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Abstract
Identifying leptons correctly is an important task in high-energy physics experiments.

Leptons can serve as probes for many particles of interest, including the Higgs boson and
electroweak vector bosons. To achieve this, the Compact Muon Solenoid (CMS) experiment
at the Large Hadron Collider (LHC) is designed to detect muons and electrons generated
in proton-proton collisions efficiently.

Usually, lepton identification at the CMS experiment is done by applying a series of
conditions on different variables or, more recently, by simple machine-learning-based tech-
niques like boosted decision trees (BDTs). Leptons from different origins are separated by
conditions on variables describing the hadronic activity around them. In this thesis, we
alter a Dynamic Graph Convolutional Neural Network (DGCNN), originally designed for
jet identification, to employ it in identifying leptons in the CMS experiment. This DGCNN
draws its strength from employing the so-called EdgeConv operation, which incorporates
information from other particles in the vicinity of the lepton with the aim of learning their
correlations and developing a measure of distance between the particles in a latent space
during training.

We demonstrate that our model can outperform CMS’s best current lepton identifica-
tion methods by almost an order of magnitude. We also analyze the performance depend-
ency on different parameters and calibrate constant signal efficiency. The performance is
independent of the number of simultaneous particle collisions, indicating good performance
in high-pileup conditions.
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1 MOTIVATION

1 Motivation
The Large Hadron Collider (LHC), along with its experiments, is the biggest particle

physics experiment ever built [1]. Owing to the sheer size of the experiments, sophistic-
ated readout systems and algorithms are implemented, which allow to reconstruct phys-
ical particles from their signatures in different detectors. However, these systems and
algorithms are not perfect – a significant fraction of the uncertainties in measurements
performed using LHC data stem from uncertainties in particle identification and recon-
struction. Therefore, every improvement in particle identification can directly translate
into more accurate physics results and, therefore, a deeper understanding of the world we
live in.

Traditionally, commonly used algorithms identify particles by using conditions on dif-
ferent variables characterising those. For example, an electron would be identified by
matching a track in the inner tracker with a cluster in the electromagnetic calorimeter – if
the momentum of the track is consistent with the energy of the cluster, with some margin
to account for measurement errors and bremsstrahlung, the particle will very likely indeed
be an electron. This approach generally works quite well, as the LHC experiments could
announce the finding of the Higgs boson already in 2012. Scientists always seek to improve
performance by improving existing algorithms or employing new technologies. One of these
new technologies is machine learning (ML), which has boosted technological progress in
various fields in the latest years. As the LHC generates vast amounts of data, employing
ML technologies in particle physics seems like a natural match. Many different algorithms
and techniques have been proposed in recent years, and a good fraction of those manages
to outperform classical approaches.

Inspired by these considerations, we attempt to employ a Dynamic Graph Convolu-
tional Neural Network (DGCNN) [2] to improve lepton identification at the Compact Muon
Solenoid (CMS) experiment in this thesis. The technical details of the CMS experiment
and the particle identification algorithms are discussed in chapter 2, while the basics of ML
and the DGCNN are described in chapter 3. Our attempts prove successful – we show that
our approach outperforms classical lepton identification techniques in chapter 4. Finally,
we conclude this thesis in chapter 5.
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2 CERN, LHC AND CMS

2 CERN, LHC and CMS
The European Organization for Nuclear Research (Conseil européen pour la recherche

nucléaire, CERN), is a research organisation based in Geneva, Switzerland and home to a
range of particle accelerators, the largest of which is the LHC. Founded in 1954, CERN has
been a driver of cutting-edge technologies and the site of some of the biggest discoveries
in particle physics, the latest one being the discovery of the Higgs boson in 2012 [3, 4, 5].
An image of an event where a Higgs boson is produced and decays to a pair of photons
is included in Fig. 1. Other significant discoveries include, for example, the direct CP
violation in kaon decay [6] and the existence of the W and Z bosons [7, 8]. Furthermore,
CERN is famously known as the birthplace of the World Wide Web [9].

Figure 1: Schematic view of an event recorded with the CMS detector in 2012. The particle
decaying to a pair of photons shows properties consistent with a Standard Model Higgs
boson. Image taken from Ref. [10].

In 2022, seven accelerators and two decelerators were operated. As the experiments
gradually move to use bigger accelerators and therefore higher energies, the older machines
are still used as pre-accelerators. Particles are first accelerated in the linear accelerator
Linac4 to an energy of 160 MeV and subsequently injected into the Proton Synchrotron
Booster (SPB), which accelerates the beam to 1.4 GeV [12] and produces bunches. It is
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2 CERN, LHC AND CMS

Figure 2: CERN accelerator complex. Image taken from Ref. [11]

then injected in the Proton Synchrotron (PS), which increases the beam energy to 25 GeV.
The Super Proton Synchrotron (SPS) then accelerates the protons to an energy of 450 GeV,
where they are finally injected into the LHC [13]. The LHC accelerates them to the final
energy of 6.8 TeV (at the time of writing this thesis). The whole accelerator complex can
be seen in Fig. 2.

Contrary to popular belief, the LHC is actually not perfectly circular – it consists of
eight curved segments and eight straight ones, these are the places where the two beams
are crossed and the big experiments are situated. Fig. 3 shows this concept.

2.1 The Large Hadron Collider – LHC
A 27 km long synchrotron, the LHC is the largest and most energetic particle accelerator

ever built. The centre-of-mass energy in the beam collisions can reach up to 13.6 TeV, which
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2 CERN, LHC AND CMS

allows physicists to study the predictions of the Standard Model (SM) of particle physics
and measure its parameters in never-before achieved accuracy. To collect the maximum
accessible amount of data, equally complex and powerful detectors need to be constructed.
At the LHC, there are four big detectors, called experiments:

• ATLAS (A Toroidal Lhc ApparatuS) is the largest detector operated at LHC. It is a
general-purpose detector with a wide range of physical questions to be investigated,
including the search for physics beyond the SM [14].

• CMS (Compact Muon Solenoid) is another general-purpose detector with the special
requirement of reconstructing muon tracks accurately, as the name suggests. The
ATLAS and CMS experiments use different detector and magnetic configurations to
ensure measurements and results can be cross-checked in a complementary manner
by the other experiment [15].

• ALICE (A Large Ion Collider Experiment) is a specialised experiment designed
to study heavy ion collisions, which might lead to the formation of a quark-gluon-
plasma, a state of matter where quarks and gluons do not need to adhere to colour
confinement [16].

• LHCb (LHC beauty) is designed to study CP violation and its parameters in heavy
flavour hadrons (hadrons which contain a bottom quark) and therefore lead to a
better understanding of the matter-antimatter symmetry [17].

Besides the four large main experiments, there also exist several smaller experiments.
In 2022 there are currently nine experiments in total - but as science evolves, so does the
LHC with its upgrades, so this number is bound to change soon again [18].

One of the most important metrics of a particle accelerator is the instantaneous lumin-
osity, which is the rate of potential encounters of colliding protons. It is given by

L = N1N2nf

4πσxσy
, (1)

where N1,2 denote the number of protons per bunch, n is the number of colliding bunches,
f is the revolution frequency, and σx,y are the spatial extents of the bunches in the plane
transverse to the beam direction.
Why the luminosity is important can be seen by considering the collision rate

dN

dt
≡ σ · L, (2)

where it is clearly visible that the collision rate is directly proportional to the luminosity.
This is why a high luminosity is always a desired target - in fact, the next iteration of LHC
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2 CERN, LHC AND CMS

Figure 3: The layout of LHC, showing the interaction points and the location of its biggest
experiments. Image is taken from Ref. [19].

running will be called ‘High Luminosity LHC’ (HL-LHC), where the goal is to increase the
instantaneous luminosity by an order of magnitude compared to the LHC’s design value of
L =1034 cm−2s−1.

2.2 The Compact Muon Solenoid experiment – CMS
The CMS detector is situated at Insertion Region 5 (IR5 in Fig. 3), 50 m to 100 m

underground close to the French town Cessy, just across the border from Geneva. While
other large experiments were constructed in situ, CMS was built on ground level in 15
sections before being lowered in a cavern to the level of LHC and reassembled. The whole
detector is 21 m long and measures 15 m in diameter. A photo of the CMS detector before

5



2 CERN, LHC AND CMS

Figure 4: Photo of the CMS detector before it was closed. Taken from Ref. [20].

it was closed is shown in Fig. 4.

Its name comes from the fact that it is quite compact for a detector of this enormous
capability, that it is designed to detect muons very effectively and measure those precisely,
and that a strong magnetic field is generated by a superconducting solenoid. Muons are
interesting for a large number of physical questions, most notably the ‘gold plated’ Higgs
decay channel to four muons, i.e. h → Z(→ µ+µ−)Z∗(→ µ+µ−), as the LHC was construc-
ted primarily to discover the Higgs boson [21]. The solenoid magnet reaches a magnetic
field of 3.8 T. This enormous magnetic field is needed for the following reasons: as charged
particles experience Lorentz Force

F = q · (v × B) (3)

in a magnetic field, the curvature of a particle’s path enables the physicist to calculate the
momentum of the particle.

The design of CMS is, of course, heavily influenced by the physics goals of the LHC
and its respective experiments. For CMS, they are (quoted from Ref. [22]):

• Good muon identification and momentum resolution over a wide range of
momenta in the region |η| < 2.5, good dimuon mass resolution (≈ 1 % at
100 GeV/c2 ) and the ability to determine unambiguously the charge of
muons with p < 1 TeV/c.
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2 CERN, LHC AND CMS

• Good charged particle momentum resolution and reconstruction efficiency
in the inner tracker. Efficient triggering and offline tagging of τ ’s and
b-jets, requiring pixel detectors close to the interaction region.

• Good electromagnetic energy resolution, good diphoton and dielectron
mass resolution (≈ 1 % at 100 GeV/c2), wide geometric coverage (|η| <
2.5), measurement of the direction of photons and/or correct localisation
of the primary interaction vertex, π0 rejection and efficient photon and
lepton isolation at high luminosities.

• Good ET
miss and dijet mass resolution, requiring hadron calorimeters with

a large hermetic geometric coverage (|η| < 5) and with fine lateral seg-
mentation (∆η × ∆ϕ < 0.1 × 0.1).

2.2.1 The Detector Systems of CMS

CMS is specifically designed to meet these quoted requirements. Its structure can be
divided into five distinct layers:

• Tracker

• Electromagnetic Calorimeter

• Hadronic Calorimeter

• Solenoid magnet

• Muon detectors

The innermost region is the tracker, which is responsible for reconstructing charged
particle trajectories (commonly referred to as ‘tracks’) and detecting accurate spatial in-
formation of all collision points. To accomplish this, the most sensitive layer can achieve
a single point resolution of up to 23 µm [15]. It consists of two types of silicon sensors
– the silicon pixels are located in the innermost layers and have to deal with the highest
intensity of particles. Silicon microstrips then surround the pixel detectors. With a total
detector area of 205 m2, the CMS tracker is the world’s biggest silicon detector, comprised
of 13 000 pixel chips with 1.9 billion pixels and 9.3 million microstrip sensors [24]. The
data gathered by the tracker is then used to reconstruct the tracks, the primary vertices,
where the particle collisions took place, and secondary vertices from the decay of short-
lived collision products.

The electromagnetic calorimeter (ECAL) serves to measure the energy of electrons and
photons. It is made up of 61 200 niobium doped lead tungstate (PbWO4) crystals, which
serve as scintillators. These scintillators emit light when passed through by electrons and
photons, while silicon avalanche photodiodes or vacuum phototriodes generate an electrical
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2 CERN, LHC AND CMS

Figure 5: Cut through a slice of the CMS detector on a plane transverse to the beam
direction. Image taken from Ref. [23]

signal from these light pulses, which are then further passed to the electronic readout sys-
tems.

Next in order is the hadronic calorimeter (HCAL), which serves to detect particles
interacting via strong interaction, i.e. hadrons. It is made up of layers of dense material
(steel or brass) to induce high interaction rates, interspersed with plastic scintillators that
allow for reading out the signals from particle showers. Wavelength-shifting fibres are then
used to connect the HCAL to the electronic data-collecting systems consisting of silicon
photomultipliers and hybrid photodiodes.

The solenoid magnet is the central part around which the CMS detector was designed
and built. The main idea behind using such a powerful magnet can be seen from Eq. 3:
Lorentz force is proportional to the magnetic field B, so large B should allow for greater
bending of particle’s trajectories and, therefore, combined with the highly accurate tracker
measurements, allow for efficient and highly accurate measurements of the momenta of
charged particles. The superconducting magnet used by CMS is designed to produce a
magnetic field of up to 4 T, for which a current of 19 500 A would be needed. This has
been scaled down to 3.8 T in operation to maximise longevity. Still, a magnetic field of
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2 CERN, LHC AND CMS

3.8 T requires a current of 18 160 A, which equates to a stored energy of 2.3 GJ. To ensure
safety during operation, dump circuits are installed to dissipate this energy safely should
the magnet quench.

The final component of CMS are the muon detectors which are accompanied by the
return yoke. As muons have higher mass than electrons, they can penetrate matter much
more deeply and will therefore produce just a small signal in ECAL and HCAL. This is
why the muon detectors make up the final layer of the experiment. At the edge of CMS, all
other particles have likely been stopped by the calorimeters, so muons are the only particles
likely to produce a signal here. To identify muons, CMS uses three distinct technologies:

• The Drift Tube (DT) system detects muons in the barrel part of the detector. A
DT is a chamber filled with gas with a positively charged wire in the middle - when
a muon passes through, it ionises the gas, electrons knocked out of gas atoms are
accelerated (‘drifting’) towards the wire, creating an electric impulse. CMS features
250 of these DT chambers.

• Cathode strip chambers (CSCs) are used in the endcap region, where the magnetic
field is not uniform, and particle density is larger. The working principle is similar
to that of the drift tubes, only that there are multiple wires on perpendicular planes,
which allow for better position resolution in an environment with high particle mul-
tiplicity.

• Resistive plate chambers (RPCs) are used in parallel to the first two detector systems -
they allow for very fast readout (faster than the 25 ns frequency of the bunch crossings
in LHC). This provides an effective trigger for detecting which bunch crossing the
detected muon stems from. The RPCs consist of two parallel highly resistive plates
with opposite charges, separated by a thin layer of gas. These plates are transparent
to electrons emerging from the ionisation of the gas, which external metallic strips can
finally detect. These detectors allow measurements with very good time resolution.

Furthermore, the CMS is divided into two different regions with different requirements:
The barrel region, where the detectors are arranged cylindrically around the interaction
point (the walls of the CMS ‘cylinder’), and the endcap regions, which are located closely
around the beam (bottom and top of the ‘cylinder’). As particles produced often still
carry a significant momentum in the beam direction, particle intensity is much higher in
the endcap regions than in the barrel region. An illustration of the CMS detector in the
barrel region can be seen in Fig. 5.

As with any experiment in which multiple people are working, a mutual coordinate
system has to be adopted. In CMS, this was chosen with the origin at the nominal col-
lision point, shown in Fig. 6. The x-axis points radially inward towards the centre of
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2 CERN, LHC AND CMS

Figure 6: Depiction of the CMS coordinate system, taken from Ref. [25].

LHC, the y-axis upwards, and the z-axis in the general beam direction. The azimuthal
angle ϕ is measured from the x-axis, while the polar angle θ is measured from the z-
axis. An important variable constructed from θ is the pseudorapidity, which is defined by
η = −ln tan( θ

2) [15]. Another variable often encountered is the transverse momentum pT

- the fraction of the total momentum of a particle in the plane transverse to the beam
direction, i.e. the x-y plane.

2.2.2 Trigger

Each collision produces about 1 MB of data [26] in the CMS detectors – with about
one billion (109) expected proton-proton interactions per second expected at the nominal
luminosity, the generated data would be impossible to readout in real-time, let alone be
stored for later analyses [27]. Additionally, most events do not involve interesting physics
processes, as there will be a lot of ‘graze shots’ in the proton collisions, which will have
too low interaction energy to produce particles and effects of interest. A sophisticated
trigger system is used in CMS to sort out these events beforehand. It is implemented as
a two-level system – the first level (L1), comprised of custom hardware processors, uses
information from the calorimeters and muon detectors to select events at a rate of around
100 kHz. The second level, known as the high-level trigger (HLT), consists of a farm of
commercial processors running a version of the full event reconstruction software optimised
for fast processing that reduces the event rate to around 1 kHz before data storage. The
L1 trigger logic is mostly implemented in Application Specific Integrated Circuits (ASICs)
and Field Programmable Gate Arrays (FPGAs). These units have to store and process the
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2 CERN, LHC AND CMS

information and give a trigger signal in a defined timeframe of 3.2 µs. Interestingly, due to
these time constraints, the L1 trigger can only use signals from the calorimeters and muon
systems but no data from the tracker [28].

Contrary to L1 with its home-grown custom data processing systems, HLT employs a
large number of commercially available processors in a big computing farm. This allows
for scaling up the system as the costs of processors and computing power will probably
further sink in the future. It also ensures full flexibility to change the configuration of
the Data Acquisition System (DAQ), should the requirements for the DAQ change or new
technological developments open up new possibilities to enhance performance even further.
The HLT is designed to reduce the output rate further by a factor of ∼ 1000, which yields
the final output rate of 100 Hz to 1 kHz, which is a manageable load for offline storage.

2.2.3 Reconstruction

The data which is finally stored offline needs to be treated further to allow for analysis
to be done – this step is called reconstruction. In CMS, it is done using the particle-flow
algorithm [29]. It uses a holistic approach by combining the information of all detector
components, while in previous approaches, each subdetector would use its own signals for
analysis. The PF algorithm aims to reconstruct muons, electrons, neutral hadrons, charged
hadrons and photons.

As CMS was designed to measure muons with great accuracy, muon reconstruction
is the ‘easiest’ part of the PF algorithm. Tracks from the inner tracker and hits in the
muon system are reconstructed independently at first [30]. As for all charged particles, the
track in the inner tracker is reconstructed using a Kalman-Filtering (KF) algorithm. This
approach gives rise to three different categories of muons:

• Standalone muons are constructed using only signals from the muon detectors.

• To build tracker muons, all tracks reconstructed using only information from the
tracker with a pT larger than 0.5 GeV and total momentum p larger than 2.5 GeV
are extrapolated to the muon system. If a signal from at least one muon segment
matches the extrapolated track, the particle will be classified as a tracker muon.

• Global muons are basically constructed in reverse fashion as the tracker muons
(‘outside-in’) – each standalone muon track is matched to a tracker track. This
approach offers better efficiency for high pT (>200 GeV) muons.

Owing to the specialized design of CMS, usually more than 99% of muons can be recon-
structed as global or tracker muon, the majority even as both [29].
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Electron reconstruction is somewhat more challenging, as electrons, owing to their lower
mass, lose a sizable portion of their energy as bremsstrahlung – up to 86% of the energy
can be lost before reaching the ECAL [31]. To allow for accurate measurements, it is there-
fore critical to detect the bremsstrahlung photons and attribute them to the corresponding
electron. As was the case for muons, tracks in the tracker and ECAL energy clusters are
built separately from each other and combined in a later step. For cluster building in the
barrel region of the ECAL, at first, a seed crystal is identified. This is the crystal which
detects the largest amount of energy in excess of a threshold ET,seed > Emin

T,seed. Afterwards,
arrays of 5×1 crystals in η×ϕ are added Nsteps times in both directions of ϕ until they meet
the energy threshold Emin

array. Finally, they are connected into a so-called supercluster, a
weighted average of all the previously reconstructed clusters. This superclustering leads to
better and more accurate energy resolution than using readout clusters of a fixed size [31].
In the endcap regions, a slightly different algorithm is used owing to the altered geometric
conditions. During track reconstruction, as for all charged particles, the KF algorithm is
applied. However, this can produce suboptimal results for electrons, as the KF approach
does not account for changes in curvature due to bremsstrahlung. The KF tracks which
do not meet certain criteria, indicated by an unusually poor fit result, are revisited by a
dedicated Gaussian-Sum Filter (GSF) algorithm, tailored to account for the energy losses
through bremsstrahlung [32]. However, this algorithm requires higher computing time,
which is why this algorithm is not deployed by default.

Photons have similar detector signatures as electrons, but as they are uncharged, they
will not induce a signal in the tracker. Therefore, hits in the ECAL, which could indicate
both electrons and photons, with no matching inner track will be reconstructed as isol-
ated photons. As hadrons can also leave signals already in the ECAL, the ratio between
ECAL and HCAL energy must be similar to what is expected for an isolated photon shower.

Hadrons are identified by energy clusters in the HCAL - at first, all HCAL clusters,
which have not yet been used in reconstructing another particle, give rise to a hadron.
When a matching inner track can be identified, it is identified as charged hadron, other-
wise, the algorithm will detect a neutral hadron [29]. Furthermore, if there is an energy
excess in an HCAL cluster over the energy of the matched track, this will give rise to an
additional neutral hadron. No attempt is made to separate the specific types of hadrons
further than that.

Jets are showers of particles in a narrow cone. Particles produced in the proton-proton
collisions are likely to be unstable and will further decay. All of those decay products
will carry a fraction of the initial momentum. They will therefore be moving in similar
directions, creating jets – a large number of particles near each other.
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2.2.4 Simulation

Another important part is the simulation of the collisions and the behaviour of the
detectors as they are hit by the created particles. It is an essential tool for interpreting
the data collected by the CMS experiment and making new discoveries. This is discussed
extensively in Ref. [33].

According to Ref. [34], simulation can generally be described in the following steps:

• Initial State: Inside the colliding protons, the momentum distributions of the con-
stituent quarks and gluons, commonly referred to as partons, are described by parton
density functions (PDF).

• Hard scatter: A probabilistic distribution of the particles produced in the parton-
parton collisions is calculated using perturbation theory.

• Parton shower: The scattered quarks and gluons radiate secondary quarks and gluons,
which are coloured particles themselves and can therefore further emit quarks and
gluons.

• Hadronization: While the quarks and gluons lose energy, the strong interaction be-
comes finally strong enough for these particles to combine to form colourless hadrons.

• Underlying Event: During the collision of proton bunches, also other partonic colli-
sions involving low-energy transfer happen apart from the hard scattering process;
these processes produce soft hadrons all over the event.

• Unstable particle decay: A significant fraction of the hadrons produced in hadron-
isation are unstable and decay after a short time.

Commonly used general-purpose event generators include, e.g. MADGRAPH5 aMC@NLO [35]
and POWHEG [36]. Both of these generators were used in this thesis to generate the hard
interaction, while the subsequent steps were simulated using PYTHIA8 [37]. The interac-
tion of the generated particles with the detectors is simulated using the GEANT4 software
package [38].
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3 Machine Learning, Neural Networks and ParticleNet
Since the invention of mechanised calculators and eventually computers, scientists have

theorised about ML, or as it is better known in public by the more sensationalist term
Artificial Intelligence (AI). At the beginning an almost entirely theoretical field, several
developments have driven the theory and practical use of ML since the beginning of the
twenty-first century and make it now one of the most rapidly advancing fields of modern
science. According to [39], the first works and models emerged as soon as 1957. However,
computing power was rare in those days, and interest in the field declined, followed by
increasing interest again in the 1990s. However, funding and expectations soon declined
again – these two drops in interest are known as the Winters of AI. The Gold Rush of ML
emerged in the first decade of the 21st century due to three at first glance independent
developments [39]:

• Big Data: never before known amounts of data were available in machine-readable
data formats – a prerequisite to enable powerful ML technologies.

• Computational progress: The ongoing development of ever more powerful Graphics
Processing Units (GPUs), as well as the accompanying software to distribute huge
amounts of data among several processing nodes.

• Algorithms: The development of new ML algorithms, in particular Deep Learning
(DL) and Deep Neural Networks (DNNs).

These developments have enabled ML applications to outperform traditional algorithms
and even humans in many tasks. For example, in 2015 AlphaGo, an ML software tailored to
play the traditional board game Go, beat a human for the first time using ML techniques
– an achievement thought to be at least a decade away for traditional algorithms [40].
Nowadays, ML has become so important that large IT companies like Meta, Alphabet
and Amazon (each ranking under the top 10 most valuable companies worldwide [41]) are
investing billions of dollars each year in the technology.

ML can be divided into three different categories:

• Supervised Learning: The training data is labelled with truth labels for each input,
which the algorithm can see. Training optimises the internal parameters of the model
through backpropagation by minimising a given figure of merit, commonly referred to
as loss function. Famous examples employing supervised learning are Support Vector
Machines [42] and Neural Networks (NNs) [43].

• Unsupervised Learning: In popular culture known as Netflix algorithm, unsupervised
learning does not have access to truth labels of the input data. It works by clustering
data points together which have similarities, and should therefore provide new in-
formation about the structure of the data. These techniques are commonly employed
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in social media feed algorithms, which should deliver new content which the end user
will enjoy. Another field would be fraud detection, where unsupervised learning can
detect anomalies in the data. Widely used algorithms include k-means clustering [44],
principal component analysis [45] and autoencoders [46].

• Reinforcement learning: Here, the model is not allocated a predefined amount of
data to perform its training on but is placed in an unknown, potentially complex
environment. By maximizing a figure of merit called reward, the algorithm uses trial
and error to achieve the programmer’s goal. A common use case for reinforcement
learning is the development of self-driving cars.

3.1 Introduction to Neural Networks
A NN is a type of ML model designed to mimic the human brain, connecting thousands

of artificial neurons. Of course, the human brain can not be recreated artificially (yet), but
NNs have proven quite powerful when trained on large amounts of data. Commonly, NNs
have such good performance that they are quite prone to overfitting, i.e. learning arbitrary
features of the training data that can not be generalized. A lot of optimisation work on
NNs therefore goes into preventing overfitting.

Most ML models employ some kind of convolution operation, thus they are denoted
convolutional NNs (CNNs). The convolution serves to reduce layer sizes and make the net-
work slimmer, therefore saving computational cost. A convolutional network only connects
neighbouring layers; the contrary would be a fully connected network, where each node is
connected to each other node. These layers are discussed more intensively in Sec. 3.5.

A dynamic graph algorithm is one where the data it operates on is updated while run-
ning the algorithm. This is a widely used technology in both classical algorithms and novel
ML applications.

The characteristics listed above form the basis of ParticleNet – a Dynamic Graph Con-
volutional Neural Network (DGCNN) developed by H. Qu and L. Gouskos (both at CERN)
to employ the newest ML research in particle physics. In this case, it is designed for jet
tagging in all LHC experiments. It is written in Python and built upon the PyTorch lib-
rary, an open-source Deep Learning framework [47]. The ParticleNet NN constitutes the
basis of the ParticleNetLepton algorithm presented in this thesis.

The ParticleNet algorithm aims to combine two before independent approaches: the
image-based representation and the particle-based representation. The image-based ap-
proach maps particle hits onto a model of the detector, generating a 3-dimensional image
of a jet with no data loss - however, as there are quite few hits per event in comparison
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to the detector size, the vast majority of detector cells will be blank, thus wasting a lot
of computing resources. Examples of this approach are plentiful and show comparable
performance to cut-based approaches using a sequence of simple conditions, e.g. the ones
used in Refs. [48, 49].

The particle-based approach aims to use computing resources more efficiently by treat-
ing jets as packages of their constituent particles. This is a much more natural repres-
entation of a jet. The most advanced of these algorithms is DeepJet [50] - the Deep-
Jet algorithm already was the foundation of several theses in the CMS analysis group of
HEPHY trying to employ the capability of DNNs for lepton identification, leading to the
DeepLepton algorithm [51]. It shows quite good performance, outperforming traditional
cut-based methods. However, this approach also has disadvantages: as the particles of
the input data possess no intrinsic ordering, an arbitrary, external structure needs to be
imposed onto the data, e.g. ordering of jet constituents by decreasing pT . The model could
learn this structure, so it would learn features that the data does not possess, therefore
impairing performance. The ParticleNet algorithm aims to combine the advantages of
these by employing the EdgeConvolution operation, discussed in more detail in chapter
3.6.1, first described in Ref. [52]. It is designed to be a convolution-like operation on point
clouds, allowing the network to develop its own measure of distance between data points
and update it during training.

3.2 Choice of Loss Function: Cross Entropy Loss
The so-called Loss function is of great importance in giving a NN (or any ML model)

its performance. It is a measure of the difference between the current prediction of the
model and the true labels of the training data - the NN ‘learns’ through minimizing the loss
function. During training, the gradient of the loss function shows the direction (see also
section 3.3) in which the parameters have to be tuned to deliver better prediction results.
Without a loss function, a NN would just be a computationally expensive random number
generator - parameter values would just float around arbitrarily.

In this thesis, we use the Cross Entropy Loss, which is a widely used choice for NNs.
It is defined by

ℓ(x, y) =
�N

n=1 ln
N

ln = −
C�

c=1
wc ln(p(xn,c))yn,c, (4)

where C denotes the number of classes, x is the prediction of the network, y are true values,
n is the number of samples in the current mini-batch, w is the weight and p is a probability
distribution – in our case the Softmax output distribution described in Sec. 3.5.5.
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3.3 Optimiser: Ranger
The optimiser is the other important part in giving the NN its performance, so to speak,

the counterpart of the loss function. It operates in the feature space - the space spanned
by all tunable parameters. The optimiser updates the parameters of the network in the
direction of the inverse gradient of the loss function in the feature space - it optimises the
parameters towards minimisation of the loss function. This finally allows the network to
learn during training.

A simple example of an optimiser is Gradient Descent (GD) - during each training iter-
ation, GD takes a predefined step in the gradient direction. In recent years, a vast amount
of different optimisers have been proposed, each with its own strengths and shortcomings.
They are interspersed by combined approaches, which merge multiple optimizers with the
goal of maximising the strengths and minimising the shortcomings. A popular example of
this is Adam, derived from Adaptive moment estimation [53], which utilises the first and
second moments of the loss function. Though technically different, it aims to combine the
advantages of AdaGrad [54] and RMSProp (Tieleman & Hinton, unpublished). To date,
Adam is still quite popular - it has been the most popular optimiser choice for several
years [55].

Another optimiser following this evolution is used in this thesis, called Ranger [56]. It
aims to combine RAdam (Rectified Adam, a version of Adam employing a rectifier to rule
out excessively large variances) and LookAhead [57]. The LookAhead optimiser is designed
to look ahead by simultaneously keeping two sets of weights, the slow and fast weights. The
slow weights are updated in the direction of the fast weights, which propagate faster than
the slow ones every iteration, and after k steps, the fast weights are reset to the value of
the slow weights. The authors of LookAhead describe their approach as somewhat perpen-
dicular to that of Adam [57], so combining them seems quite promising. As described in
Ref. [58], the authors achieved better performance without much hyperparameter optim-
isation through the combined optimisers in Ranger than in each one individually.

An essential property of the optimiser is the learning rate (LR) – it is a free parameter
chosen before training by the supervisor. The LR specifies how far each training step
should move in the direction of the gradient.

3.4 Backpropagation
The algorithm through which all the nodes and weights get updated is called Back-

propagation. It is essentially an excessive use of the chain rule in differentiation. One can
find several independent sources of this algorithm; the term ‘Backpropagation’ was first
coined in Ref. [59]. A full derivation from first principles can be found in various sources,

17



3 MACHINE LEARNING, NEURAL NETWORKS AND PARTICLENET

e.g. in Ref. [60]. As an example, we will have a look at the partial derivative of the loss
function E with respect to a weight wk

ij connecting the nodes i in layer k − 1 and node j

in layer k, while ak
j denotes the node k in the output layer j

∂E

∂wk
ij

= ∂E

∂ak
j

∂ak
j

∂wk
ij

. (5)

We can see that we can split up the calculation of the total gradient into a set of (compu-
tationally easier) partial derivatives at each node of the network. The first term of Eq. 5
is usually abbreviated to

δk
j ≡ ∂E

∂ak
j

.

Finally, if we include all nodes in all layers, we arrive at

∂E

∂wk
ij

= δk
j ok−1

i = g′(ak
j )ok−1

i

rk+1�
l=1

wk+1
jl δk+1

l , (6)

where g is the activation function of the output layer a, and ok
i is the output for node i in

layer lk.
In Eq. 6, we can finally see where the name comes from: δk

j at layer k is dependent on the
errors δk+1

j at the next layer k + 1 – errors propagate backwards, from the last layer to the
first.

3.5 Layer Types
A NN is constructed by adding together multiple layers with specific functions, each

layer consisting of several nodes – in general, this consists of an input layer containing the
features of the input data, followed by the so-called hidden layers and the final output
layer producing the human-readable output. A node in a given layer is connected to
each node in the previous and the following layer. These connections are each assigned a
weighting parameter - these so-called weights are the learnable parameters of the model,
they get updated in each training iteration. The simplest method of adjusting the weights
is gradient descent, an iterative minimisation algorithm. Usually, one training iteration is
not done using the whole training data set but uses a smaller amount of data to minimise
computational cost. The amount of training data used in one training iteration is referred
to as mini-batch. An image of the ParticleNetLepton structure in this thesis is shown in
Fig. 8; the specific layer types will be discussed in the following. All the layers are defined
in the PyTorch package torch.nn. Below, the layer types used in the ParticleNetLepton
architecture are described.
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3.5.1 Linear

Layer that connects input and output by a simple linear transformation

y = xAT + b, (7)

where y denotes output features, x denotes input features, and A and b contain learnable
parameters.

3.5.2 Batch Normalization

This layer performs a Batch normalization of the current mini-batch. It is defined by

y = x − E[x]�
Var[x] + ϵ

· γ + β, (8)

where again y denotes output features and x denotes input features. The variance and
mean are calculated over each mini-batch, while γ and β are the learnable features of this
layer.

According to Ref. [61], the Batch Normalization should reduce the internal covariance
shift, which refers to the different distributions of the inputs to the layer. This is expected
to make the training more robust, allowing for higher learning rates and less demand for
careful parameter initialization. In the test NN used in Ref. [61], a significantly lower
number of training steps were needed to reach the same level of performance as without
Batch Normalization.

3.5.3 Rectified Linear Unit – ReLU

The Rectified Linear Unit (ReLU) is defined as

f(x) = x+ ≡ max(0, x). (9)

It is an activation function, defined as the positive part of its input.

Activation functions perform an essential role in NNs: only non-linear activation func-
tions allow NNs to perform non-trivial tasks - if only the identity activation function were
used (equivalent to just using no activation function), the NN would just be one big series
of vector-matrix multiplications. This would make the NN ‘collapse’ to just one big lin-
ear transformation [62]. Although many different hand-crafted activation functions have
been proposed, ReLU is still the most widely used due to its simplicity and good perform-
ance [63].
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3.5.4 Dropout

As already stated earlier, NNs are prone to overfitting, and due to this, the risk of im-
pairing performance is quite high. A simple yet quite performant regularization technique
to prevent this overfitting effect is shown in Ref. [64]: during training, random elements,
according to a Bernoulli distribution, of the input tensor will be zeroed (‘dropped’). This
way, one is effectively training many slimmer networks and averaging each of those pre-
dictions. This technique was shown to improve performance but would come at a high
computational cost if done manually.

3.5.5 Output layer: Softmax

The Softmax layer acts as the final output activation layer, assigning probabilities with
which it assesses the test data to belong to one of the output classes. It was proposed in
Refs. [65, 66] and is widely used in NNs today. It is a normalized exponential function
defined as

Softmax(xi) = exp(xi)�
j exp(xj) , (10)

where xi denotes a given output class, while xj is summed over all output classes.
This convention ensures that the output values lie in the interval [0, 1] as well as sum to 1
in all cases, allowing it to be interpreted as probabilities.

3.6 ParticleNet
3.6.1 The EdgeConv Operation

At the heart of the ParticleNet algorithm lies the EdgeConvolution operation. It was
developed for exploiting spatial features of point clouds, nowadays used successfully, e.g.,
in 3D image recognition [52].

The EdgeConv operation in its general form is given by

x′
i =

k
□

j=1
hθ(xi, xij), (11)

where xi ∈ RF denotes the feature vector of the point xi and {i1, . . . , ik} are the indices
of the k nearest neighboring points of xi. As described in Ref. [52], a special form of the
edge function,

hθ(xi, xij ) = hθ(xi, xi − xij ), (12)

where the feature vectors xij of the k nearest neighbours are replaced by their deviation
from xi, is implemented. This choice should allow the EdgeConv to learn a well balanced
fraction of local and global features. Ref. [52] also describes other choices, which would
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(a) (b)

Figure 7: (a) The original ParticleNet network structure (b) Structure of the EdgeConv
operation. Both taken from Ref. [2].
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allow to achieve other proportions of local to global features. The edge function hθ is a
function specifying the relationship between points and is parameterized by the learnable
parameters θ – in this case, it is implemented as a multilayer perceptron (MLP). Finally,
□ is a channel-wise symmetric aggregation operation; for ParticleNet, the mean (i.e. 1

k

�)
was chosen, as this choice achieved better performance than the max operation used in
Ref. [52]. The parameters θ of the edge function are shared for all points in the point
cloud, these are the learnable parameters of the network.

An important feature of the EdgeConv operation is that it can be stacked; it basically
gives a mapping for points from one point cloud to another, where the number of points is
constant. The only dimension that could be altered is the dimension of the feature vector of
each point. This property allows using several consecutive EdgeConvs, allowing the model
to extract features hierarchically – local features should be learned in the first instance of
EdgeConv, while more global features should be learned in the later stages by moving to
a higher dimension.

3.6.2 The ParticleNet architecture

The original ParticleNet architecture is shown in Fig. 7. It makes extensive use of
the EdgeConv operation. The first EdgeConv block starts with determining the k nearest
neighbours of an input particle using the ‘coordinates’ input. Afterwards, the ‘features’
inputs of these k neighbours are used to construct the ‘edge features’, which are the inputs
of the EdgeConv operation. Each EdgeConv block needs to be defined by two hyperpara-
meters: the number of nearest neighbours k and the number of channels C, which defines
the number of nodes in each linear layer. One could also think of C as the dimension of
the feature space in this block.

As shown in Fig. 7, k is set to 16 for all three blocks. Each EdgeConv block consists
of three layers, which could have different sizes. Here a configuration where all the layers
in one block have the same size is used: C is set to (64, 64, 64) for the first EdgeConv
block, (128, 128, 128) for the second and (256, 256, 256) for the final third block. After the
last EdgeConv block, a global pooling layer is applied, followed by a fully connected layer
with a size of 256 nodes. Again, a ReLU activation is applied, while the dropout layer
should inhibit overfitting. The final fully connected layer with two nodes and the Softmax
activation delivers the final binary output.

3.7 ParticleNetLepton - employing ParticleNet for Lepton Identification
During this thesis, we altered the structure of ParticleNet to employ it to identify

leptons in the CMS experiment. The basic idea behind this was to split the input data.
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Figure 8: The structure of the ParticleNetLepton network.
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While we feed the features of the PF candidates around the lepton (given as vectors) into
the EdgeConv operations, the distinct lepton features (given as scalars) should be entered
at the beginning of the fully connected layers, as can be seen in Fig. 8. The structure of the
EdgeConv blocks was unchanged, but we added a second fully connected layer to ensure
the network is able to learn all of the added lepton features

As already mentioned, this approach of splitting up the inputs to the NN is not new –
it has already been employed successfully in DeepLepton [51]. The new approach in this
thesis is the use of the DGCNN, therefore treating the input data as point clouds.

3.8 Training the Network
The training was performed using the CLIP Batch Environment (CBE) at the Cloud

Infrastructure Platform (CLIP) of the Austrian Academy of Sciences (ÖAW). It is used by
a broad range of disciplines at the ÖAW. It features several specific services, such as high-
performance computing and high-memory nodes, and the most important ingredients for
training NNs, nodes containing GPUs. Currently, there are four different nodes comprising
high-performance GPUs by NVIDIA from the Pascal, Tesla, Volta and Ampere class. The
most recent and performant Ampere class GPU nodes feature up to 320 GB of total RAM
and up to 40 GB of GPU RAM.

During this thesis, all of these separate GPU nodes were tested, but none had signific-
antly better performances than the others. This implies that the bottleneck for training
NNs on CBE is not the computational power of the GPU but rather the loading of data
from the data storage.

3.8.1 Hyperparameter Optimization

An important aspect in training NNs is hyperparameter optimization - most notably
optimization of the LR as discussed in Sec. 3.3. A vivid way of visualising the LR is how
much the network should get updated during each training epoch. As in every epoch only
a limited amount of data is fed into the network (not the whole dataset), choosing the
LR too big implies that the network only ‘remembers’ information of the current training
batch. Generally speaking, one has to perform a trade-off when setting the LR – choosing
LR too small leads to slow convergence, choosing LR too big could lead to missing a global
minimum and degrade performance.

The PyTorch software framework features a method called lr-finder, which performs
a test run of the network calculating loss over a range of LR values with a set number
of mini-batches. An image of that can be found in Fig. 9. An important note on the
lr-finder: the best LR to start training is not found at the minimum loss, but at the
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Figure 9: The lr-finder showing loss for a LR of 5 × 10−6 to 5 × 100 using 200 steps.

minimum of the gradient of the loss – that is the point of the steepest descent in this
curve [67].
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4 Using ParticleNetLepton for Lepton Identification
Precision measurements and searches for new physics at the CMS experiment of the

LHC heavily rely on accurate particle identification and reconstruction. Prompt leptons
emerge directly at the hard-scatter process or from the decay of very short-lived particles
like W±, Z, and Higgs bosons, and also possible new particles. An example of a prompt
lepton can be found in Fig. 10a. The background to the prompt leptons can be divided
into two categories:

• Non-prompt leptons: these are real leptons emerging from the decay of particles with
a longer lifetime (later, we will further split up this category). The decay position is
referred to as the Secondary Vertex (SV), which will differ from the primary vertex,
the position of the proton-proton collision. An example of a non-prompt lepton is
shown in Fig. 10b.

• Fake leptons: here, a non-lepton particle (e.g. a punch-through hadron from a high-
energy jet) satisfies the lepton selection criteria.

Therefore, increasing discriminating performance between different categories of leptons
can greatly enhance the sensitivity of measurements and reduce their statistical and sys-
tematic errors.

(a) Prompt lepton (b) Non-prompt lepton

Figure 10: (a) Example of a Higgs decay process with prompt leptons in the final states
(b) A non-prompt lepton process.

As discussed in Sec. 3, ML algorithms and techniques have achieved tremendous per-
formance gains in various fields of science and technology. Hence, we would also like
to leverage ML techniques to boost the performance object identification in high-energy
physics. Fig. 11 shows the increased performance of ParticleNet over older algorithms on
a benchmark test of tagging top quarks decaying hadronically. The DeepAK8 algorithm
is an older jet identification algorithm using recurrent neural networks (RNNs). It uses
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Figure 11: An example of the improvement in performance achieved by the ParticleNet
algorithm, compared to the DeepAK8 algorithm and a simple MLP.

sequences of particles as candidates, therefore not using spatial relations of the particles.
The MLP stands for multi-layer perceptron – a simple type of NN composed of several
layers of perceptrons, a binary linear classifier.

4.1 Current State of the Art
4.1.1 Muons: Cut-based Identification

Muon selection is based on a series of conditions on different variables. Currently, sev-
eral predefined identification requirements, commonly referred to as IDs, exist, which differ
in signal efficiency. To compare the performance of ParticleNetLepton with the existing
muon selection techniques, we use the Tight ID in this thesis. The thresholds for the vari-
ables used in the Tight ID criteria are described in Table 1.

The cut-based IDs are used in combination with the relative isolation. Relative isolation
is a measure of the activity around the lepton. Its value will be small if it is a prompt
lepton created in the decay of a short-lived particle like W± and Z and large if it is a
non-prompt lepton, e.g., the one created in the leptonic decay of a B meson. Therefore,
isolation provides a measure to separate leptons from different origins. In this thesis, the
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Variable Threshold value
Is a global muon? > 0 (True)

Is a PF muon? > 0 (True)
χ2

Ndof
of the global-muon track fit < 10

At least one muon-chamber hit included in the global-muon track fit > 0
Muon segments in at least two muon stations > 1

transverse impact parameter dxy w.r.t. the primary vertex < 2 mm
longitudinal distance of the tracker track dz w.r.t. the primary vertex < 5 mm

# of pixel hits > 0
# of tracker layers with hits > 5

Table 1: Cuts on the variables used in the Tight ID. Taken from [68].

PF isolation and mini-isolation are used. The PF isolation variable is defined as the sum
of the pT of particles in a cone ∆R =

�
∆ϕ2 + ∆η2 < 0.4 around the lepton divided by the

lepton pT . Here ∆ϕ is the difference in the azimuthal angle, and ∆η denotes the difference
in pseudorapidity. The mini-isolation variable is optimised for identifying leptons in the
decay chain of an object with large pT . Here the cone size ∆R is not fixed, but varies with
lepton pT :

Rmini−iso =


0.2, pl

T ≤ 50 GeV
10 GeV

pl
T

, pl
T ∈ (50 GeV, 200 GeV)

0.05, pl
T ≥ 200 GeV

The numerical value of the relative isolation in this thesis is set to be 0.15 for both PF and
mini-isolation.

4.1.2 Electrons: Boosted Decision Tree based ID

Electron identification is currently based on boosted decision tree (BDT), an ML tech-
nique. It is a multivariate analysis (MVA) approach where each electron candidate gets
assigned a score quantifying the probability it is classified into a specific category. A range
of different variables are used in training, the complete list can be found in Ref. [69]. In
this thesis, we use the Fallv2WP90_noIso ID: the v2 denotes the second training of the
BDT with more samples and a faster algorithm. The WP90 indicates that it should deliver
about 90% selection efficiency for prompt electrons. The noIso indicates that this ID was
trained without using isolation variables.

4.2 New approach in this thesis
The current state-of-the-art approaches discussed in the previous section work quite

well. However, there is still a scope to exploit more features, including the spatial correl-
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ations of nearby particles, improving performance even further. Employing the EdgeConv
operation at the heart of ParticleNet allows us to further enhance lepton identification
performance by including features of those nearby particles. During training, ParticleN-
etLepton is expected to learn the characteristics of the neighbourhood of leptons from
different origins and use that information to distinguish them.

4.3 Performance Quantification
Quantifying the performance of a classifier is done via statistical analysis of the predic-

tions made by the classifier, which is, in this thesis, the ParticleNetLepton algorithm. A
prediction made by a classifier can be classified into one of four groups:

• True positive: Prediction ‘true’ matches the correct label ‘true’

• False positive: Prediction classifies event as ‘true’, while the correct label is ‘false’

• True negative: Prediction ‘false’ matches the correct label ‘false’

• False negative: Prediction classifies event as ‘false’, while the correct label is ‘true’

These distinctions only differentiate between two labels ‘true’ and ‘false’. In the case
of more than two labels, which is true for most of the work performed in the context of
this thesis, one has to adapt the data processing to circumvent this problem. Therefore,
for each signal label, we add up all other labels to one background. To ensure the stand-
ardization to 1, we scale the score to the signal class by scoresignal

scoresignal+scorebackground
. A typical

example of the normalised output scores can be found in Fig. 12.

In this thesis, we quantify the performance of various classifiers by comparing receiver
operating characteristics (ROC) graphs of the different discriminators. The ROC graphs
are generated by considering True Positive Rate (TPR) and False Positive Rate (FPR)
simultaneously.

TPR = NT rue positive

NT rue positive + NF alse negative
(13)

FPR = NF alse positive

NT rue negative + NF alse positive
(14)

To construct a ROC graph, one needs to take TPR and FPR as functions of the classifier
score (a number between 0 and 1), then plot FPR over TPR for each point of the classifier
score. For a high-performance classifier, this usually yields a somewhat hyperbolic-looking
graph. This curve would be two straights forming a right angle for an ideal classifier. The
ROC graph also allows for setting the desired working point (WP) of the classifier, which
corresponds to a specific threshold on the classifier score - to use it for analysis, one has
to define a threshold for either TPR or FPR and will then receive the corresponding value
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Figure 12: A typical output plot using the prompt label as signal and fakes as background.

of the other. In the following, we refer to the TPR as ‘signal efficiency’ and the FPR as
‘background mistag rate’.

For the model trained for the purpose of this thesis, we used at most six lepton classes
as training labels. Therefore, every input particle will belong to one of these six labels.
They are:

• prompt: lepton coming from W±, Z, or Higgs

• HF hadron: lepton from the decay of a B- or D-hadron

• LF hadron: lepton from the decay of hadrons comprised of only u-, d- and s-quarks

• tau: light lepton from decay of a τ lepton

• photon: lepton from conversion of a high energy photon

• fakes: lepton without a matching to any lepton at the particle level
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4.4 Input data and training variables
As a general rule of thumb, one can choose ‘good’ variables, implying that they have a

lot of discrimination power, by the naked eye, looking at the distributions of the variables
for each label. Variables with different distribution shapes for different labels will have
good discriminating power, while those with similar distributions will not. This is how one
chooses most training variables, while other variables are considered while fine-tuning the
training iterations. Examples of variables with good discrimination power can be found in
Fig. 13 - these variables are also included in all training iterations done in the context of
this thesis. The full lists of training variables are given in Tables 2 for the PF candidate
features, 3 for the SV input features, 4 for the muon features and 5 for the electron features.

Feature Explanation
∆η Pseudorapidity difference between lepton and PF Candidate
∆ϕ azimuthal angle difference between lepton and PF Candidate
∆R ∆R =

�
∆ϕ2 + ∆η2 of PF Candidate w.r.t. lepton

PUPPI Weight PF Candidate pileup per particle identification weight excl. lepton
dSig

z PF Candidate dz (longitudinal impact parameter) significance
dSig

xy PF Candidate dxy (perpendicular impact parameter) significance
hcalFractionCalib Fraction of PF candidate energy in HCAL after calibration
pixelhits # of hits in the pixel detector matched to the particle track
nTrackerLayers # of hits in pixel and strip tracker
isElectron Classified as e by PF (Boolean)
isMuon Classified as µ by PF (Boolean)
isChargedHadron Classified as charged hadron by PF (Boolean)
fromPV particle from primary vertex (Boolean)

Table 2: Input features of the PF candidates.
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Feature Explanation
∆η Pseudorapidity difference between lepton and secondary vertex (SV)
∆ϕ azimuthal angle difference between lepton and SV
∆R ∆R of SV w.r.t. lepton
Nd.o.f. # of degrees of freedom in vertex reconstruction
∆pT pT ratio between lepton and SV (GeV)
mass mass (GeV)
dxy longitudinal impact parameter (cm)
ntracks # of tracks associated with SV
dSig

3D three-dimensional impact parameter significance

cospAngle cosine of the angle between the line
joining SV to the primary vertex and the beam axis

Table 3: Features of SV used as inputs.

Feature Explanation
dxy Impact parameter of the lepton in transverse (x-y) plane (cm)
χ2 χ2 of the track fit
dErr

xy dxy error
dSig

xy dxy significance
dz Longitudinal impact parameter (cm)
dErr

z dz error
dSig

z dz significance
EECAL Energy fraction of lepton in ECAL
hit # of hits in tracker matched to the lepton track

hcaloverecal Ratio of the hadronic energy within a cone of ∆R = 0.15 behind
the supercluster to the energy in 5x5 crystal array around the centre of SC

IP3d 3D impact parameter (cm)
lostHits # of tracking layers which have no hits matched to lepton track
Nd.o.f. # of degrees of freedom for lepton track fit
pixhit # of hits in pixel detector matched to the lepton track
nTrackerLayers # of hits in pixel and strip tracker matched to the lepton track
posmatch Position match
segmentComp Segment compatibility
SIP3D

3-D impact parameter significance
minisoch Mini-isolation variable computed using charged hadrons only
minisonh Mini-isolation variable computed using neutral hadrons only
pfRelIso03_drcor PF relative isolation with ∆R < 0.4

ecloverpout e supercluster (SC) energy / track momentum
at calorimeter extrapolated from the outermost track state

supcl_preshvsrawe ratio of e energy in the preshower detector and energy ofSC
dr03HcalDepth1-
TowerSumEt_Rel Relative energy in the first segment of HCAL in ∆R < 0.3
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deltaetacltrkcalo η difference between SC and electron track

r9full Energy of 3x3 crystal array around
the center of SC divided by SC energy

e1x5bye5x5 Energy of 1x5 crystal array divided by
Energy of 5x5 crystal array of the SC

sigmaietaieta Energy weighted spread of SC in η
sigmaiphiiphi Energy weighted spread of SC in ϕ
supcl_phiWidth Width of SC in ϕ
supcl_etaWidth Width of SC in η
fbrem Energy fraction from matched bremsstrahlung photons
tightcharge Quality of electron track fit

eInvMinusPInv Inverse ECAL Energy minus inverse tracker momentum
( 1

EECAL
− 1

pT racker
)

closeTrackNLayers # of tracking layers with hits used by e reconstruction

eoverp ECAL Energy divided by inverse tracker momentum
( EECAL

pT racker
)

mvaFall17V2noIso Classified as e by MVA ID of Fall 2017

The following features of the AK4 jet nearest to the e (within ∆R < 0.4) are used
jetbtag DeepJet b-tagging score of the jet
jetPtRelv2 pT component perpendicular to jet direction
jetRelIso Jet relative isolation for nearest jet
jetNDauCharged # of charged constituents
jetPtRelv2_abs Absolute value of pT w.r.t the axis of the jet
jetPtRatio ratio of pjet

T to plepton
T

Table 5: Electron training input features.

33



4 USING PARTICLENETLEPTON FOR LEPTON IDENTIFICATION

(a) (b)

(c) (d)

(e) (f)

Figure 13: Distributions of some input variables split up according to lepton classes.
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Feature Explanation
dxy Impact parameter of the lepton in transverse (x-y) plane (cm)
χ2 χ2 of the track fit
dErr

xy dxy error
dSig

xy dxy significance
dz Longitudinal impact parameter (cm)
dErr

z dz error
dSig

z dz significance
EECAL Energy fraction of lepton in ECAL
EHCAL Energy fraction of lepton in HCAL
hit # of hits in tracker matched to the lepton track

hcaloverecal Ratio of the hadronic energy within a cone of ∆R = 0.15 behind
the supercluster to the energy in 5x5 crystal array around the centre of SC

IP3d 3D impact parameter (cm)
lostHits # of tracking layers which have no hits matched to lepton track
Nd.o.f. # of degrees of freedom for lepton track fit
pixhit # of hits in pixel detector matched to the lepton track
nTrackerLayers # of hits in pixel and strip tracker matched to the lepton track
posmatch Position match
segmentComp Segment compatibility
SIP3D

3-D impact parameter significance
pfRelIso03_drcor PF relative isolation with ∆R < 0.4
minisoch Mini-isolation variable computed using charged hadrons only
minisonh Mini-isolation variable computed using neutral hadrons only

The following features of the AK4 jet nearest to the e (within ∆R < 0.4) are used
jetRelIso Jet relative isolation for nearest jet
jetNDauCharged # of charged constituents
jetbtag DeepJet b-tagging score of jet
jetPtRelv2 pT component perpendicular to jet direction
jetPtRelv2_abs Absolute value of pT w.r.t the axis of the jet
jetPtRatio ratio of pjet

T to plepton
T

Table 4: Muon input features used in the final training

4.5 Muons
As the CMS is built especially to measure muon properties, most of the research in this

thesis was done on samples of muons. As training data, we use custom-built data samples
(called ntuples) generated from information available from the worldwide server network
of the CMS collaboration. Those are produced from samples of simulated events using
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MADGRAPH5 aMC@NLO [35] and POWHEG [70] generators and PYTHIA8 [71] parton
showers followed by detector simulation using GEANT4 [38]. Specifications of the event
samples used for training can be found in Table 6. We have included leptons with pT >
20 GeV and |η| < 2.5. The training variables we used can be found in Tables 2, 3 and 4.

Training sample Generator used
QCD multijet events generated in different ranges of HT , which

is the sum of jet pT , from 300 GeV to 2000 GeV MADGRAPH5 aMC@NLO

Top quark pair production where a W boson from
one of the top quarks decays leptonically POWHEG

Table 6: Generation of the training events.

4.5.1 First training: using six classes

We first started with using all six lepton classes included in our ntuples for training. As
Fig. 14 indicates, this configuration is suboptimal for the tau and photon classes. There
are two reasons for this: Firstly, the numbers of leptons in tau and photon classes are very
small compared to those in other classes. To ensure unbiased statistics, ParticleNetLepton
uses approximately the same input numbers for every label. This leads to the fact that the
network ends up using quite a small number of entries for training. Secondly, the leptons
from tau class behave very similarly to the prompt ones, so it will be tough for the NN to
discern these.

However, as can be seen in Fig. 14, even here, we can outperform the existing cut-
based identification methods of the Tight ID (with mini-isolation and relative isolation
conditions) by almost an order of magnitude.

4.5.2 Improving performance: using four classes

Better performance can be achieved using only four lepton classes as training labels
– these are prompt, fakes, HF hadron and LF hadron. As the statistics for these classes
are large, the network can be trained far more efficiently. Fig. 15 shows the ROC graphs
for this training – as one can see clearly, the performance is improved further by quite a
margin. Most optimisation and analysis work was done on this configuration; this will be
described more thoroughly in the following sections.

4.5.3 Performance stabilisation: using two classes

Following the trend seen in the transition from six to four classes, the next step to en-
hance performance further would be to reduce the training classes further. We accomplish
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Figure 14: Performance of the ParticleNetLepton algorithm shown by ROC curves of the
model using all six lepton classes as training labels. For comparison, the Tight IDs with
mini- and relative isolation < 0.15 are added.

37



4 USING PARTICLENETLEPTON FOR LEPTON IDENTIFICATION

Figure 15: Performance of the ParticleNetLepton algorithm shown using ROC curves of
the model trained on four labels.
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Figure 16: The ROC curves showing the performance of the ParticleNetLepton algorithm
trained on only two labels. The performance is quite similar to the four-label model,
indicating stability of the model.

39



4 USING PARTICLENETLEPTON FOR LEPTON IDENTIFICATION

this by merging fakes, HF hadron and LF hadron and photon labels to one background
label and prompt and tau to one signal label. In this case, the model is trained only to
separate signal from background classes but ignores the other lepton labels. However,
this information still is stored for each event and can be used in plotting to break up the
signal and background labels to make the results comparable.

The performance of this model is shown in Fig. 16; it is pretty similar to that of the
model trained on four classes. We took this as a sign of good stability and an indication
that we have already reached the network’s full potential with training on four classes.
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4.5.4 Top Lepton MVA

A more challenging test for the ParticleNetLepton algorithm than the Tight ID would
be the TopLepton MVA ID developed by scientists at Ghent University, Belgium. The
TopLepton ID is constructed using BDTs and is specially tailored for detecting leptons in
the semileptonic decay of the W boson from top quark decays. In this use case, it is the
best-performing identification method used in CMS data analyses. As shown in Fig. 17,
the ParticleNetLepton algorithm offers better performance than the TopLepton MVA ID.
For a signal efficiency of 94%, we can reduce the background mistag rate by about 30% for
the HF hadron and LF hadron classes on hadronic backgrounds.

Figure 17: Performance comparison of the ParticleNetLepton network trained using four
lepton classes with the TopLepton MVA ID. The ParticleNetLepton algorithm can still
outperform this specialised ID by a few per cent.

It is important to mention that so far, we have not set any selection conditions prior
to training or while quoting the performance. However, in many measurements, it is com-
mon to apply selection conditions on the data used, so also for the TopLepton ID, some
preselection conditions are in place – they can be found in Table 7. To ensure a fair com-
parison, we have also set these preselection conditions while quantifying the performance
of ParticleNetLepton compared to the TopLepton MVA ID. This leads to the fact that
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on first look, performance seems to be worse – but this can be entirely attributed to the
different selection conditions, and the network gets to classify a ‘more difficult’ testing set.

Variable Threshold value
is Loose? > 0 (True)

lepton |dxy| < 0.05
lepton |dz| < 0.1

3D impact parameter significance sip3d < 8.0
mini-isolation < 0.40

Table 7: Precondition selections for the TopLepton MVA ID for muons.

As the TopLepton ID is suited specifically for the phase space defined by the conditions
in Table 7, one could suspect that imposing these criteria also on the training set – therefore
moving the training into the same phase space as the testing set – could further improve
performance. However, we found that this leads to worse performance, likely because the
training data set will be quite small.

4.5.5 Performance details – kinematic dependencies

To understand the performance in more depth, we split up the prediction data in vari-
ous ways – into different regions of lepton pT and η, the dependency of the number of PF
candidates within ∆R < 0.4 around the lepton, or the number of primary vertices in the
event the lepton has originated from.
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(a) (b)

Figure 18: The efficiency for the selection of prompt muons as a function of lepton pT , (a)
against HF Hadron and LF Hadron as backgrounds, (b) against fakes background.

Fig. 18 shows the dependency of the signal efficiency with pT and η. For both plots,
the signal label is prompt, the background labels are HF hadron and LF hadron summed
up for the plot titled ‘Hadron’ and fakes for the figure titled ‘Fakes’. We can see that
performance improves with pT . However, there is little dependency on η.

To use the ParticleNetLepton classifier in analysis, it will be important to avert depend-
encies on kinematic variables. To achieve this, we calibrate the MVA scores in different
pT ranges. This is done by requiring the signal efficiency to be 95% and determining the
threshold achieving this in different pT and η regions. This yields the classifier threshold
for each pT and η bin to have the same signal efficiency. The plots showing these thresholds
are shown in Fig. 19.

43



4 USING PARTICLENETLEPTON FOR LEPTON IDENTIFICATION

(a) (b)

Figure 19: Calibration at 95% signal efficiency (a) for hadronic background, (b) for fakes
background.

Fig. 20 shows the corresponding background efficiencies, plotted in the same pT and η
ranges. We can see that also the background efficiency worsens in the low pT bins, which
indicates increasing performance for high pT . Again, there is almost no correlation regard-
ing η.

Fig. 21 shows the dependency of the signal efficiency on the number of primary vertices
and the number of PF candidates. Interestingly, the number of primary vertices does not
influence the performance significantly, implying that the algorithm is expected to work
well in a high pileup environment. However, there is a clear correlation between perform-
ance and the number of PF candidates – performance tends to worsen with a rising number
of PF candidates.
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(a) (b)

Figure 20: The background efficiency for the thresholds corresponding to 95% prompt-
muon selection efficiency shown in the same pT and η bins for (a) hadronic and (b) fakes
background.
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(a) (b)

Figure 21: Signal efficiency for prompt-muon selection as a function of (a) the number of
primary vertices, (b) the number of PF candidates.

Fig. 22 gives further details about the performance. The ROC graphs are shown split
up into seven different pT and three η bins for both ParticleNetLepton and the TopLepton
MVA ID. Again, the increase in performance is true mainly for the high pT regions, while
in low pT regions we perform worse than the TopLepton MVA. Interestingly, here we see a
dependency on η for the first time – ParticleNetLepton does not significantly depend on η,
while the TopLepton ID performs worse in higher η regions. Therefore, we conclude that
we outperform the TopLepton ID everywhere except for pT < 30 GeV and |η| < 0.8.

Fig. 23 shows the comparison between ParticleNetLepton and the TopLepton ID split
into different pT and η bins for fakes background. For the fakes background, we outper-
form the TopLepton ID by over a magnitude – consistent with the inclusive performance
plots shown before.
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Figure 22: Performance comparison between ParticleNetLepton and the TopLepton MVA
algorithms shown using ROC graphs split up into different pT and η bins for hadronic
background.
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Figure 23: Performance comparison between ParticleNetLepton and the TopLepton MVA
algorithms shown using ROC graphs split up into different pT and η bins for fakes back-
ground.

48



4 USING PARTICLENETLEPTON FOR LEPTON IDENTIFICATION

4.6 Electrons
As already stated, a lot of the development and analysis work was done using muon

samples, and many of these findings can be directly used for the electron samples. For
example, the four-label configuration also proved as the most performant model configur-
ation for the electron samples. Thus, the electron chapter will be shorter than the muon
chapter. The variables used to train the electron models can be found in Table 5.

Variable Threshold value
pass conversion veto > 0

lepton |dxy| < 0.05
lepton |dz| < 0.1

3D impact parameter significance sip3d < 8.0
lepton mini-isolation < 0.40

# of lost Hits < 2

Table 8: Precondition selections for the TopLepton MVA ID for electrons.

4.6.1 Using four training classes – compared to TopLepton ID

Fig. 24 shows the performance of the ParticleNetLepton algorithm using electron samples,
comparing it to the TopLepton MVA ID. For a fair comparison, the preselection conditions
for electron samples are again taken into account; these can be found in Table 8. Again,
we can outperform the TopLepton ID – we can reduce the background mistag rate by a
factor of 2 for HF hadron and a factor of 4 for LF hadron. This poses a clear improve-
ment in performance for electron identification techniques. For the fakes background, the
ParticleNetLepton algorithm can reduce background suppression by an order of magnitude.

4.6.2 Performance details

Here we can make the same considerations as in chapter 4.5.5. Figure 25 again shows
the dependency of the signal efficiency with pT and η. Here we can see some deviations
from the muon samples: We can recognize some decline with sinking pT again, but as well
with very high pT . Moreover, we see a clear correlation with η – performance degrades
significantly in more forward regions.

Fig. 26 shows a similar trend for electrons with hadron background as seen already
in the model trained to identify muons: In the low pT and |η| region, we perform worse
than the TopLepton MVA ID, in all other regions we can outperform it. Again, we see a
dependency regarding η, as the TopLepton ID performance also shows an η dependency.
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Figure 24: ROC graph showing the performance of ParticleNetLepton on electron samples,
compared to the TopLepton MVA ID.

(a) (b)

Figure 25: The efficiency for the selection of prompt electrons as a function of lepton pT ,
(a) against hadronic background, (b) against fakes background.
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Figure 26: Performance comparison between ParticleNetLepton and the TopLepton MVA
algorithms shown using ROC graphs of the electron training split up into different pT and
η bins for hadronic background.
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Figure 27: Performance comparison between ParticleNetLepton and the TopLepton MVA
algorithms shown using ROC graphs of the electron training split up into different pT and
η bins for fakes background.
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The comparison of ParticleNetLepton with the TopLepton ID regarding electrons with
fakes background can be found in Fig. 27. These validate the previous findings: for fakes
background, we can outperform the TopLepton ID by almost an order of magnitude.

The behaviour shown in Fig. 28 matches the observations made previously very closely.
The number of primary vertices does not influence performance significantly, but we can
observe performance degrading with a higher number of PF candidates. This matches the
observations in Sec. 4.5.5. Moreover, we also can validate the observation that performance
seems to worsen in higher η bins – this can be seen in both Figs. 25 and 28.

(a) (b)

Figure 28: Signal efficiency for prompt-electron selection as a function of (a) the number
of primary vertices, (b) the number of PF candidates.
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(a) (b)

Figure 29: Calibration at 95% signal efficiency (a) for hadronic background, (b) for fakes
background for the electron training.

As was already the case in the muon model, because ParticleNetLepton shows a sig-
nificant pT dependency, there is a need to calibrate the ROC graphs. Again, we calibrate
on 95% signal efficiency. The according plots can be found in Fig. 29. Interestingly, for
electrons, we can also see a clear correlation with η, which was not the case for muons.

Fig. 30 shows the corresponding background efficiencies. We can see again that the
background efficiency deteriorates in the low pT bins – this indicates the decreasing per-
formance in low pT regions. The correlation regarding η is also clearly visible.
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(a) (b)

Figure 30: The background efficiency for the thresholds corresponding to 95% prompt-
electron selection efficiency shown in the same pT and η bins for (a) hadronic and (b)
fakes background.
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5 Conclusion
In this thesis, we adapted ParticleNet, a graph neural network-based algorithm, to

identify leptons in the CMS experiment – this solidified into the ParticleNetLepton al-
gorithm. We have exploited the EdgeConv operation employed by ParticleNet to utilize
the correlations of particles in the vicinity of the leptons for their identification. We mod-
ified the architecture of the ParticleNet network by injecting the lepton features identified
by the particle-flow (PF) reconstruction into the fully connected layer of ParticleNet and
inserting a second fully connected layer. To train the model, we used simulated events of
top quark pair production, where a W boson from one of the top quarks decays leptonically
and multijet production via strong interaction. Finally, we demonstrated a calibration on
95% signal efficiency, as we find that the ParticleNetLepton performance is dependent on
kinematic variables. We show the calibration for the transverse momentum pT and pseu-
dorapidity η.

We compared the performance of ParticleNetLepton to the standard criteria used in
the CMS measurements – we can outperform those by an order of magnitude for both elec-
trons and muons. We also compared the performance with the so-called TopLepton MVA
ID, which is a boosted decision tree based technique specialised to identify leptons in the
top quark decay chain. In the case of muons, we can outperform this special identification
technique in most parts of the phase space, except for very-low pT in the central regions of
the detector. Summing over all kinematic regions, we can reduce the background mistag
rate by about 30% for a signal efficiency of 94% for muons originating from hadrons, as
shown in Fig. 17 of Sec. 4.5.4. For electrons, we outperform it in a large phase-space region
as well, with the same limitation as for muons. In Fig. 24 of Sec. 4.6.1 we show that
we achieve a factor of two in improved background suppression for electrons originating
from the decay of heavy flavoured hadrons and a factor of 4 for those originating from the
decay of light hadrons, both at 95% signal efficiency. We also show that the performance
is independent of the number of simultaneous collisions, indicating good performance in a
high-pileup scenario.

This thesis focuses on implementing the ParticleNetLepton algorithm and proving its
performance capabilities – future works could involve a complete hyperparameter optim-
isation of the model. Furthermore, this thesis only used simulated data – future analysis
on real collision data has to be done to calibrate the performance of the ParticleNetLepton
algorithm.
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