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Abstract: The rapid growth in the technological advancements of the smartphone industry has
classified contemporary smartphones as a low-cost and high quality indoor positioning tools requiring
no additional infrastructure or equipment. In recent years, the fine time measurement (FTM) protocol,
achieved through the Wi-Fi round trip time (RTT) observable, available in the most recent models,
has gained the interest of many research teams worldwide, especially those concerned with indoor
localization problems. However, as the Wi-Fi RTT technology is still new, there is a limited number
of studies addressing its potential and limitations relative to the positioning problem. This paper
presents an investigation and performance evaluation of Wi-Fi RTT capability with a focus on range
quality assessment. A set of experimental tests was carried out, considering 1D and 2D space,
operating different smartphone devices at various operational settings and observation conditions.
Furthermore, in order to address device-dependent and other type of biases in the raw ranges,
alternative correction models were developed and tested. The obtained results indicate that Wi-Fi
RTT is a promising technology capable of achieving a meter-level accuracy for ranges both in line-of-
sight (LOS) and non-line-of-sight (NLOS) conditions, subject to suitable corrections identification
and adaptation. From 1D ranging tests, an average mean absolute error (MAE) of 0.85 m and 1.24 m
is achieved, for LOS and NLOS conditions, respectively, for 80% of the validation sample data. In
2D-space ranging tests, an average root mean square error (RMSE) of 1.1m is accomplished across
the different devices. Furthermore, the analysis has shown that the selection of the bandwidth
and the initiator–responder pair are crucial for the correction model selection, whilst knowledge of
the type of operating environment (LOS and/or NLOS) can further contribute to Wi-Fi RTT range
performance enhancement.

Keywords: indoor positioning; signal-of-opportunity (SoP); wireless-fidelity (Wi-Fi); received signal
strength (RSS); round trip time (RTT); fine time measurement (FTM) protocol; ranging assessment;
multilateration

1. Introduction

Knowledge of the position parameters and their variation in time of a person or a
moving platform is essential for numerous applications covering all aspects of modern life
and human activities. For many years, Global Navigation Satellite Systems (GNSSs) have
been widely adopted as the backbone for computing the position solution of a system in
motion; however, obstructions to the satellite view indoors and in hybrid environments
as well as additional issues (e.g., multipath, atmospheric delays and radio signal interfer-
ence) render GNSSs incapable of providing an acceptable position solution, and therefore,
alternatives and backups are required to efficiently address the localization problem [1–3].

Considering target tracking problems, personal mobility applications are of increas-
ingly high interest [4,5], especially following the recent advances in Positioning, Navigation
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and Timing (PNT) and Internet of Things (IoT) technologies that offer transparent and
low-cost localization tools for the general public [6,7]. Cases of pedestrian localization range
from open field, outdoor ones to dense urban environments and from indoor, household
conditions to deep underground areas. The latter case is by far more demanding, especially
when it comes to underground mining and quarry environments in which the provision
of ubiquitous, reliable and accurate personnel positioning assures increased safety and
productivity KPIs. As GNSSs are incapable of fully or partially supporting the positioning
needs in such areas, other approaches (RF-based, inertial, etc.) take the lead in filling this
gap [8–12].

User requirements for pedestrian navigation applications are case-dependent. Natu-
rally, while achieving the best possible localization accuracy is always of value, it is also
important to achieve a balance between position quality and cost. For instance, for standard
personal mobility applications in office environments, it is usually sufficient to achieve
corridor-wide accuracies (e.g., 1–2 m) [13]. On the contrary, in other application areas,
such as underground mines and quarries, where geometric, material and air quality condi-
tions can be tough, personnel localization is a challenging task requiring the continuous
improvement in the technological approach adopted.

In this direction, the recently released Wi-Fi round trip time (RTT) technology has been
a substantial advancement as the supporting protocol is available for commercial off-the-
shelf (COTS) devices, while more and more Wi-Fi access points (APs) are becoming publicly
available as part of onsite infrastructure, offering a promising solution for accurate, low-cost
localization of high availability [14]. The published literature on Wi-Fi RTT performance
evaluation reveals that raw measurements suffer from instability in various situations,
particularly in non-line-of-sight (NLOS) conditions [15–18], while at the same time a
correction model is necessary in order to achieve an acceptable level of accuracy [19,20].
Notwithstanding, many research groups have been studying the potential of the Wi-Fi RTT
raw observable for localization, but an exhaustive analysis of its performance characteristics
is still not fully available.

In response to this need, this work attempts a full-scale evaluation of Wi-Fi RTT ranging
performance as part of a broader research work aiming at providing localization solutions
for the underground quarry environments. Wi-Fi RTT range testing is implemented in
the form of smartphone-based, indoor pedestrian localization standard-case scenarios.
Specifically, investigations involve studying the effects of critical factors in ranging quality
including operating bandwidth, sampling rate, operating conditions (LOS/NLOS) and
smartphone device type, as suggested in similar approaches [21–24]. In brief, this paper:

(i) Provides an extensive experimental evaluation of Wi-Fi RTT ranging under various
conditions and device settings, suggesting optimal setups at certain scenarios;

(ii) Investigates and suggests alternative range correction models for removing Wi-Fi RTT
biases while explores the use of different mobile devices as initiators;

(iii) Analyzes and compares the proposed correction models, as well as the use of different
device types concerning their effect on ranging accuracy, and by extension on position
fix error.

It is of crucial importance to investigate the ranging capabilities of Wi-Fi RTT and
highlight its limitations as well as its potential. Furthermore, through this process, the
range-degrading effects that RTT suffers from should be mitigated. Within this scope, the
insights gathered via the evaluation can contribute to gaining a better understanding of
Wi-Fi ranging behavior and improve the future applications that depend on it.

The structure of this paper is as follows. Following the Introduction, Section 2 provides
the state-of-the-art on smartphone-based indoor localization, including key technical details
on Wi-Fi RTT ranging. Section 3 presents the assessment methodology and the range
correction models adopted in this study. Section 4 discusses data collection scenarios
and acquisition, while Section 5 details the results and analyses of the test trials. Finally,
Section 6 provides a summary and an outline of this paper.



Sensors 2023, 23, 2829 3 of 30

2. Smartphone-Based Indoor Localization

Smartphones have become very powerful devices due to the integration of multi-
constellation GNSSs with dual-frequency carrier phases (L1 and L5 in the case of the US
Navstar GPS) as well as dual-band Wi-Fi on the 2.4 and 5 GHz frequency. They can be
applied for applications ranging from location-based services (LBSs) to simple tasks of
applied surveying, which saves time and cost, since no additional hardware has to be
purchased and the smartphone is a constant companion anyway. In order to investigate to
what extent smartphones are suitable for measurement tasks, the accuracy to be achieved,
the measurement effort, the repeatability of the measurement results and the quality of the
measurement data are of particular interest.

Especially as dual-band Wi-Fi evolved into a mature technology, its ubiquity became
the main driver for smartphone-based localization applications. Outdoor GNSSs remain
the main absolute positioning technology due to their high capabilities; however, Wi-Fi can
also play a role in GNSS-challenging and -denied environments. In indoor environments in
particular, due to the lack of useable GNSS signals, Wi-Fi positioning is capable of serving
as an alternative for absolute positioning due to the presence of a large number of Wi-Fi
APs in many environments, such as in public buildings, shopping malls, airports, train
stations, etc. Although other localization techniques are applicable for indoor positioning
(see Section 2.2), Wi-Fi provides inherent advantages, such as its aforementioned ubiquity,
which reduces installation costs due to the utilization of already available infrastructures.

In Section 2.1, applicable technologies and techniques for indoor positioning are
discussed, followed by a brief discussion of the requirements and capabilities in Section 2.2.
Section 2.3 then presents the fundamentals of Wi-Fi positioning and Section 2.4 the usage
of RTT measurements. This section highlights the operational principle, the state-of-the art,
as well as the potential and limitations of Wi-Fi RTT localization.

2.1. Technologies and Techniques

Position determination with the help of smartphones is becoming more and more
precise due to recent and fast developments on the sensor market. The aforementioned
increasing ubiquity, fueled by the consumer smartphone market, has pushed the need
for robust GNSS-like positioning capabilities in GNSS-challenging or -denied and indoor
environments. In this section, a brief overview about the type of modern sensors, their state
of maturity and adoption is given. A special emphasis is thereby led on inertial navigation
and their integration potential together for hybridization with wireless technologies.

2.1.1. Types of Sensors

Several review-type papers in the literature summarize the types of sensors in modern
smartphones [25–27] that can be used for localization. The Table in [28], published in
the Encyclopedia of Geodesy, provides a comprehensive overview of technologies and
techniques which can be employed for indoor positioning and navigation. Thereby, tech-
nologies and techniques vary depending on the used signals and sensors. Back in 2014,
the technologies were classified into three different major system categories in the Ed-
itorial of the Journal of Location-Based Services by [29]. These classes are: (1) designated
technologies based on pre-deployed signal transmission infrastructure, (2) technologies
based on so-called “signals-of-opportunity” (SoP) and (3) technologies not based on signals.
Infrastructure-based technologies started with the development of systems using infrared
or ultrasonic signals, followed by the usage of geomagnetic and/or induced magnetic
fields [30], ultra-wide band (UWB) [31] or other RF-based (radio frequency) systems. These
wireless technologies are under rapid development also in relation to smartphone localiza-
tion. The most commonly employed SoP for localization is Wi-Fi [29]. The third category
mainly includes sensors for inertial navigation (IN) where relative positioning from a
given start location via dead reckoning (DR) can be carried out. Very low-cost sensors
based on MEMS (micro-electro mechanical system) technology, such as accelerometers and
gyroscopes, are used for this purpose [32]. In addition, vision/camera systems belong to
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the third category where positioning is performed with scene analysis and visual odome-
try [33]. Figure 1 summarizes the main technologies and techniques, indicating their state
of maturity and adoption.

Figure 1. The PNT ecosystem indicating the state of maturity and adoption of the different sensors,
technologies and techniques. This figure was made as in [34].

2.1.2. State of Maturity and Adoption

As can be seen from Figure 1, the PNT (Positioning, Navigation and Timing) ecosystem
contains sensors and technologies for relative and absolute localization ranging from
a low to high level of adoption and maturity. To name a few important sensors, the
first are evidently INS sensors, already providing a high level of adoption and maturity
with their integration and fusion with GNSSs and assisted-GNSSs (A-GNSSs). Especially
MEMS-based sensor development has revolutionized navigation, together with wireless
positioning technologies and their integration into modern smartphones. Their capabilities
and performance are also leading to the development of ultra-precise MEMS sensors
where a high adoption level can be expected in the near future. As one can expect, multi-
constellation GNSSs in smartphones play a decisive role. In this context, PPP–RTK (precise-
point positioning together with real-time kinematic) techniques are coming more and more
into play. A further performance improvement in this area may also be seen due to future
adoption of chip-scale atomic clocks (CSACs). Moreover, smartphone camera systems
are also increasingly adopted for visual navigation. On the other hand, the importance
of the adoption of ultrasound is, in particular, rather stagnant, although high precision
for localization is achievable. The main reason for this may be the high installation costs
required if a large environment such as a whole building needs to be covered with receivers
and/or transmitters. Ultra-wide band (UWB) technology may take over this role as it can
provide high positioning accuracies on the dm-level. The need of infrastructure, however,
is still a requirement for UWB systems. Thus, the usage of SoP techniques has a rather high
adoption level nowadays for absolute positioning.

2.1.3. Inertial Navigation Philosophy Shift

In the classical navigation approach, INS was employed to bridge gaps of GNSS
positioning for a short limited time. Due to the high drift of MEMS sensors resulting
in a high error growth, the period to bridge GNSS outages is very short, and frequent
updates with known absolute positions are required. Recently, a changed navigation
philosophy is applied where INS is considered as a primary navigation sensor. Then,
absolute positioning is applied for bounding the INS error growth. This approach allows
for a flexible and adaptive blend with other sensors, including unconventional techniques,
such as Wi-Fi. Research challenges are then the development and application of flexible
software architectures, adaptive data filtering and sensor fusion, stochastic transition
between different hybridizations as well as the usage of intelligent algorithms, such as
machine learning [35–37].
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2.1.4. Usage of Raw Sensor Measurements and Data

A further core development in the context of smartphone positioning is their ability
to record raw measurements (or also referred to as raw data). As aforementioned, smart-
phones can receive signals from multi-constellation GNSSs on two frequency bands (L1
and L5, operating at 1575.42 MHz and 1176.45 MHz, respectively) as well as dual-band
Wi-Fi on 2.4 and 5 GHz. Wi-Fi ranges can also be considered as raw data leading to the
capability to integrate them with ranges from other sources, including GNSS pseudo-ranges
in case of their availability. A promising approach will also be their potential capability
for integration with UWB ranges. Smartphones of the newest generation will also include
UWB. The limitation in this respect, however, is that a UWB infrastructure is still necessary
in the environment at dedicated locations (referred to as infrastructure nodes or anchors
in a networked solution). Thus, Wi-Fi provides advantages in this respect due to already
available infrastructures.

2.2. Requirements and Capabilities
2.2.1. User Requirements

In the GNSS User Technology Report from 2018 [34], the four main dimensions of PNT
systems technology development that enable the future of automated intelligent positioning
systems are presented. The key parameters are (1) positioning accuracy; (2) ubiquity; (3)
security and (4) connectivity. The following definitions are given:

• Accuracy is obtained thanks to multi-constellation, multi-frequency GNSSs, aug-
mented by PPP–RTK services and hybridized with INS and other sensors;

• Ubiquity is provided by complementary positioning technologies and sensors;
• Security is provided by the combination of independent redundant technologies,

cyber-security and authentication;
• Connectivity relies on the integration with both satellites and terrestrial networks, such

as the mobile 5G networks, LEO (low-Earth orbit) satellites or LPWANs (low-power
wide-area networks).

Therefore, maintaining performance requires the fusion of multiple positioning tech-
nologies and sensors to achieve the goal of continuous ubiquitous navigation.

2.2.2. Smartphone-Based Localization Capabilities

As mentioned in Section 2.1.3, the MEMS-based INS sensors in smartphones can serve
as the primary localization technique. Multi-sensor fusion with absolute positioning is a
key requirement due to the high INS error growth. Wi-Fi RTT positioning is predestined to
estimate absolute positions from the derived ranges via (multi)lateration. The capabilities
in terms of accuracies and robust estimation of such derived RTT ranges are the main focus
of this study.

2.3. Localization Using Wi-Fi

Wireless Fidelity, or for short Wi-Fi (also known as Wireless Local Area Network
WLAN) is originally a technology for short-range wireless data communication and is
typically deployed as an ad hoc network by attaching a device called access point (AP) in
the areas where a wireless Internet access is needed. In the infrastructure topology, APs
are the central control point, which forward traffic between terminals of the same cell and
bridges traffic to wired LAN. The flexible data communication protocol IEEE 802.11 is
implemented to extend or substitute a wired local area network, such as Ethernet. The
bandwidth of 802.11 is 11 Mbits and it operates at 2.4 and 5 GHz frequency, which is
attractive because it is license-free [38]. For the localization of a mobile device, either cell-
based solutions or (tri)lateration and location fingerprinting are commonly employed [28].
Using measurements of the received signal strength indicator (RSSI), a user’s location can
be determined. Measured absolute RSSI values are used either directly in fingerprinting
or for the RSSI to range conversion using path loss models for lateration [39]. The main
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disadvantage in RSSI-based Wi-Fi positioning methods, however, is that signal fluctuation
and noise as well as various propagation effects on the scanned RSSI values significantly
affect the performance. Temporal and spatial variations as well as high signal noise caused
by the surrounding environment and its changes usually lead to low achievable positioning
accuracies on the several meter levels (see, e.g., [27]). Moreover, signal propagation suffers
from server multi-path fading effects due to reflection, refraction, diffraction and absorption
by structures and humans. As a result, a transmitted signal can reach a receiver through
different paths, each having its own amplitude and phase. These different components
are captured by the receiver and an unstable and/or biased version of the transmitted
signal is reconstructed. Furthermore, changes in the environmental conditions such as
temperature and humidity affect the Wi-Fi signal to a large extent. Consequently, the
signal received by a Wi-Fi chip-set at a fixed location varies with time and the physical
conditions of the surrounding environment [40]. Furthermore, the presence of people and
the user himself affects the localization performance significantly. The signals of APs may
even be blocked due to the body of the person being localized in pedestrian positioning
applications. The main reason for this is that 2.4 GHz signals can be greatly attenuated by
the water in the human body. In addition, the widespread use of Wi-Fi may result in the
visibility of hundreds of APs. Since many of these APs are not public, it is not ensured that
they are stable. Smartphone hot-spots can even move around. Thus, it is hard to use them
in localization algorithms if the environment contains many such APs, while the increase in
the number of APs makes this environment even more complex and uncontrollable, which
brings several challenges [41].

For these reasons, the round trip time (RTT) and fine time measurement (FTM) protocol
has been developed in recent years [14]. Due to the measurement of the two-way time of
flight (ToF), referred to as RTT, higher performance for localization can usually be achieved
than in RSSI-based lateration. The following section focuses mainly on the IEEE 802.11 mc
standard, enabling fine time measurements (FTMs) as well as its operational principle and
achievable performance.

2.4. Wi-Fi Round Trip Time (RTT)
2.4.1. Operational Principle

The release of the IEEE 802.11 mc standard in 2018 can be seen as a milestone in the
development of Wi-Fi localization. The advantage of this standard is that it supports a
fine time measurement (FTM) protocol, which allows for the estimation of the distance
between a smartphone and an AP using the round trip time (RTT) of the Wi-Fi signal
transmission between the two devices. This leads to a significant improvement in the
positioning accuracy from several meters as obtained from traditional positioning methods
to about 1 m in any line-of-sight (LOS) surrounding environment [14]. To be able to apply
the FTM protocol for range measurements, however, several hardware design changes in
the existing Wi-Fi chip-sets are necessary for the increase in the timing resolution from the
microsecond to the nanosecond level (or even sub-nanosecond level).

The operational principle of RTT FTM is shown in Figure 2. It is a point-to-point (P2P)
single-user protocol. For the exchange of multiple message frames between an initiating
station (ISTA) sending out the localization request, a responding station (RSTA) is needed
for the FTM. Either the smartphone or the AP can be the ISTA and the RSTA is then the
other device, respectively. The measurements are carried out in the following steps:

1. The ISTA sends an FTM request to the RSTA;
2. The RSTA receives the request and returns an acknowledgment (ACK) signal to

the ISTA;
3. Then, several FTM feedbacks are sent from the RSTA to the ISTA;
4. Then, the mean RTT measurement is used for range calculation.
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From these procedures, the total RTT tRTT can be calculated as given in the following
Equation (1):

tRTT =
1
N

(
N

∑
i=1

t4i −
N

∑
i=1

t1i

)
− 1

N

(
N

∑
i=1

t3i −
N

∑
i=1

t2i

)
(1)

where t1i is the timestamp when the FTM request is first sent by an ISTA, t2i is the timestamp
when the FTM signal arrives at the RSTA, t3i is the timestamp when the RSTA returns the
acknowledgment (ACK) signal to the ISTA, t4i is the timestamp when the ACK signal is
finally received by the ISTA, N is the successful burst number (where N > 0, N < B) and B is
the total burst number (i.e., burst size, B = 8 by selected default).

Figure 2. Operational principle of Wi-Fi RTT FTM.

The protocol excludes the processing time at the ISTA by subtracting t3i − t2i from
the total RTT t4i −t1i , which represents the time from the instant the FTM message is sent
t1i to the instant that the ACK is received t4i . This calculation is repeated for each FTM–
ACK exchange, and the final RTT is the average over the successful number of FTM–ACK
bursts as seen from Equation (1). The estimated range rest can then be calculated using
Equation (2):

rest =
1
2
× tRTT × c (2)

where c is the propagation speed of the RF signal.
Ranges to at least three APs have to be measured to obtain a position fix in 2D using

lateration [39].

2.4.2. Potential and Limitations

Challenges for Wi-Fi RTT arise in dense-multi-path environments and in NLOS con-
ditions. In such cases, an accurate time–delay estimation may be difficult to achieve as it
requires a precise detection of the first signal path with the LOS condition between the two
stations and the estimation of its arrival time [42,43]. Our study aims to identify the major
influences on Wi-Fi RTT and deriving correction models for performance improvement.
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3. Assessment Methodology

This section discusses the range evaluation methodology adopted in this paper while
it demonstrates the alternative range correction models featured for enhancing the quality
of RTT ranging performance.

3.1. Operational Aspects and Environmental Concerns

There is a number of parameters to consider affecting the ranging, and by extension the
quality of a Wi-Fi RTT position fix solution. For evaluation and assessment purposes, these
parameters need to be categorized into internal and external ones in order to investigate
their impact on the ranging results. Internal aspects refer to the particular settings and
configurations (e.g., sampling rate and bandwidth) related to the technical characteristics of
specific sensors. On the other hand, environmental aspects refer to the effects in the context
of the influences of the surrounding area (e.g., observation geometry, physical obstructions
and radio interference) that may contaminate the signal transmission and penetration
behavior [44]. As a result, these factors are treated as influencing elements, and their effect
is taken into account at the test scenario planning phase (as seen in Figure 3). The config-
uration setup and the realization of the test scenarios is discussed in Sections 3.2 and 4.2,
respectively.

Figure 3. Process of ranging performance evaluation.

As it has already been mentioned, the operational aspects refer to sensor configuration
and the device’s technical specifications. In particular, the sampling rate defines the interval
between new signal initialization, specifying the amount of gathered data, while the signal
bandwidth corresponds to a specific range of transmitting frequencies, providing different
levels of stability and accuracy [24]. Another important parameter is the hardware and
software differentiation, due to the high variety of smartphone manufacturers.

On the other hand, environmental factors are critical to consider as they are interrelated
with the main quality degradation aspect of RF signals, namely signal attenuation and
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fluctuation. Especially, obstructions in the LOS have a significant impact on the ranging
quality [45,46] due to the multi-path and scattering effects leading to signal downgrade. In
real-time localization scenarios, the obstruction condition between a transmitter–receiver
set is posed as an unknown variable. Analyzing LOS and NLOS data can contribute to
ranging quality enhancement by suggesting condition identification schemes [18,47] and
then tackle the ranging performance problem, respectively, for each condition.

3.2. Wi-Fi RTT Ranging Scenarios

The Wi-Fi RTT raw measurements suffer from an initial distance, position and device-
dependent bias which needs to be removed through a correction process in order to
achieve more accurate ranges [18,48–50]. In this paper, we evaluate the Wi-Fi RTT ranging
performance by means of empirically obtained range correction models as well as the effect
of the different parameters used. The evaluation process is implemented through a set
of observation scenarios based on the parameterization of the quality-degrading factors
described in Section 3.1 and in Figure 3.

Experimental testing was undertaken in two stages that create a set of 1D and 2D
scenarios. For the first group of test trials, 1D testing examines the effect of operational
parameters, namely bandwidth, as well as environmental concerns such as natural obstruc-
tions and signal interference. Contrarily, the second group of tests focuses on variations in
operational conditions in a 2D space as well as effects on hardware specification. In this
regard, user orientation is taken into account as a variable for 2D ranging experiments that
define different LOS/NLOS conditions between the transmitter and the receiver. Then, by
using appropriate positioning algorithms, the results of 2D ranging can lead to position es-
timation. The consideration of various alternate bias removal models, based on differently
utilized user orientation information, extends the dimensionality of the evaluation process
in an attempt to achieve better-ranging estimation and thus better positioning performance.

3.3. Correction Models
3.3.1. Bias Removal

The Wi-Fi RTT bias is a systematic error which refers to the difference between the
values of the observed range and ground truth range as it originates from the time delay [51].
Moreover, due to reflections and blockages, the signal exposes differently to the expected
propagation time, and consequently, it logs a value that deviates from the real one. Bias
removal leads to a better range estimation, and thus, more accurate positioning results. It
refers to a range correction process, offsetting the logged ranges to more appropriately fit
the ground truth values. Such an offset correction value cannot be constant, due to the
nature of the bias (distance-dependent), and therefore, a correction model based on raw
measurements at known distances/positions could be used instead. The data to obtain the
required corrections can be sufficiently represented by a linear fit and can lead to greater
accuracies after the execution of the corrections, as shown from previous studies and initial
tests [24,52,53].

The correction models rely on the use of datasets employing correction points (CPs),
whereas the evaluation of the results obtained on comparisons against selected validation
points (VPs) offer independence from the required correction formulae’s parameters.

3.3.2. The Linear Correction Model

A linear correction model represents the best linear fit of a set of values in question.
This set of values consists of the raw (measured) ranges and the differences between the
measured and the reference ranges. In this way, the model attempts to estimate the optimal
linear correlation between the two sets of values. Each measurement corresponds to a
correction value which, if applied to the measurement, should reduce, or in the best case
scenario even eliminate, the estimated difference between the two values (ground truth
distance and the Wi-Fi RTT range).
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The formula for the linear model is given by “y = ax + b”, where “y” refers to
the estimated differences, “x” are the raw Wi-Fi RTT ranges, while “a” and “b” reflect
the model parameters. The latter are identified by measurements at reference points of
known coordinates (CPs), during the so-called correction phase. Subsequently, with this
formula, the optimal correction needed “y” for the measured value “x” is calculated. At
the correction implementation stage, the measured range value is added as follows:

Correction = a × RangeMeasured + b (3)

RangeCorrected = RangeMeasured + Correction (4)

The linear correction model is used for correcting and evaluating the 1D ranging
measurements. Furthermore, it forms the basis for implementing the correction approach
for the 2D ranging data. In this case, the user orientation is introduced as a parameter in
accordance to Section 3.4.

3.4. Alternate Correction Approaches
3.4.1. User Orientation Correction Model

Through adding user orientation as a parameter, datasets of different (but known)
user orientations were produced and processed separately. For each dataset, a different
linear correction model was produced, tagged at the respective known orientation. Thereby,
four cardinal points (N, E, S, W) were used (see Figure 4), leading to four correction models
for every AP. These initial linear models constitute the core bias estimation models for use
in the sequel of the correction approach. Furthermore, at the initiation stage, each one of
the four models was used for correcting the dataset with the corresponding orientation tag.
Therefore, each dataset’s ranges would be corrected by using their true orientation model,
which in principle should lead to more accurate results.

Figure 4. Representation of the four user orientations.

3.4.2. Multi-Orientation RSSI-Based Correction Model Selection

Considering that user orientation is generally unknown (assuming no external sensor
data), the aforementioned approach is not particularly appealing for Wi-Fi-only solutions.
This led to the adoption and evaluation of a more advanced model, called multi-orientation
RSSI-based (receiver signal strength indicator) correction model. This approach introduces
a way of selecting the optimal correction model using data of the four oriented models
previously acquired. The algorithm decides which one of the four orientation-based models
to use in conjunction with the logged RSS (receiver signal strength) values as shown in
Figure 5. In this approach, the RSS values that correspond to the observed ranges are used
to identify the most appropriate model for implementing the bias removal process. In
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practice, the pairs of RSS and range values is modeled using a second-grade polynomial fit.
Thereby, each range value refers to an expected RSS value for each one of the calculated
oriented models. Then, after obtaining the validation RSS data, the algorithm compares
these values with the expected ones from each respective model and selects the one with
the minimum absolute difference. This approach suggests that the most suited oriented
model should be the one with the most similar RSS profile. At the evaluation stage, the
obtained results using this approach can be compared directly with the those from the
known orientation approach (Section 3.4.1). Therefore, it serves as a verification of the
capability of the method to select the most appropriate model, whilst the level of correlation
between the true orientation model and the ranging accuracy is achieved.

Figure 5. Process of the RSSI-based selection of the calibration model. The dotted box shows the
procedure for each already known orientation model (×4). Red markers and line represent the signal
strength data and polynomial fit respectively, cyan markers and line represent the ranging values
and the linear calibration model respectively.

3.4.3. Mean Linear Correction Model Selection

The last correction approach employed in this research forms an attempt to bypass
the parameter of orientation, by using a standard correction model regardless of the user’s
orientation. This model combines all four oriented models in order to produce a new
mean correction model, by averaging the defining parameters (a, b) of their linear models.
With the mean model, the special conditions pertained to each orientation affect the raw
data quality as well as the bias removal requirements; therefore, they are combined and
consequently moderated. In this way, this approach suggests a less complex and more
generally applicable solution to the bias problem. These results should be evaluated by
comparing them with the aforementioned approaches.

4. Data Collection Scenarios and Field Tests

This section provides details of setting up the experimental work in terms of test area
selection, hardware/software as well as the planning of individual 1D and 2D ranging scenarios.
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4.1. Test Area and Equipment
4.1.1. Test Area

The experimental works took place at the lobby and central corridor located at the
ground floor of the “Lampadario” building of the School of Rural, Surveying and Geoinfor-
matics Engineering, NTUA. The corridor spans approximately 54 m in total length whilst
the adjacent lobby area features free space of approx. 70 m2. The corridor offers sufficient
length for evaluating ranges up to 50 m long, while the lobby area, including part of the
side corridor (see Figure 6), provides an area of about 125 m2 for carrying out 2D ranging
tests. Figures 7 and 8 show impressions of the test site.

Figure 6. Map of the ground floor test area in a multi-story building. Dimensions are in meters (m).

Figure 7. 1D ranging corridor area.

Figure 8. 2D ranging lobby area.

4.1.2. Test Equipment

The test equipment comprises three or five (depending on the experiment) WILD
Wi-Fi RTT-enabled access points (Figure 9), two Wi-Fi RTT-compatible Android-enabled
smartphones, mounting tripods and surveying poles used for secure installation over the
accurately surveyed provided positions. The synopsis of the equipment used for each test
is detailed in Table 1.

Compulab Wi-Fi Indoor Location Device (WILD) (CompuLab Ltd., Yokneam Illit, Israel)
APs enable the communication between FTM-compatible Android 9 Pie smartphones
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supporting the Wi-Fi RTT API utilizing dedicated Android applications. WILD is one of
the first commercially available Wi-Fi RTT-compatible AP. It relies on the Compulab fitlet2
platform with an Intel AC8260 Wi-Fi processor unit. The WILD APs were configured at
2.4 GHz band and tested for three different channel bandwidths (20, 40 and 80 MHz) for
the needs of this research.

Two Android smartphones are used, i.e., the Google Pixel 3a XL (Hon Hai Precision
Industry Co., Ltd., New Taipei City, Taiwan) and the Xiaomi Redmi Note 9 Pro (Xiaomi
Communications Co., Ltd, Beijing, China). Both devices support the 802.11-2016 FTM
protocol required to implement the Wi-Fi RTT ranging functionality (both support Wi-Fi
802.11 a/b/g/n/ac). The selection of two devices produced by different manufacturers
(despite the limited availability of FTM-compatible devices at the time) was deliberately
attempted in order to obtain deeper insight regarding the variations on FTM measurements
behavior depending on the manufacturer. The Google Pixel operates with Android 9
software, while the Xiaomi Redmi operates with Android 10 software.

Figure 9. Compulab WILD access point. (https://fit-iot.com/web/products/wild/ (accessed on 23
February 2023)).

Table 1. Equipment employed during the experimental campaigns.

Campaign 1D 2D

Number of Smartphones used 1 2

Smartphones Google Pixel 3a XL
Google Pixel 3a XL and

Xiaomi Redmi Note 9 Pro

Amount ofAccess Points 3 5

Access Points
Compulab Wi-Fi Indoor Location

Device (WILD)
Compulab Wi-Fi Indoor Location

Device (WILD)

The open-source Android application WILD minimal is selected for compatibility pur-
poses with the WILD AP receivers, as it is provided by the same manufacturer. Limited
modifications were made to the aforementioned application in order to meet the needs of
the experiments. In particular, it was modified to allow for simultaneous measurements
recording from several APs in .csv (comma-separated values) files and storage on the
smartphone’s internal memory. Moreover, the recording frequency was configured to
operate at varying values and thus to enable increased data logging capabilities for case
scenarios with rapid motion characteristics (higher dynamics). The parsing of the raw
.csv files was conducted using in-house built software in Python programming language.
The information extracted includes date, time, AP ID, smartphone ID, range, range stan-
dard deviation, signal strength (RSS) as well as the count of attempted and successfully
recorded measurements.

4.2. Test Scenarios Design
4.2.1. Sampling Rate

A crucial operational aspect of indoor range-based positioning systems is the ability
to provide sampling rates that suffice the dynamic characteristics of the examined motion.
High sampling rates enable both a positioning solution of higher resolution and the ability

https://fit-iot.com/web/products/wild/


Sensors 2023, 23, 2829 14 of 30

to more successfully identify and filter out extreme values (outliers) while maintaining
ranging information of adequate availability.

Prior to performing the main experimental test trials, preliminary work was under-
taken to determine the effect of varying sampling rate on range quality. The evaluated
sampling rates vary from 0.5 Hz up to 10 Hz for a fixed reference distance of 2 m between
the AP and the smartphone. The resultant ranges, with the exception of an apparent bias,
demonstrate minimal variation in average recorded ranges against the nominal accuracy
levels, as illustrated in the box plot of Figure 10. In order to facilitate both range logging at
faster pace and in order to minimize the test trials’ duration, a sampling rate of 10 Hz is
adopted in this study.

Figure 10. Wi-Fi RTT sampling rate statistics box plots.

4.2.2. 1D Ranging Tests

For the evaluation of RTT ranges in a 1D configuration, the WILD APs are placed side
by side on a dedicated platform mounted on a tripod while the smartphone is mounted
on a geodetic pole at the same level as the APs. AP1, AP2 and AP3 are preconfigured to
operate at a 80, 40 and 20 MHz bandwidth, respectively, at a 10 Hz sampling rate.

This experiment includes three scenarios that create three different operational con-
ditions against a reference range varying from 0.5 m up to 50 m. Most of the reference
distances are treated as correction points (CPs), whereas a subset of them serves as valida-
tion points (VPs). In scenario 1, the APs operate simultaneously at a LOS condition, logging
data for approximately 30 s for each trial. In scenario 2, the APs operate simultaneously
at NLOS conditions for 30 s, similarly to scenario 1. NLOS condition was achieved by
considering the user as an obstacle. In real conditions, users act as true obstacles in most
cases. Finally, scenario 3 was executed to evaluate whether the simultaneous operation of
APs at a close proximity (0.15 m) between them in scenarios 1 and 2, results in contaminated
ranging data, potentially due to interference. As scenario 3 serves mainly as a control for
the first two scenarios, it is created only for a subset of the reference ranges while each AP
operates separately. Table 2 summarizes all three scenario configurations.

Table 2. 1D positioning: Scenarios configuration.

Scenario 1 Scenario 2 Scenario 3

AP Settings
Bandwidth: AP1-80 MHz, AP2-40 MHz, AP3-20 MHz

Sampling Rate: 10 Hz

AP operation 3 APs simultaneously 3 APs simultaneously Each AP separately

Experiment Conditions LOS NLOS LOS

Number of
Reference Ranges

53 RP
(43 CP, 10 VP)

53 RP
(43 CP, 10 VP) 6 RP

Selection of
Reference Ranges

0.5–3.0 m per 0.5 m,
3–50 m per 1 m

0.5–3.0 m per 0.5 m,
3–50 m per 1 m

5, 10, 20, 30, 40,
50 m
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4.2.3. 2D Ranging Tests

The implementation of this experimental setup enables the investigation of Wi-Fi
RTT ranging capabilities in realistic conditions using five APs installed at locations that
enable positioning operation. In this experiment, an additional smartphone device (Xiaomi
Redmi Note 9 Pro) was made available to enable the evaluation and comparison among
varying hardware. In order to investigate the effect of LOS/NLOS functionality in the
2D setup, range data were collected at four different orientations (N, E, S, W) and at each
pre-surveyed point. These points were marked on the floor and determined by using a total
station and calculating their local coordinates afterward. As the experimental area consists
of two parts, the lobby area and the corridor, it is possible to investigate FTM ranging
performance at varying geometries in a controlled manner. As illustrated in Figure 11 and
summarized in Table 3, the data collection took place for fourteen correction points (CPs)
and four validation points (VPs) at selected locations that cover the test area optimally, also
considering the coverage of transition areas by including CP6.

Following the analysis of the 1D ranging experiment (Section 4.2.2), the APs are
configured to operate at 80 MHz and at a sampling rate of 10 Hz. The data collection took
place at each point and for each orientation for approximately 15 s. Data logging at varying
orientations enables the investigation of bearing effect on the resulting range correction in
an attempt to optimally mitigate systematic range errors (bias) and range-dependent errors.

Table 3. 2D positioning: ranging measurements configuration.

2D Positioning—Correction (Ranging Measurements)

AP settings Bandwidth: 80 MHz, Sampling Rate: 10 Hz
Number of APs 5 Access Points

CP 14 Correction Points
VP 4 Validation Points

Figure 11. Spatial distribution of the adopted access, correction and validation points during the 2D
test trials. Dimensions are in meters (m).

5. Analysis and Results

The experimental campaigns provided two distinct groups of 1D and 2D range datasets
for which the different scenario designs enables the analysis for varying internal and
external factors.

5.1. 1D Ranging Tests

The histograms gathered in Figure 12 reveal the nature of the raw-range observables
both for scenario 1 (left) created in LOS conditions and for scenario 2 (right) in which NLOS
conditions are evident for all three bandwidth selections. Three representative reference
distances are depicted and demonstrated here (5 m, 15 m and 50 m), where the main
variations between APs and the corresponding LOS/NLOS conditions are apparent. Two
points are immediately evident: Firstly, NLOS conditions result in range distributions of a
high dispersion irrespective of bandwidth setup. Secondly, the 80 MHz setup exhibits a
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larger systematic range offset (bias) whilst the 20 MHz setup suggests a higher measurement
dispersion. Considering the values obtained for the EPDFmax index (suited for describing
reliably the prevailing ranges), the corrected measurements quality metrics before and after
the linear correction model implementation indicate improved performance for all selected
bandwidths and especially for 80 MHz.

Figure 12. Histograms of ranges for the first two scenarios in the 1D experiment

Further insights into the behavior of the sensor units under evaluation is offered
through the illustrations of Figure 13, in which ranging and correction performance is
demonstrated for the complete reference distances set. Specifically, when considering LOS
conditions, the ranges demonstrate a similar level of improvement for all bandwidths when
a correction model is applied. Contrary, for the case of NLOS data, the 80 MHz setting
results in improved range accuracy with minimal outliers, especially for distances up to
40 m, whereas the rest of the APs present higher trueness values starting from reference
distances of 15 m. On the other hand, the logged signal strength values are higher for the
40 MHz and 20 MHz settings, indicating a potentially increased measurement availability
compared to 80 MHz both for LOS and NLOS conditions.

Following the initial indications regarding ranging quality (repeatability and trueness),
the comparison between scenarios 1 and 2 is best demonstrated through Figure 14. The
complete datasets are presented with respect to the reference distances, providing insight
regarding both measurements deviation as well as trueness. The larger offset is apparent
for AP1 whilst AP2 and AP3 are more prone to reporting range outliers.

Figure 13. Ranging and correction performance of the first two scenarios in the 1D experiment.
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Figure 14. Comparison of the ranging results for the first two scenarios.

Figure 15 shows the empirical cumulative distribution comparing the absolute error
distance (x-axis) for the three APs and the change in their performance in LOS and NLOS
conditions. Notably, the results are computed for the 10 validation points that did not
contribute to the generation of the correction models. These plots indicate that, despite the
varying initial bias, which is visible in the graphs for the original data, when the appropriate
correction model is implemented, a similar accuracy improvement can be obtained for
all three bandwidth settings (close to 1 m for 80% of the validation data). However, as
the CDFs are generated using the EPDF-max ranging values for each VP, the dispersion
information is not visible.

The analysis of scenarios 1 and 2 indicate higher performance when utilizing AP1
(80 MHz) since it demonstrates increased stability both for LOS and NLOS conditions,
and especially for distances up to 30 m. As the complex nature of interior spaces tends
to present multiple obstacles due to walls and equipment, distances exceeding 30 m very
rarely offer LOS or even slight NLOS conditions. Moreover, since a higher bandwidth setup
is expected to lead to a greater ranging accuracy, while at the same time the larger initial
bias may be modeled and mitigated sufficiently, the selection of the 80 MHz setting may
present the optimal conditions for the next analysis steps of this study.

As expected, NLOS conditions lead to the contamination of datasets with multi-path-
induced errors, resulting in longer range recordings (NLOS-positive bias) as well as higher
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measurement dispersion that consequently degrades the corresponding ranging quality.
Overall, the resulting ranging accuracy after the implementation of correction models lies
systematically up to 1 m for 80% of the data sample.

Figure 15. Empirical CDF for comparing the three APs and for identifying their respective perfor-
mance change in LOS and NLOS conditions.

The results of the evaluation regarding the simultaneous and separate APs’ operation
are presented for AP1 in Figure 16, where a comparison between scenario 1 and 3 through
a combination graph is conducted. The ranging results are quantified by the combined plot
of the EPDFmax values of the datasets with the X’X axis presenting scenario 1 and the Y’Y
axis presenting scenario 3. In addition, the results for all the APs are summarized in Table 4,
achieved via their respective absolute difference between the separate and simultaneous
ranging values. The validity of the measurements for scenario 1 is proven by the close
proximity of the graph nodes to the y=x line, as well as by the small absolute difference
values reported in the table, indicating the normal ranging operation both for simultaneous
and separate setups.

Figure 16. Comparison of EPDFmax values for AP1 for scenarios 1 (x-axis) and 3 (y-axis).
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Table 4. Ranging comparison of simultaneous/separate operation between the different APs.

Absolute Difference (m)

RD (m) AP1
(80 MHz)

AP2
(40 MHz)

AP3
(20 MHz)

5 0.36 0.27 1.13
10 3.31 0.89 0.14
20 0.28 1.03 0.29
30 0.06 0.41 0.21
40 0.11 0.38 2.61
50 0.40 0.47 3.91

5.2. 2D Ranging Tests

Following the collection of Wi-Fi RTT ranges for all CPs, the distinct linear correction
models are generated for each AP–smartphone pair for the four cardinal orientations. Using
these models, the correction multipliers were applied on the observed ranges. Figure 17
presents the dataset collected for VP2 for the ranges between AP1 and the two smartphones
for each orientation setting. The preliminary investigation suggests distinct differences in
the behaviors between the two smartphones. Regarding the initial ranging offset values,
both devices report a total difference in the order of 23 m; specifically, the Google Pixel
provides ranges in the order of −4 m, whereas the Xiaomi Redmi reports ranges in the order
of −19 m. Moreover, considering the LOS/NLOS effect, the Google Pixel provides more
stable ranges with lower standard deviation for the predominantly LOS orientations (North,
East and South), as well as higher dispersion and different offset for the NLOS West pointing
orientation. On the other hand, the Xiaomi Redmi reports ranges of improved quality for
North and South LOS orientation, with an increased offset difference of about 2.5 m for
West NLOS orientation after correction, whereas the ranges for the East orientation of the
ranges dataset demonstrates higher standard deviation than anticipated for the optimal
LOS conditions.

Figure 17. Histograms of ranges between AP1 and VP2, for different user orientations and smart-
phone devices.

Figure 18 presents the range correction models as generated for both units, considering
all CPs and orientation settings accordingly with respect to AP1. It is noted that the mean
correction model refers to the linear correction models generated utilizing the mean values
of all orientations for each CP. Furthermore, the second-order polynomial curves for RSSI
values are illustrated.
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Figure 18. Range correction models and RSSI second-order polynomial curves of AP1, for different
user orientations and smartphone devices.

Since the correction models play a major role in this study, as seen in Tables 5 and 6,
the fitting parameters of the linear models, for the two utilized smartphones, along with the
respective standard error (SE) for each oriented dataset are demonstrated. These tables can
help distinguish the variation but also the similarity that occurs in the model parameters
depending on the different APs and datasets, as well as the performance of each pair.
Moreover, in order to also evaluate the RSSI polynomial fitting curves, similar tables for
both rovers are provided (see Tables 7 and 8).

Table 5. Parameters and goodness-of-fit metric of linear models for each oriented dataset. Smartphone
device: Google Pixel.

Google Pixel

North East South West

(a, b) SE (m) (a, b) SE (m) (a, b) SE (m) (a, b) SE (m)

AP1 (−0.0537, 7.954) 0.62 (0.0003, 7.936) 0.42 (−0.0647, 7.657) 0.90 (−0.1676, 6.824) 1.03

AP2 (−0.1129, 6.838) 0.83 (−0.1425, 7.393) 0.70 (−0.1559, 7.461) 1.00 (−0.1248, 6.851) 1.14

AP3 (−0.0309, 7.929) 0.40 (−0.0708, 7.375) 1.01 (−0.0725, 7.851) 0.54 (−0.2129, 6.898) 0.84

AP4 (−0.3380, 7.343) 1.80 (−0.2561, 6.989) 1.22 (−0.2492, 7.404) 1.29 (−0.1573, 7.520) 0.85

AP5 (−0.2380, 8.044) 2.10 (−0.1970, 7.753) 1.24 (−0.1912, 8.000) 1.40 (−0.1839, 7.721) 1.50

Table 6. Parameters and goodness-of-fit metric of linear models for each oriented dataset. Smartphone
device: Xiaomi Redmi.

Xiaomi Redmi

North East South West

(a, b) SE (m) (a, b) SE (m) (a, b) SE (m) (a, b) SE (m)

AP1 (−0.0482,−13.177) 0.76 (−0.0112,−14.006) 0.41 (−0.0728,−13.000) 0.58 (−0.5262,−2.794) 2.93

AP2 (−0.1161,−12.578) 0.87 (−0.1373,−11.850) 0.93 (−0.2000,−10.361) 0.96 (−0.1194,−13.037) 1.24

AP3 (−0.0309,−13.679) 0.46 (−0.0738,−12.940) 0.90 (−0.0931,−12.529) 0.39 (−0.1749,−11.366) 0.62

AP4 (−0.3478,−7.274) 1.92 (−0.2042,−10.942) 1.18 (−0.2780,−8.864) 1.57 (−0.2759,−9.089) 1.33

AP5 (−0.2304,−9.261) 1.55 (−0.2049,−10.081) 1.30 (−0.1333,−11.308) 1.04 (−0.1443,−11.356) 1.45
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Table 7. Parameters and goodness-of-fit metric of second-order polynomial models for each oriented
dataset. Smartphone device: Google Pixel.

Google Pixel

North East

(a, b, c) SE (dBm) (a, b, c) SE (dBm)

AP1 (0.055, −1.251,−64.2) 4.4 (0.030, −0.922, −65.9) 3.5

AP2 (0.044, −1.904,−64.0) 3.2 (0.026, −1.588, −66.2) 3.8

AP3 (0.086, −1.037,−67.9) 3.9 (0.055, −1.571, −68.6) 4.6

AP4 (−0.025,−1.553,−67.8) 6.1 (0.023, −2.095, −70.2) 4.5

AP5 (−0.010,−1.260,−65.5) 4.4 (−0.042,−0.865, −68.2) 3.1

South West

(a, b, c) SE (dBm) (a, b, c) SE (dBm)

AP1 (0.049, −1.318,−64.0) 2.2 (0.018, −1.385,−66.0) 3.9

AP2 (0.023, −1.666,−63.8) 3.5 (0.019, −1.633,−67.2) 3.6

AP3 (0.026, −1.361,−68.6) 4.7 (0.067, −2.031,−71.8) 3.2

AP4 (−0.019,−1.675,−67.5) 5.7 (−0.029,−1.688,−70.0) 3.8

AP5 (−0.053,−0.895,−62.9) 5.6 (−0.015,−1.182,−66.7) 4.9

Table 8. Parameters and goodness-of-fit metric of second-order polynomial models for each oriented
dataset. Smartphone device: Xiaomi Redmi.

Xiaomi Redmi

North East

(a, b, c) SE (dBm) (a, b, c) SE (dBm)

AP1 (−0.0482,−13.177, 0.76) 3.3 (−0.0112,−14.006, 0.41) 4.4

AP2 (−0.1161,−12.578, 0.87) 3.6 (−0.1373,−11.850, 0.93) 3.8

AP3 (−0.0309,−13.679, 0.46) 4.6 (−0.0738,−12.940, 0.90) 5.2

AP4 (−0.3478,−7.274, 1.92) 5.5 (−0.2042,−10.942, 1.18) 4.3

AP5 (−0.2304,−9.261, 1.55) 3.6 (−0.2049,−10.081, 1.30) 2.8

South West

(a, b, c) SE (dBm) (a, b, c) SE (dBm)

AP1 (−0.0728,−13.000, 0.58) 2.7 (−0.5262,−2.794, 2.93) 3.3

AP2 (−0.2000,−10.361, 0.96) 2.4 (−0.1194,−13.037, 1.24) 3.8

AP3 (−0.0931,−12.529, 0.39) 3.6 (−0.1749,−11.366, 0.62) 6.7

AP4 (−0.2780,−8.864, 1.57) 3.2 (−0.2759, −9.089, 1.33) 3.3

AP5 (−0.1333,−11.308, 1.04) 5.9 (−0.1443,−11.356, 1.45) 4.3

Regarding the efficiency of the proposed RSSI-based correction model, the initial eval-
uation refers to the estimation of the correct orientation selection success. This metric
represents the percentage of the correctly assigned measurements to the appropriate cor-
rection model based on the reported RSSI values. Table 9 provides the success rate for
all VPs as well as the achieved performance represented by the root mean square error
(RMSE) and standard deviation (STD) for each orientation. The RMSE KPI indicates a
better performance the lower its value. Concerning the Google Pixel, the correct model
selection appears as being heavily affected by the LOS/NLOS conditions of the device. A
clear example of this behavior is presented for the case of VP2 and AP1, where the optimal
LOS orientations E and S present high successful selection values, whereas for N and W
the percentage drops significantly. When considering the RMSE values, there are cases of
correlation between successful model selection and achieved trueness; however, it is not
possible to draw a definitive conclusion and this can be mainly attributed to the similarity
between models of different orientations, as can be seen in the AP1 example of Figure 18.
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Table 9. RSSI-based oriented model selection performance of the Google Pixel device.

Google Pixel

N E S W N E S W

% of Correct Model Selection RMSE (m) (STD (m))

VP1

AP1 0.8 72.4 0.0 80.2 1.12 (1.03) 1.45 (0.79) 0.86 (0.86) 0.76 (0.75)

AP2 16.9 98.4 9.8 0.8 0.32 (0.31) 0.59 (0.52) 0.48 (0.47) 3.01 (0.89)

AP3 0.0 0.0 8.2 0.0 0.46 (0.28) 0.94 (0.51) 0.47 (0.47) 0.71 (0.32)

AP4 0.0 4.1 0.0 72.7 2.42 (1.55) 2.92 (0.65) 2.32 (0.83) 1.99 (1.13)

AP5 24.2 6.5 44.3 0.0 2.92 (0.76) 3.16 (1.34) 0.99 (0.86) 1.10 (0.41)

VP2

AP1 5.6 78.4 100.0 22.9 0.67 (0.25) 0.48 (0.38) 0.66 (0.23) 1.19 (0.74)

AP2 86.3 0.9 0.0 1.0 0.36 (0.27) 0.41 (0.19) 0.46 (0.30) 0.67 (0.67)

AP3 1.6 3.4 0.7 45.7 0.67 (0.47) 0.31 (0.19) 0.54 (0.22) 0.48 (0.42)

AP4 100.0 12.1 0.0 9.5 1.42 (0.28) 1.70 (0.81) 1.38 (0.16) 1.46 (0.27)

AP5 14.5 20.7 0.0 60.0 0.38 (0.32) 0.30 (0.29) 1.01 (0.22) 0.87 (0.78)

VP3

AP1 0.0 0.0 5.8 100.0 0.72 (0.34) 1.67 (0.68) 1.35 (0.86) 1.37 (0.55)

AP2 5.2 0.0 2.4 29.9 2.70 (1.38) 0.78 (0.74) 1.51 (0.64) 2.30 (1.06)

AP3 28.1 0.0 0.0 29.9 0.71 (0.28) 0.30 (0.26) 0.42 (0.29) 1.35 (0.78)

AP4 97.8 91.3 18.3 6.8 0.79 (0.20) 1.65 (0.22) 1.29 (0.30) 0.83 (0.30)

AP5 18.5 5.2 0.0 0.0 0.82 (0.37) 0.50 (0.38) 0.72 (0.22) 0.51 (0.51)

VP4

AP1 0.0 0.0 7.3 100.0 0.74 (0.36) 3.51 (0.46) 0.55 (0.52) 1.19 (0.54)

AP2 10.7 91.2 20.3 0.0 1.10 (0.78) 0.62 (0.30) 1.26 (1.05) 0.81 (0.36)

AP3 0.0 0.0 8.9 100.0 1.37 (0.36) 0.70 (0.37) 0.90 (0.84) 0.64 (0.52)

AP4 6.6 64.0 0.0 0.0 0.70 (0.24) 0.44 (0.19) 0.48 (0.41) 0.82 (0.39)

AP5 93.4 0.0 0.0 24.8 0.74 (0.36) 1.17 (0.45) 0.79 (0.65) 0.68 (0.24)

Regarding the Xiaomi Redmi device RSSI-based model selection, a heavily reduced
success rate is produced with most cases presenting 0% success (Table 10). This behavior
can be mainly attributed to the highly unstable RSSI values produced. In most cases, the
RSSI data collected at VPs present a large initial offset affecting the minimum difference
from correction models and consequently resulting in a tendency to select the North model
that lies closer to the offset values. This is also demonstrated by the increased cases of
100% for the North model when the remaining orientations report 0%. It is also noticeable
that there are some “NaN” values in the table, corresponding to datasets in which the
connection between the smartphone and the respective AP was unsuccessful during the
data collection period, leading to not logging any data. This data loss has been observed
only for the Xiaomi device, and the signal instability is possibly related to the high value of
the initial bias, as well as the existing obstructions.

In order to evaluate the different correction model approaches that this paper addresses
(as seen in Section 3.4), Figure 19 visualizes via arachnoid diagrams, indicatively, the RMSE
values (in m) for both smartphone devices referring to the VP2 datasets. The choice of
demonstrating the results from VP2 is due to the optimal position of this validation point,
as it has minimum obstructions for all the available APs and a smaller influence of the
corridor’s walls in signal transmission. By comparing the results for the different correction
models, it is found that the correction with the known oriented model generally leads to
better results, the mean correction model, while it has slightly reduced accuracy than the
oriented model, it provides improved ranging accuracy compared to the RSSI-based method.
Additionally, comparing the results from both devices, the Google Pixel achieves higher
accuracies than the Xiaomi Redmi with RMSE values mainly around 1 m, compared to 2 m
in certain circumstances, respectively.
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Table 10. RSSI-based oriented model selection performance of the Xiaomi Redmi device (NaN: not
available dataset).

Xiaomi Redmi

N E S W N E S W

% of Correct Model Selection RMSE (m) (STD (m))

VP1

AP1 30.0 0.0 3.3 21.9 1.07 (0.43) 0.59 (0.24) 0.61 (0.27) 0.75 (0.41)

AP2 100.0 0.0 0.0 0.0 0.96 (0.24) 0.66 (0.39) 0.32 (0.32) 4.85 (0.63)

AP3 91.7 0.0 42.1 4.4 0.32 (0.31) 0.37 (0.26) 1.14 (0.55) 0.34 (0.24)

AP4 100.0 0.0 0.0 0.0 0.96 (0.96) 0.61 (0.25) 0.52 (0.52) 0.99 (0.53)

AP5 100.0 0.0 0.0 0.0 1.48 (0.84) 5.12 (2.69) 1.64 (0.44) 0.54 (0.38)

VP2

AP1 0.0 0.0 4.8 15.2 0.81 (0.26) 0.87 (0.67) 0.39 (0.28) 1.61 (0.45)

AP2 100.0 0.0 0.0 0.0 0.38 (0.35) 0.63 (0.22) 0.79 (0.34) 0.40 (0.40)

AP3 5.0 0.0 98.4 0.0 0.61 (0.47) 0.27 (0.25) 0.34 (0.19) 0.40 (0.40)

AP4 NaN 0.0 0.0 0.0 NaN 1.75 (1.37) 1.53 (0.26) 1.97 (0.23)

AP5 100.0 0.0 0.0 0.0 1.11 (0.36) 0.78 (0.77) 0.76 (0.26) 1.61 (0.27)

VP3

AP1 NaN 22.7 0.8 75.4 NaN 1.55 (1.44) 1.43 (0.41) 2.52 (2.45)

AP2 5.1 NaN 0.0 0.0 1.06 (0.54) NaN 1.22 (0.98) 2.24 (0.75)

AP3 100.0 0.0 0.0 0.0 0.59 (0.21) 0.48 (0.41) 0.89 (0.51) 0.72 (0.39)

AP4 100.0 0.0 0.0 0.0 1.50 (0.44) 0.97 (0.45) 0.90 (0.14) 1.10 (0.11)

AP5 100.0 0.0 0.0 0.0 1.04 (1.04) 0.29 (0.22) 0.63 (0.20) 0.99 (0.97)

VP4

AP1 NaN 20.0 0.0 76.8 NaN 0.90 (0.37) 0.81 (0.47) 4.54 (4.02)

AP2 29.7 0.0 0.0 0.0 0.85 (0.64) 1.83 (0.37) 0.56 (0.52) 1.49 (0.57)

AP3 86.7 0.0 0.0 92.9 0.73 (0.58) 1.03 (0.95) 0.76 (0.57) 0.88 (0.47)

AP4 100.0 0.0 0.0 0.0 0.20 (0.20) 0.35 (0.23) 0.59 (0.43) 0.90 (0.50)

AP5 100.0 0.0 0.0 37.4 0.77 (0.22) 0.91 (0.23) 0.93 (0.21) 0.85 (0.33)

Figure 19. RMSE comparison between the different correction models for the complete dataset of
VP2, for the different smartphone devices (Google Pixel—top, Xiaomi Redmi—bottom).
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Although the ranging error can reach a sub-meter level, it is crucial for this accuracy
to be consistent with consequent environmental changes (orientation and obstructions).
In this scope, the evaluation takes into consideration the ranging performance in varying
conditions in order to suggest the optimal option. Despite the fact that, in difficult situations,
there is increased inaccuracy for the oriented model, overall, the results indicate that known
orientation models for the Google Pixel are more accurate, while the results from the Xiaomi
device and especially with the proposed RSSI-based model are more susceptible to errors.
The mean correction model approach appears to offer a viable solution when user orientation
is an unknown variable, but in situations where this information is available through
different means (e.g., embedded MEMS IMU), the correction with the appropriate model
could lead to optimal results.

As for the RSSI-based approach, despite the fact that the concept aims for the algorithm
to utilize the RSSI observables to select the best model for correction, depending on previ-
ously acquired data, the analysis indicated difficulties in improving the achieved ranging
accuracy compared to the other approaches. The reason behind this observation may be
attributed to the highly sensitive nature of RSSI observables as well as to the similarity
in the model-generated RSSI values driving the algorithm to select a false orientation set-
ting. Although, as previously noted, the “correct” model does not always lead to reduced
errors, the reliable selection of that model is a step toward a better implementation of
this approach.

6. Discussion and Conclusions
6.1. Evaluation and Assessment

Section 5 summarized the experimental results obtained for the Wi-Fi RTT ranging
scenarios. Specifically, comparisons among different sensor configuration settings, field of
view conditions, smartphone devices and range correction models were studied. Further-
more, in order to better illustrate the effect of pointing direction and observation geometry
in range accuracy, the comparisons included 1D and 2D test trials. The WiFi RTT ranging
functionality assessment is implemented through the comparison between the estimated
ranging performance based on reference measurements and the respective nominal spec-
ifications provided by the manufacturer. Moreover, respective and relevant analysis in
similar environments utilizing alternative ranging technologies has been the subject of
previous work from the authors (see [20–23]), and thus the direct comparison between the
technologies is beyond the scope of this paper.

In the 1D test case, range measurements were undertaken along a building corridor
at different bandwidth settings as well as at variable LOS and NLOS conditions. Data
analysis revealed that the observed ranges are more stable at a 80 MHz bandwidth setting,
offering improved performance even in obstruction conditions and despite the excessive
value of initial bias encountered. Furthermore, notwithstanding a high deviation and initial
bias values occurring for the NLOS case, the implementation of a correction model results
in a remarkably improved range accuracy. That said, experimental results indicate that
a sub-meter level accuracy is possible to achieve at optimal observation conditions; that
figure scales down to 1–1.5 m for a scenario in a typical obstruction environment.

For the 2D case scenarios, range measurements where collected among RPs scattered
in a 2D space area featuring the building entrance foyer and a corridor. In this setup, two
smartphones were used operating at 80 MHz bandwidth at all APs. Trials were conducted
in different user orientations to allow for testing in variant, albeit controlled, LOS/NLOS
conditions. In addition, in order to compensate for the lack of orientation information
encountered in real-life scenarios (assuming RF-based technologies only), the evaluation of
the performance of alternative correction models was also undertaken.

The obtained results suggest that user orientation impacts the quality of the raw-range
measurements. Specifically, the relative geometry of the smartphone, the ranging AP and
the user’s body location may induce NLOS conditions that potentially alter the signal
transmission path between the smartphone device and the AP in question. The collection
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of range measurements at quadrant orientation settings results in bias mitigation models
depending on user orientation. Thereby, the known orientation (oriented) model offers
improved ranging accuracies, while the mean correction model approach achieves similar
albeit slightly reduced ranging accuracies. Finally, the proposed RSSI-based model selection
approach faces significant difficulties on providing the correct orientation model selection.

Concerning the ranging performance observed between the tested smartphone devices,
analysis confirms different range biases, and thus, different correction requirements are
deemed necessary. The Xiaomi measurements indicate a greater deviation from the ground
truth ranges as well as increased instability, leading even to a complete dataset loss. The
results obtained from the Google device are similar to those obtained in the 1D experiments,
ascertaining their consistency. Analysis revealed that undertaking further testing with
the Xiaomi Redmi at different bandwidth selections may provide deeper insights into the
device’s ranging capabilities, although no radical improvement is expected in the end
results. Finally, the different correction models present similar behavior with the respective
smartphone device datasets, with a minor ranging error reduction apparent for the Google
Pixel device.

The 2D experiments enabled the investigation of the effect of observation geometry
thanks to the existence of RPs in the test area (corridor and entrance room). Indeed, the
different area settings result in different signal transmission conditions, which in turn
impact the ranging measurements. Naturally, the corridor creates obstruction and reflection
conditions, resulting in degraded signal transmission and by extension deteriorated ranging
performance from the APs deployed in this area. Notwithstanding, this paper focuses on Wi-
Fi RTT range assessment, and the elongated corridor geometry visibly impacts the position
fixing accuracy due to the APs’ challenging deployment geometry and consequently the
performance of the trilateration algorithms.

6.2. Toward Pedestrian Localization—Future Steps

Having tested and evaluated the performance of the different Wi-Fi RTT range correc-
tion models as well as different devices, it is of interest to also investigate their potential
positioning capabilities. The presented position fixing results are generated through a
multilateration algorithm and are bound to their particular limitations and issues. Multilat-
eration is highly affected by ranging quality (extensively analyzed in Section 5) and APs
geometry deployment. In the frame of this study, we performed a preliminary estimation
of the static position of the VPs using the corrected ranges from the 2D experiments. The
main focus is the evaluation on the effects of the ranging measurements when utilized for
localization as well as discussing the additional position quality-degrading parameters
that derive from the employed positioning technique. The use of the complete validation
ranging datasets, grouped by logged time from three to five available APs per epoch, allows
for a more detailed evaluation of the discrete localization points instead of an average value
for each VP.

Figure 20 shows that both the true position of the VP (in relation to the AP positions)
and user orientation impacts the localization results. In addition, from the previously
discussed ranging errors (see Section 5.2), it appears that in the corridor area the dispersion
in the y-axis (across-side) is larger compared to the one in the x-axis error (along-track).
This is due to the challenging (elongated) corridor geometry, leading to more significant
errors perpendicularly to the corridor’s axis. It is also noted that for VP2, which was
previously addressed as the one with optimal location, the point cloud is rather small,
especially for the three orientations that grant LOS (N, E and S). This finding directly relates
to the degrading effect on ranges due to obstructions that by extension affect position fix
quality. The problems encountered with the Xiaomi unit are rather clear in static positioning
scenarios indicated by the larger scattering of point cloud position solutions and the
degradation of position trueness overall. As expected, this effect is particularly evident in
the corridor area wherein observation geometry conditions are less favorable. Although the
visualization of the positioning results’ accuracy could be achieved through error ellipses
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adding dimensionality in the figure, for the sake of simplicity, at this preliminary stage,
positioning analysis is considered redundant, as well as the point cloud demonstration,
which serves the authors’ purposes best. Moreover, the adoption of a more complex
positioning algorithm is considered, which extends the context of this manuscript beyond
its scope and is not addressed further.

Figure 20. Comparison of static positioning by using the oriented correction model at all of the VPs,
for the different oriented datasets and smartphone devices.

6.3. Use Case Characteristics Affecting Solution Selection

The suitability of the different devices and methods depends on the prevailing con-
ditions and requirements, a substantial number of which vary in different use cases. The
conditions affecting the localization performance can be classified under the different cat-
egories: built environment characteristics and pedestrian density, while the localization
performance requirements are determined through the interaction type, as well as the type
and criticality of the operation that utilizes it.

Indoor facilities, where applications utilizing pedestrian tracking are in use or have the
potential to be beneficial for specific operations, range from simple to more complex infras-
tructures, including public transport stations or terminals, airports, shopping malls, office
or other types of buildings (e.g., schools, universities, hospitals) and parking areas [54].
In particular, the indoor parking areas attract additional interest combining both pedes-
trian and vehicle tracking capabilities [55] leading to various opportunities [56,57]. These
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environments may display different characteristics from the built environment geometry,
affecting localization performance. Examples include corridor/area width dimensions,
walls or other obstacles. An additional element involves the existence of different floor lev-
els and the manner in which pedestrians advance from one level to the other, i.e., whether
this is performed through stairways, escalators or elevators [58].

Pedestrian density also varies in the different use cases both temporally and spatially.
Considering the temporal element, peak and off-peak periods display entirely different
density levels. Considering the spatial element areas in the vicinity of check/control areas
in public transport stations and terminals, exits or entrances, narrow corridors or locations
where bottlenecks appear also demonstrates higher pedestrian density.

Most indoor infrastructures involve pedestrian-only movements, and even in areas
where pedestrians co-exist with other transport modes there are exclusive areas for pedes-
trian movement, thus presenting pedestrian-only interactions. However, at specific facilities
such as parking areas or bus terminals, interactions between pedestrians and vehicles also
occur. Performance requirements in such cases are higher [59].

Location data can be utilized for different operations indoors while most cases serve
pedestrian navigation and wayfinding needs. Other examples include simple pedestrian
counts for marketing and demand/supply studies (e.g., number of pedestrians at a bus
stop/platform or consumer distribution at mall districts).

There exist, however, more demanding applications such as those servicing collision
avoidance scenarios indoors [59]. Especially in difficult environments such as underground
quarries, user requirements become more stringent for safety purposes.

Last, the criticality level affects the performance requirements. This depends on
whether the application (e.g., navigation) operates under normal versus under emergency
conditions. For example, the accuracy of the navigation is not as important under normal
conditions, while in the case of emergency evacuation it is of vital importance. In indoor
environments, emergency measures during disasters necessitate accurate planning and pre-
vention to be able to respond instantly and effectively and evacuate or relocate people [60].
The same applies for pedestrian counts under normal operations or during evacuation
actions. Another dimension related to criticality involves the user category. Navigation is
more challenging and its performance requirements are higher for specific user categories
such as visually or mobility impaired people, children, elderly, and so on, compared to
healthy adults [61,62].

6.4. Concluding Remarks

High-quality (accuracy, trueness, availability) position estimation is the ultimate goal
for many indoor mobility applications. This goal is particularly difficult to achieve in areas
featuring challenging observation conditions (obstructions of various types, narrow path-
ways, etc.) that downgrade both ranging and localization quality. Particularly, considering
pedestrian localization, with the exception of static position fixing, it is critical to efficiently
track the user location and kinematics in near-real time and high update rate. Indeed, for
the case of RF-based systems, this requirement asks for accurate and continuous range
estimation, exempted of outliers and unstable measurements, in order to compute user
location in a precise and robust manner.

In this regard, a thorough characterization of Wi-Fi RTT ranging performance pre-
sented in this study sets the basis for pedestrian localization using this technology. However,
with the exception of range quality, position fixing depends heavily on user dynamics,
update rate of observations and the localization algorithm encountered. Therefore, due to
its complicated character, a detailed investigation of the localization problem is beyond the
scope of this study.

Nevertheless, preliminary testing confirms the importance of range correction models
in position fixing. However, the simplistic localization approach adopted in this study
(sequential least squares) does not allow for a smooth position solution. It is suggested,
however, that the results reported here have the potential of significant improvement
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using more advanced positioning algorithms (e.g., Kalman filter, particle filter or machine
learning-based approaches) and additional-type observables, mainly embedded MEMS
IMUs, while Wi-Fi RTT technology remains the core sensing information.
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Experimental Evaluation of a UWB based Cooperative Positioning System for Pedestrians in GNSS Denied Environment. Sensors
2019, 19, 5274. [CrossRef]

24. Horn, B. Doubling the Accuracy of Indoor Positioning: Frequency Diversity. Sensors 2020, 20, 1489. [CrossRef]
25. Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Trans. Syst. Man,

Cybern. Part Appl. Rev. 2007, 37, 1067–1080. [CrossRef]
26. Liu, J. Hybrid Positioning with Smart Phones. In Ubiquitous Positioning and Mobile Location-Based Services in Smart Phones; Chen,

R., Ed.; IGI Global: Hershey PA, USA, 2012; pp. 159–194.
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