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Abstract

This thesis focuses on the design, implementation and testing of two different approaches

towards broadband neutron spin flipping to be applied in a spin echo small angle neutron

scattering instrument. The first approach utilises time dependent amplitudes of an

oscillating magnetic field, but requires a pulsed beam, which in this case was realized

by spin chopping. Time-of-flight measurements showed that the resulting pulsed beam

had a low signal-to-noise ratio and thus this approach was not followed up. For the

second approach a pulsed beam is not required and the neutron spin is flipped with

an adiabatic radio frequency (RF) flipper. On the one hand this device is capable of

achieving high flip efficiencies for a broad range of neutron wavelengths, but on the

other hand has high electrical power requirements. Measurements of the flip efficiency

of a single flipper yielded a maximum of ϵ = 0.9231 (15) at an RF frequency f = 1MHz.

Primarily, the performance was limited by heat generated in the RF flipper and cables,

which may be counteracted by a special cooling system.



Kurzzusammenfassung

Das Design, die Implementierung und das Testen von zwei verschiedenen Ansätzen für

breitbandiges Neutronenspinflipping, die in einem Spin-Echo-Kleinwinkelstreuungsins-

trument angewendet werden sollen, wurden in dieser Diplomarbeit untersucht. Der erste

Ansatz nutzt zeitabhängige Amplituden des oszillierenden Magnetfeldes, erfordert je-

doch einen gepulsten Strahl, der in diesem Fall durch ein Spin-Choppingsystem erzeugt

wird. Flugzeitmessungen ergaben, dass der resultierende gepulste Strahl nur ein geringes

Signal-Rausch-Verhältnis aufweist, weshalb dieser Ansatz nicht weiterverfolgt wurde.

Für den zweiten Ansatz wird kein gepulster Strahl benötigt und der Neutronenspin

wird mit Hilfe eines adiabatischen Flippers im Hochfrequenzbereich (RF) geflippt. Mit

dieser Methode lassen sich einerseits hohe Flip-Effizienzen für einen breiten Bereich von

Neutronenwellenlängen erzielen, andererseits ist jedoch der elektrische Leistungsbedarf

sehr hoch. Messungen der Flip-Effizienz eines einzelnen Flippers ergaben einen Maxim-

alwert von ϵ = 0, 9231 (15) bei einer RF-Frequenz von f = 1MHz. In erster Linie wurde

die Leistungsfähigkeit durch die im RF-Flipper und in den Kabeln erzeugte Wärme bes-

chränkt. Dem kann man mit einem speziellen Kühlsystem entgegenwirken.
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Chapter 1

Introduction

Since neutrons are spin-12 particles they possess a magnetic moment, which can couple

to a magnetic field. This coupling results in Larmor precession, which is exploited at

a neutron spin echo spectrometer (NSE). If a polarized polychromatic neutron beam

passes through a magnetic field region, the neutrons exhibit different precession angles

by the end of the field region depending on their velocity. These can be viewed as

individual clocks, keeping track of the time period each neutron spends inside the mag-

netic field. By adding a second field of same strength but in opposing direction all spins

counterrotate and the initial polarization is restored. In case of a scattering experiment,

a sample is placed between the field regions. With this aforementioned method of time-

keeping, spin echo instruments are capable of determining small energy changes during

inelastic scattering processes by measuring the polarization of the scattered beam.

The concept of spin echo with polarized neutrons (NSE) was first proposed by Mezei

in 1972 [Mez72]. The Larmor angle of the precession and furthermore the energy resolu-

tion are enhanced by the length of the region and the strength of the field. Additionally,

the resolution is not limited by the wavelength spread of the incoming beam. Another

unique feature of an NSE is the fact that the measured signal is already proportional to

the Fourier transform of the scattering function, the so-called intermediate scattering

function F (q⃗, τ), where q⃗ is the momentum transfer and τ the spin echo time. Latter

quantity also describes the maximal time difference two physical states of the scatter

can still be correlated by an NSE. In 1987 Gähler and Golub generalised this method

to a more sophisticated neutron spectrometer [GG87]. At a neutron resonant spin echo

(NRSE) instrument, Larmor precession is replaced by zero field precession induced by

dynamical magnetic resonant RF flipper. In this case the spin of a neutron is rotated by

absorption or emission of a photon from the oscillating RF field. This process changes

the total energy of the neutron and leads to zero field precession, a precession of the

spin in a region of zero magnetic field. The combination of small angle neutron scat-

tering and spin echo (SESANS) was contrived by Rekveldt in 1996 [Rek96]. At these

instruments the measured signal is also sensitive to a momentum transfer q⃗ from the
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neutrons to the scatterer. This is achieved by tilted magnetic field regions with respect

to the beam direction. This has the consequence that the neutrons' path length within

the field and the precession angle at the end of the field range become dependent on the

momentum change, thus influencing the measured polarization. Furthermore, the semi-

classical description of a SESANS instrument highlights the spatial splitting of the spin

eigenstates perpendicular to the beam, enabling manipulation of only one state similar

to an interferometer experiment. Moreover, the momentum transfer resolution is not

limited by the beam divergence. At the white neutron beam line at the Atominstitut

(ATI) in Vienna a SESANS instrument utilizing zero field precession is currently being

developed.

The thesis is divided into four chapters. The first one is about the theory of neut-

ron optics more particularly the interaction of the neutron spin with static and time

dependent magnetic fields and how this interaction can be used to manipulate the spin.

The second chapter is a theoretical description of the spin echo phenomenon, with the

goal to provide the knowledge for understanding NSE, NRSE and SESANS and the

experimental setup at the ATI white beam line. In addition, it will also investigate the

trajectories of the individual spin eigenstates through the instrument to gain deeper

insight into the topic. The third chapter discusses the first experimental approach of

spin chopping. The setup is described from both an electrical engineering and an neut-

ron optical point of view. The recorded TOF spectra are presented and analysed. The

fourth chapter deals with the second experimental approach, where an adiabatic RF

flipper was used to flip the neutron spin. First, the experimental prerequisite is dis-

cussed, followed by the experimental data from which the flip efficiency was calculated.

For different setups the changes in efficiency were compared. Finally, a short outlook on

the further procedure is given. It discusses possibilities to ensure long-term operation

and how to increase the flip efficiency of the adiabatic RF flipper further.
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Chapter 2

Neutron Optics

2.1 Properties of Neutrons

The neutron was discovered by James Chadwick in 1932 [Cha32]. It is part of the

atoms nucleus, thus subjected to all four fundamental forces and carries no electric

charge, explaining its name. Even though high precision measurements to find lim-

its on the neutron electric dipole moment (nEDM) is an ongoing research field (e.g.

[Bak+11]). Nowadays we even know the neutrons subatomic structure, which is made

up of two down quarks and one up quark. Neutrons are also subjected to the weak

force leading to a half-life time for free neutrons (i.e neutrons not bound in a nucleus)

of τ = 890 s ≈ 15min, after which it decays into a proton, an electron and an electron

antineutrino. Furthermore neutrons are fermions, carrying spin-12 . A magnetic mo-

ment µn is coupled to the neutrons spin with a magnitude of µn = −1.913µN , where

µN = 5.051× 10−27 J/T is the nuclear magneton. Additionally, the gyromagnetic ratio

γ = 2µ
h̄ (γ = 1.83011 × 108T/s) is often used to describe the ratio between the mag-

netic moment and the spin of the neutron. This shows that neutrons can interact with

magnetic fields. Moreover spin manipulations induced by static and/or time dependent

magnetic fields are possible and will be discussed in detail in section 2.2.

Finally, neutrons have a mass of m = 1.6275 · 10−27 kg and are therefore subjected

to gravity, which forces the neutron on a slightly curved trajectory through an typical

neutron experimental setup. The effects of gravity and the free neutron lifetime can be

neglected in most neutron experiments, especially at the white beam setup in Vienna.

Louis de Broglie proposed in 1923 that it is possible assign wave character to all matter

particles. With his famous relation

λ =
h

p
=

h

mv
=

h√
2mEkin

(2.1)

with λ the wavelength of the particle, h the Planck constant, p the momentum, v

the group velocity and Ekin the kinetic energy. This wave behaviour also gives rise to

the expression Neutron Optics. One can categorize neutrons according to their energy

10



energy [eV] wavelength [Å] velocity [m/s]

ultra cold < 10−5 > 92 > 44

cold 10−5 − 10−3 92− 9.2 44− 443

thermal 10−3 − 0.5 9.2− 0.4 443− 104

hot > 0.5 < 0.4 > 104

Table 2.1: Classification of neutrons according to their energy. Neutrons at the white
beam line Vienna ATI are thermal.

and wavelength, see table (2.1). Thermal neutrons have energies in the order of the

thermal energy at room temperature (T ≈ 300K), thus the name of the category.

2.2 Neutrons in Magnetic Fields

To describe the dynamics of a neutron in a magnetic field, we start from the Schrödinger

equation

ih̄
∂

∂t
ψ = Ĥψ (2.2)

where the derivative in time is proportional to the Hamiltonian Ĥ of the system,

with i being the imaginary unit, h̄ the reduced Planck constant and ψ the wavefunction

describing the quantum state of the neutron. In presence of an external magnetic field

B⃗(x⃗, t), which can vary spatially and temporally, the Hamiltonian looks like [Mez88]

Ĥ = − h̄2

2m
∆− ˆ⃗µ · B⃗(x⃗, t) (2.3)

The first term describes the kinetic energy (m is the mass of the neutron and ∆

the Laplace operator) whereas the second term is corresponding to the potential energy

of the neutron inside a magnetic field (and neglecting gravity). Here ˆ⃗µ is the vector

operator of the magnetic moment of the neutron given by ˆ⃗µ = µσ⃗ = γ h̄
2 σ⃗ [Kra04] and σ⃗

is the Pauli spin vector operator consisting of all three Pauli matrices, σ⃗ = (σx, σy, σz)
T .

The Pauli spin matrices in the σz eigenbasis are expressed as

σx =

�
0 1

1 0

�
, σy =

�
0 −i

i 0

�
, σz =

�
1 0

0 −1

�
(2.4)
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Figure 2.1: Bloch sphere representation of a qubit system, in this case of a spinor of
a spin-12 particle. The south and the north poles correspond to the up-state |↑⟩ = |1⟩
and the down-state |↓⟩ = |0⟩, respectively. Pure states lie on the surface of the sphere,
whereas mixed states are lying inside. The angles θ and ϕ are given as in equation (2.6)
and define an arbitrary pure state |0u⟩. The states |0x⟩ and |0y⟩ are superposition of
|0⟩ and |1⟩. From [HR06].

It follows that the nonrelativistic Schrödinger equation for a neutral spin-12 particle

(also called Pauli equation for neutral particles) is given by

ih̄
∂

∂t
ψ(x⃗, t) =

	− h̄2

2m
∆− γ

h̄

2
σ⃗ · B⃗(x⃗, t)

�
ψ(x⃗, t) (2.5)

The state vector

ψ(x⃗, t) =

�
ψ+(x⃗, t)

ψ−(x⃗, t)

�
= Φ(r⃗, t) |S⟩ = f+(r⃗, t) cos(

θ

2
) |↑⟩+ f−(r⃗, t)eiϕ sin(

θ

2
) |↓⟩ (2.6)

is a two component spinor wave function, with f+(r⃗, t) and f−(r⃗, t) being the spatial

wave function, |↑⟩ and |↓⟩ the spin eigenstates and θ and ϕ the polar and azimuthal

angle of the spin vector respectively. The spin state |S⟩ is often represented on a Bloch

sphere as depicted in figure (2.1).

The value of the potential energy term in equation (2.5) is not only given by the

magnitude of the magnetic field, but also depends on the relative direction of the spin

of the neutron with respect to the magnetic field (scalar product between µ⃗ and B⃗).

In the semi-classical picture of Larmor precession we think of the spin as a vector. So

if the spin is parallel to the B⃗-field the potential energy decreases (due to the minus

sign) and increases if the spin is antiparallel to B⃗. If they are orthogonal to each other

the neutron does not experience any potential. In a more quantum mechanical picture

one can say that the two spin states gain different potential energy (Zeeman splitting).
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This consideration becomes important when it comes to the description of spin echo

and zero field precession (section 3.2).

Dynamics of Spinor |S⟩

For a spatially independent magnetic field it is possible to write down an ansatz to

equation (2.5) by

ψ(r⃗, t) = eik⃗r⃗−iωt |S(t)⟩ (2.7)

Plugging this back into the Pauli equation one finds for the left hand side

ih̄
∂

∂t
ψ(x⃗, t) = ih̄

∂

∂t
eik⃗r⃗−iωt |S(t)⟩ = h̄ω eik⃗r⃗−iωt |S(t)⟩+ eik⃗r⃗−iωtih̄

∂

∂t
|S(t)⟩ (2.8)

and for the right hand side



− h̄2

2m
∆− γ

h̄

2
σ⃗ · B⃗(t)



ψ(x⃗, t) =

h̄2

2m
k2eik⃗r⃗−iωt |S(t)⟩ − eik⃗r⃗−iωtγ

h̄

2
σ⃗ · B⃗(t) |S(t)⟩ (2.9)

Both sides must be equal thus leading to

∂

∂t
|S(t)⟩ = 1

2
iγσ⃗ · B⃗(t) |S(t)⟩ (2.10)

where we used the fact that the kinetic energy of the neutron is h̄ω = h̄2k2

2m .

This equation is called the Larmor equation and governs the time evolution of the

2-dimensional spinor wave function |S(t)⟩. For a constant field B⃗ (not explicitly time

dependent) we find the the well known solution

|S(t)⟩ = e
1
2
iγσ⃗·B⃗t |S(0)⟩ (2.11)

The unitary operator U = e
1
2
iγσ⃗·B⃗t describes a rotation around the direction of B⃗

in the 2-dimensional complex space of the spinors over an angle α = γBt (B = |B⃗|)
with frequency ωL = γB. This is the so-called Larmor frequency, which we will also

encounter for the dynamics of the polarization. Using group theory language one says

that U is forming the special unitary group SU(2) and that the Pauli matrices are

the so-called generators of these transformations. SU(2) is the group of unitary 2 × 2

matrices with determinate equal to 1.
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Polarization in experiment

The white beam line in Vienna is utilising polarized neutrons. The polarization of

a neutron beam is defined as

P⃗ =


⟨σx⟩
⟨σy⟩
⟨σz⟩

 (2.12)

It is the vector of the expectation values of the Pauli spin matrices. In general, only

one component of the polarization vector is of interest. If we assume that the beam

is initially fully polarized in z-direction (mostly chosen such that z is the direction of

guide field i.e. B⃗0) we can write the z-component as

Pz = ⟨σz⟩ = ⟨S|σz |S⟩ = ⟨S|Π+
z |S⟩ − ⟨S|Π−

z |S⟩ (2.13)

where we split the σz operator into the two projection operators Π+
z and Π−

z which

are projecting on the spin eigenstates |↑⟩ and |↓⟩ respectively. These projection operat-

ors can be linked to the measured intensities in an experiment. We can write them as

⟨S|Π+
z |S⟩ = I+z

I+z +I−z
and ⟨S|Π−

z |S⟩ = I−z
I+z +I−z

, allowing us to rewrite equation (2.13) as

Pz =
I+z − I−z
I+z + I−z

(2.14)

The Intensities I+z and I−z correspond to the expectation values of the projectors

Π+
z and Π−

z respectively and are also associated with the maximal and minimal counts

at a spin flipping measurement. Consequently enabling experimental access to the

quantity Pz, which is a real number between −1 and 1. In interferometry experiments

the contrast and the visibility are calculated in the same way.

A different quantity is the degree of polarization P which defined as the length of

the polarization vector P = |P⃗ |

P = |P⃗ | =
�

⟨σx⟩+ ⟨σy⟩+ ⟨σz⟩ (2.15)

The degree of polarization has a value range between 0 and 1, where 0 is describing

a totally mixed state and 1 a pure state.

Dynamics of Polarization ⟨σ⃗⟩

The polarization of a neutron beam is defined as the expectation value of the Pauli

vector operator. If the neutron beam is perfectly polarized (P = 1) one can assume a

pure state for the beam thus one can write P⃗ = ⟨ψ(x⃗, t)| σ⃗ |ψ(x⃗, t)⟩ = ⟨S(t)| σ⃗ |S(t)⟩ =
⟨σ⃗⟩. Otherwise the beam is described as a mixed state ρ and the polarization is given

by P⃗ = Tr(ρσ̃).

14



To calculate the dynamics of the polarization vector P⃗ = ⟨σ⃗⟩ in the presence of a

magnetic field, we assume the Hamiltonian given in equation (2.5) and start from the

Heisenberg equation for observables given by (e.g. [Sch07])

d

dt
⟨σ⃗⟩ = i

h̄
⟨[H, σ⃗]⟩+ ⟨∂σ⃗

∂t
⟩ (2.16)

where the term in the squared brackets denotes the commutator between the Hamilto-

nian H and the polarization. Since ⟨σ⃗⟩ is not explicitly time dependent the last term in

equation (2.16) is equal to zero. Additionally, the kinetic energy part of the Hamilto-

nian commutes with σ⃗. Therefore we are only left with d
dt ⟨σ⃗⟩ = −γ

2 i ⟨[σ⃗ · B⃗, σ⃗]⟩. To

calculate this expression we make use of the fact that one can look at the commutator

of two vectors (or a vector σ⃗ and a scalar σ⃗ · B⃗) componentwise and use the relation

[σi, σj ] = 2iϵijkσk which assigns the commutator of two Pauli matrices to the third one,

with ϵijk being the Levi-Civita symbol.

[σ⃗ · B⃗, σ⃗]x = Bx[σx, σx] +By[σy, σx] + [σz, σx] = By2i(−σz) +Bz2iσy (2.17)

[σ⃗ · B⃗, σ⃗]y = Bx2iσz +Bz2i(−σx) (2.18)

[σ⃗ · B⃗, σ⃗]z = Bx2i(−σy) +By2iσx (2.19)

One can write the commutator of all three components much more elegantly as the

cross product between B⃗ and σ⃗, [σ⃗ · B⃗, σ⃗] = 2i(σ⃗× B⃗). If we insert this back into (2.16)

we get

d

dt
⟨σ⃗⟩ =− γ

2
i ⟨[σ⃗ · B⃗, σ⃗]⟩ = γ ⟨σ⃗ × B⃗⟩ (2.20)

If the magnetic field is purely time-dependent (i.e. perfectly homogeneous at every

given point in time) one can write γ ⟨σ⃗ × B⃗⟩ = γ ⟨σ⃗⟩ × B⃗. The equation of motion can

be written as

d

dt
⟨σ⃗⟩ = γ ⟨σ⃗⟩ × B⃗ (2.21)

This is the well-known Bloch equation which describes the motion of an classical

magnetic moment in an external magnetic field. The change in time of the polarization

⟨σ⃗⟩ = P⃗ is orthogonal to P⃗ and B⃗ causing the polarization vector to precess around the

magnetic field direction while preserving its length as well as the angle between B⃗ and

P⃗ . This precession is called Larmor precession and is illustrated in figure (2.2).

Any 3-dimensional vector cross product can be rewritten with the help of the an-

gular momentum operators L⃗ = (Lx, Ly, Lz). One can write a⃗ × b⃗ = i(L⃗ · b⃗)⃗a [LT08].

Additionally, the matrices L⃗ are exactly the generators of the 3× 3 rotation matrices R

in 3-dimensional euclidean space [Bal90] (i.e. the special orthogonal group SO(3)). In

adjoint representation the angular momentum operators look like

15



Figure 2.2: The time derivative of the polarization vector ˙⃗
P is orthogonal to the polar-

ization vector P⃗ = ⟨σ⃗⟩ and the magnetic field B⃗ thus causing a precession around the
direction of B⃗.

Lx =


0 0 0

0 0 −i

0 i 0

Ly =


0 0 i

0 0 0

−i 0 0

Lz =


0 −i 0

i 0 0

0 0 0

 (2.22)

This yields for the Larmor equation

d

dt
⟨σ⃗⟩ = iγL⃗ · B⃗(t) ⟨σ⃗⟩ (2.23)

One immediately sees the close relation to equation (2.10). If L⃗ is substituted

with σ⃗
2 we arrive at the Larmor equation for spinors. The factor 1/2 gives rise to the

quantum phenomenon of 4π symmetry of spinors, that is ψ(0) = ψ(4π). The "classical"

polarization vector P⃗ , on the other hand, obeys ordinary rotation rules and shows a

standard 2π symmetry P⃗ (0) = P⃗ (2π) [RW15]. A solution to equation (2.23) can be

found in the same manner as for the spinor case (i.e. for constant B⃗)

P⃗ (t) = ⟨σ⃗⟩ (t) = eiγL⃗·B⃗tP⃗ (0) (2.24)

The exponential function R = eiγL⃗·B⃗t again describes a rotation around B⃗ about

an angle of α = γBt hence with a frequency ωL = γB which is the Larmor frequency,

the same as for spinors. It is the frequency with which the polarization vector precesses

around B⃗ and t being the time the neutron is exposed to the magnetic field. This time

is almost always proportional to the velocity v of the neutron and the length of the

magnetic field region L as the neutron flies through the experimental setup ,t = L
v . This

precession enables spin manipulations with so-called DC spin rotators, where DC stands

for direct current generating a static magnetic field. If the strength of the magnetic field

and the length of the field region is adjusted correctly one can achieve a π flip meaning
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that α = π. Unfortunately this method does not work for a white neutron beam, since

the precession angle depends on the velocity of the neutrons, leading to depolarization

of the neutron beam. Nevertheless, DC-rotators are commonly used at monochromatic

beamlines.

2.2.1 Geometric Frequency and Adiabaticity Parameter

We will briefly discuss the effects and consequences of a varying quantisation axis on

the polarization vector. This is associated with a magnetic field B⃗ = B⃗(x⃗, t), which is

dependent on time (e.g. rotating field in time) and/or space, i.e. it changes its orient-

ation along the flight path of the beam. To describe the dynamics of the polarization

qualitatively it is of use to define the adiabaticity parameter k as the ratio of the Larmor

frequency ωL = γB to the frequency ωf with which the field changes [Plo09]

k =
ωL

ωf
(2.25)

For a pure time dependent and rotating field B⃗(t) = eiLzωtB, ωf is simply the

rotation frequency of the field (ωf = ω). For a pure space dependent field, ωf is equal

to the geometric rotation frequency ωg (see also adiabatic RF flipper 2.3.3). It is defined

as

ωf = ωg =
dαg

dt
=

dαg

dx
v (2.26)

where αg is the geometric rotation angle, describing the angle between the magnetic

field at the initial position B⃗(x⃗ = 0⃗) and the field at position x, which is B⃗(x⃗). Then

ωg determines how fast the neutron experiences the change of the external magnetic

field. Its value increases the faster the neutrons, contrary to the adiabaticity parameter

k, which decreases with neutron velocity. With the help of k we can describe three

qualitatively different situations of the motion of polarization.

If k ≫ 1, the polarization vector can follow the field and the angle between B⃗ and P⃗

remains unchanged. This is utilised in adiabatic spin flippers. If k ≪ 1, the change

appears sudden and the polarization vector can not follow the field, thus the precession

cone will change. This is utilised in DC-spin flippers. If k ≈ 1, it is difficult to make a

statement about the movement of the polarization vector.

2.3 Neutron Spin Flipper

In the following sections on spin flipping devices some approximations were made.

Firstly, the neutrons motion is treated classically, which means that it is possible to

assign a distinct velocity and position to the neutron. The spin, on the other hand, is

treated quantum mechanically. Furthermore, we assume that the kinetic energy of the

neutron is much greater than the potential energy of the magnetic field ( h̄
2k2

2m ≫ γB),
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therefore reflection at the boundary can be neglected.

In a full quantum mechanical treatment the neutron is described by a wave packet with

no distinct velocity and position. This has minor effects on the flip efficiency.

2.3.1 Adiabatic Static Spin Rotators

As discussed in section (2.2.1) the polarization vector will follow the magnetic field if

the adiabaticity parameter k is large enough. This effect can be utilised to rotate the

polarization vector in a desired fashion, e.g. rotate it by π
2 [KRP91; Kra+03].

Assume a spatially dependent magnetic field, which is pointing in z-direction at position

x = 0 ( B⃗(0) = B · ẑ ) and in x-direction at position x = L ( B⃗(L) = B · x̂ ). This

corresponds to rotation by π
2 over the y-axis. Additionally, assume a neutron beam

initially polarized in z-direction. If the magnetic field is strong enough and the change

happens gradually and slowly enough the polarization can follow the magnetic field and

will be rotated by π
2 as well. A V-coil is capable of carrying out exactly such rotations.

Since k = ωL
ωg

with ωL = γB and ωg = πv
L , the rotation capability is a function of

the strength of the magnetic field B, the distance L over which the field changes and

the velocity v of the neutron. This shows that adiabatic rotators are applicable at a

white neutron beam if k ≫ 1 for the fastest neutrons. In that case the rotation is

accomplished for the entire spectrum.

A static flipper is not able to initiate zero field precession as is going to be discussed in

section (3.2). They are solely used to prepare neutrons in a coherent spin superposition.

2.3.2 Resonant RF Spin Flipper

In this section we want to study the effects of an weak oscillating magnetic field with

frequencies in the radio frequency domain (RF) superimposed with a strong static mag-

netic field on the polarization of the neutron beam. This setup is also used in nuclear

magnetic resonance (NMR) experiments and (together with a static gradient field) for

magnetic resonance imaging (MRI). If the parameters of such a device are chosen cor-

rectly, spin manipulation become possible even spin flips can occur. For the derivation

of the dynamics of the polarization we will only consider time dependent fields, since the

space dependency can be transformed away if one knows the velocity of the neutrons.

Therefore the total magnetic field reads

B⃗(t) =


B1 cos(ωt)

0

B0

 (2.27)

where B1 is the amplitude of the RF-field oscillating with frequency ω and B0 the

magnitude of the static magnetic field. We assume x as the beam direction. One can

decompose an oscillating field in x-direction into two oppositely rotating fields with the
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same frequency but half the amplitude (see figure (2.3))

B⃗(t) =


B1
2 cos(ωt)
B1
2 sin(ωt)

0

+


B1
2 cos(ωt)

−B1
2 sin(ωt)

0

+


0

0

B0

 (2.28)

Figure 2.3: An illustration showing the equivalence of two counter rotating fields and
one oscillating field. Contrary to what the figure might suggests, the rotating fields
must have half the amplitude of the oscillating field. From [Plo09].

It is possible to express the two rotating fields with the help of the rotation matrices

R (see equation (2.24)). Furthermore, a rotation around the n̂-axis is not changing a

vector in n̂-direction, thus we can write B0ẑ = eiLzωtB0ẑ. This leads to the following

expression for the magnetic field

B⃗(t) = eiLzωt

�
B1

2
x̂+B0ẑ

�
+

B1

2
e−iLzωtx̂ (2.29)

where the rotating fields are pointing in x-direction at time t = 0.

To solve the Larmor equation (2.23) for this time dependent field, we need to trans-

form into a different reference frame, where the magnetic field appears static (or almost

static), so that we can use the solution of equation (2.24). To achieve this we change

into a rotating frame with the exact same frequency as of the rotating magnetic field.

The new polarization vector thus becomes P⃗r(t) = e−iLzωtP⃗ (t) → P⃗ (t) = eiLzωtP⃗r(t).

Plugging B⃗(t) and our substitution into the Larmor equation gives us

d

dt

�
eiLzωtP⃗r(t)

�
= iγL⃗



eiLzωt

�
B1

2
x̂++B0ẑ

�
+

B1

2
e−iLzωtx̂



eiLzωtPr(t) (2.30)

Exploiting the commutation relation between the angular momentum operators in

adjoint representation ([Li, Lj ] = iϵijkLk) leads to the following useful relation for

constant B⃗ fields: L⃗eiL⃗n̂ωtB⃗ = eiL⃗n̂ωtL⃗B⃗e−iL⃗n̂ωt [Kra04]. We can now reformulate

equation (2.30)
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d

dt

�
eiLzωtP⃗r(t)

�
= iγeiLzωt L⃗ eiLzωt

�
B1

2
x̂+B0ẑ

�
Pr(t) + iγ L⃗ e−iLzωtB1

2
x̂eiLzωtPr(t)

e−iLzωt d

dt

�
eiLzωtP⃗r(t)

�
= iγ L⃗ eiLzωt

�
B1

2
x̂+B0ẑ

�
Pr(t) + iγe−iLz2ωt L⃗

B1

2
x̂eiLz2ωtPr(t)

e−iLzωt d

dt

�
eiLzωtP⃗r(t)

�
= iγ L⃗ eiLzωt

�
B1

2
x̂+B0ẑ

�
Pr(t) + iγ L⃗ eiLz2ωtB1

2
x̂Pr(t)

(2.31)

Applying the product rule to the left hand side gives

e−iLzωti Lz ωe
iLzωtP⃗r(t) + e−iLzωteiLzωt d

dt
P⃗r(t) = i Lz ωP⃗r(t) +

d

dt
P⃗r(t) (2.32)

Putting both sides together and rearrange one term gives

d

dt
P⃗r(t) = iγL⃗



B1

2
x̂+B0ẑ



P⃗r(t)− iLzωP⃗r(t) + iγL⃗

�
eiLz2ωtB1

2
x̂

�
P⃗r(t)

d

dt
P⃗r(t) = iL⃗



γ
B1

2
x̂+ (γB0 − ω)ẑ



P⃗r(t) + iγL⃗

�
eiLz2ωtB1

2
x̂

�
P⃗r(t)

(2.33)

The above equation is the Larmor equation for the polarization in the rotating

frame. One can see that the magnetic field has now a constant component and one

term, which is rotating rapidly with twice the frequency of the original field (i.e. 2ω)

and small amplitude (B0 ≫ B1
2 ). For times t ≫ 1

2ω this latter term is not contributing

and averages to zero. Neglecting this term is called the Rotating Wave Approximation

[HR06], but leaves us with an small shift of resonance frequency called the Bloch-Siegert

shift [BS40]. The solution of the dynamics of the polarization in a static field is known

and given in equation (2.24). Our polarization vector P⃗r in the rotating reference frame

is therefore

P⃗r(t) = exp



γ
B1

2
Lx + (γB0 − ω)Lz



P⃗r(t = 0) (2.34)

In general B0 ≫ B1 such that the Lz-term in the exponent will dominate. The

important exception is if γB0 ≃ ω. In this case the second term in the exponent vanishes

and we get a clean rotation around the x-axis (in the rotating reference frame), hence

enabling us to flip the polarization. This condition for the frequency (ω = γB0) of

the rotating field (and consequently of the oscillating field) is referred to as frequency

resonance. Returning to the original reference frame and assuming that P⃗r(0) = P⃗ (0)

gives

P⃗ (t) = eiLzωteiLxγ
B1
2
tP⃗ (0) (2.35)

One can see that the initial polarization is rotated around the x-axis by an angle

α = γB1
2 t. Furthermore, the polarization is flipped (i.e. rotated by π) if α = −π hence
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we get a constraint for the strength of the oscillating field, namely α = γB1
2 t = −π →

B1 =
2π
γt . This condition is referred to as amplitude resonance. It should be mentioned

that the second rotation in equation (2.35) does not have an effect on the polarization

only if the vector eiLxγ
B1
2
tP⃗ (0) is pointing in the z-direction. If we assume an initial

beam polarization in z-direction we get

eiLzωteiLxπ


0

0

1

 = eiLzωt


0

0

−1

 =


0

0

−1

 (2.36)

One can see that the polarization has been flipped from P⃗ (t = 0) =


0

0

1

 to

P⃗ (t) =


0

0

−1

.

The flip efficiency ϵ is the probability for a spin flip defined as [Kra04]

ϵ =
1− Pz

2
(2.37)

with Pz = P⃗ · ẑ the measured polarization after the flipper (equation (2.13)) and

0 ≤ ϵ ≤ 1, telling you the normalized amount of flipped spins. This also corresponds

to the probability for a single spin to be flipped. Considering an experimental setup,

the time t the neutrons are exposed to the magnetic fields is t = L
v , where L is the

length of the field region and v the neutron velocity. This shows that the flip efficiency

depends on the neutron velocity. For a resonant RF flipper in frequency resonance the

flip efficiency is [Sud05] (expressing eiL⃗n̂ωt in terms of sines and cosines)

ϵ = sin2
�
B1γt

4

�
= sin2

�
B1γL

4v

�
(2.38)

Therefore a resonant RF flipper only works properly for a very small range of neutron

velocities (figure 2.4).

So in general this kind of flipper is not suitable for a white neutron beam. However,

there is a method to achieve high flip efficiency for all wavelength (see section 2.3.4).

As a final remark on this kind of device, it should be mentioned that one can add an

arbitrary phase to the magnetic field such that
B1 cos(ωt)

0

B0

 →


B1 cos(ωt+ ϕ)

0

B0

 (2.39)

and still come up with the same expression for the flip efficiency if the initial po-

larization is P⃗ = ±ẑ, i.e. is pointing only in z-direction [Kra04]. Hence, it does not
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Figure 2.4: Plot showing the flip efficiency versus neutron velocity (equation (2.38)) at
frequency resonance for L = 0.089m and two different amplitudes of the oscillating field
(1mT and 0.5mT). High efficiencies (e.g. ϵ ≥ 0.98) are achieved only for small velocity
ranges.

matter during what phase of the oscillation process of the RF field (i.e. at what time)

the neutron enters the flipper. The polarization vector after the RF flipper including a

phase ϕ of the oscillating field is

P⃗ (t) = eiLzωt+2ϕeiLxγ
B1
2
tP⃗ (0) (2.40)

Due to the close analogy of the spinor Larmor equation (equation (2.10)) and the

Larmor equation for the polarization (equation (2.23)), we can write down the solution

in the spinor case in frequency resonance as

|S(t)⟩ = e
1
2
iσzωte

1
2
iσxγ

B1
2
t |S(0)⟩ (2.41)

The amplitude resonance condition for a π-flip is identical to the polarization, B1 =
2π
γt . The σz matrix exponential is inducing a state dependent phase originating from the

energy difference the two spin states experience. One can bother an alternative picture

from atomic physics to describe this phenomenon qualitatively. The static magnetic field

B0 is splitting the degenerate energy level of the free neutron into two levels (Zeeman

splitting). It is then possible to address the transition between the different levels (i.e.

states |↓⟩ , |↑⟩) by photon (RF field) emission or absorption, respectively. Thus the total

energy of the neutrons can be changed in an RF flipper by interaction with photons,

contrary to static DC-flippers where the total energy of the neutron does not change.
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2.3.3 Adiabatic RF Spin Flipper

Another device similar to the resonant RF spin flipper is the adiabatic RF spin flipper,

first described in 1975 [YuV75]. Contrary to the former it is capable to efficiently flip

spins for a broad range of neutron velocities. This of course comes in handy at the

white beam line. The crucial difference is an additional static magnetic gradient, which

is superimposed with the strong B0 field. The resulting magnetic field is time and space

dependent, where x is the direction the beam is propagating.

B⃗(x, t) =
�
B0 +BGR cos

�πx
L

��
ẑ +B1 sin

�πx
L

�
cos(ωt)x̂ (2.42)

with BGR the amplitude of the gradient field, L the length of the field region and

B1 the amplitude of the RF field. We assumed that the gradient is cosine-shaped and

that the amplitude of the RF field is sine-shaped, such that it is zero at the begin and

the end of the flipper and has its maximum value in the middle (see figure (2.5)).

Figure 2.5: Magnetic field configuration at an adiabatic RF spin flipper with length L.
The static field in z-direction becomes space dependent, due to the gradient field BGR.
The amplitude of the RF field B1 is also space dependent and approximated with a sine
function (dotted line: in practice). The neutron beam is along the x-direction. From
[Kra04]

This is a reasonable approximation for most RF coils. To be precise, we already

should have taken this amplitude shape into account for the magnetic field of the RF

flipper (see 2.3.2), but have implicitly assumed an average value of the magnetic field,

which is constant throughout the device. In this case we will explicitly take the sine-

shaped amplitude of the RF field into account. Using a constant neutron velocity v we

get rid of the space dependency (x = vt). Furthermore, we define the geometric rotation

frequency as ωg = πv
L , assume resonance condition (ω = γB0) and set B1/2 = BGR as

well as B0 ≫ B1. Finally we decompose the oscillating field into two rotating fields like

in the previous section and end up with [Kra04]
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B⃗(t) = B0ẑ +
B1

2
eiLzωte−iLyωgtẑ +

B1

2
e−iLzωt sin(ωgt)x̂ (2.43)

where the rotation around y accounts for the gradient field. To solve the Larmor

equation for the polarization vector under the effect of such a field we again transform

into a rotating frame with frequency ω rotating around z-axis, hence P⃗ (t) = eiLzωtP⃗r(t).

Plugging this into our Larmor equation and remembering the commutation relations

and ω = γB0 yields

d

dt
P⃗r(t) = iγ sin(ωgt) L⃗ e−iLz2ωtB1

2
x̂P⃗r(t) + iγe−iLzωt L⃗ eiLzωte−iLyωgtB1

2
ẑeiLzωtP⃗r(t)

(2.44)

The first term is again a fast rotating field, which we can neglected and the second

can be reformulated using commutation relations such that

d

dt
P⃗r(t) = iγ L⃗ e−iLyωgtB1

2
ẑP⃗r(t) (2.45)

It follows that the resulting effective magnetic field in the singly rotating reference

frame is still rotating around the y-axis. This is of course due to the cosine-shaped

gradient field. Already at this point one can relate this magnetic field to equation

(2.29), which describes an RF flipper operated in frequency resonance and the rotating

wave approximation already applied. The resulting magnetic field is of the same form as

equation (2.45). Thus the next step is to change to another rotating reference frame, in

order to end up with an constant magnetic field B⃗. The polarization vector in the doubly

rotating frame reads P⃗rr(t) = eiLyωgtP⃗r(t) → P⃗r(t) = e−iLyωgtP⃗rr(t). Substituting this

to equation (2.45) yields

d

dt
P⃗rr(t) = iγ L⃗

B1

2
ẑP⃗rr(t) + i Ly ωgP⃗rr(t) (2.46)

d

dt
P⃗rr(t) = iγ L⃗



B1

2
ẑ +

ωg

γ
ŷ



P⃗rr(t) (2.47)

In this doubly rotating reference frame the B⃗ field is constant, hence we can easily

solve the Larmor equation.

P⃗rr(t) = e
iγL⃗

	
B1
2
ẑ+

ωg
γ
ŷ
�
t
P⃗rr(0) (2.48)

We assume P⃗ (t = 0) = P⃗r(t = 0) = P⃗rr(t = 0) and transform back to the original

frame.

P⃗ (t) = eiLzωteiLyωgte
iγL⃗

	
B1
2
ẑ+

ωg
γ
ŷ
�
t
P⃗ (0) (2.49)

The neutrons enter the flipper at time t = 0 and we want to calculate the polarization

right after the flipper P⃗f (t = tf ) at time tf = L
v . From this follows ωgtf = π and for

the polarization
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P⃗f (t=L/v) = e
iLz

ω
ωg

π
eiLyπe

iγL⃗
	
B1
2
ẑ+

ωg
γ
ŷ
�

π
ωg P⃗ (0) (2.50)

The first rotation acting on P⃗ (0) is not about an conventional axis, but rather

around an axis m̂ = γB1/2
Ω ẑ +

ωg

Ω ŷ where Ω is the length of the vector given by Ω =�
γ2(B1

2 )2 + ω2
g and m̂ is a vector in the y-z-plane (see figure 2.6).

Figure 2.6: Geometric representation of the m-axis in the y-z plane. The angle β is
given by sin(β) =

ωg

Ω = 1√
1+k2

, therefore decreasing with the adiabaticity parameter k.
For large enough k one can assume that the m-axis is identical to the z-axis.

This rotation can be transformed into rotations around the conventional axis. First

we rotate m̂ to the z-axis. Next we do the rotation around the z-axis, followed by the

rotation back to the m̂-axis. Thus we can write this rotation around the m̂-axis as

[Col15]

e
iγL⃗

	
B1
2
ẑ+

ωg
γ
ŷ
�
t
= eiLxβeiLzΩte−iLxβ (2.51)

where β is the angle between m̂ and ẑ, sin(β) = ωg

Ω . The adiabaticity parameter k

for this kind of flipper can be described by the ratio of the Larmor frequency induced

by the RF field and the geometric frequency, reading k =
ωL,rf

ωg
= γB1/2

ωg
. It follows that

Ω = ωg

√
1 + k2 and sin(β) = 1√

1+k2
. Together with equation (2.51) we can write the

solution for the polarization vector as

P⃗f (t=L/v) = e
iLz

ω
ωg

π
eiLyπ e

iLx
1√

1+k2 eiLzπ
√
1+k2 e

−iLx
1√

1+k2 P⃗ (0) (2.52)

Now we assume that the beam is initially polarized in z, meaning P⃗ (0) = ẑ. From

this we can calculate the z-component of the polarization after the flipper (again writing

the exponentials in terms of sine and cosine i.e. as rotation matrices). It reads

Pf · ẑ =
2

1 + k2
sin2

�π
2

�
1 + k2

�
− 1 (2.53)
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The flip efficiency of this flipper is subsequently (equation (2.37)) [GOR97]

ϵ = 1− 1

1 + k2
sin2

�π
2

�
1 + k2

�
(2.54)

One has ϵ = ϵ(k) = ϵ(B1, BGR, v, L), i.e. the flip efficiency is a function of the

oscillating field B1, the gradient field BGR, the neutron velocity v and the length of the

flipping device L. The flip efficiency for a monochromatic beam and a white beam is

depicted in figure (2.7).

Figure 2.7: Flip efficiency for a monochromatic beam and for a white beam, both
initially polarized in z-direction. The velocity of the former is assumed to be equal to
the maximum velocity in the white beam spectrum. The length of the flipper was set to
L = 0.089m. The monochromatic beam follows equation (2.54) with k being changed
by B1, since L and v are fixed. For the white beam an uniform velocity distribution
between 6Å = 660m/s and 3Å = 1319m/s has been assumed. The flip efficiency
was averaged over the entire ensemble and k then refers to the fastest neutrons i.e.
k = ωL,rf/ωg = (γB1

2 )/(πvmax
L ). For both cases, the overall efficiency increases with k.

The increase of the flip efficiency with higher k can also be seen in the equation of

motion of the polarization vector (equation (2.52)). For large k (γB1
2 ≫ ωg), the m̂-axis

turns closer to the z-axis therefore β ≈ 0 and we can neglect the rotations around the

x-axis. Furthermore, Ω ≈ γB1
2 in this limit. This yields

P⃗f = e
iLz

ω
ωg

π
e
−iLz

γB1π
2ωg eiLyπP⃗ (0) (2.55)

where we used the following relation, eiLyπe
iLz

γB1π
2ωg = e

−iLz
γB1π
2ωg eiLyπ. The first

rotation about the y-axis is flipping the polarization by an angle π. If P⃗ (0) = ẑ

(P⃗ (0) = −ẑ) the polarization becomes P⃗ = −ẑ (P⃗ = ẑ). The subsequent rotations
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resonant RF Flipper adiabatic RF Flipper

B1 flip eff. power B1 flip eff. power

monochromatic beam 2πv
γL 1 Prf

√
32πv

γL 1 3 · Prf

white beam 2πv
γL 0.4572 Prf 52πv

γL 0.9889 25 · Prf

Table 2.2: Table comparing a resonant to an adiabatic RF flipper. For the white
beam the same distribution as for figure (2.7) has been assumed. So the velocity of
the monochromatic beam is equal to the maximum velocity of the white beam. As
expected, the adiabatic RF flipper achieves much higher flip efficiencies at a white
neutron beam. The drawback is the significantly higher electric power demand, which
can be an engineering challenge at an experimental setup. The value k = 5 for the
adiabatic RF flipper at the white beam was chosen as an example. One of course
could increase this value to achieve higher flip efficiency, but needs to be aware of the
quadratically increasing power demand.

around the z-axis do not change the polarization any more, thus leaving us with a spin

flip for all neutron velocities for which γB1
2 ≫ ωg. Moreover, just like for the resonant

RF flipper, it can be shown that the phase of the oscillating RF field does not influence

the flip efficiency [Kra04]. Furthermore, in both cases the total energy of the neutron

is changed by photon absorption or emission. The spinor function after the adiabatic

RF flipper is given by

|S(t)⟩ = ei
σz
2
t(ω−γ

B1
2
) ei

σy
2
π |S(0)⟩ (2.56)

If the two different RF flipping devices are compared, one can see that the amplitude

of the RF field must be significantly higher in the adiabatic flipper case. To flip spins

of a monochromatic neutron beam with velocity v with a resonant RF flipper, the

amplitude of the oscillating field must be B1 = 2πv
γL , whereas for the adiabatic RF

flipper one needs B1 = k 2πv
γL , with the smallest k value to also achieve 100% efficiency

being
√
3 (see figure 2.6). The electric power P is proportional to B2

1 (see table 4.1 and

5.1). For the resonant RF flipper the power needed for a flip is P = Prf . Table (2.2)

summarizes the comparison between the two devices.

2.3.4 Time Dependent RF Amplitude

A method to flip neutron spins at a white beam efficiently with an RF flipper requires

an option for time-of-flight (TOF), where all neutrons start at the same time from the

same position. To achieve this a chopping system is required, which turns the continuous

beam into a pulsed one. The technical implementation is explained in section (4). The

spin-flip probability ϵ at frequency resonance for a neutron with velocity v passing
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through a device of length L with an RF amplitude B1 is given by (see also equation

(2.38))

ϵ = sin2
�
B1γt

4

�
= sin2

�
B1γL

4v

�
(2.57)

We want ϵ = 1 therefore the argument of the sine function must be equal to π
2 . Lets

assume the neutron starts flying towards the RF flipper at time t = 0 a distant d away

from the device. We can therefore write the velocity as v = d
t . This leads us to the

following expression

π

2
=

B1γLt

4d
→ B1 =

2πd

γLt
(2.58)

The resulting magnetic field becomes time dependent and the amplitude decays with

∝ 1
t [Mar+03]. Most importantly, the probability for a π-flip becomes independent of

the velocity of the neutron, thus becoming applicable at a pulsed white beam. Fast

neutrons will experience a strong magnetic field for a short time, whereas slow neutrons

arrive later at the flipper, thus experiencing a weaker magnetic field, but for a longer

time period. Both cases result in the same spinor wave function.

The neutron pulse and the RF signal must be timed correctly. Additionally one

needs to be aware of very slow neutrons being counted as very fast. This frame overlap

can occur, if the time between two pulses is set to short, such that slow neutrons from

the first pulse arrive at the RF flipper at the start of the second. Overall, a time

dependent RF amplitude B1(t) is capable of flipping spins at a pulsed white neutron

beam.

2.4 Reflection and Supermirrors

In order to understand the principle of polarizing supermirrors, we first look at the

general case of an incident neutron on a materials surface, i.e. the transition of a region

of zero potential (free particle) to a region of finite potential. In close analogy to theory

of optics of electromagnetic wave, we can write an index of refraction as [RW15]

n(r⃗) =



1− V (r⃗)

E


 1
2

(2.59)

where V (r⃗) is the potential and E the energy eigenvalue of the neutron. There

are a handful of different interaction potential terms [Sea86], most notably the Fermi

pseudopotential term VN and the well known Zeeman term. Former is describing the

strong force interaction between the nucleus of a material at sites r⃗j and the neutrons

VN (r⃗) =
 
j

2πh̄

m
bcδ(r⃗ − r⃗j) ≈ 2πh̄2

m
bcN (2.60)
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the parameter bc is called the coherent scattering length and is a material constant

and N the atom density. The approximation yields from averaging the potential over a

macroscopic volume. The Zeeman term reads Vmag(r⃗) = −µ⃗ · B⃗(r⃗) (see section 2.2). If

we assume two field regions with index of reflection n1 and n2 and a neutron incident

from region 1 impinging on region 2, we know that for any type of wave (e.g. [Dem08])

total reflection can only occur if n1 > n2. Lets assume region 1 to be air, for which

holds n1 = nair ≈ nvacuum = 1. For neutrons vacuum is an optically denser medium

than most materials, hence total reflection is possible in those cases. Furthermore, the

critical angle for total reflection θc is given by [UI10]

θc =



V

E⊥


 1
2

=



arcsin

�
V

mλ

2π2h̄2

�
 1
2

(2.61)

where E⊥ is the energy of the free neutron perpendicular to the surface of the

material. The critical angle depends on the wavelength of the incident neutron λ and

on the potential V in region 2. The critical angle at the boundary of air to Nickel has

a critical angle of θNi
c = 0.1 ř/Å [Ima11]. To achieve high reflectivity over a broader

wavelength range and greater grazing angles, supermirrors are used [Mez76; Mez77].

These devices exploit Bragg diffraction, similar to monochromators. For grazing angles

θ > θc, the incident beam will be partially transmitted and partially reflected. If a

second boundary is placed behind the first, constructive interference between the beams

reflected from the two boundaries can be observed if the optical path difference is nλ

(Bragg condition). Hence reflection for these wavelength occur (Bragg peak). One can

extend this principle to a multilayer structure with slightly varying distances between

the individual layers, see figure (2.8). This results in a much higher reflectivity for a

broader wavelength range compared to total reflection.

In order to obtain polarizing supermirrors we need to alternate magnetic and non-

magnetic materials in such a way that for one spin component (e.g. |↑⟩) the potentials
of the two materials is equal. Remembering equation (2.3) and (2.60) we write VN,a =

VN,b ± Vmag,b, for a non-magnetic material a and a magnetic material b. Therefore

the index of refraction are the same for this spin component and no reflection occurs.

Moreover, the other spin component does experience a change in refractive index and

thus gets reflected. In this way a spatial separation of the two spin states is possible

for a broad wavelength range. One spin state is absorbed, the other one is utilised

in the experiment. Polarizing supermirrors are characterized by their m-value defined

as m = θMirror/θNi. Figure (2.9) shows the reflectivity and obtained polarization for

different grazing angles in units of the m-value.

One needs to keep in mind that the grazing angles with high reflectivity are still

very small. That means that a high divergence of the neutron beam can lead to a

decreasing intensity if supermirrors are used in the setup. The supermirrors used at

the white beam are manufactured by őSwiss Neutronics and generate a neutron beam
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Figure 2.8: A multilayer structure with varying spacing as used in supermirrors. From
[Dem13].

Figure 2.9: A Fe/Si polarizing supermirror. For certain grazing angles only the up-spin
state is reflected. From www.swissneutronics.ch/products/neutron-supermirrors.

with a degree of polarization > 0.99. Supermirrors are used as polarisers as well as spin

analysers.

2.5 Neutron Source and Counting Statistics

At the Atominstitut Vienna, neutrons are provided by a TRIGA MARK II reactor

of swimming pool type (see figure (2.10)). Construction were finished in 1962. The

fuel, 19.8% Uranium-235, is fissured and produces on average 2.5 neutrons. They are

then slowed down by a moderator, which is in this case water. They reach thermal
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equilibrium and show a Maxwellian energy distribution [RW15]. According to their

kinetic energy the neutrons are now thermal neutrons. The thermal power output of

the reactor is rather low and amounts to 250 kW with a thermal flux at the central

irradiation tube in the core of 1013m−2 s−1 [Wie20]. Four beamports (one tangential,

three radial) guide the neutrons to the experiments, whereby one of them is the white

neutron beam line [Mac18].

Figure 2.10: The TRIGA MARK II research reactor in Vienna [Wie20]. The white
beam line is on back side and not visibly in this photo.

The installation of the white beam line was supervised by the team of the TRIGA

Center, most notably W. Mach and was finished in 2018 [Mac18]. The beam experi-

mental site is shielded by a boron enriched concrete and only accessible when the beam

is blocked (see figure (2.11)). An interlock system and the a lattice door control the

access. In the pre-chamber a heavy concrete block is mounted on a hydraulic lift table,

which acts as a beam shutter. Furthermore, the shutter block can only be controlled

from the outside after a "search-button" inside the site is pressed to ensure that nobody

is inside the chamber when the beam is opened. At the beamport between pre-chamber

and experimental site a supermirror is installed and embedded in the concrete. Due to

the divergence of the beam at this position, some neutrons hit the reflective side of the

mirror, whereas some are passing the beamport without interacting with matter. This

results in two neutron beams at the experimental site inclining an angle of about 1ř.
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The one reflected from the mirror is polarized contrary to the other. The unpolarized

beam has a higher flux and is absorbed at the end of the experimental site by a beam-

stop. Experiments were solely utilising the polarized beam, which has a flux of about

1.5 ∗ 105 s−1 (detector saturation). The experimental site is rather short with a total

length of 3.7m. This is an important feature to consider when deriving the technical

parameters of the experiment (see table 4.1).

Figure 2.11: Sketch of the white beam line, aerial perspective. From [Mac18]

Counting Statistics

Since the occurrence of detection events at small time intervals has a constant prob-

ability, is independent from the absolute time and does not depend on the time since

the last event, we can say that the number of counts N registered obey a Poisson

distribution [RW15].

P (N) =
N

N

N !
e−N (2.62)

where N is the mean count value. Hence, the variance of the counts can be written

as (∆N)2 = N and the standard deviation as ∆N =
√
N . The measurement error is

therefore calculated by taking the square root of the measured counts. Moreover, the

relative error is ∆N
N

=

√
N

N
= 1√

N
, which means that the relative error can be reduced

by higher count value, achieved either through longer measurement times or higher flux.

Making a beam monochromatic reduces the flux drastically. The white neutron beam

has the highest flux of all beamports in Vienna, but the drawback that a polychromatic

beam is not easy to handle in terms of spin flipping.
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2.6 Detector

Since neutrons do not carry electrical charge, they can not directly be convert into

measurable electrical signal. However, it is possible to detect them indirectly through

arising reaction products. A widely used type of detectors are gas filled ionisation

chambers, where a gaseous element with a high neutron absorption cross section is

placed in a strong electric field [Kno89]. The detector is often cylindrically shaped with

a wire along the longitudinal axis serving as the anode and the shell as the cathode.

Thus, electrically charged reaction products will drift towards the anode (cathode) and

induce an electrical signal. Two important detection mediums are Boron-10 and Helium-

3. The latter has a 40% higher absorption cross section and is used at the white beam

line in Vienna. Detection process starts with the following reaction

3
2He +

1
0n → 3

1H+ 1
1p + 0.764MeV

The 0.764MeV are transferred to the reaction products as kinetic energy. When

the charged particles hit the an electrode they are inducing a current and can thus be

counted. The detector used for the experiments is 1 inch in diameter.

The Boron-10 reaction equation reads

10
5B+ 1

0n →
7

3Li +
4
2α+ 2.79MeV

7
3Li

∗
+ 4

2α → 7
3Li +

4
2α+ 2.31MeV

where the electrical signal is generated by the Helium nuclei. Due to the indirect

detection method any information on energy and polarization of the neutron is lost

during the detecting process .
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Chapter 3

Spin Echo

Since the first description of neutron spin echo (NSE) in 1972 [Mez72] the technique has

continuously been extended to more sophisticated version like neutron resonance spin

echo (NRSE) [GG87] or the application of neutron spin echo to small angle neutron

scattering [Kel+95; Rek96]. This technique uses two oppositely orientated magnetic

field regions, where the second one reverses the Larmor precession of the first region

leading to a spin echo. The underlying physical phenomena of Larmor precession as

described in section 2.2 is spin interferometry (sometimes called Larmor interferometry).

Even though the former description is sufficient for the most part, we will in this chapter

study the semi classical description of spin interferometry as well.

Furthermore, at a neutron scattering experiment the spin echo method can achieve high

energy resolution below the wavelength spread of the beam and it becomes possible

to directly determine the cosine Fourier transform of the scattering function [Mez80;

Gäh+96]. NSE is an inelastic scattering technique used to resolve dynamics in the

sample on timescales of some picoseconds up to a few nanoseconds. The most powerful

instrument is the IN15 spectrometer at the Institut Laue-Langevin in Grenoble with

spin echo times up to 1 ţs [Lau]. In a similar way, SESANS can resolve scattering

angles smaller than the beam divergence, whereas small angle neutron scattering cannot.

With this technique it is possible investigate structures in the range of 5 nm–20 ţm

[Rek+05]. Nevertheless, this chapter will not focus entirely on the examination of a

sample material, but rather on the dynamics of the neutron spin and the polarization

of the beam in such a setup.

3.1 Neutron Spin Echo (NSE)

3.1.1 Classical Model: Larmor Precession

Let us assume a setup as sketched in figure (3.1). A neutron beam polarized in the

direction of the guide field B⃗ (z-direction) is incident on the magnetic field region from

the left. In the following derivations we use the reasonable assumption that the energy
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Figure 3.1: Magnetic field configuration of a Neutron Spin Echo (NSE) instrument.
The small arrows in circles indicate Larmor precession of the neutron spins. A po-
larized neutron beam is incident from the left. In the first field region the neutron
spins will obtain different Larmor precession angles. After the second field region of
same magnitude (before the second π/2 rotation) all acquired precession angles will be
reversed. Therefore the initial polarization is restored. This sketch does not show a
sample, but it would be placed at the position of the field reversal. From [Sud05]

of the free neutron is much larger than the Zeeman splitting (i.e. µB ≪ h̄2k2

2m ) and thus

neglect reflections at the boundary of the magnetic field regions. First, the neutrons

pass through a static flipper with a magnetic field B⃗f pointing in y-direction to rotate

the spins by π
2 into the x-y-plane. Directly after the rotation the spins are pointing in

positive x-direction.

The neutrons then enter the guide field B⃗, which is orthogonal to the neutrons spin

thus Larmor precession occurs, which is governed by the Bloch equation (2.21). The

precession angle is given by α = ωLt = γBL
v (ωL the Larmor frequency, B = |B⃗|,

L the length of the magnetic field region and v the neutron velocity). The angle is

time dependent and consequently velocity dependent, which means that neutrons with

different velocities will have different Larmor precession angles at the end of this field

region. One can view these different angles as individual clocks telling the time the

neutron spent in the magnetic field.

The next and crucial step is the field reversal (see figure 3.1). This can either be

done by a second guide field pointing in the exact opposite direction (say −z-direction)

or by a π flip. In the latter case the spin will remain in the x-y-plane but the precession

angle will be transformed from α to −α.
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In the second guide field region of length L′ and strengthB′ the neutron spin acquires

an additional angle α′. The net spin precession angle is therefore

δα = −α+ α′ = −γ

v

�
BL−B′L′� (3.1)

The effect of the first field region is completely compensated by the second one if

B = B′ and L = L′ (and v = v′).

As a last step we flip the spins by −π
2 . The initial state will be recovered if the net

precession is zero, otherwise we end up with a different state.

The Larmor equation for the polarization vector can easily be solved (compare

section 2.2). The beam is initially polarized in z-direction. After the first π
2 rotation

around the y-direction the polarization is pointing in the x-direction. It then precesses

around the z-direction about an angle δα. The last rotation of −π
2 around the y-axis

yields a polarization vector in the y-z-plane with its components depending on the total

net precession angle δα.

P⃗ =


⟨σx⟩
⟨σy⟩
⟨σz⟩

 =


0

0

1

 (π/2)y−−−−→


1

0

0

 (δα)z−−−→


cos(δα)

sin(δα)

0

 (−π/2)y−−−−−→


0

sin(δα)

cos(δα)

 (3.2)

If the polarization is measured in z-direction ⟨σz⟩, we can see that it is dependent

on the precession angle δα. The spin echo condition is met if δα = 0. Furthermore, the

intensity shows a damped oscillation in δα, where the damping is proportional to the

wavelength spread of the beam. Therefore it first decreases with δα until δα = π and

can reach local maxima for multiples of 2π.

In the case of a scattering experiment a sample would be placed between the guide

fields. The rest of the instrument is set up as described above (i.e. B = B′ and L = L′).

If the neutrons scatter inelastically from the sample the velocity in the second region v′

is shifted which influences the precession angle acquired in the second region. We will

assume that the neutron is not changing its direction in the scattering process. Thus

we can write for the net precession angle

δα = −γBL

�
1

v
− 1

v′

�
(3.3)

and for the z-component of the polarization ⟨σz⟩ = cos(δα)

We further assume that the scattering is quasi elastic, meaning that the energy

change of the neutron is very small, i.e. v′ = v + δv with δv ≪ v. The neutron energy

transfer is defined by

h̄ω =
m

2
(v2 − v′2)

=
m

2
(v + v′)(v − v′)

=
m

2
(2v − δv)(δv) ≈ mvδv

(3.4)
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Hence we get for the total precession angle (B = B′ and L = L′)

δα = γBL

�
1

v
− 1

v′

�
= γBL

�
1

v
− 1

v + h̄ω
mv

�
=

γBL
h̄ω
mv

v2 + vδv
≈ γBL

h̄

mv3
ω = τω

(3.5)

where the proportionality factor τ between the net precession angle and the energy

transfer has the dimension of time and is called spin echo time [Plo09]. It solely depends

on the incident beam and the apparatus parameters. The physical meaning of this time

becomes clear in the next section (3.1.2), when we consider each spin state individually.

Not every neutron is for certain scattered with an energy transfer h̄ω, but rather with

a probability S(q⃗, ω)dω given by the scattering function S(q⃗, ω) [Van54], where q⃗ is the

transverse momentum transfer. This probability needs to be taken into account when

calculating the spin expectation value of a neutron beam at the end of the instrument.

The measurable average value of σz is therefore given by

⟨σz⟩ =
�
dω S(q⃗, ω) cos(δα) =

�
dω S(q⃗, ω) cos(τω) = F (q⃗, t = τ) (3.6)

this is the cosine Fourier transform of S(q⃗, ω) with respect to ω, which is called

the intermediate scattering function F (q⃗, τ) [Gäh+96]. In most scattering experiments

S(q⃗, ω) is measured, but in a spin echo experiment the cosine Fourier transform is

encoded directly in the polarization.

Contrary to a SESANS setup (see section 3.3), NSE can only encode the energy transfer

in the polarization. The former uses tilted magnetic field region to enable angle encoding

as well.

3.1.2 Semi-Classical Approach

The underlying cause of Larmor precession is the interference of the coherent spin-up

and spin-down states with slightly different momenta caused by the Zeeman splitting

[Sud05]. In this approach we will treat each spin eigenstate individually, but assume

classical trajectories through the setup.

In quantum mechanics a quantity is conserved if the according operator A commutes

with the Hamiltonian H. The expectation value of A obeys d
dt ⟨A⟩ = i

h̄ ⟨[H,A]⟩+ ⟨∂A∂t ⟩
(see equation 2.16 and e.g. [Sch07]). In the case of a DC-flipper the magnetic field is

only dependent on position (upon entering and leaving) and we can show that the kinetic

energy (and thus the momentum) as well as the potential energy changes, whereas the

total energy (i.e. the frequency ω) is a conversed quantity. Moreover, because the

Zeeman term −µ⃗ · B⃗(x⃗) has a dependency on the spin direction with respect to the

magnetic field orientation, we get different dynamics for the two spin eigenstates |↑⟩
and |↓⟩.
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For the three aforementioned energies hold: ⟨ ∂
∂t(− h̄2

2m∆)⟩ = ⟨ ∂
∂t(−µ⃗ · B⃗(x⃗))⟩ = ⟨∂H∂t ⟩ =

0. For the kinetic energy follows

d

dt

�
− h̄2

2m
∆

�
=

i

h̄

�
[− h̄2

2m
∆− µ⃗ · B⃗(x⃗),− h̄2

2m
∆]

�
= − ih̄2

4m
γσ⃗

�
[B⃗(x⃗),∆]

�
̸= 0 (3.7)

and for the potential energy

d

dt

�
−µ⃗ · B⃗(x⃗)

�
=

i

h̄

�
[− h̄2

2m
∆− µ⃗ · B⃗(x⃗),−µ⃗ · B⃗(x⃗)]

�
= − ih̄2

4m
γσ⃗

�
[∆, B⃗(x⃗)]

�
̸= 0

(3.8)

For the total energy follows d
dt ⟨H⟩ = i

h̄ ⟨[H,H]⟩ = 0 since the Hamiltonian is not

explicitly time dependent. Hence the increase of the potential energy of the spin-up

state must be compensated by a decrease of the kinetic energy (i.e. the momentum)

and vice versa for the spin-down state. Furthermore, we can see from equation (3.7)

and (3.8) that d
dt ⟨Ekin⟩ = − d

dt ⟨Epot⟩. We consider the incident beam to have energy

E = h̄ω = mv2

2 = h̄2k2

2m . The wave function in the region of the magnetic field (after a π
2

rotation) can be written as a superposition of up and down spin in z-eigenbasis [Sud05]

|ψ⟩ = 1√
2
e−iωt

�
eik↑x

eik↓x

�
(3.9)

where k↑ and k↓ are the wave numbers for the spin-up and spin-down state respect-

ively. They are given by k↑ = k −∆k and k↓ = k +∆k. The kinetic energy of the up

state is Ekin,↑ =
h̄2k2↑
2m = h̄2k2

2m − µB, with µB half the Zeeman splitting. We can thus

write

h̄2

2m
(k2 − k2↑) = µB

h̄2

2m
(k + k↑)(k − k↑) = µB

h̄2

2m
(2k −∆k)(∆k) = µB

(3.10)

Since the change in energy between the two spin states induced by a magnetic

field is small compared to the energy of the free incident neutron, we can approximate

2k −∆k ≈ 2k and write

∆k ≈ µBm

h̄2k
(3.11)

The kinetic energy of the down state is given by Ekin,↓ =
h̄2k2↓
2m = h̄2k2

2m + µB.

Moreover, since v = h̄k
m also the velocity of the two spin eigenstates becomes distinct.

According to equation (3.9) the different momenta will induce a difference in phase

[GGK94].
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Right after the first magnetic field (x = L) the phases of the two spin states will be

Φ
(1)
↑,↓ = k↑,↓L =

�
k ∓ µBm

h̄2k

�
L (3.12)

Thus the phase difference between up-state and down-state is

δΦ(1) = Φ
(1)
↑ − Φ

(1)
↓ = −2µBm

h̄2k
L = −2µB

h̄v
L (3.13)

We can also calculate the difference in arrival time between the spin eigenstates after

a magnetic field region of length L

t↑ − t↓ =
Lm

h̄(k − µBm
h̄2k

)
− Lm

h̄(k + µBm
h̄2k

)
=

2Lm2µB

h̄3k3 − h̄3∆k2k
≈ 2Lm2µB

h̄3k3
=

2LµB

mv3
= τ

(3.14)

The time τ is again the spin echo time, but this time with the concrete physical

meaning of the time delay between the spin states in a magnetic field. In a scatter-

ing experiment the spin eigenstates hit the sample with a time difference τ . In the

subsequently second field region of length L′ and strength B′ (with scattering: wave

number k′) the two states will pick up phases of

Φ
(2)
↑,↓ = k′↑,↓L =

�
k′ ± µB′m

h̄2k′

�
L′ (3.15)

so the phase difference in the second region yields

δΦ(2) = Φ
(2)
↑ − Φ

(2)
↓ =

2µB′m
h̄2k′

L′ =
2µB′

h̄v′
L′ (3.16)

Like in the previous section the phases δΦ(1) and δΦ(2) acquired in the two regions

completely cancel if B = B′, L = L′ and v = v′ then δΦ(1)+δΦ(2) = 0. Furthermore, the

spatial separation of the spin eigenstates due to their different velocities becomes zero

at the end of region 2 and they can interfere (spin echo), because the spin eigenstates

of the same individual neutron are coherent.

The final −π
2 -rotation will bring back the initial state if δΦ(1) + δΦ(2) = 0.

Also in this approach it can be shown that the polarization ⟨σz⟩ is proportional to
the intermediate scattering function F . We want to write the wave function |ψ⟩ after it
passed through both field regions and is scattered by a sample. If assume that the |↑⟩
(|↓⟩) state scatters at position r⃗i (r⃗j) and time ti (tj) we get with the energy ω and the

scattering vector q⃗ [Gäh+96]

|ψ⟩ = 1√
2
ei(k⃗

′·x⃗−ω′t)

�
eiωtie−iq⃗·x⃗i ρ(x⃗i, ti) e

iωτ/2

eiωtje−iq⃗·x⃗j ρ(x⃗j , tj) e
−iωτ/2

�
(3.17)

where ρ(x⃗, t) is the density of the scattering system and the exponentials containing

q⃗ and ω account for the momentum and energy transfer respectively.
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We can now calculate the z-component of the polarization by

⟨ψ|σz |ψ⟩ = 1

2

�
d3xi

�
d3xj

�
dti

�
dtj

�
dω e−iq⃗·(x⃗i−x⃗j ⟨ρ(x⃗i, ti)ρ(x⃗j , tj)⟩ eiω(τ+ti−tj)+c.c

(3.18)

Since the detection mechanism is not able to resolve different energies, we must con-

sider all energies and have to integrate over ω. This integration (i.e. Fourier transform

of a constant) just gives a Dirac Delta function δ(τ + ti − tj). Furthermore, we set

x⃗j = x⃗i + X⃗ and get

⟨σz⟩ = 1

2

�
d3X


 �
dti

�
d3ri ⟨ρ(x⃗i, ti)ρ(x⃗i + X⃗, ti + τ)⟩



eiq⃗·X⃗ + c.c (3.19)

for the polarization. The term in the squared bracket is exactly the density-density

correlation function G(X⃗, τ), which relates the density at x⃗i and ti with that at ρ(x⃗i+X⃗

and ti + τ). So the polarization reads

⟨σz⟩ = 1

2

�
d3X G(X⃗, τ)eiq⃗·X⃗ + c.c (3.20)

This expression is the spatial Fourier transform of G(X⃗, τ). It can be shown that this

is proportional to the intermediate scattering function F (q⃗, τ) [Van54]. Hence

⟨σz⟩ ∼
�
d3X G(X⃗, τ)eiq⃗·X⃗ ∼ F (q⃗, τ) (3.21)

In conclusion, we have also shown in this semi-classical picture that the measured

polarization is proportional to the cosine Fourier transform of the scattering function,

hence the intermediate scattering function.

A full quantum mechanical treatment, where the beam is given by a wave packet and

the individual trajectories of the spin eigenstates are analysed quantum mechanically,

can be found in [Gäh+96].

3.2 Neutron Resonant Spin Echo (NRSE)

The basic idea and experimental setup of neutron resonant spin echo (NRSE) is the

same as for ordinary neutron spin echo (NSE). The main difference is the usage of

time dependent magnetic fields (section 2.3.2 and 2.3.3), which leads to neutron-photon

interaction. A first theoretical description appeared in 1987 by Gähler and Golub

[GG87].

The underlying principle of NRSE is zero field precession, where Larmor precession

seemingly occurs in a region with zero magnetic field [Spo+08]. Zero field precession is

enabled by neutron-photon interaction, when the neutron gains (or loses) energy due

to photon absorption (or emission). This interaction can not appear in static magnetic

fields like DC-flipper, but needs time dependent fields as in an RF flipper.
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Figure 3.2: Idealized magnetic field configuration of a resonant RF flipper set to a π
2

rotation as described in section 2.3.2. The neutron beam is propagating in x-direction
and is initially polarized in z-direction. The flipper is divided into five areas labelled I
to V. I: Field free region and no precession. II: Sharp transition to a static magnetic
field B0 in z-direction. III: An additionally RF field rotates the polarization vector by
π
2 . IV: Same magnetic field as in region II thus inducing no change of the polarization.
IV: Upon exiting, the inverse procedure of entering the static field occurs, leading to a
precessing polarization vector in a field free region. Adapted from [Sud05].

We start with a classical picture of Larmor precession and consider an RF field as

sketched in figure (3.2). The flight path of the neutron is divided into five sections (I

to V). The neutron beam is propagating in x-direction and is initially polarized in z-

direction (P⃗I = ẑ). The magnetic field in region II is pointing in z-direction, thus using

equation (2.23) we can write P⃗II = eiLz(γB0
xII
v

)P⃗I = P⃗I, where B0 is the magnitude of

the static field, xII the length of the region and v the velocity of the neutron. We again

neglect possible reflection due to the transition from region I to II.

In region III an oscillating magnetic field is superimposed on the B0 field (see (2.27)).

The solution of the polarization in such a field in the rotating wave approximation and

for frequency resonance is given by equation (2.35)

P⃗ (t1) = eiLz(γB0t1)eiLxα(t1)P⃗ (0) (3.22)

where α(t1) = γB1
2 t1 is the angle the polarization vector is rotated and t1 is the

time the neutron spends in the RF flipper. In this case we set the RF flipper to π/2

mode, i.e. α(t1) = π
2 , which results in the following polarization after the RF field

P⃗III = eiLz(γB0t1)eiLx
π
2 P⃗II = eiLz(γB0t1)eiLx

π
2 ẑ (3.23)

The polarization vector in region IV does not change since the static field is still

present, therefore P⃗IV = P⃗III. Upon exiting the static field in region IV, due to the RF
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field, the opposite procedure happens as for entering the static magnetic field. Instead

of a rotation eiLz(γB0
x
v
) we get e−iLz(γB0

x
v
). This explanation becomes more vivid in the

next section, when the two spin states are investigated in more detail (3.2.1). Hence

the polarization in region V is given by

P⃗V = e−iLz(γB0
x
v
)P⃗IV = e−iLz(γB0

x
v
)eiLz(γB0t1)eiLx

π
2 ẑ = eiLzγB0(t1−x

v
) ŷ (3.24)

If we write the rotation around z in the terms of sine and cosine we get

P⃗V =


sin(γB0(t1 − x

v ))

− cos(γB0(t1 − x
v ))

0

 (3.25)

We can see that the precession angle of the polarization vector after the flipper has

a spatial dependency (and time dependency x
v = t) as if a magnetic field in z-direction

is present. This ongoing precession in a region of no magnetic field is called Zero Field

Precession (ZFP).

Another way to achieve ZFP with an RF flipper is to set α(t1) to a π-flip and have

the incoming beam polarized perpendicular to the B0 field (i.e. in the x-y-plane) by a

DC-flipper beforehand. The polarization vector in region V (P⃗V,π) is then

P⃗V,π =


sin(γB0(t1 − 2x

v ))

cos(γB0(t1 − 2x
v ))

0

 (3.26)

It is apparent that the precession in this case is twice as fast as in the previous case.

Moreover, it seems like a magnetic field of 2B0ẑ is present after the flipper [GGK94].

This stems from the fact that one spin state absorbs the energy while the other emits

that same energy, which leads to the double energy difference and double the precession

frequency. In π/2 mode only one state absorbs or emits energy. In the case of a π-

flip the neutron is absorbing (emitting) twice the energy from the electromagnetic field

compared to a π
2 rotation.

Considering the whole NRSE instrument, one spin echo arm exists of two identical

RF flippers, where the first one starts the zero field precession and the second one stops

it. Zero field precession only occurs between the two RF flippers, but not at the sample

position. The second arm of the spin echo setup would again be a mirrored version of

the first. Solely the static fields of the RF flipper B0 point in the opposite direction.

A major advantage of NRSE over NSE is the potential to achieve higher Larmor fre-

quencies in the spin echo arms, without the need of long homogenous magnetic field

regions. These are hard to realise and potential inhomogeneities lower the resolution.

However, it is easier to implement static magnetic field than RF fields with high fre-

quencies. For that reason current NSE instruments have higher energy resolution at the

moment than NRSE instruments.
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3.2.1 Semi Classical Approach

Similar to section 3.1.2 we now want to look at energy changes of the spin eigenstates in

the same time dependent magnetic field B⃗(t) as given in (2.39). We use the Heisenberg

equation for the time derivative of the expectation values (equation (2.16)). The ex-

pectation value of the kinetic energy of a neutron in such a field is a conserved quantity

since

d

dt

�
− h̄2

2m
∆

�
=

i

h̄

�
[− h̄2

2m
∆− µ⃗ · B⃗(t),− h̄2

2m
∆]

�
+

�
∂

∂t
(− h̄2

2m
∆)

�
= 0 (3.27)

where − h̄2

2m∆ − µ⃗ · B⃗(t) = H is the Hamiltonian of the system. Needless to say,

the total energy of the neutron is not conserved since the Hamiltonian is explicitly time

dependent because of B⃗(t)

d

dt
⟨H⟩ =

�
∂

∂t
(− h̄2

2m
∆− µ⃗ · B⃗(t))

�
̸= 0 (3.28)

By absorption or emission of a photon from the RF field the total energy of the

neutron is increased or decreased. In the case of a spin flip (i.e. rotation by π, |↑⟩ → |↓⟩)
the energy of the neutron alters by 2µB0. The condition for frequency resonance gives

us ωrf = γB0 and the energy change becomes 2µB0 = h̄ωrf, thus equal to the energy of

a photon with frequency ωrf [ABR81]. Since the kinetic energy remains unchanged, the

change in total energy manifests in a change of the potential energy by the same value

with opposite sign. For the potential energy holds

d

dt

�
−µ⃗ · B⃗(t)

�
=

i

h̄

�
[− h̄2

2m
∆− µ⃗ · B⃗(t),−µ⃗ · B⃗(t)]

�
+

�
∂

∂t
(−µ⃗ · B⃗(t)

�
=

�
∂

∂t
(−µ⃗ · B⃗(t)

�
̸= 0

(3.29)

A graphical summary of the energy changes is depicted in figure (3.3). As described

in section (3.1.2) the different momenta of the eigenstates being in a coherent super-

position lead to Larmor precession.

We now want to describe the evolution of the wave function of the neutron through

a resonant RF flipper given in figure (3.2). The initial wave function of a neutron

propagating in x-direction and polarized in z in the field free region I is given by

|ψ⟩
I
= eikxe−iωt |↑⟩ (3.30)

with wave number k and energy h̄ω = h̄2k2

2m .
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Figure 3.3: Energy diagrams in case of π-flip by a resonant RF flipper as indicated in
figure (3.2). Upon entering a static field the kinetic and the potential energy changes,
whereas the total energy remains constant. The time dependent field induces a π-flip
and the potential energy as well as the total energy change. Upon exiting the flipper
the potential energy changes again, while the total energy does not. This leads to an
additional change in kinetic energy. After the RF flipper the two spin eigenstates exhibit
an energy difference of 4µB0 = 2h̄ωrf. From [Has+10].

When it enters a static magnetic field (region II) the wave number is changed (see

equation 3.9) and we get

|ψ⟩
II
= eik↑xe−iωt |↑⟩ (3.31)

where k↑ = k−∆k and ∆k given by (3.11)). Next the neutron goes through an RF

flipper of frequency ωrf = γB0, which is set to a π
2 -rotation. The wave function at the

end of region III is (equation (2.41) and [Spo+12])

|ψ⟩
III

=
1√
2
eik↑xe−iωt

�
e−iωrft1/2 |↑⟩ − ieiωrft1/2 |↓⟩

�
(3.32)

where t1 the time the neutron spends in region III. In region IV the wave function

does not change, therefore |ψ⟩
IV

= |ψ⟩
III

[Sud05]. Upon leaving a static field (region IV)

the up-state and the down-state gain a phase factor of ei∆k x and e−i∆k x respectively,

which is the opposite of entering a static magnetic field. The wave function in the last

region reads

|ψ⟩
V
=

1√
2
eikxe−iωt

�
e−iωrft1/2 |↑⟩ − ieiωrft1/2e−i2∆kx |↓⟩

�
(3.33)

The kinetic energies of the up-state and down-state in region V are Ekin,↑ = h̄2k2

2m −
µB0 and Ekin,↓ = h̄2k2

2m + µB0, hence the difference amounts to 2µB. The same holds
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for the total energy since there is no potential in region V. The polarization vector after

the flipper is

P⃗V = ⟨ψ|
V
σ⃗ |ψ⟩

V
=


sin(γB0t1 − 2∆kx)

− cos(γB0t1 − 2∆kx)

0

 (3.34)

In this zero field region, P⃗V is still precessing with a spatially dependent phase

γB0t1 − 2∆kx. If we compare this result with the polarization vector obtained by

classical derivation (equation 3.25), we can see that 2∆kx = γB x
v . It shows again

that the altered momenta of the spin eigenstates is the underlying cause of Larmor

precession.

To achieve ZFP with twice the Larmor frequency one initially needs a superposition

of spins of the form |ψ⟩ = 1√
2
eikxe−iωt(|↑⟩ + |↓⟩), which is obtained after a DC-Coil.

Additionally, the subsequent RF flipper must be set to a π flip. This leads to a difference

in kinetic and total energy of the spin states of 4µB0 (see figure 3.3) and further to a

polarization vector of

P⃗V,π = ⟨ψ|
V
σ⃗ |ψ⟩

V
=


sin(γB0t1 − 4∆kx)

− cos(γB0t1 − 4∆kx)

0

 (3.35)

with a phase of 4∆kx. This method to generate ZFP is for example used in [Spo+10].

As the energy difference between the ground state and these excited states is very

small (4MHz is already very high), the rate for spontaneous emission is very low (e.g.

[Dem10]) and can be neglected.

3.3 Spin Echo Small Angle Neutron Scattering (SESANS)

The main goal at a small angle neutron scattering (SANS) experiment is the invest-

igation of the structure of a sample by measuring scattered neutrons at small angles.

Combining this with a spin echo setup by placing the sample between the two magnetic

field arms, one gets a spin echo small angle neutron scattering (SESANS) instrument as

introduced in [Kel+95; Rek96]. Such instruments are able to resolve structures smaller

than the divergence of the neutron beam, which is the limiting factor of SANS.

Up until now we have studied NSE setups with perpendicular field boundaries with

respect to the neutron beam. The necessary novelty at a SESANS setup are titled mag-

netic field regions. We have seen in equation (3.1) that the summed precession angle δα

depends on the time t = L′
v the neutron spends in the magnetic field and consequently

the length L′ of the field region. If the neutron is scattered elastically from a sample,

the path of the neutron will vary in the second arm compared to the first one. Hence,

the precession in the second arm will not cancel the precession gained in the first and
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Figure 3.4: Setup of a SESANS instrument. The neutron beam is travelling in positive
x-direction. Firstly, it gets polarized by the polariser P, followed by a π

2 rotation. The
resulting polarization vector P0 is pointing in x-direction. The parallelogram-shaped
magnetic field of region I is pointing in z and forms an angle θ0 with the beam direction.
Larmor precession occurs along the path L′, after which the polarization is Ps. If the
neutron does not scatter from the sample S, the precession of the first field is cancelled
in region II (magnetic field pointing in opposite direction) and after the π

2 rotation the
polarization is pointing in z again (Pz). A neutron scattering from the sample by an
angle θ has a different path length through the magnetic field region II compared to
region I. Thus, the π

2 rotation does not recover the initial polarization but is P (B).
Finally, the polarization is analysed by a spin analyser A. From [Rek+05].

therefore decreases the polarization. By tilting the field regions this effect is amplified

and becomes measurable to first order in tilting angle θ0.

We want to study a SESANS setup as depicted in figure (3.4). We consider a neutron

beam propagating in x-direction and polarized in z-direction parallel to the direction of

the magnetic fields. A sample S is placed between two parallelogram-shaped magnetic

field regions, which are tilted in such a way that the neutron beam hits the field region

at an angle θ0 ̸= π
2 . The path length through the first field region is L′ = L

sin(θ0)
,

where L is the minimal normal distance inside the parallelograms (see figure 3.5). If the

neutron does not interact with the sample the path length in the second region would

be L′
2 = L′ and the net precession δα is equal to zero, i.e. the echo condition is met. If

the neutron scatters elastically (no change in velocity) from the sample at an angle θ,

the path length of the neutron in the second field region will be different and δα ̸= 0.

In order to calculate the phase difference we will consider the problem geometrically.

We can write the phase acquired in the first region as

α1 =
γB

v
L′ =

γB

v

L

sin(θ0)
(3.36)

where B is the magnetic field strength and v the velocity of the neutron. We consider

a small angle scattering event, similar to the small velocity change due to quasi elastic

scattering at the NSE (equation 3.4). The neutron is deflected by an angle θ from the
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Figure 3.5: Sketch of the neutron trajectories through a skew magnetic field region,
tilted by an angle θ0. The path length in the first region is L′ and in the second field
region L′

2, caused by small angle scattering from the sample by an angle θ. Adapted
from [Plo09].

sample, therefore changing the angle between the neutron flight path and the normal

of the parallelogram to θ2 which is equal to θ2 = θ0 − θ (figure 3.5).

The phase acquired in the second region is thus

α2 = −γB

v
L′
2 = −γB

v

L

sin(θ2)
(3.37)

This yields for the net precession δα = α1 + α2 = γB
v L

�
1

sin(θ0)
− 1

sin(θ2)

�
. We can

expand δα in a Taylor series around θ0 = θ2 and write the first two terms as

δα ≈ [δα]θ0=θ2
+



d

dθ2
(δα)



θ0=θ2

· (θ0 − θ2) (3.38)

The first term vanishes and the second gives

δα =
γB

v

L

sin(θ0)
cot(θ0)θ =

γB

v
L′ cot(θ0)θ (3.39)

The absolute value of the momentum transfer for small angles θ is given by |q| = qy =

k0θ, where k0 is the wave vector of the incoming neutron [Brü05]. The net precession

becomes

δα =
γB

vk0
L′ cot(θ0)qy = δNSEqy (3.40)

The proportionality constant δNSE has the dimension of length and is called the spin

echo length [Plo09]. It is given by

δNSE =
γB

vk0
L′ cot(θ0) (3.41)

A concrete physical meaning can be attributed to the quantity δNSE if the two spin

states are viewed individually, which will be done in the next section (see 3.3.1). The

measured polarization is reduced by scattering since ⟨σz⟩ = cos(δα) = cos(δNSEqy).

Taking into account the probability of scattering given by the scattering function S(q⃗, ω)
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and considering only elastic scattering where ω = 0 we end up with (compare with

equation 3.6)

⟨σz⟩ =
�

dqy S(q⃗) cos(δNSEqy) = G(δNSE) (3.42)

which is again the cosine Fourier transform of the scattering function, but this time

with respect to the momentum transfer q⃗. The function G(δNSE) is the density-density

correlation function.

Due to the first order approximation we did during this derivation, the spin echo length

δNSE becomes 0 if θ0 = π
2 , even though the path length in the second region would be

different. But the effect is not visible in first order for such small scattering angles. In

consequence of the tilted coils, a SESANS instrument can encode the scattering angle

in the measured polarization.

3.3.1 Semi-Classical Approach

As in the previous sections (3.1.2 and 3.2.1) we will again treat the spin of the neutron

quantum mechanically but its trajectory classically. As indicated in figure (3.4), the

polarized neutron is rotated by π
2 such that the resulting wave function is given by a

superposition as

|ψ⟩ = 1√
2
e−iωteik0x[|↑⟩+ |↓⟩] (3.43)

where the quantisation axis is chosen in z-direction in accordance with the orientation of

the magnetic field. From equation (2.59) we know that the index of refraction depends

on the potential V of the field region. Furthermore, the potential is given by V = γ h̄
2 σ⃗·B⃗,

therefore depends on the orientation of the spin with respect to the magnetic field.

Hence, there will be different indices of refraction for the two spin states, which will

also be refracted in different directions. In a static magnetic field the kinetic energy

changes along with the potential energy. Furthermore, the wave vector changes by ∆k,

thus k↑,↓ = k+,− = k ∓∆k with ∆k ≈ µBm
h̄2k

= γB
2v , where v is the initial velocity in free

space (see section 3.1.2). For the case of tilted field regions it is the component normal

to the field boundary k⊥ that experiences the change ∆k, where as the component

parallel k∥ to it remains unchanged [Plo09]. A sketch of this situation is depicted in

figure (3.6).

We can write the components of the initial wave vector as k0⊥ = k0 sin(θ0) and k0∥ =

k0 cos(θ0). The angles θ+ and θ− are defined as deviation from the initial propagation

direction. From geometric consideration we find for the ratio of parallel to perpendicular

component

cot(θ0 + θ±) =
k0 cos(θ0)

k0 sin(θ0)∓ γB
2v sin(θ0)

(3.44)

where the denominator is the k±⊥. Since ∆k is small compared to the wave vector of

the free neutron, the angles θ± will be small as well. If one expands the left hand side
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Figure 3.6: Semi classical view of a neutron passing through a tilted magnetic field. The
incoming neutron is in a spin superposition of |+⟩ and |−⟩. Upon entering the field,
the component of the wave vector parallel to the magnetic field boundary k0∥ remains
unchanged but the perpendicular component k⊥ changes differently for |+⟩ and |−⟩.
Hence, the two spin states are refracted by different angles θ+ and θ−. On leaving the
magnetic field the initial wave vector k0 is restored and the spin travel parallel to each
other but with a displacement r⃗+ − r⃗− = dx̂+ δŷ, where δ is the spin echo length and
d caused by the spin echo time. Adapted from [Plo09].

of equation (3.44) to first order in θ±, we find cot(θ0 + θ±) ≈ cot(θ0) − 1
sin2(θ0)

θ±. For

the right hand side we find k0 cos(θ0)
k0 sin(θ0)

± k0 cos(θ0)

k20 sin2(θ0)
γB

2v sin(θ0)
= cot(θ0)) ± cot(θ0)

γB
vk0 sin

2(θ0)

to first order in ∆k. This yields for the angles θ±

θ± = ∓ γB

2vk0
cot(θ0) (3.45)

When the spin states leave the magnetic field region, the initial wave vector k0 will

be restored and the eigenstates will travel parallel to each other, but with an relative

displacement of δ (see figure 3.6). The separation of the two spin eigenstates δ in

y-direction to first order in θ± can be written as [Gäh+96]

δ = L′(θ+ − θ−) =
γB

vk0
L′ cot(θ0) = δNSE (3.46)

which is exactly the proportionality factor we derived in equation (3.41) only this time

it emerges as a real distance. In addition to the spatial shift in y-direction we get a

shift in x-direction called d, which is proportional to the spin echo time τ (see equation

3.14) and reads d = vτ .

The phase of the spin-up and spin-down wave function after passing through the

first magnetic field region is

Φ
(1)
+,− = k±⊥L

±
⊥ + k±∥ L

±
∥ (3.47)

For the k-vectors the following relationships hold: k±∥ = k0∥ = k0 cos(θ0) and k±⊥ =

k0 sin(θ0)∓ γB
2v sin(θ0)

. For the path length L±
∥ = L cot(θ0+θ±) and L±

⊥ = L = L′ sin(θ0).
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With the approximation for cot(θ0+ θ±) we get for the phase difference of the two spin

states due to the different paths and momenta

Φ
(1)
+ − Φ

(1)
− = − γBL

v sin(θ0)
+

γBL

v sin(θ0)
cot2(θ0) (3.48)

In addition, there will also arise a phase shift from the path difference d (figure

3.6), which is Φd = k0δNSE cot(θ0) =
γBL

v sin(θ0)
cot2(θ0). Thus the total phase difference

between the spin states after the first region and for the same x-coordinate (x↑ = x↓) is

δΦ(1) = Φ
(1)
+ − Φ

(1)
− − Φd =

γBL

v sin(θ0)
=

γBL

v
L′ (3.49)

Likewise, in this model the echo condition is fulfilled if no scattering from the sample

occurs. Then the phase difference acquired in the second magnetic field region is δΦ(2) =

−δΦ(1), yielding equal phases after region II for both spin states. In the case of scattering

from a sample S at an angle θ we can calculate its effect on the phase difference as in

equation (3.38) and get

δΦs ≈



d

dθ2
(δΦ(1))



· θ =

γB

v
L′ cot(θ0)θ = δNSEqy (3.50)

where qy is the momentum transfer. This result is in accordance with the classical

derivation in (3.40). The up-state and the down-state impinge on the sample at positions

r⃗i and r⃗j respectively.

To calculate the polarization ⟨σz⟩ in z-direction at the analyser position we write

the corresponding wave function as [Gäh+96]

|ψ⟩ = 1√
2
ei(kx−ωt)

�
e−iq⃗·r⃗i ρ(r⃗i) e−iqyδNSE/2

e−iq⃗·r⃗j ρ(r⃗j) eiqyδNSE/2

�
(3.51)

In case of elastic scattering the z-polarization is given by

⟨ψ|σz |ψ⟩ = 1

2

�
d3ri

�
d3rj

�
d3q ρ(r⃗i)ρ(r⃗j)e

iq⃗·(r⃗i−r⃗j)eiqyδNSE + c.c (3.52)

The y component of (r⃗i − r⃗j) cancels with qyδNSE and from the integration over qx

and qz we obtain delta functions, meaning that the points r⃗i and r⃗j must have equal x

and z components. It follows for ⟨σz⟩

⟨σz⟩ ∼
�
dri ρ(r⃗i)ρ(r⃗i + δNSE · ŷ) ∼ G(δNSE) (3.53)

By probing the sample with two neutron beams, we can relate the density at position

r⃗i with that at r⃗i + δNSE · ŷ. The measured polarization is proportional to the density-

density correlation function as we derived also classically in section (3.3).
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Chapter 4

Spin Chopping System

In this chapter the first of two experimental approaches is described. It focuses on a

chopping system based on spin manipulation to enable time of flight measurements and

consequently a flipping technique with time dependent RF amplitudes as described in

section (2.3.4). A similar setup has been implemented in [Tak+11]. Another common

technique for chopping is to utilise a fast rotating disc with a diameter of 0.5 − 1m,

which is placed in the beam. Usually it has two diametrically opposed window zones,

where neutrons can pass [Brü05], thus producing a pulsed beam and enabling TOF.

Nevertheless, these discs need a lot of space and cannot achieve chopping frequencies

as high as a spin chopping system.

4.1 Experimental Setup and Preparation

An illustration of the entire setup is depicted in figure (4.1). The neutron beam is

propagating from right to left. In this convention, the first three components are a

field stepper, a resonant RF flipper with square pole shoes and a supermirror, which

together make the spin chopping system. Latter is flipped along the longitudinal axis,

such that it is polarizing the beam in opposite direction compared to the supermirror

inside the concrete shielding (not visible in figure 4.1). In theory, if no flip occurs

between these two supermirrors, the entire beam would be absorbed in the second

supermirror. Unfortunately, supermirrors possess strong magnetic stray fields, which

are in this particular configuration also twisted with respect to each other. They are

pointing in opposite directions, one in z one in −z. From this, adiabatic field transitions

in between the mirrors arise, which lead to unwanted adiabatic static spin rotations. To

prevent this, a field stepper is placed after the first supermirror. A photograph can be

seen in figure (4.2).

The field stepper generates a magnetic field parallel to the stray field of the first

supermirror on the one side and a field parallel to the second supermirror (i.e. antipar-

allel to the first) on the other side. At the maximal current of 6A the field stepper can

produce a highly non-adiabatic jump in magnetic field along the flight path of 4.3mT.
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Figure 4.1: Proposed setup for the SESANS instrument. The neutrons enter the setup
from the right and are initially polarized by the first supermirror inside the concrete
shielding. The next three components are part of the spin chopping system (see text).
The next component is a V-coil responsible for superimposing the two spin states. What
follows is the first arm of the SESANS instrument, consisting of two RF flipper with
parallelogram-shaped pole shoes. A field stepper is separating the two spin echo arms.
The next two magnets form the second spin echo arm and are the counterpart of the
first. The penultimate component is another V-coil for rotating the spins back into
the initial direction, followed by a spin analyser, consisting of a supermirror and the
detector.

The subsequent resonant RF flipper has a yoke made out of industrial steel. The B0

field is generated by a coil with iron core and square pole shoes made out of iron as well

(see figure 4.3a). A similar setup has been used in [Gee+19]. The pole shoes help to

focus the magnetic field and create sharp field boundaries. In between the pole shoes

a solenoid shaped coil induces an oscillating RF field in beam direction. It is 40mm in

length, 24mm in diameter, has 16 windings and is wound with a 2mm copper wire. The

entire RF coil is embedded in an aluminium box (see figure 4.3b), in order to prevent

RF radiation from disturbing the neutron detector and induce false counts.

The RF coil is operated in pulsed mode. The amplitude resonance condition for

a π flip is given by B1 = 2π
γtp

, where tp is the time the neutron is exposed to the

RF field. If the transit time tt of the neutrons through the RF coil is significantly

larger than the pulse duration and the amplitude of the RF field B1 is large enough,

the amplitude resonance condition is fulfilled for all neutrons in the coil, independent

of their wavelength. Only those neutrons, which enter or exit the RF coil during a
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Figure 4.2: Field stepper as used in all spin chopping experiments consisting of two
separate circuits in shapes of eights. Only the upright loop was used. According to the
right hand rule, a current perpendicular to the beam direction is inducing a magnetic
field in ±z direction. Neutrons go through the center window, which is covered by the
copper wire. Heat production is limiting the current at about 6A. At this current, the
field stepper can produce a highly non-adiabatic jump in magnetic field along the flight
path of 4.3mT.

pulse will not be flipped. The pulse duration was aimed to be one tenth of the transit

time of the fastest neutrons. Subsequently, all flipped neutrons will be reflected in the

supermirror, whereas all others will be absorbed. Hence, the resulting neutron beam

is pulsed and TOF is enabled. The RF signal is generated by the arbitrary function

generator AFG1062 fromőTektronix with a frequency range from 1µHz to 60MHz for

sine waves. It has two output channels each into 50Ω loads and two operation modes,

continuous mode and burst mode. The output peak-peak voltage has a range of 1mV

to 10V. The burst duration is given in cycles (1 to 106), i.e. in multiples of the period

of the sine wave. For example at f = 4MHz, 8 cycles last for 8 ∗ 0.25µs = 2µs. The

signal is then amplified by the broadband power amplifier 1040L from őElectronics &

Innovation.

The DC-current source for the B0-coil is the power supply ES030-10 fromőDELTA
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(a) Rendered image of the RF flipper used

for the spin chopping system. The B0 field

is produced by a copper coil with iron core.

The aluminium box in between the iron

pole shoes is shown in figure (4.3b).

(b) Rendered image of the aluminium hous-

ing and the RF coil. The coil is wound

on bobbin made out of PEEK and the end

plates are made out of aluminium. The in-

side length in flight direction is 121.5mm,

the height is 25mm. The port on the right

side are suitable for BNC connectors and

coax cables.

Figure 4.3

ELEKTRONIKA, with a maximum current output of 10A. This produces a magnetic

field of 160mT, which corresponds to ω = 2πf = 29.32MHz (frequency resonance).

Moreover, the spin echo length must be greater than the transversal coherence length of

the neutron beam in order to manipulate the two spin states separately. The transversal

coherence length σT can be approximated by geometrical considerations. It is equal to

the wavelength of the largest allowed transverse momentum of a neutron that can still

be detected. For small angles one can write σT = 2π
k0θ

, where k0 is the magnitude of

wave vector of the fastest neutrons in the spectrum and 2θ is the maximum possible

spread of the beam. This can be calculated by θ = d2+d1
D , with d2 the width of the entry

slit of the polariser, d2 the width of the entry slit of the analyser and D the distance

between those in beam direction. Assuming the wavelength of the fastest neutrons to be

λ = 3.25Å and further d1 = 3mm, d2 = 8mm and L = 3m, the transversal coherence

length yields σT = 88nm. Furthermore does the spin echo length scale with the B0

field. To achieve high versatility the aim was to set the angular frequency to almost

maximum value of ω = 25.13MHz, i.e. a frequency of f = 4MHz, resulting in a spin

echo length of δNSE = 1.068 ţm.

Electronics

From the electrical engineering point of view it has to be consider that the RF coil
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is not a purely ohmic resistor but has a frequency dependent impedance Zl given by

Zl = Rl + iωLl (4.1)

where Rl is the ohmic resistance, ω the angular frequency of the AC voltage and Ll =
µ0N2A

L the inductance of the RF coil (N the number of windings, A the cross-section

area and L the length of the coil). In figure (4.4) the circuit diagram of the setup

is depicted, where Rload = Rl and Lload = Ll. In order to minimize reflections and

maximize the power output at the load, the impedances of the source, cable and load

have to be identical for all frequencies, i.e. have to be matched. The imaginary part

of the impedance can be matched by adding capacitors C1, C21, C22 and C23 to the

circuit. Since their impedance is given by ZC = −i 1
ωC (C is the capacitance of the

capacitor), the imaginary part of the load can be cancelled.

Figure 4.4: Circuit diagram of the spin chopping system. The RF coil has an inductance
Lload and a resistance Rload. The source consists of the function generator and the power
amplifier. The cable is assumed to be lossless. Capacitors C1 and C2 = C21+C22+C23

are responsible for impedance matching at an arbitrary frequency.

If we assume a lossless coaxial cable, the impedance of the cable Z0 can be calculated

by Z0 =
Lcable
Ccable

and is by design 50Ω and already matched to the source. To match the

load to the cable we apply Kirchoff's loop law to the right loop in figure (4.4) and get
1

Zl
= iωC2 +

1

Rl + i(ωLl − 1
ωC1

)
(4.2)

with C2 = C21 + C22 + C23. The circuit is matched if Re(Zl) = Z0 and Im(Zl) = 0 ⇒
Im 1

Zl
= 0. These two conditions lead to two equations for the capacitances C1 and C2,

which read [Coo14]

C1(ω) =
1

ω(ωLl −
�
Rl(Z0 −Rl))

(4.3)

C2(ω) =
1

ωZ0

�
Z0 −Rl

Rl
(4.4)
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A numerical calculation of the important parameters of the circuit and the setup

can be seen in table (4.1). From a given coil, frequency and beam spectrum all other

quantities were derived. The estimation of the fastest neutrons was done via the tilting

angle of the very first supermirror inside the concrete shielding and was assumed to be

λ = 2Å.

Due to the high frequency the skin effect has the be taken into account. Eddy currents

increase the resistivity inside of the copper wire and reduce the effective cross section.

At the skin depth δ (measured from the surface) the current has only 1/e of its maximum

outer surface value. This effect increases the resistance of the load Rl.

Furthermore, from table (4.1) it can be seen that the voltage at the capacitor C1

can become very high, V1 = 2.99 kV. Hence, it requires capacitors with breakdown

voltages. Three identical tunable vacuum capacitors were used for C1, C22 and C23 with

a breakdown voltage of 3 kV and capacitance of 7 − 1000 pF. To reach the demanded

capacitance of C2 = 15.725 nF a set of fixed capacitors C21 should be added in parallel

to C22 and C23 in order to increase to overall capacitance. The proposed configuration

is shown in figure (4.6a). All capacitors used for C21 are identical with a breakdown

voltage of 1 kV and capacitance of 1 nF. The configuration was designed such that

the breakdown voltage of C21 matches the one of C22 and C23. Furthermore, the

current through one individual capacitor is reduced by this arrangement. To screen

RF radiation, every capacitor is placed in an aluminium box (see figure 4.5), from

which coax cable lead to the amplifier and the RF coil.

From the amplitude resonance condition one can calculate the necessary magnetic

field amplitude B1 and the amplitude of the corresponding current I. The amplitude

of the necessary AC power at the load is P = 136.28W, hence an effective power of

136.28/2 = 68.14W for sinusoidal signals. The amplifiers maximum effective power

output is 400W in continuous mode, which is equivalent to an amplitude of 800W.

This is enough to achieve the desirable power in pulsed mode.
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characteristic impedance Z0 50Ω

frequency f 4MHz

smallest wavelength of beam spectrum λ 2Å

fastest neutrons of beam spectrum v v = h
λm 1978 m

s

length of coil l 40mm

diameter of coil d 24mm

transit time tt tt =
v
l 20.22µs

pulse duration tp tp =
tt
10 2.022µs

number of windings N 16

diameter of wire dw 1.6mm

length of wire lw lw = πdN 1.2m

skin depth δ δ =
�

2
µ0(χ+1)σ2πf 0.033mm

effective cross section of wire Aw Aw = (dw2 )2π − (dw2 − δ)2π 0.1626mm2

resistance of load Rl Rl =
ρ lw
Aw

0.1277Ω

cross section area of coil A A = (d2)
2π 452.39mm2

inductance of load Ll Ll =
µ0N2A

l 3.6365µH

capacitance at impedance matching C1 C1 =
1

ω(ωLl−
√

Rl(Z0−Rl))
0.44771 nF

capacitance at impedance matching C2 C2 =
1

ωZ0

�
Z0−Rl

Rl
15.725 nF

amplitude of magnetic field for π flip B1 B1 =
2π
γtp

16.96mT

amplitude of AC current at load I I = B1l
µ0N

33.75A

magnitude of the impedance of the capacitor 1 ZC1 ZC1 =
1

2πfC1
88.87Ω

magnitude of the impedance of the capacitor 2 ZC2 ZC2 =
1

2πfC2
2.53Ω

amplitude of voltage at C1 V1 V1 = ZC1 · I 2.99 kV

magnitude of impedance of C1 and Ll and Rl Ztot Ztot =
�

(2πfLl − 1
2πfC1

)2 +R2
l 2.527Ω

amplitude of voltage at C2 V2 V2 = Ztot · I 85.28V

amplitude of power during a pulse at load P P = I2 ·Rl 136.28W

Table 4.1: Theoretical calculation of parameters for the spin chopping system. Here h

is the planck constant, m the mass of the neutron, µ0 is the permeability of vacuum, χ
the magnetic susceptibility of copper, σ the conductivity of copper, ρ the resistivity of
copper and γ the gyromagnetic ratio.



(a)

(b)

Figure 4.5: (a) Capacitors used for impedance matching. The three vacuum capacitors
(C1, C22 and C23) are tunable, whereas the small capacitors (C21) are static and connec-
ted as in figure (4.6b). (b) The aluminium shielding with connectors for the capacitors
of (a).

A first experimental attempt with the values of the capacitances given in table (4.1)

failed. In continuous mode, no resonance was found at 4MHz and the forward power at

the amplifier was equal to the reflected power. One reason for this are possible parasitic

capacitances or inductances in the circuit. Another are elevated resistance values arising

from electrical contacts and real losses in the cable. After analysing the circuit with a

vector network analyser the fixed capacitors C21 were reduced to 5 nF (see figure 4.6b)

and the resonance frequency was found at f = 3.910933MHz. With these values the

reflected power become 1W at a forward power of 20W. This translates to a ratio of

10 ∗ log( 1
20) = −29.96 dB.
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(a)

(b)

Figure 4.6: Circuit diagram of the capacitance C21. The block of capacitors shown
explicitly has 1 nF and a breakdown voltage of 3 kV. Identical copies are connected in
parallel to increase the total capacitance. (a) Proposed configuration after theoretical
calculations (C21 = 14nF). (b) Configuration after vna measurements and how it is
used in further experiments (C21 = 5nF).

4.2 Results

The following measurements and results focus only on the spin chopping system. The

magnets of the SESANS setup were turn off at all times.

First the supermirror that is part of the spin chopping system has the be aligned. Out

of the two incident neutron beams we solely want to work with the polarized one. In

addition we want the intensity to be as high as possible. The degree of polarization

is determined through the shim intensity given by Ishim = (I+z + I−z ) / 2. The degree

of polarization becomes P = 1 − I−z / Ishim. The shim intensity was measured by

placing an iron plate in front of the supermirror. The plate absorbs and depolarizes

the neutrons from the beam. For the measurement of I−z the iron plate was placed
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Figure 4.7: Current scan of the B0 magnet versus neutron counts. The oscillating
magnetic field of the RF flipper was continuous at a frequency f = 3.910933MHz.
Since the two supermirrors are oriented oppositely the neutron counts increase when
the frequency resonance condition is met and spins start to rotate. The maximal count
rate was found at I = 5.222A.

after the supermirror to account for absorption and thus making the two intensities

comparable. For both measurements the current through the field stepper was set to

IFS = 6A and the RF flipper was completely switched off. At the optimal position the

intensities obtained in 30 s were I−z = 514 and Ishim = 5320, which gives P = 0.903.

Before starting a TOF measurement the frequency resonance condition has to be

found. For this the frequency of the RF field was set to the resonance frequency of

the electric circuit, i.e. f = 3.910933MHz, and the function generator to continuous

mode with a peak-peak voltage of Vp−p = 200mV. Next, the current I in the B0-

coil was scanned. The result is plotted in figure (4.7). At the current with maximum

count rate, the most spins were rotated and the static magnetic field corresponds to

f = 3.910933MHz. Frequency resonance was found at I = 5.222A. A measurement to

acquire the optimal oscillating magnetic field amplitude B1 necessary for a π flip can-

not be conducted in continuous mode, but needs time-of-flight measurements. Different

TOF spectra have to be recorded with varying output voltage Vp−p from the function

generator, thus varying B1. Moreover, the pulse duration tp needs to be changed ac-

cordingly. For each measurement the signal-to-noise ratio is calculated, which is an

indication of the flip efficiency of the RF flipper.

For the acquisition of the TOF spectrum depicted in figure (4.8) the following para-

meter setting was applied: I and f as aforementioned, pulse duration tp = 30 cycles,
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Figure 4.8: Measured time-of-flight spectrum with f = 3.910933MHz, tp = 30 cycles,
Vp−p = 820mV, tf = 2ms, total measurement time of 1 h and 200 kW reactor power.
On the x-axis the arrival time at the detector after the start of the RF pulse is plotted.
The intensities of each frame were summed. One can see higher count rates for very
short arrival times, which is an indication of frame overlap.

Vp−p = 820mV, the current of the field stepper IFS = 6A. The duration of one frame

(that is the time between two subsequent pulse starts) is tf = 2ms, thus 500Hz. The

entire measurement was running for one hour at a reactor power of 200 kW. The TOF

spectrum has a resolution of 2µs and the neutron counts were summed over all frames,

but keeping track of the associated arrival times.

Apart from the high background and the low signal-to-noise ratio (SNR), one can see

that more neutrons arrive at the detector between 0-500µs then between 500-1000µs

indicating a lot of very fast neutrons in the spectrum. The distance between the RF

flipper and the detector is 1.86m. If the neutron arrival time is 0.5ms the corresponding

velocity is 3720m/s and the wavelength is 1.06Å. This is unphysical since supermirrors

will cut off the spectrum at a certain maximum velocity. The plausible explanation is

frame overlap, where slow neutrons from the first frame are counted as fast neutrons

in the subsequent frame. Hence, the duration of one frame tf needs to be increased. If

the neutron arrives at the end of the frame (i.e. 2ms after the start of the pulse) the

velocity is 930m/s and the wavelength is 4.254Å.

For the next measurement the voltage was increased to Vp−p = 1V, therefore increas-

ing the amplitude of the magnetic field B1. The duration of one frame was increased

to 3.03ms (330Hz). This allows for neutron velocities down to 614m/s and wavelength

up to 6.445Å. All other parameters remained unchanged. The TOF spectrum is plotted
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Figure 4.9: Measured Time-of-flight spectrum with f = 3.910933MHz, tp = 30 cycles,
Vp−p = 1V, tf = 3.03ms, total measurement time of 1 h and 200 kW reactor power.
Within the first 1200µs no strong variation in intensity was found (no frame overlap)
and they were taken as background level.

in figure (4.9).

One can see that frame overlap has been avoided. Nevertheless, the SNR value

remains very low. The processed TOF data can be seen in figure (4.10). Neutron counts

of the spectrum were first averaged over 20µs. Next, counts of the first 1200µs were

assigned as background noise. This is justified by the assumption that no neutrons are

faster than 1.89m
1200µs = 1550m/s, which corresponds to a wavelength of λ = 2.552Å. This

background value was then subtracted from the spectrum. The SNR is consequently the

neutron counts divided by the background and has a maximum value of 1.21± 0.07 at

3.13Å. The measurement error was calculated by taking the square root of the intensities

after averaging over 20µs.

To increase the SNR to reasonable value a measurement series with different B1 amp-

litudes was conducted. The amplitude was varied by changing the peak-peak voltage

Vp−p. The according pulse duration tp needs to be found as well. The results are listed

in table (4.2). One can see that no significant increase of the SNR was achieved.

A TOF measurement with IFS = 0A (field stepper turned off) yielded a maximum

SNR of 1.05± 0.06 (i.e. noise only). This suggests that the strongest source of the high

background and low SNR is the adiabatic field transition between the two supermirrors.

In order to obtain a more non-adiabatic transition another field stepper was squeezed

between the RF flipper and the first field stepper. This current sheet is an aluminium

plate that can conduct currents up to 100A. With switched off RF field and current
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Figure 4.10: Processed data of the TOF measurement series of figure (4.9). The arrival
time of the neutrons was converted to wavelength and the intensity was averaged over
20µs. A background noise was subtracted from the entire spectrum and the all meas-
urement points below the background level were set to zero.

Vp−p tp [cycles] tot. measurement time max. SNR at wavelength [Å]

1 10 1 h 1.19± 0.18 3.21

1 15 1 h 1.34± 0.18 3.42

1 20 30min 1.41± 0.25 3.47

1.5 20 10min 1.64± 0.49 3.42

1.5 15 1 h 1.41± 0.18 3.47

1.5 20 1 h 1.52± 0.19 3.34

1.5 25 1 h 1.66± 0.19 3.34

1.5 30 1 h 1.7± 0.2 3.25

Table 4.2: Summary of TOF measurements with different parameters. The peak-peak
voltage Vp−p is provided by the function generator for different pulse durations tp.
The signal-to-noise ratio (SNR) is increasing with stronger and longer oscillating mag-
netic fields. All other parameters were not varied between the measurements. Current
through the field stepper was set to maximum value of IFS = 6A. The frequency was
f = 3.910933MHz and the frame time tf = 303ms.



sheet but turned on field stepper (IFS = 6A), the neutron counts were 1930 ± 44 in

2min. When the current sheet was turn on as well (ICS = 100A), the measured intensity

was 1884 ± 43. The background noise could not be reduced significantly utilising an

additional field stepper.

As a last attempt the detector position was slightly changed and cadmium was used to

absorb scattered neutrons, thus ensuring that all detected neutrons were going through

the RF flipper. With this and the field stepper at IFS = 6A, the measured intensity

in 2min was 1415 ± 38. With this slight improvement a TOF spectrum was recorded

(figure 4.11).

Figure 4.11: Processed Time-of-flight spectrum with f = 3.910933MHz, tp = 30 cycles,
Vp−p = 1.7V, tf = 3.03ms, total measurement time of 30min and 250 kW reactor
power. The maximum SNR value is 2.08 ± 0.2 at 4.19Å. Some frame overlap is still
visible, but since the peak signal is not affected it can be neglected.

The maximal signal-to-noise ratio improved to 2.08±0.2. Its corresponding wavelength

shifted to 4.19Å, most likely due to the new detector position. Due to divergence of the

beam, the grazing angle between incident neutrons and the supermirror will be position

dependent, leading to a position dependent wavelength spectrum.

4.3 Discussion

Already the high background counts were a first harbinger of low SNR. Measured in-

tensity with and without a field stepper showed that adiabatic magnetic field transition

between the two supermirrors were the major cause for low SNR values. Using one field

stepper lowered background noise, whereas a second field stepper (current sheet) could
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not improve the signal. This was also the case for different magnetic field strength. By

varying the voltage and the pulse duration, the SNR value was only improving slightly.

Furthermore, cadmium shielding did not achieve the desired effect and the maximum

SNR remained low at 2.08± 0.2. Due to the small experimental site, the supermirrors

can not be placed further apart, which would increase the influence of the field stepper

as well as the SNR. With this low SNR value the measurement time would become

unreasonable long.

In conclusion, the spin chopping system did not provide clean time-of-flight signals and

spin flipping a white beam with time dependent RF amplitudes did not become possible.

The next attempt was to implement adiabatic RF flipper.
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Chapter 5

Development of an adiabatic RF

spin flipper coil

For this spin flipping approach at the white neutron beam no time-of-flight is necessary.

The flippers of the SESANS instrument will now consist of adiabatic RF spin flipper

instead of RF flipper with a time dependent amplitude of th oscillating magnetic field.

Zero field precession induced by adiabatic RF flippers at a white neutron beam has been

shown in [Kra+01]. A first advantage of the this setup is the additional space at the

experimental site, since the spin chopping system is not needed anymore. Nevertheless,

the arrangement of flipper and supermirror remained the same as in section (4) for

all following measurements. Solely the RF coil was exchanged and a gradient coil was

placed in the aluminium box. Instead of a short RF flipper, a longer RF coil is used.

Furthermore, a static gradient field has to be designed and implemented.

5.1 Experimental Setup and Preparation

After the first spin flipping approach and before setting up the second, a laser pointer

has been installed in order to align the neutron-optical devices more conveniently. The

construction is shown in figure (5.1). The mounting of the laser allows for rotations and

translations. The laser light is reflected of a polished silicon plate, which is mounted on

a translation stage and on a rotation stage as well. In this case, the neutrons interaction

with silicon can be neglected, thus the laser light and the neutron beam can be aligned

parallel to each other. Once this is achieved the supermirror is placed in the laser beam

and aligned properly. Since neutrons and light are reflected in the same way from the

mirror, it is easy to find the optimal detector position.

To obtain high flip efficiencies, a high adiabaticity parameter k is necessary. Moreover,

k is dependent on the velocity distribution of the beam. From the previous section the

spectrum of the white beam is known. The TOF measurement corresponding to the

last entry of table (4.2) is used and depicted in figure (5.2). With it, one can calculate
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Figure 5.1: Setup of the alignment laser at the experimental site. The laser was placed
between the beam port and the flipper. The silicon mirror mounted on a translation
and a rotation stage enables one to align the laser parallel to the neutron beam. This
way the position of supermirrors and detector can be find easily.

the average flip efficiency ϵ for different adiabaticity parameters k, where k is referring

to the adiabaticity parameter of the fastest neutrons. The result is plotted in figure

(5.3). The aim was to reach k ≈ 10, where the flip efficiency is ϵ > 0.996.

In case of an adiabatic RF flipper, the adiabaticity parameter is given by the ratio of

Larmor frequency induced by the RF field ωL,rf and the geometric rotation frequency ωg

due to the gradient, hence k = ωL
ωg

= γB1/2
πv/L (see section 2.3.3). For a given amplitude of

the oscillating field B1, the adiabaticity parameter k is smallest for the fastest neutrons

in the spectrum. Hence, all other neutrons of the spectrum will have a higher k-value

and consequently a higher flip efficiency, making it reasonable to use the maximum

velocity (i.e. smallest k) as a reference point. For a given velocity v and length of the

magnetic field L the adiabaticity parameter can only be increased by increasing B1.

The amplitude resonance condition of a resonant RF flipper with respect to the fastest

neutrons (B1,rf−res =
2πvmax

γL ) yields k = 1 at an adiabatic RF flipper. Furthermore, one

can write k = B1/B1,rf−res, which states that the amplitude at the adiabatic RF flipper

needs to be 10 times higher than in the resonant RF case in order to achieve k = 10.

Regarding the electrical engineering side, from the last experiments it became apparent

that the losses of the additional cables need to be considered. We assume a 1m coax

cable from the amplifier to the capacitor box, 1m of cables inside the box and another

meter of coax cable from the box to the coil. These distances are passed through twice,
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Figure 5.2: Processed Time-of-flight spectrum with f = 3.910933MHz, tp = 30 cycles,
Vp−p = 1.5V, tf = 3.03ms, total measurement time of 1 h and 250 kW reactor power.
The fastest neutrons were considered to be at the maximum intensity i.e. at λ = 3.25Å.
For this spectrum of the white beam the flip efficiency has been calculated (see figure
5.3).

Figure 5.3: Flip efficiency ϵ over adiabaticity parameter k of the fastest neutrons in
the spectrum (v = 1217 m

s ). The spectrum was obtained during a TOF measurement,
which is given in figure (5.2). A high k-value is reached by increasing the RF amplitude
B1, which ensures a high flip efficiency.
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since the current runs back and forth. In total 6m of additional cables are considered,

which increase the overall resistance of the circuit drastically. This also raises the

power demand at the load. Additional losses will arise in the static capacitors from

rapidly reversing the polarity of the dielectric. No such losses will occur at the vacuum

capacitors. However, this dissipation is complicated to quantify and will be watched out

for during further preparation. Furthermore, the length of the region where the RF field

is present is not equal to the length of the RF coil. The amplitude of the oscillating

field is reduced at the ends of the RF coil. This is also indicated in figure (2.5). A

measurement with a magnetometer at DC current showed, that the region inside the

coil where the magnetic field is significantly strong is about 60mm long. This influences

the transit time tt of the neutrons and consequently the amplitude B1,rf−res. With this

assumption the other relevant parameter can be calculated. In table (5.1) the results

are summarized.
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characteristic impedance Z0 50Ω

frequency f 4MHz

smallest wavelength of beam spectrum λ TOF measurement 3.25Å

fastest neutrons of beam spectrum v v = h
λm 1217 m

s

length of RF coil L 89mm

effective length of RF coil Leff measurement with DC current 60mm

diameter of RF coil d 26mm

transit time for fastest neutrons tt tt =
v

Leff
49.29µs

number of windings N 32

diameter of wire dw 1.3mm

length of wire lw lw = πdN 2.61m

skin depth δ δ =
�

2
µ0(χ+1)σ2πf 0.033mm

effective cross section of wire Aw Aw = (dw2 )2π − (dw2 − δ)2π 0.1314mm2

resistance of load Rl Rl =
ρ lw
Aw

0.3422Ω

length of additional wires ladd 6m

diameter of additional wire dadd 1mm

effective cross section of add. wires Aadd Aadd = (dadd2 )2π − (dadd2 − δ)2π 0.1003mm2

resistance of add. wires Radd Radd = ρ ladd
Aadd

1.0293Ω

total resistance R R = Rl +Radd 1.3716Ω

inductance of load Ll Ll =
µ0N2

l (d2)
2 7.6725µH

capacitance at impedance matching C1 C1 =
1

ω(ωLl−
√

R(Z0−R))
0.21547 nF

capacitance at impedance matching C2 C2 =
1

ωZ0

�
Z0−R

R 4.7384 nF

amplitude resonance of fastest neutrons B1,rf−res B1,rf−res =
2πvmax
γLeff

0.696mT

wanted adia. parameter of fastest neutrons k k ≈ 10

amplitude of osc. magnetic field for k = 10 B1 B1 = k ·B1,rf−res 6.96mT

amplitude of magnetic gradient field BGR BGR = B1 / 2 3.478mT

amplitude of AC current at load I I = B1L
µ0N

15.40A

amplitude of voltage at Ll VL VL = ωLl · I 2.97 kV

amplitude of voltage at C1 V1 V1 =
1

2πfC1
· I 2.84 kV

magnitude of impedance of C1 and Ll and R Ztot Ztot =
�
(2πfLl − 1

2πfC1
)2 +R2 8.28Ω

amplitude of voltage at C2 V2 V2 = Ztot · I 127.56V

amplitude of power at load P P = I2 ·R ∝ k2 325.42W

Table 5.1: Theoretical calculation of parameters for an adiabatic RF spin flipper. Here h is the planck
constant, m the mass of the neutron, µ0 is the permeability of vacuum, χ the magnetic susceptibility
of copper, σ the conductivity of copper, ρ the resistivity of copper and γ the gyromagnetic ratio.



In comparison to the RF coil used at the spin chopping system, the coil at the

adiabatic RF flipper is longer in order to increase the length of the relevant magnetic

field region and therefore the adiabaticity parameter. It has a length of 89mm (see

figure 5.4).

Figure 5.4: Render image of the RF coil used at the adiabatic spin flippers. The coils
length is 89mm. The aluminium box is the same as for the spin chopping system (figure
4.3b). The inside length in flight direction is 121.5mm, the height is 25mm. The end
plates of the bobbin are made out of aluminium. Beneath the RF coil a notch in the
box allows for larger coil diameters than 25mm.

This influences the amplitudes B1,rf−res and B1. The gradient field amplitude BGR

is given by the value of the amplitude of one rotating field component, i.e. B1/2 =

BGR = 3.478mT. As a first task a suitable design of a gradient coil needs to be found.

It must be capable of inducing a magnetic field strong enough to reach k ≈ 10 and

the coil has to fit inside the aluminium box, which was especially challenging since the

original design did not consider adding a gradient and thus the space between the RF coil

and the pole shoe as well as between the RF coil and the box is very limited. Moreover,

the field should be constant in the directions perpendicular to the propagation direction

and only exhibit a gradient in flight direction. In order to achieve this one makes use

of the fact that the magnetic field decreases with distance to the wire.

The design best suited turned out to be a double trapezoidal coil in Helmholtz-like

configuration. The setup with gradient coil and RF coil is depicted in figure (5.5).

The current through the two loops of the trapezium has different direction of rota-

tion, hence inducing a magnetic field in opposite direction at the two ends of the RF

coil. Furthermore, the distance between the gradient and the RF coil is increasing, until

halfway the orientation of the field changes and the distance in decreasing again. An

identical coil has been wound at the very bottom of the aluminium box to create a more
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(a)

(b)

Figure 5.5: Photo of the adiabatic RF flipper outside the pole shoes (B0 field). This
design was used for the experiments to determine the flip efficiency. The double
trapezoidal coil is inducing the gradient field. The RF coil is covered in őKapton
tape to prevent shorts between the electrical ground (aluminium box) and the RF coil.
The counterpart of the upper trapezoidal gradient coil runs along the bottom of the
box and is not visible in these photos.

homogeneous magnetic field in directions perpendicular to the beam direction due to
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this Helmholtz-like configuration. The design of the bobbin of the gradient is depicted

in figure (5.6) and is printed at an in-house resin 3D printer.

(a) (b)

Figure 5.6: (a) Front and (b) rear view of the designed coil holder for the gradient
coil, created withőAutodesk Inventor. Two identical pieces were used for one gradient
coil. The circular window is a passage for the neutron beam, whereas the rectangular
windows on the side make a connection of the RF coil and the BNC connector at the
aluminium box possible. The small hooks at the top and bottom make up the upper
and the lower cable channel, which are vertically as far apart as possible.

With a total of 35 windings per loop and wire with 0.28mm in diameter the coil can

reach a gradient of BGR = 3.478mA at a DC current of about 2.48A. At this current

the wire is heating up rapidly, which may lead to problems during long-term operations.

The next preparation step is to match the impedance of the source and cable to the

RF coil at about f = 4MHz. Due to the different RF coil (different number of windings,

length and wire) the inductance changed compared to the spin chopping system and

one needs to adapt the capacitance in order to match the circuit. Fortunately, the new

values for the capacitance were in the reach of the previous capacitor arrangement and

no new capacitors had to be added. The vector network analyserőPicoVNA 100 Series

with a frequency range from 300 kHz to 6GHz was used to investigate the circuit. The

variable capacitors could be tuned to obtain impedance matching at f = 3.781MHz

(see figure 5.7).

After the impedance was matched, a forward power of 39W at an reflected value of

1W was obtained. Due to the high current necessary and the high impedance (resulting

from the high frequency), the amplitude of the voltage at the coil is extremely high and

became a severe problem. Successively, different issues concerning the RF coil arose.

Between the windings of the coil electrical shorts occurred, especially between the first

windings. The voltage between the beginning and end of the coil is VL = ωLl · I =

2.97 kV. Between the windings the voltage drops roughly by 2.97 kV / 32 = 92.81V,

which is causing electric arcs between the windings. These shorts destroy the electrical

circuit as well as affect the magnetic field in the RF coil and need to be avoided. Another

issue are shorts between the RF coil and the bottom of the aluminium box, i.e. electrical

ground. The distance between the wire of the RF coil and the box is less than 1mm

and the breakdown voltage of air becomes insufficient. The sparks are burning the wire
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Figure 5.7: Electrical response of the circuit measured with theőPicoVNA for different
frequencies. The ordinate shows the S-parameter S11 in dB, which is the input port
voltage reflection coefficient. S11 is the ratio of the reflected and incident signal. A low
ratio (i.e. low reflections) of S11 = −20.8 dB was found at f = 3.781MHz. For these
measurements, the VNA is replacing the amplifier and the function generator in the
circuit diagram, figure (4.4).

and also affect the circuit and the magnetic field. Finally, shorts appeared between the

coil and the aluminium end plates, which are also grounded.

To avoid these electrical shorts different actions were taken to improve the isolation

of the RF coil and lower the power demand.

• The material of the end plates was changed to PEEK, the same material the

bobbin of the RF coil is made of

• The diameter of RF coil was decreased to 24mm (formerly 26mm) to increase

the space between RF coil and box

• A thicker wire was used, with a diameter of 2mm (formerly 1.3mm) to decrease

to resistance of the load

• The last to points make a change in the number of windings necessary, from 32

to 23

• The RF coil was isolated additionally with őKapton tape (see figure 5.5)

• The frequency was decreased to 1MHz

The lower frequency affects the skin depth and the diminishes the resistance. Ad-

ditionally, the impedance of the RF coil is decreased (|Zl| = ωLl), which results in a
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frequency f 1MHz

diameter of RF coil d 24mm

number of windings N 23

diameter of wire dw 2mm

length of wire lw lw = πdN 1.73m

skin depth δ δ =
�

2
µ0(χ+1)σ2πf 0.066mm

effective cross section of wire Aw Aw = (dw2 )2π − (dw2 − δ)2π 0.4013mm2

resistance of load Rl Rl =
ρ lw
Aw

0.0744Ω

effective cross section of add. wires Aadd Aadd = (dadd2 )2π − (dadd2 − δ)2π 0.1938mm2

resistance of add. wires Radd Radd = ρ ladd
Aadd

0.5329Ω

total resistance R R = Rl +Radd 0.6072Ω

inductance of load Ll Ll =
µ0N2

l (d2)
2 3.377µH

capacitance at impedance matching C1 C1 =
1

ω(ωLl−
√

R(Z0−R))
10.11 nF

capacitance at impedance matching C2 C2 =
1

ωZ0

�
Z0−R

R 28.71 nF

amplitude of AC current at load I I = B1L
µ0N

21.43A

amplitude of voltage at Ll VL VL = ωLl · I 454.77V

amplitude of voltage at C1 V1 V1 =
1

2πfC1
· I 337.4V

magnitude of impedance of C1 and Ll and R Ztot Ztot =
�
(2πfLl − 1

2πfC1
)2 +R2 5.51Ω

amplitude of voltage at C2 V2 V2 = Ztot · I 118.1V

amplitude of power at load P P = I2 ·R ∝ k2 278.89W

Table 5.2: New theoretical calculation of parameters for an adiabatic RF spin flipper.
Here µ0 is the permeability of vacuum, χ the magnetic susceptibility of copper, σ the
conductivity of copper and ρ the resistivity of copper. All quantities not mentioned
here remained unchanged and are given in table (5.1).



smaller voltage at the load. This new starting point influences most other parameters.

The altered quantities are summarized in table (5.2).

The total resistance decreased, whereas the required current increased due to the

fewer windings of the RF coil. Nevertheless, the power demand could be diminished

and is now 278.89W instead of 325.42W. Furthermore, C1 and C2 shifted significantly,

thus more capacitors have to be added. Moreover, V1 < 1 kV and V2 < 1 kV allowing

to use single additional static capacitors with a breakdown voltage of 1 kV. The two

extra capacitances C24 and C12 are insert to the circuit of shown in figure (5.8). They

consist of 13 and 9 identical capacitors respectively and are connected in parallel. The

individual capacitors are the same as used for C21 therefore having a capacitance of

1 nF and a breakdown voltage of 1 kV, hence C24 = 13nF and C12 = 9nF. A photo of

the inside of the newly connected capacitor box is shown in figure (5.9).

Figure 5.8: Circuit diagram of the adiabatic RF spin flipper. The RF coil has an
inductance Lload. All resistances of additional cables are added to the resistance Rload.
The source consists of the function generator and the power amplifier. The capacitors
C12 and C24 have been added to the circuit to match the impedance.

With these new capacitors the resonance frequency was found at f = 1.0012MHz.

The corresponding VNA measurement is given in figure (5.10).

Finally, with all these measures it was possible to obtain a forward power of 309W

with a reflected power of 11W at Vp−p = 640mV from the function generator. More

importantly, no shorts occurred between the windings or between the RF coil and the

ground. It was even possible to go up 386W forward power with 15W reflected power

without shorts for a very brief moment (∼ 1 s). However, the wire of the coil gets very

hot and such high powers are not suitable long-term operations.
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Figure 5.9: Photo of the capacitors inside the aluminium box, which prevents the RF
radiation to disturb the detector's amplifier electronics.

Figure 5.10: Electrical response of the circuit measured with the őPicoVNA for dif-
ferent frequencies. The ordinate shows the S-parameter S11 in dB. A low ratio (i.e.
low reflections) of S11 = −28.702 dB was found at f = 1.0012MHz. For these meas-
urements, the VNA is replacing the amplifier and the function generator in the circuit
diagram, figure (5.8).
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5.2 Results

For the measurements with the adiabatic RF flipper at the white beam line, the setup

was similar to the one of the spin chopping system. The position of the detector and

the supermirror was the same, but latter was flipped, such that the two supermirrors

exhibit parallel magnetic fields. Furthermore, the field stepper was removed and instead

of the short RF coil, the longer coil and the gradient coil were used (figure 5.5). The

pole shoes of the B0 field remained unchanged, meaning square pole shoes, even though

the final SESANS setup requires parallelogram-shaped pole shoes.

Since the adiabatic RF flipper has to be operated in frequency resonance (ω = γB0)

the compatible B0 field needs to be found before each measurement. An exemplary

measurement is given in figure (5.11). At a given frequency, the closer the magnetic

field gets to B0 = 2πf/γ, the more likely it becomes to rotate the spin of the neutrons.

At the minimum intensity most of the spins are rotated and absorbed by the subsequent

supermirror. Hence for this setup the goal is to obtain count rates as low as possible.

Figure 5.11: Intensity over current through the B0-coil. The RF field was set to f =

1.0012MHz and Vp−p = 58mV, which is about 1W power from the amplifier. The
gradient coil was turned off. Frequency resonance condition in the resonant RF case
was met at I = 1.077A. Due to the hysteresis of the iron core, the current was ultimately
set to 1.07A. Since the neutron beam is polychromatic, the flip efficiency under this
conditions remains rather low at ϵ = 0.7220.

Once the resonance is found, the gradient field is added to B0 and the corresponding

RF amplitude B1 must be determined (BGR = B1/2). This was done by scanning

the current in the gradient coil for fixed oscillating field amplitudes and measuring the

intensity (figure 5.12). At the minimum of each gradient field scan the condition B1/2 =
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BGR is fulfilled. Furthermore, the higher B1 the higher the adiabaticity parameter k,

which leads to lower count rates, i.e. higher flip efficiencies.

Figure 5.12: Selected results of a measurement series. Intensity versus current in the
gradient coil IGR for different strengths of the oscillating field. The higher the field of the
RF coil, the higher IGR has to be in order to find an intensity minimum, at which B1/2 =

BGR. The voltage values provided by the function generator correspond to the following
forward Pf and reflected power Pr: Pf/Pr = 1/0 | 7/0 | 15/0 | 22/0 | 37/0 | 66/1.

In figure (5.13) all intensities at the minimum and the according current in the

gradient coil IGR are plotted for the entire measurement series. As mentioned above,

higher RF amplitudes demand stronger current IGR in order to reach a minimum.

From these intensities at the minimum the flip efficiency ϵ was calculated with

ϵ =
Imax − Imin

Imax + Imin
(5.1)

where Imax is the count rate without any magnetic fields or spin flipping and Imin

is the minimum count rate obtained by switching on the adiabatic RF flipper. The cal-

culated flip efficiency is plotted in figure (5.14). It increases with larger RF amplitudes,

but remains rather low even at 320mVpp. Hence higher k values have to be obtained.

Before raising the electrical power at the RF coil and the gradient coil, measurements

with Cadmium were conducted. The goal was to ensure that all neutrons counted had

previously passed through the flipper. The summary of these measurements is shown

in table (5.3). Two different setups were tested: with cadmium at the flipper and with

cadmium at the beamport. Latter is aiming to shape the beam dimension in such a way

that it matches the cross-section of the flipper. Both setup were compared to the former
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Figure 5.13: Position and value of the minimum intensity of the gradient field scans
versus strength of the oscillating field. The required current IGr increases with stronger
RF fields, whereas the intensity decreases.

Figure 5.14: Calculated flip efficiency for different strengths of the oscillating field.
The flip efficiency was calculated with equation (5.1), where the maximum intensity is
Imax = 4000 s−1 and the minimum intensity Imin given in figure (5.13). Overall, the
efficiency increases with stronger oscillating fields.
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Imax [s−1] Imin [s−1] IGR [A] flip efficiency

No Cadmium 5900 494 0.82 0.8454 (29)

Cadmium on flipper 3500 252 0.84 0.8658 (33)

Cadmium on beamport 3690 255 0.84 0.8706 (18)

Table 5.3: Three different tests with cadmium shielding at 350mVpp, corresponds to
Pf/Pr = 77/1. Highest efficiency was obtained with cadmium on the beamport, to
match the beam dimension to the dimension of the adiabatic RF flipper.

setup without any cadmium shielding. All three gradient scans were done at 350mVpp

(Pf/Pr = 77/1). The best flip efficiency was achieved with cadmium at the beamport

where ϵ = 0.8706 (18). This enhanced the flip efficiency by 0.8706 (18)− 0.8454 (29) =

0.0252 (34), compared to the previous setup. Therefore all subsequent measurements

utilise this setup. The drawback of cadmium shielding is the reduced intensity, leading

to longer measurement times to reach the same statistical precision.

The measurement series given in figure (5.15) investigates higher RF amplitudes.

The necessary current in the gradient coil to reach the minimum and the corresponding

intensity is depicted in figure (5.16). The calculated flip efficiency is given in figure

(5.17). One can see that it was possible to increase the flip efficiency by increasing the

power in the flipper. With 640mVpp from the function generator a power of Pf/Pr =

309/11 was obtained and the efficiency was ϵ = 0.9231 (15) at IGR = 1.88A. A planned

measurement at 660mVpp (Pf/Pr = 335/12) could not be concluded, because solder

joints melted and the coax cable from the capacitor box to the RF coil broke.
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Figure 5.15: Select results of a measurement series. Intensity versus current in
gradient coil IGR for different strengths of the oscillating field. The higher the
field of the RF coil, the higher IGR has to be in order to find an intensity min-
imum, at which B1/2 = BGR. The voltage values provided by the function gen-
erator correspond to the following forward Pf and reflected power Pr: Pf/Pr =

77/1 | 94/2 | 119/3 | 147/4 | 179/5 | 262/8 | 309/11.

Figure 5.16: Position and value of the minimum intensity of the gradient field scans
versus strength of the oscillating field. The required current IGr increases with stronger
RF fields, whereas the intensity decreases.
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Figure 5.17: Calculated flip efficiency for different strength of the oscillating field. The
flip efficiency was calculated with equation (5.1), where the maximum intensity is Imax =

3690 s−1 and the minimum intensity Imin given in figure (5.16).

A scan of the B1 amplitude at IGR = 1.8A is plotted in figure (5.18). This meas-

urement is less precise than scans of the current in the gradient coil. A maximum flip

efficiency of ϵ = 0.9284 (49) was obtained at 640mVpp. This is a similar result as ac-

quired with the aforementioned gradient scan given in figure (5.15), where the efficiency

became ϵ = 0.9231 (15) at IGR = 1.88A and 640mVpp (Pf/Pr = 309/11).

For another measurement the third magnetic field was scanned, namely B0. In this

measurement the detector and the supermirror had a different position than in the

previous measurements but it remained the same for the following measurements given

in table (5.4). Thus this results are not entirely comparable to the earlier ones. A first

B0 scan at 57mVpp to find the frequency resonance showed a minimum at I = 1.045A

and a subsequent gradient field scan at 440mVpp a minimum of Imin = 2351/10 s at

IGR = 0.92A. Next another B0 scan was conducted with the previously determined

values for the gradient field and RF field. The result is given in figure (5.19). One can

see that the neutron count rate could not be reduced further by changing the B0 field.

The adiabaticity parameter is not constant throughout the flipper, but shows a space

dependency due to the space dependency of the RF amplitude B1. Outside the flipper

box close to the entrance windows a weak RF field can arise. Therefore low k-values

can occur at the beginning and end of the flipper, which lead to unwanted rotations of

the polarization [Plo09]. To prevent this, aluminium foil was used to cover the windows

of the aluminium box. The neutrons are now exposed to more material. Four different

setups were compared at 440mVpp (Pf/Pr = 133/3). No aluminium foil (previous
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Figure 5.18: Scan of the RF amplitude at frequency resonance and IGR = 1.8A. The
highest flip efficiency was found at 640mVpp and amounts to ϵ = 0.9284 (49). This is
in agreement with the efficiency obtained by the gradient scan in figure (5.15).

Figure 5.19: Scan of the B0 field with an active gradient of IGR = 0.92A and an RF
amplitude corresponding to 440mVpp. The intensity minimum found in the gradient
scan (Imin = 2351/10s) could not be further reduced.

setup), covering the window at the side of the beamport, covering the window at the

side of the second supermirror and covering both windows. The results are summarized

in table (5.4). The intensity without flipping Imax is not influenced by the aluminium

foil, contrary to the intensity with flipping Imin, which is decreased when applying foil.
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Imax [s−1] Imin [s−1] IGR [A] flip efficiency

No aluminium foil 3413 240 0.98 0.8684 (18)

aluminium foil (beamport) 3423 191 0.96 0.8945 (17)

aluminium foil (supermirror) 3452 220 1 0.8791 (18)

both sides aluminium foil 3409 183 0.94 0.8986 (17)

Table 5.4: Tests of setups with different aluminium foil covering at an RF field strength
corresponding to 440mVpp (Pf/Pr = 133/3). The intensity Imax does not change,
indicating no absorption by the foil. The best results were obtained by covering both
sides of the flipper, whereby foil at the beamport window proves to be more effective than
on the side of the supermirror. Due to different positions of detector and supermirror,
these measurements are only comparable among themselves and to figure (5.19).

Most effective is the covering of the beamport window and the highest flip efficiency

was achieved by covering both sides, where the efficiency could be increased significantly

by 0.8986 (17) − 0.8684 (18) = 0.0302 (25), compared to the measurement without any

aluminium foil.

5.3 Discussion

After challenges with the high power demand at the load and the resulting short circuits

the frequency was reduced from 4MHz to 1MHz and several changes were made to the

dimension and material of the flipper. As a result it became possible to operate the flip-

per at high powers but only for short time periods. At 640mVpp (Pf/Pr = 315/10) the

total measurement time numbered 200 s. Furthermore, the reduced frequency means

a shorter spin echo length (see equation (3.41)). It decreases from δNSE = 0.91 ţm at

4MHz to δNSE = 0.267 ţm at 1MHz. This is still larger than the transversal coherence

length of σT = 88nm, but one loses flexibility and becomes more vulnerable to uncer-

tainties.

Scans of the amplitude B1 and the strong static field B0 with active gradients indicate

that the procedure of B0-scan (finding the freq. resonance) followed by scans of the

gradient field at different amplitudes B1 is valid to determine the optimal flip efficiency

achievable with these parameters at the setup. Such gradient field scans show that the

current IGR required to find the minimum intensity is increasing with the amplitude

B1. This is due to the requirement B1/2 = BGR, at which point the highest possible flip

efficiency is found for a given RF field. Moreover, the flip efficiency could be elevated

by stronger RF fields, which is increasing the adiabaticity parameter k and by utilising

cadmium shielding. The latter absorbs all neutrons, which will not go through the flip-

per and therefore reduces the count rate of not properly flipped neutrons. This enhances
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the flip efficiency by 0.0252 (34), when measured at 350mVpp (Pf/Pr = 77/1). The

disadvantage is that the overall intensity is lowered, resulting in poorer statistical pre-

cision. This can be compensated by longer measurement times. The highest efficiency

of ϵ = 0.9231 (15) was obtained at 640mVpp (Pf/Pr = 309/11) and IGR = 1.88A.

Measurements at higher powers could not be carried out due to heat-related problems

and even RF amplitudes corresponding to 640mVpp are not suitable for long-time oper-

ations of several hours. Furthermore, a flip efficiency of ϵ = 0.9231 of one adiabatic RF

flipper is not sufficient if seen in the context of the entire SESANS experiment. Since

four such flippers have to be implemented, the overall flip efficiency of the entire setup

will be (0.9231)4 = 0.7261. In order to achieve an overall efficiency of 0.9 one individual

flipper must reach an efficiency of 4
√
0.9 = 0.9740. Lastly, it could be shown that the

flip efficiency could be increased by adding aluminium foil, which ensures that the RF

field is confined to the same area as the B0 field and the pole shoes. This increased the

efficiency by 0.0302 (25) at 440mVpp (Pf/Pr = 133/3).

There are several reasons for the discrepancy between the theoretically calculated

flip efficiency and the experimental data. The theoretical derivation assumes a cosine-

shape gradient and a sinusoidal RF amplitude. In practice, we only have the best

approximation to these shapes. In addition, the gradient along the flight direction is

most likely different for different trajectories through the flipper, since the gradient coil

is not in Helmholtz configuration. Therefore, the condition BGR = B1/2 is not fulfilled

for all neutrons in the flipper. Moreover, the power displayed at the RF amplifier is not

equal to power at the load. The amplifier displays the power provided for the entire

circuit. Due to additional losses in the circuit, part of this power is dissipated as heat

or irradiated. Hence, the power at the load will be lower than displayed. Another

reason is the rather low degree of polarization of 0.9, which is affecting the intensity

measurements with supermirrors and therefore the determination of the flip efficiency.
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Chapter 6

Outlook

This section is intended to provide an outlook on the next steps in the development of

the adiabatic RF flipper. In order to achieve higher flip efficiencies the most reasonable

approach is to increase the adiabaticity parameter k. This can be done by decreasing

the velocity of the neutrons v or by increasing the length of the flipper L or the RF

amplitude B1. The first parameter can only be changed by rotating the supermirror

inside the concrete shielding and therefore changing the grazing angle and the spectrum

of the reflected and polarized neutron beam. Half the velocity of the fastest neutrons

is approximately doubling k. From the TOF measurements of the spectrum (figure

5.2) one can see that the intensity at 6Å is already insufficient. Therefore a significant

decrease of v is not possible. To extend the region of the magnetic field L the pole

shoes would have to be replaced by larger ones. Since k is linear in L, a doubling will

yield 2k. Due to the limited space at the experimental site this can not be done and

would leave too little space for zero field precession between the flippers. This leaves

the enhancement of the RF amplitude B1 and consequently the gradient field BGR.

The major problem at higher electrical powers in the coils is heat production. Cooling

the wire will not only battle the aforementioned problem but would also reduce the

resistance of the load and therefore the power demand. Another advantage of cooled

RF coils is the possibility of ensuring long-time operation with stable magnetic fields.

The first idea to implement cooling with liquid nitrogen failed, because of the limited

space in the aluminium box. It was not possible to pull a cylindrical storage for liquid

nitrogen over the RF coil and add connectors for a cooling loop. A more elegant but

not as effective solution is the usage of a copper tube as depicted in figure (6.1). A

similar approach was utilized in [Plo09]. Its outside diameter is 2mm and the inside

diameter 1mm. This tube is functioning as the RF coil and is part of the cooling system

simultaneously. The cooling liquid is running through the inside, whereas the electrical

current is transported in the copper. The reduced cross section area of the wire will not

affect the resistance severely, since the skin depth at 1MHz is 0.066mm. Thus, most of

the current is transported near the outer surface of the wire anyway.
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Figure 6.1: Copper tube functioning as RF coil. Its outside diameter is 2mm and the
inside diameter 1mm. Adapters for the water cooling circuit are welded onto the ends
of the coil and are applicable for tubes with an outside diameter of 8mm and an inside
diameter of 5mm. Connections for the electrical circuit have not yet been implemented.

For test purposes water was chosen as cooling medium, which is pumped by a

őxylem Flojet Series R3811. This pump can deliver pressures up to 10 bar. Since the

tube leading from the pump to the copper tube have an inner diameter of 5mm, a high

pressure builds up at the connection to the thinner copper pipe. Thus an overpressure

valve must be installed in order to keep the pump running smoothly. With this setup a

flow rate of about 250mL/min was obtained. One needs to keep in mind the adequate

scaling of the magnetic gradient field and the current in the coil, when increasing the

RF amplitude. Moreover, an alternative to flip the spin by π it is possible to induce

zero field precession by a π/2 rotation. This also reduces the power requirements of

the flipper, but has the drawback of halving the precession frequency, which reduces

sensitivity of the SESANS instrument.
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Chapter 7

Conclusion

The first neutron spin flipping approach requires an option for time-of-flight measure-

ments. In order to obtain a pulsed neutron beam, the supermirror of the spin chopping

system has to be flipped with respect to the polariser. The frequency of the RF flip-

per was set to f = 3.910933MHz. TOF measurements with different pulse durations

and currents all yielded SNR values below 2 for all wavelengths. Measurements of the

intensity with and without a field stepper showed that unwanted adiabatic magnetic

field transitions between the two supermirrors were the major cause for low SNR values.

Furthermore, it was not possible to generate a step in the magnetic field strong enough

to increase the SNR significantly. The maximum SNR value of 2.08± 0.2 at 4.19Å was

obtained with tp = 30 cycles, Vp−p = 1.7V and tf = 3.03ms.

The second approach for broadband spin flipping was utilizing an adiabatic RF

flipper. In order to effectively flip spins of a white beam a high adiabaticity parameter

k and thus strong RF amplitudes and gradients are necessary. A gradient coil was

designed that is able to induce a magnetic field of BGR = 2.52 at IGR = 1.8A, which

proved to be just sufficient. More current in the gradient coil is not suitable for long

term operation. Due to the high current demand at the RF flipper, it was not possible

to put a device into operation at f = 4MHz. Problems were unwanted shorts between

the wire and ground as well as heat generation. Hence, the frequency was lowered to

f = 1MHz, which allowed for measurements to test the performance of the adiabatic RF

flipper. Scans of the gradient field for different RF amplitudes at frequency resonance

proved to be an appropriate procedure to determine the flip efficiency experimentally.

Moreover, the performance of the flipper could be increased with cadmium shielding

and aluminium foil by 0.0252 (34) and 0.0302 (25), respectively. The highest efficiency

of ϵ = 0.9231 (15) was obtained at 640mVpp (Pf/Pr = 309/11) and IGR = 1.88A.

The efficiency may be improved by increasing the adiabaticity parameter, but this leads

to an increase in power that was not possible to achieve with the present setup. The

major limiting factor is the heat generation at the flipper and the cables. This problem

is addressed by implementing a cooling system, that not only aims to increase the
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maximal possible current in the coil but also aims to ensure stable long-term operation

at high powers. First tests to run water through a copper tube for cooling while also

using it as RF coil have already been conducted.
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