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Abstract

The goal of this thesis is to study and analyze different models of portfolio
optimization. We start with the basic models such as mean-variance model
presented by Markowitz (1952), mean-absolute-deviation model proposed
by Konno and Yamazaki (1991), minimax model developed by Young
(1998). Furthermore, we extend models with various constraints, of which
the most important is the integer constraint. The numerical implementa-
tion of these models is presented in addition and its results are discussed.
This work is based largely on the two papers:
An Exact Sojution Approach for Portfojio Optimization Probjems Under
Stochastic and Integer Constraints published by Pierre Bonami and Miguel
Lejeune [1] and Portfojio-optimization modejs for smajj investors paper by
Philipp Baumann and Norbert Trautmann [2]
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Kurzfassunng

Ziel dieser Arbeit ist es, verschiedene Modelle der Portfoliooptimierung zu
untersuchen und zu analysieren. Wir beginnen mit den Grundmodellen wie
dem von Markowitz vorgestellten Mean-Variance Modell (1952), dem von
Konno und Yamazaki vorgeschlagenen Mean-Absolute-Deviation Modell
(1991) und dem von Young entwickelten Minimax Modell (1998). Dar:uber
hinaus erweitern wir Modelle mit verschiedenen Einschr:ankungen, von de-
nen die wichtigste die ganzzahlige Einschr:ankung ist. Zus:atzlich wird die
numerische Implementierung dieser Modelle vorgestellt und deren Ergeb-
nisse diskutiert.

Diese Arbeit basiert sich haupts:achlich auf zwei Papers: An Exact Sojuti-
on Approach for Portfojio Optimization Probjems Under Stochastic and In-
teger Constraints von Pierre Bonami und Miguel Lejeune [1] und Portfojio-
optimization modejs for smajj investors von Philipp Baumann und Norbert
Trautmann [2]
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1 Introduction

Financial mathematics is a relatively new branch of applied mathematics,
dealing with the application of mathematical methods to financial prob-
lems. In general, the application of financial mathematics can be divided
into two branches of finance that require advanced quantitative techniques:
derivative pricing and risk- and portfolio management.
Portfolio management involves building and overseeing a selection of in-
vestments that will meet the long-term financial goals and risk tolerance
of an investor [25]. In order to achieve this, various portfolio optimization
models are used. Portfolio optimization model should assist in the selec-
tion of the most efficient portfolio by analyzing various possible portfolios
of the given securities. Assuming the financial market is arbitrage free, all
the investments are exposed to some kind of downside risk. By Financial
Times lexicon the volatility is defined as the extent to which the price of
a security or commodity, or the level of the market, interest rate or cur-
rency, changes over time. High volatility implies rapid and large upward
and downward movements over a relatively short period of time and low
volatility implies much smaller and less frequent changes in value. In other
words, volatility gives us the idea about our investment risk by showing
the range to which the price may change while keeping the direction of the
change unrevealed. [27] The portfolio optimization model can be based
on the diverse risk measures. The modern portfolio theory was introduced
by Harry Markowitz in 1952 with his means variance model. This model
considered the trade off between expected return and variance. Some of
the other risk measures that are later used are Roy,s safety first risk cri-
terion (Roy 1952), which belongs to a family of downside risk measures,
value at risk (Morgan Guaranty 1994), conditional value at risk (Rockafel-
lar and Uryasev 2000), stochastic dominance (Dentcheva and Ruszczynski
2003), semideviation (Ogryczak and Ruszczynski 1999), excess probabili-
ties ( Schultz and Tiedemann 2006), mean-absolute deviation (Konno and
Yamamoto 1991), semiabsolute deviation (Feinstein and Tappa 1993) [1].
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In Chapter 2 we describe in detail the standard portfolio optimization
models and the risk measures used. In Chapter 3 our models and anal-
ysis are presented. The results of analysis and conclusion are also given.
Chapter 4 gives insights into the Cumulative Prospect Theory and possible
further developments in this direction.
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2 Portfolio optimization

Portfolio optimization involves the optimal choice of investments for the
set of available investments and the given amount of capital. At the time
of decision it is not known what will happen to the cash flow that describes
the investment. One can only estimate the expected cash flow, therefore
the investment return rate is a random variable that has the expected value
and variance. There are also investments where the cash flow is known in
advance in the case the yield is a deterministic value and the standard
deviation is zero. Such investments are called risk-free assets. Although
academics agree that there are no risk-free assets in practice because even
the safest financial instruments carry a small amount of risk, financial
instruments with a fixed interest rate such as government bonds are often
used in portfolio optimization to determine the risk-free interest rate.

2.1 Portfolio return rates

We suppose that our portfolio consists only of risky assets. Suppose we
purchase an asset at time t0 for some price P0 an then we sell it later at
time t1 for a price P1. Then the ratio

R =
P1

P0

is called the return of the asset.
The rate of return r is given by:

r =
P1 - P0

P0
.

We can also write r = R- 1.

Now we assume that our portfolio consists of n assets and let our ini-
tial budget be B. We want to assign the initial budget to the assets i,
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i = 1, . . . , n. The weight of stock i is represented by xi. The budget
constraint require that weights sum to 1

nΣ
i=1

xi = 1. (2.1)

In this work we will not consider the short selling. Therefore we need to
assure that the weights must be non negative, i.e. xi > 1, i = 1, . . . , n.
If the Ri, i = 1, . . . , n denotes the return of a risky asset i, then is total
portfolio return:

R =
nΣ

i=1

Rixi,

as well as return rate is given by:

r = R- 1 =
nΣ

i=1

Rixi -
nΣ

i=1

xi =
nΣ

i=1

(Ri - 1)xi =
nΣ

i=1

rixi.

We denote expected return of an asset i by Ri, variance of asset i by σ2
i

or σii and covariance between asset i and asset j as σij.

2.2 Portfolio optimization models [3]

The ground model of the modern portfolio theory is the Mean-variance
model. It was introduced by Harry Markowitz in an essay in 1952 [3],
for which he was later rewarded the Nobel Prize in Economics. Therefore
it is also called Markowitz model (or HM model). As its name says, it
is based on trade-off between two measures: expected return (mean) and
the variance of the diverse portfolios. Due to Markowitz, the process of
selecting a portfolio may be divided into two stages. The first stage starts
with observation and experience and ends with beliefs about the future
performances of available securities. The second stage starts with the
relevant beliefs about future performances and ends with the choice of
portfolio.
Initially to develop the model, Markovitz started with the following

assumptions[4]:

. Risk of a portfolio is based on the variability of returns from the said
portfolio.
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. The investor is risk averse.

. The investor prefers to increase consumption.

. The investor,s utility function is concave and increasing.

. Analysis is based on a single period model of investment.

In order to choose the best portfolio, it is necessary to determine the set
of efficient portfolios, efficient frontier. The efficient frontier represents
those portfolios for which the expected return is the highest for any level
of risk, and for which the risk is the lowest for any level of expected return
[22].

Figure 2.1: Risk-Return of Possible Portfolios ([23])
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Figure 2.2: The Combination of Risk-Free Securities with the efficient fron-
tier and CML ([23])

In the first Figure above, R1 and R2 represents the returns of the portfo-
lios 1 and 2 respectively and l1 and l2 represents their risk levels. In general
various risk measures could be considered (ie. variance of the portfolio).
Shaded area represents the set of parameter pairs of feasible portfolios.
The boundary PQVW represents the efficient frontier. All portfolios that
lie below the Efficient Frontier are not good enough because the return
would be lower for the given risk. Portfolios that lie to the right of the
Efficient Frontier would not be good enough, as there is higher risk for a
given rate of return. All portfolios lying on the boundary of PQVW are
called Efficient Portfolios [24]. For example, at risk level l2, there are three
portfolios S, T, U. The portfolio S is called the efficient portfolio as it has
the highest return, R2, compared to T and U. The Efficient Frontier is
the same for all investors, as all investors want maximum return with the
lowest possible risk and they are risk averse [24].
The second Figure also contains the efficient frontier, R0 is return of the
risk-free asset. R1PX is drawn so that it is tangent to the efficient fron-
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tier. Capital Market Line represents the risk-return trade off in the capital
market [24]. The CML is an upward sloping line, which means that the
investor will take higher risk if the return of the portfolio is also higher
[24]. The portfolio P represents the most efficient portfolio, as it lies on
both the CML and Efficient Frontier, and every investor would prefer to
attain this portfolio, P .[24]

On these assumptions, the original Markowitz model was created. The
original Markowitz model assumes that expected return Ri of a risky
assets i, i = 1, . . . , n as well as variance-covariance matrix (σij, i =
1, . . . , n, j = 1, . . . , n) of the returns are known. There are several for-
mulation of the mean-variance portfolio selection problems. One of them
has a goal to achieve minimal risk provided that a prescribed return level
Rmin is attained [1]. This model is formulated by:

min
nΣ

i=1

nΣ
j=1

σijxixj

subject to R0x0 +
nΣ

i=1

Rixi > Rmin,

nΣ
j=0

xj = 1, (2.2)

Ri € R , i = 0, . . . , n.
In this problem, the variables xj represent the proportion of capital

invested in the risky assets j, where we have n risky assets, ie. j = 1, . . . , n.
On the other hand x0 is the fraction of capital invested in the money market
or so called riskless asset with known return R0. The objective function
aims at minimizing the variance of the portfolio

Σn
i=1

Σn
j=1 σijxixj.[1]

The constraint

x0 +
nΣ

j=1

xj = 1,

so called budget constraint, shows that the sum of investment is equal
to one, so the whole capital B is used. It it clear, that the investor can
allocate part of the available capital to the money market. [1]
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Another formulation of a Markowitz model has a goal to achieve the
maximal expected return so that risk level does not exceed the risk level
prescribed by the investor. This variant of a model is formulated by [2]:

max
nΣ

i=1

Rixi

s.t.
nΣ

i=1

nΣ
j=1

σijxixj < ρ,

nΣ
i=1

xi = 1,

xi > 0 i = 1, . . . , n.
Here ρ represents the maximal risk level. We will use this formulation

of a model as one of a basic model for the numerical analysis.

Since this Markowitz work there have been a lot of attempts of extending
it and making the modern portfolio theory more practical and applicable.
Main lack of this theory is that it required the perfect knowledge of the
expected returns of the assets and the variance-covariance matrix. These
returns are unknown and unpredictable. It can be tried to obtain the ac-
curate estimation of these returns, but even that is really complicated and
imprecise. Many possible choices of error, like instability of data, impossi-
bility to obtain a sufficient number of data samples, unpredicted investors
behaviour etc., affect estimation of returns and lead to the so-called esti-
mation risk in the portfolio selection.[1][5] On the other hand, investors
would often rather trade off some return for a more secure portfolio that
performs well under a wide set of realisations of the random variables, so
the need for constructing portfolios that are much less impacted by inac-
curacies in the estimation of the expected return and the variance of the
return is therefore clear.[1]
The main disadvantage of the model is the uncertainty associated with the
estimation of the expected returns. It was said in the work of Bonami and
Lejeune [1] that a widespread belief among portfolio managers is that the
portfolio estimation risk is due mainly to errors in the estimation of the
expected return and not so much to errors in the estimation of the variance-
covariance matrix. Those assumptions were also shown by Broadie[6] as
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well as by Chopra and Ziemba[7].
In order to improve this disadvantages some researchers have developed
other approaches and applied different risk measures. One of them is Roy,s
safety-first criterion [8]. It is based on the Roy,s criterion that the proba-
bility of the portfolio,s return falling below a minimum desired threshold
is minimized. Assuming that the portfolios have normally distributed re-
turns, Roy,s first-safety criterion can be reduced to the maximization of
the safety first, defined by:

SFRatioi =
E(Ri)-Rmin√

V ar(Ri)

where E(Ri) is the expected return of the portfolio,
√

V ar(Ri) is the
standard deviation of the portfolio,s return and Rmin is the minimum ac-
ceptable return[9].This measure is similar to the Sharpe ratio[10], which
maximizes the ratio of the excess return of risk. Under normality, it is
equal to:

Sharpe ratioi =
E(Ri)-R0√

V ar(Ri)

where R0 is the risk free return.
There are many other risk measures that can be used. I will present some
of them hereafter. One of the basic and significant measures is Value at
risk (V aR). It is the quantile of the loss function. The Value at risk
for a given confidence level indicates the amount of loss that will not be
exceeded within a given period with this probability. It is most used
by regulators and firms in the financial industry. Value at risk was first
developed and introduced in 1994 by J.P. Morgan[11]. Mathematically
V aR with confidence level 1 - α is defined as (1 - α)- quantile from loss
function.

V aR1-α(X) = F-1
X (1- α) = inf {x € R : FX(x) > 1- α} ,

where X describes the random variable of the loss function of the portfolio
over the period under consideration. FX denotes the associated distribu-
tion function. The disadvantage of Var is that it is not a coherent risk
measure, because it violates the sub-additivity property. Therefore Con-
ditional value at risk (CV aR) was developed. It is defined as[12]:

CV aR1-α(X) = E[X|X > V ar1-α] = E[X|X > F-1
X (1- α)].
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While the V aR represents the maximum loss that will not be exceeded
wit a confidence level 1-α, the CV aR implies the average loss outside of
the confidence level, so in other α worst cases. It is increasingly used in
risk management, portfolio management as well as in portfolio optimiza-
tion. The difference between the two measures can be clearly seen in the
following graphic.

Figure 2.3: Differentiation of the CVaR from the VaR ([13])

Another theoretical approach to the portfolio selection problem is that
of stochastic dominance [14]. This approach is related to the investor,s risk
aversion. The stochastic dominance gives a partial order between random
variables. The concept arises in decision theory and decision analysis in sit-
uations where one gamble can be ranked as superior to another gamble for
a broad class of decision-makers[15]. First we come with the definition of
the first-order stochastic dominance. Random variable X dominates
the random variable Y (first-order stochastic dominance) if for any out-
come k, X gives at least as high probability of receiving at least k as does
Y and for some .k, X gives a higher probability of receiving at least .k. In
notation form it can be written as P [X > k] > P [Y > k], for all outcomes

k and there is at least one outcome .k for which P [X > .k] > P [Y > .k].
From the portfolio point of view the second order stochastic dom-
inance is more important. The definition of the second-order domi-
nance is equivalent to: X dominates Y in the second order if and only if
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E[u(X)] > E[u(Y )] for all non decreasing concave functions u for which ex-
pected values are finite[14]. Second-order dominance describes the shared
preferences of a smaller class of decision-makers than does first-order domi-
nance. Risk-averse decision makers will prefer portfolio with returnX than
portfolio with return Y .
In the work of Dentcheva and Ruszczy,nski [14], the new, dominance-
constrained portfolio problem was introduced. In order to introduce a new
model, they started from a basic model of stochastic application, which
can be formulated as:

max
z€Z

E[ϕ(z, ω)].

In this formulation, ω denotes an elementary event in a probability
space (Ω,f , P ). z is a decision vector in an appropriate space Z, and
ϕ : Z x Ω -→ R. The set Z < Z is defined either explicitly, or via some
constraints that may involve the elementary event ω and must hold with
some prescribed probability. [14]
Initially, a solution was sought for the following problems. They formu-

lated the mean-risk portfolio optimization problem as follows:

max
X€C

E[X]- λρ(X).

In this approach C represents the set of all random variables X such that,
for some z € Z, one has X(ω) < ϕ(z, ω) a.s. ρ(X) is a risk measure that
represents the variability of the X. In contrast to the Markowitz model, it
does not necessarily have to be the variance of the portfolio. Many other
measures are possible here. λ is a nonnegative parameter that represents
desirable exchange rate of mean for risk, so the parameter for risk aversion.
If λ is equal to 0, then the risk has no value and we choose to maximize
the mean. We can also select a utility function u, which should be concave
and non decreasing in order to represent risk adverse investors. Then the
the optimization problem is formulated as:

max
X€C

E[u(X)].

Dentcheva and Ruszczy,nski introduced the alternative approach. They
made a comparison to a reference outcome, based on the stochastic domi-
nance relation. Assume that a reference random outcome Y < L1(Ω,f , P )
has an available finite expected value. Their intention was to have the new
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outcome X preferably over Y . They had the following optimization prob-
lem:

max f(X) (2.3)

subject to X >(2) Y, (2.4)

X € C (2.5)

where f : C -→ R is a real concave continuous function, C < L1(Ω,f , P )
is convex and closed and Y < L1(Ω,f , P )[14]. It is shown that with a se-
lection of suitable utility functions, that build convex cone, we can define
a Lagranian of (2.3)- (2.5) as follows:

L(X, u) = f(X) + E[u(X)]- E[u(Y )].

In the [14] it was shown that if there exist an optimizer .X for the first
optimization problem ((2.3)- (2.5)), then there exists a utility function .u
such that

L( .X.u) = max
X€C

L(X, .u).

It was shown that, in general, the Markowitz classical mean-variance
model is not consistent with stochastic dominance rules. The are some
issues about using standard deviation alone. It does not tell much about
skewness. That is, does the distribution of returns "lean" in one direction
or another? Are you more likely to get a gain or a loss? Stocks are more
likely to have a gain than a loss, so they have "negative skew" [17].

Figure 2.4: Diagrams illustrating negative and positive skew.
Author: Rodolfo Hermans (Godot)
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It also does not tell anything about kurtosis or spread. That is, how tall
is the peak of the curve and how fat are the tails? [17]

Figure 2.5: Kurtosis ([17])

But an even bigger problem is that when we use standard deviation
as a measure of risk, then we are saying that any variance is bad. Even
when our returns are more than the average, that is still considered bad.
In order to make it consistent we need to create a risk measure, that
takes in account all possible measures below the mean. In the work by
Ogryczak and Ruszczynski [16] two measures were considered: absolute
semideviation and standard semideviation.
Absolute semideviation is defined as [16]:

δX =

∫ μX

-∞
(μX - ξ)PX(dξ) =

1

2

∫ ∞

-∞
|μX - ξ|PX(dξ),

where X represents the random variable, PX its probability measure and
μX = E[X].
The standard semideviation is defined as [16]:

σX =

(∫ μX

-∞
(μX - ξ)2PX(dξ)

) 1
2

.

The standard semi deviation can be written in discrete cases as:
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σX =

[||√1

n

nΣ
ξt<μ

(μ- ξt)
2.

The weak relation of mean-risk dominance is defined as follows: [40]

X >μ/σ Y ↔ μX > μY and σX < σY .

A mean-risk model is said to be consistent with the stochastic dominance
relation of degree i if: [40]

X >(i) Y → X >μ/σ Y.

Ogryczak and Ruszczynski [16] showed that mean-risk models using
standard or absolute semideviations as risk measures are consistent with
the stochastic dominance orders, if a bounded set of mean-risk trade-offs
is considered.

Another risk measure that can be used in portfolio optimization theory
is the mean-absolute deviation (short MAD). As the name indicates the
mean-absolute deviation of a set

R = {R1, R2, . . . , Rn} is equal to
1

n

nΣ
i=1

|Ri -m(R)|. m(R) represents the

measure of central tendency. Usually it is mean, median or mode. This
measure was considered in the work of Konno and Yamazaki [18]. They
proposed L1 risk model that, after suitable reduction, leads to the linear
program. The model was presented as following [19]:

min
1

T

TΣ
t=1

yt

s.t. yt +
nΣ

j=1

ajtxj > 0, t = 1, . . . , T, (2.6)

yt -
nΣ

j=1

ajtxj > 0, t = 1, . . . , T, (2.7)

nΣ
j=1

Rjxj > Rmin.
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nΣ
j=1

xj = 1,

xj > 0, j = 1, . . . , n,

where yi =

|||||
nΣ

j=1

(Rjt -Rj)xj

|||||, xj is the proportion of funds to be in-

vested in asset j, Rjt is a realization of returns for the asset j in time

period t, and ajt = Rjt-Rj, where Rj =
1

T

TΣ
t=1

Rjt. Scalar Rmin repre-

sents the minimum return required by an investor. Model from Konno
and Yamazaki minimizes the L1 risk function. This function is given by:

1

T

TΣ
t=1

|||||
nΣ

j=1

ajtxj

||||| .
This shows that only one of the constraint sets (2.6) or (2.7) is required

to find optimal solutions to the problem, so that either one of (2.6) or
(2.7) is redundant and can be removed. With T fewer effective rows, one
consequence of this manoeuvre is that solutions to the model have at most
T + 2 nonzero assets in the solution [19]. Same as in the mean variance
model from Markowitz, we can formulate the MAD model such a way that
it aims to achieve the maximum expected return so that risk level does
not exceed prescribed risk level ρ. This variant of the MAD model looks
like:

max
nΣ

j=1

Rjxj

s.t. yt +
nΣ

j=1

ajtxj > 0, t = 1, . . . , T,

yt -
nΣ

j=1

ajtxj > 0, t = 1, . . . , T,
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1

T

TΣ
t=1

yt < ρ,

nΣ
j=1

xj = 1,

xj > 0, j = 1, . . . , n.

The Konno and Yamazaki model was modified by Feinstein and Thapa
[20]. In their model the nonnegative variables φt and ψt are applied to
constraints (2.6) and (2.7) as follows [19]:

yt +
nΣ

j=1

ajtxj = 2φt, t = 1, . . . , T,

yt -
nΣ

j=1

ajtxj = 2ψt, t = 1, . . . , T.

φt and ψt represent the positive and negative deviation of portfolio re-
turn, respectively.
Then yt can be eliminated and we can transform the objective and the

constraints (2.6) and (2.7) so that model will look like: [20]

min
TΣ
t=1

(φt + ψt)

s.t. φt - ψt =
nΣ

j=1

(Rjt -Rj)xj, t = 1, . . . , T,

nΣ
j=1

Rjxj > Rmin,

nΣ
j=1

xj = 1,

xj > 0, j = 1, . . . , n,
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φt, ψt > 0, t = 1, . . . , T.
The other formulation of a model, which maximizes the expected return

will look like:

max
TΣ

j=1

Rjxj

s.t. φt - ψt =
nΣ

j=1

(Rjt -Rj)xj, t = 1, . . . , T,

TΣ
t=1

(φt + ψt) < ρ,

nΣ
j=1

xj = 1,

xj > 0, j = 1, . . . , n,

φt, ψt > 0, t = 1, . . . , T.
The formulation above will be used as basic model in numerical analysis.

Another model that can be considered is the Minimax model developed
by Young [21]. In this model the optimal portfolio is defined as that one
which would minimize the maximum loss over all past historical periods,
subject to a restriction on the minimum acceptable average return across
all observed time periods. According to Young this model can accommo-
date fixed transaction costs and have logical advantages when the returns
are non normally distributed, and when investor has a strong form of risk
aversion. The model contains the following variables[21]:

Rjt -→ return of the security j in time period t

Rj =
1

T

TΣ
t=1

Rjt -→ average return on security j

xj -→ portfolio allocation to security j
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Rpt =
nΣ

j=1

xjRjt -→ return on portfolio in period t

Ep =
nΣ

j=1

xjRj -→ average return on portfolio

Mp = min
t

Rpt -→ minimum return on portfolio

The Minimax model maximizes the Mp, subject to the constraint that
Ep exceeds some minimum prescribed level and to the budget constraint.
This means that minimax portfolio minimizes the maximum loss, where
loss is defined as negative gain or, alternatively, maximizes the minimum
gain [21]. The model has been originally written as [21]:

max
Mp,x

Mp

s.t.
nΣ

j=1

xjRjt -Mp > 0, t = 1, . . . , T, (2.8)

nΣ
j=1

xjRj > .Rmin,

nΣ
j=1

xj = 1,

xj > 0, j = 1, . . . , n.
The minimum level we need to exceed is .Rmin. From the equation (2.8)

we see that it guarantees that Mp will be bounded from above by the
minimum portfolio return. We can also make an equivalent formulation of
the model, that seeks to maximize expected return, subject to a constraint
that the portfolio return exceeds some levelRmin in each observation period
[21]. It is described as following:

max
nΣ

j=1

xjRj
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s.t
nΣ

j=1

xjRjt > Rmin, t = 1, . . . , T,

nΣ
j=1

xj = 1,

xj > 0, j = 1, . . . , n.
We will use this formulation as a basic model for the numerical analysis.

This portfolio is being optimized with respect to the data set {Rjt}. We can
take this data set from historical observations or from some probabilistic
model for future returns. If one lacks both historical data on past returns
and a predictive probability model for future return, the minimax model
will not be applicable.
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3 Numerical analvsis

3.1 Basic models

Here we will present the basic models that are used for analysis. All basic
models are taken from Baumann and Trautmann[2] and then expanded
through various constraints. The objective of each model is to maximize
the expected return of the portfolio so that the portfolio risk, which is mea-
sured by various risk measures, does not exceed the risk level prescribed
by the investor, so called risk constraint. The other general constraint is
the budget constraint, i.e. the entire budget should be invested. In our
project we will use the variant of mean-variance model, which maximize
the expected return so that the prescribed risk level is not exceeded. This
model was also used in the paper from Baumann and Trautmann [2]. We
have already presented this model in section 2.2. For a better overview,
we also provide a summary of the model here:

(MV )

(...........{...........(

max
nΣ

i=1

Rixi

s.t.
nΣ

i=1

nΣ
j=1

σijxixj < ρ

nΣ
i=1

xi = 1

xi > 0 (i = 1, . . . , n)

,in which

n number of stocks

σij covariance beetween return of stock i and return of stock j
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Ri expected return of stock i

ρ maximal risk level

xi weight of stock i in portfolio

From the model we can see that first constraint represents the risk con-
straint with the maximum risk level ρ and second constraint represents
the budget constraint.

The second basic model that we will consider, is mean-absolute deviation
model from Konno and Yamazaki. As already seen in the last chapter, the
measure of this model is the mean absolute deviation of the portfolio return
from the expected portfolio return in all periods. In this case we will use
the variant of this model, described by Baumann and Trautmann [2]:

(MAD)

(..................{..................(

max
nΣ

i=1

Rixi

s.t. φt - ψt =
1

T

nΣ
i=1

(Rit -Ri)xi (t = 1, . . . , T )
TΣ
t=1

(φt + ψt) < ρ

nΣ
i=1

xi = 1

xi > 0 (i = 1, . . . , n)
φt, ψt > 0 (t = 1, . . . , T ),

where is:

T number of periods

Rit return of stock i in period t

φt positive deviation of portfolio return

ψt negative deviation of portfolio return
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As in previous model, we can see that the first constraint represents the
risk constraint,and the second represents the budget constraint. It is also
to notice that the deviation in period t is computed as sum of two neg-
ative variables φt and ψt, which correspond to the positive and negative
deviations. It has been done in this way in order to obtain a linear model.

The third basic model that we consider, is the Minimax (MM) model.
As already mentioned in the previous chapter, in this model the portfolio
risk is measured by the minimum portfolio return over all periods. The
model reads as follows [2][21] :

(MM)

(...........{...........(

max
nΣ

i=1

Rixi

s.t.
nΣ

i=1

xiRit > Rmin (t = 1, . . . , T )
nΣ

i=1

xi = 1

xi > 0 (i = 1, . . . , n)

As in the previous model, the first and the second constraints are risk and
budget constraints, respectively. The risk constraint in minimax model
ensures that the portfolio return does not fall below the minimum return
Rmin in any period.

3.2 Analvsis design and results

In this chapter we want to evaluate the models from second chapter. As
the basic models, we took the models from Baumann and Trautmann [2],
that have already been described in previous chapter. These models are
mean-variance model (MV), mean-absolute-deviation model (MAD) and
minimax model (MM). In addition to these models we have built extensions
with integer constraints. The extended models were built similarly as
in the reserach from Baumann and Trautmann [2]. The first additional
constraint is the integer constraint, which means that the number of units
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of any stock has to be integral, i.e

zi € Z>0 (i = 1, . . . , n)
Assuming Pi denotes the price of the stock i at time of the purchase and

B denotes the budget, we define:

λi :=
Pi

B
.

Then the weight of the stock i is defined as

xi := λizi (i = 1, . . . , n). (3.1)

Because of previous constraint it would not be possible to satisfy the
budget constraint in lot of cases. Therefore budget constraint has to be
modified and replaced by:

1- δ <
nΣ

i=1

xi < 1 + δ, (3.2)

with a small positive constant δ > 0.
We have also limited the maximum weight of one stock in portfolio by

30%. Extended models were used for all 3 basic models.
In order to build our models we have built datasets from stocks, which

were included in ATX (Austrian Traded Index). For this purpose we used
weekly stock returns from 2009 to 2019. For this period we created 10
dataset. First year of each dataset was used to construct the portfolio
with 3 basic and 3 extended models. Based on the performances of the
first year of each dataset, we have computed the maximal risk level ρ,
variance for the MV model, the mean absolute deviation for the MAD
and the minimum return for the Minimax model. The second year of the
dataset was used to evaluate the performance of the portfolios.
Computations were performed on the Microsoft Office Excel Solver. This

tool uses several algorithms to find optimal solutions. We used The GRG
Nonlinear Solving Method for nonlinear optimization, which uses the Gen-
eralized Reduced Gradient (GRG2) code, which was developed by Leon
Lasdon, University of Texas at Austin, and Alan Waren, Cleveland State
University, and enhanced by Frontline Systems, Inc. [26]. The standard
Microsoft Excel Solver uses a implementation of the Branch and Bound
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method to solve Mixed-Integer Programming (MIP) problems. Its speed
limitations make it suitable only for problems with a small number (per-
haps 50 to 100) integer variables[26]. Having in mind that we considered
only stocks from ATX, this number of variables was suitable for this im-
plementation.

As described in a Paper from Barreto, Haffner, Pereira and Bauer [29]
the Branch and Bound algorithm is an enumerative technique, in which a
solution is found based on the construction of a tree in which nodes repre-
sent the problems candidates and branches represent the new restrictions
to be considered. Through this tree, all integer solutions of the prob-
lem feasible region are listed explicitly or implicitly ensuring that all the
optimal solutions will be found.

The overall structure has three key elements, separation, relaxation and
pruning. Separation uses the tactic of "divide and conquer" in order to
solve the problem (P). In order to find the solution of P, it is decomposed
into two or more descendant subproblems, generating a list of candidate
problems (CP). At a subsequent step in the algorithm, a candidate is se-
lected from the list of candidate problems and the algorithm tries to solve
that problem. If a solution can not be found to that problem, that problem
is again decomposed and its descendants are added to the list of candidate
problems. If the selected problem can be solved, then a new solution is
obtained. The objective function value of this new solution is then com-
pared with the value of the incumbent solution, which is the best feasible
solution known so far. If the new solution is better than the incumbent
solution, it becomes the new incumbent. Then, the algorithm returns to
the list and selects the next candidate. This procedure is repeated until
the list is empty, and the solution of the problem is taken as the final
incumbent solution [29].

The usual way of separation of an integer programming problem is
through contradictory constraints in a single integer variable (separation
variable or branching variable). Thus, from the original problem (called
node zero), two new descendant subproblems are created, which are easier
to solve than the original one, since a constraint was added to the sep-
aration variable. Each generated node has an associated candidate sub-
problem and each branch indicates the addition of a constraint related to
the variable used in the separation. Therefore, as the algorithm moves
down in the tree, the viable region of the generated descendants becomes
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more restricted [29].
Among the possible ways of relaxation, the most common is the elim-

ination of the integral constraints (integer variables), which converts the
integer or mixed integer problem to a general LP. At first, through the re-
laxation, it assumes that the original integer variables may take fractional
values and then the resulting LP problem is solved. The obtained opti-
mal solution usually has several variables with non-integer values. Among
these variables, one must be selected for separation. Once the separation
and inclusion of new descendants in candidates list is done, the algorithm
must select from among the stored candidates the next to be evaluated
and, if necessary, separated successively until the linear problem solution
becomes integer, or unfeasible or worse than the incumbent, meaning that
the candidate sub-problem can be removed from the list (pruned), not
producing any more descendants. This procedure repeats until the list of
candidates, subproblems becomes empty[29].
Due to program limitation, there is so called MIP gap (or Integer Opti-

mality option) in Excel Solver, which allows the Solver to stop if it finds an
integer solution that is within the specified percentage of the best known
bound on the optimal solution [26]. The default and the value used for this
implementation is 1%. This means that there is a possible 1% deviation
in the selection of the best solution for extended models.
In the following we show an example of how the data sets and the models

look like:

Figure 3.1: Dataset 10 example
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Figure 3.2: MV model, portfolio construction

By the same principle the construction of the remaining five models
was made. As already said, the second year of the dataset was used for
evaluation of the portfolio. In the following table we present the results of
the different models and the comparison to the real ATX in those years.

MV MV+ MAD MAD+ MM MM+ ATX real
2019 0.16 0.16 0.21 0.21 0.18 0.16 0.16
2018 -0.15 -0.17 -0.10 -0.12 -0.25 -0.26 -0.22
2017 0.33 0.32 0.36 0.35 0.16 0.18 0.28
2016 0.04 0.05 0.03 0.03 -0.24 0.05 0.12
2015 0.08 0.10 0.16 0.18 0.48 0.41 0.11
2014 0.06 0.04 0.11 0.16 -0.04 -0.12 -0.15
2013 0.05 0.02 0.09 0.01 0.20 -0.03 0.02
2012 0.12 0.12 0.19 0.27 0.25 0.27 0.11
2011 -0.27 -0.27 -0.10 -0.11 -0.13 -0.15 -0.34
2010 1.04 1.02 0.80 1.04 0.28 0.15 0.13
O 0.15 0.14 0.18 0.20 0.08 0.07 0.02
Var 0.11 0.11 0.06 0.10 0.05 0.04 0.03

Table 3.1: Return rate of the portfolios after one year

We will show the return rate of the portfolio as a chart:
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Figure 3.3: Portfolio return

As we can see, the return rate of the portfolio in the first two datasets,
which were evaluate from the 2010 and 2011 data, significantly differ from
other observations. The reason for it is the high volatility in the stock val-
ues in those years. If we consider the portfolio returns only from 2011/2012
- 2018/2019 datasets, we obtain following results:
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MV MV+ MAD MAD+ MM MM+ ATX real
2019 0.16 0.16 0.21 0.21 0.08 0.16 0.16
2018 -0.15 -0.17 -0.10 -0.12 -0.25 -0.26 -0.22
2017 0.33 0.32 0.36 0.35 0.05 0.18 0.28
2016 0.04 0.05 0.03 0.03 -0.33 0.05 0.12
2015 0.08 0.10 0.16 0.18 0.48 0.41 0.11
2014 0.06 0.04 0.11 0.16 -0.04 -0.12 -0.15
2013 0.05 0.02 0.09 0.01 0.31 -0.03 0.02
2012 0.12 0.12 0.19 0.27 0.15 0.27 0.11
O 0.09 0.08 0.13 0.14 0.06 0.08 0.05
Var 0.02 0.02 0.02 0.02 0.06 0.04 0.02

Table 3.2: Return rate of the portfolios, stable years

We can see from both tables that the portfolios yield on average is higher
that the return from ATX, independent of which model is used. However
we can also see, particularly from the Table 3.1, that the variation of the
portfolio return is higher than the variation of the ATX return. These
results are in the line with the from Baumann and Trautmann presented
numerical results [2]. We have also analysed the performance of return per
unit of standard deviation. In this term all the models outperform ATX .
From all expending models, the MAD+ model achieves the best result, fol-
lowed by MV+ and MM+ model. These results differ from the Baumann
and Trautmann results, where MV+ was slightly better then MAD+. In
contrast to the result of Trautmann and Baumann, MM and MM+ have
the lowest variance and standard deviation compared to the other models,
but they are still outperformed by the other models. We can see in Table
3.3 that extended models MV+ and MM+ have a slightly worse perfor-
mance than standard models and MM+ has a same performance as MM.
Although the difference is smaller than it was shown in the results from
Trautmann and Baumann, this is also in line with their results as well as
with the value of flexibility concept in L:uthi and Doege, which is defined
by the (marginal) risk absorption capacity of a technology or certain types
of resources [28]. The overview of the performances of the models is given
in following tables:
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MV MV+ MAD MAD+ MM MM+ ATX real
O 0.15 0.14 0.18 0.20 0.08 0.07 0.02
Var 0.11 0.11 0.06 0.10 0.05 0.04 0.03
Std 0.34 0.33 0.25 0.32 0.22 0.20 0.18

O/Std 0.44 0.42 0.71 0.64 0.34 0.34 0.12

Table 3.3: Overview of the performance of the models (entire period)

MV MV+ MAD MAD+ MM MM+ ATX real
O 0.09 0.08 0.13 0.14 0.09 0.08 0.05
Var 0.02 0.02 0.02 0.02 0.06 0.04 0.02
Std 0.13 0.13 0.13 0.14 0.24 0.20 0.15

O/Std 0.68 0.62 1.04 0.95 0.39 0.42 0.34

Table 3.4: Overview of the performance of the models (without periods
with extreme performances)

A possible reason for the slightly different results than in the Traut-
mann and Baumman model is the selection of the stocks we analyse. We
decided to analyse stocks from the ATX index, which has a smaller num-
ber of stocks compared to the SPI (Swiss Performance Index) adopted by
Trautmann and Baumann. There are also differences in the performance
of the two indexes over the observation period. The SPI shows a smaller
decline and a better recovery after the financial crisis in 2008. The com-
parison of both indexes can be seen in the chart below.
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Figure 3.4: Comparison SPI and ATX. Source: Google Finance

37



4 Cumulative Prospect Theorv

4.1 Prospect Theorv

Prospect theory is a theory of behavioral economics and behavioral fi-
nance that was developed by Daniel Kahneman and Amos Tversky [30].
The theory explored numerous behavioral biases leading to sub-optimal
decisions making. Kahneman and Tversky found that people are biased
in their real estimation of probability of events happening. They tend
to overweight both low and high probabilities and underweight medium
probabilities [30].In their work they questioned the use of Expected Util-
ity Theory and proposed the alternative account of choice under risk.
Decision making under risk can be viewed as a choice between prospects
or gambles. A prospect (R1, p1; . . . ;Rn, pn) is a contract that yields out-
come Ri with probability pi, where pl + p2 + ...+ pn = 1. The application
of expected utility theory to the selection between potential prospects is
based on the following three principles [30].

1. Expectation: u(R1, p1; . . . ;Rn, pn) = p1u(R1) + . . . pnu(Rn).

2. Asset Integration: (R1, p1; . . . ;Rn, pn) is acceptable at asset posi-
tion w iff u(w +R1, p1; . . . ;w +Rn, pn) > u(w).

3. Risk Aversion: u is concave.

In order to doubt the Expected Utility Theory, the Prospect Theory
starts with the concept of loss aversion, an asymmetric form of risk aver-
sion, from the observation that people react differently between potential
losses and potential gains. Thus, people make decisions based on the po-
tential gain or losses relative to their specific situation (the reference point)
rather than in absolute terms; this is referred to as reference dependence.

. Faced with a risky choice leading to gains, individuals are risk-averse,
preferring solutions that lead to a lower expected utility but with a
higher certainty (concave value function)[30] [31].
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. Faced with a risky choice leading to losses, individuals are risk-
seeking, preferring solutions that lead to a lower expected utility as
long as it has the potential to avoid losses (convex value function).

These two examples are thus in contradiction with the expected utility
theory, which only considers choices with the maximum utility. Also, the
concavity for gains and convexity for losses implies diminishing marginal
utility with increasing gains/losses. In other words, someone who has more
money has a lower desire for a fixed amount of gain (and lower aversion
to a fixed amount of loss) than someone who has less money.[30] [31]
The theory continues with a second concept, based on the observation
that people attribute excessive weight to events with low probabilities and
insufficient weight to events with high probability. For example, individ-
uals may unconsciously treat an outcome with a probability of 99% as if
its probability were 95%, and an outcome with probability of 1% as if it
had a probability of 5%. Under- and overweighting of probabilities is im-
portantly distinct from under- and overestimating probabilities, a different
type of cognitive bias observed for example in the overconfidence effect.[30]
[31]

Figure 4.1: Preferences beetween positive and negative prospects [30]

The following 5 phenomena, which violate the the standard model have
been confirmed and described in various works of Tversky and Kahne-
mann: [30][34][35]

. Framing effect[34] : The rational theory of choice assuumed decrip-
tion invariance: equivalent formulations of a choice problems should
give rise to the same preference order. Contrary to this assumption
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there is evidence that variation in the framing of options, particularly
in terms of gains or losses, yield systematically different preferences.

. Nonlinear preferences[34] : The utility of a risky prospect is linear
in outcome probabilities, according to the expectation principle. In
the [30] it was shown that the small and high probabilities are over
and under weighted.

. Source dependence[34]: Willingness to bet on an uncertain event
depends not only on the degree of uncertainty but also on its source.
There are a lot of indication that people often prefer a bet on an
event in their area of competence over a bet on a matched chance
event.

. Risk seeking[34]: Risk aversion is generally assumed (i.e. Expected
Utility Theory). However, the evidence show that risk seeking is
prevalent when people must choose between a sure loss and a sub-
stantial probability of a large loss.

. Loss aversion

Prospect Theory distinguishes two phases in the choice process [30]:

1. early phase of editing

2. subsequent phase of evaluation.

The editing phase consists of a preliminary analysis of the offered
prospects, which often yields a simpler representation of these prospects.
This phase can be viewed as composed of coding, combination, segregation,
cancellation, simplification and detection of dominance. In the subsequent
evaluation phase, people behave as if they would compute a value
(utility), based on the potential outcomes and their respective
probabilities, and then choose the alternative having a higher utility.[31]
The overall value of an edited prospect, denoted V , is expressed as:

V =
nΣ

i=1

π(pi)v(Ri).

The scale π, associates each probability pi the decision weight π(pi).
That reflects the impact of p on the over-all value of the prospect. However

40



π is not the probabilistic measure since π(p)+π(1- p) is typically smaller
than 1.
The second scale v assigns to each outcome R a number v(R), which
reflects the subjective value of that outcome. Recall that outcomes are
defined relative to a reference point, which serves as the zero point of the
value scale. Hence, v measures the value of deviations from that reference
point, i.e., gains and losses [30].

The value function that passes through reference point is s-shaped and
asymmetrical. Therefore the new utility function, S-shaped utility was
introduced. It has following properties:[33]

1. increasing

2. convex on the left

3. concave on the right

4. non-differentiable at the origin

5. asymmetrical: negative events are considered worse than positive
events are considered good.

It can also be written as:

u(R) = Rγ
1{R>0} - λ(-R)γ1{R>0},

for a zero benchmark level, with λ > 0 and γ € (0, 1].

41



Figure 4.2: S-shaped utility [32]

4.2 Cumulative Prospect Theorv

The Cumulative Prospect Theory is a further development and variant
of Prospect Theory. This theory is also developed by Daniel Kahneman
and Amos Tversky [34]. The theory uses cumulative rather than separable
decision weights. In the original prospect theory, the utility of a prospect
is the sum of utilities of the outcomes, each weighted by its probabilities
[34]. The new theory suggested the two major modification[34]:

1. the carriers of value are gains and losses, not final assets.

2. the value of each outcome is multiplied by a decision weight, not by
an additive probability.
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Since cumulative probabilities are transformed, it leads to overweighting
of extreme events which occur with small probability, rather than to an
overweighting of all small probability events. The modification helps to
avoid a violation of first order stochastic dominance and makes the gen-
eralization to arbitrary outcome distributions easier [37]. In the CPT the
weighting function is given separately for gains and losses as w+ and w-

respectively. The CPT value of the prospect (R1, p1; . . . ;Rn, pn) is given
by the formula: [38][34]

kΣ
i=1

π-
i v(Ri) +

nΣ
i=k+1

π+
i v(Ri),

where the decision weights are defined by:

π-
1 = w-(p1),

π-
i = w-(p1 + . . .+ pi)- w-(p1 + . . .+ pi-1, 2 < i < k.

π+
n = w+(pn),

π+
i = w+(pi + . . .+ pn)- w+(pi+1 + . . .+ pn), k + 1 < i < n- 1.

A comparison between PT and CPT weighting functions is given below.

Figure 4.3: A typical weighting function for PT [38]

43



Figure 4.4: A typical CPT weighting function [38]

In the work by Deng and Pirvu [39] some of the possible solutions for
the application of the portfolio optimization models under CPT were pre-
sented. They considered the multi period investment strategies with one
risk free and one risky asset. The results revealed the effect of CPT in-
vestors, psychology on the optimal portfolio choice. They found out that
the ratio of wealth invested in the risky asset was decreasing when the
coefficient of relative risk aversion increased. Moreover the investment in
the risky asset was decreasing in the risky asset volatility and increasing
in the risky asset return. The effect of the model parameters on optimal
strategies was slightly diminishing as time went by.[39]
At the time of writing this work, the author was not aware of any ap-
plications with integer constraints. Nevertheless we think that there is a
lot of potential, particularly in the portfolio optimization strategies under
CPT for small, individual investors. Therefore our recommendation is to
consider CPT and make the application for the optimal portfolio under
integer constraints and under cumulative prospect theory in some of the
further works.
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5 Conclusion

In this work we used the models, described in the paper from Baumann
and Trautmann [2], as basic models for the numerical analysis. The models
were extended with similar constraints as in the paper [2], particularly with
integer constraint. We have used the stocks, included in ATX, in order
to built relevant data sets for the analysis. All models yield on average
a higher return and achieve a better risk-return ratio than the ATX. The
best risk-return ratio has the MADmodel from Konno and Yamazaki, what
differs from the results by Baumman and Trautmann, where MV model
of Markowitz outperformed MAD. Extended models MV+ and MAD+
have a slightly worse performance than the corresponding standard models,
while the MM+ has the same performance as MM. Although the difference
is smaller than expected, this is also in line with the results from papers and
the value of flexibility concept, described by L:uthi and Doege [28]. The
numerical application of the Cumulative Prospect Theory under integer
constraints is left for some further research. We think that CPT has a big
potential and eventually could be successfully implemented as the model
for individual and small investors.
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6 Notations and Conventions

. P0, P1 - price of the risky asset at time t0 and time t1 respectively....10

. R - return.......................................................................................10

. Ri, i = 1, . . . , n - return of a risky asset i........................................11

. Ri - average expected return of asset i.............................................11

. R0 - return of the risk free asset.......................................................13

. r - rate of return.............................................................................10

. n - number of assets in portfolio.....................................................10

. B - initial budget ...........................................................................10

. xi - weight of stock i.......................................................................11

. σ2
i , σii - variance of asset i................................................................11

. σij - covariance between asset i and asset j......................................11

. li - risk level of the Portfolio i .......................................................13

. Rmin - minimum acceptable return.................................................14

. Sharpe ratio....................................................................................16

. X - random variable .......................................................................16

. V aR - Value at risk........................................................................16

. CV aR - Conditional value at risk..................................................16

. u - non decreasing concave function...............................................17
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. ω - elementary event in a probability space (Ω,f , P )...................18

. z - decision vector..........................................................................18

. C - set of all random variables X..................................................18

. ϕ : Z x Ω -→ R.............................................................................18

. δX - absolute semideviation...........................................................20

. σX - standard semideviation..........................................................20

. m(R) - measure of central tendency...............................................21

. Rjt - return of the security/asset j in time period t.......................21

. yi =
|||Σn

j=1(Rjt -Rj)xj

|||.................................................................21
. ajt = Rjt-Rj.................................................................................21

. φt - positive deviation of portfolio return at time t...........................22

. ψt - negative deviation of portfolio return at time t..........................22

. K = 2
ΣT

t=1 ψt................................................................................22

. Rpt - return on portfolio in period t..................................................23

. Ep - average return on portfolio.....................................................23

. Mp = min
t

Rpt minimum return on portfolio...................................23

. ρ - maximum allowed risk level.......................................................26

. (R1, p1; . . . ;Rn, pn) - prospect........................................................36

. pi - probability of an outcome i......................................................36

. V =
Σn

i=1 π(pi)v(Ri) - overall value of a prospect...........................38

. π(pi) - decision weight....................................................................38

. v(Ri) - subjective value of an outcome............................................38
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