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Abstract
Analyzing atomically resolved images is a time-consuming process requiring solid experience and
substantial human intervention. In addition, the acquired images contain a large amount of
information such as crystal structure, presence and distribution of defects, and formation of
domains, which need to be resolved to understand a material’s surface structure. Therefore,
machine learning techniques have been applied in scanning probe and electron microscopies
during the last years, aiming for automatized and efficient image analysis. This work introduces a
free and open source tool (AiSurf: Automated Identification of Surface Images) developed to
inspect atomically resolved images via scale-invariant feature transform and clustering algorithms.
AiSurf extracts primitive lattice vectors, unit cells, and structural distortions from the original
image, with no pre-assumption on the lattice and minimal user intervention. The method is
applied to various atomically resolved non-contact atomic force microscopy images of selected
surfaces with different levels of complexity: anatase TiO2(101), oxygen deficient rutile TiO2(110)
with and without CO adsorbates, SrTiO3(001) with Sr vacancies and graphene with C vacancies.
The code delivers excellent results and is tested against atom misclassification and artifacts, thereby
facilitating the interpretation of scanning probe microscopy images.

1. Introduction

In recent years giant leaps have been made in scanning probe microscopy, particularly in atomic force
microscopy (AFM) [1–3]. Atomically sharp tips, often functionalized with simple molecules (e.g.
CO-terminated tips) [4–7] allow not only for the structural identification of material surfaces at the
atomic level but also for precise manipulation of single atoms and molecules [8, 9].

Improved imaging techniques, aided by artificial intelligence (AI) [10–12], lead to a vast abundance of
atomically resolved images. Acquisition rates have reached a point where the analysis of individual images by
humans, albeit computer-assisted, becomes a new bottleneck in the advancement of related surface science
fields.

Machine learning (ML) can represent a viable alternative to accelerate the processing of these data.
Supervised learning approaches based on deep neural networks (DNNs) have been applied to a variety of
different tasks [13], ranging from tip functionalization [14, 15] and lattice recognition [16–19], all the way
up to automated molecular structure discovery [9, 20]. Despite these promising results, the applicability of
DNN for efficient interpretation of experimental images is limited by the available databases [21]. While
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electron microscopy [22–24] and scanning tunneling microscopy (STM) [25] image databases have been
recently published, we are not aware of publicly available ones of atomically resolved experimental AFM
images for surfaces (a database on simulated AFM images for molecular identification has been recently
collected [26]). Augmenting an image database using both measured and simulated data is a sub-optimal
option for practical purposes: (i) although AI optimization methods have been proposed [11], it is
complicated to measure high-quality images and define a reliable reproducibility protocol; (ii) simulating
atomically resolved images using computational surface science methods requires the precise knowledge of
the structural model at the atomic scale, which might be accessible for bulk-terminated surfaces but highly
complex in the case of surface reconstructions; the vast diversity of defects that can be present in a surface
complicates this task even further. Last but not least, supervised ML also heavily relies on the network
architecture, which forbids non-expert users to play with different architectures to achieve better accuracies.
Open-source packages like pycroscopy [27] and AtomAI [28] can overcome this initial difficulty, although
they remain dependent on a database. These reasons hinder the adoption of supervised ML in the field of
atomically-resolved AFMmicroscopy.

In the absence of large databases, unsupervised ML methods constitute a convenient alternative to
data-hungry supervised ML techniques and slow manual analysis of individual images. Several successful
attempts based on unsupervised algorithms have been made. Atomap [29] analyzes scanning transmission
electron microscopy (STEM) images by using 2D Gaussian fitting, differentiating atomic columns by their
different brightness; different approaches based on clustering and principal component analysis were also
proposed [30, 31]. In a recent work focused on the automated identification of local structures in atomically
resolved images, Laanait et al [32] have shown that the well-established computer vision algorithms
scale-invariant feature transform (SIFT) [33] combined with clustering algorithms (CAs) [34] are capable of
recognizing and labeling atoms according to their local environment. SIFT has also been applied to other
microscopy images such as confocal scanning laser microscopy ones (CSLM) [35]. An advantage of this
approach is that it does not involve any pre-assumptions on the underlying periodicity of the lattice.
Reciprocal-space analysis can be used to analyze periodic structures in images and, eventually, remove image
artifacts. However, some prior knowledge of the system and the intervention by an expert user are required.
Restricting the analysis to real space is expected to provide better stability under such features, thereby
expanding the degree of analysis.

In this work, inspired by [32], we propose an open-source tool, AiSurf (‘Automated identification of
Surf ace images’), developed to inspect and classify crystalline 2D phases in atomically-resolved images via
Scale Invariant Feature Transform and CAs. With no pre-assumption on the lattice symmetry and minimal
human intervention, AiSurf can be applied to the analysis of regular structures, as well as for images showing
complex structural correlations involving the formation of structural domains, structural and chemical
defects, and recognition of adsorbates. To assess the performance and transferability of the code, we analyze a
variety of surface structures characterized by different features, specifically: (i) Defect-free anatase
TiO2(101); (ii) SrO-terminated SrTiO3(001) with Sr vacancies; (iii) Rutile TiO2(110) with O vacancies;
(iv) CO adsorbates on rutile TiO2(110); (v) Simulated graphene with C vacancies. Additionally, to further
test the capabilities of the algorithm against experimental noise, we show the results obtained for an
SrTiO3(001) image affected by noise and other artifacts. All images have been acquired via non-contact
AFM experiments, apart from the graphene image, which has been simulated using the probe particle
model [36, 37].

Our focus on AFM images, at variance with [32], is due to the presence of typical artifacts that do not
occur in images obtained with other techniques (like STM and STEM), giving an additional performance test
under not-previously-shown artifacts. Among them, we have contrast and intensity variation due to
(i) insufficiently compensated drift correction, (ii) insufficiently compensated tilt correction between the
image’s left and right part of the image, (iii) unstable tip termination leading to an atomic rearrangement on
the AFM tip during scanning [38].

The algorithm and computational protocol are presented in the next section. The experimental details on
the acquisition of the non-contact AFM images and their automated analysis are presented and discussed in
section 3. Data, code and documentation are available as indicated in section Data availability statement.

2. Method

This section describes the workflow of AiSurf, graphically schematized in figure 1.
First, we apply SIFT (as implemented in the library ‘opencv’ [39]) to an input image to extract atomic

features (‘keypoints’) as bright and dark blobs, in analogy with the work of Laanait et al [32]. We specify that
‘atomic features’ may also refer to adsorbates on the surface or, in general, to minima or maxima present in
the image. Before detecting local minima or maxima (with sub-pixel resolution), SIFT applies a
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Figure 1. Summary of the workflow of AiSurf using an AFM image of the anatase TiO2(101) surface. (a) AFM image with SIFT
keypoints colored according to their cluster label (blue and orange circles). Top-left: inset showing a zoomed image patch.
(b) Distance vectors within the (blue) reference cluster. Colored circles show the result of a clustering done in this figure; each

cluster represents a lattice vector candidate: a⃗ and b⃗ have been chosen. (c) Distance vectors connecting keypoints. The colors of
the vectors represent the deviation from the predicted lattice vectors; the top-right inset shows the distribution of keypoints in the
unit cell, with keypoints colored according to their cluster; the top-left inset shows a zoomed image patch; the bottom-left inset
shows the predicted unit cell with its sublattice positions. We point out that what is interpreted as Ti atom is just a minimum,
since Ti atoms are too far down to be reached by the tip.

difference-of-Gaussians (DoG) filter to the image. The DoG filter is the difference of two images obtained by
low-pass filtering with Gaussian kernels having two different widths. This results in a bandpass filter in the
Fourier domain; rejecting high-frequency noise as well as low-frequency background variations. In the
implementation used here, the DoG filter comes close to a Laplacian-of-Gaussian filter, i.e. a low-pass filtered
version of the second derivative [40]. For optimal detection, the input parameters have to be adjusted
(depending on the scale and contrast of the features in the image), AiSurf default values can handle the
images satisfactorily. Every parameter is described in the documentation as detailed in section Data
availability statement. Ideally, all visible features should be identified while no keypoints should be assigned
to background noise. To further enhance the quality of keypoints, we exclude a thin area on the border of the
image (by default, its width is equal to the median size of the features), and we ignore keypoints showing a
significant deviation in size from the median value. This constraint should ensure that only atomically-sized
features remain.

As stated in the original work [33], the keypoints detected by SIFT are characterized by a feature
description based on image gradients that are brightness, scale, and rotational invariant. We break rotational
invariance to distinguish keypoints belonging to different sublattices if they show the same local environment
but different orientations. This can be the case of atoms of the same species but in different sublattices
(e.g. graphene lattice, see figure 2), or atoms next to a point defect (e.g. vacancy) but in different orientations.

The keypoints are then clustered based on their SIFT descriptors by using agglomerative clustering taken
from the scikit-learn library [41]. Agglomerative clustering categorizes features with a bottom-up approach:
initially each feature belongs to its own cluster, which will be merged with the others until the specified
number of clusters is reached. The merging procedure depends on the chosen linkage criterion (Ward’s
method [42] has been chosen in this work). This method is deterministic and only uses the number of
clusters as an input parameter.

The optimal number of clusters is chosen by calculating the silhouette score/coefficient [43]. The
silhouette score quantifies the goodness of a clustering process; for each feature, we call a the mean
intra-cluster Euclidean distance and b the mean nearest-cluster one: for each sample the silhouette score is
defined by s= (b− a)/max(a,b). What is commonly referred as ‘silhouette score’ (also in this work) is the
average of the scores of each sample, which spans from−1 to+1. A value approaching+1 corresponds to a
perfect cluster separation, while a negative value approaching−1 occurs when each feature is assigned to the
wrong cluster. After finding the optimal number of clusters, each feature is labeled according to the cluster it
has been assigned to.

Alternative methods, such as density-based clusterings are difficult to use here because they are typically
parameterized by a characteristic distance, which is case-specific and usually non-intuitive to estimate. As an
example, we show the results obtained for a defect-free AFM image of the anatase TiO2(101) surface [44].
The experimental image overlaid with the clustered keypoints is shown in figure 1(a). The clustering labels
allow us to select a reference cluster that will be used to extract the lattice vectors. It should contain only
keypoints on the same sublattice since they have similar local environments and, thus, similar SIFT
descriptors. We point out that AiSurf is currently not designed to distinguish different domains; for example,
translational or rotational domains [45, 46] will be recognized as a single one. The reference cluster is by
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default the one with most keypoints, but users can change it at their preference. In order to obtain the lattice
vectors, the nearest neighbors are computed for every keypoint of the reference cluster. These nearest
neighbors are grouped into sub-clusters, used to calculate the distance vectors from the reference point. The
centers of mass of these sub-clusters represent possible lattice vector candidates. The two shortest, linear
independent candidates are chosen as lattice vectors a⃗ and b⃗. Finally, a Bravais lattice is generated by linear
combinations of these lattice vectors. Figure 1(b) shows a visual representation of this process. We note that
the identification of lattice vectors and Bravais lattice is based uniquely on the reference cluster, and all other
clusters are not verified to hold the same vectors: this choice allows to exclude spurious effects arising from
defects, i.e. non-periodic features’ distributions.

After determining the lattice vectors, it is possible to calculate the sublattice positions by processing all
detected keypoints again. For each keypoint we compute its position within the newly-obtained unit cell; the
resulting distribution of positions within the unit cell is then clustered. The center of mass of each cluster is
calculated using the Bai-Breen method [47], which accounts for the periodic boundary conditions. The
resulting distribution of keypoints in the unit cell is visible in the top-right inset of figure 1(c). Up to this
point, the keypoints were labeled according to the clustering performed on the descriptors, which allowed for
the selection of the reference cluster for the lattice vectors identification. Now, every keypoint is labeled
according to its sublattice position.

AiSurf can also plot an average view of the unit cell by averaging the area around each keypoint belonging
to the same atomic species. The predicted unit cell and its sublattice positions are then drawn. The bottom
left of figure 1(c) shows the image extracted with this method.

3. Results and discussion

3.1. Experimental and simulated AFM images
The images of anatase TiO2(101) in figure 1, the SrO termination of cleaved SrTiO3(001) in figures 2(b) and
(c) and rutile TiO2(110) in figure 3 have been obtained using non-contact atomic force microscopy
(nc-AFM) [2, 48] in constant-height mode and ultra-high vacuum, whereas the nc-AFM image of graphene
was simulated. The signal displayed as grayscale image is the frequency shift∆f. Details on the experimental
and computational setups are given below.

Figure 2(a) shows a constant-height nc-AFM image simulated using the probe particle model [36, 37] on
free-standing graphene with C vacancies in a regular pattern, and three N atoms substituting C in the sites
neighboring the vacancy. The simulation was performed using a CO-terminated AFM tip [8] (oriented with
the O atom towards the surface) at a distance of 0.36 nm from the most-protruding atom in the surface slab,
using an oscillation amplitude of 200 pm. The CO tip, with a negative−0.05e− charge on the protruding O
atom, was characterized by a spring constant of 0.5 Nm−1. The simulation was performed over a 8× 8 nm2

surface area, with 802× 802 pixels.
Figure 2(b) shows an unreconstructed SrO-terminated region on a cleaved SrTiO3(001) surface [49, 50].

This termination consists of Sr and O atoms, organized in a (1× 1) square pattern, with a characteristic
concentration of 0.14± 0.02 monolayers of point defects in the form of Sr vacancies. The image was
acquired in close vicinity to the surface using an O-terminated tip [51], such that Sr and O atoms are
detected in the attractive (dark) and repulsive regime (bright), respectively; Sr vacancies are imaged as bright,
cross-shaped features. The gradually decaying contrast from the bottom to the top of the image is due to the
over-compensation of vertical drift caused by creep of the piezo scanner, moving the AFM sensor away from
the surface. The image was obtained with no application of tip-sample bias voltage, with an oscillation
amplitude of 100 pm, over a 5.4× 5.4 nm2 surface region with 400× 400 pixels. Imaging was performed in
ultra-high vacuum with base pressure below 1×10−11 mbar, at a sample temperature of 5 K.

Figure 2(c) shows a lower-quality image of the surface displayed in figure 2(b). In addition to the
intrinsic Sr vacancies imaged in the form of cross-shaped point defects, this surface also hosts protruding
defects (in a concentration of less than 0.5%, displayed as dark regions) that typically appear after a surface is
exposed to the residual gas in ultra-high vacuum for several days. The contrast differences in the four image
regions are due to different tip-sample distances throughout the image since the nc-AFM tip was manually
retracted/approached to the surface to avoid contact with the protruding defects. The image was obtained
with an oscillation amplitude of 300 pm, without applying a bias voltage, over a 16.5× 16.5 nm2 region with
400× 400 pixels. Imaging was performed under the same conditions of figure 2(b).

The nc-AFM image of clean rutile TiO2(110) shown in figure 3(a) was acquired during a previous
study [52]. This surface consists of rows of two-fold coordinated bridging O2c atoms and five-fold
coordinated Ti5c atoms, running along the [001] and alternating along the [11̄0] direction; the rows of O
atoms are occasionally interrupted by single point defects in the form of oxygen vacancies. Bright spots
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Figure 2. Application of AiSurf to different AFM images: simulated graphene with C vacancies (a), (d); SrTiO3(001) with Sr
vacancies (b), (c), (e), (f). Panels (a)–(c): Surfaces with detected keypoints; color coding indicates different clusters. On graphene,
C atoms appear bright (repulsive). On SrTiO3, Sr vacancies are imaged as bright, cross-shaped features, Sr atoms are imaged as
dark spots; O atoms are located in the bright sites between Sr atoms. Panels (d)–(f): Corresponding lattice analysis for different
sublattices (the color gradients indicates deviations from the predicted perfect lattice); the bottom insets show the predicted unit
cell. The top-right insets in (d) and (e) are schematic views of the surface structures; the insets in (a), (c), (d) and (f) show
zoomed image patches.

indicate O atoms detected in the repulsive regime, whereas O vacancies are imaged as missing spots (the Ti
atoms are too distant from the tip and are not detected by nc-AFM).

The constant-height nc-AFM image of a rutile TiO2(110) covered by CO molecules shown in figure 3(b)
was acquired during a previous study [53]. Imaging was performed with a CO-terminated tip that detects
each adsorbed CO molecule as a bright spot; bridging oxygen atoms are not resolved because the adsorbed
CO molecules protrude significantly more.

3.2. Automated analysis and discussion
The results obtained by AiSurf for graphene and SrTiO3(001) are collected in figure 2. The parameters used
for this analysis are included in the code repository. Three images were analyzed to test the capabilities of
AiSurf under different conditions. Figure 2(a) shows a simulated image of graphene, used here to inspect the
capability of our algorithm in fully controlled conditions; figure 2(b) shows a typical experimental AFM
image of SrTiO3(001) with high contrast, which represents a more realistic case; the experimental image in
figure 2(c) shows multiple artifacts, and strong contrast variations; it has been used to test the capabilities of
the algorithm under challenging conditions.

Figures 2(a)–(c) show the keypoints detected by AiSurf, marked with colored circles in a part of the
image (each cluster with a different color). These are the keypoints left after the filtering process described in
section 2. It can be noticed how the SIFT algorithm can accurately detect the centers of the features, even if
they are only a few pixels in size, as the ones in figures 2(a) and (c). This is vital for the lattice recognition
analysis since off-centered keypoints lead to inaccurate predictions. This first clustering process may not
correctly detect all the different atomic species in the image but guarantees that the largest clusters contain
features of the same type, which is needed for a successful analysis. Indeed, figures 2(a)–(c) show that atoms
surrounding defects are typically assigned to different clusters for the same atomic species far from the
defects; this apparent misclassification gets corrected during the sublattice recognition, where keypoints are
labeled according to their sublattice position instead of the descriptor.

In all cases, the identification of lattice vectors and unit cells works with good accuracy. Since defects are
neglected in the lattice vector extraction, they pose no challenge to the algorithm. However, some atoms are
not detected, leading to gaps in the lattices shown in the bottom-row images. In addition, the breaking of
rotational invariance leads to a separation of the carbon sublattices (see figure 2(a)) and a distinction
between keypoints next to a defect (based on the direction the defect lies). The knowledge of the lattice
periodicity allows us to identify any deviation from a regular pattern. Figures 2(d)–(f) show the vectors
between keypoints belonging to the same sublattice, with a color coding depicting the vectorial difference
from the predicted average. This distance-deviation plot helps detect displacements due to the presence of
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Figure 3. Automated analysis of experimental AFM images of rutile TiO2(110) with (c), (d) and without (a), (b) CO adsorbates.
Panel (a): bridging oxygen atoms protruding from the rutile surface show rows of bright spots interrupted by oxygen vacancies;
the red circles indicates the automatic detection of these oxygen atoms. The inset shows a sketch of the surface structure: the
protruding bridging oxygen atoms are labeled as ‘O2c’, while the surface Ti and O atoms are labeled as ‘Ti5c’ and ‘O3c’, respectively.
Adapted from [52]. CC BY 4.0. Panel (b): deviation plot, showing the deviations from the lattice vectors. The predicted unit cell is
shown in the inset. Panel (c): adsorbed CO molecules are shown as bright spots; CO on Ti5c atoms are marked with red circles;
Adapted figure with permission from [53], Copyright (2019) by the American Physical Society. Panel (d): analysis of the CO-CO
distance for every CO on Ti5c atom detected in the experimental image.

defects and other sources of distortions. Figure 2(d) shows slight displacements only around the nitrogen
impurities. The top-right inset depicts the ideal lattice and highlights the two inequivalent C atoms (‘C1’ and
‘C2’). The bottom-left inset shows the average predicted unit cell; an orange and a blue circles represent the
two carbon atoms. The algorithm has recognized the green circle at the center of the cell as a feature due to
its strong contrast with the other ones, but this feature is not an atom, it rather marks the absence of an atom
at the center of the ring of C atoms. All the images, except for the insets with white background, have been
automatically generated by the algorithm.

Figure 2(e) shows the Sr sublattice and that of the fourfold sites between the Sr atoms (the O sites), as
well as the vector deviations. As expected, deviations are present in the proximity of defects; ‘Sublattice 2’
shows some misclassified points but evident distortions. The square unit cell has been flawlessly extracted.
Figure 2(f), used to test the algorithm’s capabilities for images with more noise and experimental artifacts,
shows overall positive results. Sublattice 1, defined by O lattice sites, presents several unrecognized areas,
especially in the low-contrast regions. Distance deviations might not be reliable in this case. Sublattice 2
posed a lower challenge for its detection. The zoomed areas show that the algorithm can detect features even
when barely visible. The unit cell has been successfully extracted.

Figure 3 shows the application of AiSurf to rutile TiO2(110) with and without CO adsorbates [53].
Figure 3(a) shows some detected bridging oxygen atoms, highlighted in red. The corresponding deviation
plot is shown on figure 3(b): deviations near oxygen vacancies are visible; away from vacancy sites, no
relevant deviations are present. This image is a good example of how defect-induced deviations can be easily
highlighted with AiSurf. Such local structural distortions could play a role in chemical reactions between
surface and adsorbates and might also facilitate the formation and identification of metastable
configurations [54]. The inset in figure 3(b) shows the average unit cell. Other than the central oxygen atom
(labeled as ‘O2c’ in figure 3(a) inset), two other features are present in the cell at the position of the three-fold
coordinated oxygen atoms (‘O3c’).

6
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Figures 3(c) and (d) show the analysis of CO molecules adsorbed on rutile TiO2(110). CO molecules
adsorb both on five-fold coordinated Ti atoms and at oxygen vacancies. CO on Ti atoms are highlighted with
red circles in figure 3(c). The CO-CO distances distribution on these sites is shown in panel (d). In the latter
one can easily visualize details barely visible from the original AFM image: neighboring CO along a⃗ ([001]
direction) tend to repel each other by slightly tilting away from the surface normal, unlike second nearest
neighbor CO or CO belonging to different rows. This can be noticed by observing the different shape of the
two clusters at the center of panel (d), which are differently distributed than the others, marking an absence
of short-distance neighboring CO. This result agrees with density functional theory calculations [55, 56].
Without computer tools, such details can be overlooked in content-rich images like figure 3(c).

While AiSurf is an aid for finding features in atomically resolved AFM images, determination of unit
cells, and deviations from a regular arrangement, the interpretation is mostly left to the user. First, it has to
be noted that the SIFT algorithm is based on detection of local minima and maxima. A minimum or
maximum is not necessarily a physical feature, as exemplified by the hollow sites in the hexagonal graphene
rings in figures 2(a) and (d) or the minima in figure 1(c) (blue dot in the bottom inset, no atom is detected in
this position, labeling this site as a Ti atom is an interpretation). In the SrTiO3 case, the maxima between the
dark Sr sites (sublattice 1 in figures 2(e) and (f)) are at the positions of the O atoms, but this is a mere
coincidence. Areas with Sr vacancies show that the O sublattice is not resolved; these areas appear with
roughly constant brightness and do not show the O atoms as maxima.

When analyzing displacements, it is important to be aware of the influence of the tip on imaging.
Especially tips with a rather wobbly termination such as CO-functionalized tips can easily deform due to
(electrostatic) forces on the tip [36]; this can lead to apparent displacements of the surface atoms [37].
Oxygen-terminated tips tend to be stiffer, but even in the absence of tip deformation the minima or maxima
in∆f images may not exactly coincide with the atomic positions. In our SrTiO3 example, the Sr vacancies are
charged defects, thus they will distort the electrostatic field in their vicinity. Since the negative frequency shift
above the Sr atoms is due to electrostatic attraction between the O-terminated tip and the positive Sr atom,
the field of a neighboring vacancy will influence the position of the∆fminimum. Thus, the displacements
around the Sr vacancies (yellow and orange vectors in figure 2(e)) do not necessarily reflect the atomic
coordinates, and they may be also related to the imaging process.

4. Summary and conclusions

In this work, various atomically resolved non-contact AFM images with different surface symmetries and
degrees of complexity were analyzed in an automated way using the open source tool AiSurf. At its present
state, AiSurf allows detecting the distribution of interatomic vectors in distinct sublattices and extracts
primitive lattice vectors, unit cell, and deviations from ideal lattices. We have shown results obtained on
simulated graphene with vacancies, as well as experimental images of anatase and rutile TiO2 (the latter with
and without CO adsorbates) and SrTiO3(001) with Sr vacancies. The distance-deviation plot proved to be
useful for the detection of lattice distortions caused by oxygen vacancies, and the CO tilting (see figures 3(b)
and (d) respectively). This could be applied to the analysis of any sources of lattice distortions. The algorithm
has been also tested on a lower-quality SrTiO3(001) experimental image affected by artifacts. Since the
underlying SIFT algorithm detects both maxima and minima, atomic features can be detected independent
of whether they appear with repulsive or attractive contrast. Furthermore, the algorithm makes no
assumption about the atoms showing circular symmetry; it can classify atoms consistently imaged as
asymmetric features due to an asymmetric tip.

Such robustness suggests further implementations for real-time analysis, parallel to the image acquisition
process. In addition, the application to atomically resolved images other than AFM ones (e.g. STM) is
believed to be possible and will be further tested. Future developments are already planned, such as the
identification and analysis of grain boundaries, domains and detection of defects. Another interesting feature
to address is the automatic identification of atomically resolved areas, extracted from overall poorly-resolved
images.

AiSurf is a user-friendly, documented unsupervised-ML tool that requires minimal user intervention and
no need to provide any image database. Developing a robust tool for analyzing atomically resolved images is
still an ambitious goal for both supervised and unsupervised techniques. The most adopted ones deliver
successful results for limited types of images, which usually present a good atomic contrast and/or are
acquired with a particular technique, such as the one for which they were designed. We aim to design a
protocol that relies on little or no prior knowledge of the physical system, hoping to achieve a wide degree of
flexibility. To conclude, we believe that providing intuitive and open access tools will help material scientists
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accelerate time-consuming tasks like image selection and analysis, and assist the detection of elusive features
in atomically-resolved images.

The AiSurf tool along with the necessary input data is publicly available on GitHub [57].

Data availability statement

The data that support the findings of this study will be openly available following an embargo at the
following URL/DOI: https://github.com/QuantumMaterialsModelling/AiSurf-Automated-Identification-of-
Surface-images. Data will be available from 2022 December 31.
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[37] Hapala P, Švec M, Stetsovych O, van der Heijden N J, Ondráček M, van der Lit J, Mutombo P, Swart I and Jelínek P 2016 Nat.

Commun. 7 1
[38] Boneschanscher M P, van der Lit J, Sun Z, Swart I, Liljeroth P and Vanmaekelbergh D 2012 ACS Nano 6 10216

8

https://github.com/QuantumMaterialsModelling/AiSurf-Automated-Identification-of-Surface-images
https://github.com/QuantumMaterialsModelling/AiSurf-Automated-Identification-of-Surface-images
https://orcid.org/0000-0001-6752-5539
https://orcid.org/0000-0001-6752-5539
https://orcid.org/0000-0001-8223-9928
https://orcid.org/0000-0001-8223-9928
https://orcid.org/0000-0002-7990-2984
https://orcid.org/0000-0002-7990-2984
https://doi.org/10.1103/RevModPhys.75.949
https://doi.org/10.1103/RevModPhys.75.949
https://doi.org/10.1038/s41570-016-0005
https://doi.org/10.1038/s41570-016-0005
https://doi.org/10.1103/PhysRevLett.123.066001
https://doi.org/10.1103/PhysRevLett.123.066001
https://doi.org/10.1038/s41567-018-0328-0
https://doi.org/10.1038/s41567-018-0328-0
https://doi.org/10.1103/PhysRevB.84.035435
https://doi.org/10.1103/PhysRevB.84.035435
https://doi.org/10.1103/PhysRevLett.109.076102
https://doi.org/10.1103/PhysRevLett.109.076102
https://doi.org/10.1126/science.1176210
https://doi.org/10.1126/science.1176210
https://doi.org/10.1126/sciadv.aay6913
https://doi.org/10.1126/sciadv.aay6913
https://doi.org/10.1038/s42005-020-0317-3
https://doi.org/10.1038/s42005-020-0317-3
https://doi.org/10.1021/acsnano.1c02104
https://doi.org/10.1021/acsnano.1c02104
https://doi.org/10.1038/s43586-022-00095-w
https://doi.org/10.1038/s43586-022-00095-w
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1038/s41524-022-00734-6
https://doi.org/10.1021/acsnano.8b02208
https://doi.org/10.1021/acsnano.8b02208
https://doi.org/10.1088/2632-2153/ab42ec
https://doi.org/10.1088/2632-2153/ab42ec
http://arxiv.org/abs/1801.05133
https://doi.org/10.1038/s41524-021-00621-6
https://doi.org/10.1038/s41524-021-00621-6
https://doi.org/10.1038/s41467-018-05169-6
https://doi.org/10.1038/s41467-018-05169-6
https://doi.org/10.1038/s41467-021-26511-5
https://doi.org/10.1038/s41467-021-26511-5
https://doi.org/10.3390/nano11071658
https://doi.org/10.3390/nano11071658
https://doi.org/10.1021/acsnano.6b04212
https://doi.org/10.1021/acsnano.6b04212
https://doi.org/10.1038/sdata.2018.172
https://doi.org/10.1038/sdata.2018.172
https://doi.org/10.18126/SZEQ-YDE5
https://doi.org/10.1088/2632-2153/ab9c3c
https://doi.org/10.1088/2632-2153/ab9c3c
10.48550/arxiv.1912.09027
https://doi.org/10.1021/acs.jcim.1c01323
https://doi.org/10.1021/acs.jcim.1c01323
https://doi.org/10.1017/S1431927619001831
https://doi.org/10.1017/S1431927619001831
https://doi.org/10.1017/S1431927621010436
https://doi.org/10.1017/S1431927621010436
https://doi.org/10.1186/s40679-017-0042-5
https://doi.org/10.1186/s40679-017-0042-5
https://doi.org/10.1038/ncomms8801
https://doi.org/10.1038/ncomms8801
https://doi.org/10.1186/s40679-018-0052-y
https://doi.org/10.1186/s40679-018-0052-y
https://doi.org/10.1186/s40679-016-0028-8
https://doi.org/10.1186/s40679-016-0028-8
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1017/S1431927610000371
https://doi.org/10.1017/S1431927610000371
https://doi.org/10.1103/PhysRevB.90.085421
https://doi.org/10.1103/PhysRevB.90.085421
https://doi.org/10.1038/ncomms11560
https://doi.org/10.1038/ncomms11560
https://doi.org/10.1021/nn3040155
https://doi.org/10.1021/nn3040155


Mach. Learn.: Sci. Technol. 4 (2023) 015015 M Corrias et al

[39] Bradski G 2000 Dr. Dobb’s Journal of Software Tools (available at: http://docs.opencv.org/)
[40] Burger W and Burge M J 2016 Digital Image Processing (Texts in Computer Science) (London: Springer)
[41] Pedregosa F et al 2011 J. Mach. Learn. Res. 12 2825
[42] Ward J 1963 J. Am. Stat. Assoc. 58 236
[43] Rousseeuw P J 1987 J. Comput. Appl. Math. 20 53
[44] Diebold U 2003 Surf. Sci. Rep. 48 53
[45] Hommrich J, Hümann S and Wandelt K 2002 Faraday Discuss. 121 129
[46] Lee S, Park J, Ragan R, Kim S, Lee Z, Lim D K, Ohlberg D A A and Williams R S 2006 J. Am. Chem. Soc. 128 5745
[47] Bai L and Breen D 2008 J. Graph. Tools 13 53
[48] Giessibl F J 2019 Rev. Sci. Instrum. 90 011101
[49] Sokolovíc I, Schmid M, Diebold U and Setvin M 2019 Phys. Rev. Mater. 3 034407
[50] Sokolovíc I, Franceschi G, Wang Z, Xu J, Pavelec J, Riva M, Schmid M, Diebold U and Setvín M 2021 Phys. Rev. B 103 L241406
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