation of
stochastic gradient descent, using not a single learning rate, but a separate learning rate
for each network parameter. The algorithm also uses exponential moving averages of the
gradient (mt) as well as the squared gradient (vt) as estimates of the gradients first and
second moments. This can be represented using the following equations:

gt = ∇θf(θ)

mt = β1 ·mt−1 + (1− β1) · gt
vt = β2 · vt−1 + (1− β1) · gt ⊙ gt

where β1, β2 ∈ [0, 1) denote the exponential decay rates, f(θ) the function to be optimized,
⊙ the component-wise multiplication and t the current iteration step. The moving average
vectors are initialized as zero vectors, meaning m0 = v0 = 0. This leads to these estimators
being biased towards zero in early iterations, which is why the bias corrected estimators

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

are used instead. As β1, β2 ∈ [0, 1), this bias correction diminishes with increasing number
of iterations.
Given a step size α ∈ R+ the model parameters are updated using the following update
rule:

θt = θt−1 − α
m̂t√
v̂t + ϵ

where ϵ > 0 is a hyper parameter added in the denominator to prevent division by zero.

The parameters recommended by the authors of [15] are:

• α = 0.001

• β1 = 0.9

• β2 = 0.999

• ϵ = 10−8

which are used by most implementations (note that TensorFlow uses ϵ = 10−7 per default
[7]).

7

2. Deep Learning and RNNs

2.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) are a family of neural networks that are specialized
to process sequences. For the purposes of this thesis, sequence refers to a collection
x(1), . . . , x(τ), where each x(i), i ∈ 1, . . . , τ is a n-dimensional vector.
While using feedforward networks for sequences is of course possible, one quickly runs into
problems for long-length input sequences as the high number of network parameters make
this architecture infeasible. RNNs circumvent these problems by using parameter-sharing,
meaning that some parts of the model use the same parameters across time steps. This not
only reduces the number of parameters that need to be trained, but also enables RNNs to
process variable length sequences, while feedforward neural networks are not able to gen-
eralize to input sizes not seen during training. Parameter-sharing is also useful for many
typical RNN applications, as when processing sequences, one often wants the network to
treat input information similarly, independent of the time index it occurs at. For example,
in natural language processing, when trying to extract certain information from a sentence,
one would want a network to recognize this information no matter the location within the
sentence.
To further define recurrent neural networks, it is necessary to understand the concept of
unfolding a computational graph. While feed-forward neural networks can simply be
viewed as a function from input to output space, RNNs are more similar to dynamical
systems. Consider a dynamical system driven by some external signal x(t)

s(t) = f(s(t−1), x(t); θ) (2.2)

where s(t) is referred to as the state of the system, which contains information of the past
signal values of x. For a finite number of time steps, the system’s graph can be unfolded
by repeatedly applying 2.2. For example

s(3) = f(s(2), x(3); θ) = f(f(s(1), x(2); θ), x(3); θ) (2.3)

leads to an expression without recurrence that can be represented using acyclic graph.
Many recurrent neural networks use equation 2.2 to compute its hidden units, which are
usually subsequently used to calculate the networks outputs. These hidden units, commonly
denoted by h(t), function as a record of relevant information from past input values. As
the hidden units have a fixed dimension, but the input sequence up to t can be arbitrarily
long, they are inherently lossy.
The unfolded recurrence at time step t can be represented by a function g(t) that takes
the sequence up to time t as input, but the unfolded structure allows this function to be
factorized into repeated applications of f

h(t) = g(t)(x(t), x(t−1), . . . , x(1)) = f(h(t−1), x(t); θ)

This way, the model is specified as transition from state to state and has a fixed input size
in each step, not a sequence of arbitrary length. Additionally, the transition function f
and the parameters θ are the same for each time step. Therefore, only the model f has to
be learned and can easily be generalized to arbitrary sequence length, without having to
learn a model g(t) for every sequence length.

8

2. Deep Learning and RNNs

Figure 2.2.: Folded and unfolded computational graph

Figure 2.2 shows a simple, output-less RNN as a circuit diagram and then as an unfolded
graph, in which every node is now associated with a time step. The black square in the
left diagram denotes the application of f with a one time step delay. [8]

2.2.1. Forward propagation equations

Using graph unfolding and parameter sharing, one can define many different RNN archi-
tectures. A basic one will serve as an illustration on how to derive the forward propagation
equations of RNNs, meaning the computations necessary to obtain a models output(s)
given the inputs. Figure 2.3 shows the structure of this recurrent neural network, which
is similar to the structure depicted in Figure 2.2. However, this network introduces the
output nodes o, the loss function L, and the true labels or targets y.
The hidden units h(t) for a given time step t are computed as the sum of the matrix-vector
product of W and the previous time step’s hidden units, the matrix vector matrix-vector
product of U and the input at the current time and a bias vector b, followed by the appli-
cation of an activation function σ. The value at the output node o(t) for a given time step
t is computed as the matrix vector product of V and the current time step’s hidden units
plus a bias vector c. After application of another activation function, the so-called output
function σout, the values are passed to the loss function along with the target value y(t) .
For t ∈ 1, . . . , τ , this can be summed up using the following equations:

a(t) = Wh(t−1) + Ux(t) + b

h(t) = σ(a(t))

o(t) = V h(t) + c

ŷ(t) = σout(o(t))

This means that the trainable model parameters are the matrices U , V , W and the vectors
b, c. The loss function in this architecture is given as the sum of the per time step losses

L :=

t

L(t)

[8]

9

2. Deep Learning and RNNs

Figure 2.3.: Basic RNN Architecture

2.2.2. Training recurrent neural networks

Training recurrent neural networks follows the same principles as training feedforward
neural networks. The minimization of the cost function is achieved by applying the back-
propagation algorithm to the unfolded recurrent neural network.
However, due to the concept of parameter sharing used in RNNs, one has to resort to a
small modification, because computing the gradient of the cost function with regard to a
parameter in the typical sense would encompass the contributions of this parameter to the
gradient over all possible edges in the computational graph, which is not compatible with
the algorithm introduced in Section 2.1.1. Therefore, the parameters in each time step
are treated as non-shared for the back-propagation step by introducing dummy variables
that simple are copies of the original parameters. For example, instead of using the matrix
W , the gradients are calculated as if every time step t used a matrix W (t), that contains
the same values as W . The parameter gradient is then given as the sum of the parameter
gradients for the dummy variables.

Using the same recurrent neural network as in Section 2.2.1, one can calculate the gradients
w.r.t. the parameters recursively starting from the nodes preceding the total loss

∂L

∂L(t)
= 1

10

2. Deep Learning and RNNs

The next step is to calculate the gradient w.r.t. the outputs o(t)

(∇o(t)L)i =
∂L

∂o
(t)
i

=
∂L

∂L(t)

∂L(t)

∂o
(t)
i

Going to the next nodes, the hidden units h(t), one has to start iterating backwards from
time step τ due to the connections between the hidden unit nodes. For time step τ the
result is

∇h(τ)L = V T∇o(τ)L

Iterating backwards in time from t = τ − 1 to t = 1 yields

∇h(t)L =

�
∂h(t+1)

∂h(t)

�T

(∇h(t+1)L) +

�
∂o(t)

∂h(t)

�T

(∇o(t)L)

= W T (∇h(t+1)L)Jh(t+1)

σ + V T (∇o(t)L)

where Jh(t+1)

σ denotes the Jacobian matrix of the activation function σ associated with the
hidden units at time step t+ 1.
Now the parameter gradients can be computed using the dummy variables and gradients
aggregation as mentioned above:

∇cL =

t

�
∂o(t)

∂c

�T

(∇o(t)L) =

t

T (∇o(t)L)

∇bL =

t

�
∂h(t)

∂b(t)

�T

(∇h(t)L) =

t

Jh(t)

σ (∇h(t)L)

∇V L =

t

i

�
∂L

∂o
(t)
i

�
∇V o

(t)
i =

t

(∇o(t)L)h
(t)T

∇WL =

t

i

�
∂L

∂h
(t)
i

�
∇W (t)h

(t)
i

=

t

Jh(t)

σ (∇h(t)L)h(t−1)T

∇UL =

t

i

�
∂L

∂h
(t)
i

�
∇U(t)h

(t)
i

=

t

Jh(t)

σ (∇h(t)L)x(t)
T

[8]

2.2.3. Deep Recurrent Networks

The recurrent neural network structure used in the previous section can be decomposed
into three blocks of parameters and transformations:

11

2. Deep Learning and RNNs

Figure 2.4.: Deep RNN architecture with two layers of hidden units

1. from input to hidden state

2. from previous hidden state to the next hidden state

3. from hidden state to output

Each of these corresponds to an affine transformation followed by an application of an ac-
tivation function. This is often called a shallow transformation as it can be performed by
a single layer neural network. For many applications, it may be useful to consider adding
depth to any of these three blocks, as experimental evidence suggests that this may be
required to approximate the target functions.
The models used in later chapters will use multiple groups of hidden units organized hier-
archically, as depicted in Figure 2.4. Intuitively, the lower layers of hidden units serve as
a kind of pre-processing layers, to allow the following layers to better capture the relevant
information.
Moreover, it should also be mentioned that deeper architectures are more computationally
intensive to train, as not only do more parameters have to be trained, but also the paths
between variables become longer, leading to more intensive back-propagation steps. [8]

2.2.4. LSTM

Recurrent neural network suffer a problem called vanishing and exploding gradients. This
stems from the fundamental design of these networks, as their structure and parameter
sharing leads to repeated applications of the same functions.
To better illustrate this problem, consider the recurrence relation

h(t) = W Th(t−1)

12

2. Deep Learning and RNNs

which can be interpreted as a very basic recurrent neural network with linear activation
function and no inputs. This recurrence can be simplified to

h(t) = (W t)Th(0)

If the matrix W admits an eigenvalue decomposition W = QΛQT with orthogonal Q, this
can again be rewritten as

h(t) = QΛtQTh(0)

From this representation, it is clear that the eigenvalues with magnitude less than 1 decay
to zero, while eigenvalues with magnitude greater than 1 explode. This leads to the compo-
nents of h(0), which are not aligned with the eigenvector corresponding to the eigenvector
with biggest magnitude, to be discarded eventually.[8]

To address this, many approaches have been introduced. One of them are the so called
gated RNNs, their most prominent member being long short-term memory (LSTM).
The LSTM architecture introduces three so-called gates, i.e., the input, output and for-
get gates, that control the flow of information within the network and consist of trainable
parameters. The LSTM RNN is defined by the following equations:

c̃(t) = tanh(Uh(t−1) +Wx(t) + b) (2.4)

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ c̃(t) (2.5)

h(t) = o(t) ⊙ g(c(t)) (2.6)

where the function g is usually the hyperbolic tangent. c(t) is referred to as the memory-cell
at t, c̃(t) as the candidate activation at t. Equation 2.4 shows, that the candidate activation
is computed from the hidden unit-vector from the previous time step h(t−1) and the input
vector x(t). To get the memory-cell in Equation 2.5, this is multiplied component-wise with
the so called input gate i(t) and added to the component-wise product of the previous
memory-cell and the forget gate f (t). The hidden units, which function as the LSTM cell
outputs are then computed in Equation 2.6 as the component-wise product of the output
gate o(t) and the memory-cell after application of the activation function g.
These relationships are shown graphically in Figure 2.5. The three gates are simple RNNs
defined by the following equations:

i(t) = σ(Uih
(t−1) +Wix

(t) + bi)

f (t) = σ(Ufh
(t−1) +Wfx

(t) + bf)

o(t) = σ(Uoh
(t−1) +Wox

(t) + bo)

where σ denotes the logistic activation function σ(z) = 1
1−e−z which limits the gates to

values between 0 and 1.
As one can easily see, the number of parameters used in LSTM networks is significantly
higher than in simpler architectures, leading to higher memory and training time require-
ments. To be precise, the parameter number of a LSTM cell is 4((n + m)n + n) with n

13

2. Deep Learning and RNNs

Figure 2.5.: Structure of an LSTM cell. Squares denote feed forward layers with the labelled
activation function, circles denote element-wise operations, and joining and
splitting arrows denote concatenation and copying respectively.

denoting the dimension of the hidden unit vector and m denoting the dimension off the
inputs, compared to 2n2+mn+2n for the simpler architecture described in 2.2.1. However,
LSTM RNNs have been shown to have impressive results for several applications and are
one of the most used RNN architectures.[20]

14

3. Mean-Variance Hedging

3.1. Prerequisites

Before introducing the mean-variance hedging approach, some prerequisite definitions and
results have to be formulated. These are split into stochastic calculus prerequisites and a
short introduction into hedging and mathematical finance.

3.1.1. Stochastic Calculus

Mathematical Setting

First, to provide a setting, a complete probability space (Ω,F ,P) is assumed. Complete-
ness in this case refers to the property that all subsets of F-null-sets are contained in F .
Additionally, a filtration F := (Ft)t∈[0,T] is assumed, with T ∈ (0,∞) denoting the time
horizon. The following properties of the filtration are assumed:

• F0 contains only sets of probability 0 or 1

• F is complete: Each Ft contains all subsets of F-null-sets

• F is right-continuous: Ft =
�

s>tFs ∀t ∈ [0, T]

In the context of mathematical finance, the probability measure P is usually referred to
as the statistical measure to differentiate it from the martingale measures introduced in
3.1.2.

Local Martingales and Semi-martingales

Some classes of stochastic processes, namely martingales, local martingales and semi-
martingales, are of great importance to stochastic calculus and mathematical finance. For
this reason, they are defined and discussed in this section.

Definition 2. A stochastic process M = (M)t∈[0,T] is called a martingale if it fulfils the
following conditions:

• M is F-adapted: Mt is Ft-measurable for all t ∈ [0, T]

• M is integrable: E[|Mt|] < ∞ for all t ∈ [0, T]

• M has the martingale-property: E[Mt|Fs] = Ms for all s < t

If the equality in the last condition is replaced by a ≤ or ≥ the process is called super-
martingale or sub-martingale respectively.

15

3. Mean-Variance Hedging

While martingales are an immensely important concept, the processes belonging to this
category are not suitable to model some patterns and behaviours occurring in the real world.
For this reason, another class of processes is often used and examined in mathematical
finance, the so-called local martingales.

Definition 3. An adapted cadlag process M = (M)t∈[0,T] is called a local martingale if
there exists a sequence of stopping times (τn)n∈N, τn ↗ T such that the stopped process M τn

is a martingale for all n. The sequence (τn)n∈N is referred to as localizing sequence.

Additionally, a property of a stochastic process is said to hold locally if there exists a
sequence (τn)n∈N, τn ↗ T such that the property holds for the stopped process M τn for all
n.

To generalize the martingale concept even further, semi-martingales are introduced. Defin-
ing this class of processes requires one to first define predictable stochastic processes and
processes of finite variation.

Definition 4. The σ-algebra on R×Ω that is generated by the adapted and left-continuous
processes is called the predictable σ-algebra. If a process is measurable w.r.t. the pre-
dictable σ-algebra, it is called predictable.

Definition 5. A stochastic process is said to be of finite variation if and only if it can
be written as a difference of two increasing stochastic processes.

Definition 6. A stochastic process X that can be written as

X = X0 +A+M

with A being a process of finite variation and M being a local martingale, both starting
in 0, is called semi-martingale. If the process A is predictable, X is called a special
semi-martingale and the, in this case, unique decomposition X = X0+A+M is referred
to as the canonical decomposition of X.

Quadratic Variation and Co-variation

Definition 7. Let X be a semi-martingale and (Πn)n∈N a sequence of random partitions.
A random partition in this case means a finite sequence of finite stopping times 0 = Tn

0 ≤
Tn
1 ≤ · · · ≤ Tn

kn
= T . It is assumed that the grid size of (Πn)n∈N converges a.s. to zero.

The process [X] defined by

[X] := lim
n→∞

kn−1
i=0

�
XTn

i+1 −XTn
i

�2
in ucp

is called the quadratic variation process of X. This process is increasing and adapted.

The quadratic co-variation process [X,Y] of two semi-martingales X and Y is defined
via polarization as

[X,Y] :=
1

2
([X + Y]− [X]− [Y]) .

16

3. Mean-Variance Hedging

Definition 8. A martingale M is called a square-integrable martingale (or L2-martingale)
if E[[M]T] < ∞.
A semi-martingale X is called square-integrable if it is special with canonical decomposition
X = X0 + M + A, with M being a square-integrable martingale and A having square-
integrable variation.

Definition 9. If X and Y are two locally square-integrable semi-martingales, then there
exists a unique predictable process ⟨X,Y ⟩ such that [X,Y] − ⟨X,Y ⟩ is a local martingale.
This process is referred to as conditional quadratic variation process or simply angle
bracket process.

Stochastic Integration

The gains from trading in a financial asset are modelled as stochastic integrals, with the
integrand representing the trading strategy and the integrator representing the price pro-
cess of the financial asset.
While closer discussion of the interpretation of these integrals in mathematical finance is
found in Section 3.1.2, the mathematical concept and properties of stochastic integrals are
treated in this section.

As rigorously defining stochastic integrals is a quite lengthy and technical process that ex-
tends far beyond the scope of this thesis, only the main properties and results of stochastic
integrals are stated in this section, while referring to [5] for a full definition.

Stochastic integrals are defined for semi-martingale integrators X and predictable inte-
grands ϑ and usually denoted as

�
ϑ dX or (ϑ ·X). The space of integrands for which the

stochastic integral w.r.t. X is well defined is denoted by L(X).
Due to stochastic integrals only being defined for predictable integrands, occasionally the
left-continuous integrand ϑ− is used instead to guarantee predictability.
To better understand the structure of the processes resulting from stochastic integration,
the following result shows a way to approximate these processes.

Theorem 3. Let X be a semi-martingale, ϑ an adapted cadlag process and (Πn) a sequence
of random partitions with grid size converging to zero. Then�

ϑ− dX = lim
n→∞

kn−1
i=1

ϑTn
i

�
XTn

i+1 −XTn
i

�
in ucp

[18]

Theorem 4. Let X, Y be semi-martingales and ϑ ∈ L(X), η ∈ L(Y). Then
�
ϑ dX,

�
η dY

�
=

�
ϑη d [X,Y]

In particular
�
ϑ dX

�
=

�
ϑ2 d[X]

[18]

17

3. Mean-Variance Hedging

Theorem 5. (Integration by parts) Let X, Y be semi-martingales. Then XY is also a
semi-martingale that can be represented in the following way

XY = X0Y0 +

�
X− dY +

�
Y− dX + [X,Y]

[5]

Theorem 6. (Itô’s formula) Let X be a semi-martingale and f : [0,∞) × R → R a
C1,2-function. Then f(t,Xt) is also a semi-martingale and

f(t,Xt) =f(0, X0) +

� t

0
ft(s,Xs−) ds

+

� t

0
fx(s,Xs−) dXs

+
1

2

� t

0
fxx(s,Xs−) d[Xc]s

+

0<s≤t

(f(s,Xs)− f(s,Xs−)− fx(s,Xs−)∆Xs)

with ft denoting the derivative of f w.r.t. the first variable, fx ans fxx denoting the first and
second derivative w.r.t. the second variable, respectively, and [Xc]t = [X]t−

!
0<s≤t(∆Xs)

2.
[5]

Theorem 7. (Itô isometry) Let M be a local martingale and let ϑ be a predictable process
with

E

� T

0
ϑ2
t d[M]t

�
< ∞

Then
�
ϑ dM is a square-integrable martingale and

E

��� T

0
ϑt dMt

�2
�
= E

� T

0
ϑ2
t d[M]t

�
[18]

Kunita-Watanabe Decomposition

The Kunita-Watanabe decomposition [16] allows for representation of square-integrable
martingales as a sum of a stochastic integral w.r.t. a given martingale M and a process
strongly orthogonal to M . This can also be interpreted as orthogonal projection onto the
space of stochastic integrals w.r.t. M . This decomposition relies on results for Hilbert
spaces, which is why the Hilbert space of square-integrable martingales has to be defined
first.

Definition 10. The square-integrable martingales M , for which E [[MT]] < ∞, equipped
with the scalar product

(M,N) := E [MTNT]

18

3. Mean-Variance Hedging

form a Hilbert space M2. The space M2 is complete, as each element M can be isometri-
cally identified with its terminal value MT in the complete Hilbert space L2(P).
Two elements M,N ∈ M2 are called orthogonal if (M,N) = 0, and strongly orthogo-
nal if MN is a martingale.
The Hilbert space of square integrable martingales starting in 0 is denoted by M2

0, while
M2

loc denotes the processes which are locally in M2. [18]

The following definition introduces the space L2(M) of “square-integrable” stochastic in-
tegrands w.r.t. M as well as the space S(M) of stochastic integrals w.r.t. M obtained
from these integrands. The latter space is the Hilbert sub-space that the square-integrable
martingale is projected onto for the Kunita-Watanabe decomposition.

Definition 11. For M ∈ M2
loc the space L2(M) is defined as the space of all predictable

processes with

E

� T

0
ϑ2
t d[Mt]

� 1
2

< ∞

The space of stochastic integrals S(M) :=
��

ϑ dM | ϑ ∈ L2(M)
�
is a closed sub-space of

M2 and stable under stopping, leading to the name stable sub-space generated by M .
[18]

Now all definitions and results needed for stating the Kunita-Watanabe decomposition have
been introduced.

Theorem 8. Kunita-Watanabe decomposition Let M ∈ M2
loc and N ∈ M2. Then

there exists a unique decomposition

Nt = N0 +

� t

0
ϑs dMs + Lt

with ϑ ∈ L2(M), L ∈ M2
0 and L strongly orthogonal to all elements of S(M). Additionally,

⟨M,L⟩ = 0. [18] [16]

This decomposition is later used directly to define mean-variance hedging strategies.

3.1.2. Mathematical Finance

This section focusses on introducing necessary mathematical finance concepts and defining
terms used throughout the following sections and chapters.

Strategies

It is assumed that an investor has the possibility to invest in two different assets. First, a
risky asset whose price process S is usually modelled as a semi-martingale. This can, for
example, be interpreted as a stock traded on an exchange.
The other asset R represents a risk-free savings account. It is generally modelled as a
continuous, strictly positive process of finite variation.

19

3. Mean-Variance Hedging

The number of units of the risky asset held at any time is modelled by the predictable
process ϑt ∈ L(S), while the adapted and R- integrable process ψ models the amount of
holdings in the savings account. Together, the pair (ϑ, ψ) is called a strategy.
The value process of this strategy is given as

Vt = ϑSt + ψRt

A strategy is called self-financing if its value process can be represented in the following
way:

Vt = V0 +

� t

0
ϑu dSu +

� t

0
ψu dRu

This, in simple terms, means that the portfolio value at each time only stems from trading
in the available assets, without providing or withdrawing capital besides the initial capital
V0.

The setting can be simplified by choosing R as numeraire, which means dividing every
financial quantity by R. This yields a trivial savings account R ≡ 1 and the price process
S/R for the risky asset. It follows from integration by parts, that (ϑ, ψ) is self-financing for
(S,R) if and only if (ϑ, ψ) is self-financing for (S/R, 1). As dR = 0, for a strategy to be self
financing, only ϑ and V0 have to be specified, as ψ and Vt are then uniquely determined
by the self-financing constraint. Therefore, from here on out, only the discounted price
process S/R of the risky asset (denoted by S for notational convenience) and the trivial
savings account are used.
In this new setting, strategies and value processes are defined in the following way:

Definition 12. A predictable, S-integrable process ϑ is called a strategy.
The value process V = V (c, ϑ) for a given initial capital c and strategy ϑ is defined as

Vt = c+

� t

0
ϑu dSu

Depending on the setting and problem formulation, it may be necessary to restrict oneself to
a subset of possible strategies. This subset is then called the admissible strategies. Due
to the problem-dependent nature of admissible strategies, they are defined when needed in
the following sections and chapters.

Arbitrage

In simple terms, an arbitrage opportunity allows an investor to achieve a riskless non-
negative return by investing in a risky asset. This is related to the existence of so-called
equivalent martingale measures by the first fundamental theorem of asset pric-
ing.

Definition 13. A strategy is called an arbitrage opportunity if its value process fulfills:

1. V0 ≤ 0

2. VT ≥ 0 P-a.s.

20

3. Mean-Variance Hedging

3. P(VT > 0) > 0

Definition 14. A probability measure Q equivalent to P is called an equivalent martin-
gale measure (ELMM), if S is a Q-local-martingale. The set of all equivalent martingale
measures is denoted by Me.
If Q is only absolutely continuous w.r.t. P, it is simply referred to as a martingale mea-
sure and the set of all such Q is denoted by M.

This allows for the definition of admissible strategies, at least for within this section.

Definition 15. Assuming Me ̸= ∅, a strategy ϑ is admissible if its value process V is a
Q-super-martingale for all Q ∈ Me.

The aforementioned first fundamental theorem of asset pricing states that the existence of
“no free Lunch with vanishing risk” is equivalent to the existence of an equivalent martingale
measure [6]. As ”no free Lunch with vanishing risk” is a too general concept for the scope of
this thesis, only the implication connecting absence of arbitrage and existence of equivalent
martingale measures is stated.

Theorem 9. First fundamental theorem of asset pricing (FTAP) If there exists
an equivalent martingale measure for S, then there are no arbitrage opportunities with
admissible strategies. [18] [6]

Hedging and Complete Markets

For this section the following assumptions are made:

• Me ̸= ∅
• A strategy ϑ is deemed admissible if the stochastic integral

�
ϑ dS is a Q-martingale

for all Q ∈ Me

In order to define complete and incomplete markets, the idea of a claim has to be introduced
first.

Definition 16. A claim H is an FT measurable random variable.

Claims are commonly used to model derivatives written on the risky asset S. In the case
of an European option this would mean that H = h(ST) for some function h. For example,
a claim representing a European call option with strike K is given by H = (ST −K)+.

Hedging in the sense of mathematical finance refers to approximating a claim by the value
process VT of an admissible strategy ϑ and initial capital c. In which sense the payoff is
approximated depends on the problem formulation. This thesis focusses on mean-variance
hedging which uses a quadratic criterion and is introduced in 3.2. In some settings however,
all claims can be represented perfectly via trading, not just approximated. These settings
are called complete markets.

Definition 17. A claim H is called attainable, if there exists an attainable strategy ϑ
and initial capital c such that

H = c+

� T

0
ϑt dSt (3.1)

21

3. Mean-Variance Hedging

With the notion of attainable claims introduced, complete markets can be defined.

Definition 18. The quintuplet (Ω,F ,F,P, S) is called a market. If all bounded claims
H within a market are attainable, the market is called complete. Markets that are not
complete are called incomplete.

Similar to the first FTAP, the second fundamental theorem of asset pricing relates
the completeness of a market to the uniqueness of equivalent martingale measures.

Theorem 10. Second fundamental theorem of asset pricing (FTAP) An arbitrage
free market is complete if and only if there exists exactly one equivalent martingale measure.
[18] [6]

Consider a bounded claim H in a complete market. Due to completeness, H can be
represented as

H = c+

� T

0
ϑu dSu (3.2)

Now fix a martingale measure Q and consider the closed Q-martingale M generated by H

Mt := EQ [H | Ft]

This martingale is square-integrable due to H being bounded and the contractivity of
the conditional expectation. If the market is complete, M should be representable as a
stochastic martingale w.r.t. S. According to Theorem 8, M can at least be decomposed into
a stochastic integral w.r.t. S and a strongly orthogonal process L. These two components
reflect the attainable and unattainable part of the claim H. This means that, for a market
to be complete, all N ∈ M2 need to be in the stable subspace S(S) generated by S. This
property of S is called the predictable representation property.

Definition 19. A process M ∈ M2
loc has the predictable representation property

(PRP) if S(M) = M2

In this case, the process L in the Kunita-Watanabe decomposition vanishes for all possible
M , and the market is complete.

Considering again a bounded claim H, now in a complete market, the constant c in 3.1
equates to the initial capital required to drive the self-financing strategy ϑ. As his initial
capital allows an investor to completely replicate the claim H, it can be thought of as the
fair price of H.
As the market is complete, the second FTAP implies the existence of a unique martingale
measure Q. Taking expectations w.r.t. Q in 3.1 yields

EQ [H] = c

This shows that in complete markets one can calculate the fair price of a claim by taking
expectation w.r.t. the martingale measure. The strategy ϑ is referred to as the hedging
strategy of H.

In incomplete markets, a claim is in general not attainable, meaning that it cannot be

22

3. Mean-Variance Hedging

replicated by a hedging strategy. In this case, the goal is to find an admissible strategy
that best approximates the claim. Not only is hedging not as straightforward in incomplete
markets, pricing a claim is more challenging as well, as ,according to the second FTAP,
one has to deal with an infinite number of martingale measure (Me contains at least two
elements and is a convex set).
One hedging approach for these settings is mean-variance hedging which is introduced
in the following section.

3.2. Mean-Variance Hedging

In incomplete markets not every claim is attainable. Trading in the market’s risky asset to
hedge the claim still exposes the investor to residual risk. The idea behind mean-variance
hedging is to minimize this risk according to a quadratic criterion.
This thesis focusses on the “martingale case”, where the minimization problem is formulated
under a martingale measure. While mean-variance hedging can also be formulated under
the statistical measure, the theory is substantially more complex, extending beyond the
scope of this thesis.

For this section, the following assumptions are made:

1. S is a locally square-integrable P-martingale

2. A strategy ϑ is deemed admissible if ϑ ∈ L2(S)

3. H is a square-integrable, FT -measurable random variable

The goal of minimizing the quadratic risk can be formalized in the following way:

Minimize

E

��
H − c−

� T

0
ϑt dSt

�2
�

(3.3)

over all admissible strategies ϑ ∈ L2(S) and initial capitals c.
This is already reminiscent of the Kunita-Watanabe decomposition, but in order to apply
it in this case, the random variable H needs to be replaced with its closed martingale

Vt = E [H | Ft] (3.4)

If one now identifies the square-integrable martingale V ∈ M2 with its terminal value
VT = H, it is clear that 3.3 can be solved by orthogonally projecting V onto the subspace
spanned by the constants and the stable subspace S(S). This is achieved by taking the
Kunita-Watanabe decomposition (Theorem 8) of V w.r.t. S:

Theorem 11. Optimal mean-variance strategy. For a square-integrable claim H,
consider the Kunita-Watanabe decomposition of the process V defined in 3.4

V = E [H] +

�
ϑH dS + LH (3.5)

23

3. Mean-Variance Hedging

with ϑ ∈ L2(S) and L ∈ M2
0 strongly orthogonal to all elements of S(S).

The optimal initial capital and strategy in the minimization problem 3.3 are then given by
c∗ := E[H] and ϑ∗ := ϑH .
The optimal strategy is unique in the sense that for two optimal strategies, their stochastic
integrals w.r.t. S are indistinguishable.

The process c∗+
�
ϑ∗ can be interpreted as the attainable part ofH which can be replicated,

while L represents the unattainable and unhedgeable part of H. Therefore, the variance of
LT is of interest to quantify the remaining risk:

R(ϑ) := E
	
L2
T

[18] While finding the Kunita-Watanabe decomposition for claims written on a general
process S can be difficult, there are approaches for the class of exponential Lévy processes,
one of which will be discussed in the following section.

3.2.1. Laplace Method for Exponential Lévy Processes

If the price of the risky asset is modelled as an exponential Lévy process St = exp(Xt)
for a Lévy process X and the claim is given as H := f(ST) where f fulfils certain conditions
discussed below, the optimal strategy and initial capital in the mean-variance hedging sense
can be calculated explicitly as complex integrals.
The following section introduces Lévy processes as well as the cumulant generating function.
Next, the bilateral Laplace transform is introduced, followed by a discussion of the necessary
conditions for f . Finally, the theorem containing the explicit integral representations of
strategy, value process and hedging error is stated.

Lévy Processes

Definition 20. A process X on a filtered probability space (Ω,F ,F,P) is called a Lévy
process, if it has the following properties:

1. X is adapted w.r.t. F

2. X0 = 0 a.s.

3. The paths of X are a.s. right-continuous with left limits (càdlàg)

4. X has stationary increments: Xt −Xs ∼ Xt−s for all s < t

5. The increments of X are independent of the past: Xt −Xs is independent of Fs for
all s < t

[14]

The distribution of the process X is determined by the law of X1.

24

3. Mean-Variance Hedging

Definition 21. For a Lévy process X define

D :=
�
z ∈ C

""" E �
eℜ(z)X1 < ∞

��
For t > 0 the cumulant function κ of X is defined as:

κ : D → C

eκ(z)t = E
	
ezXt

In many cases, the cumulant function κ has a simpler structure than the distribution of X.
The cumulant function exists at least for z ∈ C with ℜ(z) = 0. In this case, κ(z) = κ(iu)
corresponds to the characteristic exponent

ψ(u) := logE
	
eiuX1

which uniquely determines the distribution of X1 and therefore of the entire process X.

For this section, the following two assumptions are made:

• S is a exponential Lévy process: St = S0 exp(Xt) for a Lévy process X and constant
S0 > 0

• S is a square integrable P-martingale

Bilateral Laplace Transform

Definition 22. Let f : R → C be a Borel-measurable function. Its bilateral Laplace
transform f̃ is given as

f̃(z) :=

� ∞

−∞
f(x)e−zx dx

for any z ∈ C such that the integral exists.

The following lemma shows that the bilateral Laplace transform always exists on a vertical
strip in the complex plane. This strip can be empty, a single vertical line, or even a open
or closed half-plane or all of C.

Lemma 1. Suppose that f̃(a) and f̃(b) exist for a, b ∈ R with a ≤ b. Then f̃(z) exists for
all z with a ≤ ℜ(z) ≤ b.

Proof: The statement follows from the following estimate for a ≤ ℜ(z) ≤ b:

|f(x)e−zx| = |f(x)|e−ℜ(z)x ≤ |f(x)e−ax|+ |f(x)e−bx|
[14]

□

The bilateral Laplace transform determines a function uniquely and can be inverted to
obtain the original function from its transform. There are multiple ways of achieving this
inversion, on being the so called Bromwich inversion integral:

25

3. Mean-Variance Hedging

Theorem 12. Bromwich inversion integral. If the function v �→ f(R+iv) is integrable,
then

f(x) =
1

2πi

� R+i∞

R−i∞
f̃(z)ezx dz

[19]

Integral Representation of Payoffs

The Laplace method requires more conditions regarding the claim to be hedged than the
general Definition 16. For the remainder of this section,H represents a European contingent
claim written on S. In mathematical terms, H denotes a square-integrable, FT -measurable
random variable given by H = f(ST) for some function f : (0,∞) → R. It is also assumed
that the payoff function f admits an integral representation of the following form

f(s) =

�
sz Π(dz) (3.6)

for a complex measure Π on a vertical strip {z ∈ C | R1 ≤ ℜ(z) ≤ R2} where E
	
e2R1X1

<

∞ and E
	
e2R2X1

< ∞.

While this does of course limit the classes of payoff functions this method can be applied to,
many claims, e.g. calls, puts, power calls and puts, self-quanto calls and puts and digital
options, admit this integral representation [14]. For these payoff functions, the measure Π
is derived using the Bromwich inversion integral.

Example: Integral Representation of European Call As an example, as well as for use in
Chapter 5, the derivation of the integral representation for a European call is shown here.

Theorem 13. For a European call H := (ST − K)+, the integral representation in the
form of 3.6 is

(s−K)+ =

� R+∞

R−i∞
sz Π(dz)

with R > 1 and

Π(dz) :=
1

2πi

K1−z

z(z − 1)
dz

Proof: As s > 0, one can define s = S0e
x and subsequently g(x) := (S0e

x −K)+. Now
calculate the bilateral Laplace transform of g:

g̃(z) =

� ∞

−∞
(S0e

x −K)+e−zx dx

=

� ∞

−∞
1{S0ex−K≥0}(S0e

x −K) dx

=

� ∞

ln(K
S0

)
(S0e

x −K) dx

26

3. Mean-Variance Hedging

For ℜ(z) > 1 this integral can be calculated as:� ∞

ln(K
S0

)
(S0e

x −K) dx =
S0e

(1−z)x

1− z
+

Ke−zx

z

"""""
∞

x=ln(K
S0

)

=
Sz
0k

1−z

z − 1
− Sz

0k
1−z

z

=
Sz
0K

1−z

z(z − 1)

Applying the Bromwich inversion integral with R > 1 to g̃(z) then yields

g(x) =
1

2πi

� R+i∞

R−i∞
g̃(z)ezx dz

=
1

2πi

� R+i∞

R−i∞
Sz
0K

1−z

z(z − 1)
ezx dz

=
1

2πi

� R+i∞

R−i∞
sz

K1−z

z(z − 1)
dz

which is the claimed integral representation.

□
For more concise notation, define the following quantities:

α(y, z) := κ(y) + κ(z)

β(y, z) := κ(y + z)− κ(y)− κ(z)− (κ(y + 1)− κ(y))(κ(z + 1)− κ(z))

(κ(y + 1)− κ(y))(2)

γ(z) :=
κ(z + 1)− κ(z)

κ(2)

Optimal Strategy

Using the notation introduced in this section, the following theorem shows the optimal
solution to the mean-variance hedging problem. In addition to the optimal trading strategy,
the value process of the claim can be calculated, which determines the optimal initial
capital.

Theorem 14. Define

Ht :=

�
eκ(z)(T−t)Sz

t Π(dz)

ξt :=

�
γ(z)eκ(z)(T−t)Sz−1

t− Π(dz)

Then the mean-variance value of a claim H = f(ST) with integral representation 3.6 at
time t and current price St = s is given by

Vt := Ht|St=s =

�
eκ(z)(T−t)sz Π(dz)

27

3. Mean-Variance Hedging

and the optimal mean-variance hedging strategy ϑH is given by

ϑH = ξ

The variance of the hedging error

R(ϑH) := E

��
V0 +

� T

0
ϑH
t dSt − f(ST)

�2
�

equals

R(ϑH) =

� �
R(y, z) Π(dy)Π(dz)

with

R(y, z) :=

� T

0
eκ(y+z)t+α(y,z)(T−t) dt

[18]

The proof of this theorem is omitted due to its length and dependence on many lemmas
and estimates, extending beyond the scope of this thesis. For full details, refer to [14]. It
should be noted that the theorem proved in [14] does not assume S to be a square-integrable
martingale, leading to a more general result.

28

4. Using Deep Learning for Mean-Variance
Hedging

After all necessary Deep Learning and Mathematical Finance concepts and definitions were
introduced in the previous chapters, they are combined in this chapter to leverage the abil-
ities of (recurrent) neural networks to approximate mean-variance hedging strategies. The
optimization problem 3.3 is in general difficult to solve and compute, especially for more
sophisticated models like stochastic volatility models. Therefore, an approximation using
neural networks can be preferable, as computation of the strategy using an already trained
network is very efficient. Additionally, this approach allows for the inclusion of trading
restrictions and trading costs, which are usually not considered in the context of mean-
variance Hedging.

The first section defines the mathematical setting. It differs from the one defined in chap-
ter 3 due to the outputs of neural networks representing trading strategies being finite-
dimensional, which requires a market with discrete time scale.

In the second section, the Mean-Variance Hedging optimization problem 3.3 is reformulated
according to the setting provided in 4.1. Afterwards, the RNN architecture used for the
Deep Learning approach is introduced and the optimization problem is adapted to mini-
mize over network parameters instead of trading strategies. Finally, the implementation of
the architecture used for the numerical experiments is and explained.

4.1. Setting

Consider a fixed time horizon T and trading dates 0 = t0 < . . . < tn = T and let (Ω,F ,P)
be a finite probability with Ω = {ω1, . . . , ωN} and P[{ωk}] > 0 ∀k ∈ 1, . . . , N .
The information available at each time step is modelled by the r-dimensional random vari-
ables (Ik)k∈1,...,n. These random variables contain the price processes of all tradable assets
as well as auxiliary information, e.g., interest rates, macro-economic indicators, or news
data.
The filtration F := (Fk)k∈1,...,n is defined as the filtration generated by (Ik)k∈1,...,n, meaning
that each σ-algebra Fk contains all information available up to tk. This definition implies
that all asset price processes are adapted w.r.t. F.
The market contains d tradable assets, the prices of which are represented by a d-dimensional
stochastic process (Sk)k∈1,...,n. These tradable assets do not exclusively consist of primary
assets, but can also contain liquid derivatives and other securities.
The derivative portfolio to be hedged is represented by an FT -measurable random variable
H, which corresponds to a claim in chapter 3 and is referred to as such throughout this
chapter. The time horizon T is chosen to be equal to the maximum maturity of the port-

29

4. Using Deep Learning for Mean-Variance Hedging

folio represented by H.
To hedge the claim H, an investor can trade in S using an Rd-valued, F-adapted process
(ϑk)k∈1,...,n−1. The process (ϑk)k∈1,...,n−1 is, analogous to chapter 3, referred to as trading
strategy. The i-th component of ϑk = (ϑ1

k, . . . , ϑ
d
k) represents the holdings in the i-th asset

from time tk to tk+1. For notational convenience, define ϑ−1 = ϑn := 0.
The set of all unconstrained trading strategies is denoted by Gu.

For simplification, it is assumed that all payments are accrued with a risk free overnight
rate. This means that an interest rate of zero can be assumed, as can that all payments
occur at time T .
Additionally, instruments with true optionality (e.g., American options) are not considered,
neither as part of the claim H, nor the tradable assets. [3]

4.1.1. Trading Constraints

In order to model more realistic hedging scenarios, trading constraints have to be taken
into account. Due to liquidity, asset availability or trading restrictions, an unconstrained
strategy may be impossible to be implemented by an investor. If, for example, one of the
components of S describes an option that is only available for trading in the time interval
[T1, T2] with 0 < T1 < T2 ≤ T , the possible holdings in this option outside of [T1, T2]
are limited to {0}. An investor may also face trading restrictions, like simple “no-short”-
restrictions, or more complicated ones like maximum values for the traded Vega.

Trading constraints are modelled by restricting ϑk to a set Gk. This set is given as the image
of a continuous Fk measurable function Gk : Rd(k+1) → Rd, meaning Gk := Gk(Rd(k+1)).
Given an unconstrained strategy ϑu ∈ Gu, its constrained “projection” is given successively
via

(G ◦ ϑu)k := Gk ((G ◦ ϑu)0, . . . , (G ◦ ϑu)k−1, ϑ
u
k) (4.1)

The set of constrained strategies obtained this way is denoted by G := (G ◦ Gu) ⊂ Gu.

To give an example, a “no-short”-constraint (all holdings must be non-negative) could be
implemented in this setting by defining Gk in the following way:

Gk (ϑ0, . . . , ϑk) := ((ϑ1
k)

+, (ϑ2
k)

+, . . . , (ϑd
k)

+)

with (·)+ denoting the positive part.

4.1.2. Transaction Costs

As for trading constraints, to model realistic hedging scenarios, transaction costs have to
be considered.

Transaction costs in the context of this thesis will be modelled in the following way: Trading
a position n ∈ Rd at time tk will incur transaction costs of ck(n). The transaction costs
are therefore defined by the functions ck : Rd → R. It is assumed that ck(0) = 0 and that
each ck is Fk-measurable, non-negative and upper-semi-continuous.
The traded position corresponds to the change of holdings from one point in time to the

30

4. Using Deep Learning for Mean-Variance Hedging

next and can therefore be calculated as ϑk − ϑk−1. This way, the total transaction costs of
a strategy ϑ up to the maturity T are given as:

CT (ϑ) :=
n

k=0

ck(ϑk − ϑk−1) (4.2)

Two “standard” choices for the functions c0, . . . cn are the following:

• Proportional transaction costs: For fixed constants cik > 0, i ∈ {1, . . . , d}, k ∈
{0, . . . , n} define ck(n) :=

!d
i=1 c

i
kS

i
k|ni|

• Fixed transaction costs: For fixed constants cik > 0, i ∈ {1, . . . , d}, k ∈ {0, . . . , n}
and ϵ > 0 define ck(n) :=

!d
i=1 c

i
k1|ni|≥ϵ

As mentioned before, ϑ−1 = ϑn = 0, which implies liquidation of all positions at time T .

For the simulations in later chapters, if trading costs are modelled, proportional trading
costs with time-independent constants (ci0 = . . . = cin) will be used.

4.1.3. Portfolio Value and Loss

The cumulated profit at time T from trading in S using strategy ϑ is given as

(ϑ · S)T :=
n

k=0

ϑk · (Sk+1 − Sk)

Additionally, an initial capital of c is assumed, which can be interpreted at the price the
claim H is sold for.

Combining the definitions from above, the portfolio value of an investor trying to hedge a
claim H with strategy ϑ and initial capital c is given as

PLT (H, c, ϑ) := −H + c+ (ϑ · S)T − CT (ϑ)

To be congruent with the notation used in 3, the focus will not lie on the portfolio value
PLT (H, c, ϑ), but the loss of the hedging strategy (c, ϑ) for claim H at time T . This is
simply defined as

LT (H, c, ϑ) := −PLT (H, c, ϑ) = H − c− (ϑ · S)T + CT (ϑ)

which, if one ignores the trading cost term, is the discrete time analogue of the quantity
(H − c− � T

0 ϑt dSt) from 3.3.

4.1.4. Mean-Variance Hedging

The mean-variance hedging problem formulated in 3.3 can now be adapted to the setting
described in section 4.1.

The goal is the same as before:

31

4. Using Deep Learning for Mean-Variance Hedging

In incomplete markets, claims may not be perfectly replicable by trading in the available
assets, exposing an investor trying to hedge the claim to residual risk given by LT . This
risk is to be minimized under a quadratic criterion over all trading strategies and initial
capitals.
This can be formalized similar to 3.3:

Minimize

E
	
LT (H, c, ϑ)2

= E

�
(H − c− (ϑ · S)T − CT (ϑ))

2
�

(4.3)

over all strategies ϑ ∈ G and initial capitals c.

Up to now, the problem has only been adapted to the new mathematical setting, the mini-
mization problem still has to be solved. In this setting, however, it is possible to introduce
the RNN-approximation approach used to find a (close-to-)optimal pair of strategy and
initial capital. For this, the model used for this approximation has to be introduced.

4.2. Stacked LSTM Model

4.2.1. Model Architecture

The architecture used for the approximation approach described in this thesis is a stacked
LSTM recurrent neural network, similar to the deep neural networks described in 2.2.3.
In particular, this means that there are m LSTM-Cells, each with a number of hidden units

of nhi
for i ∈ {1, . . . ,m}. In each time step t, the calculated hidden units h

(t)
i of the i-th

LSTM cell are not only passed “horizontally” to the i-th LSTM-Cell in the next time step
t+ 1, but also “vertically” as regular inputs to the (i+ 1)-th LSTM-Cell.
The hidden units of the m-th LSTM-Cell are passed to a single-layer feed-forward neural
network with an output dimension of d and linear activation function σ(x) = x. This
feed-forward network combines the hidden units of the m-th and final LSTM-Cell into the
model outputs (ϑ0, . . . , ϑn−1) in each time step.
These outputs represent an unrestricted trading strategy ϑ ∈ Gu, but as the optimization
problem 4.3 is stated as minimization over G and not Gu, one has to apply the trading
restrictions according to 4.1 to obtain (G ◦ ϑ) ∈ G.
The model inputs are samples of the r-dimensional random variables (Ik)k∈1,...,n introduced
in section 4.1.

Assuming that the dimensionality of the hidden units is the same for every LSTM cell, the
total number of parameters is 4h((m − 1)(2h + 1) + i + h + 1) + d(h + 1), with h and i
denoting the dimensionality of the hidden units and inputs respectively.

Denote by RNNLSTM
M,di,do

the set of all stacked LSTM networks with input dimension di, out-

put dimension do and at mostM parameters. Additionally,RNNLSTM
M,di,do

= {F θ : θ ∈ ΘM,di,do}
with ΘM,di,do ⊂ Rq (for some q depending on M) denoting the parameter space for the
elements of RNNLSTM

M,di,do
.

Using this model, the goal is to find suitable parameters to minimize the loss function
described in the following section.

The model architecture is depicted graphically in Figure 4.1.

32

4. Using Deep Learning for Mean-Variance Hedging

Figure 4.1.: Stacked LSTM Architecture: There are m LSTM-Cells arranged hierarchically,
followed by a single layer feed-forward network combining the m-th LSTM-
Cell’s hidden units into the final output ϑi for each time step.

4.2.2. Cost Function

The objective of this model is to minimize a certain cost function. As the goal is to ap-
proximate the optimal strategy and initial capital for problem 4.3, the cost function is
chosen to reflect this. One fact to be considered is that the model outputs an unrestricted
strategy while the minimization problem 4.3 is formulated as a minimization over all re-
stricted strategies. The minimization problem can, however, be stated equivalently over all
unrestricted trading strategies in the following way:

Minimize

E
	
LT (H, c,G ◦ ϑ)2
 = E

�
(H − c− (G ◦ ϑ · S)T − CT (G ◦ ϑ))2

�
(4.4)

over all strategies ϑ ∈ Gu and initial capitals c.

33

4. Using Deep Learning for Mean-Variance Hedging

The problems 4.3 and 4.4 are equivalent, as G ◦ ϑ = ϑ for ϑ ∈ G and G ◦ ϑ ∈ G for ϑ ∈ Gu.
As not all ϑ ∈ Gu can be represented by a stacked LSTM RNN with finite number of
parameters, the problem is once again restated for the following set of strategies

GM :=
�
(ϑk)k∈1,...,n−1 | (ϑk)k∈1,...,n−1 = F (I0, . . . , In−1), F ∈ RNNLSTM

M,r,d

�
=
�
(ϑθ

k)k∈1,...,n−1 | (ϑθ
k)k∈1,...,n−1 = F θ(I0, . . . , In−1), θ ∈ ΘM,r,d

�
The set GM consists of all trading strategies that can be represented by stacked LSTM
RNNs with at most M parameters.
Substituting G with GM and subsequently the parameter space ΘM,r,d in 4.4 yields the final
optimization problem:

Minimize

E
�
LT (H, c,G ◦ ϑθ)2

�
= E

�
H − c− (G ◦ ϑθ · S)T − CT (G ◦ ϑθ)

�2
�

(4.5)

over θ ∈ ΘM,r,d and initial capitals c.

As the initial capital c is not modelled as an output of the model, it can instead be
interpreted as an additional parameter of the stacked LSTMRNN. Extending the parameter
space ΘM,r,d ⊂ Rq by one dimension to ΘM,r,d,c ⊂ Rq+1 and including the inital capital
cθ in the parameter vector allows 4.5 to be represented purely as an optimization problem
over the parameter space ΘM,r,d,c.

To reiterate, the original problem 4.3 has first been restated as a minimization problem
over all unrestricted strategies and now has been rewritten as a minimization problem over
the parameters of a recurrent neural network. To now numerically find close-to optimal
parameters, the cost function is defined as

J(θ) :=E

�

H − cθ − (G ◦ ϑθ · S)T − CT (G ◦ ϑθ)
�2

�
=

N
k=1

�
H(ωk)− cθ − (G ◦ ϑθ · S)T (ωk)− CT (G ◦ ϑθ)(ωk)

�2 · P({ωk})
(4.6)

which can be numerically minimized using conventional deep learning techniques discussed
in chapter 2.
It should be noted that this approach does not explicitly require the trading strategy to
be admissible. However, as the results from Chapter 5 show, the model does not appear to
find any arbitrage strategies.

4.2.3. Implementation

The model architecture described in section 4.2.1 was implemented in Python using the
Deep Learning Library TensorFlow [7].
While TensorFlow offers a simple framework for building deep learning models in the form
of keras.Sequential, this cannot be used in this case, as a per-sample cost function is ex-
pected. Due to the cost function 4.6 depending on the outputs at each time-step as well

34

4. Using Deep Learning for Mean-Variance Hedging

Figure 4.2.: Example architecture of the stacked LSTM model with two hierarchically or-
ganized LSTM-Cells (m = 2)

as the input vector (to calculate the stochastic integral and cost terms), a layer spanning
over the entire unrolled RNN graph is defined to handle loss calculation. This layer also
contains the variable c representing the initial capital.

An example structure is depicted graphically in Figure 4.2. Note that while the model
only uses (Ik)k∈1,...,n−1 to calculate the output strategy (ϑk)k∈1,...,n−1, the input In is still
considered in the loss calculation because it is needed for computing the trading result over
the last period in the stochastic integral term.
Technically, the model does output a value for ϑn, but as this value is not considered in the
loss calculation and does not serve any real purpose, it is replaced with zero in the final
output to signify total liquidation in the last time step. This means that the output has
the structure (ϑ0, . . . , ϑn−1, 0).

The LSTM-Cells and Feed-Forward network do not consider possible trading constraints
and, as such, output an unconstrained strategy. In the loss layer, before loss calculation,
however, the function G is applied to the unconstrained strategy and the results of this are
used as final outputs.
Similarly, trading costs are calculated in the loss layer using the function trading costs and

35

4. Using Deep Learning for Mean-Variance Hedging

are included in the cost function. However they are not part of the final model output.
The implementation uses the Keras Functional API to hierarchically organize the LSTM-
Cells, Feed-Forward network and loss layer.

The loss layer is implemented via subclassing of the base class tensorflow.keras. layers .Layer.
This layer spans over all time steps and contains the trainable variable c. The cost function
4.6 is implemented by the function mvh loss, which is added to this layer. The loss layer is
not only connected to the outputs of the Feed-Forward network but also the inputs, as the
asset prices are needed for loss calculation. Finally, the loss layer outputs a constrained
trading strategy, with the last component being zero, as discussed above. The combined
stacked LSTM model is implemented as a subclass of tensorflow.keras.Model. At initial-
ization, parameters for the input shape, number of LSTM layers, number of hidden units
per layer, the portfolio of claims, indices indicating the tradable assets within the input
vector, the parameter ϵ for transaction cost calculation and a function G representing the
trading restrictions have to be specified.

The claim portfolio is expected to be given as an instance of the dataclass OptionPortfolio,
which consists of a list of instances of the class Option and a list of indices indicating the
underlying of each option in the input vector. The payoff of the claim portfolio is given
as the sum of the outputs of the member functions tf payoff of all claims in the claim
portfolio. These functions expects a batch of paths of the input vectors as inputs and can
output either a tensor of rank 1 or a scalar value.

The shape of the input tensor is expected to be (num samples, num time steps, num infos),
with num samples denoting the number of training samples (N), num time steps denoting
the number of time steps (n + 1), and num infos denoting the number of components of
the information vectors (d).

The code of the implementation can be found in Appendix A in Listing A.3.

36

5. Numerical Experiments

In this chapter, the approach introduced in chapter 4 is applied to two different asset
price models: an exponential Lévy model and a stochastic volatility model. In both cases,
the RNN strategy will be compared to a benchmark strategy in various ways to gauge
effectiveness and applicability of this approach.

5.1. Exponential Lévy Model

First, the RNN approach is tested on an exponential Lévy model, namely the Normal
Inverse Gaussian model. The hedging strategies calculated by the stacked LSTM model
will be compared to a discretized version of the optimal mean-variance hedging strategy
derived in Theorem 14.

5.1.1. Setting

The Normal Inverse Gaussian model (NIG model) is an asset price model in which the
price of the risky asset St = S0 exp(Xt) is modelled as the exponential of a Normal Inverse
Gaussian process (Xt)t∈[0,T]. To further define a NIG process, one has to first define the
Normal Inverse Gaussian distribution:

Definition 23. The Normal Inverse Gaussian (NIG) distribution, denoted by
NIG(α, β, δ, µ) is a continuous probability distribution defined by the density function

fNIG(x) :=
αδ

π
eδ
√

α2−β2+β(x−µ)K1(α
�
δ2 + (x− µ)2)�

δ2 + (x− µ)2
, x ∈ R

where K1 denotes the modified Bessel function of second kind and index 1.
The possible parameter values are α > 0, β ∈ (−α, α− 1), δ > 0 and µ ∈ R.
[1]

Using this probability distribution, the NIG process can be defined in the following way:

Definition 24. A stochastic process (Xt)t∈[0,T] is called a Normal Inverse Gaussian
process if its increments are NIG distributed. This means, that for h ≥ 0 such that
0 ≤ t ≤ t+ h ≤ T

Xt+h −Xt ∼ NIG(α, β, δh, µh)

This process is a Lévy process with the cumulant function

κNIG(z) := µz + δ
��

α2 − β2 −
�
α2 − (β + z)2

�
[1]

37

5. Numerical Experiments

Throughout section 3.2.1 it is assumed that the process St = S0 exp(Xt) is a square inte-
grable martingale. This is equivalent to the conditions κ(1) = 0 and κ(2) < ∞.
From the expressions

κ(1) = µ+ δ
��

α2 − β2 −
�
α2 − (β + 1)2

�
and

κ(2) = 2µ+ δ
��

α2 − β2 −
�
α2 − (β + 2)2

�
one can gather the conditions α2 − β2 ≥ 0, α2 − (β + 1)2 ≥ 0 and α2 − (β + 2)2 ≥ 0. This
leads to the following conditions for the parameters α and β:

−α ≤ β ≤ α− 2, α ≥ 1 (5.1)

where the second condition guarantees that the interval for β in the first condition is not
empty.

Next, define the function

ϕ(β) := µ+ δ
��

α2 − β2 −
�
α2 − (β + 1)2

�
, β ∈ [−α, α− 1]

which describes κ(1) as a function of β. Plugging in the bounds of the domain of ϕ yields

ϕ(−α) = µ− δ
√
2α+ 1, ϕ(α− 1) = µ+ δ

√
2α+ 1

As the derivative

ϕ′(β) = δ

�
β + 1�

α2 − (β + 1)2
− β�

α2 − β2

�
approaches positive infinity towards the bounds of the domain and only has one root at
β = −1

2 , the function is increasing in the interval [−α, α− 1].
Therefore, for κ(1) = ϕ(β) = 0 to be true for some β, the interval [ϕ(−α), ϕ(α − 1)] must
contain zero, which leads to the condition

|µ| ≤ δ
√
2α+ 1 (5.2)

[12]
Now we can solve the equation ϕ(β) = 0 to find the parameters to ensure St = S0 exp(Xt)
is a square-integrable martingale.

Theorem 15. The stochastic process St = S0 exp(Xt), where Xt is a NIG-process, is a
square-integrable martingale if and only if the conditions 5.1 and 5.2 are satisfied and

β = −1

2
− sgn(µ)

�
α2µ2

µ2 + δ2
− µ2

4δ2

38

5. Numerical Experiments

Proof: As described above, for κ(1) to be zero and κ(2) < ∞, the conditions 5.1 and 5.2
need to be satisfied and the parameter β has to solve the equation

ϕ(β) = µ+ δ
��

α2 − β2 −
�
α2 − (β + 1)2

�
= 0

Rearranging and squaring this equation yields

β2 + β +
µ2

4δ2
− α2µ2

µ2 + δ2
+

1

4
= 0

The solutions of this equation are

β1,2 = −1

2
±
�

α2µ2

µ2 + δ2
− µ2

4δ2
(5.3)

Plugging these solutions into the original equation shows that the correct solution depends
on the sign of µ and is given by

β = −1

2
− sgn(µ)

�
α2µ2

µ2 + δ2
− µ2

4δ2
(5.4)

[12]

□

5.1.2. Experiment

For the numerical illustration, a discretized version of the Normal Inverse Gaussian model
will be used. For a fixed n ∈ N and time horizon T ≥ 0, the asset price is simulated at the
time points 0 = t0 < . . . < tn = T . This is achieved using the Euler scheme.
The parameters of the Normal Inverse Gaussian process are:

• α = 75.49

• β = 0.4984357

• δ = 3.024

• µ = −0.04

These parameters, with the exception of β, are taken from [14], while β was calculated
according to Theorem 15 to guarantee the simulated process being a martingale. These
parameters satisfy all conditions in Theorem 15, as one can easily verify. The initial value
of the price process will be S0 = 100. For this numerical experiment, transaction costs are
assumed to be zero.

The claim to be hedged is an at-the-money call option (K = S0 = 100) expiring in one
month (T = 21

252). The hedging position can be adjusted daily, meaning that n = 21.

39

5. Numerical Experiments

Benchmark Strategy

To assess the performance of the RNN strategy, a benchmark strategy has to be introduced.
For this experiment, the mean-variance hedging strategy from Theorem 14 will be used.
To reiterate, this means trading in the risky asset using the strategy

ξt :=

�
γ(z)eκ(z)(T−t)Sz−1

t− Π(dz) (5.5)

and initial capital

c :=

�
eκ(z)TSz

0 Π(dz) (5.6)

This would constitute the optimal hedging strategy in the mean-variance sense, if contin-
uous time trading was possible.
As the setting for this experiment is time discrete, the benchmark strategy will be strategy
5.5 evaluated at the discrete time points 0 = t0 < . . . < tN = T .

The claim to be hedged will be a European Call option with maturity T and strikeK = 100.
Using Theorem 13, the integrals in 5.5 and 5.6 can be rewritten as

ξk =
1

2πi

� R+i∞

R−i∞
γ(z)eκ(z)(T−tk)Sz−1

k

K1−z

z(z − 1)
dz (5.7)

c =
1

2πi

� R+i∞

R−i∞
eκ(z)TSz

0

K1−z

z(z − 1)
dz (5.8)

for R > 1. These integrals do not depend on the specific choice of R. For numerical
evaluation this value is chosen to be R = 1.1.

The integral 5.8 must yield a real value, therefore one can equivalently calculate the integral� R+i∞

R−i∞
ℜ
�

1

2πi
eκ(z)TSz

0

K1−z

z(z − 1)

�
dz

Using the substitution z = R+ iv yields

1

2π

� ∞

−∞
ℜ
�

1

2πi
eκ(R+iv)TSR+iv

0

K1−R−iv

(R+ iv)(R+ iv − 1)

�
dv

which can now be calculated numerically using the Python function scipy . integrate .quad.

The same argumentation can be applied to 5.7, yielding

1

2π

� ∞

−∞
ℜ
�
γ(R+ iv)eκ(R+iv)(T−tk)SR+iv−1

tk

K1−R−iv

(R+ iv)(R+ iv − 1)

�
dv

which can, once again, be calculated numerically using scipy . integrate .quad.

40

5. Numerical Experiments

RNN Strategy

The RNN strategy is computed using similar implementations to the one discussed in sec-
tion 4.2.3. As there is no definite way to determine the optimal topology of the RNN,
several models were trained for a combination of LSTM layers and hidden units. The
tested number of layers were 1, 2, 4 and 8, while the tested number of hidden units per
layer were 8, 16, 32 and 64. The network input vector at each time point contains only the
asset price at that moment, so Ik = Stk .

The stacked LSTM Models are trained on a training set of 70,000 sample paths and eval-
uated on a validation set of 10,000 sample paths after each epoch. If the validation loss
does not decrease for 15 epochs, training is stopped. The trained models are subsequently
evaluated on a test set of 20,000 sample paths and compared to the benchmark strategy
on this test set.

Results

The performance of each combination of layers and hidden units is evaluated via the loss
of the trained model on the test set, with the minimum marked by a box. The results of
this are shown in Table 5.1.

Number of
hidden units

Number of layers

1 2 4 8

8 0.47474253 0.45257995 0.42978394 3.10601521
16 0.44929951 0.45258984 0.4277997 0.42693883
32 0.44305009 0.43092746 0.42477739 0.42760918

64 0.4335461 0.42361307 0.42558199 0.43312702

Table 5.1.: Losses of trained models on the test set (Normal Inverse Gaussian model)

Table 5.1 suggests that two LSTM layers of 64 hidden units each constitute the optimal
choice for this problem. If training time and model simplicity are of concern, one might
also choose two LSTM layers of 32 hidden units each, as this cuts the number of model
parameters (and training time per epoch) roughly in half.
It should be noted that the “8-layer 8-hidden unit” model apparently got stuck in a local
minimum and did not decrease the loss function further, leading to an extremely high loss
on the test set, while the other “8-layer” models managed to achieve losses which are com-
parable to the other models.

The optimal model with two layers and 64 hidden units will now be analysed further.
Figure 5.1 compares the distribution of the hedge errors between the benchmark and RNN
strategies. While the histograms seem quite similar, one can see that the benchmark strat-
egy hedging errors are concentrated slightly closer to zero than the RNN strategy errors.
This can be confirmed by comparing the losses on the test data set: The RNN strat-
egy yields a loss of 0.42361307 while the benchmark strategy performs slightly better at
0.413948. Considering the fact that the benchmark strategy is a discretized version of the
true optimal trading strategy, one can conclude that the RNN strategy performs reasonably

41

5. Numerical Experiments

Figure 5.1.: Hedging error comparison between mean-variance hedging benchmark and 2-
layer 64-unit stacked LSTM model (Normal Inverse Gaussian model).

well.

In regards to pricing, the two approaches again yield quite similar results, with the bench-
mark approach pricing the option at 2.29024604, while the RNN approach prices the option
slightly higher at 2.2956936. This, combined with the 95% and 99% Value-at-Risk of the

Benchmark RNN

c 2.290246 2.295694
Loss 0.413948 0.423613

95% VaR 1.270878 1.283621
99% VaR 2.041777 1.989227

Table 5.2.: Comparison of price, loss, and 95%/99% VaR of absolute hedge errors between
the benchmark and RNN strategies on the test data set (Normal Inverse Gaus-
sian model).

absolute hedge error are shown in Table 5.2. A histogram of the the absolute differences
of the benchmark and RNN hedge errors for each test data path is depicted in Figure 5.2.
From this histogram, one can conclude that the strategies perform similarly well not only
aggregated but also on a per-path level.

42

5. Numerical Experiments

Figure 5.2.: Histogram of absolute hedge error differences for each path (Normal Inverse
Gaussian model).

5.2. Exponential Lévy Model - Transaction Costs

The common approaches to solving the mean-variance hedging problem assume absence
of transaction costs. As this does not reflect real world markets, the RNN model includes
proportional transaction costs in it’s loss function as discussed in section 4.1.2. While the
proportional transaction costs were set to zero for the previous experiment, now a non-zero
proportional cost factor is assumed.

5.2.1. Setting

The same setting as in section 5.1 is assumed, the only exception being the addition of
non-zero proportional transaction costs.

5.2.2. Experiment

As before, a discretized version of a Normal Inverse Gaussian model with parameters:

• α = 75.49

• β = 0.4984357

• δ = 3.024

• µ = −0.04

with initial value S0 = 100 is assumed. The proportional trading cost factors are chosen to
be constant over time with c0 = . . . = cn := 2−6

43

5. Numerical Experiments

The benchmark strategy will be the same as in 5.1, a discretized version of the mean-
variance hedging strategy from Theorem 14.

again, 16 models are trained for all possible combinations of 1, 2, 4 and 8 LSTM layers
and 8, 16, 32 and 64 hidden units per layer. The network input vector at each time point
contains only the asset price at that moment, so Ik = Stk .

The stacked LSTM Models are trained on a training set of 70,000 sample paths and eval-
uated on a validation set of 10,000 sample paths after each epoch. If the validation loss
does not decrease for 15 epochs, training is stopped. The trained models are subsequently
evaluated on a test set of 20,000 sample paths and compared to the benchmark strategy
on this test set.

Results

The performance of each combination of layers and hidden units is evaluated via the loss
of the trained model on the test set, with the minimum marked by a box. The results of
this are shown in Table 5.3.

Number of
hidden units

Number of layers

1 2 4 8

8 0.68132752 0.42960787 0.25011209 3.10431433
16 0.67694676 0.24679595 0.24333169 0.20446205
32 0.62059528 0.19986248 0.18782304 0.22110181

64 0.24768192 0.19711398 0.18369022 0.18988693

Table 5.3.: Losses of trained models on the test set (Normal Inverse Gaussian model)

According to table 5.3, 4 LSTM layers of 64 hidden units each constitute the optimal topol-
ogy choice for this problem with a test loss of 0.18369022. This table also shows that when
including transaction costs into the optimization problem, a larger number of layers and
hidden units is required to reach acceptable minima. For example, the models with only
one LSTM layer (with the exception of the “1-layer 64-unit” model) only achieve test losses
between 0.6 and 0.7, while adding layers and hidden units per layer drastically decreases
the test loss. However, this effect seems to be capped at four layers, as the 8 layer models
(with the exception of the “8-layer 32-unit model”) do not perform better then the 4 layer
models with the same number of hidden units. Again, the “1 layer 8 unit” model fails to
converge properly and only reaches a test loss of 3.10431433.

Comparing the RNN strategy to the benchmark strategy, one can easily see that the RNN
strategy vastly outperforms the benchmark. As the benchmark does not factor in transac-
tion costs, the hedge errors are shifted to the right, as transaction costs have a positive sign
in the hedge error calculation. However, even when adjusting the price of the benchmark
strategy to the one f the RNN strategy, which includes transaction costs, it still performs
significantly worse than the LSTM model. This is shown graphically in Figure 5.3.
The difference in the hedge errors does not only stem from “bad” pricing, as even when
considering only the variance of the hedge error, the RNN strategy hedge errors have a vari-

44

5. Numerical Experiments

Figure 5.3.: Hedging error comparison between mean-variance hedging benchmark and 4-
layer 64-unit stacked LSTMmodel (Normal Inverse Gaussian model with trans-
action costs).

ance of 0.183257 while the (adjusted) benchmark hedge errors have a variance of 1.006040.
This suggests that the the RNN model actually includes transaction cost considerations
into the strategy on a per-path level and does not only charge a higher price to compensate
for the average cost increase.

However, the price determined by the LSTM model is still significantly higher than in the
“no-cost” setting at 6.504342, compared to 2.295694 (LSTM without transaction costs)
and 2.290246 (benchmark). Losses, prices and 95% and 99% Value-at-Risk of the absolute
hedge error are summarized in Table 5.4

Benchmark Benchmark with RNN price RNN

c 2.290246 6.504342 6.504342
Loss 8.727918 3.066037 0.183690

95% VaR 4.702037 2.677056 0.806843
99% VaR 5.907022 3.044445 1.989227

Table 5.4.: Comparison of price, loss, and 95%/99% VaR of absolute hedge errors between
the benchmark and RNN strategies on the test data set (Normal Inverse Gaus-
sian model).

Quite surprisingly, when including transaction costs, the model achieves a significantly
lower test loss than when not including them. Figure 5.4 shows a histogram of the hedge
errors of the optimal model from 5.1 and the “4-layer 64-unit” model discussed in this
section. As one can easily see, the model including transaction costs has hedge errors

45

5. Numerical Experiments

Figure 5.4.: Hedging error comparison between the RNN strategies with and without trad-
ing costs (Normal Inverse Gaussian model).

with lower variance than the “no cost” model. This is also evident from the test losses of
0.42361307 and 0.18369022 for the “cost” and “no cost” models respectively.

5.3. Stochastic Volatility Model

While exponential Lévy models are useful asset price models, particularly in this setting, as
the optimal mean-variance hedging strategy can be computed relatively easily, other classes
of asset price models offer features and properties that better reflect real-life markets. One
of this classes are stochastic volatility models, in which the asset’s volatility is not assumed
to be constant or deterministic over time, but usually modelled as a separate stochastic
process. The standard stochastic volatility model is the Heston model [11], which resembles
the Black-Scholes-Merton Model, with the addition of the volatility not being constant, but
instead modelled as a Cox-Ingersoll-Ross process, with the Brownian motions driving both
the asset and volatility processes being, in general, correlated. The Heston model, although
well known and widely used, still has shortcomings, for example that the volatility process
is not bounded away from zero. For this reason, the 4/2 stochastic volatility model [9],
in which the volatility is uniformly bounded away from zero, will be used in the following
numerical experiments.

46

5. Numerical Experiments

5.3.1. Setting

In the 4/2 stochastic volatility model, the risk-neutral dynamics of the asset price (St)t∈[0,T]

are given by the SDE
dSt

St
= rdt+

�
a
�

Vt +
b√
Vt

�
dZt (5.9)

where the process (Vt)t∈[0,T] follows the dynamics

dVt = κ(θ − Vt)dt+ σ
�
Vt dWt (5.10)

for parameters r, κ, θ, σ > 0 and a, b ∈ R. The processes Z and W are Brownian motions
with instantaneous correlation d⟨W,Z⟩t = ρdt for ρ ∈ [−1, 1]. Additionally, if b ̸= 0, assume
that the Feller condition 2κθ ≥ σ2 is satisfied.

The volatility term in 5.9 is a linear combination of the volatility term in the Heston model
and the volatility term in the 3/2 stochastic volatility model [10].

As this thesis only treats mean-variance hedging for martingales, the discounted asset price
process S̃t := Ste

−rt is required to be martingale. According to [9], the process S̃t is a true
martingale if the Feller conditions are satisfied both under the risk-neutral and historical
measures, which leads to the following two conditions:

• 2κθ ≥ σ2

• 2κθ + 2ρσb ≥ σ2

By choosing parameters that satisfy these conditions, the discounted asset price process is
guaranteed to be a true martingale.

5.3.2. Experiment

For the numerical illustration, a discretized version of the 4/2 stochastic volatility model
will be used. For a fixed n ∈ N and time horizon T ≥ 0, the asset price and volatility
are simulated at the time points 0 = t0 < . . . < tn = T . This is achieved using the Euler
scheme with correlated standard normal samples for the two processes.
The parameters are:

• κ = 10

• θ = 0.02

• σ = 0.2

• a = 0.5

• b = 0.0002

• r = 0

• ρ = −0.7

47

5. Numerical Experiments

As one can easily verify, these parameters satisfy both conditions to guarantee the dis-
counted asset price process to be a martingale.
The initial values for the price and volatility process are S0 = 100 and V0 = 0.02, respec-
tively. For this numerical experiment, transaction costs are assumed to be zero.

The claim to be hedged is an at-the-money call option (K = S0 = 100) expiring in one
month (T = 21

252). The hedging position can be adjusted daily, meaning that n = 21.

Benchmark Strategy

The benchmark strategy for this numerical experiment will be a delta hedging strategy.
This means that the holdings of the underlying asset correspond to the sensitivity of the
value process Ht of the claim H w.r.t. changes in the price of the underlying. This quantity

will be denoted by ∆(t, s, v) := ∂Ht
∂St

"""
St=s,Vt=v

.

The benchmark strategy is therefore given by

ξt := ∆(t, St, Vt)

To calculate this strategy, an expression for the value process of the claim H is necessary,
which can then be evaluated twice to numerically approximate the partial derivative w.r.t.
the price of the underlying.
As elaborated in [9], the price of a payoff F (YT) with YT = log(ST) can be determined
using the following formula:

e−r(T−t)E [F (YT) | Ft] =
e−r(T−t)

2π
E

�

Z
e−izYT

��
R
eizyF (y)dy

�
dz

"""" Ft

�
=

e−r(T−t)

2π

�
Z
Ψt,T (−iz)F̂ (z) dz

(5.11)

where F̂ denotes the generalized Fourier transform of F , Z denotes the strip of regularity
of this transform and Ψt,T denotes the conditional generalized characteristic function of
the log-price:

Ψt,T (u) := E
	
euYT

"" Ft

for u ∈ Dt,T ⊆ C, which denotes the domain in which the function is well-defined.

As proven in [9], the conditional generalized characteristic function Ψ0,t is given by

Ψ0,t(u) = exp

�
uY0 +

κ2θ

σ2
t+ u

�
r − ab− aρκθ

σ
+

bρκ

σ

�
t+ u2(1− ρ2)abt

�

·
 √

Au

σ2 sinh
�√

Au

2 t
�
mu+1

V
1
2
+mu

2
− κθ

σ2−ubρ
σ

0

�
Ku(t)− uaρ

σ

�−(1
2
+mu

2
+ κθ

σ2+
ubρ
σ

)

· exp
�
V0

2

�
−
�
Au coth

�√
Aut

2

�
+ κ− uaρσ

��
Γ(12 + mu

2 + κθ
σ2 + ubρ

σ)

Γ(mu + 1)

· 1F1

�
1

2
+

mu

2
+

κθ

σ2
+

ubρ

σ
,mu + 1,

AuV0

σ4 sinh2(
√
Au

2 t)
�
Ku(t)− uaρ

σ

��

48

5. Numerical Experiments

with

Au := κ2 − 2σ2

�
u

�
aρκ

σ
− 1

2
a2
�
+

1

2
u2(1− ρ2)a2

�

mu :=
2

σ2

��
κθ − σ2

2

�2

− 2σ2

�
u

�
bρ

σ

�
σ2

2
− κθ

�
− b2

2

�
+

u2

2
(1− ρ2)b2

�
Ku(t) :=

1

σ2

��
Au coth

�√
Au

2
t

�
+ κ

�
Here, 1F1 denotes the hypergeometric confluent function:

1F1(a; b; z) :=

∞
n=0

a(n)zn

b(n)n!

where a(0) = 1 and a(n) = a(a+ 1)(a+ 2) . . . (a+ n− 1).

From this expression for Ψ0, t, the general formula for Ψt,T can be deduced easily.

To calculate the delta hedging strategy, the pricing formula 5.11 can be interpreted as
a function u of t, St, and Vt, which can in turn be numerically evaluated at the points
(t, St − h, Vt) and (t, St + h, Vt) for small h > 0 to calculate the symmetric difference
quotient

∆(t, St, Vt) ≈ ∆̂(t, St, Vt) :=
u(t, St + h, Vt)− u(t, St − h, Vt)

2h

as an approximation of the claim’s delta. This approximation will be used as the benchmark
strategy

ξt = ∆̂(t, St, Vt)

For this experiment, a value of h = 10−4 was used. Expressions for the generalized Fourier
transform of the payoff function and the strip Z were taken from [17].

RNN Strategy

As in section 5.1, 16 models are trained for all possible combinations of 1, 2, 4 and 8 LSTM
layers and 8, 16, 32 and 64 hidden units per layer. The RNN models are implemented
using, again, an implementation similar to the one discussed in 4.2.3. The network input
vector at each time point contains only the asset price at that moment, so Ik = Stk .

As before, the stacked LSTM Models are trained on a training set of 70,000 sample paths
and evaluated on a validation set of 10,000 sample paths after each epoch. If the validation
loss does not decrease for 15 epochs, training is stopped. The trained models are subse-
quently evaluated on a test set of 20,000 sample paths and compared to the benchmark
strategy on this test set.

Results

The losses on the test set of the 16 trained models are shown in table 5.5, with the minimum
marked by a box. According to the data shown in table 5.5, the optimal model topology

49

5. Numerical Experiments

Number of
hidden units

Number of layers

1 2 4 8

8 0.04894227 0.03936565 0.02951627 0.39152917
16 0.03715733 0.0336134 0.03005624 0.02991065
32 0.03527585 0.03319656 0.02878462 0.39135444

64 0.0340624 0.03063314 0.02815739 0.39146277

Table 5.5.: Losses of trained models on the test set (4/2 stochastic volatility model)

for this specific problem consists of four LSTM layers with 64 units each. However, should
model simplicity and per-epoch training time be of concern, the “4-layer 32-unit” and
“4-layer 16-unit” models offer comparable performance at a significant lower number of
parameters. In general, the “4-layer” models seem to perform best for this specific setting,
achieving four of the five lowest losses.
Again, almost all of the models with eight LSTM layers seem to get stuck in “bad” local
minimums and only reach very poor test dataset losses. The “8-layer 16-unit” model,
however, converges properly and achieves the fourth lowest test dataset loss overall.

As the “4-layer 64-unit” model achieved the lowest test dataset loss, the following analysis
will focus on this model. Figure 5.5 compares the distribution of the hedge errors between
the benchmark and RNN strategies. This figure shows, that the distribution of hedge
errors is quite similar between the benchmark and RNN strategies, with the RNN strategy
hedge errors appearing to be of smaller variance than the benchmark hedge errors. This
is confirmed by the fact, that the RNN strategy test dataset loss is 0.02815739, while the
benchmark test dataset loss is slightly higher at 0.028832. Therefore, the RNN strategy
outperforms the benchmark strategy w.r.t. the mean-variance hedging criterion.

The two approaches yield similar prices, with the benchmark approach pricing the call
option at 0.827093, while the RNN prices it slightly higher at 0.820873. Losses, prices and
95% and 99% Value-at-Risk of the absolute hedge error are summarized in Table 5.6

Benchmark RNN

c 0.827093 0.820873
Loss 0.028832 0.028157

95% VaR 0.340705 0.339834
99% VaR 0.476324 0.493351

Table 5.6.: Comparison of price, loss, and 95%/99% VaR of absolute hedge errors between
the benchmark and RNN strategies on the test data set (4/2 stochastic volatility
model).

Again, the two approaches do not only perform similarly when aggregated, but also on
a per-path level, which can be seen in Figure 5.6, which depicts a histogram of the the
absolute differences of the benchmark and RNN hedge errors for each test data path.

50

5. Numerical Experiments

Figure 5.5.: Hedging error comparison between mean-variance hedging benchmark and 4-
layer 64-unit stacked LSTM model (4/2 stochastic volatility model).

5.4. Stochastic Volatility Model - Trading in additional Option

If one can only trade in the risky asset S, the markets generated by stochastic volatility
models like the Heston and 4/2 model are incomplete, as there are two sources of random-
ness present, but only one tradable asset. However, under some conditions, the market can
be completed by allowing trading in a second option written on S.

This motivates the extension of the previous setting to also allow trading in another option
with longer maturity.

5.4.1. Setting

The same setting as in section 5.3 is assumed. This means that the dynamics for the price
and volatility processes are given by 5.9 and 5.10, respectively and that the conditions
guaranteeing the discounted price process to be a martingale are satisfied.

5.4.2. Experiment

As before, a discretized version of the 4/2 stochastic volatility model with parameters

• κ = 10

• θ = 0.02

• σ = 0.2

51

5. Numerical Experiments

Figure 5.6.: Histogram of absolute hedge error differences for each path (4/2 stochastic
volatility model).

• a = 0.5

• b = 0.0002

• r = 0

• ρ = −0.7

with initial values S0 = 100 and V0 = 0.02 will be used and transaction costs are assumed
to be zero.
Again, the claim to be hedged is an at-the-money call option (K = S0 = 100) expiring in
one month (T = 21

252), with daily adjustment in the hedging position (n = 21). Additionally,
trading in an at-the-money call option with a maturity T ′ = 2T of 2 months is possible.
This claim will be denoted by F and its value process by Ft. The value process of this
option was calculated by numerically evaluating the pricing formula 5.11 at each time step
for each path.

Benchmark Strategy

The benchmark strategy for this numerical experiment will be a delta-sigma hedging
strategy.
To better illustrate the concept of delta-sigma hedging, consider the hedging portfolio
consisting of -1 units of claim H, ∆ units of the asset S and Σ units of the second claim F .
A delta-sigma strategy aims to eliminate both the delta (sensitivity of option price w.r.t.
price change of underlying) and vega (sensitivity of option price w.r.t. volatility change of
underlying) of the hedging portfolio.

52

5. Numerical Experiments

The vega of the claim H will be denoted by VH(t, s, v) := ∂Ht
∂Vt

"""
St=s,Vt=v

, and similarly,

VF will denote the vega of the claim F . In an analogous manner, ∆H and ∆F denote the
deltas of the claims H and F , respectively.

Eliminating the portfolio vega is achieved by holding an amount Σ of the traded option
equal to the ratio of the vega of the option to be hedged and the vega of the traded:

Σ :=
VH

VF

The holdings in the risky asset S are now chosen to offset both the delta of the holdings in
H as well as in F :

∆ := ∆H − Σ∆H

This will constitute the benchmark strategy for the following experiment. The values of
∆H and ∆F can be approximated as discussed in 5.3.2, while VH and VF can similarly
approximated by

VH/F (t, St, Vt) ≈ V̂H/F (t, St, Vt) :=
uH/F (t, St, Vt + h)− uH/F (t, St, Vt − h)

2h

The chosen values for h were h = 10−4 for the delta approximation and h = 10−6 for the
vega approximation.

RNN Strategy

Once again, 16 models for are trained for all possible combinations of 1, 2, 4 and 8 LSTM
layers and 8, 16, 32 and 64 hidden units per layer. The RNN models are implemented
using, again, a implementation similar to the one discussed in 4.2.3. The network input
vector at each time point now consists of both the underlying asset price as well as the
value of the traded option at that moment, so Ik = (Stk , Ftk)

T .

As before, the stacked LSTM Models are trained on a training set of 70,000 sample paths
and evaluated on a validation set of 10,000 sample paths after each epoch. If the validation
loss does not decrease for 15 epochs, training is stopped. The trained models are subse-
quently evaluated on a test set of 20,000 sample paths and compared to the benchmark
strategy on this test set.

Results

The losses on the test set of the 16 trained models are shown in table 5.5, with the minimum
marked by a box. According to this table, the optimal network topology consists of 4 LSTM
layers with 32 hidden units each. Alternatively, 2 layers of 16 hidden unit LSTM cells may
also be a viable choice, as this model performs only slightly worse, while being significantly
smaller in both number of layers and number of hidden units (and therefore parameters)

Once again, almost all “8 layer” models appear to get stuck in suboptimal local minima of
the loss function and fail to reach test losses comparable to the other models. Interestingly,
the “8 layer 64 units” model, which is the largest tested model by number of parameters,

53

5. Numerical Experiments

Number of
hidden units

Number of layers

1 2 4 8

8 0.00554427 0.00476589 0.0046732 0.02454056
16 0.00492431 0.00464781 0.00467911 0.02456822

32 0.00484235 0.00470393 0.00464131 0.02458838
64 0.00495739 0.00466561 0.00469984 0.00467254

Table 5.7.: Losses of trained models on the test set (4/2 stochastic volatility model with
trading in second option)

achieves the fourth lowest overall test loss. Judging by this, the poor performance of the
other “8-layer” models may stem from the fact that the gradient descent algorithm only
achieves slight loss improvements for larger models, which can in turn lead to the validation
loss not decreasing for several epochs. A larger choice of the number of epochs without
validation loss to stop training (also referred to as “patience”) may cause these models to
achieve better performance. However, failure to converge properly for an already relatively
large patience parameter of 15 indicates that these models might not be robust enough to
be considered.

The following discussions will only consider the “4-layer 32-unit” model.
Figure 5.7 compares the distribution of the hedge errors between the benchmark and RNN
strategies. As one can easily see, the RNN strategy achieves significantly lower hedge errors
than the benchmark delta-sigma strategy. This is confirmed by the test losses, which are
0.010548 for the benchmark strategy and only 0.004641 for the RNN strategy. The delta-
sigma strategy still outperforms the delta strategy from section 5.3 which achieved a test
loss of 0.028832. The reason for the significantly better performance of the RNN strategy
may stem from the fact, that the strategies are compared in a discrete time setting This
possible affects the performance of the delta-sigma strategy, which, in reality, is a continuous
time strategy, more than the RNN strategy. Further analysis of these two strategies with
more frequent rebalancing (and therefore smaller discretization error) should be conducted.

Both approaches yield very similar option prices: 0.827093 for the benchmark approach and
0.827172 for the RNN approach. Unsurprisingly given the significantly lower test loss, the
RNN strategy also achieves significantly lower VaRs for the absolute hedge errors. Losses,
prices and 95% and 99% Value-at-Risk of the absolute hedge error are summarized in Table
5.8.

5.5. Hardware, Software and Runtimes

This section contains information about the used hardware, software and the runtime of
the scripts used in for the numerical experience.

All numerical experiments were run on a Linux desktop PC with an Intel i5 3750K CPU
running the operating system Manjaro Linux.
The code for the experiments was written mostly in Python, the only exception being a

54

5. Numerical Experiments

Figure 5.7.: Hedging error comparison between mean-variance hedging benchmark and 4-
layer 32-unit stacked LSTMmodel (4/2 stochastic volatility model with trading
in second option).

Benchmark RNN

c 0.827093 0.827172
Loss 0.010548 0.004641

95% VaR 0.224016 0.145148
99% VaR 0.334520 0.223310

Table 5.8.: Comparison of price, loss, and 95%/99% VaR of absolute hedge errors between
the benchmark and RNN strategies on the test data set (4/2 stochastic volatility
model with trading in second option).

small library written in C for the numerical integration in the pricing formula 5.11. Python
version 3.10.8 was used with the following versions of major packages

• keras==2.11.0

• numpy==1.22.3

• scipy==1.8.0

• tensorflow==2.11.0

The following table contains the runtimes for different tasks for the numerical experiments.

55

5. Numerical Experiments

Task Runtime

NIG RNN Training 4:23:53
NIG RNN Training (transaction costs) 6:37:01

4/2 RNN Training 5:20:51
4/2 RNN Training (additional option) 5:11:18

NIG Benchmark 2:53:55
4/2 Benchmark 27:06:22

Table 5.9.: Runtimes of numerical experiment tasks.

56

6. Conclusion

This thesis illustrates that deep hedging approaches, specifically ones utilizing findings
from the field of recurrent neural networks, are a viable alternative to traditional hedging
strategies. Neural-network based approaches are not only greek-free but also do not re-
quire prior asset price model selection and calibration. Due to widely available libraries like
TensorFlow, Keras and others, model training and prediction can be achieved in a highly
efficient and scalable manner.

From the numerical experiments it is apparent that the stacked LSTM networks can achieve
comparable, if not better, hedging performance than widely used benchmark strategies,
depending on the specific setting. A key observation from these experiments is that hier-
archically organizing multiple LSTM cells does improve the model’s performance, as the
optimal model topology for each experiment consisted of either two or four LSTM layers.
However, this effect appears to be capped, as the models with eight LSTM layers did not
outperform the optimal models and in some cases even failed to properly minimize the loss
function. Additionally, more hidden units per layer seem to be beneficial for the models
performance, as the optimal models used either 32 or 64 hidden units, which are the two
largest numbers of hidden units tested in the numerical experiments.
A surprising result from section 5.2 was that introducing transaction costs to the setting
allowed the RNN strategy to achieve a significantly lower loss than when no transaction
costs were present, which was not replicated by the benchmark strategy.

Further research could focus on applying the techniques introduced in this thesis to real
world markets. While real world phenomena like trading costs and other market friction
can be included into the RNN model, other problems arise, mainly the availability of sample
paths for model training, testing and validation.

57

A. Code

The code used for the numerical experiments was mostly written in Python. The implemen-
tation of the Stacked LSTM model, option pricers for benchmark calculation, sample asset
price path generators and more were all combined into a Python package called mvhrnn.
The structure of the mvhrnn source code is as follows:

mvhrnn

init .py

assetmodels.py

options.py

stackedlstm.py

utils.py

The code in each of these files is listed below.

Listing A.1: Source code of assetmodels.py

1 from abc import ABC, abstractmethod
2 import numpy as np
3 from tqdm import tqdm
4 from s c ipy . s t a t s import norminvgauss
5

6 class AssetModel (ABC) :
7

8 @property
9 @abstractmethod

10 def expected params (s e l f) :
11 pass
12

13 def i n i t (s e l f , params , expected params) :
14 i f params . keys () != expected params :
15 raise ValueError (”The expected parameters were not provided . ”)
16 s e l f . params = params
17

18 @abstractmethod
19 def s imu la t e paths (s e l f , n , N, T) :
20 pass
21

22

23 class FourHalvesModel (AssetModel) :
24

25 expected params = {”S0” ,
26 ”V0” ,
27 ” r ” ,
28 ”kappa” ,
29 ” theta ” ,
30 ”sigma” ,
31 ”a” ,

58

A. Code

32 ”b” ,
33 ” co r r ” ,
34 ”d”}
35

36 def i n i t (s e l f , params) :
37 super () . i n i t (params , s e l f . expected params)
38

39 i f params [” co r r ”] . shape != (2 ∗ params [”d”] , 2∗ params [”d”]) :
40 raise ValueError (” co r r does not have the expected shape (2d , 2d) . ”)
41

42 def s imu la t e paths (s e l f , n , N, T) :
43 v paths = np . z e r o s ((N, n+1, s e l f . params [”d”]) , ’ f l o a t 3 2 ’)
44 s pa ths = np . z e r o s ((N, n+1, s e l f . params [”d”]) , ’ f l o a t 3 2 ’)
45

46 dt = T/n
47

48 S t = s e l f . params [”S0”] ∗ np . ones ((N, s e l f . params [”d”]) , ’ f l o a t 3 2 ’)
49 V t = s e l f . params [”V0”] ∗ np . ones ((N, s e l f . params [”d”]) , ’ f l o a t 3 2 ’)
50

51 for t in tqdm(range (n+1)) :
52 i f t == 0 :
53 v paths [: , t , :] = V t
54 s pa ths [: , t , :] = S t
55 continue
56 Z = np . random . mu l t i va r i a t e norma l (
57 mean=np . z e r o s (2∗ s e l f . params [”d”]) ,
58 cov=s e l f . params [” co r r ”] ,
59 s i z e =(N)
60) ∗ np . s q r t (dt)
61

62 ab term = s e l f . params [”a”]∗ np . s q r t (V t) \
63 + s e l f . params [”b”] / np . s q r t (V t)
64

65 S t = S t ∗np . exp ((s e l f . params [” r ”]−0.5∗ ab term∗ab term)∗ dt \
66 + (ab term)∗Z [: , 0 : s e l f . params [”d”]])
67

68 V t = V t + s e l f . params [”kappa”] ∗ (s e l f . params [” theta ”] − V t)∗ dt \
69 + s e l f . params [” sigma”] ∗ np . s q r t (V t)∗Z [: , s e l f . params [”d”] :]
70

71 s pa ths [: , t , :] = S t
72 v paths [: , t , :] = V t
73

74 return s paths , v paths
75

76

77

78 class NormInvGaussModel (AssetModel) :
79

80 expected params = {”S0” , ” alpha ” , ” de l t a ” , ”mu” , ” beta ”}
81

82 def i n i t (s e l f , params) :
83 super () . i n i t (params , s e l f . expected params)
84

85 def s imu la t e paths (s e l f , n , N, T) :
86 a = s e l f . params [” alpha ”] ∗ s e l f . params [” de l t a ”]

59

A. Code

87 b = s e l f . params [” beta ”] ∗ s e l f . params [” de l t a ”]
88 l o c = s e l f . params [”mu”]
89 s c a l e = s e l f . params [” de l t a ”]
90

91 r = norminvgauss . rvs (a ∗(T/n) ,
92 b∗(T/n) ,
93 l o c ∗(T/n) ,
94 s c a l e ∗(T/n) ,
95 s i z e=n∗N,
96 random state=None
97) . reshape (N, n , 1) . astype (’ f l o a t 3 2 ’)
98

99 r = np . cumsum(r , ax i s=1)
100 r = np . concatenate ((np . z e r o s (shape=(N, 1 , 1) , dtype=” f l o a t 3 2 ”) , r) , ax i s=1)
101

102 return s e l f . params [”S0”] ∗ np . exp (r)
103

104 def kappa (s e l f , z) :
105 return s e l f . params [”mu”]∗ z \
106 + s e l f . params [” de l t a ”] ∗ (np . s q r t (s e l f . params [” alpha ”]∗∗2 \
107 − s e l f . params [” beta ”]∗∗2) − np . sq r t (s e l f . params [” alpha ”]∗∗2 \
108 − (s e l f . params [” beta ”] + z)∗∗2))
109

110 def gamma(s e l f , z) :
111 return (s e l f . kappa (z+1) − s e l f . kappa (z)) / s e l f . kappa (2)
112

113 n ig de f au l t pa rams = {
114 ”S0” : 100 ,
115 ” alpha ” : 75 .49 ,
116 ” de l t a ” : 3 . 024 ,
117 ”mu” : −0.04 ,
118 ”beta ” : 0 .4984357
119 }
120

121 f h de f au l t pa rams = {
122 ”S0” : 100 ,
123 ”V0” : 0 . 02 ,
124 ” r ” : 0 ,
125 ”kappa” : 10 ,
126 ” theta ” : 0 . 02 ,
127 ”sigma” : 0 . 2 ,
128 ”a” : 0 . 5 ,
129 ”b” : 0 .0002 ,
130 ” co r r ” : np . array (
131 [[1 , −0.7] ,
132 [−0.7 , 1]]
133) ,
134 ”d” : 1
135 }

Listing A.2: Source code of options.py

1 from abc import ABC, abstractmethod
2 import numpy as np
3 from mvhrnn . as se tmode l s import FourHalvesModel , f h de f au l t pa rams

60

A. Code

4 from mvhrnn . as se tmode l s import NormInvGaussModel , n i g de f au l t pa rams
5 import os
6 os . env i ron [’TF CPP MIN LOG LEVEL ’] = ’ 2 ’
7 import t en so r f l ow as t f
8

9

10 from s c ipy import LowLevelCal lable
11 from s c ipy . i n t e g r a t e import quad
12 from ctypes import CDLL, c double , c i n t , POINTER
13

14 from pydantic . d a t a c l a s s e s import da t a c l a s s
15

16 import matp lo t l i b . pyplot as p l t
17 import seaborn as sns
18

19 from pathos . mu l t i p r o c e s s i ng import Pool
20 from tqdm import tqdm
21

22 class EuropeanOption (ABC) :
23 @abstractmethod
24 def payo f f (s e l f , x) :
25 pass
26

27 @abstractmethod
28 def t f p a y o f f (s e l f , x) :
29 pass
30

31 class EuropeanCallOption (EuropeanOption) :
32 def i n i t (s e l f , T, s t r i k e) :
33 super () . i n i t ()
34 s e l f .T = T
35 s e l f . s t r i k e = s t r i k e
36

37 def payo f f (s e l f , x) :
38 x = np . array (x)
39 i f len (x . shape) > 1 :
40 return np .maximum(x [: , −1] − s e l f . s t r i k e , 0)
41 else :
42 return np .maximum(x − s e l f . s t r i k e , 0)
43

44 def t f p a y o f f (s e l f , x) :
45 return t f . math .maximum(x [: , −1] − s e l f . s t r i k e , 0)
46

47 def r e p r (s e l f) :
48 return f ”EuropeanCallOption (T={ s e l f .T} , s t r i k e={ s e l f . s t r i k e }) ”
49

50 class EuropeanPutOption (EuropeanOption) :
51 def i n i t (s e l f , T, s t r i k e) :
52 super () . i n i t ()
53 s e l f .T = T
54 s e l f . s t r i k e = s t r i k e
55

56 def payo f f (s e l f , x) :
57 x = np . array (x)
58 i f len (x . shape) > 1 :

61

A. Code

59 return np .maximum(s e l f . s t r i k e − x [: , −1] , 0)
60 else :
61 return np .maximum(s e l f . s t r i k e − x , 0)
62

63 def t f p a y o f f (s e l f , x) :
64 return t f . math .maximum(s e l f . s t r i k e − x [: , −1] , 0)
65

66 def r e p r (s e l f) :
67 return f ”EuropeanPutOption (T={ s e l f .T} , s t r i k e={ s e l f . s t r i k e }) ”
68

69 @datac lass (c on f i g=dict (a r b i t r a r y t yp e s a l l owed=True))
70 class Opt ionPor t f o l i o :
71 opt ions : l i s t [EuropeanOption] | EuropeanOption
72 unde r l y ing idx : l i s t [int] | None = None
73

74 def p o s t i n i t (s e l f) :
75 i f isinstance (s e l f . opt ions , EuropeanOption) :
76 s e l f . opt i ons = [s e l f . opt i ons]
77 i f s e l f . unde r l y ing idx i s None :
78 s e l f . unde r l y ing idx = l i s t (range (len (s e l f . opt i ons)))
79

80 a s s e r t len (s e l f . opt i ons) == len (s e l f . unde r l y ing idx)
81

82 class OptionPr icer (ABC) :
83 @abstractmethod
84 def p r i c e (s e l f) :
85 pass
86

87 def i n i t (s e l f) :
88 s e l f . p r i c e = np . v e c t o r i z e (s e l f . p r i c e)
89

90 class FourHalvesPr icer (Opt ionPr icer) :
91 def i n i t (s e l f , opt ion , model , h s = 1E−4, h v=1E−6):
92 super () . i n i t ()
93

94 a s s e r t isinstance (model , FourHalvesModel)
95 a s s e r t (model . params [”d”] == 1)
96

97 s e l f . l i b p a th = os . path . abspath (’ /path/ to / l i b f o u r h a l v e s i n t e g r and . so ’)
98

99 s e l f . h s = h s
100 s e l f . h v = h v
101

102 s e l f . opt ion = opt i on
103 s e l f . model = model
104

105 def ge t i n t eg rand (s e l f) :
106 l i b = CDLL(s e l f . l i b p a th)
107 i f isinstance (s e l f . option , EuropeanCallOption) :
108 in tegrand = l i b . i n t e g r a nd c a l l
109 e l i f isinstance (s e l f . option , EuropeanPutOption) :
110 in tegrand = l i b . i n t e g r a nd c a l l
111

112 in tegrand . r e s type = c doub le
113 in tegrand . argtypes = (c i n t , POINTER(c doub le))

62

A. Code

114 return in tegrand
115

116 def p r i c e (s e l f , t , s , v) :
117 return quad (
118 LowLevelCal lable (s e l f . g e t i n t eg rand ()) ,
119 a = −5000 ,
120 b = 5000 ,
121 l im i t = 500 ,
122 args =(t ,
123 s e l f . opt ion .T,
124 s ,
125 v ,
126 s e l f . model . params [”kappa”] ,
127 s e l f . model . params [” theta ”] ,
128 s e l f . model . params [” sigma”] ,
129 s e l f . model . params [”a”] ,
130 s e l f . model . params [”b”] ,
131 s e l f . model . params [” co r r ”] [0 , 1] ,
132 s e l f . model . params [” r ”] ,
133 s e l f . opt ion . s t r i k e
134)
135) [0] \
136 ∗ (np . exp(− s e l f . model . params [” r ”] ∗ (s e l f . opt ion .T − t)) / (2∗np . p i))
137

138 def map price (s e l f , a r r) :
139 return s e l f . p r i c e (a r r [0] , a r r [1] , a r r [2])
140

141 def mp map price (s e l f , a r r) :
142 with Pool () as pool :
143 r e s u l t s v a l u e = l i s t (tqdm(pool . imap (s e l f . map price , a r r) ,
144 t o t a l=len (a r r) ,
145 smoothing=0
146)
147)
148

149 return np . s tack (r e s u l t s v a l u e)
150

151 def de l t a (s e l f , t , s , v) :
152 return (s e l f . p r i c e (t , s + s e l f . h s , v) \
153 − s e l f . p r i c e (t , s − s e l f . h s , v) \
154) / (2∗ s e l f . h s)
155

156 def vega (s e l f , t , s , v) :
157 return (s e l f . p r i c e (t , s , v + s e l f . h v) \
158 − s e l f . p r i c e (t , s , v − s e l f . h v) \
159) / (2∗ s e l f . h v)
160

161 def greeks (s e l f , t , s , v) :
162 return np . array ([s e l f . d e l t a (t , s , v) , s e l f . vega (t , s , v)])
163

164 def map greeks (s e l f , a r r) :
165 return s e l f . g r eeks (a r r [0] , a r r [1] , a r r [2])
166

167 def mp map greeks (s e l f , a r r) :
168 with Pool () as pool :

63

A. Code

169 r e s u l t s v a l u e = l i s t (tqdm(pool . imap (s e l f . map greeks , a r r) ,
170 t o t a l=len (a r r) ,
171 smoothing=0
172)
173)
174

175 return np . s tack (r e s u l t s v a l u e)
176

177

178 class NormInvGaussPricer (Opt ionPr icer) :
179 def i n i t (s e l f , opt ion , model) :
180 super () . i n i t ()
181 a s s e r t isinstance (model , NormInvGaussModel)
182 s e l f . h edge po s i t i on = np . v e c t o r i z e (s e l f . h edge po s i t i on)
183 s e l f . opt ion = opt i on
184 s e l f . model = model
185

186 def p r i c e (s e l f , t , s) :
187 def in tegrand (v) :
188 z = 1 .1 + 1 j ∗v
189 return np . r e a l (np . exp (s e l f . model . kappa (z)∗ (s e l f . opt ion .T−t)) \
190 ∗ s ∗∗(z) \
191 ∗(s e l f . opt ion . s t r i k e ∗∗(1−z)/(2∗np . p i ∗z ∗(z−1))) \
192)
193

194 return quad (integrand , −np . in f , np . in f , l im i t = 5 0 0) [0]
195

196 def hedge po s i t i on (s e l f , t , s) :
197 def in tegrand (v) :
198 z = 1 .1 + 1 j ∗v
199 return np . r e a l (s e l f . model . gamma(z) \
200 ∗np . exp (s e l f . model . kappa (z) \
201 ∗(s e l f . opt ion .T−t))∗ s ∗∗(z−1) \
202 ∗(s e l f . opt ion . s t r i k e ∗∗(1−z)/(2∗np . p i ∗z ∗(z−1)))
203)
204

205 return quad (integrand , −np . in f , np . in f , l im i t = 5 0 0) [0]

Listing A.3: Source code of stackedlstm.py

1 import os
2 os . env i ron [’TF CPP MIN LOG LEVEL ’] = ’ 2 ’
3

4 import t en so r f l ow as t f
5 from t en so r f l ow import keras
6 from t en so r f l ow . keras import l a y e r s
7

8 from f u n c t o o l s import p a r t i a l
9 import numpy as np

10

11 from mvhrnn . u t i l s import pnl , t r a d i n g c o s t s
12 from mvhrnn . u t i l s import G default , s e t end ze ro , p o r t f o l i o p a y o f f
13

14

15 # Ca l cu l a t e the Loss f o r a payo f f as de f i ned above ,

64

A. Code

16 # i n i t i a l c a p i t a l c and p r i c e and po s i t i o n time s e r i e s
17

18 def mvh loss (payof f , c , p r i c e s , po s i t i on s , eps) :
19 return t f . math . square (payo f f (p r i c e s) − c \
20 − t f . math . reduce sum (pnl (p r i c e s , p o s i t i o n s [: , : − 1]) [: , − 1 , :] , 1) \
21 + t r ad i n g c o s t s (p r i c e s , p o s i t i o n s [: , : − 1] , eps))
22

23 # Subc l a s s a Layer to be a b l e to add mvh loss to a model
24 # This l a y e r a l s o adds the i n i t i a l c a p i t a l c as a t r a i n a b l e v a r i a b l e
25

26 class LossLayer (l a y e r s . Layer) :
27 def i n i t (s e l f , payof f , eps , G, trade idx , ∗∗kwargs) :
28 s e l f . payo f f = payo f f
29 s e l f . eps = eps
30 s e l f .G=G
31 s e l f . t rade idx = trade idx
32

33 c i n i t = t f . z e r o s i n i t i a l i z e r ()
34 s e l f . c = t f . Var iab le (i n i t i a l v a l u e=c i n i t (shape =(1 ,) ,
35 dtype=” f l o a t 3 2 ”) ,
36 name=”c” ,
37 t r a i n ab l e=True
38)
39

40 super (LossLayer , s e l f) . i n i t (∗∗ kwargs)
41

42

43 def c a l l (s e l f , inputs) :
44 pro j po s = s e l f .G(inputs [0])
45 p r i c e s = t f . t ranspose (t f . gather nd (t f . t ranspose (inputs [1]) ,
46 [[x] for x in s e l f . t rade idx]
47)
48)
49 s e l f . add l o s s (mvh loss (s e l f . payof f ,
50 s e l f . c ,
51 pr i c e s ,
52 pro j pos ,
53 s e l f . eps
54)
55)
56 return s e t e nd z e r o (p ro j po s) # Pass−through model ou tpu t s
57

58 def g e t c o n f i g (s e l f) :
59

60 c on f i g = super () . g e t c o n f i g () . copy ()
61 c on f i g . update ({
62 ’ payo f f ’ : s e l f . payof f ,
63 ’ eps ’ : s e l f . eps ,
64 ’G ’ : s e l f .G,
65 ’ t r ad e i dx ’ : s e l f . t rade idx
66 })
67 return c on f i g
68

69

70

65

A. Code

71

72 class StackedLSTM(t f . keras . Model) :
73

74 def i n i t (s e l f ,
75 inputshape ,
76 hidden layers ,
77 hiddenunits ,
78 op t i o npo r t f o l i o ,
79 t rade idx=None ,
80 eps=0,
81 G=G default ,
82 ∗∗kwargs) :
83 s e l f . o p t i o n p o r t f o l i o = op t i o n p o r t f o l i o
84 s e l f . eps = eps
85

86 i f t rade idx :
87 s e l f . t rade idx = trade idx
88 else :
89 s e l f . t rade idx = l i s t (range (inputshape [1]))
90

91 i nputs = keras . Input (shape=inputshape , name=” i npu t l a y e r ”)
92

93 temp = inputs
94 for i in range (h idden laye r s) :
95 temp = l a y e r s .LSTM(hiddenunits ,
96 r e tu rn s equence s=True ,
97 un r o l l = True ,
98 name=f ” l s tm l a y e r { i }”
99) (temp)

100

101 dense = l a y e r s . Dense (len (s e l f . t rade idx) ,
102 name=” den s e l ay e r ” ,
103 a c t i v a t i o n=’ l i n e a r ’
104) (temp)
105

106 outputs = LossLayer (name=” l o s s l a y e r ” ,
107 payo f f=s e l f . payof f ,
108 eps=s e l f . eps ,
109 G=G,
110 t rade idx=s e l f . t rade idx
111) ([dense , inputs])
112 super (StackedLSTM , s e l f) . i n i t (inputs=inputs ,
113 outputs=outputs ,
114 ∗∗kwargs)
115

116 def payo f f (s e l f , t en so r) :
117 return p o r t f o l i o p a y o f f (s e l f . o p t i o npo r t f o l i o , t en so r)

Listing A.4: Source code of utils .py

1 import os
2 os . env i ron [’TF CPP MIN LOG LEVEL ’] = ’ 2 ’
3

4 import t en so r f l ow as t f
5

66

A. Code

6 # Ca l cu l a t e t r ad ing pn l from pr i c e and po s i t i o n time s e r i e s
7 def pnl (p r i c e s , p o s i t i o n s) :
8 return t f . math . cumsum(
9 t f . math . mul t ip ly (

10 t f . exper imenta l . numpy . d i f f (p r i c e s , ax i s =1) , p o s i t i o n s
11)
12 , a x i s=1
13)
14

15 #Propor t i ona l Trading c o s t s
16 def t r a d i n g c o s t s (p r i c e s , po s i t i on s , eps) :
17 ze ro s d ims = t f . s tack ([t f . shape (p o s i t i o n s) [0] , 1 , t f . shape (p o s i t i o n s) [2]])
18 z e ro s = t f . f i l l (zeros d ims , 0 . 0)
19 n = t f . exper imenta l . numpy . d i f f (t f . concat ([zeros , p o s i t i o n s] , 1) , ax i s = 1)
20 c o s t s = t f . math . mul t ip ly (t f . math . abs (n) , p r i c e s [: , : − 1 , :]) ∗ eps
21 return t f . math . reduce sum (cos t s , ax i s = [1 , 2])
22

23 def G defau l t (t en so r) :
24 return t en so r
25

26

27 def s e t e nd z e r o (t en so r) :
28 ze ro s d ims = t f . s tack ([t f . shape (t en so r) [0] , 1 , t f . shape (t en so r) [2]])
29

30 z e ro s = t f . f i l l (zeros d ims , 0 . 0)
31

32 return t f . concat ([t en so r [: , : − 1 , :] , z e r o s] , 1)
33

34 def p o r t f o l i o p a y o f f (p o r t f o l i o , p r i c e s) :
35 payo f f t e n s o r = t f . z e r o s (t f . shape (p r i c e s) [0])
36 for i , opt ion in enumerate(p o r t f o l i o . opt i ons) :
37 payo f f t e n s o r = t f . add (
38 payo f f t en so r , opt ion . t f p a y o f f (
39 p r i c e s [: , : , p o r t f o l i o . unde r l y ing idx [i]]
40)
41)
42 return payo f f t e n s o r
43

44

45 def hedg e l o s s (payof f , p r i c e s , pos , c , eps) :
46 return (payo f f − c \
47 − t f . math . reduce sum (pnl (p r i c e s , pos) [: , − 1 , :] , 1) \
48 + t r ad i n g c o s t s (p r i c e s , pos , eps)
49) . numpy()
50

51 def hedge er ror f rom mode l (model , p r i c e s) :
52 pos = model . p r ed i c t (p r i c e s , verbose = 0)
53 return hedg e l o s s (model . payo f f (p r i c e s) ,
54 pr i c e s , pos [: , : − 1] ,
55 model . t r a i n a b l e v a r i a b l e s [−1] ,
56 model . eps
57)
58

59 def hedge e r ro r (po s i t i on s , p r i c e s , p o r t f o l i o , c , eps = 0) :
60 return hedg e l o s s (p o r t f o l i o p a y o f f (p o r t f o l i o , p r i c e s) ,

67

A. Code

61 pr i c e s ,
62 po s i t i on s ,
63 c ,
64 eps
65)

As the integrand of the 4/2 model pricing formula 5.11 has several properties that make
numerical integration very computationally intensive, and several tens of thousands of
integrals had to be calculated for the benchmark strategies, this integrand was implemented
in C to not only speed this process up, but make it feasible w.r.t. runtime in the first place.
The implementation is shown in Listing A.5.

Listing A.5: Source code of fourhalvesintegrand.c

1 #include <acb . h>
2 #include <arb . h>
3 #include <s t d i o . h>
4 #include <acb hypgeom . h>
5 #include <complex . h>
6 #include <math . h>
7 #include <g s l / gs l s f gamma . h>
8 #include <a s s e r t . h>
9

10 double complex hypgeom1f1 (double complex a ,
11 double complex b ,
12 double complex z
13){
14 acb t r e s a cb ;
15 a c b i n i t (r e s a cb) ;
16

17 acb t a acb ;
18 a c b i n i t (a acb) ;
19 acb s e t d d (a acb , c r e a l (a) , cimag (a)) ;
20

21 acb t b acb ;
22 a c b i n i t (b acb) ;
23 acb s e t d d (b acb , c r e a l (b) , cimag (b)) ;
24

25 acb t z acb ;
26 a c b i n i t (z acb) ;
27 acb s e t d d (z acb , c r e a l (z) , cimag (z)) ;
28

29

30 acb hypgeom 1f1 (res acb , a acb , b acb , z acb , 0 , 5 3) ;
31

32 a rb t r e a rb ;
33 a r b i n i t (r e a rb) ;
34 a c b g e t r e a l (re arb , r e s a cb) ;
35

36 a rb t im arb ;
37 a r b i n i t (im arb) ;
38 acb get imag (im arb , r e s a cb) ;
39

40 double complex r e s = a r f g e t d (arb midre f (r e a rb) ,ARF RND NEAR)
41 + a r f g e t d (arb midre f (im arb) ,ARF RND NEAR) ∗ I ;

68

A. Code

42

43 return r e s ;
44 }
45

46 double complex cgamma(double complex z){
47 g s l s f r e s u l t l n r ;
48 g s l s f r e s u l t arg ;
49 gs l s f lngamma complex e (c r e a l (z) , cimag (z) , &lnr , &arg) ;
50

51 return exp (l n r . va l)∗ cexp (I ∗ arg . va l) ;
52 }
53

54 double complex A(double complex u ,
55 double kappa ,
56 double theta ,
57 double sigma ,
58 double a ,
59 double b ,
60 double rho
61){
62

63 return kappa∗kappa
64 − 2∗ sigma∗ sigma ∗(u∗((a∗ rho∗kappa)/ sigma − 0 .5∗ a∗a)
65 + 0.5∗u∗u∗(1 − rho∗ rho)∗ a∗a) ;
66 }
67

68 double complex m(double complex u ,
69 double kappa ,
70 double theta ,
71 double sigma ,
72 double a ,
73 double b ,
74 double rho
75){
76 double s igma squared = sigma∗ sigma ;
77 return (2/ s igma squared)∗ c s q r t (pow(kappa∗ theta − 0 .5∗ s igma squared , 2)
78 −2∗s igma squared ∗(u ∗ ((b∗ rho/ sigma)∗ (0 . 5∗ s igma squared −kappa∗ theta)
79 −0.5∗b∗b) +
80 0 .5∗u∗u∗(1− rho∗ rho)∗b∗b)) ;
81 }
82

83 double complex K(double complex u ,
84 double t ,
85 double kappa ,
86 double theta ,
87 double sigma ,
88 double a ,
89 double b ,
90 double rho
91){
92 double complex sqrt A = c sq r t (A(u , kappa , theta , sigma , a , b , rho)) ;
93 return (1/(sigma∗ sigma)) ∗ (sqrt A ∗(1/ ctanh (0 . 5∗ sqrt A ∗ t)) + kappa) ;
94 }
95

96 double complex p s i (double complex u ,

69

A. Code

97 double t ,
98 double T,
99 double y ,

100 double v ,
101 double kappa ,
102 double theta ,
103 double sigma ,
104 double a ,
105 double b ,
106 double rho ,
107 double r
108){
109 double s igma squared = sigma∗ sigma ;
110 double complex sqrt A = c sq r t (A(u , kappa , theta , sigma , a , b , rho)) ;
111 double complex m u = m(u , kappa , theta , sigma , a , b , rho) ;
112

113

114 double complex a1 = (u∗y + ((kappa∗kappa ∗ theta)/ s igma squared)∗ (T−t)
115 + u∗(r − a∗b − (a∗ rho∗kappa∗ theta)/ (sigma)
116 + (b∗ rho∗kappa)/ (sigma))∗ (T−t)
117 + u∗u∗(1 − rho∗ rho)∗ a∗b∗(T−t)) ;
118

119 double complex a2 = c log ((sqrt A /(s igma squared ∗ c s inh (0 . 5∗ sqrt A ∗(T−t)))))
120 ∗(m u+1);
121

122 double complex a3 = log (v)
123 ∗ (0 . 5 + 0 .5∗m u − (kappa ∗ theta)/ (s igma squared)
124 − (u∗b∗ rho)/ (sigma)) ;
125

126 double complex a4 = c log (K(u ,T−t , kappa , theta , sigma , a , b , rho)
127 − (u∗a∗ rho)/ (sigma))
128 ∗(−(0.5 + 0 .5∗m u + (kappa ∗ theta)/ (s igma squared)
129 + (u∗b∗ rho)/ (sigma))) ;
130

131 double complex a5 = ((v/ s igma squared)∗(− sqrt A ∗(1/ ctanh (0 . 5∗ sqrt A ∗(T−t)))
132 + kappa − u∗a∗ rho∗ sigma)) ;
133

134 double complex a6 = c log (cgamma(0 .5+0.5∗m u+(kappa∗ theta)/ (s igma squared)
135 +(u∗b∗ rho)/ (sigma)) / cgamma(m u + 1)) ;
136

137 double complex a7 = hypgeom1f1 (0 . 5 + 0 .5∗m u +
138 (kappa ∗ theta)/ (s igma squared)
139 + (u∗b∗ rho)/ (sigma) ,
140 m u + 1 ,
141 ((A(u , kappa , theta , sigma , a , b , rho)∗v)
142 /(s igma squared ∗ s igma squared
143 ∗ cpow(c s inh (0 . 5 ∗ sqrt A ∗ (T−t)) , 2)
144 ∗ (K(u ,T−t , kappa , theta , sigma , a , b , rho)
145 ∗ − (u∗a∗ rho)/ (sigma))))) ;
146 return cexp (a1+a2+a3+a4+a5+a6)∗ (a7) ;
147 }
148

149 double complex Fhat (double complex z , double s t r i k e){
150 return −cpow(s t r i k e , (I ∗z + 1))/ (z∗z − I ∗z) ;
151 }

70

A. Code

152

153

154 double i n t e g r a nd c a l l (int n , double ∗xx){
155 /∗
156 x xx [0]
157 t xx [1]
158 T xx [2]
159 s xx [3]
160 v xx [4]
161 kappa xx [5]
162 t h e t a xx [6]
163 sigma xx [7]
164 a xx [8]
165 b xx [9]
166 rho xx [1 0]
167 r xx [1 1]
168 s t r i k e xx [1 2]
169 ∗/
170 double complex z = xx [0] + 1 .1∗ I ;
171 return c r e a l (p s i (− I ∗ z ,
172 xx [1] ,
173 xx [2] ,
174 l og (xx [3]) ,
175 xx [4] ,
176 xx [5] ,
177 xx [6] ,
178 xx [7] ,
179 xx [8] ,
180 xx [9] ,
181 xx [1 0] ,
182 xx [1 1]
183) ∗ Fhat (z , xx [1 2])) ;
184

185 }
186

187 double i n t egrand put (int n , double ∗xx){
188 /∗
189 x xx [0]
190 t xx [1]
191 T xx [2]
192 s xx [3]
193 v xx [4]
194 kappa xx [5]
195 t h e t a xx [6]
196 sigma xx [7]
197 a xx [8]
198 b xx [9]
199 rho xx [1 0]
200 r xx [1 1]
201 s t r i k e xx [1 2]
202 ∗/
203 double complex z = xx [0] − 0 .1∗ I ;
204 return c r e a l (p s i (− I ∗ z ,
205 xx [1] ,
206 xx [2] ,

71

A. Code

207 l og (xx [3]) ,
208 xx [4] ,
209 xx [5] ,
210 xx [6] ,
211 xx [7] ,
212 xx [8] ,
213 xx [9] ,
214 xx [1 0] ,
215 xx [1 1]) ∗ Fhat (z , xx [1 2])) ;
216

217 }

72

List of Figures

2.1. Example architecture of a feedforward neural network 3
2.2. Folded and unfolded computational graph 9
2.3. Basic RNN Architecture . 10
2.4. Deep RNN architecture with two layers of hidden units 12
2.5. Structure of an LSTM cell. Squares denote feed forward layers with the la-

belled activation function, circles denote element-wise operations, and join-
ing and splitting arrows denote concatenation and copying respectively. . . 14

4.1. Stacked LSTM Architecture: There are m LSTM-Cells arranged hierarchi-
cally, followed by a single layer feed-forward network combining the m-th
LSTM-Cell’s hidden units into the final output ϑi for each time step. 33

4.2. Example architecture of the stacked LSTM model with two hierarchically
organized LSTM-Cells (m = 2) . 35

5.1. Hedging error comparison between mean-variance hedging benchmark and
2-layer 64-unit stacked LSTM model (Normal Inverse Gaussian model). . . 42

5.2. Histogram of absolute hedge error differences for each path (Normal Inverse
Gaussian model). 43

5.3. Hedging error comparison between mean-variance hedging benchmark and
4-layer 64-unit stacked LSTM model (Normal Inverse Gaussian model with
transaction costs). 45

5.4. Hedging error comparison between the RNN strategies with and without
trading costs (Normal Inverse Gaussian model). 46

5.5. Hedging error comparison between mean-variance hedging benchmark and
4-layer 64-unit stacked LSTM model (4/2 stochastic volatility model). . . . 51

5.6. Histogram of absolute hedge error differences for each path (4/2 stochastic
volatility model). 52

5.7. Hedging error comparison between mean-variance hedging benchmark and
4-layer 32-unit stacked LSTM model (4/2 stochastic volatility model with
trading in second option). 55

73

List of Tables

5.1. Losses of trained models on the test set (Normal Inverse Gaussian model) . 41
5.2. Comparison of price, loss, and 95%/99% VaR of absolute hedge errors be-

tween the benchmark and RNN strategies on the test data set (Normal
Inverse Gaussian model). 42

5.3. Losses of trained models on the test set (Normal Inverse Gaussian model) . 44
5.4. Comparison of price, loss, and 95%/99% VaR of absolute hedge errors be-

tween the benchmark and RNN strategies on the test data set (Normal
Inverse Gaussian model). 45

5.5. Losses of trained models on the test set (4/2 stochastic volatility model) . . 50
5.6. Comparison of price, loss, and 95%/99% VaR of absolute hedge errors be-

tween the benchmark and RNN strategies on the test data set (4/2 stochastic
volatility model). 50

5.7. Losses of trained models on the test set (4/2 stochastic volatility model with
trading in second option) . 54

5.8. Comparison of price, loss, and 95%/99% VaR of absolute hedge errors be-
tween the benchmark and RNN strategies on the test data set (4/2 stochastic
volatility model with trading in second option). 55

5.9. Runtimes of numerical experiment tasks. 56

74

List of Source Codes

A.1. Source code of assetmodels.py . 58
A.2. Source code of options.py . 60
A.3. Source code of stackedlstm.py . 64
A.4. Source code of utils .py . 66
A.5. Source code of fourhalvesintegrand.c . 68

75

Bibliography

[1] Jean-Philippe Aguilar. Explicit Option Valuation in the Exponential NIG Model.
Oct. 4, 2020. arXiv: 2006.04659 [q-fin]. url: http://arxiv.org/abs/2006.04659
(visited on 09/28/2022).

[2] Ole E. Barndorff-Nielsen.
”
Normal Inverse Gaussian Distributions and Stochastic

Volatility Modelling“. In: Scandinavian Journal of Statistics 24.1 (Mar. 1997), pp. 1–
13. issn: 0303-6898, 1467-9469. doi: 10.1111/1467- 9469.00045. url: https:
/ / onlinelibrary . wiley . com / doi / 10 . 1111 / 1467 - 9469 . 00045 (visited on
09/28/2022).

[3] Hans Bühler et al.
”
Deep Hedging“. Feb. 8, 2018. arXiv: 1802.03042 [math, q-fin].

url: http://arxiv.org/abs/1802.03042 (visited on 03/04/2022).

[4] Edwin Kah Pin Chong and Stanislaw H. Żak. An Introduction to Optimization. Fourth
edition. Wiley Series in Discrete Mathematics and Optimization. Hoboken, New Jer-
sey: Wiley, 2013. 622 pp. isbn: 978-1-118-27901-4.

[5] Samuel N. Cohen and Robert J. Elliott. Stochastic Calculus and Applications. 2. ed.
Probability and Its Applications. Basel: Birkhauser, 2015. 666 pp. isbn: 978-1-4939-
2867-5. doi: 10.1007/978-1-4939-2867-5.

[6] Freddy Delbaen and Walter Schachermayer.
”
A General Version of the Fundamental

Theorem of Asset Pricing“. In: Mathematische Annalen 300.1 (Sept. 1994), pp. 463–
520. issn: 0025-5831, 1432-1807. doi: 10.1007/BF01450498. url: http://link.
springer.com/10.1007/BF01450498 (visited on 08/19/2022).

[7] TensorFlow Developers. TensorFlow. Version v2.8.2. Zenodo, May 23, 2022. doi:
10.5281/ZENODO.4724125. url: https://zenodo.org/record/4724125 (visited on
06/28/2022).

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Adaptive Com-
putation and Machine Learning. Cambridge, Massachusetts: The MIT Press, 2016.
775 pp. isbn: 978-0-262-03561-3.

[9] Martino Grasselli.
”
The 4/2 Stochastic Volatility Model“. In: SSRN Electronic Jour-

nal (2014). issn: 1556-5068. doi: 10.2139/ssrn.2523635. url: http://www.ssrn.
com/abstract=2523635 (visited on 08/10/2022).

[10] Steven Heston.
”
A Simple New Formula for Options with Stochastic Volatility“. In:

1997.

76

https://arxiv.org/abs/2006.04659
http://arxiv.org/abs/2006.04659
https://doi.org/10.1111/1467-9469.00045
https://onlinelibrary.wiley.com/doi/10.1111/1467-9469.00045
https://onlinelibrary.wiley.com/doi/10.1111/1467-9469.00045
https://arxiv.org/abs/1802.03042
http://arxiv.org/abs/1802.03042
https://doi.org/10.1007/978-1-4939-2867-5
https://doi.org/10.1007/BF01450498
http://link.springer.com/10.1007/BF01450498
http://link.springer.com/10.1007/BF01450498
https://doi.org/10.5281/ZENODO.4724125
https://zenodo.org/record/4724125
https://doi.org/10.2139/ssrn.2523635
http://www.ssrn.com/abstract=2523635
http://www.ssrn.com/abstract=2523635

Bibliography

[11] Steven L. Heston.
”
A Closed-Form Solution for Options with Stochastic Volatility

with Applications to Bond and Currency Options“. In: Review of Financial Studies
6.2 (Apr. 1993), pp. 327–343. issn: 0893-9454, 1465-7368. doi: 10.1093/rfs/6.2.
327. url: https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/
6.2.327 (visited on 05/15/2022).

[12] Hannes Hirber.
”
Über semistatisches Hedging von Derivaten“. In: (2018). In collab.

with Friedrich Hubalek, 58 pages. doi: 10.34726/HSS.2018.55990. url: https:
//repositum.tuwien.at/handle/20.500.12708/1804 (visited on 09/27/2022).

[13] Kurt Hornik.
”
Approximation Capabilities of Multilayer Feedforward Networks“. In:

Neural Networks 4.2 (1991), pp. 251–257. issn: 08936080. doi: 10 . 1016 / 0893 -
6080(91)90009- T. url: https://linkinghub.elsevier.com/retrieve/pii/
089360809190009T (visited on 06/14/2022).

[14] Friedrich Hubalek, Jan Kallsen, and Leszek Krawczyk.
”
Variance-Optimal Hedging

for Processes with Stationary Independent Increments“. In: The Annals of Applied
Probability 16.2 (May 1, 2006). issn: 1050-5164. doi: 10.1214/105051606000000178.
url: https://projecteuclid.org/journals/annals-of-applied-probability/
volume - 16 / issue - 2 / Variance - optimal - hedging - for - processes - with -

stationary-independent-increments/10.1214/105051606000000178.full (vis-
ited on 08/23/2022).

[15] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
Jan. 29, 2017. arXiv: 1412.6980 [cs]. url: http://arxiv.org/abs/1412.6980
(visited on 06/21/2022).

[16] Hiroshi Kunita and ShinzoWatanabe.
”
On Square Integrable Martingales“. In: Nagoya

Mathematical Journal 30 (Aug. 1967), pp. 209–245. issn: 0027-7630, 2152-6842. doi:
10.1017/S0027763000012484. url: https://www.cambridge.org/core/product/
identifier/S0027763000012484/type/journal_article (visited on 08/10/2022).

[17] Alan L. Lewis. Option Valuation under Stochastic Volatility: With Mathematica Code.
Newport Beach, CA: Finance Press, 2000. 350 pp. isbn: 978-0-9676372-0-4.

[18] Thorsten Rheinländer and Jenny Sexton. Hedging Derivatives. Advanced Series on
Statistical Science and Applied Probability v. 15. Singapore ; Hackensack, NJ: World
Scientific, 2011. 233 pp. isbn: 978-981-4338-79-0.

[19] Walter Rudin. Real and Complex Analysis. 3rd ed. New York: McGraw-Hill, 1987.
416 pp. isbn: 978-0-07-054234-1.

[20] Fathi M Salem. Recurrent Neural Networks: From Simple to Gated Architectures.
2022. isbn: 978-3-030-89929-5. url: https://doi.org/10.1007/978- 3- 030-
89929-5 (visited on 04/28/2022).

77

https://doi.org/10.1093/rfs/6.2.327
https://doi.org/10.1093/rfs/6.2.327
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/6.2.327
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/6.2.327
https://doi.org/10.34726/HSS.2018.55990
https://repositum.tuwien.at/handle/20.500.12708/1804
https://repositum.tuwien.at/handle/20.500.12708/1804
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://linkinghub.elsevier.com/retrieve/pii/089360809190009T
https://linkinghub.elsevier.com/retrieve/pii/089360809190009T
https://doi.org/10.1214/105051606000000178
https://projecteuclid.org/journals/annals-of-applied-probability/volume-16/issue-2/Variance-optimal-hedging-for-processes-with-stationary-independent-increments/10.1214/105051606000000178.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-16/issue-2/Variance-optimal-hedging-for-processes-with-stationary-independent-increments/10.1214/105051606000000178.full
https://projecteuclid.org/journals/annals-of-applied-probability/volume-16/issue-2/Variance-optimal-hedging-for-processes-with-stationary-independent-increments/10.1214/105051606000000178.full
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1017/S0027763000012484
https://www.cambridge.org/core/product/identifier/S0027763000012484/type/journal_article
https://www.cambridge.org/core/product/identifier/S0027763000012484/type/journal_article
https://doi.org/10.1007/978-3-030-89929-5
https://doi.org/10.1007/978-3-030-89929-5

	Introduction
	Deep Learning and RNNs
	Feedforward Neural Networks
	Training feedforward neural networks

	Recurrent Neural Networks
	Forward propagation equations
	Training recurrent neural networks
	Deep Recurrent Networks
	LSTM

	Mean-Variance Hedging
	Prerequisites
	Stochastic Calculus
	Mathematical Finance

	Mean-Variance Hedging
	Laplace Method for Exponential Lévy Processes

	Using Deep Learning for Mean-Variance Hedging
	Setting
	Trading Constraints
	Transaction Costs
	Portfolio Value and Loss
	Mean-Variance Hedging

	Stacked LSTM Model
	Model Architecture
	Cost Function
	Implementation

	Numerical Experiments
	Exponential Lévy Model
	Setting
	Experiment

	Exponential Lévy Model - Transaction Costs
	Setting
	Experiment

	Stochastic Volatility Model
	Setting
	Experiment

	Stochastic Volatility Model - Trading in additional Option
	Setting
	Experiment

	Hardware, Software and Runtimes

	Conclusion
	Code
	List of Figures
	List of Tables
	List of Source Codes
	Bibliography

