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Abstract

This thesis is concerned with the Lp-Busemann-Petty centroid inequality, an affine
isoperimetric inequality, which compares the volume of a convex body in Rn with
that of its Lp-centroid body as an extension of the classical Busemann-Petty cen-
troid inequality. Isoperimetric-type inequalities not only occupy a central role in
the field of geometric convexity but also have numerous applications to fields
such as ordinary and partial differential equations, functional analysis, the ge-
ometry of numbers, discrete geometry and polytopal approximations, stereol-
ogy and stochastic geometry, and Minkowskian geometry. On the one hand, we
present a direct proof of the Lp-Busemann-Petty centroid inequality by Campi
and Gronchi [10] which does not use the Lp-analog of the Petty projection in-
equality but instead uses shadow systems. On the other hand, we present a
randomized version of the same inequality due to Paouris and Pivovarov [28]
using an extension of Groemer’s theorem [16] to the class P[n] of all probability
measures on Rn that are absolutely continuous with respect to Lebesgue measure
and rearrangement inequalities. Additionally, we present a randomized version
of the polar Lp-Busemann-Petty centroid inequality due to Cordero-Erausquin,
Fradelizi, Paouris and Pivovarov [12] which combines methods and ideas from
both topics above.
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Notation

We mainly follow the notation from [32].
The setting in this thesis is the n-dimensional (n ≥ 2) real Euclidean vector

space Rn with origin o, standard inner-product h·, ·i, standard Euclidean norm
k·k2 and standard unit vector basis e1, . . . , en. Furthermore, we denote the or-
thogonal complement A? of a subset A ✓ Rn with A? := {x 2 Rn : hx, yi =
0 for all y 2 A}.

We denote by Sn−1 ✓ Rn the (n − 1)-dimensional unit sphere in Rn,

Sn−1 := {x 2 Rn : kxk = 1},

and by Bn ✓ Rn the closed unit ball in Rn,

Bn := {x 2 Rn : kxk  1}.

We write voln(·) for the n-dimensional Lebesgue measure ln and denote the
volume of Bn by

wn = voln(Bn) =
p

n
2

G(1 + n
2 )

,

where G denotes the Gamma function G(z) =
R •

0 tz−1e−tdt.
Additionally, we reserve Dn for the Euclidean ball of volume one, i.e., Dn =

w−1/n
n Bn.
The vector x 2 Rn is a linear combination of the vectors x1, . . . , xn 2 Rn if

x = l1x1 + · · · + lnxn with suitable l1, . . . , ln 2 R. If l1 + · · · + ln = 1, then
x is an affine combination of x1, . . . , xn. For A ✓ Rn, linA (affA) denotes the
linear hull (affine hull) of A which is the set of all linear (affine) combinations of
elements of A and at the same time the smallest linear subspace (affine subspace)
of Rn containing A.

Points x1, . . . , xn 2 Rn are affinely independent if none of them is an affine
combination of the others, i.e., if

k

Â
i=1

lixi = o with li 2 R and
k

Â
i=1

li = 0

implies that l1 = · · · = ln = 0.
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For A, B ✓ Rn and l 2 R we define

A + B := {a + b : a 2 A, b 2 B}, lA := {la : a 2 A}
and write −A for (−1)A, A − B for A + (−B) and A + x for A + {x}, where
x 2 Rn.

A hyperplane of Rn can be written as

Hu,a = {x 2 Rn : hx, ui = a}
with u 2 Rn\{o} and a 2 R. The hyperplane Hu,a bounds the two closed halfs-
paces

H−
u,a := {x 2 Rn : hx, ui  a} H−

u,a := {x 2 Rn : hx, ui ≥ a}
For a subset A ✓ Rn we denote the indicator function of A by 1A, that is

1A(x) = 1 if x 2 A and 1A(x) = 0 if x 2 Rn\A.
Furthermore, we denote the power set of a set A, i.e., the set of all subsets of A

including the empty set and A itself, by P(A).
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1 Introduction

Affine isoperimetric inequalities occupy a central role in many different fields
of mathematics such as geometric convexity, geometry of numbers, functional
analysis and Minkowskian geometry just to name a few. Depending on the geo-
metric bodies of interest, there are many different isoperimetric-type inequalities
but, at least in convex geometry, the Euclidean ball is the extremal case in most
of them. Therefore, we will focus on one specific isoperimetric-type inequality,
namely the Lp-Busemann-Petty centroid inequality which compares the volume
of a convex body in Rn with that of its Lp-centroid body and is an extension of
the classical Busemann-Petty centroid inequality. It turns out that the classical
inequality as well as the Lp-equivalent inequality are in close relationships with
other affine isoperimetric inequalities like the Petty projection inequality or the
Busemann random simplex inequality. Although, those other isoperimetric-type
inequalities are not of much interest for the topic of this thesis, we still present
them and their relationships to give a rough overview and motivation.

Chapter 2 and Chapter 3 introduce and recap the most important definitions,
results and notation from the field of convex geometry as well as measure and
probability theory. Since these chapters only serve as an entrypoint to be able to
follow the next chapters, proofs are mostly omitted.

Chapter 4 deals with the Lp-Busemann-Petty centroid inequality and, in con-
trast to Lutwak, Yang and Zhang [23], who proved the inequality by using the
Lp-analog of the Petty projection inequality, presents the direct proof given by
Campi and Gronchi [10] who used shadow systems and Steiner symmetrization.

Chapter 5 extends the Lp-Busemann-Petty centroid inequality presented in the
previous chapter in a randomized way following Paouris and Pivovarov [28].
They extended a theorem by Groemer [16] on the expected volume of a ran-
dom polytope in a convex body and obtained the Lp-Busemann-Petty centroid
inequality as an application of it.

Chapter 6 covers the dual inequality of Chapter 5, the randomized polar Lp-
Busemann-Petty centroid inequality (for general measures), due to Cordero-Erausquin,
Fradelizi, Paouris and Pivovarov [12] which combines methods and ideas from
both Chapter 4 and Chapter 5 for the main result.

Of course, this is just a small insight into affine isoperimetric inequalities and
their generalizations. Further generalizations, e.g. to Orlicz-bodies or different
types of convex bodies such as spherical centroid bodies are not part of this thesis
but can be found in the available literature, e.g. [3], [15], [18], [24], [25] and [27].
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2 Background: Geometry

This chapter serves as an introduction and a reminder of notation, definitions
and results from the field of convex geometry required for the understanding of
the following chapters. Therefore, proofs are mostly omitted but more details,
further results as well as complete proofs can be found in [14] and [32].

2.1 Convex Bodies

Convex bodies form the central geometrical object in this thesis which is why we
start with general definitions and results about convex bodies. The starting point
for this whole area of mathematics is the convex set.

Definition 2.1 (Convex Set). A set A 2 Rn is convex if together with any two points
x, y it contains the segment [x, y], thus, if

(1 − l)x + ly 2 A for all x, y 2 A, 0  l  1.

An immediate consequence of the definition is that intersections of convex sets
are convex, affine images of convex sets are convex and, if A, B are convex sets
then A + B and lA with l 2 R are convex.

We now restrict affine and linear combinations to non-negative coefficients.

Definition 2.2 (Convex Combination). The point x 2 Rn is a convex combination of
the points x1, . . . , xk 2 Rn if there are numbers l1, . . . , lk 2 R such that

x =
k

Â
i=1

lixi with li ≥ 0(i = 1, . . . , k),
k

Â
i=1

li = 1.

Definition 2.3 (Convex Hull). For A ✓ Rn, the set of all convex combinations of any
finitely many elements of A is called the convex hull of A and is denoted by conv(A).

Results regarding the convex hull and convex sets can be found in [32]. How-
ever, we are mostly interested in supporting halfspaces which can be used to
characterize convex sets.

Definition 2.4. Let A ✓ Rn be a subset and H ✓ Rn be a hyperplane and let H+, H−
denote the two closed halfspaces bounded by H. We say that H supports A at x if

4



2 Background: Geometry

x 2 A \ H and either A ✓ H+ or A ✓ H−. Further, H is a support plane of A or
supports A if H supports A at some point x, which is necessarily a boundary point of A.
If H = Hu,a supports A and A ✓ H−

u,a = {y 2 Rn : hy, ui  a}, then H−
u,a is called

a supporting halfspace of A and u is called an outer (or exterior) normal vector of both
Hu,a and H−

u,a. If, moreover, Hu,a supports A at x, then u is an outer normal vector of A
at x.

Theorem 2.5. Let A ✓ Rn be convex and closed. Then through each boundary point of
A there is a support plane of A. If A 6= ∆ is bounded, then for each vector u 2 R\{o}
there is a support plane to A with outer normal vector u.

Theorem 2.6. Let A ✓ Rn be a closed set such that intA 6= ∆ and such that through
each boundary point of A there is a support plane to A. Then A is convex.

Therefore, the last two theorems yield the following characterization of convex
sets.

Corollary 2.7. Every nonempty closed convex set in Rn is the intersection of its sup-
porting halfspaces.

We close this section with the main definition and geometrical object of this
thesis. Of course, all results presented above apply to convex bodies as well.

Definition 2.8 (Convex Body). A nonempty, compact, convex subset of Rn is called a
convex body. The set of all convex bodies is denoted by Kn.

2.2 Convex Functions

The investigation of convex sets or convex bodies is closely linked to convex func-
tions which play an important role throughout this thesis. We only present basic
properties and results in this section and refer, again, to [32] for more details.

Definition 2.9 (Convex Function). A function f : Rn ! R is called convex if

f ((1 − l)x + ly)  (1 − l) f (x) + l f (y)

for all x, y 2 Rn and for 0  l  1.

A closely related concept to convex functions are the concave functions.

Definition 2.10 (Concave Function). A function f : Rn ! R is called concave if

f ((1 − l)x + ly) ≥ (1 − l) f (x) + l f (y)

for all x, y 2 Rn and for 0  l  1.

5



2 Background: Geometry

An important subset of convex functions are so-called sublinear functions which
must satisfy two properties. It turns out that sublinear functions play a vital role
in the description of convex bodies.

Definition 2.11 (Sublinear Functions). A function f : Rn ! R is called positively
homogeneous if

f (lx) = l f (x) for all l ≥ 0 and all x 2 Rn,

and f is called subadditive if

f (x + y)  f (x) + f (y) for all x, y 2 Rn.

A function that is positively 1-homogeneous and subadditive is called sublinear.

In addition to recalling the definition of a convex function, we state two useful
and well-known criteria for differentiable functions of one variable to be convex.

Theorem 2.12. Let D ✓ R be an open interval and f : D ! R a differentiable function.
Then f is convex if and only if f 0 is increasing.

Corollary 2.13. Let D ✓ R be an open interval and f : D ! R a twice differentiable
function. Then f is convex if and only if f 00 ≥ 0.

2.3 Support Functions

There are many ways in which a convex body can be described by real functions
but, especially in the Brunn-Minkowski theory and convex geometry, the concept
of the support function is fundamental. We have seen in Corollary 2.7 that a
closed convex set is the intersection of its supporting halfspaces. Therefore, it
can be described by specifying the position of its support planes by their outer
normal vectors. This is exactly the support function.

Definition 2.14 (Support Function). Let K ✓ Rn be a closed convex set with ∆ 6=
K 6= Rn. The support function h(K, ·) of K is defined by

h(K, u) := sup{hz, ui : z 2 K}, for u 2 Rn.

When working with nonempty, compact convex sets (convex bodies) we can
replace the supremum with the maximum. We can also extend the notions of
support plane and supporting halfspace of K in the following way. For u 2
Rn\{o},

H(K, u) := {x 2 Rn : hx, ui = h(K, u)},

H−(K, u) := {x 2 Rn : hx, ui  h(K, u)},

6



2 Background: Geometry

each with outer normal vector u.
Therefore, we have

x 2 K , hx, ui  h(K, u)

which means that for a unit vector u 2 Rn\{o} the number h(K, u) is the signed
distance of the support plane to K with outer normal vector u from the origin.
The distance is negative if and only if u points into the open halfspace containing
the origin.

The support function of a convex body K is continuous but also convex and
sublinear.

Proposition 2.15. Let K 2 Kn, l ≥ 0 and u, v 2 Rn, then

1. h(K, lu) = lh(K, u),

2. h(K, u + v)  h(K, u) + h(K, v).

This sublinearity is already enough to characterize a support function.

Theorem 2.16. If f : Rn ! R is a sublinear function, then there is a unique convex
body K 2 Kn with support function f .

Another important property of the support function is its additive behavior in
the first argument.

Theorem 2.17. For K, L 2 Kn one has

h(K + L, ·) = h(K, ·) + h(L, ·).

2.4 The space of convex bodies Kn

We now shift our attention to the space of convex bodies Kn and its structures.
The additivity of the support function shows that the equality K + M = L + M

for convex bodies K, L, M 2 Kn implies K = L which makes (Kn,+) a com-
mutative semigroup with cancellation law. Furthermore, multiplication with
nonnegative real numbers satsifies the rules l(K + L) = lK + lL, (l + µ)K =
lK + µK, l(µK) = (lµ)K, 1K = K.

We are now able to equip Kn with a metric.

Definition 2.18 (Hausdorff Distance). The Hausdorff distance of the sets K, L 2 Kn

is defined by

d(K, L) := max
⇢

max
x2K

min
y2L

kx − yk, max
x2L

min
y2K

kx − yk

or, equivalently, by

d(K, L) = min{l ≥ 0 : K ✓ L + lBn, L ✓ K + lBn}.

7



2 Background: Geometry

Due to Blaschke’s selection theorem [32, Theorem 1.8.7], (Kn, d) is a locally
compact complete metric space. Since support functions are 1-homogenous we
can restrict them to the sphere Sn−1. This brings us to following fundamental
theorem which is used to verify convergence of convex bodies in the Hausdorff
metric.

Theorem 2.19. The map f : Kn ! C(Sn−1), K 7! h(K, ·) is an isomorphic embedding
of Kn into the Banach space C(Sn−1) of continuous functions in Sn−1 by

d(K, L) = kh(K, ·)− h(L, ·)k•

for K, L 2 Kn.

We close this section with the fact that pointwise convergence of support func-
tions implies uniform convergence and that the volume functional voln(·) is con-
tinuous on Kn.

Theorem 2.20. If a sequence of support functions converges pointwise (on Rn or, equiv-
alently, on Sn−1), then it converges uniformly on Sn−1 to a support function.

Theorem 2.21. The volume functional voln(·) is continuous on Kn.

2.5 Centroid, Projection and Polar Bodies

With the definitions and results from the previous chapter we are now able to
define some special convex bodies which are needed to be able to present some
affine isoperimetric inequalities in the next section.

Definition 2.22 (Centroid Body). The centroid body G(K) of K 2 Kn containing the
origin o is the convex body whose support function is

h(G(K), x) =
1

voln(K)

Z
K
|hx, yi|dy for x 2 Rn.

One interesting property of an origin symmetric body K is that the boundary
of G(K) is the locus of the centroids of all the halves of K obtained by cutting K
with hyperplanes through the origin.

In order to be able to define projection bodies we first need to introduce the
concept of mixed volumes.

Definition 2.23 (Mixed Volume). The mixed volume of K1, . . . , Kn 2 Kn is defined by

V(K1, . . . , Kn) =
1
n!

n

Â
k=1

(−1)k+n Â
1i1<···<imn

V(Ki1) + · · ·+ V(Kim).

8



2 Background: Geometry

The following theorem lets us define a finite measure on Sn−1, namely the
mixed area measure of K1, . . . , Kn−1, which we can use to define the surface area
measure of a convex body K.

Theorem 2.24. Let K1, . . . , Kn−1 2 Kn. There exists a finite measure S(K1, . . . , Kn−1, ·)
on Sn−1, called the mixed area measure of K1, . . . , Kn−1, such that

V(K1, . . . , Kn−1, K) =
1
n

Z
Sn−1

h(K, u)dS(K1, . . . , Kn−1, u)

for all K 2 Kn.

Definition 2.25 (Surface Area Measure). The surface area measure Sn−1(K, ·) of a
convex body K 2 Kn is the measure on Sn−1 defined by

Sn−1(K, ·) := S(K, . . . , K, ·).
Definition 2.26 (Projection Body). The projection body PK of K 2 Kn is the convex
body whose support function is

h(PK, v) = Vn−1(K|v?) = 1
2

Z
Sn−1

|hu, vi|dSn−1(K, u) for v 2 Sn−1

We finish this section with the definition of the polar body K◦ of a convex body
K. In the dual concept of a convex set the origin o plays a role which is why we
denote by Kn

o the set of all convex bodies in Kn containing o, and by Kn
(o) the

subset of all convex bodies with o as an interior point.

Definition 2.27 (Polar Body). For a convex body K 2 Kn with o 2 intK the polar body
K◦ is defined as

K◦ = {u 2 Rn : hu, vi  1 for all v 2 K}.

It turns out that for K 2 Kn
(o) the set K◦ is in fact a true dual object.

Theorem 2.28. Let K 2 Kn
(o). Then K◦ 2 Kn

(o) and K◦◦ = K.

2.6 Some Affine Isoperimetric Inequalities

We are now able to give a rough overview of some of the most important affine
isoperimetric inequalities and the relations between them. We mainly follow the
survey article by Lutwak [21].

We start with the Blaschke-Groemer inequality which can be stated as follows.

9



2 Background: Geometry

Theorem 2.29 (Blaschke-Groemer Inequality). If K is a convex body with nonempty
interior in Rn, then

1
voln(K)n+1

Z
K
· · ·

Z
K
[x0, x1, . . . , xn]dx0dx1 · · · dxn ≥ wnvoln(K),

where [x0, x1, . . . , xn] denotes the volume of the simplex in Rn whose vertices are the
points x0, x1, . . . , xn 2 Rn. Equality holds if and only if K is an ellipsoid.

Closely related to this inequality is the Busemann random simplex inequality.

Theorem 2.30 (Busemann Random Simplex Inequality). If K is a convex body with
nonempty interior in Rn and x0 2 K, then

1
voln(K)n

Z
K
· · ·

Z
K
[x0, x1, . . . , xn]dx1 · · · dxn ≥ 2wn−1

n+1

(n + 1)!wn+1
n

voln(K),

where equality holds if and only if K is an ellipsoid centered at x0.

Petty was able to give an integral representation of the mixed volume of cen-
troid bodies and, as a special case, the volume of the centroid body G(K) of
K 2 Kn

o as

voln(G(K)) =
2n

voln(K)n

Z
K
· · ·

Z
K
[0, x1, . . . , xn]dx1 · · · dxn

which ultimately allowed Petty to reformulate the Busemann random simplex
inequality as the Busemann-Petty centroid inequality.

Theorem 2.31 (Busemann-Petty Centroid Inequality). If K 2 Kn
o , then

voln(G(K)) ≥
✓

2wn−1

(n + 1)wn

◆n
voln(K),

where equality holds if and only if K is an origin symmetric ellipsoid.

Another fundamental affine isoperimetric inequality is the Petty Projection In-
equality.

Theorem 2.32 (Petty Projection Inequality). If K is a convex body with nonempty
interior in Rn, then

voln(K)n−1voln(P◦(K)) 
✓

wn

wn−1

◆n
,

where equality holds if and only if K is an ellipsoid.

10



2 Background: Geometry

Here P◦(K) is the polar body of the projection body P(K) of K 2 Kn. Petty [30]
proved that the Busemann-Petty centroid inequality implies the Petty projection
inequality. Conversly, Lutwak [20] proved that the Petty projection inequality
implies the Busemann-Petty centroid inequality.

In the following chapters we present generalizations of the Busemann-Petty
centroid inequality in the form of the Lp-Busemann-Petty centroid inequality,
the randomized version of the Lp-Busemann-Petty centroid inequality and the
randomized polar Lp-Busemann-Petty centroid inequality for general measures.

2.7 Shadow Systems and Steiner Symmetrization

Another important concept that we need in later chapters is that of shadow sys-
tems (or linear parameter systems) introduced by Rogers and Shephard [31] [33].

Definition 2.33 (Shadow System). A shadow system (or a linear parameter system)
along the direction v is a family of convex bodies Kt ✓ Rn that can be defined by

Kt = conv{z + a(z)tv : z 2 A ✓ Rn},

where A is an arbitrary bounded set of points, a is a real bounded function on A, and the
parameter t runs in an interval of the real axis.

One particular type of shadow system are parallel chord movements.

Definition 2.34. A parallel chord movement along the direction v is a family of convex
bodies Kt in Rn defined by

Kt = {z + b(x)tv : z 2 K, x = z − hz, viv},

where K is a convex body in Rn, b is a continuous real function on v? and the parameter
t runs in an interval of the real axis, say t 2 [0, 1].

Basically, to each chord of K = K0 parallel to the direction v we assign a speed
vector b(x)v, where x is the projection of the chord onto v?. We then let the
chords move for a time t and denote by Kt their union. The only restriction when
defining the speed function b is that the union Kt has to be convex.

We close this chapter with one of the most important and heavily used sym-
metrization procedures for convex bodies - the Steiner Symmetrization.

Definition 2.35 (Steiner Symmetrization). Let v? 2 Rn be a hyperplane and let
K ✓ Kn. The Steiner symmetral of K with respect to v? is the set Sv?K with the
property that, for each line v orthogonal to v? and meeting K, the set v \ Sv?K is a
closed segment with midpoint on v? and length equal to that of the set v \ K. The
mapping Sv? : K ! Sv?K is the Steiner symmetrization with respect to v?.

11



2 Background: Geometry

It turns out that the movement related to the Steiner Symmetrization is a special
instance of a shadow system. If we fix a direction v, then a convex body can be
written as

K = {x + yv 2 Rn : x 2 K|v?, y 2 R, f (x)  y  g(x)}
where f and −g are convex functions on K|v?. The parallel chord movement
with speed function b(x) = −( f (x) + g(x)) and t 2 [0, 1] is such that K0 = K
and K1 = Kv, the reflection of K in the hyperplane v?, and K1/2 is the Steiner
symmetral of K with respect to v?.

12



3 Background: Measure and
Probability Theory

Similarly to Chapter 2, this chapter serves as an overview of important definitions
and results needed for the following chapters. We follow [13] and refer to it for
more details and proofs.

3.1 Measure Theory

In order to be able to define measure spaces and probability spaces we need some
standard definitions of additive functions.

Definition 3.1 (Finitely Additive Function). Let X be a set, P(X) its power set and
C ✓ P(X) a collection of subsets. A function µ from C into [−•, •] is said to be finitely
additive if µ(∆) = 0 and whenever Ai 2 C are disjoint for i = 1, . . . , n, and

A :=
n[

i=1

Ai 2 C, we have µ(A) =
n

Â
i=1

µ(Ai).

Definition 3.2 (Countably Additive Function). Let X be a set, P(X) its power set
and C ✓ P(X) a collection of subsets. A function µ from C into [−•, •] is said to be
countably additive if µ(∆) = 0 and whenever An 2 C are disjoint for n = 1, . . . , and

A :=
[

n≥1

An 2 C, we have µ(A) = Â
n≥1

µ(An).

Furthermore, we need the concept of s-algebras as the underlying structures.

Definition 3.3 (s-Algebra). Let X be a set and P(X) its power set. A collection A ✓
P(X) is called a ring if ∆ 2 A and for all A and B in A, we have A [ B 2 A and
B\A 2 A. A ring A is called an algebra if X 2 A. An algebra A is called a s-algebra if
for any sequence (An)n2N of sets in A,

S
n≥1 An 2 A.

One of the most important s-algebras is the Borel s-algebra containing Borel
sets.

13



3 Background: Measure and Probability Theory

Definition 3.4 (Borel Sets). The s-algebra generated by the open sets of Rn, that is the
intersection of all the s-algebras containing the family of open sets, is called the Borel
s-algebra. The sets in it are called Borel sets.

Definition 3.5 (Measure Space). A countably additive function µ from a s-algebra S
of subsets of the set X into [0, •] is called a measure. Then (X,S , µ) is called a measure
space.

We also need the notion of measurable functions and product measures for the
subsequent fundamental theorems from measure theory.

Definition 3.6 (Measurable Function). If (X,S) and (Y,B) are measure spaces and
f is a function from X into Y, then f is called measurable if f−1(B) 2 S for all B 2 B.

Theorem 3.7 (Dominated Convergence). Let fn and g be in L1(X,S , µ), | fn(x)| 
g(x) and fn(x) ! f (x) for all x. Then f 2 L1 and

R
fndµ ! R

f dµ.

Let (X,B, µ) and (Y, C, n) be any two measure spaces. In X ⇥ Y let R be the
collection of all B ⇥ C with B 2 B and C 2 C. For such sets let r(B ⇥ C) :=
µ(B)n(C). It can be shown (see [13, Theorem 4.4.4]) that r extends uniquely to a
measure on B ⇥ C and is called the product measure µ ⇥ n.

Theorem 3.8 (Product Measure Existance Theorem). Let (X,B, µ) and (Y, C, n) be
two s-finite measure spaces. Then r extends uniquely to a measure on B ⌦ C such that
for all E 2 B ⌦ C,

r(E) =
Z Z

1E(x, y)dµ(x)dn(y) =
Z Z

1E(x, y)dn(y)dµ(x).

This brings us to Fubinis theorem, the most important theorem on integrals for
product measures.

Theorem 3.9 (Fubini). Let (X,B, µ) and (Y, C, n) be s-finite and let f be a function
from X ⇥ Y into [0, •] measurable for B ⌦ C, or f 2 L1(X ⇥ Y,B ⌦ C, µ ⇥ n). ThenZ

f d(µ ⇥ n) =
Z Z

f (x, y)dµ(x)dn(y) =
Z Z

f (x, y)dn(y)dµ(x).

Here
R

f (x, y)dµ(x) is defined for n-almost all y and
R

f (x, y)dn(y) for µ-almost all x.

Another standard result is the layer cake formula or layer cake representation
which can be stated as follows (see [19, Theorem 1.13]).

Theorem 3.10 (Layer Cake Formula). Let n be a measure on the Borel sets of the
positive real line [0, •) such that

f(t) := n([0, t))

14



3 Background: Measure and Probability Theory

is finite for every t > 0. Now let (W,S , µ) be a measure space and f any nonnegative
measurable function on W. ThenZ

W
f( f (x))dµ(x) =

Z •

0
µ({x : f (x) > t})dn(t).

In particular, by choosing dn(t) = ptp−1dt for p > 0, we haveZ
W

f (x)pdµ(x) = p
Z •

0
tp−1µ({x : f (x) > t})dt.

3.2 Lp Spaces

In this section we quickly recall the concept of Lp spaces and, especially, the
Minkowski inequality which finds heavy use in Chapter 4.

Definition 3.11 (Lp Space). For any measure space (X,S , µ) and 0 < p < •,
Lp(X,S , µ) := Lp(X,S , µ, R) denotes the set of all measurable functions f on X such
that

R | f |pdµ < • and the values of f are real numbers except possibly on a set of mea-
sure 0, where f may be undefined or infinite. For 1  p < •, k f kp := (

R | f |pdµ)1/p, s
called the Lp norm or Lp-norm of f .

We close this very short section with two useful inequalities for Lp-norms.

Theorem 3.12. For any integrable function f with values in R, | R f dµ|  R | f |dµ.

Theorem 3.13 (Minkowski Inequality). For 1  p  •, if f and g are in Lp(X,S , µ),
then f + g 2 Lp(X,S , µ) and k f + gkp k f kp+kgkp.

3.3 Probability Theory

Probability spaces are measure spaces with a special, normalized measure called
probability measure.

Definition 3.14 (Probability Space). A measure space (W,S) is a set W with a s-
algebra S of subsets of W. A probability measure P is a measure on S with P(W) = 1.
(W,S , P) is called a probability space.

Members of S are called measurable sets, e.g., Borel sets, in measure theory and
events in a probability space. Furthermore, if (W,S , P) is a probability space and
(A,B) any measure space, a measurable function X : W ! A is called a random
variable. The image measure P ◦ X−1 defined on B is also a probability measure
and called law of X, or L(X). Random variables Xj are identically distributed if
L(Xn) = L(X1) for all n. Lastly, two events A and B are called independet for a
probability measure P if P(A \ B) = P(A)P(B).
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3 Background: Measure and Probability Theory

Definition 3.15 (Expectation). The expectation or mean E(X) of a real-valued random
variable X is defined as

R
XdP if and only if the integral exists.

Like any integral, the expectation is linear.

Theorem 3.16. For any two random variables X and Y such that the expectations E(X)
and E(Y) are both defined and finite, and any constant c, E(cX +Y) = cE(X) +E(Y).

Let (X,S , P) be a probability space and X1, X2, . . . be real random variables
on X. Let Sn := X1 + · · ·+ Xn. Any event with probability 1 is said to happen
almost surely (a.s.). Therefore, a sequence Yn of random variables is said to
converge almost surely to a random variable Y if P(Yn ! Y) = 1.

This brings us to the strong law of large numbers which plays a vital role in
the last two chapters.

Theorem 3.17 (Strong Law of Large Numbers). For independent, identically dis-
tributed real Xj, if E(X1) < •, then the strong law of large numbers holds, that is,
Sn/n ! E(X1) almost surely. If E(X1) = +•, then almost surely Sn/n does not
converge to any finite limit.

The strong law of large numbers can also be stated for random compact sets
[2].

Definition 3.18. A selection from the random set X is a random vector x such that x 2 X
almost surely. Let X be a random set such that each selection has finite expectation E(x).
The expectation of X, written E(X), is the set {E(x) : x is a selection of X}.

Theorem 3.19. Let Xi, i = 1, 2, . . . be independent, identically distributed random sets
such that E(Xi) < •. Then

SN =
X1 + · · · XN

N
! E(conv(X)) (a.s.).

3.4 Rearrangements of Functions

Typically, Steiner symmetrization is used on Kn but, especially in the last two
chapters, we make use of rearrangement inequalities. Therefore, we present some
definitions and results concerning the rearrangement of functions in this section
but refer to [8] and [19] for further material on this subject.

Definition 3.20. Let A be a Borel subset of Rn with finite Lebesgue measure. The
symmetric rearrangement A⇤ of A is the open ball with center at the origin, whose volume
is equal to the measure of A. Since we choose A⇤ to be open, 1A⇤ is lower semicontinuous.
The symmetric decreasing rearrangement of 1A is defined by

1⇤A = 1A⇤ .
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3 Background: Measure and Probability Theory

We only consider Borel measurable functions f : Rn ! R+ which satisfy the
following condition: for every t > 0, the set {x 2 Rn : f (x) > t} has finite
Lebesgue measure. For such functions, we say that f vanishes at infinity.

Definition 3.21 (Symmetric Decreasing Rearrangement). In the case that f vanishes
at infinity, the symmetric decreasing rearrangement f ⇤ is defined by

f ⇤(x) =
Z •

0
1⇤{ f>t}(x)dt =

Z •

0
1{ f>t}⇤dt.

The Steiner symmetrization for convex sets was already introduced in Section
2.7 but we also define it here for measurable functions vanishing at infinity.

Definition 3.22 (Steiner Symmetrization for Measurable Functions). Let f : Rn !
R+ be a measurable function vanishing at infinity. For q 2 Sn−1, we fix a coordinate
system such that e1 := q. The Steiner symmetrization f ⇤(·|q) of f with respect to q? is
defined as follows: for x2, . . . , xn 2 R, we set h(t) = f (t, x2, . . . , xn) and define

f ⇤(t, x2, . . . , xn|q) := h⇤(t).

In other words, f ⇤(·|q) is obtained by rearranging f along every line parallel to q.

We are now able to give an overview of results related to the Rogers/Brascamp-
Lieb-Luttinger rearrangement inequality proved in [7].

Theorem 3.23 (Rogers/Brascamp-Lieb-Luttinger Rearrangement Inequality). Let
f1, . . . , fM : R ! R+ be non-negative measurable functions. Let u1, . . . , uM 2 Rn.
Then Z

Rn

m

’
i=1

fi(hx, uii)dx 
Z

Rn

m

’
i=1

f ⇤i (hx, uii)dx.

For symmetric convex sets K = −K ✓ Rn we obtain the following

Corollary 3.24. Let K be a symmetric convex set in Rn. Suppose that f1, . . . , fn are
non-negative measurable functions defined on R. ThenZ

K

n

’
i=1

fi(xi)dx 
Z

K

m

’
i=1

f ⇤i (xi)dx.

With the definition of quasi-concave and quasi-convex functions, we can show
an immediate but important consequence of the above corollary. The proof is
taken from [28].

Definition 3.25 (Quasi-Concave Function). We say that F : RN ! R+ is quasi-
concave if for all s, the set {x : F(x) > s} is convex.

17



3 Background: Measure and Probability Theory

Definition 3.26 (Quasi-Convex Function). We say that F : RN ! R+ is quasi-convex
if for all s, the set {x : F(x) < s} is convex.

Corollary 3.27. Let F : RN ! R+ be an even quasi-concave function and gi be real
non-negative integrable functions. ThenZ

RN
F(t)g1(t1) · · · gN(tN)dt 

Z
RN

F(t)g⇤1(t1) · · · g⇤N(tN).

If F : RN ! R+ is even and quasi-convex thenZ
RN

F(t)g1(t1) · · · gN(tN)dt ≥
Z

RN
F(t)g⇤1(t1) · · · g⇤N(tN).

Proof. For s ≥ 0 let K(s) := {x : F(x) > s}. Then K(s) is symmetric and convex.
Using the Layer Cake Formula (see Theorem 3.10), Fubini’s Theorem (see 3.9)
and Corollary 3.24, we haveZ

RN
F(t)g1(t1) · · · gN(tN)dt =

Z •

0

Z
K(s)

g1(t1) · · · gN(tN)dtds


Z •

0

Z
K(s)

g⇤1(t1) · · · g⇤N(tN)dtds

=
Z

RN
F(t)g⇤1(t1) · · · g⇤N(tN)dt.

The second assertion follows from the fact that 1{Fs} + 1{F>s} = 1.
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4 The Lp-Busemann-Petty Centroid
Inequality

In this chapter we start with our discussion of the Lp-Busemann-Petty centroid
inequality which states that the ratio between the volume of the Lp-centroid body
of a convex body K in Rn and the volume of K attains its minimum if and only if
K is an origin symmetric ellipsoid.

Theorem 4.1 (Lp-Busemann-Petty Centroid Inequality). If K is a convex body with
nonempty interior in Rn, then for 1  p < •

voln(Gp(K)) ≥ voln(K),

where equality holds if and only if K is an origin symmetric ellipsoid.

This inequality extends the classical Busemann-Petty centroid inequality (see
Theorem 2.31) and, along with the Lp-analog of the Petty projection inequality
(see Theorem 2.32), was first proved by Lutwak, Yang and Zhang [23]. However,
we will present a direct proof by Campi and Gronchi [10] which does not rely on
the Lp-Petty projection inequality.

4.1 Lp-Centroid Bodies and Inequalities

The definition of Lp-centroid bodies of compact sets for each real number p ≥ 1
is due to Lutwak and Zhang [26] and can be stated as follows.

Definition 4.2 (Lp-Centroid Body). Let K be a compact subset of Rn with nonempty
interior. The Lp-centroid body of K, denoted Gp(K), is the convex body whose support
function is

h Gp(K)), u =

⇢
1

cn,pvoln(K)

Z
K
|hu, zi|pdz

1
p

, u 2 Rn,

where the integration is with respect to Lebesgue measure and

cn,p =
wn+p

w2wnwp−1
.
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4 The Lp-Busemann-Petty Centroid Inequality

Some authors prefer to define the Lp-centroid body without the normalization
constant which we will also do in Chapter 5 and Chapter 6. However, in this
chapter we keep it since it is chosen in a way that Gp(Bn) = Bn which simplifies
some inequalities. Note that for p = 1 we do not get the centroid body defined
in Chapter 2 but rather G1(K) = c−1

n,1G(K).1 Similarly to Section 2.6 we state
some generalized affine inequalities before presenting the direct proof of the Lp-
Busemann-Petty centroid inequality.

For p = 2, the Lp-centroid body is also well known as the ellipsoid of inertia
of K. This is the ellipsoid that has the same moments of inertia as K about every
axis. One special case of the Lp-Busemann-Petty centroid inequality for p = 2
goes back to Blaschke [4] who proved for n = 3 that

Theorem 4.3. If K is a convex body in Rn, then

voln(G2(K)) ≥ voln(K),

where equality holds if and only if K is an origin symmetric ellipsoid.

For general n this inequality was proved by John [17] and later by Lutwak,
Yang and Zhang [22]. Futhermore, Lutwak and Zhang [26] conjectured that the
classical Busemann-Petty centroid inequality and Theorem 4.3 are just special
instances of the more general Lp-Busemann-Petty centroid inequality which they
first proved together with Yang in [23]. They also showed that the Lp-analog of
the Petty projection inequality2.

Theorem 4.4 (Lp-Petty Projection Inequality). If K is a convex body with nonempty
interior in Rn, then for 1  p < •

voln(K)
n−p

p voln(P◦
p(K))  w

n/p
n ,

where equality holds if and only if K is an origin symmetric ellipsoid.

Lutwak, Yang and Zhang showed that the Lp-Petty projection inequality im-
plies the Lp-Busemann-Petty centroid inequality. Conversely, it can be shown
that the Lp-Busemann-Petty centroid inequality implies the Lp-Petty projection
inequality so that we can deduce one inequality from the other. Furthermore,
the Lp-Busemann-Petty centroid inequality strengthens the following inequality
proved by Lutwak and Zhang [26].

1This is the reason why some of the inequalities presented in this chapter differ from the in-
equalities presented in Section 2.6 exactly by the normalization constant above.

2We refer to [23] for the definition of the Lp-projection body Pp(K), its polar body P◦
p(K) and

the proof.
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4 The Lp-Busemann-Petty Centroid Inequality

Theorem 4.5. If K is a convex body in Rn, then for 1  p  •

voln(K)voln(G◦
p(K))  w2

n,

where equality holds if and only if K is an origin symmetric ellipsoid.

The body G◦
p(K) is the polar body of Gp(K) of K and is given by G◦

p = {z 2
Rn : h(Gp(K), z)  1}. We can interpret G• as the limit of Gp as p ! • and get
G•(K) = conv(K [ (−K)). Therefore, if K is a centered convex body the body G◦

•
is just the polar body K◦ of K and we get the Blaschke-Santalò inequality.

Theorem 4.6 (Blaschke-Santalò Inequality). If K is a convex body in Rn, then

voln(K)voln(K◦)  w2
n,

with equality if and only if K is an ellipsoid.

Note that if we apply Theorem 4.6 to Gp(K) and use the Lp-Busemann-Petty
centroid inequality we get Theorem 4.5.

voln(K)voln(G◦
p(K))  voln(Gp(K))voln(G◦

p(K))  w2
n

4.2 Direct Proof of the Lp-Busemann-Petty Centroid
Inequality

In contrast to Lutwak, Yang and Zhang [23], Campi and Gronchi [10] gave a
direct proof of the Lp-Busemann-Petty centroid inequality (without the use the
Lp-Petty projection inequality) by looking at the behaviour of Gp(K) under special
transformations, namely parallel chord movments, acting on K. This section
presents their direct proof with some smaller results, which were obtained as
parts of longer proofs in [10], pulled out and stated as lemmas similar to the
structure in [18].

The notion of shadow systems (or linear parameter systems), parallel chord
movements and Steiner symmetrization needed for this section were already in-
troduced in Chapter 2 so that we can focus on the results.

Campi and Gronchi asked an interesting question: Suppose that a general par-
allel chord movement is applied to a convex body K. What happens to the cor-
responding Lp-centroid bodies? They answered this question with the following
theorem.

Theorem 4.7. If {Kt : t 2 [0, 1]} is a parallel chord movement along the direction v,
then Gp(Kt) is a shadow system along the same direction v.
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4 The Lp-Busemann-Petty Centroid Inequality

Before we can proof this theorem we still need a few more results. At first, we
show the following.

Lemma 4.8. If {Kt : t 2 [0, 1]} is a parallel chord movement along the direction v, then
the orthogonal projection of Gp(Kt) onto v? is independent of t.

Proof. By Definition 4.2 and Definition 2.34, it holds that

h Gp(Kt), u =

⇢
1

cn,pvoln(Kt)

Z
Kt
|hu, zi|pdz

1
p

=

⇢
1

cn,pvoln(K0)

Z
K0

|hu, z + b(z|v?)tvi|pdz
1
p

=

⇢
1

cn,pvoln(K0)

Z
K0

|hu, zi+ b(z|v?)thu, vi|pdz
1
p

=

⇢
1

cn,pvoln(K0)

Z
K0

|hu, zi|p
1
p
= h Gp(K0), u

since hu, vi = 0 for u 2 v?. Therefore, for every u 2 v?, h Gp(Kt), u =
h Gp(K0), u .

Next, we prove some smaller but helpful results concerning the support func-
tion of Gp(Kt).

Lemma 4.9. If {Kt : t 2 [0, 1]} is a parallel chord movement along the direction v, then
the support function of Gp(Kt) given by

h Gp(Kt), u =

⇢
1

cn,pvoln(K0)

Z
K0

|hu, zi+ b(z|v?)thu, vi|pdz
1
p

= khu, ·i+ b(·|v?)thu, vikp, u 2 Rn

where kq(·)kp = { 1
cn,pvoln(K0)

R
K0

|q(z)|pdz} 1
p is a convex function of t for every u 2 Rn.

Proof. In order to see that h Gp(Kt), · is a convex function of t for every u 2 Rn

we show that

2h
⇣

Gp(K t1+t2
2

), ·
⌘
 h Gp(Kt1), · + h Gp(Kt2), ·
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4 The Lp-Busemann-Petty Centroid Inequality

with the help of the Minkowski inequality for Lp-norms (see Theorem 3.13):

2h
⇣

Gp

⇣
K t1+t2

2

⌘
, ·
⌘
= 2 hu, ·i+ b(·, v?) t1 + t2

2
hu, vi

p

= kh2u, ·i+ b(·, v?)(t1 + t2)hu, vikp

= khu + u, ·i+ b(·, v?)t1hu, vi+ b(·, v?)t2hu, vikp

= khu, ·i+ b(·, v?)t1hu, vi+ hu, ·i+ b(·, v?)t2hu, vikp

 khu, ·i+ b(·, v?)t1hu, vikp + khu, ·i+ b(·, v?)t2hu, vikp

= h Gp(Kt1), · + h Gp(Kt2), ·

Lemma 4.10. If {Kt : t 2 [0, 1]} is a parallel chord movement along the direction v,
then

|h Gp(Kt1), u − h Gp(Kt2), u |  kb(·|v?)hu, vikp|t1 − t2|.
Proof. This result also follows from the Minkowski inequality for Lp-norms:

|h Gp(Kt1), u − h Gp(Kt2), u |
= khu, ·i+ b(·|v?)t1hu, vikp − khu, ·i+ b(·|v?)t2hu, vikp

 khu, ·ikp + kb(·|v?)t1hu, vikp − khu, ·ikp − kb(·|v?)t2hu, vikp

= |t1|kb(·|v?)hu, vikp − |t2|kb(·|v?)hu, vikp

 kb(·|v?)hu, vikp|t1 − t2|

The rest of this section still follows the ideas of [10] but is supplemented with
work and arguments from [18]. Since Gp(Kt) is an origin symmetric convex body
for every t 2 [0, 1], we can write it as

Gp(Kt) = {x + yv : x 2 (Gp(K0))|v?, ft(x)  y  gt(x)},

where f (t) and −gt(x) are suitable convex functions defined on (Gp(Kt))|v?.

Lemma 4.11. If {Kt : t 2 [0, 1]} is a parallel chord movement along the unit direction
v, then for every x 2 (GpK0)|v?,

gt(x) = inf
u2v?

{h Gp(Kt), u + v − hx, ui}

and
ft(x) = sup

u2v?
{hx, ui − h Gp(Kt), u + v }
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4 The Lp-Busemann-Petty Centroid Inequality

Proof. Let u 2 v?. For x 2 Gp(Kt)|v?, we have

x + gt(x)v 2 Gp(Kt), x + ft(x)v 2 Gp(Kt).

Since x 2 Gp(Kt) if and only if hx, ui  h Gp(Kt) for every u 2 Rn, we have

hx + gt(x)v, u + vi  h Gp(Kt), u + v

and
hx + ft(x)v, u − vi  h Gp(Kt), u − v .

Therefore,

hx, ui+ gt(x)  h Gp(Kt), u + v , hx, ui − ft(x)  h Gp(Kt), u − v

for all u 2 v?.
The body Gp(Kt) has two supporting hyperplanes at x + gt(x)v, x + ft(x)v 2

∂(Gp(Kt)) and for x 2 relint (Gp(Kt))|v? there exist two vectors u0 + v and
u00 − v with u0, u00 2 v? such that

hx + gt(x)v, u0 + vi = h Gp(Kt), u0 + v

and
hx + ft(x)v, u00 − vi = h Gp(Kt), u00 − v .

Thus, if x /2 relint (Gp(Kt))|v? , it is possible that gt(x) = ft(x) = 0 and that
we cannot find u0, u00 2 v? such that

hx + gt(x)v, u0 + vi = hx, u0i = h Gp(Kt), u0 + v

and
hx + ft(x)v, u00 − vi = hx, u00i = h Gp(Kt), u00 − v .

Since the support functions are continuous, we can take the infimum and
supremum for all u 2 v? and get

gt(x) = inf
u2v?

{h Gp(Kt), u + v − hx, ui},

and
ft(x) = sup

u2v?
{hx, ui − h Gp(Kt), u − v }

which is exactly what we wanted to show.

We have seen that h Gp(Kt), x is a Lipschitz function of t which shows that
also gt(x) and ft(x) are continuous with respect to t. We can also show that gt(x)
and − ft(x) are convex.
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4 The Lp-Busemann-Petty Centroid Inequality

Lemma 4.12. If {Kt : t 2 [0, 1]} is a parallel chord movement along the unit direction
v, then for every x 2 (Gp(K0))|v? the functions gt(x) and − ft(x) are convex functions
of the parameter t in [0, 1].

Proof. We first show that if u1, u2 2 v?, then

h
⇣

Gp

⇣
K t1+t2

2

⌘
, u1 + u2 + 2v

⌘
 h Gp(Kt1), u1 + v + h Gp(Kt2), u2 + v .

Expanding the definition and applying the Minkowski inequality yields

h
⇣

Gp

⇣
K t1+t2

2

⌘
, u1 + u2 + 2v

⌘
= hu1 + u2 + 2v, ·i+ b(·|v?) t1 + t2

2
hu1 + u2 + 2v, vi

p

= khu1 + v, ·i+ hu2 + v, ·i+ b(·|v?)h2v, vi t1 + t2

2
kp

= khu1 + v, ·i+ b(·|v?)t1 + hu2 + v, ·i+ b(·|v?)t2kp

= khu1 + v, ·i+ b(·|v?)t1hu1 + v, vi+ hu2 + v, ·i+ b(·|v?)t2hu2 + v, vikp

 khu1 + v, ·i+ b(·|v?)t1hu1 + v, vikp

+ khu2 + v, ·i+ b(·|v?)t2hu2 + v, vikp

= h Gp(Kt1), u1 + v + h Gp(Kt2), u2 + v .

By Lemma 4.11 and the above inequality we see that

2g t1+t2
2

= inf
u2v?

n
h
⇣

Gp

⇣
K t1+t2

2

⌘
, 2(u + v)

⌘
− hx, 2ui

o
= inf

u1,u22v?

n
h
⇣

Gp

⇣
K t1+t2

2

⌘
, u1 + u2 + 2v

⌘
− hx, u1 + u2i

o
 inf

u1,u22v?
h Gp(Kt1), u1 + v + h Gp(Kt2), u2 + v − hx, u1 + u2i

 
= inf

u1,u22v?
h Gp(Kt1), u1 + v + h Gp(Kt2), u2 + v − hx, u1i − hx, u2i

 
= inf

u12v?
h Gp(Kt1), u1 + v − hx, u1i

 
+ inf

u22v?
h Gp(Kt2), u2 + v − hx, u2i

 
= gt1(x) + gt2(x).

The convexity of − ft(x) can be in proved the same way.

Lemma 4.13. If {Kt : t 2 [0, 1]} is a parallel chord movement along the direction v,
then for every x 2 (Gp(K0))|v? it holds that

flt1+(1−l)t2
(x)  lgt1(x) + (1 − l) ft2(x)  glt1+(1−l)t2

(x)

for every t1, t2, l 2 [0, 1].
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4 The Lp-Busemann-Petty Centroid Inequality

Proof. We first show that if u1, u2 2 v?, then

h Gp(Kt2), u2 − lu1 − (1 − l)v

 h Gp(Kt1),−lu1 + lv + h
⇣

Gp(Klt1+(1−l)t2
), u2 − v

⌘
.

Again, using the Minkowski inequality, we obtain

h Gp(Kt2), u2 − lu1 − (1 − l)v

= khu2 − lu1 − (1 − l)v, ·i+ b(·|v?)t2hu2 − lu1 − (1 − l)v, vikp

= khu2 − v, ·i+ h−lu1 + lv, ·i − b(·|v?)t2h(1 − l)v, vikp

= khu2 − v, ·i+ h−lu1 + lv, ·i − b(·|v?)t2(1 − l) + lt1 − lt1kp

 khu2 − v, ·i − b(·|v?) (lt1 + (1 − l)t2)kp

+ kh−lu1 + lv, ·i − b(·|v?)lt1kp

= khu2 − v, ·i+ b(·|v?) (lt1 + (1 − l)t2) hu2 − v, vikp

+ kh−lu1 + lv, ·i+ b(·|v?)t1h−lu1 + lv, vikp

= h Gp(Kt1),−lu1 − lv + h
⇣

Gp(Klt1+(1−l)t2
), u2 − v

⌘
.

It is enough to prove the first inequality as the other one follows by interchang-
ing t1 with t2 and x with −x. By Lemma 4.11 and the above inequality, we see
that

(1 − l) ft2(x)
= sup

u2v?
{hx, (1 − l)ui − h Gp(Kt2), (1 − l)(u − v)

= sup
−u1,u22v?

{hx, u2 − lu1i − h Gp(Kt2), u2 − lu1 − (1 − l)v)

≥ sup
−u1,u22v?

{hx, u2 − lu1i − h Gp(Kt1),−lu1 + lv

− h
⇣

Gp(Klt1+(1−l)t2
), u2 − v)

⌘
= sup

−u12v?
{hx,−lu1i − h Gp(Kt1),−lu1 + lv

+ sup
u22v?

{hx, u2i − h
⇣

Gp(Klt1+(1−l)t2
), u2 − v)

⌘
}

= −lgt1(x) + flt1+(1−l)t2
(x).

We require one last lemma before we can proof Theorem 4.7 which was also
proved by Campi and Gronchi [10]. It provides necessary and sufficient condi-
tions for a family of convex bodies with constant orthogonal projections onto a
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4 The Lp-Busemann-Petty Centroid Inequality

fixed hyperplane to be a shadow system. For the relatively long proof we refer
to [10].

Lemma 4.14. Let {Ht : t 2 [0, 1]} be a one-parameter family of convex bodies such that
Ht|v? is independent of t. Assume the bodies Ht are defined by

Ht = {x + yv : x 2 Ht|v?, y 2 R, ft(x)  y  gt(x)}, 8t 2 [0, 1]

for suitable functions gt, ft. Then {Ht : t 2 [0, 1]} is a shadow system along the direction
v if and only if for every x 2 H0|v?,

1. gt(x) and − ft(x) are convex functions of the parameter t in [0, 1],

2. flt1+(1−l)t2
(x)  lgt1(x)+ (1−l) ft2(x)  glt1+(1−l)t2

(x), for every t1, t2, l 2
[0, 1].

Proof of Theorem 4.7. Let {Kt : t 2 [0, 1]} be a parallel chord movement along the
direction v. We have seen in Lemma 4.8 that the orthogonal projection of Gp(Kt)

onto the hyperplane v? is independent of t. Therefore, the family Gp(Kt) meets
the assumptions of Lemma 4.14 and it is sufficient to show that both conditions
are satisfied. Actually, Lemma 4.12 shows the first condition and 4.13 shows the
second condition. Therefore, we see that Gp(Kt) is a shadow system along the
direction v.

Shadow systems have many interesting properties but the one we are interested
in was also proved by Shephard [33] and states that voln(Gp(Kt)) is a convex
function of the parameter t.

Theorem 4.15. Let {Kt : t 2 [0, 1]} be a shadow system along the direction v, then the
volume voln(Kt) is a convex function of the parameter t.

Together, Theorem 4.7 and Theorem 4.15 imply that the volume voln(Gp(Kt)) is
a convex function of t and that, if {Kt : t 2 [0, 1]} is the parallel chord movement
related to Steiner Symmetrization along v, then

voln(Gp(K1/2)) = voln

✓
1
2

Gp(K0) +
1
2

Gp(K1)

◆
= voln

✓
1
2

Gp(K0) +

✓
1 − 1

2

◆
Gp(K1)

◆
 1

2
voln(Gp(K0)) +

✓
1 − 1

2

◆
voln(Gp(K1)) = voln(Gp(K))

since voln(Gp(K0)) = voln(Gp(K1)) = voln(Gp(K)). This shows that the volume
of the Lp-centroid body is not increased after Steiner symmetrization. Following
standard theorem states that every convex body can be transformed into a ball
by a sequence of suitable Steiner symmetrizations (see [32, Theorem 10.3.2]).
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4 The Lp-Busemann-Petty Centroid Inequality

Theorem 4.16. If K is a convex body and S(K) is the set of convex bodies that arise
from K by applying iterated Steiner symmetrizations, then S(K) contains a sequence
that converges to a ball.

Therefore, the ratio voln(Gp(K))/voln(K), which is continuous in the Haus-
dorff metric, attains its minimum value when K is a ball. To characterize the
minimizers Campi and Gronchi [10] proved that

Theorem 4.17. If {Kt : t 2 [0, 1]} is a parallel chord movement with speed function
b, then the volume Gp(Kt) is a strictly convex function of t unless b is linear, that is
b(x) = hx, ui for some vector u.

Proof. By Fubini’s theorem we have

voln(Gp(Kt)) =
Z
(Gp(K0))|v?

[gt(x)− ft(x)]dx,

where the integral is with respect to Lebesgue measure. Since − f (t) and gt(x)
are convex functions with respect to t, so is the volume. Assume that

voln(Gp(K(t1+t2)/2)) =
1
2

voln(Gp(Kt1)) +
1
2

voln(Gp(Kt2)),

for some t1, t2 2 [0, 1], then we obtain from the continuity of gt, ft with respect to
x that

g t1+t2
2

(x)− f t1+t2
2

(x) =
1
2
(gt1(x) + gt2(x))− 1

2
( ft1(x) + ft2(x)),

for almost every x 2 (Gp(K0))|v?. Furthermore, by the continuity of ft, gt, this
equality holds everywhere. If x is a point from the interior of (Gp(K0))|v?, then
there exist u1, u2, u3, u4 2 v? such that

1
2
(gt1(x) + gt2(x))− 1

2
( ft1(x) + ft2(x))

=
1
2

h Gp(Kt1), u1 + v + h Gp(Kt2), u2 + v + h Gp(Kt1), u3 − v

+ h Gp(Kt2), u4 − v − hx, u1i − hx, u2i − hx, u3i − hx, u4i .

We use the inequality from the proof of Lemma 4.12 again to obtain

1
2
(gt1(x) + gt2(x))− 1

2
( ft1(x) + ft2(x))

≥ h
✓

Gp

⇣
K t1+t2

2

⌘
,

u1 + u2

2
+ v

◆
−
⌧

x,
u1 + u2

2

+ h
✓

Gp

⇣
K t1+t2

2

⌘
,

u1 + u2

2
− v

◆
−
⌧

x,
u3 + u4

2
≥ g t1+t2

2
(x)− f t1+t2

2
(x)
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4 The Lp-Busemann-Petty Centroid Inequality

Therefore, by our assumption, the equality condition for the inequality has to
hold which means that there exists a constant c such that

hu1 + v, zi+ b(z|v?)t1 = chu2 + v, zi+ cb(z|v?)t2,

for every z 2 K0 due to b being continuous. If we set z = z0+ lv and differentiate
with respect to the parameter l, we obtain

∂

∂l

⇣
hu1 + v, z0 + lvi+ b(z0 + lv|v?)t1

⌘
=

∂

∂l

⇣
hu1, z0i+ hu1, lvi+ hv, z0i+ hv, lvi+ b(z0 + lv|v?)t1

⌘
=

∂

∂l

⇣
0 + 0 + 0 + l + b(z0 + lv|v?)t1

⌘
=

∂

∂l
l +

∂

∂l
b(z0 + lv|v?)t1 = 1 + 0 = 1

and, furthermore,

∂

∂l

⇣
chu2 + v, z0 + lvi+ cb(z0 + lv|v?)t2

⌘
=

∂

∂l

⇣
chu1, z0i+ chu1, lvi+ chv, z0i+ chv, lvi+ cb(z0 + lv|v?)t2

⌘
=

∂

∂l

⇣
0 + 0 + 0 + cl + cb(z0 + lv|v?)t2

⌘
=

∂

∂l
cl +

∂

∂l
cb(z0 + lv|v?)t2 = c + 0 = c

which shows c = 1 and that b is a linear function.

If the speed function b of the parallel chord movement is linear, then Kt is a
linear image of K for every t in the range of the movement. Furthermore, if K
is not an origin symmetric ellipsoid, then there exists a direction v such that the
Steiner symmetral of K along the direction v is not an image of K under a linear
transformation. Therefore, voln(Gp(K))/voln(K) attains its minimum value if
and only if K is an origin symmetric ellipsoid which finishes the proof of the
Lp-Busemann-Petty centroid inequality (see Theorem 4.1).
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5 Randomized Lp-Busemann-Petty
Centroid Inequality

In this chapter we continue our investigation of the Lp-Busemann-Petty centroid
inequality and present it in a randomized version. We follow Paouris and Pivo-
varov [28] who extended a theorem of Groemer (see [16]) on the expected volume
of a random polytope in a convex body and proved a randomized version of the
Lp-Busemann-Petty centroid inequality as an application of their generalization.

As we have already seen in Chapter 2 and Chapter 4, various functionals f :
Kn ! R+ are minimized (or maximized) on the Euclidean ball. This is also true
for the functional

f(K) :=
1

voln(K)N

Z
K
· · ·

Z
K

voln(conv{x1, . . . , xN})dx1, . . . , dxN (K 2 Kn)

which defines the expected volume of the convex hull of independent random
points sampled in K. In this notation Groemer’s theorem can be written as fol-
lows.

Theorem 5.1 (Groemer’s Theorem). Let K be a convex body in Rn. Then, if Bn denotes
the n-dimensional Euclidean ball with radius one,

f(K) ≥ f(Bn).

Equality holds if and only if K is an ellipsoid.

Paouris and Pivovarov [28] extended Groemer’s theorem by working in the
class P[n] of all probability measures on Rn that are absolutely continuous with
respect to Lebesgue measure. Thus, instead of the Steiner symmetrization we
use rearrangement inequalities. Furthermore, if N ≥ n and x1, . . . , xN are inde-
pendent random points with xi distributed according to µi 2 P[n], we treat the
n ⇥ N random matrix [x1 . . . xN ] as a linear operator from RN to Rn. Applying
this operator to a convex body K yields a random convex set in Rn,

[x1 . . . xN ]K =

(
N

Â
i=1

kixi : (ki) 2 K

)
.

This brings us to one of the main results in Paouris and Pivovarov [28]
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5 Randomized Lp-Busemann-Petty Centroid Inequality

Theorem 5.2 (Extension of Groemer’s Theorem). Let N ≥ n and µ1, . . . , µN 2 P[n];
denote the density of µi by fi. Let K be a convex body in RN and set

FK( f1, . . . , fN) =
Z

Rn
· · ·

Z
Rn

voln([x1, . . . , xN ]K)
N

’
i=1

fi(xi)dxN . . . dx1.

If k fik•  1 for i = 1, . . . , N, then

FK( f1, . . . , fN) ≥ FK(1Dn , . . . , 1Dn),

where Dn ✓ Rn is the Euclidean ball of volume one.

In the next sections we present the necessary definitions and results to be able
to prove this theorem and apply it to obtain a randomized version of the Lp-
Busemann-Petty centroid inequality due to Paouris and Pivovarov.

5.1 An Extension of Groemer’s Theorem

For a function F :
NN

i=1 Rn ! R, let

FF( f1, . . . , fN) :=
Z

Rn
· · ·

Z
Rn

F(x1, . . . , xN) f1(x1), . . . , fN(xN)dx1 . . . dxN.

It turns out that it is possible to isolate a condition on F from which one can
conclude a minimization result such as the extension of Groemer’s Theorem (see
Theorem 5.2). This condition is called Groemer’s convexity condition (GCC).

Definition 5.3 (Groemer’s Convexity Condition). We say that F :
NN

i=1 Rn ! R+

satisfies Groemer’s convexity condition, or simply (GCC), if for every z 2 Rn\{0} and
for every Y = {y1, . . . , yN} ✓ z?, the function FY : RN ! R+ defined by

FY(t) = F(y1 + t1z, . . . , yN + tNz)

is even and convex.

Our goal is to indicate how rearrangement inequalities are useful in the pres-
ence of Groemer’s convexity condition. The first of two results is given in the
next propostion. The proof given by Paouris and Pivovarov [28] is analogous to
one given in Christ [11, Theorem 4.2] and uses the following lemma from [7].

Lemma 5.4. If g : Rn ! R+ is a measurable function with compact support, then there
exists a sequence of functions gk, where g0 = g and gk+1 = g⇤k (·|qk) for some qk 2 Sn−1

such that
lim
k!•

kgk − g⇤kL1 = 0.
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5 Randomized Lp-Busemann-Petty Centroid Inequality

Proposition 5.5. Let f1, . . . , fN be non-negative integrable functions on Rn. Suppose
that F :

NN
i=1 Rn ! R+ satisfies the following condition: for each z 2 Sn−1 and for each

Y = {y1, . . . , yN} ✓ z?, the function

FY(t) = F(y1 + t1z, . . . , yN + tNz)

is even and quasi-convex. Then

FF( f1, . . . , fN) ≥ FF( f ⇤1 , . . . , f ⇤N).

Proof. Let q 2 Sn−1. We show first that

FF( f1, . . . , fN) ≥ FF( f ⇤1 (·|q), . . . , f ⇤N(·|q)),
where f ⇤(·|q) is the Steiner symmetrization of f with respect to q? (see Definition
3.22). For fixed y1, . . . , yN 2 q?, we set hi(ti) = fi(yi + tiq). Using Fubini’s
Theorem (see Theorem 3.9) and Corollary 3.27 we get

FF( f1, . . . , fN) =
Z
(q?)N

Z
RN

F(y1 + t1q, . . . , yN + tNq)
N

’
i=1

fi(yi + tiq)dtdȳ

=
Z
(q?)N

Z
RN

F(t1, . . . , tN)h1(t1) · · · hN(tN)dtdȳ

≥
Z
(q?)N

Z
RN

F(t1, . . . , tN)h⇤1(t1) · · · h⇤N(tN)dtdȳ

= FF( f ⇤1 (·|q), . . . , f ⇤N(·|q))
since f ⇤i (·|q) is the function obtained by rearranging fi along every line parallel
to q and where dt = dt1 . . . dtN and dȳ = dy1 . . . dyN.

We still need to get to the symmetric decreasing rearrangement f ⇤i for each
fi, i  N which can be achieved by suitable successive symmetrizations with
respect to n − 1 dimensional subspaces by Lemma 5.4.

The reverse inequality is due to Christ [11] and is stated for completeness only.

Proposition 5.6. Let f1, . . . , fN be non-negative integrable functions on Rn. Suppose
that F :

NN
i=1 Rn ! R+ satisfies the following condition: for each z 2 Sn−1 and for each

Y = {y1, . . . , yN} ✓ z?, the function

FY(t) = F(y1 + t1z, . . . , yN + tNz)

is even and quasi-concave. Then

FF( f1, . . . , fN)  FF( f ⇤1 , . . . , f ⇤N).

For further studies we require the definition of rotationally invariant densities.
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Definition 5.7. Let f be an integrable function with
R

Rn f (x)dx = 1. We say that
f is rotationally invariant if f (x) = f (y) whenever kxk2 = kyk2. We denote by
RP [n] ✓ P[n] the subclass of measures with rotationally invariant densities.

Proposition 5.5 allows us to pass to densities that are rotationally invariant
because if F satisfies Groemer’s convexity condition, then

inf
P[n]

FF( f1, . . . , fN) = inf
RP [n]

FF( f1, . . . , fN),

where the fi’s are the densities of measures in P[n] and RP [n], respectively.
If we look at infRP [n]

FF( f1, . . . , fN) under the additional assumption that
k fik•  1, for i  i  N, then we can prove the following useful lemmas [28].

Lemma 5.8. Let f : R+ ! [0, 1] be a measurable function and assume that

A :=
Z •

0
f (t)tn−1dt < •.

Let g = 1[0,(nA)1/n]. Then for any increasing function f : R+ ! R+,Z •

0
f(t) f (t)tn−1dt ≥

Z •

0
f(t)g(t)tn−1dt.

Proof. Set B = (nA)1/n and note thatZ •

0
f (t)tn−1dt ≥

Z B

0
tn−1dt.

Then Z •

0
f(t) f (t)tn−1dt =

Z B

0
f(t) f (t)tn−1dt +

Z •

B
f(t) f (t)tn−1dt

≥
Z B

0
f(t) f (t)tn−1dt + f(B)

Z •

B
f (t)tn−1dt

=
Z B

0
f(t) f (t)tn−1dt + f(B)

Z B

0
(1 − f (t))tn−1dt

≥
Z B

0
f(t) f (t)tn−1dt +

Z B

0
f(t)(1 − f (t))tn−1dt

=
Z B

0
f(t)tn−1dt.
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Lemma 5.9. Let (W,S , P) be a probability space and let E denote expectation with
respect to P. Let X : W ! Rn be a symmetric random vector. Let r : Rn ! R be a
function such that

R 3 s 7! r(sx)

is convex for each x 2 Rn. Then

R+ 3 s 7! Er(sx)

is an increasing function.

Proof. It is sufficient to show that

Er(aX)  Er(X)

for any 0  a  1. We can write a = b(1) + (1 − b)(−1) with 0  b  1 and use
the convexity assumption

r(aX)  br(X) + (1 − b)r(−X),

which yields

Er(aX)  E(br(X) + (1 − b)r(−X)) = E(br(X)) + E((1 − b)r(−X))

= E(br(X)) + Er(−X)− E(br(X))

= Er(−X) = Er(X),

since X is a symmetric random vector.

Lemma 5.10. If F :
NN

i=1 Rn ! R+ satisfies Groemer’s convexity condition, then for
any x1, . . . , xN 2 Rn and any 1  i  N, the function

R 3 s 7! F(x1, . . . , sxj, . . . , xN)

is convex.

Proof. In this proof we use the fact that the restriction of a convex function to
a line is itself convex. Let us fix j as in the assumption and for each i 6= j,
we write xi = x0i + sixj with si 2 R and x0i ? xj. Since F satisfies Groemer’s
convexity condition, we can take z = xj, yj = 0 and yi = x0i for all i 6= j and
Y = {y1, . . . , yN}. Then the function GY : RN ! R+ defined by

GY(t) := F(y1 + t1s1z, . . . , tjz, . . . , yN + tNsNz)

= FY(t1s1, . . . , tj, . . . , tNsN)

is convex by Groemer’s convexity condition. On the other hand, we have

GY(t) = F(x1 + (t1 − 1)s1xj, . . . , xj + (tj − 1)xj, . . . , xN + (tN − 1)sNxj),
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since
yi + tisiz = x0i + tisiz = xi − siz + tisiz = xi + (ti − 1)siz

and, hence, the restriction of GY to the line {t 2 RN : tj = s 2 R, ti = 1 for each i 6=
j} is just the function F(x1, . . . , sxj, . . . , xN) above.

The second result of this section is given by the following proposition [28].

Proposition 5.11. Let fi : Rn ! [0, 1] be rotationally invariant probability densities.
Suppose that F :

NN
i=1 Rn ! R+ satisfies Groemer’s convexity condition. Then

FF( f1, . . . , fN) ≥ FF(1Dn , . . . , 1Dn).

Proof. We use spherical coordinates for each xi 2 Rn and write

xi := riqi, with 0  ri < •, and qi 2 Sn−1 for i = 1, . . . , N.

Then

FF( f1, . . . , fN) = (nwn)
N
Z
(R+)N

Z
(Sn−1)N

F(r1q1, . . . , rNqN)
N

’
i=1

fi(riqi)rn−1
i dq̄dr,

where dq̄ = ds(q1) . . . ds(qN) and dr = dr1 . . . drN. Fix 1  j  N and sup-
pose that r1, . . . , rj−1, rj+1, . . . , rN are fixed non-negative scalars. Suppose that
q1, . . . , qN 2 Sn−1 are fixed vectors, then, by Lemma 5.10, the function

R+ 3 rj 7! F(r1q1, . . . , rjqj, . . . , rNqN)

is convex. If we now regard qj as a random vector uniformly distributed on Sn−1

and averaging, then Lemma 5.9 implies that

R+ 3 rj 7!
Z

Sn−1
F(r1q1, . . . , rjqj, . . . , rNqN)ds(qj)

is increasing. Due to f j being a rotationally invariant probability density, we have

1 =
Z

Rn
f j(x)dx = nwn

Z •

0

Z
Sn−1

f j(rjqj)rn−1
j ds(qj)drj.

Since f j depends only on the value of rj, we have that for any qj 2 Sn−1,Z •

0
f j(rjqj)rn−1

j drj = (nwn)
−1.
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Thus we can apply Lemma 5.8 with A = (nwn)−1 to see thatZ •

0

Z
Sn−1

F(r1q1, . . . , rjqj, . . . , rNqN) f j(rjqj)rn−1
j ds(qj)drj

≥
Z w−1/n

n

0

Z
Sn−1

F(r1q1, . . . , rjqj, . . . , rNqN)rn−1
j ds(qj)drj

Applying Fubini’s theorem (see Theorem 3.9) iteratively, we then obtain

FF( f1, . . . , fN) ≥ (nwn)
N
Z
[0,w−1/n

n ]N

Z
(Sn−1)N

F(r1q1, . . . , rNqN)
N

’
i=1

rn−1
i dq̄dr

= FF(1Dn , . . . , 1Dn).

We summarize the results of Proposition 5.5 and 5.11 in the following theorem.

Theorem 5.12. Let µ1, . . . , µN 2 P[n] and denote the density of µi by fi. Suppose that
F :
NN

i=1 Rn ! R+ satisfies Groemer’s convexity condition and set

FF( f1, . . . , fN) =
Z

Rn
· · ·

Z
Rn

F(x1, . . . , xN)
N

’
i=1

fi(xi)dx1 . . . dxN.

Then
F ( f1, . . . , fN) ≥ FF( f ⇤1 , . . . , f ⇤N).

Moreover, if fi = f ⇤i and k fik  1 for i = 1, . . . , N, we also have

FF( f1, . . . , fN) ≥ FF(1Dn , . . . , 1Dn).

In the proof of Groemer’s Theorem [16] (see Theorem 5.1) a main technical step
is to show that the integrand F(x1, , . . . , xN) = voln(conv{x1, . . . , xN}) satisfies
(GCC). We now show that this is also the case in our setting.

Let K be a symmetric convex body in Rn. For x1, . . . , xN 2 Rn, let T(x1, . . . , xN) =
[x1 · · · xN ] be the n ⇥ N matrix with xi as the columns. Furthermore, let F :NN

i=1 Rn ! R+ be the function

F(x1, . . . , xN) := voln(T(x1, . . . , xN)K).

We can see that for any S 2 SL(n) we have

F(Sx1, . . . , SxN) = F(x1, . . . , xN)
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since for any n ⇥ n matrix M 2 SL(n) we have

F(Mx1, . . . , MxN) = voln([Mx1 . . . MxN ]K)
= voln(M[x1 . . . xN ]K)
= |det(M)|F(x1, . . . , xN)

= F(x1, . . . , xN)

Proposition 5.13. Let F be defined by

F(x1, . . . , xN) := voln(T(x1, . . . , xN)K)

and let q 2 Sn−1 and y1, . . . , yN 2 q?. Set Y := [y1 . . . yN ]. Furthermore, let TY(t) :=
[yi + tiq] and define FY : RN ! R+ by

FY(t) = voln(TY(t)K).

The function FY is even and convex. In particular, F satisfies Groemer’s convexity condi-
tion.

Proof. The proof presented here (taken from [28]) is analogous of the proof given
by Groemer in [16]. We start by proving that FY is even. Note that

[y1 + t1q . . . yN + tNq]K =

(
N

Â
i=1

ki(yi + tiq) : (ki) 2 K

)
,

while

[y1 − t1q . . . yN − tNq]K =

(
N

Â
i=1

ki(yi − tiq) : (ki) 2 K

)
.

These sets are reflections of each other onto q?, hence FY(t) = FY(−t). For the
second assertion, let Pq? be the orthogonal projection onto q?. For any compact,
convex set A ✓ Rn, define functions fA, gA : Pq? A ! R by

fA(y) := sup{l : y + lq 2 A}
and

gA(y) := inf{l : y + lq 2 A}.

Then fA is concave and gA is convex. Furthermore, let s, t 2 RN and consider the
functions

fTY(s)K, gTY(s)K : Pq?TY(s)K ! R

and
fTY(t)K, gTY(t)K : Pq?TY(t)K ! R
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defined as fA and gA above. Since Pq? is the orthogonal projection on q?, we
have

Pq?TY(s)K = Pq? [yi + siq]K = [yi]K = Pq? [yi + siq]K = Pq?TY(t)K.

Thus setting D = Pq?TY(s)K = Pq?TY(t)K, we can define f , g : D ! R by

f =
1
2

fTY(s) +
1
2

fTY(t), g =
1
2

gTY(s) +
1
2

gTY(t),

Set K̂ to be the associated compact convex set

K̂ := {y + lq : y 2 D, g(y)  l  f (y)}.

If we can show that TY(s/2 + t/2)K ✓ K̂, then we obtain

vold(TY(s/2 + t/2)K)

 vold(K̂) =
Z

D
f (y)− g(y)dy

=
Z

D

1
2

fTY(s)(y) +
1
2

fTY(t)(y)−
1
2

gTY(s)(y) +
1
2

gTY(t)(y)

=
1
2

Z
D

fTY(s)(y) + gTY(s)(y) +
1
2

Z
D

fTY(s)(y)− gTY(t)(y)

=
1
2

vold(TY(s)K) +
1
2

vold(TY(t)K).

which shows that FY is convex.
Indeed, let x 2 TY(s/2 + t/2)K so that for some k = (k1, . . . , kN) 2 K, we have

x =
N

Â
i=1

ki(yi + (si/2 + ti/2)q) =
N

Â
i=1

kiyi +
N

Â
i=1

ki(si/2 + ti/2)q

= y +
N

Â
i=1

ki(si/2 + ti/2)q.

Note that

y +

 
N

Â
i=1

kisi

!
q =

N

Â
i=1

ki(yi + siq) 2 TY(s)K

which yields

gTY(s)(y) 
N

Â
i=1

kisi  fTY(s)(y), gTY(t)(y) 
N

Â
i=1

kiti  fTY(t)(y).
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Therefore, we finally have

g(y) =
1
2

gTY(s)(y) +
1
2

gTY(t)(y)

 1
2

N

Â
i=1

kisi +
1
2

N

Â
i=1

kiti

 1
2

fTY(s)(y) +
1
2

fTY(t)(y)

= f (y)

which shows that x = y+ÂN
i=1 ki(si/2+ ti/2)q 2 K̂ and concludes this proof.

Finally, we have everthing we need to proof Theorem 5.2.

Proof of Theorem 5.2. From Proposition 5.13 we see that the integrand of

FC( f1, . . . , fN) =
Z

Rn
· · ·

Z
Rn

voln([x1, . . . , xN ]K)
N

’
i=1

fi(xi)dxN . . . dx1

given by F = voln([x1 . . . xN ]K) = voln(T(x1, . . . , xN)K) satsifies Groemer’s Con-
vexity Condition. Therefore, we can apply Theorem 5.12 which yields the desired
inequality

FC( f1, . . . , fN) ≥ FC(1Dn , . . . , 1Dn),

if k fik•  1 for i = 1, . . . , N.

5.2 Randomized version of the Lp-Busemann-Petty
Centroid Inequality

We follow [28] and describe the probabilistic setting. First, we consider a se-
quence of convex bodies (KN)

•
N=n with KN ✓ Rn and assume that µ1, µ2, . . . are

probability measures in P[n] and fi denotes the density of µi for i = 1, 2, . . . . All
random vectors are defined on a common underlying probability space (W,S , P)
and E denotes expectation with respect to P. Furthermore, suppose that we have
the following sequence of independent random vectors

• X1, X2, . . . with Xi distributed according to fi;

• X⇤
1 , X⇤

2 , . . . with X⇤
i distributed according to f ⇤i ;

• Y1, Y2, . . . with Yi distributed according to 1Dn ;
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For k = 1, 2, 3 and for each N ≥ n let us denote the corresponding linear
operators T(k)

N : RN ! Rn represented by n ⇥ N matrices as

T(1)
N = [X1 · · · XN ], T(2)

N = [X⇤
1 · · · X⇤

N ], T(3)
N = [Y1 · · ·YN ]. (5.1)

Then (T(k)
N KN)

•
N=n is a sequence of random convex bodies in Rn for each k =

1, 2, 3. We now proof a corollary of Theorem 5.2 which enables us to obtain
isoperimetric inequalities for non-random sets by using the classical strong law
of large numbers (see Theorem 3.17) and a suitable choice of (KN).

Corollary 5.14. Suppose that (KN)
•
N=n is a sequence of convex bodies with KN ✓ RN.

For each k = 1, 2, 3 and N ≥ n, let T(k)
N : RN ! Rn be the random linear operators

defined by (5.1). Suppose K(k) are (random) convex bodies in Rn defined by the following

K(k) := lim
N!•

T(k)
N KN (a.s.) (5.2)

for k = 1, 2, 3, where the convergence is in the Hausdorff metric. Let M 2 L1(W,S , P)
and suppose further that for each k = 1, 2, 3,

voln(T
(k)
N KN)  M (a.s.). (5.3)

Then
Evoln(K(1)) ≥ Evoln(K(2))

and, if k fik•  1 for each i = 1, 2, . . . , then

Evoln(K(2)) ≥ Evoln(K(3)).

Proof. In the notation of this section we see that Theorem 5.2 and its proof imply
that for each N ≥ n, we have

Evoln(T
(1)
N KN) ≥ Evoln(T

(2)
N KN)

and if k fik•  1 for each i = 1, 2, . . . then

Evoln(T
(2)
N KN) ≥ Evoln(T

(3)
N KN).

Since K(k) = limN!• T(k)
N KN converges in the Hausdorff metric almost surely

to some random convex body K(k) by assumption, we obtain

voln(T
(k)
N KN) ! voln(K(k)) as N ! •

almost surely as voln(·) is continuous with respect to the Hausdorff metric in
Kn. Furthermore, since voln(T

(k)
N KN)  M almost surely by assumption, we have
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dominated convergence of voln(T
(k)
N KN) (see Theorem 3.7). Thus, the above limit

implies
lim

N!•
Evoln(T

(k)
N KN) = Evoln(K(k))

which concludes the proof.

Before we can finally proof a randomized version of the Lp-Busemann-Petty
centroid inequality, we require a bit more notation. If T : RN ! Rn is a linear
operator denote its adjoint by Tt : Rn ! RN. If K ✓ RN is an arbitrary convex
body, the support function of TK is given by

h(TK, y) = sup{hTx, yi : x 2 K} = sup{hx, Ttyi : x 2 K} = h(K, Tty) (5.4)

for any y 2 Sn−1. Furthermore, if TN = [x1, . . . , xN ], then Tt
N : Rn ! RN is given

by
Tt

Ny = (hx1, yi, . . . , hxN, yi) (y 2 Rn)

In contrast to the definition of Lp-centroid bodies given in Chapter 4 , Paouris
and Pivovarov [28] define the Lp-centroid body without the normalization con-
stant cn,p as follows

Definition 5.15. Let K ✓ Rn be a bounded Borel measurable set with voln(K) = 1. For
p ≥ 1, let Gp(K) denote the Lp-centroid body of K, i.e., the body with support function

h(Gp(K), y) =
✓Z

K
|hx, yi|pdx

◆p

Corollary 5.14 now gives a short proof of a randomized version of the Lp-
Busemann-Petty centroid inequality.

Corollary 5.16 (Randomized Lp-Busemann-Petty Centroid Inequality). Let K ✓
Rn be a bounded Borel measurable set with voln(K) = 1. Then

voln(Gp(K)) ≥ voln(Gp(Dn)),

where Dn is the Euclidean ball of volume one.

Proof. We want to use Corollary 5.14 and, therefore, need to check if Gp(K) and
Gp(Dn) satisfy (5.2) and (5.3).

Take fi = 1K for i = 1, 2, . . . . Note that f ⇤i = 1Dn and hence the random

operators T(2)
N and T(3)

N have the same distribution. Let BN
q denote the closed unit

ball in lN
q , where 1/p + 1/q = 1. If we set K = N−1/pBN

q , the support function of

T(1)
N KN is

h(N−1/pT(1)
N BN

q , y)p = h(N−1/pBN
q , (T(1)

N )ty)p =
1
N

N

Â
i=1

|hXi, yi|p
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for each y 2 Sn−1, see (5.4). By the strong law of large numbers (see Theorem
3.17) the empirical mean converges to the actual mean almost surely

lim
N!•

1
N

N

Â
i=1

|hXi, yi|p =
Z

K
|hx, yi|pdx (a.s.).

Thus, for any y 2 Sn−1, we have

lim
N!•

h(N−1/pT(1)
N BN

q , y) =
✓Z

K
|hx, yi|pdx

◆p
(a.s.).

Theorem 2.20 states that pointwise convergence of support functions implies
uniform convergence. Therefore, we see that (5.2) follows from

Gp(K) = lim
N!•

N−1/pT(1)
N BN (a.s.),

in the Hausdorff metric. Finally, we denote by R(K) the circumradius of K,

R(K) = inf{R > 0 : K ✓ RBn}.

Since |hXi, yi|  R(K), it holds that N−1/pT(1)
N BN

q ✓ R(K)Bn, hence (5.3) is satis-

fied as well. The same reasoning applies when T(1)
N is replaced by T(2)

N and K by
Dn. Therefore, Corollary 5.14 yields that

vol(Gp(K)) = Evoln(Gp(K)) ≥ Evoln(Gp(Dn)) = voln(Gp(Dn)).
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6 Randomized Polar
Lp-Busemann-Petty Centroid
Inequality for General Measures

In the last chapter of this thesis we present a dual, or polar, version of the ran-
domized Lp-Busemann-Petty centroid inequality and follow [12]. One celebrated
and fundamental result in the classical setting is the Blaschke-Santalò inequality
(see Theorem 4.6). It states that among symmetric convex bodies K of fixed vol-
ume, the volume of the polar body K◦ is maximized by the Euclidean ball and,
due to SL(n)-invariance, also by ellipsoids.

The following theorem extends this inequality to random sets.

Theorem 6.1. Let N, n ≥ 1. In the class of N-tuples (X1, . . . , XN) of independent
random vectors in Rn whose laws have a density bounded by one, the expectation of the
volume of the set

(conv{±X1, . . . ,±XN})◦
is maximized by N independent random vectors uniformly distributed in the Euclidean
ball Dn ✓ RN of volume one.

Note that in this chapter the density of a measure on Rn always refers to the
density with respect to the Lebesgue measure on Rn.

To see that the above theorem actually generalizes the Blaschke-Santalò in-
equality, let K be a symmetric convex body and assume that voln(K) = 1. Let
X1, . . . , XN, . . . be a sequence of independent random vectors uniformly dis-
tributed in K which means that the law of Xi is lK (the Lebesgue measure re-
stricted to K) which density 1K. One can show that conv{±X1, . . . ,±XN} con-
verges almost surely to K in the Hausdorff metric as N ! •. Of course, this
also holds if K = Dn and therefore, we derive from the theorem, in the limit, that
voln(K◦)  voln(D◦

n) under the assumption that voln(K) = voln(Dn) = 1. This is
exactly the Blaschke-Santalò inequality.

However, Cordero-Erausquin, Fradelizi, Paouris and Pivovarov [12] proved a
more general inequality which extends the above theorem in three ways

1. The result holds in distribution and not only in expectation;
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2. The Lebesgue measure can be replaced by any rotationally invariant, radi-
ally decreasing measure;

3. We can perform more general (convex) operations than the convex hull.

Before we can state the theorem we need two more definitions.

Definition 6.2. A convex body K 2 RN is unconditional if it is invariant under coordi-
nate reflections, i.e., if (k1, . . . ,N ) 2 K, then (±k1, . . . ,±kN) 2 K.

Similarly to Chapter 5, P[n] denotes the class of all Borel probability measures
on Rn that have an L1-density with respect to Lebesgue measure bounded by 1.
This set includes Lebesgue measure restricted to sets of volume one, and after
proper rescaling, any Borel probability measure that is absolutely continuous
with respect to Lebesgue measure and that has a bounded density.

Theorem 6.3. Let K be an unconditional convex body in RN and n be a radical measure
on Rn of the form dn(x) = r(|x|)dx with r : [0,+•) ! [0,+•) decreasing. If
X1, . . . , XN are N independent random vectors in Rn whose laws are in P[n], then

E[n (([X1 · · · XN ]K)◦)]  E[n (([Z1 · · · ZN ]K)◦)],

where Z1, . . . , ZN are independent random vectors uniformly distributed in the Euclidean
ball Dn ✓ Rn of volume one.

Moreover, if r−1/(n+1) : [0,+•) ! [0,+•] is convex, then, with the same notation,
we also have that

8t > 0, P[n (([X1 · · · XN ]K)◦) ≥ t]  P[n (([Z1 · · · ZN ]K)◦) ≥ t].

The proof of this theorem is the content of the next section.

6.1 A General Inequality for Random Polar Convex
Bodies

We start this section with two definitions due to Borell [5], [6] which are required
for some preliminary lemmas.

Definition 6.4. Let s 2 [−•, 1]. A Borel measure µ on Rn is called s-concave if

µ((1 − l)A + lB) ≥ ((1 − l)µ(A)s + lµ(B)s)1/s

for all compact sets A, B ✓ Rn such that µ(A)µ(B) > 0. For s = 0, one says that µ
is log-concave and the inequality is read as µ((1 − l)A + lB) ≥ µ(A)1−lµ(B)l. For
s = −•, the measure is said to be convex and the inequality is replaced by

µ((1 − l)A + lB) ≥ min{µ(A), µ(B)}.
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Definition 6.5. A non-negative, non-identically zero function y is g-concave if

1. for g > 0, yg is concave on {y > 0},

2. for g = 0, log y is concave on {y > 0},

3. for g < 0, yg is convex on {y > 0}.

The next theorem and proposition are stated for completeness only as we are
mostly interested in the subsequent corollary which plays a key role in the proof
of Theorem 6.3. For complete proofs of these results we refer to [12]. The first one
is an extension of a result by Campi and Gronchi [9] which uses shadow systems
and was originally proved for Lebesgue measure.

Theorem 6.6. Let n be a measure on Rn with a density y which is even and g-concave
on Rn for some g ≥ −1/(n + 1). Let (Kt) be a shadow system of centrally symmetric
convex sets. Then the function t 7! n(K◦

t )
−1 is convex.

Theorem 6.7. Let n, N be positive integers and K be a centrally symmetric closed convex
set in Rn ⇥ RN. Let q 2 Sn−1. For t 2 RN and (x, y) 2 Rn ⇥ RN, we define
Pt(x, y) = x + hy, tiq and Kt = Pt(K). Let n be a measure on Rn with a density y with
respect to Lebesgue measure that is even and −1/(n + 1)-concave on Rn. Then

1. t 7! n(K◦
t )

−1 is convex on RN,

2. if K and y are symmetric with respect to q?, then t 7! n(K◦
t )

−1 is even and convex
on RN.

Corollary 6.8. Let r ≥ 0, K be an origin-symmetric convex set in RN, let q 2 Sn−1

and y1, . . . , yN 2 q?. Let n be a measure on Rn with a density y which is −1/(n + 1)-
concave on Rn, even and symmetric with respect to q?. Then, the map

(t1, . . . , tN) 7! n(([y1 + t1q · · · yN + tNq]K + rBn)◦)−1

is even and convex on RN.

The following lemma from [29] will be used in the last stage of the proof of
Theorem 6.10.

Lemma 6.9. Let F : (Rn)N ! R+ be a function that is coordinate-wise decreasing in
the sense that

8x1, . . . , xN 2 Rn, (0  si  ti, 8i  N)

) F(s1x1, . . . , sNxN) ≥ F(t1x1, . . . , tNxN).
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If g1, . . . , gN : R+ ! [0, 1] are nonnegative, bounded by 1, integrable functions withR
Rn gi(|x|)dx = 1 for all i = 1, . . . , N, then

Z
(Rn)N

F(x1, . . . , xN)
N

’
i=1

gi(|xi|)dx1 . . . dxN


Z
(Rn)N

F(x1, . . . , xN)
N

’
i=1

1[0,rn](|xi|)dx1 . . . dxN,

where rn is the radius of Dn.

Proof. By Fubini’s theorem (see Theorem 3.9), it is sufficient to treat each coordi-
nate successively. Therefore, the statement boils down toZ

Rn
F(x)g(|x|)dx 

Z
Rn

F(x)1[0,rn](|x|)dx,

for N = 1 where g is a nonnegative function bounded by 1 with
R

Rn g(|x|)dx = 1,
and F is an even function on Rn satisfying F(sx) ≥ F(x) for all x 2 Rn and
s 2 [0, 1]. This implies that the function r 7! F(rx0) is decreasing on R+ for any
fixed x0 2 Rn. We change to polar coordinates and integrate, where it suffices to
prove that Z +•

0
f (r)g(r)rn−1dr 

Z rn

0
f (r)rn−1dr,

with f a decreasing function and g with values in [0, 1] with
R +•

0 g(r)rn−1dr =R rn
0 rn−1dr. Let a(r) := (1[0,rn](r)− g(r))rn−1 and note thatZ +•

0
f (r)a(r)dr =

Z +•

0
( f (r)− f (rn))a(r)dr ≥ 0

since the integrand in the second integral is pointwise nonnegative.

Let us now recall the spherically-invariant measures n on Rn with

dn(x) = r(|x|)dx with r : [0,+•) ! [0,+•) decreasing, (6.1)

together with the subclass of those measures of the form

dn(x) = k−(n+1)(|x|)dx with k : [0,+•) ! [0,+•] convex increasing. (6.2)

The following statement is even more general than Theorem 6.3 which it is a
special case of the second point below, with r = 0.

Theorem 6.10. Let X1, . . . , XN be N independent random vectors in Rn whose laws are
in P[n] and let r ≥ 0.
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1. If K is an origin-symmetric convex body in RN and n a measure on Rn of the form
(6.1), then

E[n (([X1 · · · XN ]K + rBn)◦)]  E[n (([X⇤
1 · · · X⇤

N ]K + rBn)◦)], (6.3)

where X⇤
1 , . . . , X⇤

N are independent random vectors in Rn whose densities are the
symmetric decreasing rearrangement of the densities of X1, . . . , XN. Moreover, if n
is of the form (6.2), we also have for every t ≥ 0,

P[n (([X1 · · · XN ]K + rBn)◦) ≥ t]  P[n (([X⇤
1 · · · X⇤

N ]K + rBn)◦) ≥ t]. (6.4)

2. If K is an unconditional convex body in RN and n a measure on Rn of the form
(6.1), then

E[n (([X1 · · · XN ]K + rBn)◦)]  E[n (([Z1 · · · ZN ]K + rBn)◦)], (6.5)

where Z1, . . . , ZN are independent random vectors distributed according to lDn .
Moreover, if n is of the form (6.2), we also have for every t ≥ 0,

P[n (([X1 · · · XN ]K + rBn)◦) ≥ t]  P[n (([Z1 · · · ZN ]K + rBn)◦) ≥ t]. (6.6)

Proof. The proof will also be split into two parts.

1. Let G and F be defined on (Rn)N by

G(x1, . . . , xN) = n(([x1 · · · xN ]K + rBn)◦) and F = 1{G>a}.

Furthermore, let q 2 Sn−1 and Y = (y1, . . . , yN) ✓ (q?)N and let Fq,Y and
Gq,Y be the restrictions of F and G given by

Gq,Y = G(y1 + t1q, . . . , yN + tNq) and Fq,Y = 1{Gq,Y>a}.

We first assume the stronger assumption from equation (6.2). Due to the
rotational invariance and the convexity assumption on the density, we see
that the assumptions of Corollary 6.8 are satisfied. Therefore,

(t1, . . . , tN) 7! n(([y1 + t1q · · · yN + tNq]K + rBn)◦)−1 = G−1
q,Y

is even and convex on RN. Hence, Gq,Y and therefore Fq,Y are quasi-concave
and even. We can now apply Proposition 5.6 to the function F to see that

F = 1{G>a} = 1{n(([x1···xN ]K+rBn)◦)≥a}  1{n(([x⇤1 ···x⇤N ]K+rBn)◦)≥a}

which yields

P[n (([X1 · · · XN ]K + rBn)◦) ≥ t]  P[n (([X⇤
1 · · · X⇤

N ]K)
◦) ≥ t].
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If n satisfies the weaker condition from equation (6.1), we apply the previous
result in the case of Lebesgue measure restricted to the Euclidean ball with
radius R > 0. The density 1RBn satisfies the assumptions since it is +•-
concave and, therefore, −1/(n + 1)-concave. We have

P [|([X1 · · · XN ]K + rBn)◦ \ RBn| ≥ t]
 P [|([X⇤

1 · · · X⇤
N ]K + rBn)◦ \ RBn| ≥ t]

for all t > 0. Note that for t 2 (0, r(0)), the set {r ≥ t} is a Euclidean ball
which can be open or closed but the difference is of Lebesgue measure zero
which is why we can choose closed balls with corresponding radius R(t).
For any Borel set A ✓ Rn, we can write by Fubini (see Theorem 3.9)

n(A) =
Z +•

0
|A \ {r ≥ t}|dt =

Z r0

0
|A \ R(t)Bn|dt,

which gives

E
⇥
n ([X1 · · · XN ]K + rBn)◦

⇤
= E

Z +•

0
|([X1 · · · XN ]K + rBn)◦ \ R(t)Bn|dt

=
Z +•

0

Z +•

0
P [|([X1 · · · XN ]K + rBn)◦ \ R(t)Bn| > a] dadt


Z +•

0

Z +•

0
P [|([X⇤

1 · · · X⇤
N ]K + rBn)◦ \ R(t)Bn| > a] dadt

= E

Z +•

0
|([X⇤

1 · · · X⇤
N ]K + rBn)◦ \ R(t)Bn|dt

= E
⇥
n ([X⇤

1 · · · X⇤
N ]K + rBn)◦

⇤
.

This finishes the first part.

2. In the last step we arrived at radially decreasing probability distributions.
It remains to go to the uniform distributions on Dn with C being an uncon-
ditional convex body. In this case, the functions F and G defined above are
coordinate-wise decreasing in the sense that

8x1, . . . , xN 2 Rn, (0  si  ti, 8i  N)

) F(s1x1, . . . , sNxN) ≥ F(t1x1, . . . , tNxN).

This follows because for such si’s and ti’s the unconditionality of K implies
that, for every x1, . . . , xN 2 Rn,

[s1x1 · · · sNxN ]K ✓ [t1x1 · · · tNxN ]K.
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Therefore, the functions F and G satisfy the assumptions of Lemma 6.9,
where gi is the law of X⇤

i and of the function F. Note that the the law of
X⇤

i satisfies the assumptions since the density of Xi is bounded by 1 which
implies that its radial rearrangement is also bounded by 1. This yields

P[n (([X⇤
1 · · · X⇤

N ]K + rBn)◦) ≥ t]  P[n (([Z1 · · · ZN ]K + rBn)◦) ≥ t]

which shows that

P[n (([X1 · · · XN ]K + rBn)◦) ≥ t]  P[n (([Z1 · · · ZN ]K + rBn)◦) ≥ t].

If we apply the same argument to the function G instead of F we get

E[n (([X⇤
1 · · · X⇤

N ]K + rBn)◦)]  E[n (([Z1 · · · ZN ]K + rBn)◦)]

which shows that

E[n (([X1 · · · XN ]K + rBn)◦)]  E[n (([Z1 · · · ZN ]K + rBn)◦)].

Alternatively, we could have used the same argument as in the first part of
this proof.

6.2 Randomized Polar Lp-Busemann-Petty Centroid
Inequality

Cordero-Erausquin, Fradelizi, Paouris and Pivovarov also showed in [12] that we
can pass to the limit in Theorem 6.10 when there is almost sure convergence in
the Hausdorff metric. Before we can state and prove this theorem we need two
small lemmas where the first one is a standard result.

Lemma 6.11. Let K, L, K1, K2, · · · 2 Kn
o be such that KN ! K as N ! • in the

Hausdorff metric. Then

1. K◦
N ! K◦ as N ! •,

2. KN \ L ! K \ L as N ! •,

3. KN + L ! K + L as N ! •,

with convergence in the Hausdorff metric.

Lemma 6.12. Let n be a measure on Rn with a spherically-symmetric, decreasing density.
Then n is continuous on Kn

o with respect to the Hausdorff metric.
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Proof. It is sufficient to show continuity for sets included in some compact set
and we may assume that n has a density of the form fn = dn

dx by uniform approx-
imation as

fn(x) =
M

Â
j=1

aj1rjBn(x) (x 2 Rn),

where aj > 0, j = 1, . . . , M and r1 > r2 > · · · > rM > 0. Suppose that
K, K1, K2, · · · 2 Kn

o and that KN ! K as N ! • in the Hausdorff metric. Apply-
ing Lemma 6.11 as N ! • yields

n(KN) =
M

Â
j=1

aj|KN \ (rjBn)| !
M

Â
j=1

aj|K \ (rjBn)| = n(K).

This brings us to the main result of this section which we then use to recover
Blaschke-Santalò type inequalities, especially the Polar Lp-Busemann-Petty cen-
troid inequality.

Theorem 6.13. Let (Xi) and (Zi) be sequences of independent random vectors in Rn

with each Xi distributed according to the same fixed µ 2 P[n] and each Zi according
to lDn . Assume that KN, KN+1, . . . are unconditional convex bodies with KN ✓ RN,
N = n, n + 1, . . . , such that

[X1 · · · XN ]KN converges to
•O

i=1

µ-a.s. in the Hausdorff metric (6.7)

and

[Z1 · · · ZN ]KN converges to
•O

i=1

lDn-a.s. in the Hausdorff metric. (6.8)

Then, if n is a measure on Rn with a spherically-symmetric, decreasing density, we have

E


n

✓✓
lim

N!•
[X1 · · · XN ]KN

◆◦◆
 E


n

✓✓
lim

N!•
[Z1 · · · ZN ]KN

◆◦◆
(6.9)

Proof. Let e > 0 and note that

eBn ✓ [X1 · · · XN ]KN + eBn

hence
n (([X1 · · · XN ]KN + eBn)◦)  n(e−1Bn)
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for each N ≥ n. Analogously, this holds for Z1, . . . , ZN. We use dominated
convergence (see Theorem 3.7), Lemmas 6.11 and 6.12 together with Theorem
6.10 to see that

En

✓✓
lim

N!•
[X1 · · · XN ]KN + eBn

◆◦◆
= E lim

N!•
n ([X1 · · · XN ]KN + eBn)◦

= lim
N!•

En ([X1 · · · XN ]KN + eBn)◦

 lim
N!•

En ([Z1 · · · ZN ]KN + eBn)◦

= E lim
N!•

n ([X1 · · · XN ]KN + eBn)◦

= En

✓✓
lim

N!•
[X1 · · · XN ]KN + eBn

◆◦◆
.

In the case that En (limN!•[Z1 · · · ZN ]KN)
◦ = •, the result holds trivially.

Otherwise, since

lim
N!•

[Z1 · · · ZN ]KN ✓ lim
N!•

[Z1 · · · ZN ]KN + eBn,

we have

n

✓✓
lim

N!•
[Z1 · · · ZN ]KN + eBn

◆◦◆
 n

✓✓
lim

N!•
[Z1 · · · ZN ]KN

◆◦◆
for each e > 0. If we use dominated convergence again and let e ! 0 we finally
obtain

E


n

✓✓
lim

N!•
[X1 · · · XN ]KN

◆◦◆
 E


n

✓✓
lim

N!•
[Z1 · · · ZN ]KN

◆◦◆
.

We already presented two definitions of the Lp-centroid body in this thesis, but
we define it here one last time for measures µ 2 P[n].

Definition 6.14. The Lp-centroid body Gp(µ) of a measure µ 2 P[n] is the convex body
with support function

h(Gp(µ), y) =
✓Z

Rn
|hx, yi|pdµ(x)

◆1/p
(y 2 Rn).

With that we can finally present the randomized polar Lp-Busemann-Petty cen-
troid inequality which was stated as a corollary to Theorem 6.13 in [12].
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Corollary 6.15. Let n be a measure on Rn with a spherically-symmetric, decreasing
density. Let µ 2 P[n], p ≥ 1, and Gp(µ) be the Lp-centroid body of µ. Then,

n(G◦
p(µ))  n(G◦

p(lDn)).

Proof. Recall from Chapter 5 that if the Xi’s are sampled according to µ, then

Gp(µ) = lim
N!•

N−1/p[X1 · · · XN ]BN
q ,

where 1/p + 1/q = 1 and convergence occurs almost surely in the Hausdorff
metric. This follows from the strong law of large numbers (see Theorem 3.17)
as demonstrated in the proof of Theorem 5.16. Therefore, we can use Theorem
6.13 as the BN

q are unconditional convex bodies and the measure n is spherically-
symmetric with decreasing density by assumption. Thus,

n(G◦
p(µ)) = En

⇣
G◦

p(µ)
⌘

= En

✓✓
lim

N!•
N−1/p[X1 · · · XN ]BN

q

◆◦◆
 En

✓✓
lim

N!•
N−1/p[Z1 · · · ZN ]BN

q

◆◦◆
= En

⇣
G◦

p(lDn)
⌘
= n(G◦

p(lDn)).
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7 Outlook: Randomized
Isoperimetric Inequalities for
p 2 (−1, 1)

To conclude this thesis we give a short overview of very recent discoveries in the
field of (randomized) isoperimetric inequalities for sets that interpolate between
intersection bodies and dual Lp-centroid bodies due to Adamczak, Paouris, Pivo-
varov and Simanjuntak [1]. This gap is exactly at p 2 (−1, 1) and, especially
the setting of p < 1, is of significant interest in the Lp-Brunn-Minkowski the-
ory and extends the results presented in previous chapters. Since we only state
the most important definitions and result we refer to [1] for more details and
complete proofs and to [32] for general definitions and results in the dual Brunn-
Minkowski theory. Additionally, we use the same notation as in Chapter 6.

Similarly to the Brunn-Minkowski theory, which deals with the behavior of the
volume of Minkowski sums of convex bodies, the dual Brunn-Minkowski theory
deals with star-shaped bodies and radial addition.

Definition 7.1. We call a set K in Rn star-shaped if 0 2 K and ax 2 K whenever
x 2 K and a 2 [0, 1]. The radial function of a star-shaped set K is defined as r(K, u) =
sup{a ≥ 0 : au 2 K} for u 2 Sn−1. Furthermore, K is a star-body if it is a compact,
star-shaped set with the origin in its interior and its radial function is continuous.

Like centroid bodies in the Brunn-Minkowski theory, intersection bodies play
a crucial role in the dual Brunn-Minkowski theory.

Definition 7.2. Let K be a star body. The intersection body of K, denoted I(K), is the
star body whose support function is

r(I(K), u) = voln−1(K \ u?).

One of the most important inequalities for intersection bodies is the Busemann
intersection inequality.

Theorem 7.3 (Busemann Intersection Inequality). Let K be a compact, nonempty
subset of Rn. Then Z

Sn−1
voln−1(K \ u?)ndu  wn

n−1

wn−1
n

voln(K)n−1,
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where du denotes integration with respect to the normalized Haar probability measure on
Sn−1.

Furthermore, let us recall the Lutwak-Zhang inequality presented in Chapter 4
which states that for 1  p  •,

voln(G◦
p(K))  voln(G◦

p(K
⇤));

where K⇤ is the dilate of the unit ball centered at the origin of the same volume
as K.

One of the main results in [1] establishes a sharp isoperimetric inequality that
extends the Lutwak-Zhang inequality to the case p 2 (0, 1) and, therefore, pro-
vides a method to partially bridge the gap between the Busemann intersection
inequality and the Lutwak-Zhang inequality.

To state this result we define the dual Lp-centroid body and its empirical ver-
sion similarly to the previous chapter.

Definition 7.4. For f 2 P[n] and p 2 (−1, 1), define the dual Lp-centroid body G⌃
p ( f )

via its radial function with voln(K) = 1:

r−p(G⌃
p ( f ), u) =

Z
Rn

|hx, ui|pdx.

The bodies G⌃
p (K) interpolate between intersection bodies and polar Lp-centroid

bodies using

r(I(K), u) = lim
p!+1

p + 1
1

Z
K
|hx, ui|pdx.

Note that for p < 1, the dual Lp-centroid body need not to be convex (it is if K is
an origin-symmetric convex body).

Definition 7.5. Let N > n and consider independent random vectors X1, . . . , XN ac-
cording to f above. We define the empirical version G⌃

p,N( f ) as

r−p(G⌃
p,N( f ), u) =

1
N

N

Â
i=1

|hXi, ui|p.

Theorem 7.6 ([1], Theorem 2.1). Let f 2 P[n] and let 0 < p < 1. Then

voln(G⌃
p ( f ))  voln(G⌃

p ( f ⇤)).

Moreover,
E
⇣

voln(G⌃
p,N( f ))

⌘
 E

⇣
voln(G⌃

p,N( f ⇤))
⌘

.
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In contrast to the empirical approach in Chapter 6 where the non-random in-
equalities inspired the development of their empirical versions, Theorem 7.6 re-
lies on first establishing the empirical version. In addition to the case 0 < p < 1,
Adamczak, Paouris, Pivovarov and Simanjuntak not only proved a generaliza-
tion of Theorem 7.6 for p ≥ 0 but also proved a first result for p 2 [−1, 0) where
n/|p| 2 N. However, we refer to [1] for these results due to the limitation of this
thesis.
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70 (1918), pp. 72–75.

[5] C. Borell. “Convex measures on locally convex spaces”. In: Arkiv för Matem-
atik 12.1 (1974), pp. 239–252. doi: 10.1007/BF02384761.

[6] C. Borell. “Convex set functions ind-space”. In: Periodica Mathematica Hun-
garica 6.2 (1975), pp. 111–136. doi: 10.1007/BF02018814.

[7] H. J. Brascamp, E. H. Lieb, and J. M. Luttinger. “A general rearrange-
ment inequality for multiple integrals”. In: Journal of Functional Analysis
17.2 (1974), pp. 227–237. doi: 10.1016/0022-1236(74)90013-5.

[8] A. Burchard. A short course on rearrangement inequalities. http://www.math.
utoronto.ca/almut/rearrange.pdf. [Online; accessed 11-November-2022].
2009.

[9] S. Campi and P. Gronchi. “On volume product inequalities for convex sets”.
In: Proceedings of the American Mathematical Society 134 (2006), pp. 2393–2402.
doi: 10.2307/4098278.

[10] S. Campi and P. Gronchi. “The Lp-Busemann–Petty Centroid Inequality”.
In: Advances in Mathematics 167.1 (2002), pp. 128–141. doi: 10.1006/aima.
2001.2036.

[11] M. Christ. “Estimates for the k-plane Transform”. In: Indiana University
Mathematics Journal 33.6 (1984), pp. 891–910.

[12] D. Cordero-Erausquin, M. Fradelizi, G. Paouris, and P. Pivovarov. “Volume
of the polar of random sets and shadow systems”. In: Mathematische An-
nalen 362.3 (2015), pp. 1305–1325. doi: 10.1007/s00208-014-1156-x.

56



Bibliography

[13] R. M. Dudley. Real Analysis and Probability. 2nd ed. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2002. doi: 10.1017/
CBO9780511755347.

[14] R. J. Gardner. Geometric Tomography. 2nd ed. Encyclopedia of Mathemat-
ics and its Applications. Cambridge University Press, 2006. doi: 10.1017/
CBO9781107341029.

[15] R. J. Gardner, D. Hug, W. Weil, and D. Ye. “The dual Orlicz–Brunn–Minkowski
theory”. In: Journal of Mathematical Analysis and Applications 430.2 (2015),
pp. 810–829. doi: 10.1016/j.jmaa.2015.05.016.

[16] H. Groemer. “On the mean value of the volume of a random polytope in a
convex set”. In: Archiv der Mathematik 25.1 (1974), pp. 86–90. doi: 10.1007/
BF01238645.

[17] F. John. “Polar correspondence with respect to a convex region”. In: Duke
Mathematical Journal 3.2 (1937), pp. 355–369. doi: 10.1215/S0012-7094-37-
00327-2.

[18] Ai-Jun Li and G. Leng. “A new proof of the Orlicz Busemann-Petty centroid
inequality”. In: Proceedings of the American Mathematical Society 139.4 (2011),
pp. 1473–1481. doi: 10.1090/S0002-9939-2010-10651-2.

[19] E. H. Lieb and M. Loss. Analysis. 2nd ed. Vol. 14. Graduate Studies in Math-
ematics. American Mathematical Soc., 2001.

[20] E. Lutwak. “On some affine isoperimetric inequalities”. In: Journal of Differ-
ential Geometry 23.1 (1986), pp. 1–13. doi: 10.4310/jdg/1214439900.

[21] E. Lutwak. “Selected Affine Isoperimetric Inequalities”. In: Handbook of Con-
vex Geometry. Ed. by P.M. Gruber and J.M. Wills. North-Holland, 1993,
pp. 151–176. doi: 10.1016/B978-0-444-89596-7.50010-9.

[22] E. Lutwak, D. Yang, and G. Zhang. “A new ellipsoid associated with convex
bodies”. In: Duke Mathematical Journal 104.3 (2000), pp. 375–390. doi: 10.
1215/S0012-7094-00-10432-2.

[23] E. Lutwak, D. Yang, and G. Zhang. “Lp Affine Isoperimetric Inequalities”.
In: Journal of Differential Geometry 56.1 (2000), pp. 111–132. doi: 10.4310/
jdg/1090347527.

[24] E. Lutwak, D. Yang, and G. Zhang. “Orlicz centroid bodies”. In: Journal of
Differential Geometry 84.2 (2010), pp. 365–387. doi: 10.4310/jdg/1274707317.

[25] E. Lutwak, D. Yang, and G. Zhang. “Orlicz projection bodies”. In: Advances
in Mathematics 223.1 (2010), pp. 220–242. doi: 10.1016/j.aim.2009.08.002.

[26] E. Lutwak and G. Zhang. “Blaschke-Santaló inequalities”. In: Journal of Dif-
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