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A B S T R A C T

Solving the analytical inverse kinematics (IK) of redundant manipulators in real time is a difficult problem
in robotics since its solution for a given target pose is not unique. Moreover, choosing the optimal IK
solution with respect to application-specific demands helps to improve the robustness and to increase the
success rate when driving the manipulator from its current configuration towards a desired pose. This is
necessary, especially in high-dynamic tasks like catching objects in mid-flights. To compute a suitable target
configuration in the joint space for a given target pose in the trajectory planning context, various factors such
as travel time or manipulability must be considered. However, these factors increase the complexity of the
overall problem which impedes real-time implementation. In this paper, a real-time framework to compute the
analytical inverse kinematics of a redundant robot is presented. To this end, the analytical IK of the redundant
manipulator is parameterized by so-called redundancy parameters, which are combined with a target pose to
yield a unique IK solution. Most existing works in the literature either try to approximate the direct mapping
from the desired pose of the manipulator to the solution of the IK or cluster the entire workspace to find IK
solutions. In contrast, the proposed framework directly learns these redundancy parameters by using a neural
network (NN) that provides the optimal IK solution with respect to the manipulability and the closeness to the
current robot configuration. Monte Carlo simulations show the effectiveness of the proposed approach which
is accurate and real-time capable (≈ 32 μs) on the KUKA LBR iiwa 14 R820.
. Introduction

The inverse kinematics (IK) [1] solution is fundamental for many
pplications in robotics involving motion planning, e.g., point-to-point
rajectory optimization [2,3], path-wise trajectory planning [4,5], dex-
erous grasping [6,7], and pick-and-place scenarios [8,9]. Solving the IK
roblem for a given target position in the task space yields the robot’s
onfiguration in joint space that satisfies the kinematic constraints [10].

There are three types of techniques to solve IK problems, i.e. the
lgebraic approach, see, e.g., [11,12], the analytical (or so-called ge-
metric) approach, see, e.g., [13,14], and the numerical (or so-called
terative) approach, see, e.g., [15,16]. In the algebraic approach, es-
entially systems of polynomial equations [17] are solved. Typically,
hey are classified as difficult algebraic computational problems [12].
n general, this algebraic problem can be solved for a manipulator
ith 6 degrees of freedom (DoF), see, e.g., [18], but is not gener-
lly applicable to kinematically redundant manipulators [19]. On the
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other hand, numerical methods, typically based on least-squares or
pseudoinverse formulations, are widely employed, see, e.g., [20], for
various kinematic structures due to their simplicity, low computing
time, and their generality. However, these methods may converge to
a local minimum that predominantly depends on the initial guess of
the solution.

In contrast to the numerical IK, the analytical IK computes the exact
solution, which is important for many industrial applications [21,22].
The computing time of the analytical IK solutions is much faster and
real-time capable, compared to the numerical approach. While the ana-
lytical IK is only available for specific robot kinematics, most industrial
robots are designed such that an analytical solution of the IK is avail-
able. Hence, the IK of 6-DoF industrial robots with a spherical wrist,
non-offset 7 DoF S-R-S redundant manipulators [23,24], e.g., KUKA LBR
iiwa 14 R820, but also the offset redundant manipulator, e.g., Franka
Emika Panda [25], OB7 [26], and Neura Robotics LARA [27], can be
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solved analytically. These manipulators are often referred to as collab-
orative robots (Cobot). Typically, the analytical IK parameterizes the
robot redundancy by additional (three) parameters, which are usually
named redundancy parameters. Examples are [13,28] for the non-offset
and offset redundant manipulator, respectively. Due to the redundant
nature of these parameters, infinite sets of parameters exist in general
yielding different IK solutions. However, finding the set of redundancy
parameters which represents the best IK solution of a specific task is a
non-trivial problem.

In this work, a learning-based framework to compute the optimal
set of redundancy parameters for an analytical IK is proposed. This
improves the computing performance for solving the IK problem, which
is essential for highly dynamic tasks like catching objects in mid-
flight or handing over objects between moving agents. These tasks
are frequently solved using trajectory optimization where typically
dynamic system constraints, state and control input constraints, and a
target pose constraint are considered.

The target pose constraint is often formulated in the task space and
for kinematically redundant robots, in which infinite joint configura-
tions satisfy this constraint. Utilizing the analytical IK in the trajectory
optimization problem allows to find the best target joint configuration
for a specific task. On the other hand, computing time becomes an issue
with this approach. Recently, [14] proposed a real-time capable closed-
form solution for the KUKA iiwa 14 R820, where the authors minimize
the joint velocities and accelerations while avoiding joint boundaries
for a trajectory tracking task. This approach does neither consider the
dynamic constraints nor the system state and input constraints in the
trajectory optimization.

In addition, it is crucial that the target configuration is well cho-
sen among the infinite solutions of the IK, i.e. close to the initial
robot configuration and with high manipulability. For example in a
dynamic handover of an object where the target is moving, see Fig. 1,
it is advantageous to choose a target configuration that maximizes
manipulability such that the robot end-effector can move to another
target configuration with high agility. Moreover, choosing a target
configuration that is close to the initial configuration of the robot can
lead to high performance of the trajectory optimization with a high
success rate. Including such criteria in the trajectory optimization is
the motivation for the work in this paper.

To this end, a learning-based framework to include additional,
application-specific criteria in the analytical IK of redundant robots is
proposed. First, a database of 108 random pairs of initial configurations
and target poses is generated. For each pair, the optimal trajectory is
computed using classical approaches, considering application-specific
criteria, and is stored in the database together with the set of optimal
redundancy parameters. This database serves as the basis to train a
neural network (NN), which is used to predict the optimal redun-
dancy parameters for the analytical IK in highly dynamic real-time
applications.

The main contribution of this work is a learning-based framework
that employs a NN to predict the redundancy parameters of an an-
alytical IK. This yields an optimal target joint configuration for a
given target pose by considering application-specific criteria. In this
work, the target joint configuration is chosen close to the current joint
configuration of the robot and to have a high measure of manipula-
bility. The proposed learning framework significantly speeds up the
computing time of the trajectory optimization problem. Note that the
proposed framework is tailored to the non-offset redundant manipula-
tor KUKA LBR iiwa 14 R820. Nevertheless, it is also applicable to other
kinematically redundant robots with an analytical IK, e.g., [25–27].

The remainder of this paper is organized as follows. Section 2
presents the mathematical modeling and analytical inverse kinematics.
Additionally, details of the point-to-point (PTP) trajectory optimization
problem and the algorithm for determining the optimal target joint
configuration w.r.t. application-specific criteria are given. The learning
framework for predicting the redundancy parameters for the analytical
IK problem including database generation and the proposed NN is
presented in Section 3. Simulation results are shown in Section 4. The
last section, Section 5, concludes this work.
2

Fig. 1. An example of a handover task between robot and human.

Table 1
Coordinate transformation of the robot.

Frame 𝑛 Frame 𝑚 Transformation matrix 𝐓𝑚
𝑛

0 1 𝐓𝐃,𝑧(𝑑1)𝐓𝐑,𝑧(𝑞1)

1 2 𝐓𝐃,𝑧(𝑑2)𝐓𝐑,𝑧(−𝜋)𝐓𝐑,𝑥(𝜋∕2)𝐓𝐑,𝑧(𝑞2)

2 3 𝐓𝐃,𝑦(𝑑3)𝐓𝐑,𝑧(𝜋)𝐓𝐑,𝑥(𝜋∕2)𝐑𝑧(𝑞3)

3 4 𝐓𝐓,𝑧(𝑑4)𝐓𝐑,𝑥(𝜋∕2)𝐓𝐑,𝑧(𝑞4)

4 5 𝐓𝐃,𝑦(𝑑5)𝐓𝐑,𝑧(𝜋)𝐓𝐑,𝑥(𝜋∕2)𝐓𝐑,𝑧(𝑞5)

5 6 𝐓𝐃,𝑦(𝑑6)𝐓𝐑,𝑥(𝜋∕2)𝐓𝐑,𝑧(𝑞6)

6 7 𝐓𝐃,𝑧(𝑑7)𝐓𝐑,𝑧(𝜋)𝐓𝐑,𝑥(𝜋∕2)𝐓𝐑,𝑧(𝑞7)

7 t 𝐓𝐃,𝑧(𝑑𝑡)

2. Trajectory optimization framework

This section presents the trajectory optimization framework which
is commonly used in robotics [29]. For example, in Fig. 1, with a given
target pose and a robot’s initial configuration, an optimal trajectory in
joint space is planned for the robot to catch an object.

In this section, the mathematical modeling of the KUKA LBR iiwa
14 R820, including kinematics and system dynamics, is briefly sum-
marized. Then, the analytical inverse kinematics with the redundancy
parameters of this redundant manipulator is presented in Section 2.2.
Subsequently, a point-to-point trajectory optimization is performed,
which is used to plan trajectories to the optimal target configuration,
explained in Section 2.4.

2.1. Mathematical modeling

The KUKA LBR iiwa 14 R820 is an anthropomorphic manipulator
due to its similarity to a human arm, which has an S-R-S kinematic
structure [23]. The coordinate frames 𝑖 and the corresponding seven
revolute joints 𝑞𝑖, 𝑖 = 1,… , 7, of the robot are shown in Fig. 2. The red,
green, and blue arrows represent the 𝑥-, 𝑦-, and 𝑧-axis, respectively. The
shoulder intersection position 𝐩𝑠 of the joint axes 𝑞1, 𝑞2, and 𝑞3 and the
wrist intersection position 𝐩𝑤 of the joint axes 𝑞5, 𝑞6, and 𝑞7 correspond
to the shoulder and wrist positions of the human arm, respectively. The
elbow position 𝐩𝑒 is in the center of the joint axis 𝑞4.

The robot is modeled as a rigid-body system with the generalized
coordinates 𝐪T = [𝑞1, 𝑞2,… , 𝑞7], see Fig. 2, which are the rotation angles
𝑞𝑖 around the 𝑧-axes (blue arrows) of each coordinate frame 𝑖, 𝑖 =
1,… , 7. To describe the kinematic relationship between the joint angles
and the pose of the robot links comprising position and orientation,
the homogeneous transformations 𝐓𝑚

𝑛 between two adjacent frames
𝑛 and 𝑚 are constructed, see Table 1. Here and in the following,
the homogeneous transformation of a simple translation by distance
𝑑 along the local axis 𝑗 ∈ {𝑥, 𝑦, 𝑧} is denoted by 𝐓 (𝑑), while an
𝐃,𝑗
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Fig. 2. Schematic drawing of the robot KUKA LBR iiwa. The 𝑥-, 𝑦-, and 𝑧-axis of each
coordinate frame are shown as red, green, and blue arrows, respectively.

Table 2
Kinematic and dynamic limits of the system.

Joint 𝑖 Joint limits Velocity limits Torque limits
𝑞𝑖 (◦) �̇�𝑖 (◦/s) 𝜏𝑖 (Nm)

1 170 85 320
2 120 85 320
3 170 100 176
4 120 75 176
5 170 130 110
6 120 135 40
7 175 135 40

elementary rotation around the local axis 𝑗 ∈ {𝑥, 𝑦, 𝑧} by the angle 𝜙
is described by 𝐓𝐑,𝑗 (𝜙). The end-effector transformation matrix 𝐓𝑒

0 is
referred to as forward kinematics and is computed in the form

𝐓𝑒
0 = FK(𝐪) =

7
∏

𝑖=0
𝐓𝑖+1
𝑖 =

[

𝐑7
0(𝐪) 𝐩𝑡(𝐪)
𝟎 𝟏

]

(1)

comprising the 3D tip position 𝐩𝑡 ∈ R3 and the 3D orientation of the
nd effector as rotation matrix 𝐑7

0 ∈ R3×3. The equations of motion are
erived using the Lagrange formalism, see, e.g., [1],

(𝐪)�̈� + 𝐂(𝐪, �̇�)�̇� + 𝐠(𝐪) = 𝝉 , (2)

here 𝐌(𝐪) denotes the symmetric and positive definite mass matrix,
(𝐪, �̇�) is the Coriolis matrix, 𝐠(𝐪) is the force vector associated with

the potential energy, and 𝝉 are the motor torque inputs. The kinematic
and dynamic parameters of the KUKA LBR iiwa in (2) are taken
from [30]. Since the mass matrix 𝐌(𝐪) is invertible, (2) is rewritten
3

𝐑

in the state-space form

�̇� =
[

�̇�
𝐌−1(𝐪)(𝝉 − 𝐂(𝐪, �̇�)�̇� − 𝐠(𝐪))

]

, (3)

with the system state 𝐱T = [𝐪T, �̇�T]. The kinematic and dynamic limits
of the robot [31] are summarized in Table 2. All limits are symmetric
w.r.t. zero, i.e. 𝑞𝑖 = −𝑞𝑖, �̇�𝑖 = −�̇�𝑖, and 𝜏𝑖 = −𝜏𝑖.

To reduce the complexity of the system dynamics (2), the vector
of joint acceleration �̈� is utilized as a new control input for planning a
rajectory in Section 2.3, i.e., 𝐮 = �̈� = 𝐌−1(𝐪)(𝝉−𝐂(𝐪, �̇�)�̇�−𝐠(𝐪)). Hence,
he system dynamics (3) is rewritten in the compact form

̇ =
[

�̇�
𝐮

]

. (4)

.2. Analytical inverse kinematics

Typically in manipulation tasks, the desired end-effector pose for a
oint-to-point motion is given in the 6D Cartesian space in the form,
f. (1)

𝑒
0,𝑑 =

[

𝐑𝑒
0,𝑑 𝐩𝑡,𝑑
𝟎 1

]

. (5)

o compute the robot joint configuration 𝐪 from a desired end-effector
ose 𝐓𝑒

0,𝑑 , the inverse kinematics (IK) of the robot has to be solved. In
he following, an inverse kinematics solution with redundancy param-
ters tailored to the non-offset 7-DoF robot KUKA LBR iiwa 14 R820
s shortly revisited, see, e.g., [13]. Similar to [24,32], the redundancy
arameters of this robot are chosen as the binary vector 𝐣T𝑐 = [𝑗𝑠, 𝑗𝑒, 𝑗𝑤]

and the angle 𝜑, which are introduced below.
With a given end-effector pose 𝐓𝑒

0,𝑑 , the position of the robot wrist
𝐩𝑤 in the world frame is fixed and is computed as

𝐩𝑤 = 𝐩𝑡,𝑑 − 𝐑7
0,𝑑

[

0 0 𝑑7 + 𝑑𝑡
]T , (6)

with the distance from the wrist point to the end effector of the
robot 𝑑7 + 𝑑𝑡. The vector 𝐩𝑠𝑤 from the fixed shoulder position 𝐩𝑠 =
0 0 𝑑1 + 𝑑2

]T to the wrist position 𝐩𝑤 is expressed as 𝐩𝑠𝑤 = 𝐩𝑤−𝐩𝑠.
sing the law of cosines in the triangle formed by the shoulder, elbow,
nd wrist, the joint position 𝑞4 is immediately calculated as

4 = 𝑗𝑒 arccos

(

|𝐩𝑠𝑤|2 − 𝑑2𝑠𝑒 − 𝑑2𝑒𝑤
2𝑑𝑠𝑒𝑑𝑒𝑤

)

, (7)

here 𝑑𝑠𝑒 = 𝑑3 + 𝑑4 is the distance from the shoulder to the elbow and
𝑒𝑤 = 𝑑5 + 𝑑6 is the distance from the elbow to the wrist. In (7), the
inary redundancy parameter 𝐣𝑒 ∈ {−1, 1} distinguishes between the
lbow-up and the elbow-down configuration.

The constellation of the shoulder, elbow, and wrist position forms
wo triangles of which the sides have a constant length for a given
nd-effector pose. Further, these three points and the two triangles
ie on a plane, denoted as arm plane, which can be rotated around
he vector 𝐩𝑠𝑤 resulting in two cones, see Fig. 3. Thereby, the elbow
osition 𝑝𝑒 always stays on the perimeter of the cone bases. As a
esult, the robot can perform self-motions by moving the elbow on this
erimeter. To this end, an arm angle 𝜑 is introduced as a redundancy
arameter, referring to the angle between a reference arm with the
pecial configuration 𝑞3,𝑛 = 0 (red lines in Fig. 3), and the actual arm
lane (blue lines in Fig. 3). Here and in the following, the index 𝑛 refers
o the reference arm configuration. The actual elbow orientation 𝐑4

0 is
quivalent to rotating the orientation of the reference elbow orientation
4
0,𝑛 about the shoulder–wrist vector 𝐩𝑠𝑤 by 𝜑, i.e.

4
0 = 𝐑𝜑𝐑4

0,𝑛, (8)

ith Rodrigues’ formula [10]
2

𝜑 = 𝐈3×3 + [𝐩𝑠𝑤]× sin𝜑 + [𝐩𝑠𝑤]×(1 − cos𝜑) , (9)
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Fig. 3. Two configurations of the KUKA iiwa at the same pose are illustrated in red and blue lines. The green rim indicates the virtual movement of the elbow position w.r.t the
specific end-effector pose. The red lines and blue lines illustrate the robot at the arm angle 𝜑 = 0 and 𝜑 = 95◦, respectively.
where 𝐈3×3 is the identity matrix, and [𝐚]× denotes the skew-symmetric
matrix of the vector 𝐚. Since 𝑞4 remains unchanged between the ref-
erence arm configuration and the actual arm configuration for a given
end-effector pose, (8) leads to

𝐑4
3 = 𝐑4

3,𝑛 (10a)

𝐑3
0 = 𝐑𝜑𝐑3

0,𝑛 (10b)

𝐑7
4 = (𝐑3

0𝐑
4
3)

T𝐑7
0,𝑑

= (𝐑𝜑𝐑3
0,𝑛𝐑

4
3,𝑛)

T𝐑7
0,𝑑

(10c)

Note that 𝐑3
0,𝑛 depends only on the joint angles 𝑞1,𝑛 and 𝑞2,𝑛, since

𝑞3,𝑛 = 0 in the reference configuration. The joint angles 𝑞1,𝑛 and 𝑞2,𝑛,
shown in Fig. 4, are simply found as

𝑞1,𝑛 = arctan2(𝑝𝑠𝑤,𝑥, 𝑝𝑠𝑤,𝑦) (11a)

𝑞2,𝑛 = arctan2
(
√

(𝑝𝑠𝑤,𝑥)2 + (𝑝𝑠𝑤,𝑦)2, 𝑝𝑠𝑤,𝑧

)

+ 𝛾 , (11b)

with 𝐩T𝑠𝑤 = [𝑝𝑠𝑤,𝑥, 𝑝𝑠𝑤,𝑦, 𝑝𝑠𝑤,𝑧], and

𝛾 = 𝑗𝑒 arccos

(

𝑑2𝑠𝑒 + |𝐩𝑠𝑤|2 − 𝑑2𝑒𝑤
2𝑑𝑠𝑒|𝐩𝑠𝑤|

)

.

Note that 𝐑3
0 and 𝐑7

4 can be directly computed using (10b), (10c) and
Table 1. Analytically, the rotation matrices 𝐑3

0 and 𝐑7
4 result from

Table 1 in the form

𝐑3
0 =

⎡

⎢

⎢

⎣

∗ ∗ cos 𝑞1 sin 𝑞2
∗ ∗ sin 𝑞1 sin 𝑞2

− sin 𝑞2 cos 𝑞3 sin 𝑞2 sin 𝑞3 cos 𝑞2

⎤

⎥

⎥

⎦

(12a)

𝐑7
4 =

⎡

⎢

⎢

⎣

∗ ∗ cos 𝑞5 sin 𝑞6
− sin 𝑞6 cos 𝑞7 sin 𝑞6 sin 𝑞7 cos 𝑞6

∗ ∗ − sin 𝑞5 sin 𝑞6

⎤

⎥

⎥

⎦

, (12b)

where the elements written as ∗ are omitted for brevity. From (12),
the joint angles of the redundant manipulator are computed in a
straightforward manner

𝑞1 = arctan2(𝐑3
0[2, 3],𝐑

3
0[1, 3])

𝑞2 = 𝑗𝑠 arccos(𝐑3
0[3, 3])

𝑞3 = arctan2(𝐑3
0[3, 2],−𝐑

3
0[3, 1])

𝑞5 = arctan2(−𝐑7
4[3, 3],𝐑

7
4[1, 3])

𝑞6 = 𝑗𝑤 arccos(𝐑7
4[2, 3])

7 7

(13)
4

𝑞7 = arctan 2(𝐑4[2, 2],−𝐑4[2, 1]) ,
Fig. 4. The redundant manipulator (𝑞3,𝑛 = 0) in the 𝑥𝑦-plane (a) and in the 3D
𝑥𝑦𝑧-plane (b). The shoulder, elbow, and wrist positions are colinear in (a).

where 𝑗𝑠, 𝑗𝑤 ∈ {−1, 1} are the remaining binary redundancy parameters

and 𝐑[𝑖, 𝑗] is the matrix element of the 𝑖th row and 𝑗th column of 𝐑.
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In summary, the parameterization of the inverse kinematics solution
uses the three binary variables 𝐣T𝑐 = [𝑗𝑠, 𝑗𝑒, 𝑗𝑤] and the arm angle 𝜑
in (7) and (13) as redundancy parameters to determine a unique joint
configuration 𝐪 for a desired end-effector pose 𝐓𝑒

0,𝑑 . In Fig. 3, the blue
lines illustrate a possible robot configuration with 𝐣𝑐 = [1,−1, 1]T that is
rotated by 𝜑 = 95° from the reference arm plane, drawn with red lines.
To this end, by combining (7) and (13), the unique analytical inverse
kinematics of the KUKA LBR iiwa 14 reduces to the compact form

𝐪 = AIK(𝐓𝑒
0,𝑑 , 𝐣𝑐 , 𝜑), (14)

with the redundancy parameters 𝐣𝑐 ∈ {1,−1}3 and 𝜑 ∈ [0, 2𝜋].

2.3. Point-to-point trajectory optimization

In the point-to-point (PTP) trajectory planning, a desired trajectory
𝝃∗(𝑡) = [𝐱∗(𝑡),𝐮∗(𝑡)]T, 𝑡 ∈ [𝑡0, 𝑡𝐹 ] for the robotic system (4) is planned
from an initial configuration 𝝃∗(𝑡0) = [𝐱𝑡0 ,𝐮𝑡0 ]

T to a target configuration
𝝃∗(𝑡𝐹 ) = [𝐱𝑡𝐹 ,𝐮𝑡𝐹 ]

T. The target configuration has to satisfy the forward
kinematics relation for the desired end-effector pose 𝐓𝑒

0,𝑑 , see (1)

𝐓𝑒
0,𝑑 − FK(𝐪𝑡𝐹 ) = 𝟎 (15)

Without loss of generality, the initial time 𝑡0 is chosen as 𝑡0 = 0.
Furthermore, the target configuration is assumed to be a stationary
point 𝐱T𝑡𝐹 = [𝐪T𝑡𝐹 , 𝟎

T].
The PTP trajectory planning is formulated as optimization problem

using the direct collocation method, see, e.g., [33], by discretizing the
trajectory 𝝃(𝑡), 𝑡 ∈ [0, 𝑡𝐹 ], with 𝑁+1 grid points and solving the resulting
static optimization problem

min
𝝃∗

𝐽 (𝝃) = 𝑡𝐹 + 1
2
ℎ

𝑁
∑

𝑘=0
𝐮T𝑘𝐑𝐮𝑘 (16a)

.t. 𝐱𝑘+1 − 𝐱𝑘 = 1
2
ℎ
[

�̇�𝑘+1 + �̇�𝑘
𝐮𝑘+1 + 𝐮𝑘

]

(16b)

𝐱0 = 𝐱𝑡0 , 𝐱𝑁 = 𝐱𝑡𝐹 (16c)

𝐱 ≤ 𝐱𝑘 ≤ 𝐱 (16d)

𝝉 ≤ 𝐌(𝐪𝑘)𝐮𝑘 + 𝐂(𝐪𝑘, �̇�𝑘)�̇�𝑘 + 𝐠(𝐪𝑘) ≤ 𝝉 (16e)
𝑘 = 0,… , 𝑁

for the optimal trajectory

(𝝃∗)T = [𝑡∗𝐹 , (𝐱
∗
0)

T,… , (𝐱∗𝑁 )T, (𝐮∗0)
T,… , (𝐮∗𝑁 )T], (17)

with the time step ℎ = 𝑡𝐹 ∕𝑁 . Note that the final time 𝑡∗𝐹 in (17) denotes
he optimal duration of the trajectory from the initial state 𝐱𝑡0 to the
arget state 𝐱𝑡𝐹 . In addition, 𝐑 is a positive definite weighting matrix
or the input 𝐮 which also weighs the tradeoff between the cost of the

duration and the smoothness of the trajectory. The system dynamics
(4) is approximated by the trapezoidal rule in (16b). Moreover, 𝐱 and
𝐱 in (16d) denote the symmetric lower and upper bounds of the state,
respectively, and (16e) considers the upper and lower torque limit 𝝉
nd 𝝉.

It should be noted that (16e) is a computationally expensive in-
quality constraint, mainly because of the large expressions in the
oriolis matrix 𝐂(𝐪, �̇�). Indeed, the Coriolis matrix is often neglected

n industrial applications [34,35]. To still consider the influence of the
oriolis matrix 𝐂(𝐪, �̇�) for the torque limits, the range of values of the
erm 𝐂(𝐪, �̇�)�̇� is investigated for the KUKA LBR iiwa 14 R820 using a
onte Carlo simulation. In this simulation, 108 uniformly distributed

andom state vectors 𝐱 are selected from the admissible operating
ange, see Table 2. This simulation shows that the values of 𝐂�̇� are
etween 𝐜T = [6, 8, 3, 4, 1, 1, 0.1] Nm and 𝐜T = −[6, 7, 3, 4, 1, 1, 0.1] Nm,
hich is much smaller than the torque limits of the motor. Although the

nfluence of the Coriolis matrix on the dynamics of the overall system is
ot significant, it is still advantageous to consider these physical limits
5

n the optimization problem (16). To this end, the costly inequality
ondition (16e) is replaced by

− 𝐜 ≤ (𝐌(𝐪𝑘)𝐮𝑘 + 𝐠(𝐪𝑘)) ≤ 𝝉 − 𝐜 . (18)

The optimal trajectory is computed by solving the static optimization
problem (16a)–(16d) and (18) using Interior Point OPTimize (IPOPT),
an open-source package based on the interior point method (IPM) for
large-scale nonlinear programming, see, e.g., [36].

2.4. Optimal target configuration 𝐪𝑡𝐹

In this section, the optimal choice for the target configuration 𝐪𝑡𝐹
is discussed. The inverse kinematics for a redundant robot does not
yield a unique joint configuration 𝐪𝑡𝐹 , as presented in Section 2.2.
Moreover, choosing an unsuitable target configuration 𝐪𝑡𝐹 may cause
the trajectory optimization (16) to fail or deliver poor results.

For redundant robots, there is an infinite number of joint config-
uration solutions 𝐪𝑡𝐹 for a desired end-effector pose 𝐓𝑒

0,𝑑 . Therefore,
two criteria for selecting the best inverse kinematics solution, i.e. the
manipulability and closeness, are introduced in the following and an
optimization problem is formulated.

First, the manipulability 𝑚(𝐪) [37] is the most popular index used
o measure the dexterity of a robot for a specific joint configuration 𝐪.

It is defined as

𝑚(𝐪) =
√

det
(

𝐉(𝐪)𝐉T(𝐪)
)

, (19)

here the geometric manipulator Jacobian 𝐉(𝐪) takes the form

(𝐪) =
[

𝐉𝑣(𝐪)
𝐉𝜔(𝐪)

]

=

⎡

⎢

⎢

⎢

⎣

𝜕𝐩𝑡(𝐪)
𝜕𝐪

𝜕𝝎𝑡(𝐪)
𝜕𝐪

⎤

⎥

⎥

⎥

⎦

. (20)

In (20), 𝝎𝑡 is the angular velocity of the end effector described in the
frame 0, which is computed by

[𝝎𝑡]× = �̇�7
0(𝐪)

(

𝐑7
0(𝐪)

)T
. (21)

o reduce the computational burden of (19) due to the computation
f the determinant, an analytical expression of the manipulability is
erived, which is given in the appendix.

Second, to consider the closeness between the inverse kinematics
olution 𝐪 and the initial joint configuration 𝐪0 of the robot, the 𝐿∞-
orm ‖.‖∞ is employed to find the largest deviation between these two

joint space configurations. Here, the closeness is given by

𝑐(𝐪) = ‖𝐪0 − 𝐪‖∞, (22)

where 𝐪0 is the initial joint configuration of the initial state 𝐱0 = [𝐪T0 , 𝟎].
Next, the two criteria (19) and (22) are considered in an opti-

mization problem to choose the best target configuration 𝐪𝑡𝐹 for a
given target pose 𝐓𝑒

0,𝑑 . To solve this problem, according to (14), the
redundancy parameters of the inverse kinematics 𝐣𝑐 and 𝜑 have to be
determined. Since there are three binary redundancy parameters in 𝐣𝑐 ,
23 = 8 different values are contained in the set 𝐣𝑐 = {𝐣𝑐,𝑖 | 𝑖 = 1,… , 8}.

dditionally, the arm angle 𝜑 ∈ [0, 2𝜋] is equidistantly discretized with
he grid points

𝜑 =
{

𝑗 2𝜋
𝑛𝜑

|

|

|

𝑗 = 1,… , 𝑛𝜑

}

.

The following optimization problem is solved to find the best target
configuration 𝐪𝑡𝐹 = 𝐪∗𝑖,𝑗 as well as its corresponding redundancy
parameters 𝐣∗𝑐 and the virtual angle 𝜑∗ for the desired pose 𝐓𝑒

0,𝑑

arg min
𝐪∗𝑖,𝑗 ,𝐣

∗
𝑐 ,𝜑∗

{

𝐽𝐼𝐾 (𝐪0,𝐪𝑖,𝑗 )
}

𝑖 ∈ {1,… , 8}
𝑗 ∈ {1,… , 𝑛𝜑}

(23a)

s.t. 𝐽𝐼𝐾 (𝐪0,𝐪𝑖,𝑗 ) =
𝜔𝑚 + 𝜔𝑐𝑐(𝐪0,𝐪𝑖,𝑗 ) (23b)
𝑚(𝐪𝑖,𝑗 )
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Fig. 5. Block diagram of the optimization problem (23) and (16).

𝐪𝑖,𝑗 = AIK(𝐓𝑒
0,𝑑 , 𝐣𝑐,𝑖, 𝜑𝑗 ) (23c)

𝐪 ≤ 𝐪𝑖,𝑗 ≤ 𝐪 , (23d)

ith the user-defined weighting parameters 𝜔𝑚 > 0 and 𝜔𝑐 > 0. To
ompute an optimal trajectory 𝝃∗ from the current robot configuration,
epresented by 𝐪0, to the given desired pose 𝐓𝑒

0,𝑑 , the optimization
roblem (23) is solved first to obtain the optimal solution 𝐪∗𝑖,𝑗 =

𝐪𝑡𝐹 . Then, this optimal robot target configuration 𝐪𝑡𝐹 is used in the
TP trajectory optimization (16). The block diagram of this process is
llustrated in Fig. 5.

. Framework for learning redundancy parameters

The cost function (23b) and the inverse kinematics (23c) are non-
inear and discontinuous functions with many local minima, which is
llustrated on the right-hand side of Fig. 6 for an example joint con-
iguration 𝐪. Therefore, to find the global optimum, the optimization
roblem (23) has to be solved by exhaustive search, which is a time-
onsuming process since (23c) has to be evaluated 8𝑛𝜑 times, see Fig. 5.
o significantly reduce the computational effort for this step, a neural
etwork (NN) is presented in this section to quickly determine the joint
onfiguration 𝐣∗𝑐 and narrow down the search space for the arm angle 𝜑∗

or a desired end-effector pose 𝐓𝑒
0,𝑑 and the given initial configuration

0. First, the generation of the database to train the NN for learning
he redundancy parameters 𝐣𝑐 and 𝜑 is introduced. Then, the network

architecture of this NN is presented in the next step.

3.1. Database generation

For the database generation, 𝑁𝑝 pairs of robot initial joint configu-
rations 𝐪0,𝑘 and corresponding feasible desired poses 𝐓𝑒,𝑘

0,𝑑 are randomly
selected from a uniform random distribution in the admissible ranges
and are stored in the set  = {𝜻𝑘} = {𝐪0,𝑘,𝐓

𝑒,𝑘
0,𝑑

|

|

|

𝑘 = 1,… , 𝑁𝑝}. For each
pair of 𝐪0,𝑘 and 𝐓𝑒,𝑘

0,𝑑 , the optimization problem (23) is solved by an
exhaustive search to find the global optimum redundancy parameters
𝐣∗𝑐 and 𝜑∗ as well as the target configuration 𝐪∗𝑡𝐹 . The redundancy
parameters are stored in the set  = {𝜼𝑘} = {𝐣𝑐,𝑘, 𝜑𝑘 | 𝑘 = 1,… , 𝑁𝑝}.
The database  = ( ,) comprises both sets  and  . Elements from
the set  are the input to the NN and elements from the set  are the
corresponding labeled outputs, see Fig. 7.

The input data in the set  contain redundant data due to the
constant bottom row in the desired pose 𝐓𝑒,𝑘

0,𝑑 , see (5). Therefore, only
𝑒,𝑑
6

the three basis vectors 𝐞𝑥,𝑘, 𝐞𝑦,𝑘, and 𝐞𝑧,𝑘, of 𝐑0 = [𝐞𝑥,𝑘, 𝐞𝑦,𝑘, 𝐞𝑧,𝑘] and r
the position of the end effector 𝐩𝑡,𝑘 are considered in the set  . Thus,
the input set  is re-arranged in the form

 = {𝜻𝑘 | 𝑘 = 1,… , 𝑁𝑝},

with

𝜻T𝑘 = [(𝐪0,𝑘)T, (𝐞𝑥,𝑘)T, (𝐞𝑦,𝑘)T, (𝐞𝑧,𝑘)T, (𝐩𝑡,𝑘)T] ∈ R19

Since (23b)–(23c) are discontinuous nonlinear functions, see Fig. 6,
a complex NN is required to approximate these functions. However,
the training and prediction time of such a neural network is very long,
making it impossible to be implemented in real time. Thus, instead of
directly predicting the virtual angle 𝜑, only the range of this angle,
denoted by the bin index 𝑏𝜑 ∈ {1,… , 𝑛𝑏} with the total number of bins
𝑛𝑏, is predicted. This way, the value of the bin index 𝑏𝜑 indicates that

the virtual angle 𝜑 is in the range
[

(𝑏𝜑 − 1) 2𝜋
𝑛𝑏

, 𝑏𝜑
2𝜋
𝑛𝑏

]

, 𝑏𝜑 = 1,… , 𝑛𝑏.
his helps to reduce the complexity and to realize the proposed NN for
real-time application. Consequently, 𝜑𝑘 is replaced by its bin index

𝜑,𝑘 ∈ {1,… , 𝑛𝑏} in the set  resulting in  = 𝜼𝑘 = {𝐣𝑐,𝑘, 𝑏𝜑,𝑘}.

.2. Network architecture

The architecture of the proposed NN is shown in Fig. 8. This NN is
esigned for the two sub-problems, i.e., to learn the joint configuration
𝑐 and the bin index 𝑏𝜑 of the arm angle 𝜑. Note that the input of
he proposed NN is 𝜻 ∈  and the output is the predicted value
T = [𝐣T𝑐 , 𝑏𝜑] ∈  .

First, two fully connected layers of size 32 with a ReLU activation
unction [39] are utilized, as shown in Fig. 8. Since there are 8
ossibilities for choosing 𝐣𝑐 , a fully connected layer of size 8 with a

softmax activation function [40] is employed to output 𝐣𝑐 . The cross-
ntropy function is used to compute the loss between the prediction 𝐣𝑐,𝑘
f the NN and the target value 𝐣𝑐,𝑘 in the form

𝐣𝑐 =
𝑀
∑

𝑘=1
−𝐣T𝑐,𝑘 log(𝐣𝑐,𝑘) + (𝟏 − 𝐣𝑐,𝑘)T log(𝟏 − 𝐣𝑐,𝑘) , (24)

here 𝑀 is the size of the training dataset.
Second, the predicted 𝐣𝑐 is concatenated with the input 𝜻 again as a

ew input for the second subproblem. Similar to the first subproblem,
wo fully connected layers of size 32 with a ReLU activation function are
sed. Subsequently, the fully connected layer of size 8 and the softmax
ctivation function are implemented to predict the bin index 𝑏𝜑 of the
rm angle 𝜑. Again, the cross entropy function is used to compute the
oss between the predicted value of the bin index �̂�𝜑 and the target
alue 𝑏𝜑

𝑏𝜑 =
𝑀
∑

𝑘=1
−𝑏𝜑,𝑘 log(�̂�𝜑,𝑘) + (1 − 𝑏𝜑,𝑘) log(1 − �̂�𝜑,𝑘). (25)

The proposed NN is trained by using the Adam [41] optimizer with
he learning rate of 𝛼 = 10−3. Furthermore, the L2 regularization [41]
ith 𝜆 = 10−6 is added to both loss functions L𝐣𝑐 and L𝑏𝜑 . This helps to
void overfitting [42].

. Results

The simulation results presented in this section are obtained on a
omputer with a 3.4 GHz Intel Core i7-10700K and 32 GB RAM. The
enerated database with 𝑁𝑝 = 108 pairs described in Section 3.1 is
andomly shuffled and divided into 3 subsets, i.e., training dataset,
alidation dataset, and test dataset, which are partitioned as 80%,
0%, and 10% of the generated database, respectively. To speed up the
omputing time of database generation, C++ code is generated for (23)
sing MATLAB coder in MATLAB R2021b. Additionally, the analytical
xpression of the manipulability in the appendix (29) is utilized. The

emaining parameters are chosen as 𝑛𝜑 = 100 and 𝑛𝑏 = 8. For the
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Fig. 6. The color map of the cost function (23b) for the initial configuration of the robot 𝐪0 (in gray color) and the position of the end effector (the RGB triad) is shown on
the right-hand side of this figure. The white color regions depict infeasible joint configurations. The robot target configuration 𝐪𝑡𝐹 computed by the proposed NN is shown in red
color on the left-hand side. This achieves a very small value of the cost function (23b) (≈ 0.0717). The target robot configuration calculated using the numerical method [38] is
depicted in green. The cost of this configuration is approximately 0.54.
Fig. 7. Overview of the proposed framework for learning the redundancy parameters.

database generation, the average computing time of (23) for a given
pose and initial joint configuration is approximately 1.5 m s. Since 𝑛𝜑 in
(23) is set to 100, the average computing time of the analytical inverse
kinematics expression in (23c) is approximate 1.8 μs.

4.1. Statistical information on training the proposed NN

The proposed NN is trained using the open-source software package
Keras [43]. To reduce the training time, the CUDA cores of an Nvidia
GeForce RTX 3070 are employed. During training, the mini-batch size
is set to 2000 and the training data is reshuffled in each epoch.

Fig. 9 shows that the learning accuracy for the joint configuration
𝐣𝑐 of the training dataset and the validation dataset after 500 epochs
reaches 96.62% and 95.76%, respectively. Also, the corresponding
values of the loss function L𝐣𝑐 decreased to 0.1034 and 0.1264, re-
spectively. To further validate the training result, the accuracy of
7

Table 3
Performance of the prediction with different algorithms.

Classifier Acc. 𝐣𝑐 % Acc. 𝑏𝜑 % Time μs Memory MB

Naive Bayes [44] 57.6 38.2 1.1 76.8
Discriminant analysis [45] 65.1 40.6 1.23 70.5
Binary decision tree [46] 77.8 65.5 0.35 89.6
𝑘-Nearest neighbor [47] 49.5 40.1 1810 76.8
Proposed NN 96.5 84.8 7.35 0.17

the test dataset with the trained parameters of the proposed NN is
approximately 96.49%.

Fig. 10 shows the accuracy of the training dataset and the validation
dataset with respect to the bin index 𝑏𝜑 of the arm angle 𝜑. Note that
the resulting accuracy is approximately 85.57% for the training dataset
and 85.12% for the validation dataset. The values of the loss function
L𝑏𝜑 are approximately 0.32 and 0.38 for the two datasets. To verify
the trained parameters of the proposed NN, a consistent accuracy of
84.78% is reported for the test dataset.

For further validation, the proposed NN is compared to the perfor-
mance of four well-known algorithms, i.e., naive Bayes classifier [44],
discriminant analysis classifier [45], binary decision tree classifier [46]
and 𝑘-nearest neighbor classifier [47]. Similar to the proposed NN, each
classifier takes the input 𝜻 ∈  and outputs the prediction 𝜼 ∈  . The
statistical performance of the four algorithms and the proposed NN is
shown in Table 3. Among the above algorithms, the binary decision
tree classifier achieves the highest prediction accuracy for 𝐣𝑐 and 𝑏𝜑,
i.e., 77.8% and 65.5%, respectively. Moreover, the average execution
time of this classifier is approximately 0.35 μs, i.e., the fastest algorithm.
However, the prediction accuracy of the proposed NN is still signifi-
cantly higher compared to the binary decision tree classifier. Another
aspect is the memory consumption, which is with 0.17 MB much less
compared to over 70 MB for each of the four other algorithms. This
is reasonable since in the proposed NN, the memory consumption is
mainly used for storing the network parameters.

The average NN execution time for the prediction of 𝐣𝑐 and 𝑏𝜑 is
about 7.35 μs. Also, the average computing of the analytical inverse
kinematics with the given 𝐣𝑐 and 𝑏𝜑 is about 2 μs. Thus, the proposed
NN provides the possibility to compute a good IK solution with respect
to the two criteria, i.e., manipulability (19) and closeness (22), in real
time.
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Fig. 8. Architecture of the proposed NN for learning the joint configuration 𝐣𝑐 and the bin index 𝑏𝜑 of the virtual angle 𝜑.
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Fig. 9. Training and validation accuracy of the joint configuration 𝐣𝑐 .

Fig. 10. Training and validation accuracy of the bin index 𝑏𝜑.
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.2. Performance of the proposed NN in the framework of trajectory opti-
ization

To verify the efficiency of the proposed NN, the example task of
lanning a PTP trajectory from the initial configuration

𝐪T0 = [−1.5,−0.1, 0.3, 0.7, 0.5,−0.6, 1.4] rad,

𝐣T𝑐,0 = [−1, 1,−1],

𝜑0 = 3.21 rad ,

o the target pose

𝑒
0,𝑑 =

⎡

⎢

⎢

⎢

⎢

⎣

0.863 0.262 −0.433 −0.55
0.003 0.853 0.522 0.160
0.505 −0.451 0.735 1.049
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, (26)

is considered.
First, the comparison between the well-known damped least-squares

inverse kinematics solution [10,38] and the proposed algorithm is
depicted in Fig. 6. On the right-hand side of Fig. 6, a color map
of (23b) is depicted where the 𝑥-axis comprises the 8 possible joint
configurations 𝐣𝑐 ∈ 𝐣𝑐 and the 𝑦-axis contains the 𝑛𝜑 = 100 arm
angles 𝜑 ∈ 𝜑. Using the network architecture of Fig. 8 with 𝑛𝑏 = 8,
the proposed NN takes about 7.35 μs to predict the joint configuration
𝐣𝑐 = [−1,−1,−1]T and the bin 𝑏𝜑 = 3, i.e. 𝜑 ∈ [𝜋∕2, 3𝜋∕4]. To find
the optimum value for the arm angle 𝜑 inside the predicted bin, (14)
and (23a) are evaluated on an equidistant grid for 𝜑 ∈ [𝜋∕2, 3𝜋∕4]
with 𝑛𝜑∕𝑛𝑏 grid points. This way, the effort to solve the optimization
problem (23) reduces from 8𝑛𝜑 = 800 to 𝑛𝜑∕𝑛𝑏 ≈ 13 evaluations of
(14) and (23b). Since the analytical manipulability expression (29) is
used in (23b), the computing time of (23b) is approximately 0.15 μs,

hich is much smaller than (14). Thus, the total execution time for
omputing the optimal target configuration 𝐪𝑡𝐹 is approximately 32 μs
ncluding the computing time of (14) of 2 μs. On the other hand, the
amped least-squares method in this example requires 17 iterations to
ind the solution of the inverse kinematics with a tolerance of 10−8.
he computing time of the numerical method is approximately 3 m s.

On the left-hand side of Fig. 6, the computed target configurations
or the given desired target pose 𝐓𝑒

0,𝑑 are

T
𝑡𝐹 ,𝐴

= [−0.55,−0.96,−0.71,−0.78,−0.45,−0.8, 1.55] rad,

𝐣T𝑐,𝐴 = [−1,−1,−1],

𝜑𝐴 = 2.17 rad

(27)

for the proposed algorithm (red color), and

𝐪T𝑡𝐹 ,𝑁 = [−0.7,−0.45, 1.1, 0.78, 0.43, 0.81,−0.82] rad,

𝐣T𝑐,𝑁 = [−1, 1, 1],

𝜑𝑁 = 3.8 rad

(28)

for the damped least-squares method (green color). It is obvious that

in this example the joint configuration solutions of the two methods
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𝐣𝑐,𝐴 and 𝐣𝑐,𝑁 are different from the initial joint configuration 𝐣𝑐,0. The
proposed solution has a slightly higher manipulability measure (29)
of 0.061 compared to the manipulability measure of 0.045 of the
numerical solution. The closeness value (22) of the proposed solution
is 1.49 which is significantly smaller than the closeness value of 2.23
of the numerical solution.

To further demonstrate the effectiveness of the proposed IK ap-
proach, the two target configurations (27) and (28) are used in the
trajectory optimization framework detailed in Section 2. The nonlinear
optimization problem (16) is solved using the interior point solver
IPOPT [36] together with the linear solver MA27 [48]. To increase the
computational speed, the gradient and the numerical Hessian are com-
puted using the BFGS method [49] and provided to the IPOPT solver.
The trajectory in (16) is discretized with 𝑁 = 50 collocation points,
giving a total of 1051 optimization variables. For this comparison, the
same initial configuration 𝐪0 and two different target configurations
𝐪𝑡𝐹 ,𝐴 according to (27) and 𝐪𝑡𝐹 ,𝑁 according to (28) of the pose 𝐓𝑒

0,𝑑
from (26) are used. While the computing time of the optimization (16)
for both target configurations is almost the same (55 m s), the time for
moving to the target configuration of the proposed algorithm 𝐪𝑡𝐹 ,𝐴 is
3.83 s compared to 4.03 s of the numerical solution 𝐪𝑡𝐹 ,𝑁 . Moreover, the
cost function in (16a) with 𝐪𝑡𝐹 ,𝐴 and 𝐪𝑡𝐹 ,𝑁 is 4.7 and 5.03, respectively.

The optimal trajectories 𝝃𝐴 and 𝝃𝑁 corresponding to the target
configurations (27) and (28), respectively, are validated on the exper-
imental setup depicted in Fig. 11. This experimental setup comprises
two main components, i.e. the robot KUKA LBR iiwa R820 and the
PC. The PC communicates with the robot via a network interface card
(NIC) using the EtherCAT protocol. The computed torque controller is
implemented as MATLAB/Simulink module, which is executed via the
real-time automation software Beckhoff TwinCAT. The sampling time
𝑇𝑠 = 125 μs is used for the robot sensors and actuators. The scaled
joint position, velocity, and torque for all robot axes, normalized to
their respecting limits for the two optimal trajectories 𝝃𝐴 and 𝝃𝑁 and
the corresponding measurements from the experiments are shown in
Fig. 12. Note that in this figure, the trajectories do not exceed the
value ±1, which means that all state and input constraints in (18) and
(16d) are respected. The travel time of the trajectory from the solution
of the proposed NN (≈ 3.9 s) is slightly shorter than that from the
numerical IK (≈ 4.1 s). Since the proposed NN is designed to select
the configuration that is closer to the robot’s initial configuration via
(22), the motion ranges of joints 6 and 7 of 𝝃𝐴 are much smaller than
the corresponding ranges of 𝝃𝑁 . Consequently, this could lead to a
more time-efficient optimal trajectory. A video of several experiments
for comparison can be found in the supplementary material in https:
//www.acin.tuwien.ac.at/en/360e/.

Finally, a Monte Carlo simulation is performed to validate the
efficiency of the proposed NN in the PTP trajectory optimization.
To this end, 105 pairs of initial robot configurations 𝐪0 and target
poses 𝐓𝑒

0,𝑑 are randomly selected from a uniform random distribution
in the admissible ranges. Then, the proposed NN and the numerical
IK are used to determine the target joint configuration and for each
target configuration, an optimal trajectory is calculated using (16). The
statistical results are summarized in Table 4. While the computing times
of (16) utilizing the target configuration of the proposed algorithm 𝐪𝑡𝐹 ,𝐴
and the numerical IK 𝐪𝑡𝐹 ,𝑁 are nearly the same (≈ 30 m s), the average
optimal trajectory time using the proposed algorithm is slightly better,
i.e. 4.52 s compared to 5.39 s.

Since the solution of the numerical IK depends on the initial guess,
13 896 test cases fail to converge to feasible target configurations. Note
that the maximum number of iterations for the numerical IK is 50.
Additionally, after excluding 13 896 failed cases, 1588 test cases are
not valid to plan the PTP trajectory using (16). Note that these test
cases fail because of violating the iteration limit, i.e., 100 iterations,
which is set in the IPOPT solver. The overall success rate by using
the numerical IK is approximately 84.5%. On the other hand, for the
proposed algorithm, in all the test cases, a feasible target configuration
9

Fig. 11. The experimental setup for the comparison between the proposed NN
algorithm and the numerical IK method.

Table 4
Performance of the proposed NN and the numerical IK [10] in the trajectory
optimization framework.

Proposed NN Numerical IK [10]

Avg. 𝑡𝐹 (s) 4.52 ± 1.93 5.39 ± 2.6
Cost value of (16a) 5.75 ± 2.79 6.69 ± 3.29
Num. of failed IK 0 13 896
Num. of failed PTP 554 1588
Success rate 99.5% 84.5%
Avg. comp. time (m s) of (16) 28.9 ± 13 30.3 ± 19

is found. Only 554 test cases fail during the planning of the PTP
trajectory due to the iteration limit of the IPOPT solver. Overall, the
proposed NN outperforms the numerical IK by achieving a success rate
of 99.5%.

5. Conclusions

In this work, a machine learning-based approach for the inverse
kinematics (IK) of kinematically redundant robots is presented, which
is suitable for trajectory planning in highly dynamic real-time appli-
cations like human–robot object handovers or robotic object catching.
In this approach, the optimal redundancy parameters are predicted
by a neural network (NN) according to the application-specific crite-
ria, closeness to the initial robot configuration and manipulability at
the target pose. Redundancy parameters, i.e. a virtual arm angle and
binary variables describing the joint configurations, resolve the non-
uniqueness of the analytical IK of redundant robots and allow for a
unique mapping between the target pose and the joint configuration.
Since a NN is employed, the proposed framework can be applied to
different collaborative robots, e.g., KUKA LBR iiwa 14 R820, Franka
Emika Panda, OB7, of which the analytical IK can be parameterized
by redundancy parameters. The NN used in the proposed framework
outperforms classical classification algorithms in terms of accuracy and

https://www.acin.tuwien.ac.at/en/360e/
https://www.acin.tuwien.ac.at/en/360e/
https://www.acin.tuwien.ac.at/en/360e/
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Fig. 12. Joint position, velocity, and torque for all robot axes, normalized to their
espective limits, referred to with the bar symbol, for optimal trajectories 𝝃𝐴 and 𝝃𝑁 of

the numerical IK and the proposed NN algorithm, respectively. The desired trajectories
are shown as solid lines and the measured trajectories are drawn as dashed lines.
For safety reasons, the limits for the motor torques are 50% lower than the limits in
Table 2.

the prediction run time. A Monte Carlo simulation of 105 random pairs
of an initial configuration and a target pose validates the proposed
algorithm in the context of point-to-point (PTP) trajectory optimization.
The proposed method succeeds in 99.5% of the test cases to find a
feasible target configuration while achieving a shorter optimal time of
the trajectory from the initial to the target pose on average compared
to using a numerical IK method at a significantly shorter computing
time (≈32 μs for the proposed IK compared to ≈3 m s for the numerical
IK). Thus, the proposed framework is perfectly suited for real-time
applications.

In future works, this machine learning-based framework will be
applied to dynamic human–robot handover tasks.
10
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ppendix

The square of the manipulability (19) [50] of the KUKA LBR iiwa
4 R820 [31] reads as
2(𝐪) = 2𝑑2𝑠𝑒𝑑

2
𝑒𝑤 sin2(𝑞4)⋅

[

𝑑2𝑠𝑒 sin
2(𝑞2) sin

2(𝑞4) cos2(𝑞5) cos2(𝑞6)+

𝑑2𝑒𝑤 cos2(𝑞2) cos2(𝑞3) sin
2(𝑞4) sin

2(𝑞6)+
(

𝑑2𝑠𝑒 + 2𝑑𝑠𝑒𝑑𝑒𝑤 cos(𝑞4) − 𝑑2𝑒𝑤
)

sin2(𝑞2) sin
2(𝑞6)+

1
2
(

𝑑2𝑠𝑒 cos(𝑞4) + 𝑑𝑠𝑒𝑑𝑒𝑤
)

sin2(𝑞2) sin(𝑞4) cos(𝑞5) sin(2𝑞6)+

1
2
(

𝑑2𝑒𝑤 cos(𝑞4) + 𝑑𝑠𝑒𝑑𝑒𝑤
)

sin(2𝑞2) cos(𝑞3) sin(𝑞4) sin
2(𝑞6)

]

,

(29)

here 𝑑𝑠𝑒 = 𝑑2 + 𝑑3 and 𝑑𝑒𝑤 = 𝑑4 + 𝑑5.

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.mechatronics.2023.102970.
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