
DIPLOMARBEIT

A fixed-point theorem for

Horn formula equations

ausgeführt am Institut für Diskrete Mathematik und Geometrie
der Technischen Universität Wien

unter der Anleitung von
Associate Prof. Dipl.-Ing. Dr.techn. Stefan Hetzl

durch

Johannes Kloibhofer

Kranzgasse 2/ 10
1150 Wien

November 16, 2020
Unterschrift

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Notations . 3
2.2 Formula equations . 5
2.3 Fixed-point logics . 6

2.3.1 Monotonous fixed point . 7
2.3.2 Inflationary fixed point . 7
2.3.3 Simultaneous monotonous fixed point 10
2.3.4 Simultaneous inflationary fixed point 11

3 The fixed-point theorems 13

3.1 Horn formula equations . 13
3.2 Dual-Horn formula equations . 17
3.3 Linear-Horn formula equations . 18
3.4 Universal formula equations . 19

4 Fixed-point approximation 23

5 Partial Correctness of while-programs 27

5.1 Verification condition . 30
5.2 Weakest precondition/Strongest postcondition 34

6 Inductive theorem proving 37

7 Decidability of afine solution problems 41

8 Conclusion 47

i

ii

Chapter 1

Introduction

Formula equations are logical equations, where the unknowns are formulas. They are hardly
considered in the literature. We claim that they should, as they naturally occur in many
areas like program verification or automated theorem proving. In these communities simi-
lar problems are treated independently. Our motivation is to state general theorems about
formula equations which then will be used to generalize and simplify results in various dif-
ferent applications. In this thesis we treat the special case of Horn formula equations, this
restriction is justified as it covers many applications. We will use Horn formula equations
to obtain a first-order approximation of second-order formulas as well as to get a different
perspective on Hoare triples in program verification and to get more insights in inductive
theorem proving.
For Horn formula equations we are able to compute canonical solutions if a solution exists.
This will be achieved by defining an operator such that every solution of the Horn formula
equation is a fixed point of it. Now the least fixed point, which exists due to the Knaster-
Tarski theorem, turns out to be the canonical solution.
This approach, to use fixed-point theorems to get solutions of certain classes of equations,
appears in various areas of mathematics. To illustrate how this arguments work we sketch
the proof of one well-known example, the Picard-Lindelöf theorem. Here a function y is
sought that solves the initial value problem y (t) = f(t, y) with y(t0) = y0 in a neighbour-
hood of t0. It is shown that y is a solution of this initial value problem iff it is a fixed point
of T (y)(t) = y0+

t
t0
f(t, y(s))ds. If f is sufficiently smooth the Banach fixed-point theorem

provides a unique solution.
Our aim is to use a similar method to get solutions of a certain kind of equations in logic:
Formula Equations. A formula equation has the form ∃Xψ, where ψ is a first-order formula
which may additionally contain the second order variables X1, ..., Xn.
Under the name of "Boolean unification with predicates" some classes of formula equations
were investigated by Eberhard, Hetzl and Weller in [5]. They deal with the problem of
finding quantifier-free first-order formulas χ1, ..., χn such that |= ψ[X1\χ1, ..., Xn\χn]. It is

1

2 CHAPTER 1. INTRODUCTION

shown that for a quantifier-free ψ this problem is Πp
2-complete. If on the other hand ψ is of

the form ∀yψ or ∃yψ with ψ quantifier-free, they prove that the problem is undecidable.
In this thesis we consider formula equations of the form ∃X∀y ψ , where ψ is either a
conjunction of constrained Horn clauses or a conjunction of constrained dual-Horn clauses.
We call them Horn formula equations and dual-Horn formula equations, respectively. It
turns out that in this cases we can define an operator Fψ such that every solution of ∃Xψ
is a fixed point of Fψ. The least fixed point of Fψ will always be a solution of the formula
equation iff there exists a solution. This canonical solution will be described by least fixed-
point formulas. Furthermore the canonical solution implies every solution in the Horn case
and is implied by every solution in the dual-Horn case. This main results will then be used
in manifold applications.

In Chapter 2 we present the toolkit that we need in this work: Basic definitions of logic,
formula equations and fixed-point logics.
Chapter 3 will be the main part of our work. Here we prove the fixed-point theorems for
Horn formula equations, dual-Horn formula equations and linear-Horn formula equation.
Moreover we will explain why there is no immediate generalization of the results for uni-
versal formula equations, where the clauses do not have to be Horn.
In the Chapters 4 - 6 we present applications of the fixed-point theorems.
By considering inflationary fixed points in Chapter 4 we get first-order formulas that ap-
proximate the canonical solutions obtained in the previous chapter. In doing so we get
first-order formulas that approximate Horn formula equations.
In Chapter 5 we take a look at program verification. We present a different semantics
of Hoare triples, which is described by a Horn formula equation. The canonical solutions
obtained in Chapter 3 correspond to the classical concepts of weakest precondition and
strongest postcondition.
Horn formula equations occur naturally in the subject of inductive theorem proving. In
Chapter 6 we show that our fixed-point theorems may be used to shorten some proofs and
bring new insights in that area.
In Chapter 7 we deal with a paper, where the decidability of the affine solution problem is
proven. This is achieved with a similar method we used to prove our fixed-point theorems.
We show how the fixed-point theorems may be generalized to make it applicable for that
problem.

Chapter 2

Preliminaries

We will start this chapter with some basic notations and definitions of logic, which will be
used in this work. Then formula equations and solution problems are defined. Around this
main concepts the whole work will be built up. At last we define fixed-point logics, which
will take a key part in the proofs of the fixed-point theorems.

2.1 Notations

A language L consists of constant, predicate and function symbols. Terms over L are
built from variables1, constant and function symbols of L. First-order formulas over L are
built from predicate symbols, terms, the logical connectives ¬,∨,∧ and the quantifiers ∃, ∀.
Moreover we use the symbols → and ↔, where A → B is defined to be an abbreviation for
¬A ∨ B and A ↔ B to be an abbreviation for A → B ∧ B → A. In addition to first-order
logic we often consider formula variables, which stand for predicates. To distinguish them
from first-order variables we denote them with upper-case letters.
Unless otherwise noted we always talk about logic with equality, which means that we have
a specified binary predicate symbol ” = ”, which is interpreted as equality.
A subformula ψ of a formula ϕ occurs positively in ϕ if ψ is in the scope of an even number
of negations in ϕ and occurs negatively if it is in the scope of an odd number of negations.
For example in the formula ϕ ≡ A → B the subformula A occurs negatively and B occurs
positively in ϕ, as ϕ is an abbreviation for ¬A ∨ B. A formula variable X occurs only
positively in ϕ if every occurrence of X as a subformula in ϕ occurs positively. Conversely
X occurs only negatively if every occurrence of X as a subformula in ϕ occurs negatively.
Now let us define substitution. For a formula ϕ, variables x1, ..., xn and terms t1, ..., tn we
define ϕ[x1\t1, ..., xn\tn] to be the formula ϕ, where every occurrence of xj is replaced by
tj for every j ∈ {1, ..., n} simultaneously. This is only allowed if no free variable of t1, ..., tn
became bound during the substitution process. Similarly for formula variables X1, ..., Xn

1In distinction to formula variables sometimes also called individual variables.

3

4 CHAPTER ✷. PRELIMINARIES

and formulas α1, ..., αn we define ϕ[X1\α1, ..., Xn\αn] to be the formula ϕ, where every
occurrence of Xj is replaced by αj for every j ∈ {1, ..., n}. Again this is forbidden if a free
variable of α1, ..., αn became bound in the process. We use the usual vector notation, that
means we write X for X1, ..., Xn if n is clear from the context or unimportant. Consistently
we write ϕ[X\α] for ϕ[X1\α1, ..., Xn\αn].

An L-structure M is a pair M = (M, I), where M is a set and I is an interpretation
of L, i.e. I(P) ⊆ Mk for a k-ary predicate symbol P ∈ L and I(f) : Mk → M for a k-ary
function symbol f ∈ L.
An environment is an interpretation of the set of free variables. For an environment θ, a
variable x and m ∈ M we define θ[x := m] by θ[x := m](x) = m and θ[x := m](y) = θ(y)
for x = y. θ[X := S] is defined analogously for a k-ary predicate variable X and S ⊆ Mk.
For a structure M, an environment θ and a formula ϕ we define M, θ |= ϕ as usual. In
particular M, θ |= ∃Xϕ[X] holds for a k-ary formula variable X iff there exists an S ⊆ Mk

s.t. M, θ[X := S] |= ϕ[X]. We define M |= ϕ iff M, θ |= ϕ holds for all environments θ. A
formula is valid, we write |= ϕ, iff M |= ϕ holds for all structures M. We write ϕ ≡ ψ, if
ϕ and ψ are logical equivalent, i.e. if |= ϕ ↔ ψ holds.

To conclude this section about logic we state a lemma where many of these concepts are
used. It will be of use later.

Lemma 2.1. Let L be a language and M be an L-structure. Let R be a formula variable
and let S and S be formulas in L with the same arity as R. Let ϕ be a second-order formula
in L ∪ {R}, s.t. R occurs only positively in ϕ. Then

M |= S(x) → S (x) ⇒ M |= ϕ[R\S] → ϕ[R\S].

Conversely, if R occurs only negatively in ϕ, it holds

M |= S(x) → S (x) ⇒ M |= ϕ[R\S] → ϕ[R\S].

Proof. Let ϕ be in negation normal form2 and R occur only positively in ϕ. We prove the
claim by structural induction on ϕ. Note that there are no negated atomic formulas of the
form ϕ ≡ ¬R(t).3

• ϕ ≡ R(t): It holds M |= S(t) → S (t).

• ϕ ≡ P (t) for a predicate symbol P ∈ L: We have M |= P (t) → P (t).

• ϕ ≡ ¬P (t) for a predicate symbol P ∈ L: Similarly M |= ¬P (t) → ¬P (t).

2i.e. every negation occurs directly in front of an atomic formula. For every second-order formula there
is a logical equivalent formula in negation normal form.

3We write ϕ[S] as abbreviation of ϕ[R\S].

✷.✷. FORMULA EQUATIONS 5

• ϕ ≡ ϕ1 ∨ ϕ2: M |= ϕ1[S] → ϕ1[S] and M |= ϕ2[S] → ϕ2[S] implies M |=
ϕ1[S] ∨ ϕ2[S] → ϕ1[S] ∨ ϕ2[S].

• ϕ ≡ ϕ1 ∧ ϕ2: Same as for ” ∨ ”.

• ϕ ≡ ∃xϕ1: We got M, θ |= ϕ1[S] → ϕ1[S] for all environments θ of x. Hence
M |= ∃xϕ1[S] → ∃xϕ1[S].

• Same argumentation as above works for formulas of the form ϕ ≡ ∀xϕ1 and second-
order quantified formulas ϕ ≡ ∃Xϕ1 and ϕ ≡ ∀Xϕ1.

If R occurs only negatively in ϕ we have negated atomic formulas ϕ ≡ ¬R(t) instead
of ϕ ≡ R(t). For ϕ ≡ ¬R(t) it holds M |= ¬S (t) → ¬S(t). The rest of the proof is
analogous.

2.2 Formula equations

Definition 2.2 (Formula equation). Let L be a language. A formula equation over L has
the form ∃Xϕ, where X = X1, ..., Xn is a tuple of formula variables and ϕ is a first-order
formula in L without free individual variables, whose formula variables are amongX1, ..., Xn.

A formula equation ∃Xϕ is valid if |= ∃Xϕ. In contrast, ∃Xϕ is first-order solvable if
there exist first-order formulas χ1, ..., χn s.t. |= ϕ[X\χ]. Every first-order solvable formula
is valid, yet in general the converse is not true.
If we are interested in a specific class of formulas, which solve formula equations, we talk
about solution problems. As sometimes it is also interesting to speak about validity modulo
a specific theory we have the following general definition.

Definition 2.3 (Solution problem). Let L be a first-order language. A solution problem
over L consists of

• A theory T (the background theory),

• A class C of formulas (the candidate solutions).

• A class Φ of formula equations,

The solution problem T , C,Φ is the set of formula equations in Φ that have solutions in
C modulo the theory T , i.e. the set

{ϕ ∈ Φ | ∃F1, ..., Fn ∈ C : T |= ϕ[X1\Fn, ..., Xn\Fn]}.

Example 2.4. • Let L be any language and let Φ be the class of first-order formulas
in L, i.e. formula equations without formula variables. Then the solution problem
∅, ∅,Φ is the problem of first-order validity. This is undecidable.

6 CHAPTER ✷. PRELIMINARIES

• Let L be any language. Let Φ be the set of quantifier-free formula equations and C
be the set of quantifier-free first-order formulas. Then the solution problem ∅, C,Φ
is called the quantifier-free solution problem. As shown in [5] this problem is ΠP

2 -
complete. 4

• Let L be any first-order language. Let Φ be the set of formula equations of the form
∃X∀y ψ, where ψ is a quantifier-free formula and C be the set of quantifier-free first-
order formulas. Then the solution problem ∅, C,Φ is called the universal solution
problem. As shown in [5] this problem is undecidable. 5

2.3 Fixed-point logics

We give an overview of least fixed-point logic and inflationary fixed-point logic. This will
be enough for our purpose, for a more detailed description we refer to [7] and [3].

Definition 2.5. Let A be a set.

• A function F : 2A → 2A is called an operator on A.

• An operator is monotonous if for all X ⊆ Y ⊆ A it holds that F (X) ⊆ F (Y).

• An operator is inflationary if X ⊆ F (X) for all X ⊆ A.

• A set X ⊆ A is a fixed point of F if F (X) = X.

• A set X ⊆ A is the least fixed point of F , if X is a fixed point of F and for any fixed
point Y it holds that X ⊆ Y . This is denoted as lfp(F).

Note that there are monotonous operators, which are not inflationary and inflationary
operators, which are not monotonous.

Definition 2.6. Let L be a first-order language and R a formula variable of arity k. Let
ϕ(R, x1, ..., xk) be a first-order formula in L∪{R}. For an L-structure M define an operator
Fϕ on Mk by

Fϕ : X → {x ∈ Mk | M, [R := X] |= ϕ(R, x)}.
4Other authors also call this problem QFBUP(Quantifier-free boolean unification problem).
5The same authors call this problem UBUP.

✷.3. FIXED-POINT LOGICS 7

2.3.1 Monotonous fixed point

Lemma 2.7. If R occurs only positively in ϕ, then Fϕ is a monotonous operator.

Proof. Let A ⊆ B ⊆ Mk. We have M, [S := A,S := B] |= S(x) → S (x). The proof of
Lemma 2.1, adjusted for sets in Mk instead of formulas, yields
M, [S := A,S := B] |= ϕ[R\S] → ϕ[R\S]. Thus Fϕ(A) ⊆ Fϕ(B).

The following theorem is normally presented in the context of a complete lattice E,≤
(cf. [2]). As 2A,⊆ is a complete lattice we can modify it for our need:

Theorem 2.8 (Knaster-Tarski). Let F be a monotonous operator on a set A. Then F has
a least fixed point and

lfp(F) = {X ⊆ A | F (X) ⊆ X}.

Definition 2.9 (LFP). Least fixed-point logic(LFP) is an expansion of first-order logic,
which in addition to the usual formation rules allows atomic formulas

[lfpR ϕ(R, x)](t), (2.1)

where ϕ(R, x) is a first-order formula in L ∪ {R}, s.t. R occurs only positively, R is k-ary
and t is a k-tuple of terms. The free variables of (2.1) are those of t.
The semantics is defined as follows:

M |= [lfpR ϕ(R, x)](a) :⇔ a ∈ lfp(Fϕ).

As R occurs only positively, Fϕ is a monotonous operator according to Lemma 2.7.
Using Theorem 2.8 the least fixed point exists and thus the definition does make sense.

Example 2.10. Let L = {E} be the language of graphs, where E is a binary relation symbol
and R be a binary formula variable. Define

ϕ(R, u, v) ≡ E(u, v) ∨ ∃w(R(u,w) ∧ E(w, v)).

As R occurs only positively in ϕ we can define [lfpR ϕ(R, u, v)](x, y), which holds iff there
is a path from x to y.

2.3.2 Inflationary fixed point

The least fixed point of an operator is hard to grasp. Therefore we define a sequence of
sets, which, if the operator is monotonous, converges to the least fixed point. This yields
the notion of inflationary fixed point.

8 CHAPTER ✷. PRELIMINARIES

Definition 2.11. Let F be an operator on a set A. We define the inflationary operator F
by F (X) = F (X) ∪X. By transfinite recursion define the following sequence of subsets of
2A, where ζ and η are ordinal numbers:

S0
F = ∅,

Sζ+1
F = F (Sζ

F),

Sζ
F =

η<ζ

Sη
F , for limit ordinals ζ.

If it is obvious which operator we talk of, we sometimes omit the subscript and write Sζ .

Lemma 2.12. 1. ζ ≤ η ⇒ Sζ
F ⊆ Sη

F ,

2. There exists an ordinal number ξ s.t. F (Sξ
F) = Sξ

F and |ξ| ≤ |A|. We call the least
such ξ the closure ordinal of F and we define the inflationary fixed point of F , written
ifp(F), to be Sξ

F .

3. ζ ≥ ξ ⇒ Sζ
F = Sξ

F

4. If F is monotonous, then ifp(F) = lfp(F).

5. If F is monotonous, then Sζ
F ⊆ F (Sζ

F) for all ordinals ζ, thus we can use F instead

of F in the definition of the sequence (Sζ
F).

Proof. As F is an inflationary operator 1. follows from the definition of the sequence (Sζ
F).

For 2. assume that F (Sζ) Sζ for every |ζ| ≤ |A|. Then we can choose xζ ∈ F (Sζ) \ Sζ

for every such ζ. Hence the set

{xζ | ζ ≤ |A|}

is a subset of A, yet it has cardinality bigger then A, a contradiction. As F (Sξ) = F (Sξ)∪
Sξ ⊇ Sξ, the claim follows.
3. follows by induction from the fact that F (Sξ) = Sξ.
4. From 2. we get that F (Sξ) ⊆ Sξ and thus lfp(F) ⊆ Sξ with Theorem 2.8. Now let X
be any fixed point of F . We prove by transfinite induction that Sζ ⊆ X for every ζ ≤ ξ.
Obviously S0 = ∅ ⊆ X. Now assume Sζ ⊆ X. From the monotonicity of F it follows that
F (Sζ) ⊆ F (X) and therefore

Sζ+1 = F (Sζ) = F (Sζ) ∪ Sζ ⊆ F (X) ∪X = X.

For limit ordinals ζ assume Sη ⊆ X for all η ≤ ζ, we got

Sζ =
η<ζ

Sη ⊆
η<ζ

X = X.

✷.3. FIXED-POINT LOGICS 9

Hence Sξ ⊆ X and in total Sξ = lfp(F).
We proof 5. by transfinite induction on ζ. First S0 = ∅ ⊆ S1. For a successor ordinal ζ
assume Sζ−1 ⊆ F (Sζ−1), in particular F (Sζ−1) = F (Sζ−1). Using monotonicity of F we
get F (Sζ−1) ⊆ F (F (Sζ−1)) and hence

Sζ = F (Sζ−1) = F (Sζ−1) ⊆ F (F (Sζ−1)) = F (Sζ).

For a limit ordinal ζ assume x ∈ Sζ . Thus x ∈ Sη for an ordinal η < ζ. Using the induction
hypothesis and monotonicity we get

Sη ⊆ F (Sη) ⊆ F (Sζ).

Therefore x ∈ F (Sζ) and we get Sζ ⊆ F (Sζ).

Analogous to the least fixed-point logic we now can define inflationary fixed-point logic,
which generalizes least fixed-point logic in the way that it allows negative occurrences of R
in ϕ.

Definition 2.13 (IFP). Inflationary fixed-point logic(IFP) is an expansion of first-order
logic, which in addition to the usual formation rules allows atomic formulas

[ifpR ϕ(R, x)](t), (2.2)

where ϕ(R, x) is a first-order formula in L ∪ {R}, R is k-ary and t is a k-tuple of terms.
The free variables of (2.2) are those of t.
The semantics is defined as follows:

M |= [ifpR ϕ(R, x)](a) :⇔ a ∈ ifp(Fϕ).

Lemma 2.14. Let L be a language. Let ϕ(R, x) be a first-order formula in L ∪ {R}, s.t.
R occurs only positively. Then for all i ∈ {1, ..., n}

[ifpR ϕ(R, x)] ≡ [lfpR ϕ(R, x)].

Proof. Using the definition of IFP and LFP this is equivalent to ifp(Fϕ) = lfp(Fϕ) for every
structure M. From Lemma 2.7 we obtain that Fϕ is a monotonous operator, hence the
claim follows with Lemma 2.12/4.

Example 2.15. We continue Example 2.10 from the previous section, where we defined

ϕ(R, u, v) ≡ E(u, v) ∨ ∃w(R(u,w) ∧ E(w, v)).

Let G be any graph and n ∈ N. Then (x, y) ∈ Sn
Fϕ

iff there is a path from x to y of length at

most n. Hence (x, y) ∈ Sω
Fϕ

iff there is a finite path from x to y. [ifpR ϕ(R, u, v)](x, y) holds,

iff there is any path from x to y, which describes the same relation as [lfpR ϕ(R, u, v)](x, y).

10 CHAPTER ✷. PRELIMINARIES

2.3.3 Simultaneous monotonous fixed point

The previously introduced concepts may be generalized for m-ary operators. We skip
the proofs as they are similar, only more technical, to their counterparts in the previous
subsections.

Definition 2.16. Let A1, ..., An be sets.

• A function F : 2A1 × · · · × 2An → 2A1 × · · · × 2An is called an n-ary operator on
A1 × · · · ×An.

• For two sequences of sets X := (X1, ..., Xn) and Y := (Y1, ..., Yn) we write X ⊆ Y if
Xi ⊆ Yi for all i ∈ {1, ..., n}.

• F is monotonous if for all X ⊆ Y ⊆ A it holds that F (X) ⊆ F (Y).

• F is inflationary if for all X and i ∈ {1, ..., n} it holds that Xi ⊆ F (X)i.

• X is a fixed point of F if F (X) = X.

• If X is a fixed point of F and for every fixed point Y we have X ⊆ Y , then X is
called the least fixed point of F , written lfp(F).

Similarly to Theorem 2.8 we have (cf. [2]):

Theorem 2.17. Let A1, ..., An be sets and F be a monotonous n-ary operator on A1×· · ·×
An. Then F has a least fixed point.

Definition 2.18. Let L be a language and R1, ..., Rn be formula variables, with Ri being
of arity ki. Consider a sequence Φ of first-order formulas in L ∪ {R1, ..., Rn}:

ϕ1(R1, ..., Rn, x1)

...

ϕn(R1, ..., Rn, xn),

where |xi| = ki.
For a structure M define

Fi : Mk1 × · · · ×Mkn → Mki ,

(X1, ..., Xn) → {x ∈ Mki | M, [R1 := X1, ..., Rn := Xn] |= ϕi(R1, ..., Rn, x)}.

Now define the n-ary operator FΦ = (F1, ..., Fn).

Lemma 2.19. If R1, ..., Rn occur only positively in Φ, then FΦ is a monotonous n-ary
operator on Mk1 × · · · ×Mkn.

✷.3. FIXED-POINT LOGICS 11

Proof. This proof is analogous to the proof of Lemma 2.7.

Definition 2.20 (LFPSIM). Simultaneous least fixed-point logic(LFPSIM) is an expansion
of first-order logic, which in addition to the usual formation rules allows atomic formulas

[lfpRi
Φ](t), (2.3)

where Φ is defined as in Definition 2.18 with R1, .., Rn occurring only positively in Φ and t
is a ki-tuple of terms. The free variables of (2.3) are those of t.
The semantics is defined as follows:

M |= [lfpRi
Φ](a) : ⇔ a ∈ lfp(FΦ)i.

Example 2.21. Again consider the language of graphs L = {E}, where E is a binary
relation symbol. Let R and S be two 2-ary formula variables. Define Φ as

ϕ1(R,S, u, v) ≡ E(u, v) ∨ ∃w(S(u,w) ∧ E(w, v)),

ϕ2(R,S, u, v) ≡ ∃w(R(u,w) ∧ E(w, v)).

As R and S occur only positively in Φ, we can define the formulas in LFPSIM [lfpR Φ](x, y)
and [lfpS Φ](x, y). The former holds iff there is an odd path and the latter iff there is an
even path from x to y.

In the last example it is easy to see that there are equivalent formulas in LFP. That
this is always the case is the content of the next theorem. A proof can be found in [7].

Theorem 2.22. For every formula ϕ in LFPSIM there exists a formula ψ in LFP, s.t.
ϕ ≡ ψ.

Note that the converse of Theorem 2.22 is also true, as LFPSIM is a generalization of
LFP. Thus we can use LFP and LFPSIM interchangeably.

2.3.4 Simultaneous inflationary fixed point

Definition 2.23. Let F = (F1, ..., Fn) be an n-ary operator. We define the inflationary
n-ary operator of F to be F = (F1, ..., Fn), where Fj(X) = Fj(X) ∪Xj for j ∈ {1, ..., n}.

By transfinite recursion define the sequence of sets6

S0 = (∅, ...,∅),

Sζ+1 = F (Sζ), (2.4)

Sζ =
η<ζ

Sη, for limit ordinals ζ.

Analogous to Lemma 2.12 we get:

6We write Sζ as abbreviation for Sζ
F .

12 CHAPTER ✷. PRELIMINARIES

Lemma 2.24. Let F be an n-ary operator and the sequence (Sζ) defined as above. Then

1. ζ ≤ η ⇒ Sζ ⊆ Sη,

2. There exists an ordinal number ξ s.t. F (Sξ) = Sξ and |ξ| ≤ |A|. We call the least
such ξ the closure ordinal of F and we define the simultaneous inflationary fixed point
of F , written ifp(F), to be Sξ.

3. ζ ≥ ξ ⇒ Sζ = Sξ

4. If F is monotonous, then ifp(F) = lfp(F).

5. If F is monotonous, then Sζ ⊆ F (Sζ) for all ordinals ζ, thus we can use F instead
of F in the definition of Sζ .

Proof. This proof is essentially the proof of Lemma 2.12.

Definition 2.25 (IFPSIM). Simultaneous inflationary fixed-point logic(IFPSIM) is an ex-
pansion of first-order logic, which in addition to the usual formation rules allows atomic
formulas

[ifpRi
Φ](t), (2.5)

where Φ is defined as in Definition 2.18 and t is a ki-tuple of terms. The free variables of
(2.5) are those of t.
The semantics is defined as follows:

M |= [ifpRi
Φ](a) : ⇔ a ∈ ifp(FΦ)i.

Lemma 2.26. If R1, ..., Rn occur only positively in Φ, then for all i ∈ {1, ..., n}

[ifpRi
Φ] ≡ [lfpRi

Φ].

Proof. Lemma 2.19 states, that FΦ is monotonous and hence ifp(FΦ) = lfp(FΦ) for every
structure M. This is equivalent to [ifpRi

Φ] ≡ [lfpRi
Φ].

As for LFPSIM we have:

Theorem 2.27. For every formula ϕ in IFPSIM there exists a formula ψ in IFP, s.t.
ϕ ≡ ψ.

Chapter 3

The fixed-point theorems

This chapter will be the main part of this work. We will take a look at special formula equa-
tions: Horn, dual-Horn and linear-Horn formula equations. For those there exist canonical
solutions, which are described by least fixed-point formulas. At last we will see that we can
not generalize the results for universal formula equations.

3.1 Horn formula equations

The idea to prove the fixed-point theorem is the following: For a Horn formula equation
∃Xψ we define an operator Fψ such that every solution of ∃Xψ is a fixed point of Fψ. It
turns out that the least fixed point of Fψ is always a solution of ∃Xψ if there exists one.
This canonical solution is described by a least fixed-point logic formula.

Definition 3.1. Let L be a language and X1, ..., Xn formula variables. A variable atom in
L ∪ {X1, ..., Xn} is an atom starting with a formula variable, i.e. it is of the form Xi(ti),
where i ∈ {1, ..., n} and ti is a tuple of terms in L with the same arity as Xi.
A constrained Horn clause in L ∪ {X1, ..., Xn} is a disjunction of a first-order formula in
L, negated variable atoms and at most one variable atom, i.e. it has the form

γ ∨ ¬Xi1(ti1) ∨ · · · ∨ ¬Xim(tim) ∨Xi0(ti0),

where γ is a first-order formula, ti0 , .., tim are tuples of terms in L of appropriate arity and
i0, i1, ..., im ∈ {1, ..., n}.
Conversely, a constrained dual-Horn clause in L ∪ {X1, ..., Xn} is a disjunction of a first-
order formula in L, variable atoms and at most one negated variable atom.
A constrained linear-Horn clause in L∪{X1, ..., Xn} is a clause which is both a constrained
Horn clause and a constrained dual-Horn clause, i.e. it is of the form

γ ∨ ¬Xi1(ti1) ∨Xi0(ti0).

13

14 CHAPTER 3. THE FIXED-POINT THEOREMS

Definition 3.2. Let L be a language. A Horn formula equation is a formula equation of
the form ∃X∀y m

i=1Hi, where Hi is a constrained Horn clause for i ∈ {1, ...,m}.
Let ∃Xψ be a Horn formula equation with formula variables X1, ..., Xn. There are three

different types of clauses in ψ:

(B) γ → Xi0(s),
(I) γ ∧Xi1(t1) ∧ · · · ∧Xim(tm) → Xi0(s),
(E) γ ∧Xi1(t1) ∧ · · · ∧Xim(tm) → ⊥,

where γ is a first-order formula in L, m ≥ 1, t1, .., tm, s are tuples of terms in L of appropri-
ate arity and i0, i1, ..., im ∈ {1, ..., n}. Note that the variables y may occur in the formulas
γ and the terms s, t1, ..., tm. We call the first base clauses, the second induction clauses,
and the third end clauses. The idea now is to build an inductive relation from the base and
induction clauses for every formula variable.

Let Bj and Ij be the sets of clauses of the form (B) and (I), respectively, where i0 = j,
for j ∈ {1, ..., n}. For shorter notation we write ι := {i1, ..., im} and τ := {t1, ..., tm}. A
clause in Ij is determined by the tuple (γ, ι, τ, s), thus we write (γ, ι, τ, s) for the clause
γ ∧ Xi1(t1) ∧ · · · ∧ Xim(tm) → Xj(s) in Ij . Analogously we write (γ, s) for the clause
γ → Xj(s) in Bj .
Every Horn formula equation ∃Xψ defines a sequence of first-order formulas Φψ as follows:

ϕ1(X1, ..., Xn, x1) ≡ ∃y

(γ,s)∈B1

(γ ∧ x1 = s) ∨
(γ,ι,τ,s)∈I1

γ ∧
m

k=1

Xik(tk) ∧ x1 = s

 ,

... (3.1)

ϕn(X1, ..., Xn, xn) ≡ ∃y

(γ,s)∈Bn

(γ ∧ xn = s) ∨
(γ,ι,τ,s)∈In

γ ∧
m

k=1

Xik(tk) ∧ xn = s

 ,

where xj is a tuple of variables s.t. |xj | equals the arity of Xj for j ∈ {1, ..., n}. Notice that
X1, ...Xn only occur positively in Φψ, hence we can introduce the simultaneous fixed-point
formulas [lfpXj

Φψ] for j ∈ {1, ..., n}.

Lemma 3.3. Let ∃Xψ be a Horn formula equation and αj := [lfpXj
Φψ] for j ∈ {1, ..., n}.

Then:

1. |= ∃X ψ ↔ ψ[X1\α1, ..., Xn\αn],

2. If for a structure M and relations χ1, ..., χn it holds M |= ψ[X1\χ1, ..., Xn\χn], then
M |= n

j=1 αj → χj.

3.1. HORN FORMULA EQUATIONS 15

3. If |= ∃X ψ ↔ ψ[X1\χ1, ..., Xn\χn] for LFP-formulas χ1, ..., χn, then

|= ∃X ψ → n
j=1 αj → χj .

Proof. 1. The right-to-left direction is clear. For the other direction we first state that the
formulas α1, ..., αn satisfy all clauses in (B) and (I), i.e. for all j ∈ {1, ..., n} it holds

|=∀y (γ → αj(s)), ∀(γ, s) ∈ Bj ,

|=∀y (γ ∧ αi1(t1) ∧ · · · ∧ αim(tm) → αj(s)), ∀(γ, ι, τ, s) ∈ Ij .

To see this let M be a structure and y0 s.t.

M, [y := y0] |= γ ∧ αi1(t1) ∧ · · · ∧ αim(tm),

then, as (α1, ..., αn) is a fixed point of FΦ, we have

M, [y := y0] |= αj(s).

The argumentation is analogous for clauses of the form (B).
Now let M be a structure s.t. M |= ∃X ψ. Let χ1, ..., χn be relations s.t. M |=
ψ[X1\χ1, ..., Xn\χn], thus it holds for all j ∈ {1, ..., n}:

M |=∀y (γ → χj(s)), ∀(γ, s) ∈ Bj , (3.2)

M |=∀y (γ ∧ χi1(t1) ∧ · · · ∧ χim(tm) → χj(s)), ∀(γ, ι, τ, s) ∈ Ij . (3.3)

Assume xj ∈ FΦ(χ1, ..., χn)j . Then there either exists (γ, s) ∈ Bj s.t

M |= ∃y (γ ∧ xj = s)

or (γ, ι, τ, s) ∈ Ij s.t.

M, [X := χ] |= ∃y (γ ∧
m

k=1

Xik(tk) ∧ xj = s)

We assume the latter, the proof for the former is analogous. Thus let y0 be s.t.

M, [X := χ, y := y0] |= γ ∧
m

k=1

Xik(tk) ∧ xj = s.

From (3.3) we obtain M, [y := y0] |= χj(s) and thus M |= χj(xj).
Hence FΦ(χ1, ..., χn) ⊆ (χ1, ..., χn) and as (α1, ..., αn) is the least fixed point of FΦ we

obtain M |= n
j=1 αj → χj .

For all clauses in (E) it holds that

M, [X := χ] |= ∀y (γ ∧Xi1(t1) ∧ · · · ∧Xim(tm) → ⊥),

16 CHAPTER 3. THE FIXED-POINT THEOREMS

and therefore, as X1, ..., Xn only occur positively, we get with Lemma 2.1

M, [X := α] |= ∀y (γ ∧Xi1(t1) ∧ · · · ∧Xim(tm) → ⊥).

ThusM, [X := α] satisfies all clauses in ψ and we conclude thatM |= ψ[X1\α1, ..., Xn\αn].
For 2. we get M |= n

j=1 αj → χj analogous as in the proof of 1.

3. holds, as for every structure M, which fulfils M |= ∃X ψ, we can use 2.

We have proven Lemma 3.3/3 for LFP-formulas. Yet this holds for an arbitrary class of
formulas, as it is an immediate consequence of 3.3/2, where we have shownM |= n

j=1 αj →
χj for any relations χ1, ..., χn.

Theorem 3.4 (Horn fixed-point theorem). Let ∃Xψ be a valid Horn formula equation, i.e.
|= ∃Xψ, and αj := [lfpXj

Φψ] for j ∈ {1, ..., n}. Then:
1. |= ψ[X1\α1, ..., Xn\αn],

2. If |= ψ[X1\χ1, ..., Xn\χn] for LFP-formulas χ1, ..., χn, then
|= n

j=1 αj → χj.

Proof. As we got |= ∃Xψ by assumption, 1. follows directly from Lemma 3.3/1. and 2.
follows from Lemma 3.3/3.

For Horn formula equations we got three concepts: validity, first-order solvability and
LFP-solvability. A priori these are all different. Now Theorem 3.4/1 shows that a Horn
Formula equation is valid iff it is LFP-solvable.

To illustrate Lemma 3.3 and Theorem 3.4 we take a look at the following example:

Example 3.5. Let L = {E, s, t} be the language of graphs with two specified vertices s and
t. Consider the Horn formula equation ∃X,Y ψ with two unary formula variables X and
Y :

ψ ≡ ∀u, v

X(s)
Y (t)
X(u) ∧ E(u, v) → X(v)
Y (u) ∧ E(u, v) → Y (v)
X(u) ∧ Y (u) → ⊥

.

There are two base clauses, two induction clauses and one end clause. It is easy to see that
a graph satisfies ψ iff there is no vertex v s.t. there is a path from s to v and from t to v.
The sequence of formulas Φψ is

ϕ1(X,Y, x1) ≡ ∃u, v(x1 = s ∨ (X(u) ∧ E(u, v) ∧ x1 = v)),

ϕ1(X,Y, x2) ≡ ∃u, v(x2 = t ∨ (Y (u) ∧ E(u, v) ∧ x2 = v)).

3.✷. DUAL-HORN FORMULA EQUATIONS 17

Thus for every structure M we have FΦψ
(∅,∅) = (s, t) and Fn+1

Φψ
(∅,∅) is the pair of sets

of vertices for which there is a path from s and t, respectively, with length at most n. The
formulas αX := [lfpX Φψ] and αY := [lfpY Φψ] describe the sets of vertices reachable from
s and t, respectively. Hence Lemma 3.3 states that a structure M satisfies ∃X,Y ψ iff αX

and αY are disjoint.

Note that in general there is no greatest fixed point such that there is a similar theorem
to Theorem 3.3. As counterexample take the following Horn formula equation ∃Xψ with
one unary formula variable X:

ψ ≡ ¬X(c1) ∨ ¬X(c2),

where c1 and c2 are constant symbols. Consider the structure

M = {{a, b}; I(c1) = a, I(c2) = b}.

For the sets S1 = {a} and S2 = {b} we have

M, [X := S1] |= ψ and M, [X := S2] |= ψ, yet M, [X := S1 ∪ S2] |= ψ.

Hence there can not be a greatest set S in M s.t. M, [X := S] |= ψ. As ψ only consists of
one end clause the least fix point in M is S = ∅.

3.2 Dual-Horn formula equations

In the last section we have seen that for Horn formula equations there is a solution, which
implies every solution. If we consider dual-Horn clauses instead of Horn clauses the converse
is true: We obtain a solution which is implied by every solution.

Definition 3.6. Let L be a language. A dual-Horn formula equation is a formula equation
of the form ∃X∀y m

i=1Hi, where Hi is a constrained dual-Horn clause for i ∈ {1, ...,m}.
Let ∃Y ψ be a dual-Horn formula equation with formula variables Y1, ..., Yn. Define ψD

by replacing every occurrence of Yj by ¬Xj for every j ∈ {1, ..., n} in ψ. We call ψD the
dual formula of ψ. Then up to logical equivalence every clause in ψD has at most one
positive formula variable and hence ∃XψD is a Horn formula equation. We define, as in the
last section, αj := [lfpXj

ΦψD] for j ∈ {1, ..., n}. Now define the LFP-formulas βj := ¬αj

for j ∈ {1, ..., n}.
Lemma 3.7. Let ∃Y ψ be a dual-Horn formula equation and βj := ¬[lfpXj

ΦψD] for j ∈
{1, ..., n}. Then:

1. |= ∃Y ψ ↔ ψ[Y1\β1, ..., Yn\βn],

18 CHAPTER 3. THE FIXED-POINT THEOREMS

2. If for a structure M and relations χ1, ..., χn it holds M |= ψ[Y1\χ1, ..., Yn\χn], then
M |= n

j=1 χj → βj.

3. If |= ∃Y ψ ↔ ψ[Y1\χ1, ..., Yn\χn] for LFP-formulas χ1, ..., χn, then

|= ∃Y ψ → n
j=1 χj → βj .

To prove this, we first need the following lemma:

Lemma 3.8. Let ∃Xψ be a formula equation. Then

|= ∃Xψ ↔ ∃Y ψ[X1\¬Y1, ..., Xn\¬Yn].

Proof. This follows as for any structureM and sets S1, ..., Sn it holdsM, [X1 := S1, ..., Xn :=
Sn] |= ψ[X1, ..., Xn] iff M, [Y1 := SC

1 , ..., Yn := SC
n] |= ψ[X1\¬Y1, ..., Xn\¬Yn]

Proof of Lemma 3.7. 1. Considering αj := [lfpXj
ΦψD] for j ∈ {1, ..., n} we first note that

ψ[Y1\β1, ..., Yn\βn] is syntactically equivalent to ψD[X1\α1, ..., Xn\αn]. Hence ∃XψD is a
Horn formula equation, Lemma 3.3/1 yields |= ∃XψD ↔ ψ[Y1\β1, ..., Yn\βn]. Using Lemma
3.8 it follows |= ∃Y ψ ↔ ψ[Y1\β1, ..., Yn\βn].
2. Define the formulas χj := ¬χj for j ∈ {1, ..., n}. In doing so we gotM |= ψD[X1\χ1, ..., Xn\χn]
and Lemma 3.3/2 yields M |= n

j=1 αj → χj . Using the tautology A → B ⇔ ¬B → ¬A
we obtain M |= n

j=1 χj → βj .
Again 3. is an immediate consequence of 2.

Analogously to the Horn formula equations we get the following theorem:

Theorem 3.9 (Dual-Horn fixed-point theorem). Let ∃Y ψ be a valid dual-Horn formula
equation, i.e. |= ∃Y ψ, and βj := ¬[lfpXj

ΦψD] for j ∈ {1, ..., n}. Then:
1. |= ψ[Y1\β1, ..., Yn\βn],
2. If |= ψ[Y1\χ1, ..., Yn\χn] for LFP-formulas χ1, ..., χn, then

|= n
j=1 χj → βj.

3.3 Linear-Horn formula equations

A linear-Horn clause is a clause which is both a Horn and a dual-Horn clause. Thus for
linear-Horn formula equations we can apply the results for Horn as well as for dual-Horn
formula equations. Considering that they often occur in applications(e.g. Chapter 5) we
will state the combinations of the theorems for linear-Horn formula equations.

Definition 3.10. Let L be a language. A linear-Horn formula equation is a formula
equation of the form ∃X∀y m

i=1Hi, where Hi is a constrained linear-Horn clause for
i ∈ {1, ...,m}.

3.4. UNIVERSAL FORMULA EQUATIONS 19

Theorem 3.11 (Linear-Horn fixed-point theorem). Let ∃Xψ be a valid linear-Horn formula
equation, i.e. |= ∃Xψ. Let αj := [lfpXj

Φψ] and βj := ¬[lfpYj
ΦψD] for j ∈ {1, ..., n}. Then:

1. |= ψ[X1\α1, ..., Xn\αn] and |= ψ[X1\β1, ..., Xn\βn],
2. If |= ψ[X1\χ1, ..., Xn\χn] for LFP-formulas χ1, ..., χn, then

|= n
j=1 αj → χj ∧ χj → βj.

Thus if we try to find solutions for linear-Horn formula equations we got an upper bound
solution β and a lower bound solution α. This will be illustrated in the next example.

Example 3.12. Let L = {0, 1,+, ·} be the language of arithmetic. Take a look at the
linear-Horn formula equation ∃Xψ with one unary formula variable X, where

ψ ≡ ∀n

X(0)
X(n) → X(n+ 2)
¬X(7)

.

The dual formula of ψ is

ψD ≡ ∀n

Y (7)
Y (n+ 2) → Y (n)
¬Y (0)

.

Let us consider the structure N. The formulas α = [lfpX Φψ] and β = ¬[lfpY ΦψD] define
the sets

αN = 2 · N, βN = N \ {1, 3, 5, 7}.

Thus for every χ s.t. N |= ψ[X\χ] we have

2 · N ⊆ χN ⊆ N \ {1, 3, 5, 7}.

3.4 Universal formula equations

The question arises if we can generalize Theorem 3.3 for universal formula equations, where
the clauses in general are not Horn nor dual-Horn. The most obvious idea would be to split
every clause in Horn-clauses and then compute a fixed point similar as in Chapter 3. We
will show that in general this does not work as universal formula equations are substantially
more complicated than Horn formula equations.

Definition 3.13. Let L be a language. An universal formula equation is a formula equation
of the form ∃X∀y ψ , where ψ is a quantifier-free formula in L ∪ {X1, ..., Xn}.

20 CHAPTER 3. THE FIXED-POINT THEOREMS

Let ∃Xψ be an universal formula equation. For simplicity we only consider formula
equations with one formula variable X, as we will see that already in this case problems
occur. Assume ψ ≡ ∀y ψ , where ψ is in conjunctive normal form. A clause in ψ has the
form

γ ∧X(t1) ∧ · · · ∧X(tm) → X(s1) ∨ · · · ∨X(sl),

where γ is a first-order formula and m, l ≥ 0. Now the idea would be to split every such
clause in l Horn-clauses of the form

γ ∧X(t1) ∧ · · · ∧X(tm) → X(sh),

where h ∈ {1, ..., l}. For these Horn-clauses we can construct an operator similarly as to
what we did in (3.1). If we do so for every clause in ψ we get operators F0, ..., Fk. One may
try to build an inflationary fixed point, where in every step one operator from {F0, ..., Fk}
is applied. We will not go into detail how such a fixed point may look like, but demonstrate
with an example that in general there is no fixed point which is a solution of ∃Xψ.

Example 3.14. Let L = {0, 1,+, c} be the language of arithmetic with one extra constant
symbol c. We are only interested in models M, s.t. the domain is N and 0,1 and + are
interpreted as in the natural numbers. Hence the models only differ in the interpretation of
c. Consider the universal formula equation ∃Xψ with one unary formula variable X:

ψ ≡ ∀n

X(0)
X(n) → X(n+ 1) ∨X(n+ 2)
¬X(c)

.

If we split the clauses we get three operators defined as in Definition 2.6: F0 defined from
the formula

ϕ0(X,n) ≡ X(n) ∨ n = 0,

an operator F1 defined from the formula

ϕ1(X,n) ≡ X(n) ∨ ∃z(X(z) ∧ n = z + 1)

and another operator F2 defined from

ϕ2(X,n) ≡ X(n) ∨ ∃z(X(z) ∧ n = z + 2).

Now we can build an inflationary sequence of subsets of N, where in every step we apply
one of the three operators, for example

F2(F1(∅)) = {0, 2}, F3(F1(∅)) = {0, 3}.

3.4. UNIVERSAL FORMULA EQUATIONS 21

Depending on the interpretation of c it is true that

M, [X := F2(F1(∅))] |= ¬X(c).

Thus we can not build a fixed point SF of F1, F2, F3, s.t. M, [X := SF] |= ψ for every
structure M s.t. M |= ∃Xψ, as the set SF has to be different for every structure.

In the last example we have seen that there is no fixed point s.t. a similar result to
Theorem 3.3 holds. Still one might think that if we fix one structure M it is possible to
compute a fixed point SF s.t. M, [X := SF] |= ψ if M |= ∃Xψ. That this does not work
either will show the next example.

Example 3.15. Let L = {0, 1,+, ·} be the language of arithmetic and N be the natural
numbers. Let ∃Xψ be the universal formula equation with one formula variable X and

ψ ≡ ∀n

X(3 · n)
X(n) → X(n+ 1) ∨X(n+ 2)
¬X(1)
¬X(5)

.

If we split the clauses again we got three operators, F0 defined from the formula

ϕ0(X,n) ≡ X(n) ∨ ∃z(X(z) ∧ n = 3 · z),

and the operators F1 and F2, which are identical as in the last example. We got F0(∅) = 3N,
which does not satisfy the second clause. Furthermore we have

F1(F0(∅)) = 3N ∪ (3N+ 1) and F2(F0(∅)) = 3N ∪ (3N+ 2).

They both satisfy the first two clauses of ψ, yet 1 ∈ F1(F0(∅)) and 5 ∈ F2(F0(∅)), thus
they do not satisfy ψ. All other sequences of F0, F1, F2 applied on ∅ do not satisfy ψ either.
Yet N |= ∃Xψ, as N, [X := R] |= ψ for

R = {0, 2, 3, 4, 6, 7, 8, 9, ...}.

Thus we see that there are no canonical solutions for universal formula equations as
there are for Horn formula equations.

22 CHAPTER 3. THE FIXED-POINT THEOREMS

Chapter 4

Fixed-point approximation

The problem of finding first-order formulas, which approximate a second-order formula is
an intensively studied topic in the history of logic. For second-order formulas of the form
∃X∀y ψ, where ψ is quantifier-free, it has been investigated by Ackermann in 1935 [1].
Under the assumptions that the language L is only relational1 and there is only one unary
formula variable X, an infinite conjunction of first-order formulas is computed, that is
equivalent to the second-order formula ∃X∀y ψ. This is achieved with a method similar
to modern resolution. That result is extended to any number of formula variables of arbi-
trary arity in [9], yet the assumption of a relational language remains. We want to show
a similar result for any language L, but with another assumption: We only consider Horn
formula equations. Moreover, this is attained with a completely different method, as the
most important tool will be the Horn fixed-point theorem from the previous chapter.

Let ∃Xψ be a Horn formula equation. In the last chapter we found least fixed-point
logic formulas α1, ..., αn s.t. |= ∃X ψ ↔ ψ[X1\α1, ..., Xn\αn]. The question emerges if
there are first-order formulas, which approximate α1, ..., αn and therefore lead to an ap-
proximation of the second-order formula ∃Xψ. To do so we take a look at the inflationary
fixed point. Yet first we have to define infinite conjunctions and disjunctions.

Definition 4.1. Let L be a language and M be an L-structure. Let Ψ be a set of first-order
formulas in L. Define

M |=
ϕ∈Ψ

ϕ :⇔ ∃ϕ ∈ Ψ : M |= ϕ,

M |=
ϕ∈Ψ

ϕ :⇔ ∀ϕ ∈ Ψ : M |= ϕ,

1i.e. L contains no function symbols.

23

24 CHAPTER 4. FIXED-POINT APPROXIMATION

Lemma 4.2. Let L be a language and let Ψ1,Ψ2 be sets of first-order formulas in L. Then
1. ¬ ϕ∈Ψ1

ϕ ≡ ϕ∈Ψ1
¬ϕ,

2. ϕ1∈Ψ1
ϕ1 ∨ ϕ2∈Ψ2

ϕ2 ≡ ϕ∈Ψ1∪Ψ2
ϕ,

3. ϕ1∈Ψ1
ϕ1 ∧ ϕ2∈Ψ2

ϕ2 ≡ (ϕ1,ϕ2)∈Ψ1×Ψ2
ϕ1 ∧ ϕ2,

Let ∃Xψ be a Horn formula equation and Φψ be the sequence of formulas defined as
in (3.1). We know that FΦψ

is monotonous and hence αj = [lfpXj
Φψ] = [ifpXj

Φψ] for all
j ∈ {1, ..., n}. Now we want to express the inflationary fixed point with, possibly infinite,
first-order formulas. We will write Φ for Φψ if the context is clear and use the notations
from Chapter 3.

Lemma 4.3. Let ∃Xψ be a Horn formula equation. Let M be a structure and let FΦψ
be

the operator defined in Definition 2.18 from the sequence of formulas Φψ. Let (S
ζ
FΦ

) be the
sequence defined in (2.4). Then FΦ(S

ω
FΦ

) = Sω
FΦ
.

Proof. As FΦ is monotonous Lemma 2.24/5 states, that FΦ(S
ω) ⊇ Sω. So let (a1, ..., an) ∈

FΦ(S
ω). Then for every j ∈ {1, ..., n} there are two possibilities:

• There exists y0 and (γ, s) ∈ Bj s.t. M, [y := y0] |= γ ∧ aj = s. In this case define
ζj := 0.

• There exists y0, (γ, ι, τ, s) ∈ Ij and ζj ∈ ω s.t. M, [y := y0] |= γ ∧ m
k=1(S

ζj)ik(tk) ∧
aj = s.

For ζmax := max{ζ1, ..., ζn} we claim that (a1, ..., an) ∈ FΦ(S
ζmax). As the sequence Sζ is

increasing we have Sζj ⊆ Sζmax , hence the same statement as for Sω hold for Sζmax for every
j ∈ {1, ..., n}. Thus (a1, ..., an) ∈ FΦ(S

ζmax) ⊆ Sω.

Let ∃Xψ be a Horn formula equation. Let Bj and Ij be the sets of base clauses and
induction clauses, respectively, where the positive formula variable is Xj for j ∈ {1, ..., n}.
For j ∈ {1, ..., n} define the following sequence of first-order formulas, where |xj | equals the
arity of Xj :

ϕ0
j (xj) ≡ ⊥

ϕl+1
j (xj) ≡ ∃y

(γ,s)∈Bj

(γ ∧ xj = s) ∨
(γ,ι,τ,s)∈Ij

γ ∧
m

k=1

ϕl
ik
(tk) ∧ xj = s

 . (4.1)

At last define

ϕω
j (xj) ≡

l∈ω
ϕl
j(xj).

25

Lemma 4.4. Let ∃Xψ be a Horn formula equation and M be a structure. Let (Sζ
FΦ

) be

the sequence defined in (2.4) from the operator FΦψ
. For every j ∈ {1, ..., n} and a ∈ Mkj ,

where kj equals the arity of Xj, it holds

M |= ϕl
j(a) ⇔ a ∈ (Sl

FΦ
)j ,

for every l ∈ ω ∪ {ω}.
Proof. The proof goes by induction on l: For l = 0 we have M |= ⊥ iff a ∈ ∅, which is
valid. For l + 1 we got

M |= ϕl+1
j (a) ⇔ M |= ∃y

(γ,s)∈Bj

(γ ∧ a = s) ∨
(γ,ι,τ,s)∈Ij

γ ∧
m

k=1

ϕl
ik
(tk) ∧ a = s

⇔ M |= ∃y

(γ,s)∈Bj

(γ ∧ a = s) ∨
(γ,ι,τ,s)∈Ij

γ ∧
m

k=1

(Sl)ik(tk) ∧ a = s

⇔ a ∈ FΦ(S

l)j

⇔ a ∈ (Sl+1)j .

The last equivalence holds because of Lemma 2.24/5.
The statement for ω holds as

M |= ϕω
j (a) ⇔ M |=

l∈ω
ϕl
j(a) ⇔ a ∈

l∈ω
(Sl)j ⇔ a ∈ (Sω

FΦ
)j .

Theorem 4.5. Let ∃Xψ be a Horn formula equation and αj := [lfpXj
Φψ] for j ∈ {1, ..., n}.

Then αj ≡ ϕω
j for all j ∈ {1, ..., n}.

Proof. As FΦψ
is monotonous we know from Lemma 2.24/4, that αj = [lfpXj

Φψ] =
[ifpXj

Φψ] for j ∈ {1, ..., n}. Lemma 4.3 states that for every structure M the closure ordi-

nal ξ of FΦ fulfils ξ ≤ ω. With Lemma 2.24/3 we got for every structureM, that Sω
FΦ

= Sξ
FΦ

and hence for every a ∈ Mkj , where kj equals the arity of Xj , we have M |= [ifpXj
Φψ](a)

iff a ∈ (Sω
FΦ

)j . Now Lemma 4.4 concludes the proof.

Theorem 4.6. Let ∃Xψ be a Horn formula equation. Then there exists a, possibly infinite,
set of first-order formulas Ψ s.t.

∃Xψ ≡ ∀y
ϕ∈Ψ

ϕ.

26 CHAPTER 4. FIXED-POINT APPROXIMATION

Proof. Applying Lemma 3.3/1 and Theorem 4.5 we have

∃Xψ ≡ ψ[X1\ϕω
1 , ..., Xn\ϕω

n].

As in every structure (ϕω
1 , ..., ϕ

ω
n) is a fixed point of FΦψ

, the formulas ϕω
1 , ..., ϕ

ω
n satisfy all

the clauses of the form (B) and (I) in ψ. Hence it suffices to check clauses of the form (E),
i.e. of the form ¬γ ∨ ¬Xi1(t1) ∨ · · · ∨ ¬Xim(tm). Let E be the set of clauses of the form
(E) in ψ. We denote a clause in E by the determining tuple (γ, ι, τ), where ι := {i1, ..., im}
and τ := {t1, ..., tm}. Then

ψ[X1\ϕω
1 , ..., Xn\ϕω

n] ≡ ∀y
(γ,ι,τ)∈E

¬γ ∨ ¬ϕω
i1(t1) ∨ · · · ∨ ¬ϕω

im(tm) .

Per definition there is a set of first-order formulas Ψj s.t. ϕω
j ≡ ϕ∈Ψj

ϕ for every j ∈
{1, ..., n}. Thus with repeated application of Lemma 4.2 there exists a set of first-order
formulas Ψ s.t.

∀y
(γ,ι,τ)∈E

¬γ ∨ ¬(
ϕ∈Ψi1

ϕ(t1)) ∨ · · · ∨ ¬(
ϕ∈Ψim

ϕ(tm))

 ≡ ∀y
ϕ∈Ψ

ϕ.

Note that the set Ψ in Theorem 4.6 is given constructively, hence we constructed first-
order formulas, which approximate the second-order formula ∃Xψ.

Chapter 5

Partial Correctness of while-programs

In this chapter we take a look at while-programs, which is a well studied topic in computer
science. We are only interested in partial correctness, which means that we only consider
runs of programs that terminate, this is justified as usually it is much easier to check termi-
nation than correctness of a program. First we will state some basic definitions and results
from computer science. Then we will take a different approach, where we define the verifi-
cation condition of a program, which turns out to be equivalent to the classical semantics
of partial correctness. The verification condition is a linear-Horn formula equation, hence
we can apply our results form Chapter 3.

Definition 5.1. In this chapter we work in the language of arithmetic L = {0, 1,+,−, ·,≤},
where ”0” and ”1” are constant symbols, ” + ”, ”− ” and ” · ” are binary function symbols
and ” ≤ ” is a binary relation symbol. We mainly consider the standard model Z of L, the
integers. We define Z to be the domain of Z.

Definition 5.2. A program1 p is a string of symbols. The set of programs, written in
Backus-Naur2 form, is

p ::= skip | xj := t | p0; p1 | if B then p0 else p1 | while B do p0,

where t is an L-term, B a quantifier-free first-order formula in L and xj a variable.

Definition 5.3. Define Var = {x0, x1, ...} to be the set of variables which may occur in a
program. A function σ : Var → Z is called a state3. We denote the set of all states with Σ.
We write σ[xj → n] for the unique state σ s.t. σ (xj) = n and σ (xi) = σ(xi) for i = j.

1This is usually called while-program. As we do not talk about other types of programs, we abbreviate
it to program.

2i.e. p is defined recursively, where one program consists of one of the six options divided by |. Here p0
and p1 are programs themselves.

3Later we will talk of formulas, in which the variables of a program occur. In this sense a state may also
be seen as an environment.

27

28 CHAPTER 5. PARTIAL CORRECTNESS OF WHILE-PROGRAMS

Definition 5.4 (Denotational semantics). For every program p we define a relation C(p)
on Σ× Σ by structural induction.

C(skip) = {(σ, σ) | σ ∈ Σ}

C(xj := t) = {(σ, σ[xj → n]) | σ ∈ Σ, n ∈ Z and Z, σ |= t = n}

C(p0; p1) = C(p1) ◦ C(p0)

C(if B then p0 else p1) = {(σ, σ) | Z, σ |= B and (σ, σ) ∈ C(p0)}∪
{(σ, σ) | Z, σ |= ¬B and (σ, σ) ∈ C(p1)}

C(while B do p0) = lfp(Γ),

where Γ is an operator on Σ× Σ defined as

Γ(X) = {(σ, σ) | Z, σ |= B and (σ, σ) ∈ C(p0) ◦X}∪
{(σ, σ) | Z, σ |= ¬B}.

We see that Γ is a monotonous operator and thus lfp(Γ) is well-defined. Then we can
convince ourselves that C(p) is actually a partial function from Σ → Σ. If C(p)(σ) is not
defined, this means that a while-loop is not terminating. To make it a total function, we
extend the set of states Σ with the state ⊥, which is associated with a non-terminating
computation, i.e. we define Σ⊥ := Σ∪ {⊥}. For every σ s.t. C(p)(σ) is not defined yet, we
define C(p)(σ) := ⊥ and in that way C(p) is a total function from Σ → Σ⊥.

Definition 5.5. A Hoare triple is a triple (ϕ, p, ψ) consisting of a program p and two
first-order formulas ϕ and ψ. This is traditionally denoted as {ϕ}p{ψ}.

Now we define the meaning of partial correctness of a Hoare triple:

Definition 5.6 (Semantics of Hoare triples). Let σ be a state. For a Hoare triple define

σ |= {ϕ}p{ψ} :⇔ (Z, σ |= ϕ ⇒ Z, C(p)(σ) |= ψ) .

Here Z,⊥ |= ψ is defined to be true. In doing so we only check validity for states, in which
the computation terminates. Now define

|= {ϕ}p{ψ} :⇔ ∀σ ∈ Σ (σ |= {ϕ}p{ψ}) .

29

Definition 5.7 (Hoare rules). In order to get a proof calculus for Hoare triples let us define
the following rules, called Hoare rules. We write {ϕ}p{ψ} if {ϕ}p{ψ} is provable by the
Hoare rules. Here ϕ, ψ, χ,B, I are first-order formulas in L, p, p0, p1 are programs, t is an
L-term and xj is a variable.

(skip){ϕ}skip{ϕ}

(assign){ϕ[xj\t]}xj := t{ϕ}

{ϕ}p0{χ} {χ}p1{ψ}
(sequence){ϕ}p0; p1{ψ}

{ϕ ∧B}p0{ψ} {ϕ ∧ ¬B}p1{ψ}
(conditional){ϕ}if B then p0 else p1{ψ}

Z |= ϕ → I {I ∧B}p{I} Z |= I ∧ ¬B → ψ
(while){ϕ}while B do p{ψ}

Z |= ϕ → ϕ {ϕ }p{ψ } Z |= ψ → ψ
(consequence){ϕ}p{ψ}

In most of the literature the (while)-rule is replaced with

{ϕ ∧B}p{ϕ}
(while'){ϕ}while B do p{ϕ ∧ ¬B}

This leads to an equivalent proof calculus as (while') is a special case of (while) for I = ϕ
and ψ = ϕ ∧ ¬B. In the other direction (while) can be obtained by combining the (while')
and (consequence) rule. Yet for our usage the first definition suits better.

Theorem 5.8. The Hoare rules are a sound and relatively complete proof system for Hoare
triples, i.e.

{ϕ}p{ψ} ⇔ |= {ϕ}p{ψ}.
Proof. Soundness can be proven by a structural induction on the Hoare rules. Proving
relatively completeness is more complicated and relies on the fact that it is possible to
encode finite sequences of arbitrary length in Z. A proof can be found in [11].

Note that there can not be a complete proof system for |= {ϕ}p{ψ}, as this would yield
a complete proof system for validity in Z, which is impossible due to Gödel's incompleteness
theorem. Hence we will always talk about relative completeness.

30 CHAPTER 5. PARTIAL CORRECTNESS OF WHILE-PROGRAMS

5.1 Verification condition

Now we will define a Horn formula equation from a Hoare triple, called the verification
condition4. It turns out that a Hoare triple is valid iff its verification condition holds in Z.

Definition 5.9. The verification condition of a Hoare triple {ϕ}p{ψ}, written vc({ϕ}p{ψ}),
is a formula equation ∃I∀x vc({ϕ}p{ψ}), where vc({ϕ}p{ψ}) is defined by structural in-
duction on p. Here I is a fresh new formula variable, which does not appear in ϕ and
ψ.

vc({ϕ}skip{ψ}) = (ϕ → ψ)

vc({ϕ}xj := t{ψ}) = (ϕ → ψ[xj\t])
vc({ϕ}p0; p1{ψ}) = vc({ϕ}p0{I}) ∧ vc({I}p1{ψ}),

vc({ϕ}if B then p0 else p1{ψ}) = vc({ϕ ∧B}p0{ψ}) ∧ vc({ϕ ∧ ¬B}p1{ψ})
vc({ϕ}while B do p0{ψ}) = vc({I ∧B}p0{I}) ∧ (ϕ → I) ∧ (I ∧ ¬B → ψ)

Then vc({ϕ}p{ψ}) = ∃I∀x vc({ϕ}p{ψ}) is defined by universal quantification of every vari-
able occurring in vc({ϕ}p{ψ}) and existential quantification of every formula variable in
vc({ϕ}p{ψ}).

Note that this is an purely syntactic definition, thus we can define vc({ϕ}p{ψ}) anal-
ogously for a program p and second-order formulas ϕ, ψ. This will be needed for Lemma
5.13.

Lemma 5.10. Let {ϕ}p{ψ} be Hoare triple. Then vc({ϕ}p{ψ}) is a linear-Horn formula
equation.

Proof. vc({ϕ}p{ψ}) is a formula equation ∃I∀x vc({ϕ}p{ψ}), where vc({ϕ}p{ψ}) is a con-
junction of clauses. Each clause has the form γ ∨ ¬C ∨D, where γ is a first-order formula
(it is a disjunction of the first-order formulas B or ¬B) and C and D are either formula
variables or the first-order formulas ϕ or ψ.

Lemma 5.11. Let {ϕ}p{χ} be a Hoare triple. ϕ occurs only negatively and ψ occurs only
positively in vc({ϕ}p{χ}), respectively.
Proof. The proof goes by structural induction on vc({ϕ}p{χ}). It holds as in every step
of the construction ϕ only appears on the left side of an implication, which is a negative
occurrence. Conversely ψ only appears on the right side of an implication, which is a
positive occurrence. The claim now follows as there are no other negations added, which
are in the scope of ϕ or ψ.

4In the literature mostly the term verification conditions is used for the set of conditions. As we talk
about the conjunction of that conditions we will use singular.

5.1. VERIFICATION CONDITION 31

Definition 5.12. For every formula ϕ in L define a subset of Σ:

[ϕ] := {σ ∈ Σ | Z, σ |= ϕ}.

The next aim will be to show Z |= vc({ϕ}p{ψ}) ⇒ |= {ϕ}p{ψ}. If we try to prove this
directly with induction on p there arise problems, as in the definition of the verification
condition we have expressions of the form vc({I}p{ψ}), where I is a formula variable. As
|= {ϕ}p{ψ} is only defined for first-order formulas ϕ and ψ, we have to prove a more general
lemma, where we speak about sets of states instead of formulas.
First we introduce some notations. Let x1, ..., xn be the variables occurring in p. Let S ⊆ Σ
be a set of states. Every such S defines a set SZ ⊆ Zn and vice versa as follows

(k1, ..., kn) ∈ SZ ⇔ σk ∈ S,

where σk(xj) = kj for all j ∈ {1, ..., n}.
Lemma 5.13. Let S1, S2 be subsets of Σ. If Z, [X1 := SZ

1 , X2 := SZ
2] |= vc({X1}p{X2}),

then

σ ∈ S1 ⇒ C(p)(σ) ∈ S2 ∪ {⊥}.

Proof. We prove the Lemma by structural induction on p:

• p ≡ skip: We have Z, [X1 := SZ
1 , X2 := SZ

2] |= ∀x(X1 → X2), which means, that for
all σ ∈ S1 it follows that C(p)(σ) = σ ∈ S2.

• p ≡ xj := t: We have Z, [X1 := SZ
1 , X2 := SZ

2] |= ∀x(X1 → X2[xj\t]). Let σ ∈ S1,
then there exists an unique n ∈ Z s.t. Z, σ |= t = n. Thus C(p)(σ) = σ[xj → n] ∈ S2.

• p ≡ p0; p1: The assumption is Z, [X1 := SZ
1 , X2 := SZ

2] |= ∃I vc({X1}p0{I}) ∧
vc({I}p1{X2}). Let SZ be a set s.t. Z, [X1 := SZ

1 , X2 := SZ
2 , I := SZ] |= vc({X1}p0{I})∧

vc({I}p1{X2}). Using the induction hypothesis we get

σ ∈ S1 ⇒ C(p0)(σ) ∈ S ∪ {⊥} and

σ ∈ S ⇒ C(p1)(σ) ∈ S2 ∪ {⊥}.

Combining these statements we obtain

σ ∈ S1 ⇒ C(p)(σ) = C(p1) ◦ C(p0) ∈ S2 ∪ {⊥}.

• p ≡ if B then p0 else p1: Let S1, S2 ⊆ Σ s.t. Z, [X1 := SZ
1 , X2 := SZ

2] |= vc({X1 ∧
B}p0{X2})∧vc({X1∧¬B}p1{X2}). Let σ ∈ S1. If Z, σ |= B the induction hypothesis
states C(p0)(σ) ∈ S2, else Z, σ |= ¬B and we have C(p1)(σ) ∈ S2. Combining these
yields the claim.

32 CHAPTER 5. PARTIAL CORRECTNESS OF WHILE-PROGRAMS

• p ≡ while B do p0: We have Z, [X1 := SZ
1 , X2 := SZ

2] |= ∃I vc({I ∧ B}p0{I}) ∧
∀x(X1 → I) ∧ ∀x(I ∧ ¬B → X2), hence let S

Z ⊆ Zn be s.t.

Z, [X1 := SZ
1 , X2 := SZ

2 , I := SZ] |=
vc({I ∧B}p0{I}) ∧ ∀x(X1 → I) ∧ ∀x(I ∧ ¬B → X2). (5.1)

The semantics of p is defined as C(p) = lfp(Γ), where Γ is the monotonous operator

Γ(X) ={(σ, σ) | Z, σ |= B ∧ (σ, σ) ∈ C(p0) ◦X}∪
{(σ, σ) | Z, σ |= ¬B}.

As Γ is monotonous we know from Theorem 2.12 that lfp(Γ) = ifp(Γ) = Sξ
Γ, where ξ

is the closure ordinal of Γ. To prove the Lemma we first prove the following statement
with induction on m:

Let S1, S2, S be s.t. (5.1) is satisfied. For every m ∈ N it holds

σ ∈ S1 and (σ, σ) ∈ Sm
Γ ⇒ σ ∈ S. (5.2)

m = 1: (σ, σ) ∈ S1
Γ iff σ = σ ∧ Z, σ |= ¬B. From (5.1) we obtain Z, [X1 := SZ

1 , I :=
SZ] |= ∀x(X1 → I), hence σ ∈ S1 ⇒ σ ∈ S.

m → m+ 1: (σ, σ) ∈ Sm+1
Γ iff σ = σ ∧ Z, σ |= ¬B, which we already checked, or

Z, σ |= B ∧ ∃σ : (σ, σ) ∈ Sm
Γ ∧ (σ , σ) ∈ C(p0).

Let σ ∈ S1, by induction hypothesis we got σ ∈ S. (5.1) yields Z, [I := SZ] |=
vc({I ∧ B}p0{I}) and, as Z, σ |= B, we obtain by induction hypothesis of the struc-
tural induction σ = C(p0)(σ) ∈ S.

Now let σ ∈ S1. If there exists m ∈ N s.t. Sm
Γ (σ) is defined and Γ(Sm

Γ)(σ) = Sm
Γ (σ),

then we have C(p)(σ) = lfp(Γ)(σ) = Sm
Γ (σ). From (5.2) we obtain that Sm

Γ (σ) ∈ S.
From (5.1) we get Z, [X2 := SZ

2 , I := SZ] |= ∀x(I∧¬B → X2). As Γ(S
m
Γ)(σ) = Sm

Γ (σ)
it holds that Z, Sm

Γ (σ) |= ¬B and thus this yields Sm
Γ (σ) ∈ S2.

If there is no m ∈ N s.t. Sm
Γ (σ) is defined and Γ(Sm

Γ)(σ) = Sm
Γ (σ), then C(p)(σ) is

not defined as well. Hence C(p)(σ) = ⊥ and the proof is finished.

Theorem 5.14. Let {ϕ}p{ψ} be a Hoare triple. Then

|= {ϕ}p{ψ} ⇔ Z |= vc({ϕ}p{ψ}).

5.1. VERIFICATION CONDITION 33

Proof. ” ⇒ ”: As the Hoare rules are a relatively complete proof system we may assume
{ϕ}p{ψ}. What we want to prove is that Z |= vc({ϕ}p{ψ}). We accomplish that if

we show that every rule yields Hoare triples, whose verification condition is true in Z.
In other words, we show that the Hoare rules are sound with respect to the semantics
Z |= vc({ϕ}p{ψ}).

• (skip): ϕ → ϕ is a tautology, thus Z |= ∀x(ϕ → ϕ)

• (assign): By definition vc({ϕ[xj\t]}xj := t{ϕ}) = ∀x(ϕ[xj\t] → ϕ[xj\t]), which Z
always fulfils.

• (sequence): The induction hypothesis states, that Z |= vc({ϕ}p0{χ})∧vc({χ}p1{ψ}).
Therefore Z |= ∃I vc({ϕ}p0{I}) ∧ vc({I}p1{ψ}), which is, by definition and shifting
of quantifiers, equivalent to Z |= vc({ϕ}p0; p1{ψ}).
Here it is crucial that the formula variables occurring in vc({ϕ}p0{I}) are different to
the formula variables in vc({I}p1{ψ})5. This is achieved by renaming and thus may
be assumed to be always the case. Similar assumptions will also be made in the other
cases.

• (conditional): The claim is Z |= vc({ϕ}if B then p0 else p1{ψ}). By induction
hypothesis we have Z |= vc({ϕ∧B}p0{ψ})∧vc({ϕ∧¬B}p1{ψ}), which is, by definition
and shifting of quantifiers, equivalent to the claim.

• (while): Assume that Z |= (ϕ → I) ∧ vc({I ∧B}p{I}) ∧ (I ∧ ¬B → ψ). In particular
Z |= ∃I (ϕ → I) ∧ vc({I ∧ B}p{I}) ∧ (I ∧ ¬B → ψ), which is, modulo shifting of
quantifiers, the definition of Z |= vc({ϕ}while B do p0{ψ}).

• (consequence): By induction hypothesis we have Z |= (ϕ → ϕ), Z |= (ψ → ψ)
and Z |= vc({ϕ }p{ψ }). From Lemma 5.11 we know that ϕ occurs only negatively
and ψ occurs only positively in vc({ϕ }p{ψ }), hence with Lemma 2.1 it follows
Z |= vc({ϕ}p{ψ}).

” ⇐ ”: Let {ϕ}p{ψ} be a Hoare triple s.t. Z |= vc({ϕ}p{ψ}). Define S1 := [ϕ] and
S2 := [ψ]. Then Z, [X1 := SZ

1 , X2 := SZ
2] |= vc({X1}p{X2}) and Lemma 5.13 yields

σ ∈ [ϕ] ⇒ C(p)(σ) ∈ [ψ] ∪ {⊥}.
As Z,⊥ |= ψ for every formula ψ, this implies

Z, σ |= ϕ ⇒ Z, C(p)(σ) |= ψ,

which is the definition of |= {ϕ}p{ψ}.

5except the newly introduced formula variable I.

34 CHAPTER 5. PARTIAL CORRECTNESS OF WHILE-PROGRAMS

As vc({ϕ}p{ψ}) is a linear-Horn formula we can state an immediate corollary from
Lemma 3.3 and Lemma 3.7. Here πD is the dual formula of π with formula variables
K1, ...,Kn.

Corollary 5.15. Let {ϕ}p{ψ} be a Hoare triple. Consider the linear-Horn formula equation
∃I π ≡ vc({ϕ}p{ψ}) with formula variables I1, ..., In and assume Z |= vc({ϕ}p{ψ}). Define
αj := [lfpIj Φπ] and βj := ¬[lfpKj

ΦπD] for j ∈ {1, ..., n}. Then

1. Z, [I1 := α1, ..., In := αn] |= vc({ϕ}p{ψ}) and Z, [I1 := β1, ..., In := βn] |= vc({ϕ}p{ψ}).

2. If Z, [I1 := χ1, ..., In := χn] |= vc({ϕ}p{ψ}) for relations χ1, ..., χn, then Z |=
n
j=1 αj → χj ∧ χj → βj.

In computer science it is a common problem to find first-order formulas χ1, ..., χn s.t.
Z, [I1 := χ1, ..., In := χn] |= vc({ϕ}p{ψ}). Corollary 5.15 reduces this to an interpolation
problem: Finding first-order formulas χ1, ..., χn s.t. Z |= n

j=1 αj → χj ∧ χj → βj .

5.2 Weakest precondition/Strongest postcondition

In the last section we have defined the verification condition. As this is a linear-Horn
formula equation we can now apply our results from Chapter 3. We will see that the
canonical solutions from the verification condition correspond to the weakest precondition
and strongest postcondition.

Definition 5.16. Let p be a program and ϕ, ψ be first-order formulas in L. The weakest
precondition6 of p and ψ, written wp(p, ψ), is defined as

wp(p, ψ) = {σ ∈ Σ | Z, C(p)(σ) |= ψ}.

The strongest postcondition of p and ϕ, written sp(p, ϕ), is defined as

sp(p, ϕ) = {σ ∈ Σ | ∃σ ∈ Σ : Z, σ |= ϕ and C(p)(σ) = σ}.

Lemma 5.17. Let {ϕ}p{ψ} be a Hoare triple. Then

1. |= {ϕ}p{ψ} iff [ϕ] ⊆ wp(p, ψ),

2. |= {ϕ}p{ψ} iff [ψ] ⊇ sp(p, ϕ).

6In the literature this is mostly called weakest liberal precondition and the term weakest precondition is
reserved for the context of total correctness. As we only talk about relative correctness of programs there
is no need for us to do so.

5.✷. WEAKEST PRECONDITION/STRONGEST POSTCONDITION 35

Proof. 1. Let σ ∈ [ϕ], thus Z, σ |= ϕ. As σ |= {ϕ}p{ψ}, we got Z, C(p)(σ) |= ψ, hence
σ ∈ wp(p, ψ).
If [ϕ] ⊆ wp(p, ψ) it holds for all σ ∈ Σ, that Z, σ |= ϕ implies Z, C(p)(σ) |= ψ, which is the
definition of |= {ϕ}p{ψ}.
2. Assume σ ∈ sp(p, ϕ), that means that there exists σ s.t. Z, σ |= ϕ and C(p)(σ) = σ.
As σ |= {ϕ}p{ψ}, we have Z, C(p)(σ) |= ψ which means σ = C(p)(σ) ∈ [ψ].
If on the other hand [ψ] ⊇ sp(p, ϕ) it holds Z, σ |= ϕ ⇒ Z, C(p)(σ) |= ψ for every σ ∈ Σ,
hence |= {ϕ}p{ψ}.

Lemma 5.18. Let p be a program and ϕ, ψ be first-order formulas. Then

Z |= vc({⊥}p{ψ}) and Z |= vc({ϕ}p{ }).

Proof. From Theorem 5.14 we know that Z |= vc({ϕ}p{ψ}) is equivalent to |= {ϕ}p{ψ},
which means that for all states σ ∈ Σ it holds (Z, σ |= ϕ ⇒ Z, C(p)(σ) |= ψ). If we replace
ϕ with ⊥ or ψ with , this is always a true statement.

Theorem 5.19 ([11], Theorem 7.5). Let ϕ and ψ be first-order formulas in L and p be a
program. Then there exist first-order formulas ϕwp and ψsp s.t.

[ϕwp] = wp(p, ψ) and [ψsp] = sp(p, ϕ).

To get the first-order formulas ϕwp and ψsp it is necessary to encode runs of programs,
in particular arbitrary many iterations of a while-loop. This is achieved by encoding arbi-
trary large finite sequences, which is possible in Z. However these encodings are not very
descriptive. Our aim will be to construct LFP-formulas that define the weakest precondi-
tion and the strongest postcondition. Even if this are not first-order formulas, they better
reflect the runs of a program and therefore lead to a better understanding of the program.

Consider the formula ∃X vc({ϕ}p{X}), which asks for a formula X s.t. all states
satisfying ϕ fulfil X after running the program p. Similarly we are interested in solutions
of the formula ∃Y vc({Y }p{ψ}). Note that this are linear-Horn formula equations and
therefore we can apply the results from Chapter 3. In general there also occur formula
variables in vc({ϕ}p{ψ}), yet here we are only interested in the formula variables that are
stated specifically.

Theorem 5.20. Let p be a program and ψ be a first-order formula. Consider the linear-
Horn formula equation ∃Y π ≡ ∃Y vc({Y }p{ψ}). Let β := ¬[lfpX ΦπD], where ΦπD is the
sequence of formulas defined in (3.1) from the dual formula of π. Then

[β] = wp(p, ψ).

36 CHAPTER 5. PARTIAL CORRECTNESS OF WHILE-PROGRAMS

Proof. As Z |= vc({⊥}p{ψ}) we know that Z |= ∃Y vc({Y }p{ψ}). Hence with Lemma 3.7/1
we obtain Z |= vc({β}p{ψ}), which is, due to Theorem 5.14, equivalent to |= {β}p{ψ}. Now
Lemma 5.17 states [β] ⊆ wp(p, ψ).
For the other inclusion let ϕwp be the formula from Theorem 5.19 s.t. [ϕwp] = wp(p, ψ).
From Lemma 5.17 we obtain |= {ϕwp}p{ψ}, thus it holds Z |= vc({ϕwp}p{ψ}) and we
can apply Lemma 3.7/2. This yields Z |= ∀x (ϕwp(x) → β(x)). In particular we got
Z, σ |= ϕwp → β for all σ ∈ Σ. Hence [β] ⊇ [ϕwp] = wp(p, ψ).

Theorem 5.21. Let p be a program and ϕ be a first-order formula. Consider the linear-
Horn formula equation ∃X π ≡ ∃X vc({ϕ}p{X}). Let α := [lfpX Φπ], where Φπ is the
sequence of formulas defined in (3.1) from π. Then

[α] = sp(p, ϕ).

Proof. From Lemma 5.18 we got Z |= vc({ϕ}p{ }), in particular Z |= ∃X vc({ϕ}p{X}).
Using Lemma 3.3/1 it follows Z |= vc({ϕ}p{α}), which is equivalent to |= {ϕ}p{α}. Lemma
5.17 concludes [α] ⊇ sp(p, ϕ).
Now take the formula ψsp from Theorem 5.19. With Lemma 5.17 we got |= {ϕ}p{ψsp},
which is equivalent to Z |= vc({ϕ}p{ψsp}). Now Theorem 3.3/2 states Z |= ∀x(α(x) →
ψsp(x)), that yields [α] ⊆ [ψsp] = sp(p, ϕ).

Chapter 6

Inductive theorem proving

As an application of the Horn fixed-point theorem we take a deeper look at [4], a paper
called "Inductive theorem proving based on tree grammars" by Sebastian Eberhard and
Stefan Hetzl. Their aim is to generate a proof of an universal statement, which is generated
in two phases. In the first phase proofs of small instances are computed, from which a
second-order unification problem is deduced. Each solution of the unification problem is an
induction invariant. We will not go into depth about phase one as we are more interested
in phase two, in which solutions of the second-order unification problem are computed. We
will see that the second-order unification problem is in fact a Horn formula equation, where
we can apply our results from Chapter 3 to get solutions.

In this chapter we work in a language L, which contains the constant symbol 0 and the
unary function symbol s. We define n = sn(0).

Definition 6.1. Let F1, ..., Fn, G1, ..., Gm be formulas. A formula of the form F1∧· · ·∧Fn →
G1 ∨ · · · ∨ Gm is called a sequent and is written as Γ ⇒ Δ, where Γ = {F1, ..., Fn} and
Δ = {G1, ..., Gm}.
Definition 6.2 ([4],Definition 6.1.). Let α, β, ν, γ be variables only occurring where indi-
cated. Let Γ0(α, β),Γ1(α, ν, γ),Γ2(α) be multisets of quantifier-free first-order formulas and
let B(α) be a quantifier-free formula. Let ti(α, ν, γ) and uj(α) be terms for i ∈ {1, ..., n}
and j ∈ {1, ...,m}, where n,m ≥ 1. Let X be a ternary formula variable. Then the list of
the following three sequents is a schematic simple induction proof(schematic s.i.p.):

• Γ0(α, β) ⇒ X(α, 0, β)

• Γ1(α, ν, γ), 1≤i≤nX(α, ν, ti(α, ν, γ)) ⇒ X(α, s(ν), γ)

• Γ2(α), 1≤j≤mX(α, α, uj(α)) ⇒ B(α)

Note that every schematic s.i.p. defines a Horn formula equation ∃X∀α, β, ν, γ ψ, where
ψ is the conjunction of the three sequents. A solution of a schematic s.i.p. S is defined to

37

38 CHAPTER 6. INDUCTIVE THEOREM PROVING

be a quantifier-free formula F (x, y, z), such that the three sequents of S with X replaced
by F are quasi-tautological, which means it is valid in first-order logic with equality. This
means exactly |= ∀α, β, ν, γ ψ[X\F], as we always talk about logic with equality.

For solving a schematic s.i.p., Γ0,Γ1,Γ2 may be arbitrary multisets of first-order formu-
las. Of particular interest is the case, when Γ0,Γ1,Γ2 are instances of a theory Γ. In applica-
tions this is an arithmetic theory, e.g. Robinson arithmetic. Assume we have a solution F of
a schematic s.i.p. S in that specific case. Then we can deduce a proof of ∀Γ ⇒ ∀β F (α, 0, β)
from the first sequent of S, where ∀Γ is the universal closure of Γ. Similarly we obtain
∀Γ, ∀βF (α, ν, β) ⇒ ∀βF (α, s(ν), β) from the second sequent. As we are interested in proofs
with an induction rule, we then are able to deduce ∀Γ ⇒ ∀ν, βF (α, ν, β). Thus using the
third sequent of S yields a proof of ∀Γ ⇒ B(α) and therefore of ∀Γ ⇒ ∀αB(α). In [4] the
aim is to prove an universal statement ∀αB(α). To do so an appropriate schematic s.i.p. is
defined, where a Solution of it yields a proof of ∀αB(α), as we sketched here.
Next we investigate how to get a solution of a schematic s.i.p.

Definition 6.3 ([4], Definition 6.10.). Let S be a schematic s.i.p. with premises given as
in Definition 6.2. By recursion define the following sequence of formulas.

CS,0(x, z) := Γ0(x, z)

CS,q+1(x, z) := Γ1(x, q, z) ∧
1≤i≤n

CS,q(x, ti(x, q, z))

CS,q(x, z) is called the q-th canonical solution of S.

Lemma 6.4. Let S be a schematic s.i.p. and CS,q be defined as in Definition 6.3. Let ∃Xψ
be the formula equation defined from S. Let (ϕl)l∈ω be the sequence of first-order formulas
defined as in (4.1) from ψ. Then for all q ∈ N it holds

CS,q(x, z) ≡ ϕq+1(x, q, z).

Proof. We show the equivalence by induction on q. The definition of (ϕl)l∈ω is ϕ0 ≡ ⊥ and
for l ∈ ω

ϕl+1(x, y, z) ≡∃α, β, ν, γ Γ0(α, β) ∧ x = α ∧ y = 0 ∧ z = β

∨ Γ1(α, ν, γ) ∧
1≤i≤n

ϕl(α, ν, ti(α, ν, γ)) ∧ x = α ∧ y = s(ν) ∧ z = γ .

In particular it holds that ϕ1(x, 0, z) ≡ Γ0(x, z) ≡ CS,0(x, z). For q ≥ 0 we have

ϕq+2(x, q + 1, z) ≡ Γ1(x, q, z) ∧
1≤i≤n

ϕl+1(x, q, ti(x, q, z))

≡ Γ1(x, q, z) ∧
1≤i≤n

CS,q(x, ti(x, q, z)) ≡ CS,q+1(x, z).

39

Now we want to present Lemma 6.12. from [4] as a direct corollary of Lemma 3.7.

Lemma 6.5 ([4], Lemma 6.12.). Let S be a schematic s.i.p. Then for any solution F of S
and any q ∈ N, the q-th canonical solution CS,q(x, z) logically implies F (x, q, z).

Proof. From the definition of ϕω in (4.1) it follows that |= ϕq → ϕω for all q ∈ ω. Theorem
4.5 states that ϕω ≡ [lfpX Φψ] and thus Lemma 6.4 yields |= CS,q(x, z) → [lfpX Φψ] for all
q ∈ ω. Now Lemma 3.7/3 concludes |= CS,q(x, z) → F (x, q, z) for all q ∈ ω.

Thus we see that using the results from Chapter 3 and 4 shortens the proofs of this
paper and brings more insights to it.

40 CHAPTER 6. INDUCTIVE THEOREM PROVING

Chapter 7

Decidability of affne solution

problems

In this chapter we want to deal with the affine solution problem, which is shown to be
decidable in [6]. This is proven by computing a fixed point similarly to how we did in
Chapter 3. The main difference is that the fixed point is not computed on the level of logic,
but in a lattice of affine subspaces of Qn. The question emerges if it is possible to lift up
this computation and use the results of Chapter 3. It turns out that this is not possible.
Yet we will give some guideline how to generalize the Horn fixed point theorem in order to
be applicable for this problem.

We start by presenting the algorithm for the affine solution problem. Here we work in
the language Laff , which consists of

• the constant symbols 0 and 1,

• the binary function symbol +,

• the unary function symbols {c | c ∈ Q}.
We are only interested in the structure Q, where 0, 1 and + are interpreted in the usual
way and the unary function symbol c is interpreted as multiplication with c for each c ∈ Q.
Note that in Laff it is only possible to multiplicate with constants, but not with variables.
As we are only working in Q we can assume without loss of generality, that every term
t(x1, ..., xn) is of the form c0 +

m
i=1 cixi and every atomic formula A(x1, ..., xn) is of the

form c0 +
m
i=1 cixi = 0. We call such atomic formulas linear equations and conjunctions

of linear equations linear equation systems.

Definition 7.1. An affine formula equation is a formula equation of the form ∃X ψ, where
ψ is a quantifier-free first-order formula in Laff ∪ {X1, ..., Xn}.

41

42 CHAPTER 7. DECIDABILITY OF AFFINE SOLUTION PROBLEMS

Definition 7.2. The solution problem Th(Q), C,Φ , where C is the class of linear equation
systems and Φ is the class of affine formula equations, is called the affine solution problem.

The aim of [6] is to prove decidability of the affine solution problem. We now sketch
the proof and state the most interesting parts from our point of view. For a detailed and
complete proof see [6].

Definition 7.3. Let V be a vector space over Q. Then AffV is the set of all subsets of V
that are either empty or affine subspaces of V .

AffV is a complete lattice with least element ∅ and greatest element V . Let A ,B ∈
AffV , then the intersection A ∩ B ∈ AffV , we write A ∨ B for the supremum in AffV .
Let A(x1, ..., xn) be a linear equation system. Then AQ ∈ AffQn. Thus, as we are interested
in solutions of affine formula equations, which are linear equation systems, we are searching
for solutions in AffQn.
We write affine spaces, affine transformations and variables in an affine space in calligraphic
typeface, e.g. A ,T ,X .

Definition 7.4. Let m,n, l, r ∈ N and let A ,B1, ...,Bm ∈ AffQn. Let Xi be a variable
ranging over AffQki and Ti : Qn → Qki be an affine transformation for i ∈ {1, ..., l + r}.
An affine condition C is a statement of the form

A ∩
l

i=1

T −1
i (Xi) ⊆

m

i=1

Bi ∪
l+r

j=l+1

T −1
j (Xj).

A tuple F ∈ AffQk1 × · · · ×AffQkl+r is a solution of C if C [X \F] is true.

Let ∃X ψ be an affine formula equation, where w.l.o.g. ψ is in conjunctive normal form.
From every clause C in ψ an affine condition C can be derived, s.t. for every tuple of linear

equation systems F we have Q |= C[X\F] iff F
Q
is a solution of C . Thus the affine solution

problem is reduced to solving affine conditions.

Definition 7.5. Let C be an affine condition as in Definition 7.4. We call the affine
conditions

(U) A ∩ l
i=1 T −1

i (Xi) ⊆ Bi0 , i0 ∈ {1, ...,m},
(L) A ∩ l

i=1 T −1
i (Xi) ⊆ T −1

j0
(Xj0), j0 ∈ {l + 1, ..., l + r}

projections of C . Such affine conditions are called affine Horn conditions. We call affine
Horn conditions of the form (L) lower bound conditions and of the form (U) upper bound
conditions.1 Let S be a set of affine conditions. We call a set of affine Horn conditions a
projection of S if it consists of exactly one projection of each element of S.

1Note the similarity to Section 3.1, where the upper bound conditions correspond to the end clauses and
the lower bound conditions correspond to the base and induction clauses.

43

Theorem 7.6. Let C be an affine condition. Then F is a solution of C iff it is a solution
of some projection of C .

This theorem further reduces the problem to solving affine Horn conditions. It basically
follows from the fact that an affine space is in the union of affine spaces iff it is in one of them.

Now we get to the part of the proof that is most interesting for us: Solving a set of
affine Horn conditions.

Let P be a set of affine Horn conditions with unknowns X1, ...,Xn of arity k1, ..., kn.
As we are only interested in solutions that are affine spaces it follows that the candidate
solutions of P are the elements of AffQk1 × · · · × AffQkn . We write Lat(P) for the lattice
AffQk1 × · · · ×AffQkn . We now define an operator FP on Lat(P). Let j ∈ {1, ..., n} and

A1 ∩
m1

i=1

T −1
1,i (Xj1,i) ⊆ T −1

1 (Xj)

...

Al ∩
ml

i=1

T −1
l,i (Xjl,i) ⊆ T −1

l (Xj)

be the lower bound conditions in P , where the unknown on the right side is Xj . Define

FP (X)j := Xj ∨
l

i =1

Ti Ai ∩
mi

i=1

T −1
i ,i (Xji ,i

) .

Similarly to Lemma 3.3 we get:

Theorem 7.7. Let P be a set of affine Horn conditions and αj := lfp(FP)j for j ∈
{1, ..., n}. Then there exists a solution of P iff α is a solution of P .

Let P be a set of affine Horn conditions. As FP is a monotonous operator it follows
from Lemma 2.24 that lfp(FP) = ifp(FP) = Sξ

FP
, where (Sζ

FP
) is the sequence defined in

(2.4) and ξ is the closure ordinal of FP . As Lat(P) has finite height, which follows from
the dimensions of the affine spaces being finite, we obtain ξ < ω and hence we can compute
Sξ
FP

in finite time. Thus we can decide if P is solvable by checking whether α satisfies the
upper bound conditions. Hence the following is shown:

Theorem 7.8. The affine solution problem is decidable.

The method of finding a solution of affine Horn conditions and the definition of the op-
erator FP reminds one of solving Horn formula equations as we did in Section 3.1. Thus one
might think that we can find linear equation systems, which solve affine formula equations
with Lemma 3.3. The next example shows that this does not work.

44 CHAPTER 7. DECIDABILITY OF AFFINE SOLUTION PROBLEMS

Example 7.9. Consider the affine formula equation ψ with one binary formula variable
X:

ψ ≡

X(0, 0)
X(1, 0)
X(2, 0) → X(0, 1)

.

Let P be the set of affine conditions obtained from ψ

Q2 ⊆ T −1
0 (X)

Q2 ⊆ T −1
1 (X)

T −1
2 (X) ⊆ T −1

3 (X),

where X is a variable ranging over AffQ2 and

T0 :
x

y
→ 0

0
, T1 :

x

y
→ 1

0
, T2 :

x

y
→ 2

0
, T3 :

x

y
→ 0

1
.

All the affine conditions in P are affine Horn conditions, thus we can define the operator
FP on AffQ2:

FP (X) = X ∨ T0(Q2) ∨ T1(Q2) ∨ T3(T
−1
2 (X)).

We have FP (∅) = 1
0 and FP (FP (∅)) = Q2, hence lfp(FP) = Q2. This is a solution of P .

On the other hand, as ψ is a Horn formula equation, we could try to solve ψ as we did
in Section 3.1. Doing so we define α := [lfpX Φψ], where Φψ is the operator defined in
(3.1). In Q the formula α defines the set

αQ = {(0, 0), (1, 0)}.

This is a solution of ψ, yet we are only interested in solutions, which are affine subspaces
of Q2, which αQ is not. Thus it is natural to take a look at the affine hull of αQ, which is

aff(αQ) =
1

0
.

This is not a solution of ψ, as Q, [X := aff(αQ)] |= X(2, 0) → X(0, 1).

In the previous example we have seen, that the fixed point theorem from Chapter 3 is
not directly applicable for affine solution problems. The reason why this does not work
is, that the operator FΦψ

used in Chapter 3 and the operator FP are defined on different
lattices. In solving affine solution problems we are only interested in solutions, which are
affine subspaces of Qn. Therefore an operator FP is defined on the lattice AffQn to find a

45

solution. However in Chapter 3 the operator FΦψ
is defined on the lattice of all subsets of

Qn. An idea would be to generalize Lemma 3.3 in the following way:2

Let ∃X ψ be a Horn formula equation and M be a structure. Let (L,⊆) be a sublattice
of (P (M),⊆). If a monotonous operator F on M satisfies F (A) ∈ L for all A ∈ L, then
we can apply the Knaster-Tarski theorem on (L,⊆) and F and obtain a fixed point α ∈ L
of F . Thus, if the operator defined in (3.1) fulfils this condition, it should be possible to
obtain a canonical solution α of ∃X ψ s.t. α ∈ L. As this thesis is not the place to work
this out in detail we refer to future work.
In the context of affine solution problems we then could apply this result with the sublattice
AffQn of Qn. Here the operator F defined in (3.1) does not satisfy F (A) ∈ AffQn for all
A ∈ Aff, thus the operator has to be adjusted accordingly.

Another application of this generalized lemma would be in the context of abstract
interpretation. This is a theory of an approximation of the semantics of a computer program.
To get a small idea of how this works take for instance a program p, where only the sign
of an integer variable x is important, but the exact value does not matter. Then the only
information of x that is of interest in abstract interpretation is the sign of x. Therefore the
set of accepted states of x of the program p is an element of the sublattice (P ({−1, 0, 1}),⊆)
of (P (Z),⊆), thus we can utilize the generalized Lemma. If this is worked out in full detail
it should be possible to get similar results as in Chapter 5 for abstract interpretation.

2For simplicity we state this for one unary formula variable X. Yet this should be easy to generalize for
finitely many formula variables of arbitrary arity.

46 CHAPTER 7. DECIDABILITY OF AFFINE SOLUTION PROBLEMS

Chapter 8

Conclusion

The main results of this thesis are the fixed-point theorems for Horn formula equations
and dual-Horn formula equations. These are new results, which describe the solution space
of formula equations. We obtained the theorems by defining an operator such that every
solution of the formula equation is a fixed point of it. The least fixed point turned out
to always be a solution if there exists one. This canonical solution is described by a least
fixed-point formula.
In applications one is usually interested in solutions, which are first-order formulas. For the
special case of linear-Horn formula equations the fixed-point theorem reduces the problem
of finding first-order solutions to an interpolation problem: Finding first-order formulas χ,
such that α → χ ∧ χ → β, where α and β are the least fixed-point formulas we got from
Theorem 3.11.
Multiple applications of the fixed-point theorems are shown in this thesis. In Chapter 4
we dealt with the problem of finding first-order formulas which approximate existential
second-order formulas, which has been investigated since Ackermann in 1935. We managed
to extend this results for the special case of Horn formula equations.
The verification conditions of a program are a well-known concept in program verification.
Yet, normally they are not treated as a second-order formula like we did in Chapter 5.
By doing so we were able to define a new semantics for Hoare triples, which turned out
to be equivalent to the classical one. This semantics is specified by a linear-Horn formula
equation, thus we could apply our fixed-point theorems. As corollaries we got formulas that
correspond to the classical concepts of weakest precondition and strongest postcondition.
By generalizing the fixed-point theorems it should be possible to get similar results for
abstract interpretation. We sketched an idea of how to generalize the theorems to make
them applicable for this problem, as well as for proving decidability of the affine solution
problem. This is left as future work.
The fixed-point theorems were used in many areas, we got new results for approximating
second-order formulas, in program verification and in inductive theorem proving. Further

47

48 CHAPTER 8. CONCLUSION

research on Horn formula equations may lead to more insights, especially in abstract inter-
pretation and automated theorem proving.

Bibliography

[1] Wilhelm Ackermann. Untersuchungen über das Eliminationsproblem der mathematis-
chen Logik. Mathematische Annalen, 110(1):390-413, December 1935.

[2] A. Arnold and D. Niwinski. Rudiments of Calculus. Elsevier Science, 2001.

[3] Anuj Dawar and Yuri Gurevich. Fixed point logics. The bulletin of symbolic logic,
8(1):65-88, 2002.

[4] Sebastian Eberhard and Stefan Hetzl. Inductive theorem proving based on tree gram-
mars. Annals of Pure and Applied Logic, 166(6):665 - 700, 2015.

[5] Sebastian Eberhard, Stefan Hetzl, and Daniel Weller. Boolean unification with predi-
cates. Journal of Logic and Computation, 27(1):109-128, 2015.

[6] Stefan Hetzl and Sebastian Zivota. Decidability of affine solution problems. Journal
of Logic and Computation, 30(3):697-714, 2019.

[7] Leonid Libkin. Elements Of Finite Model Theory (Texts in Theoretical Computer
Science. An Eatcs Series). SpringerVerlag, 2004.

[8] Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-Holland
Publishing Company, 1974.

[9] Christoph Wernhard. Approximating resultants of existential second-order quantifier
elimination upon universal relational first-order formulas. In Patrick Koopmann, Se-
bastian Rudolph, Renate A. Schmidt, and Christoph Wernhard, editors, Proceedings
of the Workshop on Second-Order Quantifier Elimination and Related Topics (SOQE
2017), volume 2013 of CEUR Workshop Proceedings, pages 82-98. CEUR-WS.org,
2017.

[10] Christoph Wernhard. The boolean solution problem from the perspective of predicate
logic - extended version. CoRR, abs/1706.08329, 2017.

[11] G. Winskel. The Formal Semantics of Programming Languages: An Introduction. Zone
Books, U.S., 1993.

49

	Introduction
	Preliminaries
	Notations
	Formula equations
	Fixed-point logics
	Monotonous fixed point
	Inflationary fixed point
	Simultaneous monotonous fixed point
	Simultaneous inflationary fixed point

	The fixed-point theorems
	Horn formula equations
	Dual-Horn formula equations
	Linear-Horn formula equations
	Universal formula equations

	Fixed-point approximation
	Partial Correctness of while-programs
	Verification condition
	Weakest precondition/Strongest postcondition

	Inductive theorem proving
	Decidability of affine solution problems
	Conclusion

