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A B S T R A C T

Secondary loop refrigeration systems offer advantages over conventional system architectures: refrigerant
charge reduction, maintenance simplification, and reduced safety hazards. Currently, no model-based fault
detection for a secondary loop system has been reported. This article presents a fault detection and isolation
scheme for a secondary loop refrigeration system where parametric faults (dirt/ice-buildup and secondary loop
pump failure) and sensor faults (four temperature sensors in the secondary loop) are detected and isolated.
The fault detection and isolation system is based on unknown input observers and on extended Kalman filters.
The models are obtained through physical relations combined with experimental parameter determination
(gray-box model) and are cross-validated against measurement data. The complete fault detection and isolation
architecture is experimentally validated on a secondary loop refrigeration system mounted on a cooling box
inside a climate chamber. Experimental results show that important parametric faults can be reliably detected
and isolated, and the fault detection and isolation of sensor faults are effective.
1. Introduction

Refrigeration systems (RS) are in ever-increasing use throughout the
world [1,2]. One means of facilitating condition-driven maintenance is
the implementation of a fault detection and isolation (FDI) method in
these systems. The general advantages of an FDI system are reduced
electricity and maintenance costs, reduced loss of goods, and reduced
carbon emissions [3]. Potential energy savings from FDI in building
systems and equipment are estimated to be 5% to 15% [4]. FDI enables
the detection and correct interpretation of irregular operation, which
can be caused by an actuator or sensor failure, or by parametric faults
such as icing or fouling of heat exchangers [5,6].

Existing FDI methods can be classified into knowledge-based and
data-driven methods [7,8] as well as model-based methods. Knowledge-
based methods are mostly qualitative and require deep knowledge
of the specific process [9]. New data-driven approaches have similar
accuracy to model-based methods, although a major disadvantage of
data-driven methods is that they require suitable data and are sen-
sitive to pattern changes [10]. A review of FDI in building heating,
ventilation, and air-conditioning as well as refrigeration using feature
engineering is given in [11], where it is stated that in some practical
cases, it is difficult to obtain sufficient fault data and labels. More-
over, due to potentially large computational costs, future FDI systems
should be executed using cloud computing. In [12], an overview of FDI
applied to supermarket refrigeration concludes that the mostly data-
driven methods applied to this area along with secondary loops may
complicate the application of model-based methods.

∗ Corresponding author.
E-mail address: agnes.poks@tuwien.ac.at (A. Poks).

Model-based methods require knowledge of the underlying system
physics together with a suitable method to fit parameters. A number of
model-based methods based on observer design are presented in [13].
In [14], FDI is investigated using a bank of unknown input observers
(UIO) for a supermarket refrigeration system. In the second publica-
tion, [15] FDI adding the Kalman filter (KF) technique to the same
system is explored. The simulation results show that the EKF-based
FDI method generally performs better and faster than the KF-based
method. The nonlinear model utilized in these publications is derived
and presented in [16]. Both papers only cover conventional RSs, and
secondary loop faults are not discussed.

Similar FDI approaches for different applications have been pub-
lished previously. In [17], the problem of fault diagnosis in a three-tank
hydraulic system is presented. UIO and extended Kalman filters (EKF)
are used to detect and isolate actuator and sensor faults, although no
experimental results are shown. In [18], a parity equation, an observer,
and a KF for a linearized system are applied. Three different residuals
are compared, focusing on the sensor faults of the thermal management
system. Although a real driving cycle is used, no nonlinear observer
is employed and only sensor faults are covered. A method suitable
for strongly nonlinear processes is presented in [19], where a design
method for a nonlinear unknown input observer is presented. The
proposed method is based on cubature rules to simplify calculations. It
is applied to a continuously stirred tank reactor, and only sensor faults
are considered. An observer-based FDI method for a single loop RS
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359-4311/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.applthermaleng.2023.120277
Received 30 August 2022; Received in revised form 6 January 2023; Accepted 19 F
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ebruary 2023

https://www.elsevier.com/locate/ate
http://www.elsevier.com/locate/ate
mailto:agnes.poks@tuwien.ac.at
https://doi.org/10.1016/j.applthermaleng.2023.120277
https://doi.org/10.1016/j.applthermaleng.2023.120277
http://crossmark.crossref.org/dialog/?doi=10.1016/j.applthermaleng.2023.120277&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Applied Thermal Engineering 227 (2023) 120277A. Poks et al.
Nomenclature

Mathematical notation and accents

N Natural numbers
R Real numbers
 Gaussian distribution
rank [𝑿] Rank of matrix 𝑿
�̇� Time derivative of 𝑥 (continuous time system)
𝒙T Transpose of 𝒙
𝑿−1 Inverse of matrix 𝑿
𝒙− Prediction of 𝑥
�̂� Correction/estimate of 𝑥
𝑥∗ Optimized value of 𝑥
�̄� Mean of 𝑥

Latin letters

𝑨 System matrix
𝑩 Input matrix
𝑪 Output matrix
𝒄 Output vector
𝑐𝑝 Specific heat capacity
𝑓 System equation
ℎ Output equation
𝑙 Number of sensor faults
𝑗 Number of parametric faults
𝐽 Objective function
�̇� Mass flow
𝑲ekf EKF-gain matrix
𝑲uio UIO-gain matrix
𝛿 Threshold FDI
𝑷 Covariance matrix of estimation error
𝑄 Variance of process noise
𝑸 Covariance matrix of process noise isolation
�̇� Heat flow
𝑟 Residual
𝑅 Variance of measurement noise
𝑷 Covariance matrix of estimation error
 Fault detection variable
𝑚 Mass KF Kalman filter
𝑛 Rotational speed
𝒖 Input vector
𝑣 Measurement noise
𝑤 Process noise
𝒘 Vector of process noise
𝑥 State
𝒙 State vector
𝑦 Output
𝑧 UIO state

Greek letters

𝛼 Heat transition coefficient
𝛽 Wall model coefficient
𝛾 Pump mass flow
𝜁 Pump power
𝛥 Difference
𝜺 Vector of estimation error
𝜗 Temperature
𝜽 Parameter vector of physical model
2

𝜅 Gain factor model
𝜙 Threshold function coefficients

Subscripts and superscripts

icb Isolated cooling box
k Discrete time
d Detection
fan Air chiller fan
air Air flow
gly Glycol
eva Evaporator
amb Ambient
ice Icing-fault
in In-flowing position
ref Reference
cpr Compressor
pump Glycol–water pump
out Out-flowing position
s Sensor fault
p Parametric fault
wait Holding time detection
hold Holding time isolation

Acronyms

NTU Number of Transfer
EKF Extended Kalman filter
KF Kalman filter
UIO Unknown Input Observer
FDI Fault Detection Isolation
RS Refrigeration system
ICB Isolated cooling box
RMSE Root-mean-square error
NRMSE Normalized root mean square error
COP Coefficient of performance
MPC Model predictive control
PT1 Proportional transfer function
PI Proportional Integral

in an automotive air-conditioning system is presented in [20]. Sensor,
actuator, as well as parametric faults, are detected using dedicated 𝐻∞
filters based on linear models of the system. Experimental results show
the effectiveness of the approach.

Secondary loop systems have evolved in the search for more energy-
efficient refrigeration systems [21]. The paper [22] presents a compre-
hensive review of secondary loop refrigeration systems. The secondary
loop is isolated from the primary loop, which brings many benefits
in refrigerant charge reduction, leakage reduction, and maintenance
simplification compared to conventional refrigeration systems [23].
According to the analyses in [24] secondary loop refrigeration systems
show improved annual coefficient of performance (COP) values com-
pared to standard single loop systems. In [25] the combination of a
carbon dioxide process with a secondary loop shows advantages in COP
and total electrical energy consumption.

While secondary loop RSs show many advantages in handling and
efficiency, the design of an FDI system is still at the development
stage; due to the complications of additional components and their
interaction, in-depth investigations on a suitable FDI system are called
for.

The aim of this study is to provide the design of an FDI system

for a small secondary loop RS and to demonstrate its performance
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Fig. 1. (a) Schematic diagram for the secondary loop of the refrigeration system in the experimental setup. (b) Sketch of the cooling system test bench in a climate chamber.
on an experimental test bench. The methods used include analytical
modeling of the system, parameter estimation and model validation
using measured data, model-based state estimation using UIO and EKF,
and a hierarchical fault identification logic.

The main contributions of this study are as follows:

• A simple yet accurate dynamic model of the secondary loop RS is
built from non-stationary energy balances and regression models
for state estimation. Existing models for simulation purposes are
too complex for this task.

• It is shown that the model parameters can be optimized using a
brief set of measured data.

• The observer structure and the fault identification logic are tai-
lored to identify both sensor faults and the parametric faults for
the secondary loop pump and icing.

• A systematic way to select the threshold values of the fault
identification logic is presented.

• In contrast to [14,15], both Monte Carlo simulations and experi-
mental results demonstrate the functionality and performance of
the presented approach.

Note that the presented FDI method cannot isolate simultaneous faults,
although a more complex observer structure could in principle fulfill
this task [11].

The remainder of this paper is structured as follows: In Section 2
the models of the secondary loop refrigeration system (RS) and insu-
lated cooling box (ICB) are presented. Section 3 describes the model
equations. The parametrization of the developed model and its vali-
dation based on measurements is detailed in Section 4. The structure
consisting of the EKF and UIO is presented in Section 5. Furthermore,
the logic and the model-based FDI approach are explained. Section 6
shows the laboratory setup of the test bench where the FDI algorithm
was experimentally validated followed by the description of the fault
conditions in Section 7. In Section 8, the applied FDI approach and
experimental results are presented. The findings are outlined in the
Conclusion.

2. System description

The proposed approach is implemented on a test bench with a sec-
ondary loop RS fixed to an insulated cooling chamber. Fig. 1 shows the
test bench located in a temperature-controlled chamber with circulating
airflow and stable ambient temperature.

In subplot (a) of Fig. 1 the cooling system consists of an outer and an
inner unit. In the outer unit, as also visible in subplot (b) of Fig. 1, the
condenser is integrated. Outside of the outer unit, a sensor measuring
the ambient temperature 𝜗amb ∈ R is mounted.

Inside the outer unit, the glycol pump is located. The wooden box is
insulated with extruded styrofoam and with a size of 1.78 m x 1.72 m x
3

1.09 m has similar dimensions and thermal characteristics as the cool
box of a delivery vehicle [26]. The refrigeration loop consists of a
condenser, an evaporator, a thermostatic expansion valve, and a com-
pressor. The secondary loop consists of a water pump, a heater, and an
air chiller as shown in Fig. 1(b).

The air chiller inside the box is equipped with a flap, partly covering
the air path of the chiller when closed.

The sensors for the glycol temperature 𝜗in
gly and 𝜗out

gly ∈ R are located
in the inner unit near the air-chiller, as shown in Fig. 1(a). The sensors
for the air-flow temperature 𝜗in

air and 𝜗out
𝑎𝑖𝑟 ∈ R are located in front of

and behind the air-chiller.
A heating load 𝑃load ∈ R≥0 is placed inside the box to emulate

time-varying heat loads such as ambient temperature or irradiation.
Additionally, an electrically heated pot can be controlled, where boiling
water generates high humidity to emulate the effect of door openings
in humid ambient air conditions.

The complete data acquisition system is presented in detail in [27].

3. System model

In this section, the mathematical model of the RS with secondary
loop is described. It forms the base of the observer designs in the later
sections. The model is based on [26,28] and [29] with some adaptions
for the secondary loop system.

3.1. Model formulation

The system shown in Fig. 1 is characterized by seven non-stationary
energy balances:

𝑑𝜗in
gly

𝑑𝑡
=

𝜅1
𝜏1

(

−�̇�eva
�̇�gly𝑐𝑝,gly

+ 𝜗𝑖𝑛eva

)

−
𝜗in

gly

𝜏1
(1)

𝑑𝜗out
gly

𝑑𝑡
=

𝜅2
𝜏2

(

�̇�0
�̇�gly𝑐𝑝,gly

+ 𝜗in
gly

)

−
𝜗out

gly

𝜏2
(2)

𝑑𝜗in
air

𝑑𝑡
=

𝜅3
𝜏3

𝜗icb −
𝜗𝑖𝑛air
𝜏3

(3)

𝑑𝜗𝑜𝑢𝑡air
𝑑𝑡

=
𝜅4
𝜏4

(

�̇�0
�̇�air𝑐𝑝,gly

+ 𝜗icb

)

−
𝜗out

air
𝜏4

(4)

𝑑𝜗icb
𝑑𝑡

= −
�̇�0

𝑚air𝑐𝑝,air
+

𝛼𝐴𝑖𝑐𝑏
𝑚air𝑐𝑝,air

(

𝜗𝑊 1 − 𝜗icb
)

−
𝑃load

𝑚air𝑐𝑝,air
(5)

𝑑𝜗𝑊 1
𝑑𝑡

= 𝛽1
(

𝜗𝑊 1 − 𝜗icb
)

+ 𝛽2
(

𝜗𝑊 2 − 𝜗𝑊 1
)

(6)
𝑑𝜗𝑊 2
𝑑𝑡

= 𝛽3
(

𝜗𝑊 2 − 𝜗𝑊 1
)

+ 𝛽4
(

𝜗amb − 𝜗𝑊 2
)

(7)

The states are 𝜗in
gly, 𝜗

out
gly in the water–glycol fluid, the air temperatures

before and after the air chiller 𝜗in and 𝜗out, 𝜗 ∈ R is the air
air air icb
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temperature inside the cargo area, and 𝜗𝑊 1,2 ∈ R are the temperatures
of the wall layers. The control input vector 𝒖 = [𝑛cpr, 𝑛pump]T ∈ R2

≥0
consists of 𝑛cpr the compressor speed and 𝑛pump the pump speed.

Constant and known parameters are mass 𝑚air ∈ R and specific heat
of air 𝑐𝑝,air ∈ R inside the ICB, heat transfer coefficient 𝛼 ∈ R and wall
surface of the ICB 𝐴icb ∈ R≥0, and mass flow �̇�gly ∈ R and specific
heat 𝑐𝑝,gly ∈ R of water–glycol mix. The external heat load is 𝑃load,
and �̇�eva and �̇�0 ∈ R are the heat flows of the evaporator and air
chiller, respectively. The effect of the pump is modeled by temperature
𝜗𝑖𝑛eva ∈ R in (1):

𝜗in
eva = 1

�̇�gly𝑐𝑝,gly

(

𝑃pump − 1
𝜌gly

𝛥𝑝pump�̇�gly

)

+ 𝜗out
gly (8)

here 𝑃pump ∈ R≥0 is the power of the pump, 𝜌gly ∈ R the density of
he water–glycol mixture and 𝛥𝑝pump is the pressure difference of the
ump. �̇�gly is defined by

̇ gly = 𝛾1 + 𝛾2 𝑛pump + 𝛾3 𝜗
out
gly + 𝛾4 𝑛

2
pump + 𝛾5 𝜗

out
gly 𝑛pump.

pump and 𝛥𝑝pump are modeled by the mass flow �̇�gly:

𝑃pump = 𝛾6 �̇�
2
gly + 𝛾7 �̇�gly + 𝛾8 (9)

𝑝pump = 𝛾9 �̇�
2
gly + 𝛾10 �̇�gly + 𝛾11 (10)

he liquid/liquid heat transfer in the evaporator shows a more direct
eat transfer than the liquid/gas heat transfer in the air chiller. Assum-
ng a static relation, as shown in [27], the dynamic behavior of the
vaporator will be neglected, and the heat flow �̇�eva of the evaporator
s modeled by linear regression:

̇ eva = 𝜅5 𝑛cpr
(

𝜁1𝑛cpr − 𝜁2 + 𝜁3𝜗amb + 𝜁4𝜗
out
gly

)

(11)

he air chiller is modeled as a cross-flow heat exchanger, in accordance
ith the number of transfer units (NTU) method [30], where 𝑊gly ∈ R

s the thermal capacity flow of the refrigerant and 𝑒gly ∈ R is the
perating characteristic. The heat flow of the air chiller is described
s

̇ 0 = −
(

𝜗in
gly − 𝜗in

air
)

𝑊gly 𝑒gly, (12)

here

𝑒gly = 1 − exp
( exp

(

−𝐶gly ⋅𝑁gly
)

− 1
𝐶gly

)

(13)

𝐶gly,air =
𝑊gly

𝑊air
(14)

𝑁gly = 𝑘gly
𝐴chil
𝑊gly

(15)

𝑊gly = �̇�gly ⋅ 𝑐𝑝,gly (16)

𝑊air = �̇�air ⋅ 𝑐𝑝,air. (17)

𝑊air ∈ R is the thermal capacity flow of the air, 𝐶gly ∈ R is the ratio of
the thermal capacity flows of refrigerant and air, 𝑁gly is the referenced
transmission capability of the NTU method, 𝑘gly ∈ R is the heat transfer
coefficient, and 𝐴chil ∈ R is the surface of the air chiller.

The unknown parameters in Eqs. (1)–(11) are collected in the
parameter vector 𝜽 ∈ R28

≥0:

𝜽 =
[

𝛽1,…,4 𝛾1,…,11 𝜅1,…,5 𝜏1,…,4 𝜁1,…,4
]T (18)

A formal discrete-time state space formulation of the model is given by

𝒙𝑘+1 = 𝒇
(

𝒙𝑘, 𝒖𝑘, 𝝂𝑘,𝜽
)

(19)

𝒚𝑘 = 𝒙𝑘 + 𝒆𝑘. (20)

The index 𝑘 ∈ N denotes the current time step with a sample time of
𝑇𝑠 = 10 s, and the state vector contains seven temperatures

𝒙 =
[

𝜗in 𝜗out 𝜗in 𝜗out 𝜗 𝜗 𝜗
]T

.

4

𝑘 gly gly air air icb 𝑊 1 𝑊 2 s
𝒖𝑘 ∈ R2 is the input vector, and 𝝂𝑘 ∈ R2 is the measurable disturbance
of ambient air temperature and external heat load 𝝂𝑘 = [𝜗amb 𝑃load]T.
𝒚𝑘 ∈ R7 is the output vector, and 𝒆𝑘 ∈ R7 are uncorrelated disturbance
signals.

4. Model parametrization and validation

The FDI methods utilized here are based on a reliable model.
Using measured data from different experiments the initially unknown
parameters in 𝜽 are determined.

4.1. Model parametrization

Using the set of input/output data, the aim is to determine the
parameter vector that minimizes the criterion

𝐽𝜽 =
𝑁
∑

𝑘=1
𝜀𝑇𝜽,𝑘𝛬

−1
𝑘 𝜀𝜽,𝑘 ∈ R≥0, (21)

where 𝑁 ∈ N is the number of samples in the identification data
set, 𝜀 ∈ R7 denotes the prediction error and 𝛬 ∈ R7×7

≥0 is a diagonal
weighting matrix. The prediction error is defined as

𝜀𝜽,𝑘 = 𝒚𝑘 − �̂�𝜽,𝑘, (22)

where �̂�𝜽,𝑘 ∈ R7 is the model’s prediction of 𝒚𝑘 ∈ R7. In order to
estimate 𝜽, the prediction error is minimized [31]:

𝜽∗ = arg min 𝐽𝜽 (23)
s.t.
0 ≤ 𝜃𝑖 ≤ 𝜃ub

𝑖 , 𝑖 ∈ {1,… , 27}

Values of 𝜃ub
6 = 2.104 and 𝜃ub

𝑖 = 2.101 otherwise guarantee good
convergence to the optimal solution. The minimization of Eq. (23) is
performed by a non-linear least squares algorithm (see [32]). Model
validation is shown in Section 4.2 and numerical parameter values can
be found in the Appendix (see Table A.3).

4.2. Model validation

To provide an absolute and a relative measure of the model fitness,
the RMSE (root mean squared error)

RMSE ∶=

√

√

√

√

∑𝑁
𝑖=1

(

𝒚𝑖 − �̂�𝑖
)2

𝑁
(24)

and the fit shown in percentage is based on the normalized root mean
squared error (NRMSE)

NRMSE ∶= 1 −

√

√

√

√

√

∑𝑁
𝑖=1

(

𝒚ref,𝑖 − �̂�𝑖
)2

∑𝑁
𝑖=1

(

𝒚ref,𝑖 − �̄�ref,𝑖
)2

(25)

are computed, where 𝑁 ∈ N is the number of samples in the cross-
validation data set, 𝒚ref ∈ R is the measured reference data, �̂� ∈ R is
he estimated output, and �̄�ref ∈ R is the reference mean.

The cross-validation of the model is shown in Fig. 2. In the top
lot, the temperatures of the cooling system are shown (solid-measured,
ashed-simulated). In the bottom plot, the residual is almost always
ithin 1 ◦C; a residual smaller than 2 ◦C results only for large devia-

ions from the operating point. The model fit based on NRMSE is always
bove 89% for the validation data set.

The prediction errors remain within an acceptable region around
he predicted temperature values, being sufficient for modeling the
DI system. For a detailed discussion of the parameter identification

ee [26,32].
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Fig. 2. Top: The validation data set of the gray-box model. Middle: Input signals
ompressor and pump. Bottom: Residuals in ◦C and RMSE values.

. Fault detection and isolation

A model-based FDI design for the secondary loop RS from Section 3
s presented. The structure of the FDI system is based on a detection
nd isolation layer [14,15]. Both parametric and sensor faults can be
etected and isolated, and the selection of thresholds is presented.

.1. FDI architecture

The FDI structure is shown in Fig. 3. The FDI system is connected in
arallel to the plant and its control loop. Fault detection is conducted
sing the unknown input observer (UIO, residual 𝑟𝑑 ∈ R≥0). Fault
solation for parametric faults is achieved by a bank of UIOs (residuals
𝑝 ∈ R≥0), where each model corresponds to one specific fault. The
solation of sensor faults is accomplished by a bank of extended Kalman
ilters (EKF, residuals 𝑟𝑠 ∈ R) [33]. The index 𝑗 denotes the specific
arametric fault, where 𝑗 ∈ {1, 2}. The index 𝑙 ∈ {1, 2,… , 4} defines
he specific sensor fault. The fault isolation logic that assigns the fault
dentifier is explained in Section 5.4.

.2. Unknown input observer

UIOs are used to detect a fault and to isolate the parametric faults
f icing/fouling and pump faults. This section reviews general notions
bout UIO-based estimation and faults isolation (see [14,17] for de-
ails). For the observer design the system (19) is linearized around the
ominal operating point 𝒙0, 𝒖0:

𝑨 =
𝜕𝒇 (𝑡)
𝜕𝒙

|

|

|

|𝒙0 ,𝒖0
𝑩 =

𝜕𝒇 (𝑡)
𝜕𝒖

|

|

|

|𝒙0 ,𝒖0

𝑪 =
𝜕𝒉(𝑡)
𝜕𝒙

|

|

|

|𝒙0 ,𝒖0
𝑬 =

𝜕𝒇 (𝑡)
𝜕𝒛

|

|

|

|𝒙0 ,𝒖0
(26)

where 𝑨 and 𝑩 are system and input matrix. 𝑪 is the output matrix
and 𝑬 is the input vector of the non-measurable input. The design of the
UIO is based on the linearized system, where uncertainties are modeled
as additive disturbances. The UIO is defined as:

𝒛𝑘+1 = 𝑭 𝒛𝑘 + 𝑻 𝑩 𝒖𝑘 +𝑲UIO 𝒚𝑘 (27)

�̂� = 𝒛 +𝑯 𝒚 (28)
5

𝑘 𝑘 𝑘 a
where 𝒛𝑘 ∈ R is the UIO state, �̂�𝑘 is the estimate of 𝒙𝑘. The term 𝑲UIO𝒚𝑘
overs additive disturbances or model uncertainties that are not known
priori. Matrices 𝑯 , 𝑻 , 𝑭 , 𝑲UIO are defined by

𝑯 = 𝑬
[

(

𝑪𝑬
)𝑇 (𝐶𝑬

)

]−1
(

𝑪𝑬
)𝑇 (29)

𝑨1 = 𝑨 −𝑯 𝑪 𝑨 (30)
𝑻 = 𝐼 −𝑯 𝑪 (31)
𝑭 = 𝑨1 −𝑲1 𝑪 (32)

𝑲UIO = 𝑲1 + 𝑭 𝑯 (33)

The gain matrix 𝑲1 is used for the design of the UIO. The UIO exists
(see [14]) if the condition rank(𝑪𝑬) = rank(𝑬) holds. Furthermore,
matrices (𝑨1,𝑪) must be a detectable pair.

Utilizing (29) to (33), the state estimation error for all UIOs is
𝒆𝑖𝑘+1 = 𝑭 𝒆𝑖𝑘 ∈ R, where 𝒆𝑖𝑘 = 𝒙𝑖𝑘 − �̂�𝑖𝑘 (𝑖 ∈ {𝑑, 𝑝} for detection and
parametric faults, respectively), will asymptotically approach zero if 𝑭
is positive definite. The associated residual 𝑟𝑖𝑘 ∈ R≥0 is defined as

𝑟𝑖𝑘 = 𝒆𝒊𝑇𝑘 ⋅ 𝒆𝑖𝑘. (34)

The residual 𝑟𝑖𝑘 is compared with a threshold 𝛿𝑖 ∈ R≥0 for detection pur-
poses. An optimal choice for the thresholds under different operating
conditions is shown in Section 5.5.

5.3. Extended Kalman filter

Sensor faults for four sensors are covered by the multiple-model
EKF-based method. The EKF is an optimal state estimator, which is
applied to stochastic dynamic systems. The EKF is a generalization of
the KF for a nonlinear system, in which the system is linearized around
the last estimation. The system (19) is iterative linearized around the
current state vector 𝒙𝑘:

𝑨𝑘 =
𝜕𝒇 (𝑡)
𝜕𝒙

|

|

|

|�̂�𝑘 ,𝑢𝑘
, 𝑩𝑘 =

𝜕𝒇 (𝑡)
𝜕𝒖

|

|

|

|�̂�𝑘 ,𝑢𝑘
, 𝑪𝑘 =

𝜕𝒉(𝑡)
𝜕𝒙

|

|

|

|�̂�𝑘 ,𝑢𝑘

The nonlinear model is used to compute the future state 𝒙−𝑘+1 and
he current state covariance matrix 𝑷 −

𝑘 with the following definitions:

−
𝑘+1 = 𝒇

(

�̂�𝑘, 𝒖𝑘
)

(35)

𝑷 −
𝑘 = 𝑨𝑘 ⋅ 𝑷 𝑘−1 ⋅𝑨𝑇

𝑘 +𝑸𝑘 (36)

here �̂� is the posterior estimate, �̂�−𝑘 the prior estimate and 𝑷 𝑘 the state
ariance matrix. At the correction state, using 𝒙−𝑘 and 𝑷 −

𝑘 , the Kalman
ain 𝑲EKF,𝑘, and measurement innovation 𝑺𝑘, the update of the error
ovariance matrix 𝑷 𝑘 is obtained.

𝑺𝑘 = 𝑪𝑘 ⋅ 𝑃
−
𝑘 ⋅ 𝑪𝑇

𝑘 + 𝑅𝑘 (37)

EKF,𝑘 = 𝑷 −
𝑘 ⋅ 𝐶𝑇

𝑘 ⋅ (𝑪𝑘 ⋅ 𝑃
−
𝑘 ⋅ 𝑪𝑇

𝑘 +𝑹𝑘)−1 (38)

𝑷 𝑘 =
(

𝐼 −𝐾𝑘 ⋅ 𝑪𝑘⋅
)

𝑷 −
𝑘 (39)

The result is an update of the difference between the measured and
estimated output.

𝒆𝑘 = 𝒚𝑘 − 𝑪𝑘�̂�
−
𝑘 (40)

where 𝒚𝑘 is the current measurement. Using Eq. (40) the update of the
posterior state estimate is computed:

�̂�𝑘 = �̂�−𝑘 +𝑲EKF,𝑘 ⋅ 𝒆𝑘 (41)

he a posteriori estimate of the state �̂�𝑘 corrects the predicted estimate
y including the measurements. Finally, the residual is generated as
ollows:
𝑠
𝑘 = 𝑟𝑇𝑘 ⋅ 𝑺−1

𝑘 ⋅ 𝑟𝑘 (42)

qs. (35) to (42) are executed recursively for each sensor that is mon-
tored in the FDI algorithm. Residuals of the EKF-bank are generated

nd collected in a cumulative sum till they exceed a threshold.
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Fig. 3. Block-diagram of interconnections of plant, controller and the proposed method for FDI.
Fig. 4. Flow diagram of the top level fault detection logic.

5.4. Fault isolation logic

The purpose of the fault isolation logic is to specify which fault has
occurred based on the transgression of thresholds by the residuals.

On the top level, fault detection for all faults is achieved by the
detection UIO (see Fig. 3). A fault is detected if the residual 𝑟𝑑 of the
detection UIO is greater than the pre-defined threshold 𝛿𝑑 ∈ R≥0, Fig. 4.
To avoid toggling, a waiting time 𝑡wait=120 s is defined. 𝑡wait is the
minimum time that the detection condition has to be continuously met
before it is detected which is indicated by  ∈ {0, 1}.

On a lower level, fault isolation is achieved for parametric faults and
sensor faults by the logic shown in Fig. 5. The residuals for parametric
faults 𝑟𝑝 (from the UIOs) and sensor faults 𝑟𝑠 (from the EKFs) are
analyzed. Both residuals are processed in an analogous way: First, the
residuals are compared to suitable thresholds 𝛿𝑝 and 𝛿𝑠 (see Section 5.5
for threshold selection). For each active fault, a counter 𝜒𝑝,𝑠 ∈ N is
6

incremented until all residuals have been checked. If no threshold is
exceeded, no fault is detected in spite of the positive detection UIO.

Using the counter values, a check for a unique fault identification
is conducted. Simultaneous faults (𝜒𝑝,𝑠 > 1) lead to the classification
‘‘unknown fault’’. If only one of the residuals exceeds the threshold, a
unique fault ID is assigned after a holding time of 1000 s.

5.5. Selection of thresholds

In order to obtain valid thresholds, stationary values of the residuals
for fault-free operation are evaluated over the complete operating
range. The thresholds are then selected such that no false alarms occur
in stationary operation.

Fig. 6 shows the values of the residuals in stationary operation for
the different observers. The colored surfaces (blue to yellow) show the
values of the respective residuals, while the red surfaces show suitable
threshold values.

Fig. 6(a) shows that the threshold of the detection observer is
constant at 4000. In nominal operating mode, the residuals are below
the threshold and no false alarm is triggered. Fig. 6(b) shows the
residual values and threshold for the parametric air chiller fault. In this
case, a fault would be triggered if the residual ends up below the red
threshold area. The threshold value was therefore set to a constant of
1500. In Fig. 6(c) the threshold for the parametric pump fault was set
to a constant value of 25000 and intersects the surface of the Residual
in one corner. This is justified by the fact that no operation occurs in
that area.

In Fig. 6(d) the residual values for one of the Kalman filters are
shown. An admissible band is defined by two parallel red surfaces. Note
that for each of the four different Kalman filters (see Fig. 3) such a
surface has been defined. The following equation shows the definition
of one threshold function:

s 2 2
𝛿 = 𝜙1 + 𝜙2 𝑛cpr + 𝜙3 𝜗amb + 𝜙4 𝑛cpr + 𝜙5 𝑛cpr 𝜗amb + 𝜙6 𝜗amb (43)
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Fig. 5. Flow-diagram of the lower level fault isolation.

here 𝑛cpr, 𝜗amb are the time varying variables and 𝜙1,…,6 ∈ R are the
onstants of the threshold function 𝛿s ∈ R.

. Laboratory setup

Fig. 7 shows the test bench where the FDI algorithm was imple-
ented and tested. The complete test bench is located in a temperature-

ontrolled chamber with circulating airflow and stable ambient temper-
ture. The ambient temperature was constant 𝜗amb = 25.0 ◦C during all
est scenarios.

As shown in Fig. 7, the cooling system consists of an outer and an
nner unit. The wooden box also called a calorimeter box, is insulated
ith extruded styrofoam and has similar dimensions and thermal char-
cteristics to the cool box of a delivery vehicle [26]. The complete data
cquisition system is presented in [27].

The air chiller inside the box is equipped with a flap (see Fig. 7) (a)
artly covering the air path of the chiller when closed. This flap can be
ctuated from the outside and emulates icing or fouling when closed.
lso, a camera is mounted in front of the air-chiller outlet to monitor

he icing and correct closing of the flap. The sensors for the glycol
emperature 𝜗in

gly and 𝜗out
gly are located in the inner unit near the air-

hiller, as shown in Fig. 7(a). The sensors for the air-flow temperature
in and 𝜗out are located in front of and behind the air-chiller. The
7

air 𝑎𝑖𝑟 s
tandard deviation of the implemented DS18S20 sensors are ±0.5 ◦C
ver the range −55 ◦C to +125 ◦C, compare [34].

A heating load 𝑃load is placed inside the box to emulate time-varying
eat loads such as ambient temperature or irradiation. During the test
cenarios, the load is held constant at 𝑃load = 300 𝑊 . Additionally,
apor can be inserted into the box through the same opening used for
ables and sensors to emulate the effect of door openings in humid
mbient air conditions (see Fig. 7(b)).

. Test conditions for faults

Experimental measurement data (total length: 21.4 h) obtained from
he test bench were gathered to demonstrate the FDI performance. The
ollowing subsections describe the test conditions during fault-free and
aulty operation, where parametric and sensor faults are covered.

.1. Fault-free operation

For fault-free operation, the system is in nominal condition. The
econdary loop pump delivers a constant mass flow of the water–glycol
ixture of 8.6 kg/min at 𝑛𝑝𝑢𝑚𝑝 = 100%. The compressor speed is

onstant throughout the whole experiment 𝑛𝑐𝑝𝑟 = 1800rpm. The full
urface of the air chiller is available (no ice, metal flap is open). For
arametric faults, stationary operation precedes the fault. For sensor
aults, a series of steps on the compressor speed is performed to
ighlight the performance during transient operation.

.2. Faulty operation

The conditions under which the faults were introduced are de-
cribed in the following section.

.2.1. Parametric faults
Icing fault: Two related air chiller faults are considered:

1. Water vapor is fed into the test bench through a duct (compare
Fig. 7(a) & (b)). The vapor supply was continued until an expert
watching the camera image considered de-icing to be necessary.

2. An articulated flap is closed and covers 30% of the air chiller
surface.

he test bench is adapted to emulate both failures, as can be seen in
ig. 7. Both mechanisms can be triggered when the box is closed. The
ater vapor feed emulates the effect of opening the doors of the ICB,

ausing warm and humid ambient air to enter and subsequently icing
p the air chiller. The flap emulates sudden (partial) blocking of the
vaporator surface by payload or dirt.
Pump fault: A fault in the secondary loop pump, e.g. loss of power

r wear, can reduce the mass flow of the glycol–water mixture. A
ower reduction by 50% reduces the mass flow to 3.5 kg/min. A power
eduction to 30% causes a mass flow to 2.0 kg/min. To emulate this
ault, the power of the water pump is reduced without forwarding the
nformation to the FDI system. All other settings are kept at the nominal
peration.

.3. Sensor faults

The temperature sensor faults considered are drift and offset in both
ositive and negative directions. Step changes in compressor speed
emonstrate the functionality of the FDI during transient operation. For
he sensor offset a constant value of ±3.0 ◦C is added to the real test
ench measurements (six times the standard deviation of the sensor
tated by the manufacturer). Sensor drift is realized by a ramp with a
lope of ±0.001 ◦C/s per sample 𝑇 added to the sensor measurement.
𝑠
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Fig. 6. Plot of stationary residuals (colored surface) and their respective thresholds (red surface). (a): Residual surface Fault Detection (b): Residual surface Parametric Fault: air
chiller (c): Residual surface Parametric Fault: pump (d): Residual surface Sensor Fault EKFs.
Fig. 7. (a): Images of the prepared inner unit inside the wooden box. (b): Image of the test bench with an outer unit on top and all sensor/tube connections. (c): Image of the
side view of the test bench.
7.4. Monte Carlo simulation

To check for reliability a Monte Carlo simulation of 200 runs for
each fault type was conducted. Every fault was tested with three
different fault levels (FL) to find the average fault detection rate (DR)
and false alarm rate (FAR). For parametric faults FL1,2 and 3 indicate
reductions of the nominal values by 10, 40, and 70%, respectively. The
FLs of the sensor faults refer to a percentage (10, 40, and 70%) of a
8

reference fault value. That reference value is set to ±4 ◦C for offset
and ±0.002 ◦C/s for drift. With increasing FL the severity of the fault
increases.

8. Results on fault detection and isolation

In the following section, the results for fault identification and
isolation are presented.
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Fig. 8. Icing faults. (a): Water vapor causes icing. (b): Air-chiller obstructed by flap. Top: Temperatures of secondary loop. Middle: Normalized residuals of detection and isolation
IOs, respectively. Bottom: Fault Identifier. Gray areas indicate faulty conditions.
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.1. Icing fault experiments

In the top plot of Fig. 8(a), the fault of icing of the air chiller is
hown. Water vapor fed into the cooling chamber with subsequent icing
auses temperatures both in the ICB (𝜗out

air and 𝜗in
air) and in the secondary

loop (𝜗out
gly and 𝜗in

gly) to rise (time span 𝑡𝑤 starting at 𝑡 = 1.1 h). After
the shutdown of the feed (𝑡 = 1.32 h), temperatures drop again and
icing begins. The gray area in Fig. 8 shows the time span in which
icing on the air-chiller was visible on the camera. The onset of icing
is also visible in the detection residual in the middle subplot. The icing
fault was detected at 𝑡 = 1.5 h by the detection UIO. The fault isolation
residual correctly indicates an air-chiller fault at 𝑡 = 1.8 h after initially
delivering an unknown fault (see the bottom plot in Fig. 8(a)), starting
at 𝑡 = 1.5 h. Correct isolation is achieved after the holding time 𝑡hold
(Section 5.4) at 𝑡 = 1.85 h.

Sudden obstruction by a flap shown in Fig. 8(b) occurs at 𝑡 = 1.38 h.
As shown in the top plot of Fig. 8(b) the temperatures of 𝜗out

gly and 𝜗in
gly

decrease due to a reduced effective temperature coefficient.
The detection residual (middle subplot) reacts with a sharp rise. The

isolation residual reacts much slower, and correct fault identification is
achieved 0.85 h after the obstruction (bottom plot).

8.2. Pump fault experiments

In the top left plot of Fig. 9(a), a fault of 50% reduction of pump
power is shown. The fault (gray area) causes the temperatures 𝜗out

gly and
𝜗in

gly to react in opposite directions.
In the second subplot of Fig. 9(a), the detection observer (UIO, solid

line) indicates the fault at 𝑡 = 0.72 h. The isolation of the fault (UIO,
dashed line) starts with the occurrence of the fault. A pump fault is
indicated even before the detection has reached the threshold. After
the holding time defined in Section 5.4, the fault isolation is correctly
completed (see the third subplot of Fig. 9(a)).

In Fig. 9(b), a fault with pump power reduction to 30% is shown. In
the top plot of Fig. 9(b), the system response is less pronounced than
before. This causes the detection observer to react slower than in the
9

previous scenario. At 𝑡 = 0.87 h the fault is correctly isolated.
Table 1
Sensor fault isolation: results from test bench experiments.

Fault scenarios 𝜗𝑜𝑢𝑡gly 𝜗𝑖𝑛𝑎𝑖𝑟 𝜗𝑜𝑢𝑡𝑎𝑖𝑟 𝜗𝑖𝑛gly

offset + ✓ ✓ ✓ ✓

offset − ▵ ✓ ✓ ✓

drift + ◊ ✓ ◊ ✓

drift − ▵ ✓ ✓ ◊

Symbol: ✓: correctly detected; ▵: first pump, then correct; ◊:
first icing, then correct.

.3. Sensor faults experiments

Each of the four temperature sensors, 𝜗out
gly , 𝜗in

gly 𝜗out
air and 𝜗in

air was
tested for all fault scenarios. From these results, the negative drift and
positive offset fault are shown (see Fig. 10). Sensor drift on 𝜗out

air is
shown on the left of Fig. 10(a), and a sudden sensor offset on 𝜗𝑜𝑢𝑡gly on
the right of Fig. 10(b).

Fault detection for the sensor drift takes longer, as shown in
Fig. 10(a). After the actual fault at 𝑡 = 3.7 h, the first (false) clas-
sification is obtained at 𝑡 = 5.3 h. The final correct classification is
only achieved at t=6 h after a fault duration of 2.3 h. As shown in
Fig. 10(b), the detection of the sensor offset is much faster; after 0.2 h
a first (unknown) fault is indicated. After another 0.25 h, the correct
fault is isolated. The complete results for sensor faults can be found in
Table 1.

8.4. Monte Carlo simulation on reliability

Using the model presented in Sections 3 and 4 a Monte Carlo
simulation with the faults described in Section 7.4 was performed.
For the parametric faults measurement noise was added (standard
deviation of 0.05 ◦C) and the compressor speed was randomly varied
or each run with a standard deviation of 200 rpm around the nominal
et point (1800 rpm). For sensor faults, the measurements of the test
ench were used. In all Monte Carlo, simulations faults were initiated
t random locations.

In Table 2 the results are given. All faults can be reliably detected
s the DRs and FARs are in the typical range of other reported FDI
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B

Fig. 9. Pump faults. (a): 50% pump power. (b): 30% pump power. Top: Temperatures of secondary loop. Middle: Normalized residuals of detection and isolation UIOs, respectively.

ottom: Fault Identifier. Gray areas indicate faulty conditions.
Fig. 10. Sensor faults. (a): Sensor drift. (b) Sensor offset. Top: Temperatures of secondary loop. Second from top: Normalized residual of detection UIO, respectively. Third from
top: Residual of isolation UIO. Bottom: Fault Identifier. The gray area indicates faulty conditions.
Table 2
Monte Carlo simulation results for fault detection rate and false alarm rate in %.

Fault level Icing Pump Offset Drift

DR FAR DR FAR DR FAR DR FAR

FL1 67.3 2.8 78.1 0.2 68.7 3.5 68.6 6.7
FL2 70.5 0.7 79.3 1.5 73.4 2.7 74.9 5.3
FL3 74.9 0 84.3 0.1 77.9 0.9 82.3 2.1

Average 70.9 1.2 80.6 0.6 73.3 2.3 75.3 4.7
10
implementations. The parametric fault icing shows the smallest FAR
rate. The pump fault shows the highest FAR at FL3, similar to the
experiments.

Conclusion

This study aimed to find a model-based fault detection and isolation
(FDI) system for a secondary loop refrigeration system suitable for
detecting both parametric and sensor faults. The key findings are as
follows:
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Table A.3
Numerical values of measured model parameters.

Parameter Symbol Value Unit

Surface area ICB 𝐴icb 13.57 m2

Surface air chiller 𝐴chil 0.07 m2

Surface air chiller flap 𝐴flap 0.023 m2

Heat load 𝑃load 300 W
Density glycol/water 𝜌air 1.04e03 kgm3

styrofoam thickness 𝑑iso 8.0 cm
Wood panels thickness 𝑑wood 1.2 cm
Heat transfer coefficient 𝛼 0.396 Wm−2K−1

Mass air ICB 𝑚air 93.02 kg
Thermal transmittance 𝑘gly 479.59 Wm−2K−1

Heat capacity gly/air 𝑐𝑝,gly 3.51 kJkg−1K−1

Heat capacity air (wet) 𝑐𝑝,air 1.08 kJkg−1K−1

Table A.4
Numerical values of identified model parameters.

Parameter Symbol Value Unit

Gain glycol in 𝜅1 1.012 –
Gain glycol out 𝜅2 0.969 –
Gain air in 𝜅3 1.065 –
Gain air out 𝜅4 0.967 –
Scaling factor 𝜅5 1.3e4 rpm−1

Wall model 𝛽1 6.6e−4 s−1

Wall model 𝛽2 0.0071 s−1

Wall model 𝛽3 0.0055 s−1

Wall model 𝛽4 5.3e−4 s−1

Time const. glycol in 𝜏1 17.35 s
Time const. glycol out 𝜏2 4.09 s
Time const. air in 𝜏3 10.56 s
Time const. air out 𝜏4 8.25 s
Pump mass flow 𝛾1 0.003 kg s−1

Pump mass flow 𝛾2 0.06 kg(s %)−1

Pump mass flow 𝛾3 1.1e−5 kg(s°C)−1

Pump mass flow 𝛾4 2.7e−4 kg (s %2)−1

Pump mass flow 𝛾5 0.0014 kg (s%°C)−1

Pump power 𝛾6 0.32 W s2 kg−2

Pump power 𝛾7 2.37 W s kg−1

Pump power 𝛾8 0.08 W
Pump pressure 𝛾9 0.0024 (m kg)−1

Pump pressure 𝛾10 0.057 (m s)−1

Pump pressure 𝛾11 0.001 kg(s2 m)−1

Evaporator 𝜁1 2.6e−4 Wrpm−1

Evaporator 𝜁2 0.12 W
Evaporator 𝜁3 3.0e−3 W°C−1

Evaporator 𝜁4 1.5e−3 W°C−1

• A dynamic model of the secondary loop refrigeration system can
be built with reasonable effort using first principles. A compact
set of experimental data suffices to obtain a good model fit.

• Both sensor and parametric faults in the secondary loop can be
reliably detected by the proposed FDI structure.

• The performance of the secondary loop FDI system is in line
with the published results for the conventional system and was
demonstrated by experimental results.

he findings demonstrate that parametric faults in the secondary loop
f the RS are detectable and can be isolated from each other and
ensor faults. Parametric faults are quickly and reliably detected, while
ensor faults show a longer time delay for detection. All delays are still
easonable in practical applications to prevent prolonged operations
ith faulty measurements.

Some sensor faults, e.g. 𝜗𝑜𝑢𝑡gly, are more challenging to isolate than
thers (see Table 1). This is caused by the similar dynamics of para-
etric faults but also by the preference of parametric fault detection

ver sensor fault detection. Different design parameters could shift this
alance in favor of sensor faults. Since all sensor faults can be isolated
11

orrectly, the temporary false classification is considered acceptable.
The model-based approach intrinsically covers the nonlinearities of
he system. Correct dynamics over the whole operation are obtained
sing both unknown input observers and extended Kalman filters.
he parametrization of the thresholds in Section 5.5 reflects that fact:
ue to the nonlinear characteristic of the surfaces, the thresholds are
dapted to the complete operating range.

More advanced FDI formulations are available, especially in the
rea of data-driven algorithms. These algorithms often outperform
odel-based formulations. However, for small units and low system

omplexity, this advantage disappears [11]. On the downside, these
ata-driven methods rely on the availability of sufficiently large data
ets, which may not be available during the design phase.

Moreover, a steady-state detector, as required by the majority of FDI
ethods, is not needed; the proposed approach works for transient as
ell as steady-state operation in the complete operating region.

One of the limitations of the presented FDI method is that it cannot
solate simultaneous faults. The presented approach is still able to
etect the presence of simultaneous faults quickly but will indicate an
nknown fault. Although multiple model-based methods can overcome
his problem, they are considerably more complex and require more
odeling effort.

Another problem is the limited scalability of the approach: If the
S becomes more complex, the model will have more internal states,

nclude more parameters, and thus the identifiability of the parameters
ill deteriorate.

A necessary prerequisite for the practical implementation of the
ethod is the use of a climatic chamber to obtain well-defined ambient

onditions. Only then will a compact data set be adequate for param-
ter estimation without systematic errors. Another requirement is the
vailability of a capable computing unit as small refrigeration systems
re often controlled by simple micro-processors.

The economic impact of any reliable FDI is closely connected to
he choice of the threshold values. Although a systematic way to select
hese values has been outlined in this study, and a Monte Carlo simu-
ation demonstrates the reliability of the system, a strong dependence
n the application area will remain. Exclusively application-specific
easurement data could be the basis for further investigation.

Further work includes a statistical evaluation and optimization of
he thresholds and the associated time delays based on real-world data.
nother task of interest is the comparative implementation of a more
dvanced FDI method, e.g. feature engineering or Bayesian networks.
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ppendix. Parameters of the model

In Table A.3 the parameters that were measured and in Table A.4
he parameters that were identified for the model are shown.
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