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Abstract

The localization of radio frequency identification (RFID) tags opens the door to countless
applications in the field of object tracking. Harvesting their operating power from the
continuous wave signal transmitted by the RFID reader, passive tags forego the use of
batteries. This property renders their utilization very beneficial in many applications.
The present thesis deals with a passive RFID system, operating in two frequency regimes,
at 860–960 MHz and at 2.45 GHz.
A novel method, that superimposes a low power wideband signal onto the continuous wave
signal, enables accurate time of flight range estimation within off-the-shelf RFID systems.
The focus of this thesis is to evaluate state of the art localization techniques based on this
method. To this end, a three dimensional wideband ray tracer is implemented in order to
simulate the backscatter channel of an indoor RFID system. In addition, the results of a
comprehensive measurement campaign are used. The range estimation is performed by a
simple matched filter approach and a more sophisticated maximum likelihood estimator.
A comparison of the ranging based on the synthetic and the measured data allows for a
statement about the limitations of a practical RFID system.
It is shown, that the simulated channel model provides a good approximation of the true
channel. Further, it is observed, that a location specific channel estimation and knowledge
about the tags’ impulse response are crucial for the accuracy of the range estimation.
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Kurzfassung

Die Lokalisierung von Radio Frequency Identification (RFID) Tags öffnet die Tür zu
unzähligen Anwendungen im Gebiet der Objektverfolgung. Indem passive Tags ihre Ver-
sorgungsleistung dem Trägersignal des RFID Readers entnehmen, verzichten sie auf den
Gebrauch von Batterien. Damit erweist sich ihr Einsatz in vielen Anwendungsfällen als
vorteilhaft. Die vorliegende Arbeit beschäftigt sich mit einem passiven RFID-System, das
in zwei Frequenzbereichen, bei 860–960 MHz und bei 2.45 GHz, arbeitet.
Eine neue Methode überlagert dem kontinuierlichen Trägersignal ein leistungsschwaches
Breitbandsignal, um eine Time-of-Flight-basierte Abstandsschätzung in handelsüblichen
RFID-Systemen zu ermöglichen. Der Fokus dieser Arbeit liegt in der Bewertung moderner
Lokalisierungsverfahren, basierend auf dieser Methode. Zu diesem Zweck wird ein dreidi-
mensionaler Raytracer implementiert, um den Backscatterkanal eines RFID-Systems zu
simulieren. Zusätzlich werden die Resultate einer umfassenden Messkampagne ausgewer-
tet. Die Abstandsschätzung erfolgt mittels einem einfachen Korrelationsfilter und einem
erweiterten Maximum-Likelihood-Schätzer. Durch einen Vergleich der Lokalisierungsme-
thoden, basierend auf den synthetischen und den gemessenen Daten, kann eine Aussage
über die Limitierungen eines praktischen RFID-Systems getroffen werden.
Es wird gezeigt, dass das simulierte Modell eine gute Näherung des tatsächlichen Ka-
nals darstellt. Weiters wird offengelegt, dass die positionsspezifische Kanalschätzung und
die Berücksichtigung der Impulsantwort des Tags entscheidend für die Genauigkeit der
Abstandsschätzung sind.
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1 Introduction

Radio frequency identification (RFID) is a technology to identify and track physical ob-
jects based on the transmission of electro-magnetic waves. Supply-chain management,
building access control, traffic control and advertising are only a few examples from the
vast variety of applications in which RFID is used [1, 2, 3]. In many areas of automatic
identification, barcode has been the pervasive technology for decades. However, techni-
cal possibilities provided by the optical recognition of a binary code through a laser are
restricted by various factors. Primarily, there has to be an unobstructed line of sight
between the barcode and the laser. Objects, dirt, or liquids easily violate this require-
ment. Another limiting aspect is the lacking opportunity of storing data in addition to an
identification number [3, 4]. The ability to overcome these boundaries and the lowering
prices of its components nominate RFID as a promising candidate in many applications
that involve object identification.

An RFID system is composed of two main elements: A uniquely identifiable tag (or la-
bel), consisting of a small integrated circuit (IC) attached to an antenna, and a reader (or
interrogator) that reads data from or writes data to the tag. Various systems may be cat-
egorized by their transmission frequency, the tags power supply or the transmission range.
This work deals with a far field system operating in the ultra high frequency (UHF) regime
at 860–960 MHz and in the industrial, scientific, and medical (ISM) band at 2.45 GHz. The
tags are passive, which means they are not connected to a power supply, but harvest their
operating power from the radio energy transmitted by the reader. Data transmission from
the tag to the reader is possible by the use of passive backscattering, first introduced
by Stockman in 1948 [5]. The missing need for a battery at the tag brings two major
advantages with it: (i) Tags can be made extremely thin, such that they barely differ
from a barcode sticker in size. (ii) Replacing empty batteries for a large number of tags is
impractical or even infeasible, which is avoided by passive tags.

Dealing with object identification, the thought of possibilities to determine the objects’
precise position is natural. RFID’s system architecture, with the reader acting as trans-
mitter/receiver (transceiver) and the tag as reflector, strongly suggests the use of radar
techniques. One physical relation that radar makes use of is between the velocity of an
electro-magnetic signal and the traveled distance per time period. While the velocity is the
known parameter, the time period of a signal traveling from the reader to the tag and back
is measured. Consequently, the distance between reader and tag can be estimated. It is an
obvious, yet fundamental observation, that the accuracy of such a parameter estimation is
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CHAPTER 1. INTRODUCTION

limited by the physical system and the environment it is used in. Within these boundaries
it is the task of clever engineering to get as close as possible to the true value. Extensive
effort has been made in the research of radar signals [6] and the signal processing within
radar systems [7].

A novel method, developed in [8], places the radar functionality on top of an existing
standard RFID system by means of a superimposed wideband signal. The present thesis
addresses the evaluation of localization algorithms based on this method. In order to
assess the behavior of those algorithms with respect to a practical RFID system, a mea-
surement setup is emulated by a computer simulation and the results of both approaches
are compared.

Chapter 2 gives an introduction into three elementary subjects with respect to this work:
RFID, radar, and parameter estimation. The discussion is thereby restricted to aspects
that are most important for the remainder of this text. Chapter 3 provides a probabilistic
parameter estimation approach for the localization of RFID tags. For two different chan-
nel models, this leads to a simple matched filter estimator and a more elaborate, iterative
maximum likelihood estimator. In Chapter 4, the simulation of RFID backscatter chan-
nels, and in Chapter 5, the measurement setup, used for the evaluation of the provided
algorithms, are described. The results are discussed in Chapter 6, and Chapter 7 gives a
conclusion on the presented work.

2



2 RFID, Radar,
and Parameter Estimation

This chapter is intended to provide an individual discussion on the three topics that build
the foundation for this work. A rather informal treatment of RFID basics is given in
Section 2.1. Section 2.2 considers the most important radar techniques with respect to
this work. Section 2.3 starts with a general discussion of optimum parameter estimation
and closes the chapter with a contemplation of two approximate estimation schemes.

2.1 RFID Fundamentals

The term ”RFID” rather describes a system architecture than a specific implementation.
Every RFID system consists of a reader and a tag1. A reader is an RF transmitter/receiver
(transceiver) combined with a signal processing unit, connected to an antenna. The tags
considered in this text consist of a small IC connected to an antenna. They are capable of
a few rudimentary operations and comprise a very small data storage. In general, RFID
systems can be classified mainly by the following two properties:

Operating Frequency

The most common frequency bands used by RFID systems are the low frequency (LF)
band at 125 kHz, the high frequency (HF) band at 13.56 MHz, the UHF band at 860–
960 MHz, and the ISM band at 2.45 GHz [3]. Coupled to the operating frequency is the
transmission range. Systems in the LF and HF range use inductive coupling between
the reader and tag antenna for communication, i.e., they operate in the near field of the
transmit antenna. Application examples are cashless payment systems or building access
control. Systems in the UHF regime and above use radiative coupling between the reader
and the tag antenna, i.e., they operate in the far field. Presumably the most important
application area at this point is object tracking within the supply chain.

1A practical RFID system usually has to deal with a large number of tags, which is implied by the task
of object identification. In the following work, an existing implementation of multiple access schemes is
assumed and therefore, only one tag is considered in the environment.
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2.2 Radar Principles

Power Supply

Another distinction of RFID systems is based on the power supply of the tags. In active
systems, the tags have their own power supply, for example a battery. This enables tags
to transmit information without any preceding action of the reader, and the transmission
range is usually higher than for tags without power supply. However, batteries have to
be changed or recharged from time to time, which poses a problem for a large number of
tags. Furthermore, the tags themselves are extremely thin, which is important for many
use cases. This property is lost with an additional battery.
In contrast, tags in a passive system do not have their own power supply. They harvest all
the energy they need for operation from the RF carrier transmitted by reader. As this is a
solution to the problems stated for active systems, passive systems are very interesting for
many applications. Nevertheless, the communication range and the computational power
are much less than for active tags.

This work deals with a passive UHF RFID system at 860–960 MHz and 2.45 GHz based
on the widely deployed EPC Class-1 Gen-2 UHF RFID standard [9], which follows an
interrogator-talks-first concept. It specifies that a tag only responds to a query transmitted
by the reader. For the communication with passive tags the reader continues transmitting
an unmodulated RF carrier after the query. The tag answers by modulating the impedance
connected to the antenna, thereby varying the amplitude of the signal reflected back to
the reader. This way of data transmission is also referred to as passive backscattering.
The EPC standard defines many specifications that reach from the physical air interface
to the communication protocol, e.g., the modulation formats used by the reader and tag,
the use of multiple access schemes, or spectral limitations. In addition to the requirements
a system has to meet for standard compliance, it may implement optional operations, as
long as they do not contradict with the standard regulations. This possibility is exploited
in [8], where a ranging method is placed on top of an existing EPC compliant RFID
system. As the present work builds on this method, it is described in detail in Section 3.1.

2.2 Radar Principles

Radar, originally from radio detection and ranging, is a system to determine the range,
velocity, or angle of an object. A basic radar system is composed of a radio transceiver,
one or more antennas, and a signal processing unit. The radar signal transmitted by the
antenna reflects off an object and is received by either the same antenna in a monostatic
setup, or by a separate antenna in a bistatic setup. The physical relation between the
observation and the parameter of interest determines the required investigation of the
received signal. Consequently, the design of the system and the choice of the transmit
signal are dependent on the specific application and the parameters to be estimated. To
elaborate this in a formal way, three important radar models are described.

Amplitude Model

The power Pi captured by a point receiver at a distance d from an isotropically radiating
transmitter with transmit power Pt is
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2.2 Radar Principles

Pi =
Pt

4πd2
. (2.1)

If an object is present at distance d, the power reflected back to the receiver in a monostatic
radar is [7]

Pr =
PtAeσ

(4π)2d4
, (2.2)

where Ae is the effective area of the receive antenna and σ the radar cross section (RCS) of
the reflecting object. The latter accounts for scattering effects. Equation (2.2) relates the
receive power inversely proportional to the fourth power of the distance d. In a bistatic
setup, d4 is replaced d2

1d
2
2, where d1 denotes the distance from the transmit antenna to

the object and d2 the distance from the object to the receive antenna. Hence, if σ is
assumed to be known, the distance between transmitter and object can be estimated from
the measured amplitude of the received signal. For this matter, it is a logical choice to
transmit a signal with constant envelope. In practice, σ is often unknown and requires
a statistical description, which renders the ranging based on the amplitude model rather
difficult. In Chapter 6, this problem is tackled by finding an ”average” RCS. Furthermore,
a practical wireless channel is subject to multipath propagation. Due to constructive and
destructive superposition of the multipath components, the reflected power Pr does not
decrease monotonically with increasing distance d.
Because of the uncertainty of the RCS and multipath propagation, the amplitude model
is more likely to be found in detection problems, where solely the presence of an object
is of interest. In that case, the amplitude of the received signal might be compared to a
threshold in order to infer information about the objects presence.

Time of Flight Model (ToF)

The time τ an electro-magnetic wave needs to travel from the transmitter to the object
and back in free space is

τ =
2d

c0
, (2.3)

where c0 denotes the speed of light. In a bistatic setup the numerator is replaced by
d1 + d2. Here, d is estimated from the measured time τ . In contrast to the amplitude
model, where a constant envelope signal is used, a pulsed signal has to be used for ToF
estimation, in order to define the start and the end of a transmission. In an ideal scenario,
the reflected signal is simply a time shifted and attenuated replica of the transmit signal.
Correlation of transmitted and the received signal gives information about the time lag
τ . Consequently, the distance d can be estimated. Indeed, in the ideal situation where
the transmission channel and the RCS are not frequency selective and only additive white
Gaussian noise is present, correlation is the optimal mathematical operation. However, in
most practical scenarios, especially in indoor environments, multipath propagation causes
the transmission channel to be frequency selective and, thus, the reflected signal does
not only get attenuated but also distorted. In this case, an optimal estimator has to
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2.2 Radar Principles

account for the effects of the channel. The ability to separate the received multipath
echos from each other and, consequently, to determine the one that corresponds to the
distance d, is given by the length of the transmitted pulse. Therefore, the accuracy of ToF
estimation is essentially limited by the available bandwidth of the system and the channel
characteristics, as shown in Chapter 6.

Angle of Arrival Model (AoA)

Under the use of multiple antennas, the direction from the transmitter to the object
can be estimated by investigating the time difference of the the signals arriving at the
spatially separated antennas. In many cases, this time difference is determined from the
phase difference of the continuous wave (CW) carrier. Figure 2.1 pictures the underlying
geometry, where the angle of arrival is

ϕAoA = cos

(
∆d

dRx

)
. (2.4)

It should be noted that ϕAoA is not defined uniquely in the case of a linear antenna array,
where all antennas are arranged on one axis. Horizontal mirroring of Figure 2.1 leads to
the same distance ∆d from a different angle of arrival. If ∆d is derived from the phase
difference of the CW carrier and the antenna spacing is larger than half the carrier wave-
length, further ambiguity is introduced by the periodicity of the CW carrier.
Estimation of the phase difference between multiple receivers is only possible if they are
able to perform coherent detection, i.e., synchronous sampling of the receive signal must
be ensured. The discussion of AoA goes through completely analogous for the angle of
departure (AoD) with the receive array replaced by the transmit array.

Ranging methods like the amplitude and ToF models are able to estimate the distance to
an object on a spherical area. This ambiguity vanishes if multiple transmitters are used.
The point on the sphere is then defined by means of trilateration, where the interception
of the spheres is calculated. Figure 2.2a depicts the problem in two dimensions.
Figure 2.2b shows the localization of an object by a ranging method combined with AoD
and AoA estimation, again, in two dimensions. Ambiguity is reduced to two points in the
plane (due to the horizontal symmetry in Figure 2.1).

Rx2
dRx

∆d

ϕAoA

plane wave

Rx1 Rx3 Rxn

Figure 2.1: Geometry of angle of arrival estimation on a linear antenna array.
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2.3 Parameter Estimation Theory

Tx1
Tx2

Tx3

d1

d2

d3

(a)

Tx1...n Rx1...m

ϕAoD ϕAoA

d1 d2

(b)

Figure 2.2: (a) Trilateration for monostatic radars in two dimensions. Circles become ellipses
for bistatic radars. Blue shades symbolize the estimation uncertainty. (b) Range,
AoD, and AoA estimation in two dimensions.

2.3 Parameter Estimation Theory

In order to gain information about the position of an object, a radar system measures a
signal, generally expressed by a random vector y. This quantity, also called the observed
vector, or solely the observation, is related to the parameter of interest θ, e.g., the distance
to an object, through a physical model. Given the observation y, it is the task of parameter
estimation to find a formulation for that model and infer knowledge about the parameter θ.

The field of parameter estimation can be divided into deterministic and probabilistic
methods. In a deterministic method, the observed vector y is random, but no statistical
description is used in order to formulate an estimator. A prominent example is given by
the least squares estimator.
In comparison, probabilistic methods are built on statistical descriptions and follow two
main philosophies, called Bayesian and classical estimation [10],[11]. Whereas in the
Bayesian framework both, the observations y and the parameter θ are modeled to be
random, the classical framework treats the observations y as random, but the parameter θ
as deterministic vectors. It shall be noted here, that the non-probabilistic treatment of the
parameter θ does not mean that they are inherently deterministic in classical estimation.
It rather implies that there is no known statistical description of those. Consequently,
there is not always a strict distinction between Bayesian and classical estimation theory
in literature [10]. However, the following discussion is based on the Bayesian framework
and the relation to classical estimation will be pointed out explicitly.

2.3.1 Optimum Parameter Estimation

In general it is desirable to formulate an estimator that is optimal with respect to some
criterion. It is, however, not always possible to find an optimal estimator that is compu-
tationally feasible. This might be due to high dimensionality or complex mathematical
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2.3 Parameter Estimation Theory

relations between observations and parameters. For that matter, this section deals with
a general formulation of optimum Bayesian estimators [10], and Sections 2.3.2 and 2.3.3
discuss two competing methods, given in [12] and [13], which make difficult estimation
problems more tractable.

Bayesian estimation theory assumes that both, observed variables y and parameters θ,
are random. Hence, a probability density function (pdf) is defined for y and θ by fy(y)
and fθ(θ) and a joint pfd by fy,θ(y,θ). In order to provide an optimality criterion, a cost
function expressed by

C(θ, θ̂) = C(e) , (2.5)

with the estimation error e = θ − θ̂. The optimum Bayesian estimator is then given by
the parameter θ̂ that minimizes the expected cost2 (also called the Bayes risk)

θ̂(y) = arg min
θ̂

{
E
[
C(θ, θ̂)

]}
= arg min

θ̂

{∫
y

∫
θ
C(θ, θ̂)fy,θ(y,θ) dθdy

}
, (2.6)

where E
[
·
]

is the expectation operator. Applying Bayes’ rule, (2.6) can be rewritten as

θ̂(y) = arg min
θ̂

{∫
y

[ ∫
θ
C(θ, θ̂)fθ|y(θ|y) dθ

]
fy(y) dy

}
. (2.7)

Noting that fy(y) > 0 for all values of y and that the choice of θ̂ does not depend on
fy(y), (2.7) is minimized by minimizing the term in brackets, where fθ|y(θ|y) is called the
posterior pdf

θ̂(y) = arg min
θ̂

∫
θ
C(θ, θ̂)fθ|y(θ|y) dθ . (2.8)

Applying Bayes’s rule once more, (2.8) reads

θ̂(y) = arg min
θ̂

{∫
θ
C(θ, θ̂)

fy|θ(y|θ)fθ(θ)

fy(y)
dθ

}
. (2.9)

Again, fy(y) > 0 for all y, and independent of θ̂. Hence, the denominator is merely
a normalization factor ensuring that the posterior pdf integrates to one. The optimum
Bayes estimator with respect to the cost function C(θ, θ̂) is finally

θ̂(y) = arg min
θ̂

{∫
θ
C(θ, θ̂) fy|θ(y|θ)fθ(θ) dθ

}
, (2.10)

where fy|θ(y|θ) is the likelihood function and fθ(θ) is the prior information on θ.

2Here, the expectation is with respect to y and θ.
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2.3 Parameter Estimation Theory

MAP and ML Estimator

In order to find an explicit formulation of the optimum Bayes estimator, the cost function
C(θ, θ̂) has to be specified. The most frequently used functions are:

• Squared Error:
CSE(θ, θ̂) = ‖θ − θ̂‖2 , (2.11)

• Absolute Error:

CAE(θ, θ̂) =
N∑
n=1

|θn − θ̂n| , (2.12)

• Hit-or-Miss Function:

CHoM(θ, θ̂) =

{
0, ‖θ − θ̂‖ < δ

1, ‖θ − θ̂‖ > δ ,
(2.13)

where ‖ · ‖ is the l2-norm. Choosing the hit-or-miss function avoids the integration over
θ in (2.10), and therefore tends to lead to a more feasible estimator than the other cost
functions. It shall thus be considered in the following.

Inserting (2.13) into (2.7), the inner integral can be rewritten as

∫ θ̂−δ

−∞
fθ|y(θ|y) dθ +

∫ ∞
θ̂+δ

fθ|y(θ|y) dθ = 1−
∫ θ̂+δ

θ̂−δ
fθ|y(θ|y) dθ , (2.14)

where it has been used, that
∫∞
−∞ fθ|y(θ|y) dθ = 1. Minimizing the right hand side of

(2.14) is equivalent to maximizing

∫ θ̂+δ

θ̂−δ
fθ|y(θ|y) dθ . (2.15)

Now, let δ → 0, then maximizing (2.15) is achieved by choosing θ̂ exactly such, that
fθ|y(θ|y) is at its maximum, thus

θ̂MAP(y) = arg max
θ̂

{
fθ|y(θ|y)

}
= arg max

θ̂

{
fy|θ(y|θ)fθ(θ)

}
(2.16)

This estimator is called maximum a posteriori (MAP) estimator because it maximizes the
posterior pdf. For distributions of the exponential family it is often desirable to use the
logarithm of the pdf, which is valid because it is a strictly monotonic function

θ̂MAP(y) = arg max
θ̂

{
ln
{
fy|θ(y|θ)fθ(θ)

}}
= arg max

θ̂

{
lnfy|θ(y|θ) + lnfθ(θ)

}
. (2.17)
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2.3 Parameter Estimation Theory

If the prior pdf fθ(θ) is unknown, it is often assumed to be uniform over the range of θ.
In this case fθ(θ) is just a constant factor in (2.16) and, consequently,

θ̂ML(y) = arg max
θ̂

{
fy|θ(y|θ)

}
= arg max

θ̂

{
lnfy|θ(y|θ)

}
, (2.18)

called the maximum likelihood (ML) estimator, because it maximizes the likelihood func-
tion.
This ML estimator is equivalent to the ML estimator in classical estimation theory. It
should be noted, however, that they are derived in a different context. Whereas in classical
estimation the likelihood function is parameterized by the deterministic parameter θ, in
the Bayesian framework it is the pdf of y conditioned on θ. Furthermore, the Bayesian
ML estimator is evolved from the fact that a certain cost function is used and a noninfor-
mative prior pdf is assumed and, therefore, it is a special case of the optimum Bayesian
estimator.

2.3.2 Variational Inference Methods

The previous section shows that the general optimum Bayesian estimator (2.7) is found
by minimization of the expected cost C(θ, θ̂) with respect to the posterior pdf fθ|y(θ|y).
In the case of the hit-or-miss cost function (2.13), optimal estimation is achieved by
maximizing fθ|y(θ|y) directly. In general, these optimizations are difficult problems,
mainly out of the following two reasons: (i) If the parameter is high-dimensional, opti-
mization with respect to θ is computationally expensive. (ii) If θ is a continuous variable,
the expectation is evaluated by an integral, which might have no closed form solution.
The key to these problems is often found in approximation schemes. There are two con-
cepts that have been subject to extensive research [12],[13] and are used in a variety of
problems, namely variational inference and Monte Carlo methods.

The basic idea of variational inference methods is to narrow down the search space of
the original problem. This is done by forcing the approximation to be of a particular
form. In order to apply this thought to the Bayesian estimator (2.8), a function q(θ) shall
approximate the posterior pdf fθ|y(θ|y). A measure for the approximation ”quality” is
given by the Kullback-Leibler divergence (KL divergence) between q(θ) and fθ|y(θ|y)

KL(q‖f) = −
∫
θ
q(θ) ln

{
fθ|y(θ|y)

q(θ)

}
dθ . (2.19)

It can be shown that KL(q‖f) > 0 with equality if and only if q(θ) = fθ|y(θ|y) and that
it is not commutative, i.e., KL(q‖f) 6= KL(f‖q) [12]. To get a more general view, the
following decomposition of the joint distribution is introduced

lnfθ,y(θ,y) = lnfθ|y(θ|y) + lnfy(y) . (2.20)

The logarithm of the marginal distribution of fy(y) can be written as

10



2.3 Parameter Estimation Theory

lnfy(y) =

∫
θ
q(θ)

(
lnfθ|y(θ|y) + lnfy(y)− ln q(θ)

)
dθ

−
∫
θ
q(θ)

(
lnfθ|y(θ|y)− ln q(θ)

)
dθ .

(2.21)

Inserting (2.20) into (2.21) leads to

lnfy(y) =

∫
θ
q(θ) ln

{
fθ,y(θ,y)

q(θ)

}
dθ −

∫
θ
q(θ) ln

{
fθ|y(θ|y)

q(θ)

}
dθ . (2.22)

The second term on the right hand side, including the minus sign, is the KL divergence
between q(θ) and fθ|y(θ|y). Recalling that KL(q‖f) > 0, with equality if and only if
q(θ) = fθ|y(θ|y) implies, that the first integral forms a lower bound on lnfy(y). In
compact notation, (2.22) reads

lnfy(y) = L(q) + KL(q‖f) (2.23)

The lower bound L(q) can also be interpreted as a negative KL divergence, and is therefore
always less than or equal to zero. It is concluded, that minimizing the KL divergence
KL(q‖f) is equivalent to maximizing the lower bound L(q), which is achieved if q(θ) =
fθ,y(θ,y).
However, it is assumed that this is too difficult without restricting q(θ). In the context of
mean field variational inference [12], q(θ) is modeled to factorize according to

q(θ) =

N∏
i=1

qi(θi) , (2.24)

where θi are disjoint subsets of the vector parameter θ. Using this factorization in the
lower bound, it becomes

L(q) =

∫
θ

N∏
i=1

qi(θi) ln

{
fθ,y(θ,y)∏N
i=1 qi(θi)

}
dθ

=

∫
θ

[
N∏
i=1

qi(θi)

][
lnfθ,y(θ,y)−

N∑
i=1

ln qi(θi)

]
dθ

=

∫
θj

qj(θj)

[∫
θi

lnfθ,y(θ,y)
∏
i 6=j

qi(θi)dθi

]
dθj −

∫
θj

qj(θj) ln qj(θj) dθj

−
∫
θi

∏
i 6=j

qi(θi)
∑
i 6=j

ln qi(θi)dθi .

(2.25)

11



2.3 Parameter Estimation Theory

Now, if all θi 6=j are kept at a fixed value and L(q) is maximized only with respect to
θj , the last integral acts as a constant additive term. The integral inside the brackets is
defined as the expectation of the logarithmic joint pdf lnfθ,y(θ,y) under the approximation
qi 6=j(θi 6=j)

Ei 6=j
[
lnfθ,y(θ,y)

]
:=

∫
θi

lnfθ,y(θ,y)
∏
i 6=j

qi(θi) dθi . (2.26)

Thus, L(q) is rewritten as

L(q) =

∫
θj

qj(θj)
(
lnf̃θ,y(θ,y)− ln qj(θj)

)
dθj + const. , (2.27)

where the new pdf f̃θ,y(θ,y) is defined by the relation

lnf̃θ,y(θ,y) = Ei 6=j
[
lnfθ,y(θ,y)

]
. (2.28)

The form of (2.27) reveals that that L(q) is a negative KL divergence, and therefore it is
maximized with respect to θj if and only if qj(θj) is equal to Ei 6=j

[
lnfθ,y(θ,y)

]
. Hence,

the optimal solution for the jth factor q?j (θj) is

ln q?j (θj) = Ei 6=j
[
lnfθ,y(θ,y)

]
. (2.29)

It is seen that the solution with respect to θj depends on all θi 6=j . This suggests an iterative
procedure, where in each iteration the factors are optimized and updated successively. It
shall be noted that the approximation error introduced by such a procedure is due to the
form of (2.24) and, thus, it depends on the validity of the factorization. If the subsets θi
of the parameter θ are statistically independent, the factorization corresponds to the true
distribution and the solution found by the mean field variational approach is equivalent
to the optimum solution.

2.3.3 Monte Carlo Methods

In contrast to the deterministic approach of variational inference, Monte Carlo methods
[13] represent a statistical notion to the problem of approximation. Although Monte Carlo
techniques lead to approximate results in any practical sense, they give exact results under
the assumption of infinite computational power. In order to explain the general idea, the
optimum Bayesian estimator in (2.8) is reconsidered

θ̂(y) = arg min
θ̂

∫
θ
C(θ, θ̂)fθ|y(θ|y) dθ . (2.30)

For some important choices of the cost function C(θ, θ̂), this corresponds to an optimiza-
tion of the conditional expectation of some function g(θ)

E
[
g(·)
]

=

∫
θ
g(θ)fθ|y(θ|y) dθ . (2.31)

12



2.3 Parameter Estimation Theory

Again, it is claimed that solving this problem directly is either analytically, or computa-
tionally infeasible. It shall be assumed, however, that drawing independent samples θ(i)

from the distribution fθ|y(θ|y) and the evaluation of this distribution with respect to the
drawn sample is easy. The expectation of g(θ) is then approximated by the sample mean,
which becomes exact as N →∞

ḡ =
1

N

N∑
i=1

g(θ(i)) . (2.32)

In the case of the MAP estimator given in (2.16), the posterior pdf is optimized directly
and its sampling approximation is given by

f ′(θ|y) =
1

N

N∑
i=1

δ(θ − θ(i)) , (2.33)

where δ(θ − θ(i)) is the Dirac delta function located at the sample θ(i), drawn from
fθ|y(θ|y). The approximate estimation θ̂(y) is then found by maximizing f ′(θ|y).
If the evaluation of fθ|y(θ|y) for a drawn sample is easy, it can also be maximized by

θ̂(y) = arg max
θ(i)

{
fθ|y(θ

(i)|y)

}
, i = 1, ..., N . (2.34)

It is seen from (2.34) and (2.32) that, as long as independent samples can be drawn from
the given distribution, the quantity to be optimized can be approximated and the approx-
imation becomes exact as N → ∞. Generating samples from simple distributions like
the uniform or Gaussian distribution is readily possible in most computer environments,
but the use of sampling methods is usually induced by rather complicated, high dimen-
sional distributions. There are a variety of algorithms that address this problem, most
notably rejection sampling, importance sampling and Markov Chain Monte Carlo [13]. A
discussion of these algorithms is not within the scope of this work, because it builds on
the variational inference approach. Nevertheless, it shall be mentioned that, unlike varia-
tional inference, these algorithms, with the exception of Markov Chain Monte Carlo, do
not scale well with dimensionality [12]. Furthermore, a proposal distribution from which
the samples are drawn is needed. It is not always easy to find a well matching distribution
and therefore, sampling might be inefficient. On the other hand, if large computational
power is available, Monte Carlo techniques lead to results close to the optimum. In view
of the presumption, that this is not always the case in environments that are of interest
for this work, the remainder of the text is based on the variational inference approach.
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3 RFID Localization Algorithms

It is seen from Section 2.1 and 2.2 that radar and RFID systems share a common architec-
tural structure. This similarity renders radar techniques very useful in RFID localization.
However, due to several limitations given by the design of RFID systems, it is difficult to
apply these techniques to standard off-the-shelf systems. Thus, a novel method developed
in [8] is used, which places a dedicated radar signal on top of an existing RFID system. A
discussion of this method is given in Section 3.1. Section 3.2 models the RFID backscatter
channel, and Section 3.3 explains two algorithms for range and direction estimation. In
the first approach, a reduced channel model is assumed, leading to a very simple estimator.
Successively, a more elaborate channel model and the information of multiple antennas
are used.

3.1 Radar over RFID

As already discussed in Section 2.1, systems following the EPC Class-1 Gen-2 UHF RFID
standard [14] use passive backscattering for the tag-to-reader communication. For that
matter the reader continues transmitting the unmodulated RF carrier after the query, and
the tag answers by modulating its reflection coefficient, thereby varying the amplitude of
the signal reflected back to the reader.
Applying localization techniques to the RFID communication itself suffers from various
limitations. The amplitude model in (2.2) relies on the RCS of the tag, which strongly
depends on the manufacturer and is unknown in general [8]. The accuracy of ToF esti-
mation methods depends on the available bandwidth, which is too low in conventional
RFID systems. In order to solve these problems, a low power, direct sequence spread
spectrum (DSSS) signal is superimposed onto the RF carrier during the tag to reader
communication. This enables the employment of a signal that is suitable for high accu-
racy range estimation without violating the spectral requirements of the underlying RFID
standard.

Figure 3.1 shows an RFID scenario in a multipath environment. The impulse responses of
the transmit and receive antennas are given by htx(t) and hrx(t), respectively, and hcpl(t)
describes the mutual coupling. The downlink and uplink channels are denoted by hdl(t)
and hul(t). It should be noted that the multipath components are not termed explicitly,
but are included in the down- and uplink. As the tag modulates its impedance for data
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3.1 Radar over RFID

RFID

tag

htx(t)

hrx(t)

hdl(t)

hul(t)

hcpl(t)
h0,1tag(t)

reader

Figure 3.1: Basic RFID scenario. A bistatic setup is shown, where separate antennas are used
for transmission and reception.

transmission, h0
tag(t) and h1

tag(t) account for both modulation states.
For the purpose of convenience, in what follows, a bit transmitted by the tag for data
communication will be referred to as modulation bit and should not be confused with a
chip of the DSSS signal.

The cyclic DSSS baseband signal, which is superimposed onto the RF carrier during the
tag to reader communication, is

s(t) = 1 + asdsss(tmod Tdsss) , (3.1)

where a is the amplitude, sdsss ∈ {−1, 1}, and mod is the modulo function. For reasons
that will become apparent presently, the length of one cycle Tdsss is chosen to match exactly
the duration of one modulation bit minus a fixed guard time Tg. Using the channel model
from above, the receive signal is

r(t) =
([
hcpl + hdl ∗ h

m(t)
tag ∗ hul

]
∗ s ∗ htx ∗ hrx

)
(t) + w(t) , (3.2)

with w(t) denoting the receiver noise, m(t) ∈ {0, 1} the modulation state, and ”∗” is
the symbol for convolution. During every modulation bit one cycle of the DSSS signal
is received, but since the timing of the tags data transmission is unknown, the start of a
bit and the start of a cycle do not coincide in general. Exploiting the periodicity of s(t),
an alignment can be done by a circular shift as pictured in Figure 3.2. The guard time
Tg is inserted to prevent from intersymbol interference. The aligned signal during the kth

modulation bit is then

r′k(τ) =
([
hcpl + hdl ~ h

m[k]
tag ~ hul

]
~ s~ htx ~ hrx

)
(τ) + w(τ) , (3.3)

where m[k] is the decoded modulation state, τ = [0, Tdsss[, and ”~” is the symbol for
circular convolution with the cycle length Tdsss. Assuming the same number K of 0- and
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3.1 Radar over RFID

1-modulation bits and subtracting the average DSSS receive signal during all 1-modulation
bits from the average during all 0-modulation bits, the new signal is

ravg(τ) =
1

K

K∑
k=1

(
1− 2m[k]

)
r′k(τ) . (3.4)

Inserting (3.3) into (3.4) and assuming time-invariant impulse responses, it reads

ravg(τ) =
1

2

(
s~ htx ~ hrx ~ hdl ~ hul ~

[
h0
tag − h1

tag

])
(τ) +

1√
K
w(τ)

=
1

2

(
s~ htx ~ hrx ~ hdl ~ hul ~ ∆htag

)
(τ) +

1√
K
w(τ) .

(3.5)

The factor 1/
√
K stems from the fact that averaging over K recordings reduces the noise

power by a factor of 1/K in the case of Gaussian noise. Equation (3.5) shows that the
coupling hcpl(τ) between the transmit and the receive antenna is entirely canceled out.
For the setup of the system model in Section 3.2 it is assumed that the alignment and
averaging is perfectly carried out and, thus, the transmission of the DSSS signal can be
seen as a conventional transmission over the channel h(τ) =

(
htx∗hrx∗hdl∗hul∗∆htag

)
(τ).

Bit

Tdsss Tdsss

Bit k + 1, m[k + 1] = 0Bit k, m[k] = 1 Bit k + 2, m[k + 2] = 1

stx(t)

τ
0

Tg

s′rx,k(τ)

τ

Tg

τ

Tg

Tdsss

s′rx,k+1(τ)

TdsssTdsss

srx(t)

s′rx,k+2(τ)

0
t

Figure 3.2: Schematic visualization of the procedure to align the DSSS sequence in each received
modulation bit [8, Fig. 2]. Due to the cyclic property of the DSSS signal, it can be
aligned by a cyclic shift in each modulation bit.

It is emphasized at this point, that such a utilization of a low power DSSS signal with suffi-
cient bandwidth enables the use of ToF estimation techniques while satisfying the spectral
mask requirements of the system. Hence, the described method places a localization possi-
bility on top of an existing system without influence on its original purpose. Furthermore,
it should be noted that the procedure is not restricted to the EPC UHF RFID standard,
but can be applied to any backscatter based RFID system.
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3.2 System Model

3.2 System Model

A basic RFID scenario is depicted in Figure 3.1, where the coupling path hcpl(t) is canceled
out by the method described in the previous section. A prerequisite for high accuracy
ranging is a representative model of the transmission channel. The characterization and
measurement of wireless (backscatter) channels in an indoor environment has been studied
intensively, e.g., in [15, 16, 17]. These investigations show that, in addition to a strong line
of sight (LOS) component, deterministic multipath components (MPCs), resulting from
strong reflections at flat surfaces, as well as diffuse MPCs, originating from scattering
effects, are present at the receiver. A more detailed discussion on the transmission channel
is given in Chapter 4.
Replacing the transmit and receive antennas in Figure 3.1 by antenna arrays and following
the model derived in [18], the backscatter channel from the transmit antenna k to the tag
and from the tag back to the receive antenna k′ is

hkk′(τ) = αkk′δ(τ − τkk′) + νkk′(τ) , (3.6)

where δ(τ) is the Dirac delta function, αkk′ is the complex amplitude of the LOS compo-
nent and νkk′(τ) accounts for both, deterministic and diffuse MPCs. Modeling the LOS
component by a Dirac pulse implies that the tag has an ideal impulse response, i.e., it
is frequency-independent. This is not true in practice and has to be corrected at a later
point. Furthermore, the impulse responses of the antennas htx(t) and hrx(t) in (3.2) are
ignored for notational convenience and are reintroduced if required.
The time delay of the LOS component τkk′ is proportional to the sum of the downlink and
uplink distances

τkk′ =
1

c0

(
ddl + dul

)
=

1

c0

(
‖pk − ptag‖+ ‖ptag − pk′‖

)
, (3.7)

where pk, pk′ and ptag are the position vectors of the transmit antenna, the receive antenna
and the tag, respectively. This relation is exploited to estimate the distance from the
antennas to the tag, as already discussed in Section 2.2.
The receive signal in equivalent baseband notation is given by the convolution of the
transmit signal s(t) and the channel hkk′(t)

rkk′(t) = αkk′s(t− τkk′) exp{−j(2πfcτkk′ + ∆φ)}+
(
s ∗ νkk′

)
(t) + w(t) , (3.8)

where w(t) is zero mean additive white Gaussian noise (AWGN) and fc is the carrier
frequency. ∆φ is the difference between the initial phases of the transmit and the receive
local oscillators (LO). This phase difference is also present in the second term of (3.8),
but due to the random nature of the multipath ν(t), it can be ignored. It is important to
note that the estimation of the delay τkk′ is only feasible if the system provides coherent
sampling, i.e., synchronization of transmitter and receiver. In the following, it is assumed
that synchronization of both the samplers and the LOs is possible and, thus, ∆φ can be
omitted.
If the received signal is sampled with sampling frequency fs = 1

Ts
, it can be written in

vector notation as
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3.3 Range Estimation

rkk′ = αkk′sτkk′ + nkk′ +wkk′ , (3.9)

with the sampled versions of the cyclically delayed and phase shifted signal

sτkk′ =
[
s
(
− τkk′

)
, s
(
Ts − τkk′

)
, ..., s

(
(N − 1)Ts − τkk′

)]T
exp{−j2πfcτkk′} , (3.10)

the circular convolution1 of the signal and the multipath

nkk′ =
[(
s~ νkk′

)
(0),

(
s~ νkk′

)
(Ts), ...,

(
s~ νkk′

)
((N − 1)Ts)

]T
, (3.11)

and the noise

wkk′ =
[
wkk′(0), wkk′(Ts), ..., wkk′((N − 1)Ts)

]T
. (3.12)

3.3 Range Estimation

In order to estimate the range2 between the antennas and the tag, the system model from
above is applied to the optimal estimator derived in Chapter 2. In a first consideration
the multipath is ignored, which leads to a very simple estimator. In the next step, a more
sophisticated estimator is formulated that takes the multipath contribution into account
and makes use of the multiple input multiple output (MIMO) information provided by
the antenna arrays.

3.3.1 Matched Filter Estimation

The maximum likelihood estimator (2.18) is given by

θ̂(y) = arg max
θ̂

{
fy|θ(y|θ)

}
. (3.13)

Applying the model (3.9), the estimator for the parameter θkk′ is

θ̂kk′(rkk′) = arg max
θkk′

{
frkk′ |θkk′ (rkk′ |θkk′)

}
. (3.14)

Assuming now, that there is only a LOS component with real, positive αkk′ , and noise
present, i.e., there is no mulitpath, the likelihood function is solely dependent on τkk′

1The circular convolution is induced by the alignment procedure (3.3).
2Because the range is proportional to the delay τ , the reader should always keep in mind, that, whenever

one of those terms is used, it is directly coupled to the other via (3.7).
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frkk′ |τkk′ (rkk′ |τkk′) = fαkk′sτkk′+nkk′ |τkk′ (rkk′ |τkk′)

= fnkk′ |τkk′ (rkk′ − αkk′sτkk′ |τkk′) .
(3.15)

This is simply the pdf of the zero mean AWGN with the argument rkk′ − αkk′sτkk′ , con-
ditioned on the parameter τkk′ . It can further be written as

frkk′ |τkk′ (rkk′ |τkk′) = fnkk′ |τkk′ (rkk′ − αkk′sτkk′ |τkk′)

=
1(√
πN0

)N exp
{
− 1

N0
(rkk′ − αkk′sτkk′ )

H(rkk′ − αkk′sτkk′ )
}

=
1(√
πN0

)N exp
{
− 1

N0

(
‖rkk′‖2 + αkk′‖sτkk′‖

2 − 2αkk′r
H
kk′sτkk′

)}
,

(3.16)

where N0/2 is defined to be the two-sided noise power spectral density. Taking the loga-
rithm of (3.16) and inserting it into (3.14) gives

τ̂kk′(rkk′) = arg max
τkk′

{
− 1

N0

(
‖rkk′‖2 + αkk′‖sτkk′‖

2 − 2αkk′r
H
kk′sτkk′

)}
= arg max

τkk′

{
rHkk′sτkk′

}
,

(3.17)

where it is used, that the maximization does not depend on ‖rkk′‖, ‖sτkk′‖, N0 and αkk′ .
Equation (3.17) is a representation of the well known matched filter, which correlates
the received signal with the transmit signal and searches for the time difference τ that
maximizes the correlation. This derivation shows that the matched filter is optimal in a
maximum likelihood sense for the AWGN channel. However, in a practical indoor wireless
radio channel, the MPCs can not be ignored and, thus, the matched filter estimation does
not lead to optimal results in general.

Implementation

The correlation in the discrete time domain is given by

g[τ ] = rHkk′sτ , (3.18)

where sτ is according to (3.10) with τkk′ replaced by τ = 0, Ts, ..., (N−1)Ts. It is apparent
that the smallest shift in time corresponds to the sampling period Ts and, thus, estimation
accuracy is fundamentally limited by it. Assuming a sampling frequency of 100 MHz, the
sampling period is 10 ns. A signal, traveling through space with the speed of light propa-
gates 3 m during that time interval. Hence, the shift of one sample in (3.18) corresponds to
a ranging difference of 3 m, which is not satisfactory for high accuracy applications. This
problem can be tackled by interpolation, which is easily implemented by zero padding in
the frequency domain.
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3.3.2 Iterative Maximum Likelihood Estimation

The matched filter estimator derived in the previous section does not consider multipath
components in the system model. Furthermore, it does not make use of the antenna arrays
in a combined manner, but treats each received signal separately. In order to correct for
these shortcomings, the next section follows a MIMO approach developed in [18].

3.3.2.1 The MIMO Model

Let the signal be transmitted from each transmit antenna k to each receive antenna k′,
then all KK ′ receive signals can be combined into one MIMO receive signal vector

r =
[
rT11′ , ..., r

T
KK′

]T
, (3.19)

and consequently, the MIMO model for the combined receive signal is

r = αs+ n+w, (3.20)

where s, n, and w are stacked in the same fashion as (3.19). The distances between the
antennas in an array are considered to be small enough3, that the line of sight amplitude
αkk′ is approximately equal for all kk′ and therefore, it can be placed in front of the com-
bined signal vector s.
In wideband systems it is common to model the multipath ν(τ) as a zero mean com-
plex Gaussian random process [19]. It can be shown that the linear transformation of
a Gaussian process is again Gaussian. Consequently, n is a complex Gaussian random
process. By the same argumentation, the superposition of two Gaussian processes is again
Gaussian, hence, z = n+w is Gaussian. Considering the sampled version of z(τ), this is
written in vector notation as

z ∼ NNKK′(0,C). (3.21)

The covariance matrix is a block diagonal matrix C = diag{C11′ , ...,CKK′} with

Ckk′ = SHCνkk′S +N0I, (3.22)

where

S =
[
s0, sTs , ..., s(N−1)Ts

]T
(3.23)

is the ”convolution matrix” of the transmit signal and Cνkk′ is the covariance matrix of the
multipath νkk′ . For wideband systems it is often assumed that the multipath components
are uncorrelated. In this case, the auto-correlation of the multipath νkk′(τ) is [19]

3Compared to the distance between the array and the tag.
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E
[
ν∗kk′(τ)νkk′(τ

′)
]

= ρνkk′ (τ)δ(τ − τ ′) , (3.24)

where ρνkk′ (τ) is the power delay profile (PDP) of the multipath4

ρνkk′ (τ) = lim
T→∞

1

2T

∫ ∞
−∞
|νkk′(t, τ)|2 dt =̂ |νkk′(τ)|2 . (3.25)

The covariance matrix (3.22) can now be rewritten as

Ckk′ = SHdiag{ρνkk′}S +N0I, (3.26)

with ρνkk′ being the sampled version of the PDP of the channel from antenna k to k′.

3.3.2.2 Parameters and Approximations

Considering (3.21) and (3.26), the likelihood function of the combined receive signal (3.20)
is

fr|θ(r|θ) = fαs+z|θ(r|θ)

= fz|θ(r − αs|θ)

=
1

πNKK′ |C(ζ)|
exp
{
− (r − αs(ψ))HC(ζ)−1(r − αs(ψ))

}
,

(3.27)

where | · | is the determinant and θ =
[
ψT , α, ζT

]T
is the NKK’+5 -dimensional parameter

vector5. ζ =
[
νT , N0

]T
, ν =

[
νT11′ , ...,ν

T
KK′

]T
is the sampled version of the multipath,

ψ =
[
τ, ϕAoD, ϕAoA

]T
, ϕAoD is the angle of departure, ϕAoA is the angle of arrival, and τ

is the delay from the center of the transmit array to the tag and from the tag back to the
center of the receive array

τ =
1

c0

(
‖pk − ptag‖+ ‖ptag − pk′‖

)
. (3.28)

In order to unveil the dependence of s(ψ) on ψ, the definition of sτkk′ given by (3.10) is
reconsidered. Each sτkk′ contained in s depends on τkk′ . But, given the geometry of the
antenna arrays, all delays τkk′ are in a fixed relation to each other. With the centers of
the antenna arrays as reference points, sτkk′ can be rewritten as

4In time varying scenarios, the PDP is the squared absolute value of the channel at delay τ , averaged
over the time t. The measurement setup in Chapter 5 describes a static environment, i.e., the multipath
does not change over time for a fixed position of the tag. In this case, νkk′(τ) does not depend on t and
the integral disappears.

5τ ∈ R+; ϕAoA, ϕAoD ∈ [0, 2π]; α ∈ C; ν ∈ CNKK
′
; N0 ∈ R+
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∆pkx

∆pky

∆dk

ϕAoD

pk
plane wave

reference plane

pk

pk+1

Figure 3.3: Geometric relation between a linear antenna array, the AoD and the delay difference
of a plane wave at each antenna. The assumption of a plane wave departing from/ar-
riving at an antenna is only valid, if the distance between tag and antenna array is
large, compared to the distances between the antennas of the array.

sτkk′ =
[
s
(
− (τ −∆τkk′)

)
, s
(
Ts − (τ −∆τkk′)

)
, ..., s

(
(N − 1)Ts − (τ −∆τkk′)

)]T
exp{−j2πfc(τ −∆τkk′)}

(3.29)

and [20]

∆τkk′ =
1

c0

(
∆dk + ∆dk′

)
=

1

c0

(
∆pkxcos(ϕAoD) + ∆pkysin(ϕAoD)

+ ∆pk′xcos(ϕAoA) + ∆pk′ysin(ϕAoA)
)
.

(3.30)

The parameters in (3.30) are explained in Figure 3.3. Although the scenario is drawn with
respect to the angle of departure at the transmit array, it is completely analogous for the
angle of arrival at the receive array.
By expressing s in terms of ψ instead of each individual τkk′ , the parameter space is re-
duced from KK ′ to three dimensions.

It should be noted at this point, that the primal goal is to estimate the range between
the tag and the antennas, which is proportional to the delay τ . All other parameters

in θ =
[
ψT , α, ζT

]T
are not of direct interest to the problem, but have to be estimated

alongside the delay. They are called nuisance parameters.

The likelihood function (3.27) shall now be minimized. But the parameter θ is of di-
mension NKK ′ + 5 and thus, minimization with respect to θ is difficult. A solution to
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this problem is found by applying the approach of mean field variational inference, dis-
cussed in Section 2.3.2. Using (2.24), it is assumed that the approximation of the posterior
distribution can be factorized by

q(θ) = q(ψ)q(α)q(ζ) . (3.31)

While the parameters ψ and α have dimensions three and one, respectively, the parameter
ζ includes the multipath vector ν, which has dimension NKK ′. In this work, the length of
the receive signal vectors6 rkk′ is N = 1022. This is considered to be too high dimensional
for minimization with respect to ζ directly. In [18], the dimensionality is reduced by
parameterizing the PDP of the multipath with only a few parameters and estimating
those, instead of the original vector. Here, the covariance matrix C is estimated separately
in a sample matrix approach (see Section 3.3.2.5). Therefore, C does not depend on the
parameter ζ anymore and it can thus be ignored in (3.31). Consequently, the factorization
of the posterior pdf is rewritten as

q(θ) = q(ψ)q(α) , (3.32)

with θ =
[
ψT , α

]T
.

3.3.2.3 Iterative Parameter Estimation

In (2.29) it is stated that the optimal solution of the logarithm of each factor in (3.32)
is the expectation of the logarithmic joint pdf under the product of all other factors
ln q?j (θj) = Ei 6=j

[
lnfθ,y

]
. The optimal factor with respect to ψ is then

ln q?(ψ) = Eα
[
lnfr,θ

]
=

∫
α

lnfr,θ(r,θ) q(α) dα

=

∫
α

lnfr,ψ,α(r,ψ, α) q(α) dα

(3.33)

and the estimated value for ψ is

ψ̂ = arg max
ψ

{
ln q?(ψ)

}
= arg max

ψ

{∫
α

lnfr,ψ,α(r,ψ, α) q(α) dα

}
.

(3.34)

Because no information is given about α, a point estimate q(α) = δ(α − α̂) is chosen,
where α̂ is the estimate of the true parameter α. The equation above simplifies to

6The length N is determined by the bandwidth of the DSSS signal and the duration of a modulation
bit in the RFID communication (see Section 3.1).

23



3.3 Range Estimation

ψ̂ = arg max
ψ

{
lnfr,ψ,α(r,ψ, α̂)

}

= arg max
ψ

{
ln
(
fr|ψ,α(r|ψ, α̂)fψ(ψ)

)
+ lnfα(α̂)

}
.

(3.35)

As no prior information on ψ is available, a (noninformative) uniform pdf is chosen.
Finally, the estimator for ψ is the maximum likelihood estimator

ψ̂ = arg max
ψ

{
lnfr|ψ,α(r|ψ, α̂)

}

= arg max
ψ

{
−
(
r − α̂s(ψ)

)H
C−1

(
r − α̂s(ψ)

)}
.

(3.36)

The steps (3.33)–(3.36) are completely analogous for α, with the roles of α and ψ being
switched. Hence, the estimator for α is

α̂ = arg max
α

{
−
(
r − αs(ψ̂)

)H
C−1

(
r − αs(ψ̂)

)}
, (3.37)

where ψ̂ is the previously estimated ψ. By setting the derivative of the expression inside
the curly brackets in (3.37) to zero and solving for α, a closed-form solution for α̂ is found

α̂ =
rHC−1s(ψ̂)

s(ψ̂)HC−1s(ψ̂)
. (3.38)

However, (3.36) and (3.38) do not pose an explicit solution, because each of them depends
on the estimate of the other parameter. This requires an iterative procedure, shown in
Algorithm 3.1, where in every iteration both parameters are estimated in turn. It is im-
portant to note, that even though the estimation of the covariance matrix C is not part
of the variational inference formulation, it will be seen in Section 3.3.2.5 that it depends
on the parameters ψ and α. It is therefore also included in the iterative procedure.

As for every iterative method, initialization, discussed in Section 3.3.2.4, and convergence
criteria are important aspects. A possible convergence criterion evaluates how much the
estimation of a parameter has changed from the previous to the current iteration and stops
the procedure, if the change is smaller than a certain value. Formally, this is expressed by
a boolean variable

[Bcon] =

{
1, |θ̂ − θ̂′| � ε
0, |θ̂ − θ̂′| � ε ,

(3.39)
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Algorithm 3.1: Iterative Maximim Likelihood Estimation

initialize α̂ using (3.40)

initialize ψ̂ using (3.17) and (3.44)

initialize Ĉ using (3.46)
convergence criterion ← false

while convergence criterion is false do
estimate α̂ using (3.38)

estimate ψ̂ using (3.36)

estimate Ĉ using (3.46)

if |θ̂ − θ̂′| � ε then
convergence criterion ← true

θ̂′ ← θ̂

where θ̂′ is the estimate of θ in the previous iteration and ”�” is the component-wise
inequality, that is |θi − θ′i| 6 εi, ∀i. It is obvious, that ε has a strong influence on the
convergence behavior and should therefore be chosen with care. While a too large ε might
prevent the algorithm from getting close to the true parameter θ, a too small ε forces the
algorithm to proceed, although the gain in estimation accuracy is negligible.

3.3.2.4 Initialization

The delay parameter τ and the LOS amplitude α are initialized using the matched filter
approach derived in Section 3.3.1. Equation (3.17) can be used directly to estimate the
delay τkk′ from every transmit antenna k to every receive antenna k′. Using linear antenna
arrays, τ is geometrically given by the mean of all τkk′ . The complex LOS amplitude αkk′

is estimated by the maximum value of the matched filter, that is at τ̂kk′ , normalized by
the energy of the transmit signal

α̂kk′ =
rHkk′sτ̂kk′
sHs

, (3.40)

where sτ̂kk′ is the transmit signal shifted by τ̂kk′ . Analog to the delay τ , α̂ is found by
calculating the mean of all α̂kk′ .

For the initialization of the angle of departure ϕAoD and angle of arrival ϕAoA, the distance
differences ∆dk and ∆dk′ (see Figure 3.3) have to be estimated. They are derived from
the phase difference of the signal at the elements of the antenna arrays. The carrier phase
of the line of sight component from antenna k to antenna k′ in (3.29) is

φkk′ = 2πfc(τ −∆τkk′) . (3.41)

A simple estimation approach is, again, given by the matched filter

φ̂kk′ = arg
{
rHkk′sτ̂kk′

}
, (3.42)
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where arg{·} is the argument function. The phase difference between the signal transmit-
ted from antenna k to k′ and from antenna l to k′ is then

∆φ̂kl,k′ = φ̂kk′ − φ̂lk′ . (3.43)

Consequently, the angle of departure can be estimated by

ϕ̂AoD = arg min
ϕAoD

{∣∣∣∣∆φ̂kl,k′ − 2πfc
c0

(
∆pxklcos(ϕAoD) + ∆pyklsin(ϕAoD)

)∣∣∣∣} , (3.44)

where ∆pxkl and ∆pykl are the distances between the antenna elements k and l in x- and
y-direction. Extension from two to multiple antennas in a linear antenna array is straight
forward by, e.g., estimating all phase differences between two consecutive antennas and
calculating the mean.

3.3.2.5 Covariance Estimation

In order to formulate an estimator for the covariance matrix Ckk′ , the signal model (3.9)
is reconsidered

rkk′ = αkk′sτkk′ + nkk′ +wkk′ , (3.45)

where Ckk′ is the covariance of the receive signal without the LOS component
rkk′ − αkk′sτkk′ = nkk′ +wkk′ . For a stationary channel, a simple estimator is given by
the sample covariance matrix

Ĉkk′ =
1

M

M∑
i=1

(
rkk′ [i]− αkk′sτkk′

)(
rkk′ [i]− αkk′sτkk′

)H
, (3.46)

where i denotes the time instance. It is apparent that this estimator depends on the LOS
amplitude αkk′ and on the delay τkk′ . This requires initialization of those parameters in
advance and implies that the estimate Ĉkk′ has to be updated in every iteration, like it is
shown in Algorithm 3.1.
In nonstationary scenarios, where the channel statistics change over time, an exponential
forgetting factor is included [21]

Ĉkk′ = (1− λ)

M∑
i=1

λM−i
(
rkk′ [i]− αkk′sτkk′

)(
rkk′ [i]− αkk′sτkk′

)H
, (3.47)

with 0 < λ < 1.
In [18], the covariance estimation is based on the estimation of the parameterization of
the channel PDP. Consequently, the quality of the estimation depends on how well the
modeled PDP describes the reality. The advantage of the sample covariance approach
is, that it does not depend on such a model, which implies that it is valid for multiple
environments with different channel characteristics.
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4 Backscatter Channel Modeling

For the evaluation of the range estimation methods in Chapter 3, it is necessary to know
the (location specific) behavior of the transmission channel. The practical approach is to
perform measurements within the environment where the system is deployed. This poses
several difficulties: (i) RF-measurement equipment is expensive. (ii) The equipment might
not be able to perform measurements for a wide range of different parameters, such as
transmit power, frequency, or bandwidth. (iii) The execution of measurements might be
difficult, e.g., due to the transportation of heavy equipment to a (possibly unsuitable)
location of the measurement.
An alternative for the characterization of transmission channels is given by means of
computer simulations. In theory, the field strength of electro-magnetic waves is determined
for every location at any time by Maxwell’s equations. The channel behavior can thus be
determined in a completely deterministic way by solving these equations. However, this is
computationally too expensive for most computer environments. Additionally, the exact
boundary conditions for Maxwell’s equations are often unknown. A feasible solution to the
problem is found by a high frequency approximation. This simplified approach considers
electro-magnetic waves to behave like rays, following the laws of geometrical optics, and
is therefore also referred to as ray tracing. [19]
In Section 4.1, the purely deterministic model of ray tracing is discussed. As this method
only considers the specular components, but no diffuse components of a multipath channel,
it usually underestimates the true behavior of the channel. This motivates the extension
through a statistical description, studied in Section 4.2.

4.1 Ray Tracing

A three dimensional ray tracer simulates the transmission of plane waves in every direction
on a sphere around the transmitter. These plane waves propagate towards the receiver,
like rays, on a direct line of sight path and a number of paths that are created by one or
multiple reflections at flat surfaces. A possible way to identify the paths contributing to
the receive signal is to divide the sphere around the receiver into small areas and follow
every ray that travels from the transmitter through the center of an area. The path of the
ray is then followed until it either reaches the receiver or the attenuation due to reflections
and free space propagation loss is too high. This is computationally inefficient, because
rays that do not contribute to the receive signal are also considered. A more effective
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4.1 Ray Tracing

approach is given by the concept of virtual transmitters. They are calculated by mirroring
the location of the transmitter with respect to the reflecting surface. The straight line
connecting the virtual transmitter and the receiver is of the same length as the reflected
ray and both hit the reflecting surface with the same angle of incidence Θi. Figure 4.1
shows an example of virtual transmitters for first and second order reflections.

Tx

Rx

second order reflection

line of sight

first order reflection

flat surfaces

Θi

Θi

Figure 4.1: Principle of virtual transmitters. Filled circles: virtual transmitters for first order
reflections. Empty circles: virtual transmitters for second order reflections. Solid
lines: line of sight and actual reflected paths. Dashed and dash-dotted lines: paths
from the virtual transmitters to the receiver.

4.1.1 Continuous Wave Description

A continuous plane wave with amplitude a and frequency fc is described by a complex
harmonic function

ptx(t) = a exp
{
− j2πfct

}
. (4.1)

A wave with amplitude a = 1, originating from an isotropically radiating transmitter with
constant gain Gtx = 1, traveling to an isotropic receiver with constant gain Grx = 1, on
the LOS path of distance d, is attenuated and phase shifted

prx(t, τ) = α̃ exp
{
− j2πfc(t+ τ)

}
, (4.2)

where τ = d
c0

and α̃ is the square root of the free space path loss factor

α̃ =
λ

4πd
. (4.3)
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Reflected waves experience, in addition to the free space path loss, attenuations, originating
from interactions with the reflecting object. These attenuations are defined by the reflec-
tion and transmission coefficients, which depend on the material properties of the object
and on the angle of incidence Θi. It is assumed that the relative permeability µr is 1 for all
considered materials.1 The materials are then characterized by their dielectric constant ε
and conductivity σe, combined in the complex dielectric constant [19]

δ = ε− j σe
2πfc

. (4.4)

The reflection and transmission coefficients RTE and TTE for transversal electric (TE, a
linearly polarized wave with the electric field component parallel to the reflecting surface)
waves, at the boundary of two materials with δ1 and δ2, are

RTE =

√
δ1 cos Θi −

√
δ2 cos Θt√

δ1 cos Θi +
√
δ2 cos Θt

(4.5)

TTE =
2
√
δ1 cos Θi√

δ1 cos Θi +
√
δ2 cos Θt

, (4.6)

where Θt is the angle between the transmitted wave and the line normal to the reflecting
surface. For transversal magnetic (TM, a linearly polarized wave with the magnetic field
component parallel to the reflecting surface) waves, the coefficients are

RTM =

√
δ2 cos Θi −

√
δ1 cos Θt√

δ2 cos Θi +
√
δ1 cos Θt

(4.7)

TTM =
2
√
δ1 cos Θi√

δ2 cos Θi +
√
δ1 cos Θt

. (4.8)

All coefficients can solely be expressed in terms of the incident angle Θi by using Snell’s
law

sin Θt

sin Θi
=

√
δ1√
δ2
. (4.9)

It should be noted that the reflection and transmission coefficients are complex valued in
general, i.e., the waves are attenuated and phase shifted. Figure 4.2 depicts the coefficients
at the boundary between air (δ1 = 1) and a brick wall (δ2 = 4.44 [19]). It is emphasized
that the TE and TM coefficients are sufficient to describe the reflection and transmission
of an arbitrary polarized wave, because any polarization state can be decomposed into a
TE and a TM wave. For the purpose of notational convenience, linearly polarized waves
are considered in the following.

1This is a good approximation for most materials that have a significant impact onto the RF wave
propagation [19].
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Figure 4.2: Reflection and Transmission Coefficients for δ1 = 1 and δ2 = 4.44.

The nth ray arriving at the receiver after M reflections can now be described by2

prx,n(t, τn) =

(
M∏
m=1

Rn,m

)
α̃n exp

{
− j2πfc(t+ τn)

}
= Rn α̃n exp

{
− j2πfc(t+ τn)

}
,

(4.10)

where Rn,m is the reflection coefficient corresponding to the polarization of the wave with
respect to the reflecting object, and α̃n and τn are the free space path loss and delay,
introduced by the distance between the virtual transmitter and the receiver. For the LOS
path, where no reflection occurs, the reflection coefficient is set to Rn = 1. The total
received signal is the superposition of N rays

prx(t) =
N∑
n=1

Rn α̃n exp
{
− j2πfc(t+ τn)

}
, (4.11)

and the received signal strength (RSS) is defined as the squared absolute amplitude of the
received signal

2This model does not account for obstacles on any path between the transmitter and the receiver, which
is valid for the measurement setup in Chapter 5.
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(a) fc = 860 MHz (b) fc = 2.45 GHz

Figure 4.3: Simulated path loss in a laboratory room. Black lines correspond to plaster board
and brick walls. The blue line symbolizes a window. Transmitter and receiver height
is 1.45 m.

RSS =

∣∣∣∣∣
N∑
n=1

Rn α̃n exp
{
− j2πfc(τn)

}∣∣∣∣∣
2

=

∣∣∣∣∣
N∑
n=1

αn

∣∣∣∣∣
2

, (4.12)

where the reflection coefficients, free space path losses, and phase shifts, introduced by each
path, are absorbed into a single complex coefficient αn. Figure 4.3 shows the simulated
path loss, which is the relation of the transmit signal strength3 (TSS) to the RSS. Paths
with up to two reflections (second order reflection paths) are considered. For higher order
reflection paths the attenuation is considered to be too high for a significant contribution
to the RSS. The simulated environment is a laboratory room, where the measurements
discussed in Chapter 5 were performed. It is apparent that the RSS does not decrease
monotonically with an increasing distance to the transmitter. Due to constructive and
destructive superposition of the waves from different paths, the RSS is subject to inter-
ference patterns. This phenomenon is known as small-scale fading. Most prominent are
the circular patterns around the transmitter. This is explained by the interference of the
LOS component and a strong ground-reflection component. Especially in Figure 4.3a, also
radial patterns, originating from the interference with a strong wall-reflection component,
can be seen clearly. Comparing Figure 4.3a and 4.3b, it is evident that the periodicity

3The transmit signal strength is defined as the squared amplitude of the transmit signal, i.e., TSS = |a|2,
with a from (4.1).
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of the patterns varies with the frequency due to different wavelengths. The variation of
the RSS, introduced by small-scale fading, poses two main problems on the localization
of RFID tags: (i) Passive tags harvest their operating energy from the transmitted CW
carrier. In a deep fading hole the RSS might be too low to operate the tag. (ii) If the
energy is just sufficient for operation, the signal-to-noise ratio (SNR) might be very low,
which affects the ranging accuracy.

4.1.2 Backscatter Channel

The channel from the transmitter to the receiver can now be described in the form of a
tapped delay line (TDL) model

h(τ) =
N∑
n=1

Rn α̃n exp
{
− j2πτn

}
δ(τ − τn) =

N∑
n=1

αn δ(τ − τn) . (4.13)

Figure 4.4: Simulated TDL channel at a fixed position in the laboratory room structure at fc =
860 MHz.

Figure 4.4 depicts the TDL channel at a fixed location (x, y, z) = (−1.9, 1.5, 1.45) in
Figure 4.3a. This point is located in the first strong fading circle around the transmitter.
The first and the second tap correspond to the LOS path and the ground-reflection path,
respectively. Their relative phase shift is close to π, and therefore, waves traveling along
those paths interfere destructively, which leads to a low RSS.
The model (4.13) describes the multipath channel from the transmitter to the receiver at
a certain location.4 But for the ranging of an RFID tag, the behavior of the backscatter
channel, that is the channel from the transmitter to the tag and from the tag back to the
receiver, is of interest (see Figure 3.1). For that matter, let hdl(τ) denote the channel from
the transmitter to the tag (downlink) and hul(τ) the channel from the tag to the receiver
(uplink). The combined backscatter channel is then given by the convolution

4All αn and τn are dependent on the locations of the transmitter and the receiver. In order to keep the
notation uncluttered, this dependence is not stated explicitly, but should always be beared in mind.
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hbs(τ) = hdl(τ) ∗ hul(τ) . (4.14)

It is emphasized that this model is strictly valid for a single frequency only. The temporal
resolution of ToF localization depends on the signal bandwidth, which should be as large
as possible. Therefore, a wideband consideration is needed in order describe the channel
for the entire frequency range of the maintained system. One approach is to simulate
the channel model (4.13) for multiple frequencies within the used band and combine the
results according to [22].

4.1.3 Antennas

Up to this point, isotropic transmitters and receivers with constant gain Gtx = Grx = 1
are assumed. In order to account for the directivity and gain of real antennas, a frequency
and angle dependent antenna gain factor is introduced. It is defined as the ratio of the
power received by the used antenna from a far-field source in a certain direction, and the
power received by a lossless isotropic antenna from the same source

G(h,v)(ϑ, ϕ, f) =
P

(h,v)
rx (ϑ, ϕ, f)

Prx,i(f)
, (4.15)

where ϑ and ϕ are the azimuth and elevation angles, respectively. The superscript denotes
the polarization, where h is horizontal, and v is vertical to the ϑ-ϕ-direction. Including
the antenna gain factor for the transmitter and the receiver, the TDL channel (4.13) is
now5

g(τ) =

N∑
n=1

√
Gtx,nGrx,n αn δ(τ − τn) , (4.16)

where Gtx,n is the gain of the transmit antenna in the direction of the nth ray leaving the
transmitter and Grx,n is the gain of the receive antenna in the direction of the nth ray
arriving at the receiver.
Figure 4.5 shows the simulated path loss including the transmit antenna gain Gtx of a Hu-
ber&Suhner SPA-8090/78/8/0/V antenna, which was used in the measurements described
in Chapter 5. The receive antenna gain is set to Grx = 1, i.e., the tag is assumed to be
isotropic.

5Both Gn and αn depend on the frequency, direction, and polarization, which is not stated explicitly,
to keep the notation simple.
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Figure 4.5: Simulated path loss at fc = 860 MHz, including the transmit antenna gain Gtx.
Transmitter and receiver height is 1.45 m.

4.2 Statistical Model Extension

The ray tracing model in the previous section accounts for multipath components due
to reflections at flat surfaces. However, a wireless channel is also subject to scattering
effects, i.e., there are additional multipath components due to scattering at small6 ob-
jects and rough surfaces. As the deterministic simulation of such effects is intractable,
a stochastic description is required. The Saleh-Valenzuela model, proposed in [17], is a
simple formulation that can easily be combined with the results of ray tracing. Several
measurements, for example [17] and [23], show that multipath components arrive in clus-
ters. Each cluster starts with a strong component and decays exponentially afterwards.
The Saleh-Valenzuela model gives a statistical description of the amplitudes and arrival
times of both the components within a cluster and the clusters themselves. The arrival
time Tn of the nth cluster and the arrival time tn,k of the kth component within the nth

cluster are modeled by independent exponential pdf’s conditioned on the previous value

fTn|Tn−1
(Tn|Tn−1) = Λ exp

{
− Λ (Tn − Tn−1)

}
, (4.17)

and

ftn,k|tn,k−1
(tn,k|tn,k−1) = λ exp

{
− λ (tn,k − tn,k−1)

}
, (4.18)

6Comparable to the size of the wavelength.
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Figure 4.6: Schematic representation of the Saleh-Valenzuela model.

where Λ and λ are constant arrival rate factors and k, n ∈ N+. The squared absolute value
of the kth component within the nth cluster is modeled to be

|αn,k|2 = |α1,1|2 exp

{
− Tn

Γ

}
exp

{
−
tn,k
γ

}
, (4.19)

where |α1,1|2 is the mean of the squared absolute value of the first component in the first
cluster and |α1,1|2 follows an exponential distribution. The constant factors Γ and γ are
the decay parameters. A schematic representation of the Saleh-Valenzuela model is shown
in Figure 4.6.
The ray tracing and the Saleh-Valenzuela model can now be combined by considering the
multipath components calculated by the ray tracer as the first components of the clusters.
Thus, the cluster arrival times (4.17) can be ignored and (4.19) is replaced by

|αn,k|2 = |αn|2 exp

{
−
tn,k
γ

}
, (4.20)

where the αn’s are taken from (4.13). The TDL channel obtained by the combined model
is now

h(τ) =

N∑
n=1

∞∑
k=1

αn,k δ(τ − τn,k) , (4.21)

and the phase information of the complex αn,k’s that are not given by the ray tracer is
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4.2 Statistical Model Extension

drawn from a uniform distribution between −π and π, as suggested in [17]. Although
k extends to infinity, it can be truncated whenever |αn,k| falls below a given threshold.
Finally, as in the previous section, the backscatter channel is given by (4.14), with hdl and
hul obtained from (4.21).

In order to gain information about the parameters of a practical RFID system, that influ-
ence the behavior of the localization methods, discussed in Chapter 3, the measurement
setup, described in Chapter 5, is emulated by the ray tracing model. The transmission
of the DSSS signal over the synthetic channel is simulated and the range estimators are
applied to both, the simulated and the measured receive signals. The results are compared
in Chapter 6.
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5 Measurements

During the ”REFlex”-project1 a system was developed that implements the method de-
scribed in Section 3.1. This system was used to perform a measurement campaign in a
laboratory room at the TU Wien.2 The results of these measurements are used to evaluate
the localization algorithms discussed in Chapter 3. Section 5.1 provides a brief description
of the testbed architecture and Section 5.2 explains the measurement setup.

5.1 Testbed Architecture

5.1.1 RFID Tag

The EPC Class-1 Gen-2 UHF RFID standard operates in the 860–960 MHz frequency
range. With the aid of the method described in Section 3.1, where a low power DSSS signal
is superimposed onto the RF carrier during the tag to reader communication, a bandwidth
large enough for high accuracy ToF estimation is reached. However, the application of
this method in the UHF band comes with two problems: (i) The tag antennas in this
range have a frequency selective gain and group delay within the used bandwidth. (ii)
The spectral mask requirements limit the power of the DSSS signal, which implies a low
SNR. In order to solve these problems, a dual-frequency tag was developed by NXP,
which extends a UCODE 7 tag with a second port, connected to a separate antenna.
This way, the EPC compliant communication is performed in the UHF band and the
DSSS transmission in both the UHF and the 2.45 GHz ISM band. The spectral mask
requirements in the 2.45 GHz ISM band allow for a higher power density, resulting in a
higher SNR. Furthermore, the antenna for the 2.45 GHz ISM band can be designed to
have a more constant frequency response over the entire range.

5.1.2 RFID Reader

The RFID readers are USRP-2922 software defined radio (SDR) platforms from National
Instruments with a slightly modified SBX daughter board. In [24], an RFID reader was

1”RFID Real-Time Localization for Flexible Production Environments” (REFlex) was a research project
founded by the Austrian Research Promotion Agency (FFG); Project number 845630.

2The author of this work was not part of the ”REFlex”-project, but supported the measurement cam-
paign.
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5.2 Measurement Setup

implemented, that is capable of performing EPC Gen-2 compliant communication and
the cyclic alignment procedure described in Section 3.1. Due to the large bandwidth and
high resolution, needed for ToF localization, the data rates are too high for transmission
over an Ethernet connection using the standard SDR framework. Furthermore, stringent
timing requirements have to be fulfilled for the EPC communication with the tag. Thus,
the cyclic alignment and averaging is directly done in the user accessible FPGA of the
SDR, which significantly reduces the required data rates. In order to perform coherent
MIMO measurements, synchronization of the USRPs over a dedicated ”MIMO link” and
a modified local oscillator (LO) distribution were developed in [25].
Each USRP has an RF input and an RF output, allowing for bistatic measurements. The
USRPs are connected to a PC for controlling and data transfer via Ethernet link. The
sampling frequency is 100 MHz and the DACs and ADCs have a bit depth of 16 bit and
14 bit, respectively.

5.2 Measurement Setup

Figure 5.1 depicts the block diagram of the MIMO setup. The measurements were per-
formed with four USRPs, each connected to one transmit and one receive antenna. USRP 1
acts as master, and USRP 2–4 as slaves. The master is responsible for the EPC commu-
nication and the transmission of the DSSS signal in the UHF band. The slaves perform
the transmission of the DSSS signal at 2.45 GHz.
USRP 1 is connected to a 10 MHz clock reference. Synchronization of all USRPs in the
100 MHz domain is carried out by the MIMO extension. The master transmits a synchro-
nization signal, which is distributed to all slaves via the MIMO splitter.
Due to the modification of the SBX daughter board, the inputs and outputs of the trans-
mit and receive LOs are accessible from the outside. USRP 1 is the only one operating
in the UHF band, thus, only its own transmit and receive LOs have to be synchronized.
Therefore, the receive LO output is fed into the receive and transmit LO inputs via a
two-way zero degree power splitter. USRP 2–4 have to perform coherent measurements at
2.45 GHz. The LO output of USRP 2 is therefore fed into all LO inputs via power splitters.
To compensate for the losses of the cables and power splitters, a ZX60-83LN-S+ amplifier
from Mini-Circuits is used.
The antennas for the UHF and the ISM bands are Huber&Suhner SPA-8090/78/8/0/V
and SPA-2400/75/9/0/V antennas, respectively. The signal for the EPC communication
was transmitted with an EIRP of 35.05 dBm, which is the highest admissible transmit
power for RFID systems in the 860–960 MHz band [26]. The power amplifier ZHL-30W-
252+ from Mini Circuits is placed in front of the UHF transmit antenna, because the
USRP is not able to provide such a high output power. In order to fulfill the spectral
mask requirements of the EPC standard, the DSSS signal power has to be 40.9 dB lower
than the signal power for the EPC communication, resulting in an EIRP of −5.85 dBm in
the UHF band. With an EIRP of 10 dBm, the maximum allowed power in the 2.45 GHz
ISM band is significantly higher. Here, the DSSS signal was transmitted with an EIRP
of 8 dBm. The bandwidth was limited to about 83 MHz by the baseband filters of the
USRPs [27].
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Figure 5.1: Block diagram of the measurement setup. [28]

Tx1
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winch

tag

(b)

Figure 5.2: (a) Picture of the measurement setup. (b) Picture of the tag on the Rohacell block,
placed in the center of the room by the positioning system.

In order to accurately place the tag in the room, an automatic positioning system was
installed. Four winches, mounted at the top corners of the room are connected to a
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5.2 Measurement Setup

Rohacell3 block, to which the tag was sticked (see Figure 5.2b). The tag was placed in
0.1 m steps in an area of 3.6 m×3.8 m. The hight of the tag and the 2.45 GHz ISM antenna
positions was 1.45 m and the heights of UHF transmit and receive antenna were 1.85 m and
1.45 m, respectively. Figure 5.2a shows a picture of the measurement setup in a laboratory
room at the TU Wien.

3Rohacell is the trade name of Polymethacrylimid. It was chosen because of its dielectric properties,
which are close to those of air, in order to minimize the influence on the measurement.
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6 Results

In order to evaluate the algorithms presented in Chapter 3, they are applied to simulated
data, using the channel obtained by the ray tracing method described in Chapter 4, and
to measured data obtained by the measurement campaign described in Chapter 5.

The DSSS sequence is a maximum length sequence with a chip rate of 50 Mchips/s and
a length of 1022 samples. The receive signal is averaged over 100 recordings per tag posi-
tion, to increase the SNR. The sample covariance estimator (3.46) for a fixed tag position
includes the receive signal for all adjacent tag positions within a distance of 0.1 m.
For the evaluation of the ranging accuracy, the range estimation error is defined as

εd = d− d̂ , (6.1)

where d and d̂ are the true and estimated distances, respectively.

6.1 Tag Impulse Response Compensation

It is mentioned in Section 3.2 that the channel model (3.6) assumes an ideal delta impulse
response ∆htag(t) of the tag, which is not true in practice. In order to account for the
tags’ delta impulse response, the following procedure includes ∆htag(t) into the transmit
signal for the estimators in Chapter 3. Considering the receive signal (3.8) for a known
tag position, and including ∆htag(t), it can be written as

rkk′(t) =
[
αkk′s(t−τkk′)exp{−j(2πfcτkk′)}

]
∗∆htag(t)+

(
s∗νkk′ ∗∆htag

)
(t)+w(t) . (6.2)

The LOS attenuation αkk′ contains the free space attenuation, which is known for a known
delay τkk′ , and a random phase shift φ. The LOS phase shift exp{−j(2πfcτkk′)} is also
known for a known τkk′ . Multiplying (6.2) by 1

|αkk′ |
exp{j(2πfcτkk′)} and shifting it by

τkk′ , the corrected receive signal is
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6.1 Tag Impulse Response Compensation

Figure 6.1: 200 Samples of the averaged receive signal.

r′kk′(t) =
(
s ∗∆htag

)
(t) exp{jφ}

+
1

|αkk′ |
exp{j(2πfcτkk′)}

[(
s ∗ νkk′ ∗∆htag

)
(t+ τkk′) + w(t+ τkk′)

]
.

(6.3)

The multipath νkk′(t) and w(t) are assumed to be zero mean Gaussian processes, and
the phase φ is assumed to be uniformly distributed between −π and π. This implies
that the average over a large number of tag positions cancels out the phase term and the
contribution of the multipath and the noise

s′(t) =
(
s ∗∆htag

)
(t) ≈

N∑
i=1

r′kk′,i(t) , (6.4)

where i denotes the index of the tag position.

Figure 6.1 shows the new transmit signal s′(t) and the corrected receive signals r′kk′,i(t) for
N = 200 tag positions. If not stated otherwise, the signal s′(t) is used for the evaluation
of the measurement data in the following sections. The tag response does not have to be
considered for the simulated data, because the channel model already assumes an ideal
tag response.
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6.2 Dual-Frequency Tag

6.2 Dual-Frequency Tag

The following compares the measurements in the UHF band to those in the 2.45 GHz ISM
band. As merely Tx1/Rx1 (see Figure 5.2a) perform measurements in the UHF band, the
only fair comparison is to Tx2/Rx2, because they are also placed close to the center of
the room, which leads to about the same spatial coverage.

(a) UHF (b) 2.45 GHz ISM

Figure 6.2: Absolute range estimation error of the matched filter estimator for the UHF and the
2.45 GHz ISM band. Visualization is truncated at 4 m, which is identified by missing
points. It is pointed out to the reader, that (a) and (b) have different scales.

(a) (b)

Figure 6.3: Statistical evaluation of the range estimation error for the matched filter estimator
in the UHF and the 2.45 GHz ISM band.
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6.3 Matched Filter and Maximum Likelihood Estimation

Figure 6.2 depicts the absolute value of the estimation error obtained by the matched filter
(MF) estimator (3.17) for all tag positions in the room. The visualization for the UHF
band shows that the error is smaller than 0.5 m in the near vicinity of the antennas, but
varies rapidly outside this area. For the measurements in the 2.45 GHz ISM band, the
area of stable range estimation is significantly larger.
Figure 6.3 provides a statistical evaluation of the estimation error. It is seen in Figure
6.3a that the error for both, the UHF and the 2.45 GHz ISM band, is, without considera-
tion of outliers, unbiased. However, the distribution in the 2.45 GHz ISM band is clearly
narrower. Figure 6.3b shows the cumulative distribution function (cdf) of the absolute es-
timation error, denoted by F|εd|(|εd|). The error is less than 0.5 m for 84 % of all positions
in the 2.45 GHz ISM band and for 41 % in the UHF band.
The performance difference between the two bands can be explained mainly by the follow-
ing reasons, shown in [29]: (i) The tag antenna for the 2.45 GHz ISM band is designed to
be wideband. (ii) The tag response ∆htag(t) in the UHF regime strongly depends on the
power of the CW signal that provides the tag with energy. Consequently, the tag response
depends on the position of the tag. This is not the case in the 2.45 GHz ISM band. (iii)
Due to the smaller relative bandwidth in the 2.45 GHz ISM band, the tag has a more
constant frequency response and group delay within the bandwidth of the DSSS signal in
the 2.45 GHz ISM band than in the UHF band.

6.3 Matched Filter and Maximum Likelihood Estimation

This section compares the MF estimator to the maximum likelihood estimator in the
2.45 GHz ISM band. The ML estimator uses Tx3/Tx4 as transmit array, and Rx3/Rx4
as receive array. In order to obtain a fair comparison, the mean of the MF estimator
applied to every Tx/Rx combination of those arrays is calculated. The transmit and
receive antennas are oriented such, that the center of the measurement area is located in
the main lobe of the antenna patterns (see Figure 4.5).
It is seen in Figure 6.4, that the estimation error of the MF estimator is mostly less than
0.4 m for y< 2.5 m and gets significantly larger for larger distances. The variation of the
error for the ML estimator is about the same in the entire measurement area. This can
be explained by the fact that the power difference between the LOS component and the
multipath components is lower in the back of the room and the ML estimator accounts
for the contribution of the multipath, while the MF estimator does not.
A statistical evaluation of the estimation error is provided by Figure 6.5. The estimation
error is, again, without consideration of outliers, unbiased. Outliers are positive because
they are introduced by strong multipath components, which always arrive after the LOS
component at the receiver.
The estimation error of the ML estimator is less than 0.2 m for 97.5 % of all tag positions,
while the MF estimator achieves this result in 52.8 %.

44



6.4 Channel Simulation

(a) MF (b) ML

Figure 6.4: Absolute range estimation error of the MF and ML estimators in the 2.45 GHz ISM
band. Visualization is truncated at 2 m, which is identified by missing points. It is
pointed out to the reader, that (a) and (b) have different scales.

(a) (b)

Figure 6.5: Statistical evaluation of the range estimation error for the MF and ML estimators in
the the 2.45 GHz ISM band.

6.4 Channel Simulation

In order to evaluate the ranging with respect to the channel model obtained by the ray
tracer, described in Chapter 4, the MF and ML estimators are applied to a simulated
transmission of the DSSS signal over the synthetic channel. The results are compared to
those for the measured data, discussed in Section 6.3.
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6.4 Channel Simulation

(a) MF (b) ML

Figure 6.6: Absolute range estimation error of the MF and ML estimators for the simulated chan-
nel in the 2.45 GHz ISM band. Visualization is truncated at 2 m, which is identified
by missing points. It is pointed out to the reader, that (a) and (b) have different
scales.

(a) (b)

Figure 6.7: Statistical evaluation of the range estimation error of the MF and ML estimators for
the simulated channel in the the 2.45 GHz ISM band.

Comparing Figure 6.6 to Figure 6.4, it is seen that the spatial distribution of the ranging
error is similar for the simulated and the measured data. Again, the estimation error of
the MF estimator is mostly less than 0.4 m for y< 2.5 m and gets significantly larger for
larger distances. The error of the ML estimator is more constant over the entire area, with
a little more outliers in the back of the room.
The statistical evaluation in Figure 6.7 supports this similarity. It is evident, that the cdf
of the ML estimation error is almost identical to the one obtained for the measurement
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6.5 Tag Impulse Response

data. Also the cdfs for the MF estimator show very good agreement, with a maximal
difference of about 6 %.
These observations draw two important conclusions: (i) The channel model obtained by
the ray tracer provides a good approximation of the true channel. (ii) The incorporation of
the tag response ∆htag(t) into the transmit signal, described in Section 6.1, is valid. This
is implied by the fact that the simulated channel model assumes an ideal tag response.

6.5 Tag Impulse Response

For a statement about the impact of the tag response ∆htag(t) onto the estimation ac-
curacy, the MF and the ML estimators are applied to the measurement data using the
original transmit signal instead of s′(t).
Figure 6.8 and 6.9 show that this impact is significant. The estimators are biased, with-
out consideration of outliers, by 0.5 m and 0.8 m, respectively. In the ML case, outliers
appear more frequently than in Section 6.3. However, ignoring them, the width of the
distributions for both estimators are not notably wider than in Section 6.3. Figure 6.9b
shows the original cdfs and the cdfs corrected for the bias of the estimation error.
It is concluded, that knowledge about the tags’ impulse response is crucial. In envi-
ronments where all tags have the same response, this information can be determined in
advance, e.g., by the procedure in Section 6.1. Section 6.4 shows that this leads to results
similar to the simulated channel model, which assumes an ideal tag response. However, in
environments including different tags from different vendors, the impulse response of the
tags might differ significantly and, therefore, such a procedure cannot be applied.

(a) MF (b) ML

Figure 6.8: Absolute range estimation error of the MF and ML estimators in the 2.45 GHz ISM
band, without consideration of the tag response. Visualization is truncated at 2 m,
which is identified by missing points. It is pointed out to the reader, that (a) and
(b) have different scales.
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6.5 Tag Impulse Response

(a) (b)

Figure 6.9: Statistical evaluation of the range estimation error for the MF and ML estimators in
the the 2.45 GHz ISM band, without consideration of the tag response.
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7 Conclusion & Outlook

The focus of this thesis was to evaluate backscatter based RFID localization methods,
which use a superimposed, low power wideband signal for time of flight range estimation.
To this end, two estimators, based on different channel models, were applied to (i) the
results of a comprehensive measurement campaign and (ii) synthetic data obtained from
a simulated channel model.
A three dimensional ray tracer was implemented in order to emulate the measurement
setup. As this deterministic method only considers the specular components of a mul-
tipath channel, it was extended by a statistical model, which, in addition, accounts for
diffuse components. With the aim of a valid model for the entire frequency range of the
wideband signal, the channel was simulated at multiple frequencies within the utilized
bandwidth, and combined into a frequency dependent model.
The measurements were performed under the use of an especially designed, EPC compatible
RFID tag, which is capable of backscattering in two different frequency regimes, at 860–
960 MHz in the UHF band and in the 2.45 GHz ISM band.
It has been shown that the range estimation results in the 2.45 GHz ISM band are superior
to those in the UHF band. This is explained by the wideband antenna design, the power
independent tag impulse response, and the more constant frequency response of the tag
due to the smaller relative bandwidth in the 2.45 GHz ISM band. Further, the maximum
likelihood estimator achieves significantly better results than the matched filter estimator.
This is argued by the fact that the first accounts for the multipath contribution and uses
the information of multiple antennas, while the latter does not make use of this knowledge.
A comparison of the measured and simulated data shows almost identical results, if the
tag impulse response is considered in the range estimation. This observation has two im-
portant implications: Primarily, the channel model obtained by the ray tracer is a good
approximation of the true channel. Furthermore, knowledge of the tags’ impulse response
is crucial for accurate range estimation.
The integration of the tag impulse response into the channel simulator is one major subject
for a future extension of this work. Additionally, it should be investigated if the channel
simulation is still valid for different environments.
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Wien, 14. Juli 2019 Stefan Hechenberger
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