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Abstract (EN)

Detecting the presence, molecular-genetic properties, and volume of neoplastic le-

sions is important for modern medical image processing studies. For example, precise

lesion classification according to up-to-date WHO guidelines, relevant for treatment

decisions, is currently not automatically feasible in brain tumors. This thesis is a

part of the development of a processing pipeline for the quantification of lesions

through a statistical evaluation of tumor regions of interest (ROI) in high-resolution

7 Tesla (7T) magnetic resonance spectroscopy imaging (MRSI). MRSI enables the

detection of the presence and concentration of different metabolites in body tissues

based on their resonance frequency. Compared to 3T MRSI, 7T MRSI with a higher

signal-to-noise ratio and increased spectral dispersion makes measurement of addi-

tional metabolites possible.

The first step of the processing pipeline involved statistical evaluation between dif-

ferent hotspot regions based on manual segmentation by a neuroradiologist. In the

second step, statistical tests were performed on hotspot segmentation, including a

contrast enhancement (CE) region, a non-contrast enhancement (nCE) region, and

a necrosis (NEC) region extracted from a clinical segmentation. The evaluation in-

volved comparing different regions and metabolites ratios like total Choline (tCho)

to total creatine (tCr) using a Boxplot diagram with the Mann-Whitney-Wilcoxen

Test and classification of IDH mutation and grade using random forest. Isocitrate

dehydrogenase (IDH) is an enzyme that plays a vital role in cell homeostasis and

metabolic processes and is involved in the glioma cycle. This study’s main objective

was finding the most important metabolite ratios for the classification of IDH muta-

tion status and grade, utilizing the capability of 7T to detect multiple metabolites
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with high resolution and to use them for classification. Comparison between differ-

ent machine learning methods allows differentiating between classifiers and obtaining

better accuracy. It also helps us to determine the robustness of our classification al-

gorithm. Random forest and support vector machine (SVM) are compared in this

study.

Using multiple features, the AUC of 0.85 was achieved for IDH classification and

0.91 for grade classification. The spatial resolution of 7T MRSI makes achieving

high accuracy in IDH and grade classification possible even with a small cohort of

patients.
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Abstract (De)

Die Erkennung des Vorhandenseins, der molekulargenetischen Eigenschaften und

des Volumens von neoplastischen Läsionen ist für moderne medizinische Bildverar-

beitungsstudien von großer Bedeutung. So ist beispielsweise bei Hirntumoren eine

präzise Klassifizierung der Läsionen nach den aktuellen WHO-Richtlinien, die für

Behandlungsentscheidungen relevant ist, derzeit nicht automatisch möglich. Diese

Arbeit ist Teil der Entwicklung einer Verarbeitungspipeline zur Quantifizierung von

Läsionen durch eine statistische Auswertung von Tumorregionen von Interesse (ROI)

in hochauflösender 7 Tesla (7T) Magnetresonanzspektroskopie-Bildgebung (MRSI).

MRSI ermöglicht den Nachweis des Vorhandenseins und der Konzentration ver-

schiedener Metaboliten in Körpergeweben auf der Grundlage ihrer Resonanzfre-

quenz. Im Vergleich zur 3T-MRSI ermöglicht die 7T-MRSI mit einem höheren Signal-

Rausch-Verhältnis und einer größeren spektralen Streuung die Messung zusätzlicher

Metaboliten.

Der erste Schritt der Verarbeitungspipeline umfasste die statistische Auswertung

zwischen verschiedenen Hotspot-Regionen auf der Grundlage einer manuellen Seg-

mentierung durch einen Neuroradiologen. Im zweiten Schritt wurden statistische

Tests für die Hotspot-Segmentierung durchgeführt, einschließlich einer Region mit

Kontrastverstärkung (CE), einer Region ohne Kontrastverstärkung (nCE) und einer

Region mit Nekrose (NEC), die aus einer klinischen Segmentierung extrahiert wurde.

Die Auswertung umfasste den Vergleich verschiedener Regionen und Metaboliten-

Verhältnisse wie Gesamt-Cholin (tCho) zu Gesamt-Kreatin (tCr) unter Verwen-

dung eines Boxplot-Diagramms mit dem Mann-Whitney-Wilcoxen-Test und die Klas-

sifizierung von IDH-Mutation und -Grad unter Verwendung von Random Forest.
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Isocitrat-Dehydrogenase (IDH) ist ein Enzym, das eine wichtige Rolle bei der Zell-

homöostase und bei Stoffwechselprozessen spielt und am Gliomzyklus beteiligt ist.

Hauptziel dieser Studie war es, die wichtigsten Metabolitenverhältnisse für die Klas-

sifizierung von IDH-Mutationsstatus und -Grad zu finden, wobei die Fähigkeit des 7T

genutzt wurde, mehrere Metaboliten mit hoher Auflösung zu erkennen und sie für die

Klassifizierung zu verwenden. Der Vergleich zwischen verschiedenen Methoden des

maschinellen Lernens ermöglicht es, zwischen den Klassifikatoren zu unterscheiden

und eine bessere Genauigkeit zu erzielen. Er hilft uns auch, die Robustheit unseres

Klassifizierungsalgorithmus zu bestimmen. In dieser Studie werden Random Forest

und Support Vector Machine (SVM) miteinander verglichen.

Bei Verwendung mehrerer Merkmale wurde ein AUC von 0,85 für die IDH-Klassifizierung

und 0,91 für die Grad-Klassifikation.Die räumliche Auflösung der 7T MRSI ermöglicht

eine hohe Genauigkeit bei der IDH- und Grad-Klassifikation auch bei einer kleinen

Patientenkohorte.
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Chapter 1

Introduction

Magnetic Resonance Spectroscopic Imaging (MRSI) has been increasingly studied

for the noninvasive localization of brain tumors in the last decades. The High Field

Magnetic Resonance Center at the Medical University of Vienna uses an in-house 3D

MRSI sequence in a 7 Tesla (7T) Siemens Magnetom to do preoperative Magnetic

Resonance Imaging (MRI) scans. The manual evaluation of vast data from 7T MRI

is challenging due to thousands of intra-tumoral voxel spectra compared to about ten

in a clinical MRSI scan. This thesis is part of developing a processing pipeline for

quantifying brain lesions by statistically evaluating tumor regions of interest (ROI)

in high-resolution 7T MRSI. The pipeline begins with a preparation of a data set for

statistical evaluation. For that cause, a tabular data set is created from a 3D MRSI

image. Once a tabular data set is ready, a statistical analysis of the quantification

of brain lesions is performed. The main objective of this research is to show the

prospect that, with the help of spectroscopic images of the wide range of metabolites

obtained through MRSI, we can predict the IDH mutation status and glioma grades.

MRI and MRSI are fundamentally based on Nuclear Magnetic Resonance (NMR).

1
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So, let us begin with NMR.

1.1 Nuclear Magnetic Resonance (NMR)

The history of NMR is fascinating. From the very early period of its development, it

won some Nobel Prizes. At the same time, it was acoustically unpleasant among the

patients, due to which it lost its ’nuclear’ identity and was an unpleasant experience

among the patients. NMR was first introduced in 1938 by Isidor Isaac Rabi. His

study demonstrated that a molecular beam sent through a magnetic field could emit

radiofrequency waves at specific frequencies.

Furthermore, after two years, during the 1940s, two scientists independently de-

fined the atomic and molecular magnetic resonance properties of solids and liquids.

Edward Purcell experimented with solid paraffin, whereas Felix Bloch worked with

water. In 1952, both scientists were jointly awarded the Nobel Prize in Physics.

Later in 1971, chemist Paul C. Lauterbur developed the first MR image of two

water-filled test tubes and introduced the idea of stacking 2D images to reconstruct

those into 3D images. His findings were proved outstanding in the field because they

introduced the concept of living imaging tissue for the first time in the history of

NMR.

During the same period, physicist Sir Peter Mansfield tried to reduce the time of

magnetic resonance scans. He used echo-planar imaging (EPI), which had advantages

in working with movement artefacts. Using NMR, he produced an image of a human

body part (image of a finger) in 15-23 minutes. Subsequently, he imaged the cardiac

cycle of a rabbit and a human. The method developed by Mansfield and Lauterbur

was adopted for clinical use and was awarded the 2003 Nobel Prize in Medicine
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(Slavkovsky & Uhliar, 2004).

In 1980, John Mallard and his team at Aberdeen University introduced the clinically

used whole-body MR scanner for the first time (Tabakov, 2021). It was a turning

point for the use of MR. Since then, MR scanners have been vastly used, and their

development has led to the clinical application of 7 Tesla MRI in modern days. Even

though NMR Spectroscopy first became popular among chemists in the 1950s, MRSI

has only been used in humans since the 1980s.

From a quantum mechanical perspective, the basic principle of NMR is based

on the ability of specific atomic nuclei like Hydrogen-1 and Carbon-13 to transition

between two different energy states in a quantum system. Purcell et al. (1946) de-

scribed the phenomenon of the nuclei absorbing energy from an electromagnetic wave

that reaches the high energy state and emits an electromagnetic wave signal while

transitioning to a lower energy state. Quantum mechanical explanation of NMR

provides a complete view of NMR. However, the interpretation of Bloch (1946) is

easy to understand, which is mentioned as a classical view in literature. According

to the classical analogy, the magnetic field of a magnetic body is randomly oriented

until an external magnetic field is applied to it. Under the influence of the external

magnetic field, the magnetic body oscillates around the magnetic field at its natural

frequency. When a third magnetic effect is introduced upon the oscillating magnetic

body supporting oscillation, with the frequency equal to the natural frequency of

the oscillating magnetic body, the system is said to be in magnetic resonance. The

resonating frequency of the magnetic field can be produced using a coil with the

current flow in the coil controlling the magnetic field frequency. When the current

flow is stopped in the coil, the oscillating magnetic body induces an electric voltage

due to electromagnetic induction. The oscillating magnetic body, after some time,

stops oscillating and aligns with the external magnetic field, which is the lowest en-
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ergy state. The highest energy state would be the alignment opposite the external

magnetic field.

For a proper understanding of NMR, first, we need to know about the spin, a quan-

tum mechanical property of nuclei, which can be a multiple of positive or negative

1/2. Spin is not easy to understand in quantum mechanics, but we can analogically

relate it with classical rotation for our work. The angular momentum represents

analogically the fact that the nuclei are spinning, whereas, in reality, they are not.

The magnetic moment is the magnetic property of nuclei. With all these considera-

tions, when we introduce nuclei to an external magnetic field, the magnetic moment

of nuclei precesses around the magnetic field orientation in a particular frequency

called Larmor frequency ω. ω is directly proportional to the external magnetic field

strength B in Tesla and defined by the Larmor equation as

ω = γB (1.1)

γ is a nuclei-based constant called gyromagnetic ratio (γ). The γ of hydrogen is

42.58MHz/T.

That is, however, only the case when we observe the nuclei individually, which is,

in reality, not the case. In human brain tissue, with approximately 6 × 1019 spin

per cubic mm volume (De Graaf, 2019), the magnetic moment of each proton is

influenced by the magnetic moment of others. Due to this fact, the net magnetization

parallel to the external magnetic field is not caused by all the protons. Still, only

0.1% of protons contribute to net magnetization in the orientation of the external

magnetic field (De Graaf, 2019) called equilibrium magnetization (M0). M0 is rotated

towards the xy plane where M0 rotates with ω frequency. A new magnetic field (B1)

perpendicular to M0 is used to rotate M0. B1 here also rotates with frequency ω
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along the longitudinal axis (Z-axis) in constant phase with M0 to ensure coherent

rotation of M0 towards the transverse plane (xy-plane). The flip angle of M0 can be

determined as

α = 2πγB1T (1.2)

α ... flip angle [rad]

γ ... gyromagnetic ratio [T/MHz]

B1 ... magnetic field amplitude [µT ]

T ... magnetic field duration [s]

From the equation 1.2 flip angle can be determined by magnetic field duration

and magnetic field amplitude. B1 is referred to as a radio frequency (RF) pulse.

During the rotation of M0 towards the transverse plane, M0 precesses along the z-

axis. The precession of M0 here refers to the precession of all the protons contributing

to M0. After M0 is flipped by angle α the protons lose their coherence during the

precession, and the M0 disappears in the transverse direction while the M0 builds

up in the longitudinal direction. The relaxation of the longitudinal magnetization

component from a higher energy state (non-equilibrium state) to a lower energy state

(equilibrium state) is called spin-lattice relaxation. The duration required for longi-

tudinal magnetization to reach (1− 1/e) of M0 is called spin-lattice relaxation time

(T1), as described in the equation 1.4 below. Similarly, the relaxation of transverse

components of magnetization is called spin-spin relaxation, and the time to reduce

transverse magnetization by a factor of e is called spin-spin relaxation time (T2), as

detailed in the equation 1.3 below.
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Figure 1.1: The nuclei with longitudinal (Mz) and transverse magnetization (Mxy).

Mz(t) = M0 · (1− e
−t
T1 ) (1.3)

Mxy(t) = Mxy,0 · e
−t
T2 (1.4)

T2 relaxation here considers only irreversible loss of phase coherence. The T ∗
2 de-

scribes the reversible loss of phase coherence. For example, the inhomogeneity of a

magnetic field in a small volume can be another reason for the loss of phase, which

is possible to get reversed by magnetic field shimming.

T2 times are generally shorter than T1. T1 and T2 are dependent on the type of

tissues. For example, relaxation times are generally longer in water or cerebrospinal

fluid and shorter in lipids.

If a coil is placed on the transverse axis. In that case, the electromagnetic induction
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introduces change in the transverse magnetic field which induces an electric voltage

in the coil. This can be further magnified and received in an MR spectrometer. This

is NMR signal and it is called Free Induction Decay (FID). The decay of a signal is

controlled by T2. These signals can be measured with the help of a coil and repre-

sented as real and imaginary components of complex-valued signals.

Actually/Generally/In current practice/T/the NMR signals in an MR spectrometer

consist of signals with different ω and their respective M0 and T2∗. Fourier transfor-

mation separates signals with different ω and analyses them in the frequency domain.

1.1.1 Magnetic Resonance Imaging

Figure 1.2: Three main parts of Magnetic Resonance Image (MRI) scanner.

MRI generates a spatial illustration of tissues and organs based on their proton

density and T1 and T2 relaxation values.

Before considering the imaging part of an MRI, it is essential to understand the basic
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construction parts of MRI scanners. There are three crucial parts in the scanners

that we need to know about, as shown in figure 1.2 above. As an outermost scanner

part, a large superconducting magnet is responsible for the homogeneous magnetic

field (B0). The gradient coils are placed inside the magnet that localises the radio

frequency signals by altering the homogeneous magnetic field inside the scanner in

all three directions of 3D space. The loud noise one hears during an MRI scan is

produced due to this process. The scanner also contains an RF coil, which sends

and receives radio-frequency signals. The signals emitted by the subject during

relaxation are called FID signals, are received by the receiver coil. Furthermore, the

FID signals are degitised by the analog-to-digital converter (ADC) and are stored for

post-processing. RF coils are generally responsible for the reception and transmission

of the signals. The RF coil is externally placed on the head as the head coil in our 7T

MRSI scanners. Transmission and reception coils are separately built in an external

head coil. After figuring out about the production and storage process of the signals,

now we move on and learn about how thousands of voxels in 3D space are located

to form a well-ordered image.

1.1.2 Signal localization

The magnetic field gradient system with frequency encoding and/or phase encoding

is used for localisation. The 3D space is defined by the Cartesian coordinate system

x, y, and z as spatial direction. For our interpretation, we use z-direction for slice

selection and xy as the in-plane direction of an image. Preliminary slice selection is

performed with the help of the z-direction. The gradient constant in the z-direction

is considered as follows:

Gz =
dBz

dz
= constant (1.5)
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If we consider B0 as the homogeneous magnetic field, the position-dependent mag-

netic field B(z) due to the gradient magnetic field is given by:

B(z) = B0 + z ·Gz (1.6)

The resonance frequency along z also varies linearly, as seen in the equation 1.9.

ω(z) = γB(z) (1.7)

ω(z) = γB0 + γz ·Gz (1.8)

ω(z) = w0 + γz ·Gz (1.9)

In reference to the above equation, we can use Gz gradient and radiofrequency pulse

with Δω bandwidth as illustrated in the equation 1.10 and figure 1.3 for a selection

of a single slice with Δz thickness,. Considering the z-gradient for transversal slices,

sagittal and frontal slices can be localised using x-gradient and y-gradient.

Δz =
Δω

γGz

(1.10)
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Figure 1.3: The magnetic field gradient approach for a slice selection in the z-
direction. From Accelerated high-resolution 3D MRSI in the brain at 7 T by Gilbert
Hangel, 2015, PhD thesis, Medical University of Vienna. Creative Commons Attri-
bution 4.0 License. (Hangel, 2015)

After the position of a slice is localised, it is time for the x and y in-plane locali-

sation. A frequency-encoding gradient (GF ) is used to localise another dimension x.

The x dimension is considered to be fixed left to the right direction as shown in the

figure 1.4 below. The previous magnetic gradient does not affect in-slice localisation.

GF is perpendicular to the direction of the slice-selection magnetic gradient. The

Larmor frequency is varied along the x-direction by Gf , as given in the equation

1.11.

w(x) = w0 + γx ·GF (1.11)
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Figure 1.4: The figure shows the how the frequency-gradient (GF ) and phase-gradient
(GP ) works during in-plane localization.

A signal from a selected slice consists of signals for all the locations in the slice. It

is exactly where Fourier transformation (FT) comes into play; as an output of Fourier

Transform, we get separated signals with different frequencies ω(X). Again, each

signal corresponds to each position perpendicular to the x-direction accompanying

the frequency ω(X) as seen in the figure 1.4. Lastly, we need localisation along

the y-axis, obtained by phase-encoding gradient (GP ) applied perpendicular to both

magnetic gradient and GF . The equation for Larmor frequency is quite similar to
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earlier as seen in equation 1.12.

ω(x) = ω0 + γy ·GP (1.12)

We cannot extract the signal for each point as we previously did in the case of

x-direction. A measurement is performed with different phase encoding for the sig-

nals from every point. The number of measurements equals the number of points

in the phase encoding direction. The time between consecutive RF pulses is called

repetition time (TR). The duration of repetition time determines longitudinal mag-

netisation recovered between each radio-frequency pulse. The dimension of the slice

matrix and TR primarily influences the total measurement time. The total measure-

ment time can be determined using the TR :

Total measurement time = TR×Number of phaseencodingsteps (1.13)

Reducing TR means triggering nuclei to excitation before completely relaxing to

an equilibrium state. The shift in phase along the y-direction for each measurement

is given by an equation 1.14 where t is an active gradient time.

Δφ(y) = Δω0(y)t = (γy ·GP )t (1.14)

In brief, magnetic field, frequency, and phase gradients are used for the 3D positional

localisation of signals.
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1.1.3 Image acquisition

The signals acquired by phase and frequency encoding are now stored in an image

matrix. This image matrix is not the image where we see the anatomical structure

of the image (see the right image of the figure 1.5). It looks like the one on the left

image of the figure1.5, known as k-space. Each point in k-space represents a spatial

frequency, i.e. the periodicity of brightness variation of the image. It is essential to

understand that each point in k-space does not directly correspond to a pixel or voxel

in image space. Instead, each point is a signal with collective information about the

whole image space.

Figure 1.5: Fourier transformation from k-space to the image space. Source: Accel-
erated high-resolution 3D MRSI in the brain at 7 T by Gilbert Hangel, 2015, PhD
thesis, Medical University of Vienna. Creative Commons Attribution 4.0 License.
(Hangel, 2015)

Those signals are made up of imaginary and real parts. The information in those
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signals varies according to their location and brightness. The brighter points in the

k-space, mostly located at the central region, are the signals with a lower frequency

and relatively more information. The darker points on the borders of the k-space are

with higher frequency and relatively less information. FT of points in k-space results

in anatomical MRI image. It is unnecessary to transform all the points in k-space

to get an anatomical image. However, increasing the number of points in k-space

results ensure a better result. Phase encoding techniques to acquire data for K-space

are time-consuming. Other methods have also been introduced to avoid long acqui-

sitions, where data from the whole 2D k-space is collected in single RF excitation.

Echo-planar Imaging (EPI) is a method where one (single-shot EPI) or few (multi-

shot EPI) zig-zag lines are used instead of straight lines to acquire complete k-space

information. Non-Cartesian trajectories like circular trajectories are also used in the

process. The MRSI images used in this thesis have also been acquired using in-plane

rapid concentric ring trajectory (CRT) (Hingerl et al., 2020), which uses a set of

uniformly distributed concentric rings to sample 2D k-space and phase encoding for

in-plane sampling as shown in the figure 1.9 below.

1.1.4 Image quality

We need to consider the image quality for the imaging method. Field of view (FOV),

image resolution, and signal-to-noise ratio (SNR) are the factors to be taken care of

for the quality of an image. The FOV of MRI is given by equation 1.15.

FOV =
2π

γGΔt
=

1

Δk
(1.15)

According to the equation 1.15, FOV is inversely proportional to the Δk distance
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between points in k-space. To increase FOV, we need to reduce Δk. Δk is given by

Δk = γGΔt. Likewise, the resolution is given as in the equation 1.16.

ΔV =
FOVx

Nx

FOVy

Ny

FOVz

Nz

(1.16)

where Ni is dimention of k in i dimension.

The SNR, as its name indicates, is a parameter for the amount of information com-

pared to noise. The SNR is linearly dependent on B0. Relaxation time also plays a

role in determining SNR. The relation of SNR is given as in the equation 1.17:

SNR∞B0
T2

T1

(1.17)

1.1.5 Pulse sequence

The pulse sequence adjusts the localisation of the MRI. The pulse sequence is also

responsible for the weighting and contrast of MRI with adjustment of excitation,

encoding, and sequence timing. Spin echo (SE) is a simple pulse sequence that helps

understand the importance of pulse sequence. As discussed, after a single RF pulse,

the net longitudinal magnetisation flips 90° to net transversal magnetisation, and FID

occurs. However, suppose we apply two successive RF pulses. In that case, phase

coherence of protons increases after the second 180° pulse for the time duration equal

to the duration between two RF pulses and again decays, as shown in the figure 1.6.

The advantage of SE is that the T ∗
2 relaxation after the first impulse is very short due

to the inhomogeneous static magnetic field, allowing very little localisation scheme

time. Whereas with SE, we cancel out the effect of inhomogeneity, resulting in slower

decay and gaining some time between the first excitation and time of echo, known as

echo time (TE). TE can be utilised for localisation schemes and create an anti-phase



16 CHAPTER 1. INTRODUCTION

Figure 1.6: Spin Echo (SE) signal where the Free Induction occurs after 90 °pulse
and the 180 °pulse at the time equals half of Excitation Time (TE) results into SE
at TE.

pulse to contain contamination signals. The SE pulse sequence can be seen in figure

1.7.

1.1.6 Magnetic Resonance Spectroscopy (MRS)

MRSI is used to get information about the concentration of neurochemical molecules

in the tissues. This chemical composition mainly consists of neurochemicals in the

brain that are also known as metabolites. The signals from MRI scans include the

frequency spectrum conveying the composition of water, fat, and metabolites. By

exclusion of dominating signals from water and lipid, we reach out to the signals

of metabolites. Separation of the signals for individual metabolites can be achieved

through their characteristic difference in resonance frequency. This thesis deals with
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Figure 1.7: Spin echo (SE) pulse sequence. Source: Accelerated high-resolution 3D
MRSI in the brain at 7 T by Gilbert Hangel, 2015, PhD thesis, Medical University
of Vienna. Creative Commons Attribution 4.0 License. (Hangel, 2015)
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the MRSI images of the brain while it is generally also used in the muscles, the

prostate, the liver, and breasts. The data used in this thesis mainly comprise the

MRS image of brains. So, it is essential to understand how those images are obtained.

The fundamental idea behind MRS is a chemical shift. The difference in reso-

nance frequency between two otherwise identical nuclei from different environments

is known as a chemical shift. The resonance frequency of a particular nucleus is

not determined by the external magnetic field but rather by the local magnetic field

experienced by the nucleus. Two factors determine the resonance frequency of each

nucleus. Namely the type of molecule, and its regional position in the molecule.

Thus, a chemical shift can provide information about molecular composition. The

local magnetic field experienced by a nucleus is reduced from the external magnetic

field by the means of an induced magnetic field that is produced by the electrons

circulating the nucleus, which is known as electronic shielding. The outer electrons

shield the nucleus from the full effect of external magnetic fields with a dimensionless

shielding factor denoted by σ.

Bloc = B0 − Bind = B0(1− σ) (1.18)

The relation between Larmor frequency and the magnetic field is defined as:

ω0 = γB0 (1.19)

In the equation above we observe a Larmor frequency is proportional to the magnetic
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field. With the magnetic field defined in the equation 1.18, we get:

ω0 = γB0(1− σ) (1.20)

Chemical shift (δ) defined by the International Union of Physicists and Chemists

(IUPAC) in 2001, is more commonly used than σ for the shielding effect. It is

defined as:

δ =
ω − ωref

ωref

· 106 (1.21)

Where ω is resonance frequency and ωref is the frequency of reference compound

which is tetramethylsilane in phantoms MRS whereas, water(4.7 ppm), N-acetyl-

aspartate(NAA, two ppm), or other external references for in vivo MRS. Because of

its small magnitude, the chemical shift (delta) is dimensionless and predominantly

expressed as parts per million (ppm). ppm can describe the chemical shifts as inde-

pendent of field strength. Let us consider two nuclei with a ten ppm difference in

chemical shift. The Larmor reference frequency of 3 Tesla (3T) is 128 MHz, and that

of 7T is 298 MHz. The difference in resonance frequency between those two nuclei

would be 128 MHz × 10 ppm = 1280 Hz in 3T and 298 MHz × 10 ppm = 2980 Hz

in 7T.

The quality of MRS is mainly dependent on spectral quantification, which is princi-

pally assured using SNR, the full width at half maximum (FWHM) of resonances,

and the Cramér–Rao lower bounds (CRLBs) of metabolites. CRLB indicates MRS

quantification quality based on mean errors during spectral fitting based on measure-

ment data. FWHM denotes the line width of the spectrum resonance peak at half of

its maximum height. FWHM is inversely proportional to T ∗
2 . A decrease in FWHM
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results in an increase in the spectral resolution of MRSI. SNR determines the quality

of measurement. The lower SNR indicates unreliable MRS quantification.

MRS has two main applications: Single voxel spectroscopy (SVS) and MRSI. SVS is

a comparatively simple and fast way of MRS data acquisition. SVS localisation uses

three successive gradient-based RF pulses in three orthogonal planes with possible

additional outer volume suppression pulses. The intersection of those planes defines

the volume of interest (VOI), defined as a voxel. The signal received from this single

voxel is used to acquire spectrum. FT of acquired time-domain signal results in a

spectrum in SVS. SVS, compared to MRSI, is fast and easy, with better spectral

resolution and higher SNR. In comparison, MRSI has acquired multiple molecular

components simultaneously (Hangel, 2015). The non-limited VOI in MRSI makes

it significant for inhomogeneous lesions and other diseases like Epilepsy (Pan et al.,

2013), Adenoleukodystrophy (Ratai et al., 2008), Alzheimer, Parkinson, Prostate

(Trattnig et al., 2016)and Multiple Sclerosis (MS) (Srinivasan et al., 2010). More-

over, Hangel (2015) has also demonstrated the significance of MRSI in measuring

the tumor near the cranium. //

1.1.7 Magnetic Resonance Spectroscopy Imaging (MRSI)

MRSI deals with the chemical composition of tissues. In our context, MRI is used

to obtain the tumor structure and MRSI for information about metabolic activity in

the tumor. MRSI is also known as Chemical Shift Imaging (CSI).

MRSI localisation is necessarily different from MRI as GF is used for chemical

shift differentiation between different metabolites. The most straightforward idea

for localisation of MRSI could be using GP on both dimensions of k-space point by
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point using FID. The pulse sequence shown in figure 1.8 is used for data acquisition.

Figure 1.8: MRSI pulse sequence without a spin echo. Further, on the right, two suc-
cessive fast Fourier transformations were to obtain voxel-specific FIDs and spectrum.
Source: Accelerated high-resolution 3D MRSI in the brain at 7 T by Gilbert Hangel,
2015, PhD thesis, Medical University of Vienna. Creative Commons Attribution 4.0
License. (Hangel, 2015)

The phase shift (1.14PS) used in MRSI is spatially dependent, which must be

considered during the post-processing of k-space. Multiple spectral data of the whole

FOV in k-space are encoded in a time-domain signal. FT of spatial dependent time-

domain signal helps to acquire voxel-specific FIDs. Further FT results voxel-specific

spectra. So, FT plays a vital role in spectrum acquisition, but it comes with a cost.

The spectrum of a voxel is influenced by the ripples of the neighbouring spectrum,

which is described as the point spread function (PSF)(Skoch et al., 2008). PSF
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is a weighting function describing the contamination of neighbouring voxels to a

particular voxel. To combat this effect, the spherical region in k-space for data

sampling is defined, and signals in border regions are defined as zero (A. A. Maudsley

et al., 1994; von Kienlin & Mejia, 1991). This method is applicable since the short-

wavelength signals on the border region of k-space contain information about shape,

which is less crucial for MRSI. Selection of spherical sampling in k-space results in

a reduction of measurement time. Likewise, a Hamming filter (von Kienlin & Mejia,

1991) can increase amplitude in the centre of the k-space and reduce amplitude at

the edges. It increases the width of the central peak, sinking the spatial resolution.

Considering all these factors, the FID MRSI with concentric ring trajectories (Hingerl

et al., 2020) helps to reduce scan times with better spatial resolution and SNR to

perform 3-dimensional encoding of ellipsoidal k-space and phase encoding for in-plane

encoding helps to reduce scan times with better spatial resolution and SNR. The

pulse sequence for FID MRSI with CRT includes iMUSICAL (P. Moser et al., 2019;

Strasser et al., 2013) with 5°excitation pulse followed by WET for water suppression

and 3D-CRT for data acquisition as shown in the figure 1.9. This method was used

for the data acquisition of MRSI images used in this thesis.
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Figure 1.9: A: Pulse sequence for FID MRSI with in-plane CRT encoding and
through-plane 3D ellipsoidal encoding.
B: Magnitude image and intensity image of silicon oil-filled phantom with five differ-
ent matrix sizes ((32 x 32, 48 x 48, 64 x 64, 80 x 80, 96 x 96), all with a thickness of
10 mm interpolated to double matrix size for visualisation. The structures are 1-10
mm and 15mm in diameter. Source: Clinical High-Resolution 3D-MR Spectroscopic
Imaging of the Human Brain at 7 T by Lukas Hingerl et al., 2020, Wolters Kluwer
Health, Inc., license number 4933021001140 (Hingerl et al., 2020)

Point-resolved Spectroscopy (PRESS) with first 90° and two successive 180° flip

angles as in figure 1.10 and Stimulated Echo Acquisition Mode (STEAM) with all
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three 90° flip angles (Moonen et al., 1989) shown in the figure 1.10 are popular se-

quences for MRS.

Figure 1.10: The figure on the left shows the pulse sequence of Point-resolved Spec-
troscopy (PRESS), and on the right is the pulse sequence of Stimulated Echo Acqui-
sition Mode (STEAM)

The PRESS sequence offers a better SNR because the amplitude of this SE is

twice that of STEAM. In comparison, STEAM helps achieve lower TE than PRESS

(Moonen et al., 1989).

1.1.8 7 Tesla Magnetic Resonance Spectroscopy Imaging (7T

MRSI)

Due to its improvement in mapping multiple metabolites, SNR, reproducibility, and

spectral resolution (Bogner et al., 2012; Trattnig et al., 2016) 7T MRSI is well-known

as High-Resolution 3D MRSI (Hangel, 2015). Although many benefits of 7T MRSI

have been explored (E. Moser et al., 2012; Posse et al., 2013) since the beginning
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of the current millennium, there are still many scopes of improvement in shimming

techniques, parallel imaging, pulse sequence scheme, and hardware of MRI scanner.

Nevertheless, 7T MRS makes exploring the concentration of extended variation of

neurochemical molecules, commonly called metabolites, possible.

1.1.9 Water and lipid suppression

Before we discuss metabolites, the subject of great concern is water and lipid in the

brain. The water concentration in the brain is 10,000 times higher than the one of

metabolites like NAA, Cho, and CR. The peak of the water spectrum thus domi-

nates the MS, and other metabolites are undetectable. Therefore, the suppression of

water peaks makes the analysis of metabolite peaks easier. Chemical Shift Selective

(CHESS) (Haase et al., 1985) is widely popular for water suppression in MR. CHESS

consists of three successive RF pulses, each followed by slice selection, phase, and

frequency gradient, as shown in figure 1.11.

Figure 1.11: Chemical Shift Selective Saturation (CHESS) pulse sequence used for
water suppression which consists of three 90 °RF-pulses each followed by slice-
selection with slice selection gradient (Gss), frequency gradient (GF ) and phase
gradient (GP )

Water suppression Enhanced through T1 effects (WET), Suppression of Wa-

ter with Adiabatic-Modulated Pulses (SWAMP), Multiple Optimizations Insensi-
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tive Suppression Train (MOIST), and Variable Power radiofrequency pulses with

Optimised Relaxation delays (VAPOR) are some modern variants of CHESS. 7T

optimised 35ms WET suppression with three pulses (Hangel et al., 2018) sequence

is used before localisation in our measurement, as shown in the figure 1.9. WET is

derived by analysing longitudinal magnetisation over T1 and B1 ranges of interest

using Bloch equation (Ogg et al., 1994). It uses three RF pulses with numerically

optimised flip angles.

Trans-cranial lipids in the brain are made up of adipose tissues. Adipose tissue is

composed of free fatty acids and long-chain triglycerides. The problem in these lipids

lies in the resonance frequency of adipose tissues being 0.9-1.4 ppm. The contamina-

tion of side lobes spectra from lipid tissues is observed in the metabolites like lactate

with a resonance frequency of 1.3 ppm, close to that of lipid, due to the PSF effect.

In our case, it is NAA.

Outer volume suppression (OVS) is a commonly practised lipid suppression method.

As shown in the figure 1.12 below, the saturation bands are placed over the lipid-

containing regions to avoid signals from those regions. OVS does not only remove

lipid voxels but other non-lipid voxels as well. The lipid signals can also be re-

moved during the image post-processing to optimise the measurement time. In the

measurement process used in this thesis, L2-regularization was included in image

post-processing for lipid removal.

After avoiding the water and lipid spectrum, concentrations of different metabolites

in the brain are detectable, as in the figure 1.13.
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Figure 1.12: The outer volume suppression (OVS) for lipid suppression.
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Figure 1.13: Metabolites spectrum in white matter(WM) and grey matter (GM)
of the brain. Source: Accelerated high-resolution 3D MRSI in the brain at 7 T by
Gilbert Hangel, 2015, PhD thesis, Medical University of Vienna. Creative Commons
Attribution 4.0 License. (Hangel, 2015)



1.1. NUCLEAR MAGNETIC RESONANCE (NMR) 29

This thesis deals with some of the essential metabolites in the brain (De Graaf,

2019; Hangel, 2015). Metabolites crucial for this study are described in the follow-

ing pages. The chemical structures of the following metabolites were drawn using

ChemDoodle (iChemLabs, n.d.).

N-acetyl aspartate (NAA) is the tallest peak with a

resonance frequency of 2.01 ppm. Since they are mainly

found in neurons, declination of NAA is seen in neuron-

destructive diseases like epilepsy, MS, tumor, stroke, and

dementia and is absent in metastases and meningiomas.

N-acetyl aspartyl Glutamate (NAAG) resonates at

2.04ppm, which is very close to the resonance frequency

of NAA. That is why NAAG is difficult to detect and re-

quires a highly homogenous magnetic field for its detection.

Mostly, NAA and NAAG are summed up for estimating

NAA-containing molecules. NAAG is not uniformly dis-

tributed in the brain. The actual role of NAAG remains

unclear.

Creatine (Cr) with resonance frequencies of 3.03 and 3.91

ppm includes both Cr and Phosphocreatine (PCr) sum-

marised as total Creatine (tCr). Cr is produced in the liver

and takes part in energy metabolism. They are relatively

constant in a healthy brain, decrease with brain diseases,

and vanish in metastases.
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Choline (Cho) is another abundant metabolite with reso-

nances at 3.19 ppm with an affiliation of phosphorylcholine

and glycerophosphocholine. As they are a major compo-

nent of cell membranes. Due to this, an increase in Cho con-

tent is observed in ischemia, demyelination, tumors (mainly

during malignancy), and infections.

Inositole (Ins) is a metabolite with a resonance frequency

of 4.05 ppm. it is believed to be decreased with ischemia,

neoplasm, and demyelination.

Glutamate (Glu) is a neuron-released major excitatory

neurotransmitter with resonances at 3.75, 2.33, 2.04 ppm,

and more. It synthesises glutathione and produces γ -

Aminobutyric acid (GABA). Astrocytes convert Glu to glu-

tamine (Gln), and Gln is again reprocessed to Glu by neu-

rons. Elevation of Glu is observed during acute brain dis-

eases.

Glutamin (Gln) being structurally similar to Glu res-

onates at 6.8 and 1.5ppm. It is mainly located in the as-

troglia and plays a vital role in intermediary metabolism

(De Graaf, 2019).

Gluthathione (GSH) with resonance frequency 3.77 and

many more is responsible for maintaining red blood cells

and transporting amino acids.
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γ -Aminobutyric acid (GABA), the main inhibitory

transmitter, resonates at 3.01 and 1.89 ppm. They are re-

solved by spectral editing, a special MRS method because

they overlap with dominant metabolites like Cho and NAA.

Taurine(Tau) ensures neural transmission and stabilizes

cell membranes. It resonates at 3.42 and 3.25 ppm.

De Graaf (2019) includes a description of some other metabolites. Some metabo-

lites are added up due to low SNR and deficient spectral resolution. Some examples

are total Choline (tCho) from phosphorylcholine and glycerophosphorylcholin, tCR

from Cr+PCr, Glx out of Glu added with Gln and total N-acetyl aspartate (tNAA)

from NAA and N-acetyl-aspartyl glutamate (NAAG).

The amount of NAA is more than Cho of a normal brain. An increased amount of

Cho raises suspicion of a tumor. The information about the chemical composition of

these metabolites can be obtained through MRSI. MRSI is used to find information

about the chemical composition of the brain. The high contrast in MRI indicates

the presence of a tumor. In conclusion, MRI and MRSI are very useful methods in

detecting tumors.

1.2 Glioma

The human brain comprises 86.1 billion neuron cells and 84.6 billion non-neuronal

cells called glial cells (Azevedo et al., 2009). Glial cells are those in the brain that do
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not produce electrical impulses. There are mainly three types of glial cells: Astro-

cytes, oligodendrocytes, and microglia. Astrocytes are mainly responsible for the

structural composition and maintaining brain homeostasis. Astrocytes also form the

blood-brain barrier (BBB), which controls the permeability of the brain to maintain

the environment for the complex operations in the brain. However, a problem arises

when antibodies cannot access the BBB to attack tumor cells in the brain. Even

medical treatment gets challenging as they have difficulty accessing drugs through

the barrier.

Oligodendrocytes are those glial cells in the central nervous system (CNS) in-

volved in the myelination of axons. Myelination helps increase the conduction ve-

locity of neuronal impulses in axons. Similar cells in peripheral nervous systems are

Schwann cells. Microglia are administrative cells that maintain ionic concentration

in extracellular compartments, interact with vessels during cell injury, and maintain

structural balance for initially developing neurons.

Glioma is one of the tumors that begins in glial cells. 30% of brain and CNS

tumors are gliomas (Goodenberger & Jenkins, 2012). Out of all malignant brain

tumors, 80% are gliomas (Goodenberger & Jenkins, 2012). The nearest matching

tissue histology defines the different types of gliomas. According to the 2021 World

Health Organisation (WHO) classification of CNS tumors (fifth edition) (Louis et al.,

2021), adult gliomas are histopathologically classified into three main groups:

• Astrocytoma

Astrocytomas originate from astrocytes and do not spread out of CNS un-

der normal circumstances. The patient life expectancy ranges from 1 to 10
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years after tumor diagnosis, depending on the type and grade of astrocytoma

(Kennedy, 2021). They can be of grade II, III and IV (Louis et al., 2021).

• Oligodendroglioma

Oligodendroglioma initiates from oligodendrocytes. They are less aggressive

and grow relatively slow. The patients with oligodendroglioma have a higher

survival rate in relation to the patients having other tumors. They can be of

grade II and III (Louis et al., 2021).

• Glioblastoma

Glioblastoma is the most common adult glioma accounting for 55 % of all

gliomas, and is at the same time the most aggressive type. Patients only have

a one-year survival rate of 42.8 % (Ostrom et al., 2020). All glioblastomas are

of grade IV (Louis et al., 2021).

The diagnosis of glioma includes imaging diagnosis and biopsy. The imaging diagno-

sis of gliomas includes anatomical imaging of the brain using computed tomography

(CT) and MRI. Once the tumor is detected in a CT scan or MRI, the tumor tissue

is acquired through biopsy. The biopsy is done with a needle before, during or after

surgery to test the type, grade and mutations of cells. Low grade and high grade

are commonly used grading terms representing the malignancy of tumors based on

WHO grade classification. The tumors of grade I and II are considered low-grade

tumors, and those of grade III and IV are regarded as high-grade tumors.

A biopsy also includes the identification of mutations and molecular alteration in

the tumor, which helps improve diagnosis, predict prognosis, make therapeutic de-

cisions, and identify therapeutic targets. IDH and O6-methylow-gradeuanine DNA

methyltransferase (MGMT) methylation status are prognostic values. Epidermal



34 CHAPTER 1. INTRODUCTION

growth factor receptor(EGFR) mutation, Telomerase reverse transcriptase(TERT)

promoter mutation, gain for 7p and loss of 10q chromosomes, and H3F3 mutation

help improves diagnostic accuracy. Fibroblast growth factor receptor (FGFR) fusion

and Neurotropic tyrosine receptor kinase (NTRK) fusion are therapeutic targets.

1.2.1 Isocitrate dehydrogenase (IDH)

The Isocitrate dehydrogenase (IDH) enzyme catalyses the oxidative decarboxylation

of isocitrate, producing alpha-glutarate (α-ketoglurarate) and Carbon dioxide (CO2),

which are a vital part of cell homeostasis and metabolic processes. Due to this fact,

they are also involved in the glioma cycle. In humans, they are mainly observed in

three isoforms, IDH1, IDH2, and IDH3. IDH mutation is frequently seen in gliomas,

with more than 80 % of WHO grade II/III cases with IDH1 or IDH 2 mutation (Yan

et al., 2009). IDH without mutation is referred to as IDH wild-type. Gliomas with

IDH wild-type behave more aggressively than those with mutations (Yan et al., 2009).

WHO Classification 2021 of CNS Tumors (Louis et al., 2021) has defined IDH1 and

IDH2 as characteristically altered genes for astrocytoma and oligodendroglioma and

IDH wild-type for Glioblastoma along with other molecular profiles.

Surgery is done to remove the bulk of glioma tissue. Complete glioma removal

is not always possible because gliomas infiltrate the surrounding brain. Due to this

reason, additional radiation therapy and chemotherapy are conducted to kill the

remaining glioma cells. A surgeon’s goal is to remove as many gliomas as possible.
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1.3 Classification

Classification is an identification of the object’s class based on its features. A single

feature is not always sufficient to classify the object. The classification can be based

on predefined labels and features or differences in features of the objects. The classi-

fication with the predefined label is supervised, and the one without previous labels is

unsupervised learning. Nowadays, machine learning is widely used for classification

purposes. Modern machine learning techniques involve training, validating, and test-

ing processes. Training is where a classifier is trained to classify based on previous

classification or label. Validation is to validate the proper training of the classifier.

Testing is done to present the appropriate functioning of the classification. For each

of these processes, a separate data set is desired. However, getting a large amount of

data is not always possible. Thus, validation is mostly done using a training data set

using an n-fold cross-validation process. The n-fold cross-validation process involves

the division of data into "n" number of separate groups and testing the classifier "n"

times, each time using a group of data out of "n" data groups.

Classifying glioma cells can help precisely identify glioma cells and decision-making

for treatment. We intend to classify tumors based on IDH mutation and grade. We

used a random forest and SVM algorithm for this classification.

1.3.1 Random forest

Random forest is a machine learning algorithm used for regression, classification,

and other purposes. Random forest is based on the ensemble learning method where

multiple classification layers, as in the figure 1.14, are used for end prediction. In the

random forest, the prediction is based on decision trees. The classifier goes through

multiple layers of decision trees before the end prediction is made. Prediction’s re-
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Figure 1.14: Decision tree involving multiple layer of classification

liability heavily depends on the number of decision trees used to train a classifier.

Random forest is a supervised learning algorithm, meaning labelled outputs train

the classifier. Supervised learning involves training the classifier until the classifier

learns the pattern between input data and labelled output.

1.3.2 Support Vector Machine (SVM)

SVM is another machine learning tool widely used for regression and classification.

The main idea behind SVM is to find a hyperplane in the multi-dimensional space

to classify the data points in the space. For the optimal future classification, the

hyperplane is desired to have the maximum possible distance from both classes, i.e.,

maximum marginal distance, to ensure better classification probability of additional

data points. The dimension of the hyperplane depends on the number of features
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involved in classification. The dimension of the hyperplane is n-1, where n is the

number of features. The term support vector indicates the data points near the

hyperplane, which plays a vital role in determining the position of the hyperplane.

Figure 1.15: Support vectors and margins. The small margin on the left and the
larger margin on the right.

The data points are not always linearly separable. In such cases, the data points

are transformed to higher dimensions and the projection of higher dimensional sep-

aration to the original dimension results in non-linear boundaries. An increment in

dimensions also increases computation cost. That is where the kernel trick comes

into play. The linear kernel uses a linear separator, taking given features into con-

sideration. At the same time, the non-linear kernel uses the given feature and the

interaction of features in multiple ways to create non-linear separators. Polynomial

kernel, radial basis function (RBF) kernel and sigmoid kernel are widely used SVM

kernels. K-fold cross-validation is used for fine-tuning kernel parameters.

1.3.3 Feature Selection

Feature selection is a crucial part of machine learning. Feature selection is a process

where the subset of the most relevant input variables for predicting output variables is
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selected. The features are selected based on their contribution to the classification.

The features with higher contribution are iteratively selected. The unnecessarily

higher number of features can lead to longer training time and over-fitting of a

classifier.

The Recursive Feature Elimination Cross-Validation (RFECV) algorithm helps

us determine essential features and the number of important features. RFECV com-

bines the Recursive Feature Elimination (RFE) and Cross-Validation (CV) algo-

rithms. RFE is a wrapper-based feature selection method. The different machine

learning algorithms can be used as a wrapper to determine feature importance. RFE

works similarly to the backward elimination method, which starts with the training

process using all the given features and recursively eliminates the least important

feature, calculated utilising a wrapper algorithm until a given number of features

is reached. It is not always easy to determine the optimal number of features for

machine learning. This is where RFECV comes into action. RFECV combines CV

with RFE to determine an optimal number of features. The CV score is computed

for each subset of features, from the maximum to the minimum number of features.

The minimum number of features is provided as an argument. The subset of features

with the highest CV score is selected for the training process.

1.3.4 Receiver Operating Characteristic (ROC) curve and Area

Under the Curve (AUC)

ROC curve is plotted for classification with different threshold settings, an evalua-

tion measure to determine the performance of binary classification. The ROC curve

involves a True Positive Rate (TPR) and False Positive Rate (FPR). These parame-

ters are derived from the elements of the confusion matrix in figure 1.16 and defined
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Figure 1.16: Confusion matrix
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as:

TPR =
TP

TP + FN
(1.22)

FPR =
FP

FP + TN
(1.23)

The ROC curve is a curve of the relationship between TPR and FPR for different

threshold settings, as shown in figure 1.17

AUC is the area under the ROC curve, as in figure 1.17. AUC measures classification

performance and signifies the model’s classification accuracy. AUC equals 0.5 means

the classification is equivalent to the random prediction of binomial classification.

The AUC value below or higher than 0.5 means better classification than random

prediction. The AUC value generally varies from 0.5 to 1. A higher AUC means a

better classification model. The AUC is lower than o. five is equally good as more

significant than 0.5 but should be inversely labelled.
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Figure 1.17: An example of the Receiver Operating Characteristic (ROC) curve and
Area Under the Curve (AUC).
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Chapter 2

Methods

The main objective of this thesis is to build a pipeline for statistical evaluations,

which is further developed to classify IDH mutation and tumor grade. The research

begins with patient recruitment and measurement. The data obtained from mea-

surement goes through in-house built data post-processing resulting in 3D-MRI and

MRSI images. As we focus on tumor regions, we also acquired tumor segmenta-

tion. After obtaining all the required image data, we further worked on building a

database. The database was used for statistical evaluation and classification using

the python programming language (Van Rossum & Drake Jr, 1995).

2.1 Patient recruitment

This study is based on 7T 3D-concentric ring trajectory (CRT)-based free induction

decay (FID)-MRSI of 36 preoperative glioma patients. The used dataset consists

of 14 female and 22 male patients within the age group of 33-77 years. Although

we had initially recruited 57 patients, 21 measurements had to be eliminated in the

43
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preliminary quality assessment.

Pat Code Age at Measurement Sex (Female) WHO 2021 Grade IDH Mutation
Tumor_Patient_021 39 0 Astrocytoma grade 2 2 IDH1
Tumor_Patient_023 51 0 Astrocytoma grade 4 4 IDH1
Tumor_Patient_027 52 0 Astrocytoma grade 4 4 IDH1
Tumor_Patient_030 47 1 Glioblastoma grade 4 4 WT
Tumor_Patient_031 46 1 Astrocytoma grade 3 3 IDH1
Tumor_Patient_034 29 0 Astrocytoma grade 3 3 IDH1
Tumor_Patient_035 52 0 Glioblastoma grade 4 4 WT
Tumor_Patient_037 33 0 Astrocytoma grade 2 2 IDH1
Tumor_Patient_038 58 0 Glioblastoma grade 4 4 WT
Tumor_Patient_039 77 1 Astrocytoma grade 2 2 IDH1
Tumor_Patient_040 34 1 Astrocytoma grade 3 3 WT
Tumor_Patient_046 71 0 Glioblastoma grade 4 4 WT
Tumor_Patient_050 51 0 Oligodendroglioma grade 3 3 IDH1
Tumor_Patient_054 62 0 Astrocytoma grade 3 3 IDH1
Tumor_Patient_055 30 1 Glioblastoma grade 4 4 WT
Tumor_Patient_056 34 0 Astrocytoma grade 2 2 IDH1
Tumor_Patient_057 56 0 Oligodendroglioma grade 3 3 IDH1
Tumor_Patient_058 61 0 Glioblastoma grade 4 4 WT
Tumor_Patient_059 60 0 Glioblastoma grade 4 4 WT
Tumor_Patient_062 28 1 Astrocytoma grade 3 3 IDH1
Tumor_Patient_063 62 0 Glioblastoma grade 4 4 WT
Tumor_Patient_065 50 1 Oligodendroglioma grade 2 2 IDH1
Tumor_Patient_066 38 1 Oligodendroglioma grade 2 2 IDH1
Tumor_Patient_067 61 0 Oligodendroglioma grade 2 2 IDH1
Tumor_Patient_068 77 1 Glioblastoma grade 4 4 WT
Tumor_Patient_073 33 0 Astrocytoma grade 2 2 IDH1
Tumor_Patient_074 75 1 Glioblastoma grade 4 4 WT
Tumor_Patient_078 58 0 Glioblastoma grade 4 3 WT
Tumor_Patient_081 57 1 Oligodendroglioma grade 3 3 IDH1
Tumor_Patient_084 40 0 Astrocytoma grade 3 3 IDH1
Tumor_Patient_086 58 0 Glioblastoma grade 4 4 WT
Tumor_Patient_091 27 1 Astrocytoma grade 4 4 IDH1
Tumor_Patient_096 72 0 Glioblastoma grade 4 4 WT
Tumor_Patient_098 26 1 Astrocytoma grade 4 4 IDH1
Tumor_Patient_100 59 0 Glioblastoma grade 4 4 WT
Tumor_Patient_104 46 1 Glioblastoma grade 4 4 WT

Table 2.1: Patients list with age, gender, who classification, grade and IDH mutation
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Figure 2.1: Distribution and interrelation of data classes.

2.2 Measurement Procedure

The measurement was performed using Magnetom (Siemens Healthineers, Erlangen,

Germany) 7T whole-body MR scanner in the High Field MR Center of the Medical

University of Vienna. The MR Scanner features a gradient system with a 70 mT/m

of maximum gradient strength per direction, a 200 mT/m/s slew rate, and a 32-

channel head receive coil array by Nova Medical (Wilmington, MA). B+
1 maps for

flip-angle optimization, B0 maps, magnetization prepared two rapid gradient echoes

(MP2RAGE) as the T1-weighted morphological MRI reference (TR 5000 ms, TE 4.13

ms, TI1 700 ms, TI2 2700 ms, 0.75 x 0.75 x 0.75 mm3 resolution, 8 min 2s with

GRAPPA factor 3) was included in the protocol. 3D-CRT-FID-MRSI with the 3-
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dimensional encoding of ellipsoidal k-space and phase encoding for in-plane encoding

as described by Hingerl et al. (2020) results in a 64 x 64 x 39 matrix over a 220 x

220 x 133 mm3 FOV with a nominal spatial resolution of 3.4 x 3.4 x 3.4 mm3 and

an effective resolution of 4.7 x 4.7 x 4.7 mm3 or 0.1 cm3. A 110m thick slab parallel

to the horns of the corpus callosum, beginning from the superior part of the brain,

was selected. The additional parameters of the MRSI scan include repetition time

(TR) of 450 ms, the scan time of 15 min, acquisition delay of 1.3ms, 39 °excitation

flip angle as nominal average Ernst angle of NAA, tCr, tCho, Glu and mIns (Hangel

et al., 2015), readout duration of 345 ms, the spectral bandwidth of 2778 Hz, varial

temporal interleaves and 7T-optimized WET water suppression (Hangel et al., 2018;

Ogg et al., 1994). The measurement does not include lipid suppression sequence

to ensure short TR. The lipid signal removal is performed in post-processing using

L2-regularization (Bilgic et al., 2013).

2.3 Data post-processing

An in-house developed software pipeline (Považan et al., 2015) was used to post-

process MRSI data. The pipeline is based on MINC (MINC Tools, McConnell Brain

Imaging Center, Montreal, QC, Canada), MATLAB (MathWorks, Natick, MA), Bash

(Free Software Foundation, Boston, MA) and FSL (Analysis Group, FMRIB, Oxford,

UK). The pipeline comprises iMUSICAL coil combination (Hingerl et al., 2018; P.

Moser et al., 2019; Strasser et al., 2013) with water normalization as in (A. Maudsley

et al., 2009) and k-space reconstruction with in-plane spiral grids (Hingerl et al., 2018;

Jackson et al., 1991). The post-processing also includes an off-resonance correction

to compensate for the time delay of acquisition samples (Mayer et al., 2006). Spatial

Hamming filtering and post-measurement lipid removal by L2 regularization (Bilgic
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et al., 2013; Hangel et al., 2016) prior to spectral quantification are also included in

post-processing.

LCModel (v6.3-1, LCMODEL, Oakville, Ontario, Canada) (Provencher, 2001) was

used to quantify each spectrum. The range of spectrum evaluation comprises 0.2-1.2

ppm and 1.8-3.88 ppm. 1.2-1.8 ppm is excluded due to the possibility of remaining

lipid signal after L2 regularization. The upper limit of 3.88ppm spectrum was chosen

due to water suppression effects. The basic metabolites used for this thesis are Cr,

PCr, GPC, PCh, NAA, NAAG, Glu, Gln, Ins, GABA, GSH, Gly, Tau, and serine

(Ser). SNR was accomplished using the pseudo-replica method (Strasser et al., 2017),

and FWHM was calculated for each voxel with the help of LCModel fits of NAA and

tCr at 3.02 ppm. Grey matter (GM), white matter (WM), and cerebrospinal fluid

(CSF) segmentation were acquired using FSL’s FAST tool. The filters like tCr SNR

< 5, tCr FWHM > 0.15, CRLB > 40 %, and metabolite fit value > 13 recommended

by Wilson et al. (2019) were applied to ensure spectral quality.

2.4 Pipeline

The 3D-MINC maps of metabolites obtained by the post-processing are used as

input for the new pipeline. With promising outcomes in the past for high-grade

gliomas (HGG) (Hangel et al., 2020), this study aims to find out the combination of

metabolites that can help us with the prediction and prognosis of glioma. To study

this possibility, we need to observe the pattern of difference in the concentration of

metabolites in tumor and non-tumor regions. We further focus our study on IDH

mutation and the grade of the tumor. We intend to find the dependence of IDH

mutation and tumor grade with the concentration of metabolites to predict those

factors for other patients in the future with an exact combination of metabolites
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concentration. We intend to find a metabolite combination, which we can use to

classify IDH mutation status and grade based on their concentration in patients’

brains.

2.4.1 Tumor segmentation

Figure 2.2: A: Tumor segmentation by neuro-radiologist co-registered on the anatom-
ical image. B: Peritumoral region around tumor using a dilation operation. The
blue colour indicates the non-contrast enhancing (NCE), green indicates contrast-
enhancing (CE), yellow indicates necrosis (NEC), and purple for the peritumoral
(PT) region. L and R are for the left and right side of the brain, and x, y, and z
indicates sagittal, frontal, and transverse slice.

To differentiate between tumor and non-tumor regions, we first need to compare

the concentration of the metabolites in those regions. The manual segmentation

of tumors is the gold standard for segmentation though it is time-consuming. For
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segmentation of the tumor region, we requested the neuro-radiologist Julia Furtner

for help. An experienced neuro-radiologist provided tumor segmentation for non-

contrast enhancing (NCE) or edema, contrast-enhancing (CE), and necrosis (NEC)

regions as shown in2.2. The segmentation was performed on a T1-weighted 7T-MRI

144 x 192 x 192 matrix image. It was resampled and co-registered with the 7T-MRSI

64 x 64 x 39 matrix maps.

The peritumoral (PT) region was later defined using a mathematical operation

called dilation. The tumor’s three layers of boundary voxels (3 x 3.4mm) were

defined as a peritumoral region. Nibabel package (Gorgolewski et al., 2011) was

used in python to read minc and nifti images. Numpy (C. R. Harris et al., 2020) and

Scipy (Virtanen et al., 2020) packages were used for loading and processing image

data in nifti and minc format.

2.4.2 Preliminary image quality assessment

A visual qualitative evaluation of the images was done for preliminary quality assess-

ment. The main focus of the assessment was overall image quality, artefacts, tumor

segmentation, and location of the tumor, as the tumors on the boundary and lower

extremities of the head are more prone to artefacts. MRSI map of tNAA, tCho to

tCr ratio, segmentation map, and magnitude map were used to determine quality

criteria. Out of 57 initial cohorts, 15 had to be eliminated because of insufficient

quality. Six were later eliminated due to incomplete data labelling information.
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2.5 MRSI Statistical Evaluation

Figure 2.3 shows the process of building a database and further use of the database

for statistical evaluation. Before beginning with the statistical evaluation of MRSI

data, we must build a database. Using a single comma-separated value (CSV) file as

a database of statistical assessment is far more convenient than multiple 3D-image

files. So, the first part of this work involved building a CSV file out of all the 3D-

MRSI images in .mnc (minc format) and .nii (nifti format). Numpy (C. R. Harris

et al., 2020) and Scipy (Virtanen et al., 2020) packages were used for reading 3D

Minc and nifti images and converting them to table columns.

Figure 2.3: The process of building a database and further use of a database for
statistical evaluation.
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2.5.1 CSV Database

The original metabolic MRSI 3D-MINC maps obtained after post-processing and

the resampled segmentations from neuroradiologists (Figure 2.3) were used for each

patient. The original metabolite maps used for statistical evaluation include tCr,

GABA, Gln, Glu, GABA+Glu, Glu+Gln, Gly, tCho, GSH, Ins, Ins+Gly, NAA,

NAAG, tNAA, Ser, and Tau. For each metabolite, ratios to tCr, NAA, and tNAA

were calculated. Other ratios like Gly to Ins, Gly to Ins+Gly, Gln to Glu+Gln, and

Glu to Glu+Gln were individually calculated. All these ratios are used for further

statistical evaluation. We also included Cr mask maps, WM maps, and GM maps

created during the data post-processing.

Firstly, the local coordinate system was defined for each voxel with the dimension

of 64, 64, and 39 for the x, y, and z variables respectively. The coordinate system

further helps to identify and plot each voxel in the table significantly. All the 3D

maps were further converted to single-dimensional arrays with 159744 (64 x 64 x

93) elements. Cr mask maps, WM maps, and GM maps were initially added to the

table. Each metabolites array was multiplied by a Cr mask to filter the voxels in

the defined VOI. All the voxels outside of the Cr mask are then zero. These arrays

are further added as an additional column to the database table. The metabolite

ratios were calculated using the metabolite maps array, and the obtained ratios were

also added as individual columns to the database table. The table for each patient

now consists of preliminary histopathological information from the table 2.1 followed

by XYZ coordinates, Cr mask map, WM maps, GM maps, MRSI voxel values from

original 3D-MRSI maps of metabolites, and ratios of metabolites computed from

original 3D-MRSI metabolite maps. An individual CSV file was created for each
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patient with 159744 rows.

As a next step, the CSV files for each patient are combined and post-processed to add

the information required for the latter data evaluation. The CSV file for each patient

is further filtered, and only Cr masked volume is acquired, as all required brain MRS

information is contained in Cr masked volume. Furthermore, the Cr-masked regions

from all the patients were combined into a single table, primarily used for statistical

evaluation. We further defined the brain regions that were detected as Tumor VOI,

Peritumoral VOI, and NAWM (Normal appearing white matter) using WM MRSI

maps and tumor segmentation maps. IDH mutation label was provided for each

voxel. The tumoral regions of patients with histopathological IDH-1 mutation were

labelled as IDH positive (IDH column = 1), else; other voxels were defined as 0. The

IDH mutation of peritumoral regions were separately defined as PT1 (Peritumoral

region of the patient with IDH-1 mutation) and PT0 (Peritumoral region of the

patient with wild-type mutation).

Similarly, for a grade, the high-grade column was defined and labelled as one for

patients with high-grade tumors and labelled as zero for patients with low-grade

tumors.

We finally had the CSV table with voxels in Cr masked regions of all the patients.

Each voxel has defined coordinates and is labelled with the region of a tumor, IDH

status, WM and GM content, Grade classification, age, gender, and patient code to

whom they belong. The database table looks like the figure 2.4, which is further

used for our statistical evaluation. Pandas (McKinney et al., 2010) was used to

create tables and further statistical data analysis in python (Van Rossum & Drake

Jr, 1995).
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Figure 2.4: The structure of the database table used for statistical evaluation.

2.5.2 Histogram Analysis

After we get the database, the first thing we wanted to do is to see how our data is

distributed. As we deal with enormous amounts of data, knowing the distribution

procedure was essential. A histogram is an essential tool that helps us visualize and

analyze our data to find the boundary where most data occur. It also allows us to see

the primary differentiation between tumor and non-tumor data and their dominance

in the amount of data.

Our primary focus is the tumor region; we tried to plot the histogram of tumor

regions as shown in figure 3.2 and 3.1. We also included the peritumoral region in

the histogram. We further calculated the median of the data and plotted it on a

diagram to see where most of our data lie. It helps us set the data’s lower and upper

limits and eliminate unnecessary outliers.

2.5.3 Mann-Whitney-Wilcoxon Test and Boxplot

After data visualization through histogram, we realized our data were not normally

distributed. We also determined the lower and upper cutoff for the data, which helps

us to focus on the hotspots. With this information, we wanted to see if there is any

statistically significant difference between the tumors with IDH-1 mutation and wild-

type mutation using the Mann-Whitney-Wilcoxon test. We further used Boxplot to
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visualize the difference in these groups of patients. Before choosing Mann-Whitney-

Wilcoxon Test, the Shapiro-Wilks test was performed to check the normality and

Leven’s Test to check the homogeneity of variance of the data as a prerequisite

test for the T-test. Shapiro-Wilks test reported the conclusion that the data is not

normally distributed. So, we opted for Mann-Whitney-Wilcoxon Test.

2.5.4 IDH Classification

The significant difference in concentration of metabolite ratios for IDH-1 mutation

and Wild-type mutation contributes to the possibility of IDH mutation classification

with the help of differentiation in metabolite ratios. Random forest regression was

used for the classification of IDH mutation. Random forest and SVM being super-

vised machine learning algorithms are suitable for our application as our patients

are labelled using histopathological biopsy reports. Sciencekit Learn packages (Pe-

dregosa et al., 2011) were used for the complete classification. SVM takes computa-

tionally much more time than random forest. The random forest was approximately

eight times faster than SVM for our computation.

Feature Selection

Before we began with feature selection, the correlation matrix of the features was

built, and one out of two ratios with a correlation coefficient greater than 0.95 were

eliminated from the classification dataset. A wrapper-type RFECV algorithm was

used for the feature selection of the classifier. The random forest with ten decision

trees and five-fold cross-validation was used as a wrapper for feature selection using

the RFECV method.
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Training and Testing

Once an optimal subset of features is selected, classification training and testing were

performed using the leave-one-out method. Leave-one-out is a method where data

from a single patient is separated as a testing set, and all other patient’s data are

used for training. This process is iteratively applied to each patient. In this way, the

prediction probability for each tumor voxel of all patients was calculated iteratively.

All the patients except one were used as the training set in each prediction loop, and

exempted patient data was used as a testing set.

2.5.5 Grade Classification

Like IDH classification, grade classification was performed using random forest and

SVM. The feature selection method and classification process were similar to IDH

classification. The high-grade and low-grade labelling obtained from histopathologi-

cal findings, as shown in figure 2.1, was used for supervised training.

2.5.6 Threshold Comparisons

To improve our classifier, we further decided to threshold the tumor region. Using

thresholded regions, we can focus on the tumour’s hotspot regions, improving the

classifier’s training. We utilized concentration estimates of metabolites in (Hangel et

al., 2021) to calculate concentration estimates for our metabolite ratios for different

regions of interest. The min, mean, and max were calculated from the data obtained

in table 2.5.6 and individually used as a lower threshold for our evaluation. To

determine the upper threshold, we plotted a histogram for our whole data and found

only some outliers greater than ten as in the figure 3.2.
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Index ROI GPC+PChTo
NAA+NAAG

GlnTo
NAA+NAAG

0 Subcortical WM (left) 0.16 0.18
1 Subcortical WM (right) 0.17 0.17
2 Subcortical WM (bilateral) 0.16 0.18
3 Motor subcortex WM 0.15 0.13
4 Motor cortex GM 0.14 0.17
5 Motor cortex/subcortex GM+WM 0.15 0.14
6 Parietal subcortex WM 0.15 0.15
7 Parietal cortex GM 0.14 0.19
8 Parietal cortex/subcortex GM+WM 0.14 0.17
9 Cingulate subcortex WM 0.18 0.15
10 Cingulate cortex GM 0.17 0.19
11 Cingulate cortex/subcortex GM+WM 0.18 0.16
12 Visual subcortex WM 0.14 0.19
13 Primary somatosensory subcortex WM 0.14 0.17
14 Primary somatosensory cortex/subcortex GM+WM 0.14 0.18
15 Thalamus 0.18 0.19
16 Putamen 0.2 0.27
17 Non-lobe WM 0.2 0.13
18 Cortical GM (left) 0.15 0.21
19 Cortical GM (right) 0.15 0.2
20 Cortical GM (bilateral) 0.15 0.21
21 Cortical GM+ subcortical WM (left) 0.16 0.2
22 Cortical GM+ subcortical WM (right) 0.16 0.19
23 Cortical GM+ subcortical WM (bilateral) 0.16 0.19
24 Subcortical GM (left) 0.2 0.21
25 Subcortical GM (right) 0.21 0.25
26 Subcortical GM (bilateral) 0.2 0.23
27 Auditory subcortex WM 0.18 0.25
28 Auditory cortex GM 0.17 0.28
29 Auditory cortex/subcortex GM+WM 0.18 0.26
30 Occipital subcortex WM 0.15 0.2
31 Occipital cortex GM 0.14 0.22
32 Occipital cortex/subcortex GM+WM 0.15 0.21
33 Temporal subcortex WM 0.19 0.23
34 Temporal cortex/subcortex GM+WM 0.18 0.24
35 Frontal subcortex WM 0.17 0.18
36 Frontal cortex GM 0.15 0.2
37 Frontal cortex/subcortex GM+WM 0.16 0.19
38 Visual cortex GM 0.12 0.21
39 Visual cortex/subcortex GM+WM 0.13 0.19
40 Primary somatosensory cortex GM 0.14 0.19
41 Pallidum 0.2 0.28
42 Hippocampus 0.24 0.26
43 Corpus callosum 0.18 0.16

Min 0.12 0.13
Max 0.24 0.28
Mean 0.17 0.2

Table 2.2: Threshold table derived from Hangel et al., 2021 metabolite table
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So we decided on ten as our upper threshold. ’GPC+PChToNAA+NAAG’ and

’GlnToNAA+NAAG’ were used for thresholding. Voxels with metabolite ratios be-

low the lower and above the higher threshold values were eliminated. Thus, we

compared the classification where whole tumor region data was used with those us-

ing min, mean, and max as lower and ten as upper threshold.

2.5.7 Single vs Multiple Feature Comparison

Increased GPC+PCh and decreased NAA+NAAG are mentioned as important ratios

for glioma in some literature, including (Hangel et al., 2020). Thus, we compared clas-

sification using GPC+PCh/NAA+NAAG as a single feature and classifications using

multiple features from feature selection, including GPC+PCh/NAA+NAAG. We in-

tended to understand the contribution of features other than GPC+PCh/NAA+NAAG

in classification.

2.5.8 ROC Curve and AUC

For each patient, the prediction probability for all voxels of the tumor region was

calculated. The prediction probabilities for each voxel were used to calculate the ag-

gregate prediction for each patient. Again Sciencekit Learn (Pedregosa et al., 2011)

and Matplotlib (Hunter, 2007) python package were used to compute AUC and draw

ROC curves.

Different methods were used to compute aggregate prediction out of voxel classifi-

cation for each patient. Four aggregation methods used to compute ROC and AUC

are listed below :

• Voxelwise ROC curve

This method is pretty simple. The prediction probability for each voxel ob-
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tained from random forest analysis was used to plot the ROC curve and cal-

culate AUC. The ROC curve, in this case, shows TPR and FPR for different

threshold values. The other methods of aggregation are derived from voxelwise

classification.

• ROC curve with prediction probability

In this method, the binomial classification of each voxel was obtained from

the random forest with 0.5 as the threshold point for IDH positive and high-

grade classification. The percentage of IDH positive or high-grade voxel in

each patient was calculated. The ROC curve was then plotted based on these

percentages of IDH positive or high-grade voxels, and AUC was calculated.

ROC curve, in this case, shows what percent of IDH positive predicted voxels (

high-grade predicted voxels in case of grade) is suitable to classify the patient

as an IDH positive or high-grade tumor patient.

• ROC curve with mean probability

This method uses the prediction probability of each voxel obtained from a ran-

dom forest. The mean probability for IDH positive or high-grade classification

was calculated from each voxel in a patient. Based on the mean probability

of each patient, the ROC curve was plotted, and AUC was computed. The

ROC curve here shows what cutoff mean probability value would be suitable

for classifying a patient as IDH positive or high-grade tumor patient.

• ROC curve with median probability

This method is similar to the above-mentioned mean probability method. The

only difference is that here median is used instead of the mean.
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Results

As discussed in the method, our evaluation started with histogram plots, which let us

know the data range. Then we plotted the differences in IDH mutations using Box-

plot and Mann-Whitney-Wilcoxon test. After seeing substantial differences in these

tests, our evaluation leads to the classification process. The classification started

with feature selection for machine learning algorithms and training the classification

algorithm. The Validation of the training was performed using n-cross validation. At

the final stage, the test classification was analyzed using the ROC curve and AUC.

3.1 Histogram analysis and threshold

The histogram analysis mentioned in section 2.5.2 shows data distribution. In figure

3.2, we see the histogram plot for a single patient. The proportion of necrosis is

scarce compared to NCE and CE. The patients with low-grade tumors do not have

necrosis and CE region, due to which the total necrosis in all patients is even smaller,

as in the figure 3.1. NCE is the abundant voxel of tumor region, which is clearly
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visible in figures 3.2 and 3.1. The histogram also includes the peritumoral regions.

The median on the histogram tells us that most of the voxel values lie below one.

Only a few outlier voxels lie above ten, so ten was used as the upper threshold for our

evaluation. For lower threshold, Table 3 from Hangel et al. (2021) was used to derive

metabolite ratio concentration estimates for different regions. The min, mean, and a

max of the estimated ratio concentration were analyzed as a lower threshold for each

metabolite ratio. Applying upper and lower thresholds for the data helped us focus

on hotspots and avoid outliers. Likewise, figure 3.1 shows the histogram for data of

all the patients. Here we see the histogram for GPC+PCh to NAA+NAAG. Similar

histograms were plotted and analyzed for all the metabolite ratios. We concluded

from the histogram plot that our data is right-skewed, and an upper threshold of ten

can be applied to the data as only a few outliers were present beyond this threshold.

Figure 3.1: Histogram plot for all patients for metabolites ratio GPC+PCh to
NAA+NAAG.NEC: Necrosis / CE: Contrast Enhancing / NCE: Non-Contrast En-
hancing/ PT: Peritumoral Region
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Figure 3.2: Histogram plot for single patients for metabolites ratio GPC+PCh to
NAA+NAAG. Figure A above shows the patient with HGG with necrosis region in
it. Whereas figure B below has no necrosis.NEC: Necrosis / CE: Contrast Enhancing
/ NCE: Non-Contrast Enhancing/ PT: Peritumoral Region
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Figure 3.3: Sankey diagram to show the proportion of tumor regions obtained from
each patient. NEC: Necrosis / CE: Contrast Enhancing / NCE: Non-Contrast En-
hancing/ PT: Peritumoral Region

The Sankey diagram in figure 3.3 shows the proportion of tumor regions obtained
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Figure 3.4: Boxplot for three different ratio metabolites (GPC+PCh/NAA+NAAG,
Ins+Gly/NAA+NAAG, and Gln/NAA+NAAG) for Contrast Enhancing, Non-
Contrast Enhancing, Necrosis and Paratumoral regions separately along with the
result from Mann-Whitney-Wilcoxen Test for IDH differentiation.

from each patient.

3.2 IDH and grade differentiation

As mentioned in the section 2.5.3, the IDH and grade differentiation were visualized

using boxplots and calculated using the Mann-Whitney-Wilcoxon test.

The result from the Mann-Whitney-Wilcoxon test can be seen in figure 3.4 and

3.5 along with the boxplots. Figure 3.4 and 3.5 show the boxplot for three different

metabolite ratios for different regions.

The boxplots in figure 3.4 show a significant difference between IDH-1 mutation pa-

tients and Wild-type mutation patients for all three tumor segmentation for all three

metabolites, GPC+PCh/NAA+NAAG, Ins+Gly/NAA+NAAG, and Gln/NAA+NAAG.
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Figure 3.5: Boxplot for three different ratio metabolites (Gln/NAA+NAAG,
GPC+PCh/NAA+NAAG, and Ins+Gly/NAA+NAAG) for Contrast Enhancing,
Non-Contrast Enhancing, Necrosis and Paratumoral regions separately along with
the result from Mann-Whitney-Wilcoxen Test for grade differentiation.

The same is valid for grades as well. However, the p-value is not always the same

for all metabolites, representing the differentiation degree. The higher the difference

the better it is for classification.

The difference between the peritumoral and tumor regions was also interesting to

investigate. So, we also performed the Mann-Whitney-Wilcoxon test in the peri-

tumoral region. Figure 3.4 and 3.5 also show the test results in the peritumoral

region. As in figure 3.4, a significant difference was found for Gln/NAA+NAAG and

Ins+Gly/NAA+NAAG in the peritumoral region and was insignificant for

GPC+PCh/NAA+NAAG. In the case of LGG and HGG, the differences in all three

metabolite ratios were significant.

Mann-Whitney-Wilcoxon test was performed for all the metabolite ratios men-
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tioned in 2.5.1.

The boxplot diagram shows a difference in metabolite ratio concentration between

tumors with and without IDH-1 mutation. Still, we cannot define metabolite as a

biomarker for classifying IDH-1 mutation based on a boxplot. We used different

statistical models for IDH classification, which will be discussed later in this thesis.

Boxplot helps us to identify the essential metabolite ratios for the classification pro-

cess. With classification using machine learning, we can combine this differentiation

for significant classification of IDH. The same is valid for grade classification.

Thus, the significant IDH and grade differentiation results of the boxplot and

Mann-Whitney-Wilcoxon test lead us to the possibility of classification of IDH and

grade using a combination of different metabolites. Machine learning is the right

tool for that purpose.

3.3 IDH and grade classification

Feature selection is key to reliable classification. Before moving to classification, it

is important to know the features. In order to determine the proper set of features

for classification, we work on feature selection.

We started by looking at the correlation of the features.



66 CHAPTER 3. RESULTS

Figure 3.6: Correlation map for the metabolite ratios.

Figure 3.6 shows the correlation of features used for classification.

One of two similar features with more than 95 percent co-relation was eliminated.

As explained in the method, a cross-validation score was used to determine the

number of features. The cross-validation scores used for feature selection for IDH

and grade classification are shown in figure 3.7 and 3.8.
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Figure 3.7: Cross-validation score determining features for IDH classification.

Figure 3.8: Cross-validation score determining features for grade classification.
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Figure 3.9: Important features for IDH classification with their relative importance.

Figure 3.10: Important features for grade classification with their relative impor-
tance.
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Based on these CV scores, the number of features is determined. The feature

importance plot in 3.9 and 3.10 shows important features for IDH and grade classi-

fication.

The first ten metabolite ratios in figure 3.9 and 3.10 are used to classify IDH

and grade. Glu+GlnToGPC+PCH, GluToGPC+PCH, and GSHToGPC+PCh have

higher contributions in IDH classification, and similarly, InsToGPC+PCh, Ins+GlyToGPC+PCh,

and GSHToGPC+PCh have a higher importance in grade classification. The graph-

ical representation of the IDH mutation prediction probability for each voxel of a

patient is presented in figure 3.11.

The cross-validation score in the figures 3.7 and 3.8 and feature importance in the

figures 3.9 and 3.10 is for the tumor data filtered by the mean threshold, as mentioned

in the section 2.5.6. Similar cross-validation scores and feature importance analyses

were also done for minimum, maximum, and without thresholds. The classification

result will be presented in the latter part of this thesis.

3.4 ROC curve and AUC

As we have determined the list of important features. The classification was done

using these features for one to ten features. We tried to find a suitable number

of features for the classification and how the classification develops with increasing

features. It was found that in all the cases, there was no significant improvement in

performance.

As mentioned in the method, the classification using GPC+PChToNAA+NAAG as a

single feature and multiple features was compared. Here are some of the classification

results.
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Figure 3.11: IDH prediction probability for each voxel in a patient was calculated
using the leave-one-out method.
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Figure 3.12: ROC curve with corresponding AUC for IDH classification with multiple
features using random forest. The four different methods of aggregated classification
can be seen in the figure.

3.4.1 Classification with multiple features

The classification was done using the first ten features from feature selection iter-

atively, as seen in the figure below. The presented results are for mean thresholds

with random forest and SVM. The ROC curves were also analyzed for min, max,

and without thresholds.

The figures 3.12, 3.13, 3.14 and 3.15 are for IDH and Grade classification using

random forest and SVM. Four different subplots in the above ROC curves are for

different ways of aggregating voxelwise classification to patients classification, in-

cluding voxelwise classification as mentioned in 2.5.8. With all these aggregation

methods, we tried to find which of these aggregations is effective in classifying IDH

and grade tumors effectively. These figures show that the classification gets better

with increasing features. However, the classification does not improve with additional

metabolites later. This analysis concludes that using more than ten metabolites does
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Figure 3.13: ROC curve with corresponding AUC for IDH classification with multiple
features using SVM. The four different methods of aggregated classification can be
seen in the figure.

Figure 3.14: ROC curve with corresponding AUC for grade classification with mul-
tiple features using random forest. The four different methods of aggregated classi-
fication can be seen in the figure.
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Figure 3.15: ROC curve with corresponding AUC for grade classification with multi-
ple features using SVM. The four different methods of aggregated classification can
be seen in the figure.

not improve the classification.

3.4.2 Classification with a single feature

The classification using GPC+PChToNAA+NAAG was done for comparison as a

single-featured classification.

The figures 3.16, 3.17, 3.18 and 3.19 are for IDH and Grade classification us-

ing random forest and SVM. Each subplot again represents aggregation methods for

patient classification. In the above figures, the classification was conducted using

GPC+PCh/NAA+NAAG. The metabolite ratio was chosen based on its popularity

and past knowledge in the brain’s MRSI research field. Each ROC curves in subplots

represent different threshold parameters as mentioned in section 2.5.6.
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Figure 3.16: ROC curve with corresponding AUC for IDH classification with
GPC+PCH/NAA+NAAG using random forest. The four different methods of ag-
gregated classification can be seen in the figure.

Figure 3.17: ROC curve with corresponding AUC for IDH classification with
GPC+PCH/NAA+NAAG using SVM. The four different methods of aggregated
classification can be seen in the figure.
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Figure 3.18: ROC curve with corresponding AUC for grade classification with
GPC+PCH/NAA+NAAG using random forest. The four different methods of ag-
gregated classification can be seen in the figure.

Figure 3.19: ROC curve with corresponding AUC for grade classification with
GPC+PCH/NAA+NAAG using SVM. The four different methods of aggregated
classification can be seen in the figure.
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Figure 3.20: Summary of AUC values for IDH classification. The summary includes
classification with different features and GPC+PChToNAA+NAAG as a single fea-
ture with SVM and random forest methods.

The following figures 3.20 and 3.21 show the summary of all the AUC obtained

from the classifications mentioned above.
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Figure 3.21: Summary of AUC values for grade classification. The summary includes
classification with different features and GPC+PChToNAA+NAAG as a single fea-
ture with SVM and random forest methods.
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Chapter 4

Discussion

This study’s main concern is identifying important metabolite ratios for the clas-

sification of IDH mutation and tumor grades. MRSI quantification of GPC+PCh,

Cr+PCr, and NAA+NAAG mainly used in combination with other imaging tech-

niques for non-invasive tumor grading (Boonzaier et al., 2017; Bulik et al., 2013;

Caulo et al., 2014; Stadlbauer et al., 2018; Wang et al., 2016). Differences in MRSI

quantification were seen for Gln, Gly, GSH, Ins, and Tau in low and high glioma

grades (Kallenberg et al., 2009; McBean, 2017; Righi et al., 2010) in recent studies.

Similarly, quantification of GPC+PCh, Cr+PCr, Ctn, and NAA+NAAG has been

correlated with IDH mutation (Branzoli et al., 2019; Goryawala et al., 2020).

Due to the capability of 7T MRSI to map multiple metabolites, it was possible to

get information about the metabolite concentration of many metabolites, which were

used as features for classification. The high spectral resolution of 7T made it possi-

ble to obtain a large number of voxels even with a small cohort of patients, which

fulfilled the requirement of a large amount of data for training and testing the ma-

chine learning algorithms. The histograms shown in the section 3.1 were used to
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determine the range of data and avoid outliers from the data set. We found that the

upper threshold of ten and the lower threshold of zero would include all the tumor

segments. The Sankey plot in 3.1 shows that each patient’s data distribution for

different tumor regions is not uniform. Some patients rather dominate some specific

segments. For example, CE region data are mostly from patient 23. This would not

be a great problem for our classification as we are dealing with voxelwise classifi-

cation. However, it has some influence on the aggregation of voxel classification to

patient classification, specifically for patient 23. As expected, the NCE region is far

more dominant in numbers than necrosis. The further thresholding of the dataset,

as mentioned in section 2.5.6, focuses on the hotspot of the tumor, which increases

the classification quality.

The boxplots in the section 3.2 helped identify the capability of metabolites to classify

IDH and grade. The Mann-Whitney test was implemented to find the significance

of the difference in IDH and grade metabolite concentration values. As shown in the

figure 3.4 for three different metabolites, differentiation of voxel values for IDH-1 mu-

tation and wildtype mutation is more persistent in CE regions than in other regions.

The small number of necrosis voxels might be the region behind less significant dif-

ferences in necrosis regions. Even the peritumoral region shows some differences for

some metabolites, which can be due to infiltration of IDH mutation in those regions.

A similar phenomenon can be seen for a grade in 3.5 where a significant difference was

seen for metabolites in tumor and peritumoral volume of interest. The investigation

of peritumoral regions was only limited to boxplot analysis and the Mann-Whitney

test.

With favourable results from boxplots, we move forward to classification. Before

starting with the classification, dealing with the feature selection is crucial. The

feature selection process began with the correlation matrix map in figure 3.6. As
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we dealt with the ratios, the correlation was observed for metabolite ratios with

the same denominator metabolites. The high correlation between metabolite ratios

means higher feature similarity and less new information. When the correlation of

features exceeded 0.95, only one metabolite was selected, and the next one was elim-

inated. With this result, we moved on to feature selection. Figure 3.9 and 3.10

show important grade and IDH classification features. In both the figures, ratios

with GPC+PCh as the denominator have higher importance as features. Besides

that, Glu, Gln, Gly and GSH are seen to be essential metabolites for IDH. Whereas

Ins, Gly, Glu, and GSH are important for grade classification. Further classification

was done with these features. Though we had more than ten features from feature

importance, the improvement in classification was not significant for more than ten

features which can also be seen in the cross-validation results in figure 3.7 and 3.8.

4.1 Classification with a single feature

The classification using GPC+PChToNAA+NAAG was not consistent. For IDH

voxel classification, the AUC of 0.19 was obtained using SVM, whereas, in the case

of the random forest, the classification was near about 0.50, which is a random pre-

diction. In the case of patient classification AUC of 0.29 was obtained using random

forest, and with SVM, an AUC of 0.01 was obtained, which is good but with inversed

labels.

A similar scenario was observed for grade where voxel classification has an AUC of

0.42 to 0.49 for different thresholds. They performed very well, up to an AUC of 0.99

for patient classification. The result of patient classification with 0.99 is auspicious,

but further investigation is required to find if this was coincidentally for this dataset

or if this result is consistent for additional data.
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4.2 Classifictaion with multiple features

4.2.1 IDH Classification

The results of IDH classification are included in the section 3.4. The voxelwise

classification shows progressive improvement of classification with a consecutive in-

crement of features. The improvement is, however, constant with more than ten

features which can also be seen around eight to ten featured classifications. With

random forest, the AUC of up to 0.68 can be yielded with voxelwise classification.

The aggregation of voxel classification results up to 0.85 AUC for patient classifica-

tion, as seen in figure 3.20. Both random forest and SVM results are almost equally

good for IDH classification. The min and mean threshold yield better and consistent

AUC values.

4.2.2 Grade Classification

The results of grade classification are presented in the section 3.4. The voxelwise

classification shows improvement in classification with an increasing number of fea-

tures. The improvement is insignificant, with more than ten features in this case.

The voxelwise classification shows an AUC of up to 0.65 in the best-case scenario

with min and means threshold. The AUC of 0.89 was yielded for patient classification

with different aggregation methods. The random forest algorithm works better with

consistent results for a grade in comparison with SVM. The min and mean threshold

delivers better results in comparison with other thresholds.

The results mentioned above show the very optimistic potential of 7T MRSI for
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preoperative IDH and grade prediction of the tumor. As mentioned in 1.2.1, the IDH

enzyme is involved in cell homeostasis and metabolic processes, which makes it part

of the glioma cycle. The mutation of IDH causes the alteration of the concentration

of metabolites (Ohka et al., 2014). 7T MRSI makes mapping of metabolite with

high resolution possible. Based on the mapping of 7T MRSI images, we can trace the

IDH mutation and classify patients with IDH mutations. The same is valid for grades

where different tumor grades can be classified based on alteration of metabolite profile

caused by astrocytoma, oligodendroglioma, and glioblastoma. The metabolite Ins is

considered an important metabolite in grade classification, which relates with mIns

being a vital component of osmoregulation in astrocyte cells (J. L. Harris et al., 2015)

with higher concentration in astrocytes than in neurons (Brand et al., 1993). In the

case of IDH, the evidence of an increase in glutaminolysis is observed in gliomas

with IDH1 mutation (Ohka et al., 2014), which involves the conversion of Gln to

Glu through glutaminase. The glutaminolysis results in a decrease of Gln and an

increase of Glu in gliomas with IDH mutation. This evidence correlates with our

classification of Glu and Gln in combination with GPC+PCh, an important feature

for IDH classification. GSH has a high concentration in astrocytes (Rice & Russo-

Menna, 1997; Sun et al., 2006) and a decrease of GSH concentration is evidential in

gliomas with IDH1 mutation (Shi et al., 2015). In this study, GSH is an important

metabolite in both IDH and grade classification. The interesting finding in the study

was that GPC+PChToNAA+NAAG has a very high AUC value of up to 0.99 for

patient classification, which is more than even with other metabolites. However, the

voxel classification with GPC+PChToNAA+NAAG is 0.19 and 0.68 for IDH and

grade but not consistent for all thresholds.

The accuracy of our multifeatured RF classification is in harmony with other studies.

A similar study, Tietze et al., 2018 has explored the possibility of classifying IDH
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mutation with a sensitivity of 94% and specificity of 89%. Citak-Er et al., 2018 also

performed glioma grade classification similar to us using SVM and achieved 93.0%

accuracy with 86.7% specificity and 96.4% sensitivity. Other studies (Falk Delgado

et al., 2018; Kim et al., 2020; Tan et al., 2017) also demonstrated the potential

of noninvasive imaging techniques for assessing IDH mutation status and grade in

gliomas.

All the aggregation methods for voxel-to-patient classification were consistent with

their results. Though the classifications were performed iteratively till ten features,

in most cases, the optimal results were obtained already with six to seven features.
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Conclusion and Outlook

The ability of 7T MRSI to measure the concentration of multiple metabolites with

high spectral resolution is very advantageous for IDH and grade classification, even

with a small cohort. The metabolites GPC+PCh, Glu, Gln, and GSH in ratio with

GPC+PCh are important for preoperative IDH classification. Likewise, Ins, Gln,

Glu, and GSH in ratio with GPC+PCh are key features for grade classification. The

RF and SVM both deliver promising results for classification. RF was better than

SVM in comparison and computationally very efficient. The GPC+PChToNAA+NAAG

performs well in the classification of both IDH and grade. This study demonstrates

the possibility of non-invasive classification of IDH mutation and grades using ma-

chine learning. However, we are in the very early stage of exploring this possibility.

The multi-featured classification using SVM and RF performed similarly in the classi-

fication of IDH with 0.85 and 0.84 AUC for RF and SVM, respectively. The min and

mean threshold in ‘GPC+PChToNAA+NAAG’and ‘GlnToNAA+NAAG’ to filter

the hotspot regions of the tumor worked better than the max or without threshold.

In the case of grade again, SVM and RF yield AUC of 0.91 and 0.89, respectively
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with min and mean thresholds. The classification with higher accuracy by using

machine learning algorithms, even with such a small cohort, was only possible due

to the spatial resolution of 7T MRSI.

In our cohort, each patient’s contribution to classifier training was not uniform.

However, the larger cohort with more uniformly distributed grade and IDH patients

would increase the classification accuracy. Analysis of the peritumoral regions can

add some new insights in the classification of tumors. An extension of this study has

future perspectives for use cases such as assisting in decision-making for treatment

planning, maximum safe resection of the tumor and non-invasive control of treatment

strategies.
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