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Kurzfassung

Oft sind Internet of Things (IoT) Geräte aufgrund von Sicherheits- und Datenschutzpro-
blemen in den Nachrichten. Eine groß angelegte Analyse ist eine Möglichkeit, die aktuelle
Situation zu verbessern. Forscher und Hersteller können eine solche Analyse dazu ver-
wenden, Schwachstellen zu finden, diese zu melden und zu beheben, bevor sie ausgenützt
werden. Jedoch müssen, um eine derartige Analyse durchzuführen zu können, zunächst
zwei Herausforderungen überwunden werden. Zunächst, sind IoT Geräte verschieden
in Bezug auf ihre Soft- und Hardware, was ein einheitliches Vorgehen schwierig macht.
Außerdem sind Analysen oft mit hohen Kosten verbunden, wenn physische Geräte beim
gewählten Analzseansatz benötigt werden.

Um die beiden Herausforderungen zu umgehen, haben wir einen statischen Analyse-
ansatz für IoT Companion Apps entwickelt. Bei Companion Apps handelt es sich um
Smartphone Apps, mit denen es möglich ist mit den physischen Geräten zu interagieren.
Wir haben uns dabei auf zwei Aspekte von Companion Apps fokussiert, die sie von
anderen Apps unterscheiden. Nämlich, die Kommunikation über das lokale Netzwerk
und die verwendeten Protokolle. Für unsere Arbeit haben wir zwei Analysetechniken
gewählt, Taint Analyse und Value Set Analyse. Letztere verwenden wir dazu, URLs
zu extrahieren und damit lokale Kommunikation zu finden. Für die Arbeit haben wir
insgesamt 124 Companion Apps analysiert. Wir zeigen, welche Informationen dadurch
bereits von den rekonstruierten Endpunkten gewonnen werden. Außerdem zeigen wir
von zwei Companion Apps die Datenflüsse im Detail, diese beinhalten Privatsphäre
und Sicherheits Bedrohungen. Wir machen damit einen Schritt in Richtung einer groß
angelegten Analyse, um Datenschutzprobleme in Companion Apps zu finden.
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Abstract

Security and privacy problems of smart devices are often reported in the news. One
possibility to improve the current situation are large-scale analyzes. Researchers and
manufacturers can use such analysis to detect weaknesses, report them, and fix them
before they get misused. However, to be able to perform a large-scale analysis, two
difficulties need to be overcome. First, the diversity regarding software and hardware of
smart devices makes a general approach difficult. Second, analyzes are often associated
with high costs if physical devices are needed for the selected approach.

We developed a static analysis approach for Internet of Things (IoT) companion applica-
tions (apps) to circumvent those difficulties. Companion apps are mobile apps, allowing
their users to interact with smart devices. We focused on two aspects of companion
apps that distinguish them from other applications: the communication over the local
network and the used protocols. For this thesis, we use two analysis techniques to
collect further information about the devices: taint analysis and value set analysis. We
have chosen the latter for reconstructing URLs called by the applications and thereby
detecting local communication. In this thesis, we analyzed in total 124 companion apps
with our approach. We show the information obtained by the reconstructed endpoints.
Furthermore, we present the flows found in two companion apps in detail, which contain
threats to user’s security and privacy. Overall, we make one step towards large-scale
analysis of personally identifiable information (PII) leakage in IoT companion apps.
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CHAPTER 1
Introduction

1.1 Problem Statement

Physical objects are equipped with sensors and connected to networks to make them
smart. Objects attached with computational power are called "smart things." The amount
of smart devices in private homes is increasing. Nowadays, even whole buildings are
equipped with smart devices.

With this development, the number of smart devices is growing from 22 billion in 2018
to 50 billion in 2030, according to a forecast.1

Devices communicate with each other to increase their functionalities, forming the Internet
of Things (IoT). For example, a smart door detects that the last person has left the
building and locks itself. If someone is leaving the building, the information can be
obtained from their mobile phone. The phone has access to the current location of its
user or communicates with the lock via Bluetooth on leaving. The information that no
one is left in the building can be used for additional smart functionalities. For example,
the temperature can be regulated, or the lights can be turned off to save energy. Access
to personal data is needed to make those decisions. In the above example, it is the
location. Another example is a smartwatch calling for help in case of an emergency. To
make this possible, it measures the heart rate, blood oxygen, and other health indicators.

The collection of sensitive data by the device requires trust by its users. The devices are
not always developed securely and can leak personal data. In the past, employees of an

1"Number of internet of things (IoT) connected devices worldwide in
2018, 2025 and 2030," https://www.statista.com/statistics/802690/
worldwide-connected-devices-by-access-technology/, accessed: 17.10.2020

1
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IoT company had access to videos from security cameras sent to their remote servers.2
Even medical devices had vulnerabilities that allowed attackers to take control. In a
worst-case scenario, this can result in the death of patients.3 Furthermore, a large botnet,
Mirai, was responsible for distributed denial of service (DDoS) attacks back in 2016. The
botnet was largely built with smart devices and affected more than 300,000 devices.4

IoT devices are repeatably in the news with new privacy leaks and vulnerabilities. The
reasons for this are diverse. For example, many devices have low resources, which can be
problematic when computing complex cryptography. Others are not receiving updates
regularly and therefore cannot react to published security problems.

One possible countermeasure is to analyze smart devices for security and privacy issues
automatically. Automatic analysis helps developers detect issues before releasing the
device. As a result, problems can be fixed before they get exploited. At the moment, this
is still an open problem. One of the main reasons is that the hardware and the software
of smart devices are diverse. This diversity makes it hard to design general analysis
techniques. This thesis aims to develop an analysis technique for detecting personally
identifiable information (PII) leaks, which is usable for large-scale analysis of a diverse
set of devices.

1.2 Motivation
The goal of the thesis is to develop a static analysis approach that provides an overview
of how IoT devices are handling sensitive data and is helping to improve the current
situation. IoT devices have companion apps to allow users to interact with them. The
advantage of analyzing companion apps is that they are developed for mobile platforms
such as Android and iOS. Therefore, the programming languages are not as diverse as
they are for smart devices. In addition, performing static analysis does not require the
hardware of IoT devices. Instead, it analyzes the application statically without executing
it. This has the advantage that an analysis can be made with freely available applications
from app stores instead of buying physical devices.

2"Report Claims Ring Employees Had Unfettered Access To Security Cam-
era Footage," https://www.forbes.com/sites/paullamkin/2019/01/11/
report-claims-ring-employees-had-unfettered-access-to-security-camera-footage/
#26faea2c206e, accessed: 17.10.2020

3"Hacking pacemakers, insulin pumps and patients’ vital signs
in real time," https://www.csoonline.com/article/3296633/
hacking-pacemakers-insulin-pumps-and-patients-vital-signs-in-real-time.html,
accessed: 17.10.2020

4"Mirai botnet: Three admit creating and running attack tool," https://www.bbc.com/news/
technology-42342221, accessed: 17.10.2020
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1.3. Methodology

Multiple sub-goals need to be fulfilled first to reach the goal of the thesis:

1. Develop a reliable static analysis approaches for companion apps.

2. Distinguish between local and remote communication.

3. Gather an up-to-date list of companion apps for the analysis.

1.3 Methodology
First, a literature research is carried out to gather background information about compan-
ion apps and static analysis. Then, we consider additional resources like code repositories
and blog posts to understand how companion apps are developed. If there are not enough
current open-source companion apps, we will decompile and manually analyze selected
companion apps to get a better overview.

Next, we begin with the main part of the thesis and develop our static analysis approach.
FlowDroid [5] is a well-known tool for Android. For this thesis, we use it as the starting
point. We adapt it to meet the requirements for companion apps. FlowDroid can only
analyze Android and Java applications. Therefore, we only consider Android companion
apps. In the end, our approach must be capable of:

• tracking data flows between Bluetooth and the network API.

• tracking data flows between the local network and the internet.

• detecting the used communication protocols.

We test our analysis approach with sample applications to assure it is working as expected.

Then, we collect some companion apps from the Google Play Store and carry out a larger
analysis.

In the end, we manually analyze the obtained results and evaluate them.

1.4 Related Work
1.4.1 State of IoT Security
Previous work showed multiple attacks on IoT devices. Ho et al. [19] focused their
research upon identifying attack scenarios on smart locks. They showed security problems
within key revocation and automatic unlocking features. Both can lead to unauthorized
access due to design flaws.

Nowadays, even medical devices are getting connected to the internet. Wood et al. [54]
took a closer look at the data transmission of such medical IoT devices. They discovered

3



1. Introduction

a blood pressure monitor that leaks information, like the frequency of measurements
despite using encryption. In contrast, there are even devices, like a smart hydration
tracker, that send data via unencrypted connections [15].

Alrawi et al. [1] tested and rated 45 IoT devices,5 based on rating criteria they designed.
With the rating, they wanted to make it easier for non tech-savvy users to compare the
security and privacy of those IoT devices. For designing the rating criteria, they first
carried out a literature review. From the literature, they identified four main components
of smart devices: the device, mobile application, cloud endpoint, and communication.
Their evaluation showed that if a device performs well in one category, this does not
automatically mean it is also performing well in the other categories.

In contrast to this thesis goal, the research mentioned focused only on a small number of
devices, and none of them have performed a large-scale analysis.

1.4.2 Detection of Personally Identifiable Information Leaks
Detecting leaks of private information in apps is a well-known research area. The
approaches can be categorized into static and dynamic analysis. For dynamic analysis,
the tested application is executed. During execution, personal information is traced.
This approach is more resistant to obfuscation than other methods but also comes with
drawbacks. A modification of the system, libraries, or the analyzed application is usually
needed. Taintdroid [17] or Uraine [40] are examples for this type of analysis.

Network-based analysis can be seen as a subtype of dynamic analysis. For this approach,
network traffic is captured while the app is executed. The traffic gets analyzed if it
contains confidential information to find leaks. In the network traffic, privacy leaks can
be obfuscated, which makes them harder to detect. In addition, leaks can be missed if
the corresponding code is never executed while running the test. Therefore, a high code
coverage while performing the test is important. In contrast, network analysis is more
robust against false positives. Because if personal data is found in the traffic, it was
definitely leaked. Examples for network-based analysis are ReCon [43] or VULPIX [53].
VULPIX makes use of network-based analysis as well as static analysis to combine
the advantages of both methods. Also, Chen et al. [11] showed that a combination of
static and dynamic analysis help to circumvent the drawbacks of using only one analysis
strategy. For analysis of companion apps, dynamic approaches have the drawback that
the actual IoT devices are required. Therefore, a large-scale analysis is associated with
high expenses.

In contrast to dynamic analysis, static analysis does not execute the application, which
leads to many difficulties. One of them is that unwinding potential paths may cause
path explosion. Path explosion results in run-time problems or incompleteness if it
is stopped after reaching a specified depth. It may also result in false positives when

5Scores of the 45 evaluated IoT devices, https://yourthings.info/scorecards/, accessed:
15.01.2021

4
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leaks are detected in branches that are not reachable during execution. On the other
hand, large-scale analysis can be made without interacting with the program and it
does not need the actual IoT device. Examples for static analysis are FlowDroid [5] and
Argus [50] (also known as Amandroid).

Mahmud et al. [30] used static analysis to detect violations to the payment card stan-
dard (PCI DSS). First, they used natural language processing for detecting input fields
related to credit card information. In addition, they reviewed the standard to find
requirements for mobile apps that handle credit card data. Later, they used static taint
analysis to track credit card information to sinks, like logs or networking methods. Finally,
they were checking if the flows are compliant with the standard. In total, they found
6 out of 358 applications asking for credit card numbers to be non-compliant with the
standard.

1.4.3 Companion App Analysis
In the last years, companion apps were subjected to research. Mauro et al. [31] analyzed
32 companion apps and found multiple vulnerabilities, including unencrypted traffic,
hardcoded keys, and insecure protocols. One app even used the insecure Caesar Cipher
for encryption. Chen et al. [12] fuzzed IoT companion apps to find memory corruption
vulnerabilities in IoT devices. With their approach, they evaluated 17 devices and were
able to find 15 vulnerabilities. With the help of this strategy, they were saving the trouble
of getting firmwares from devices. Still, they needed physical devices for their analysis.

Zhou et al. [56] discovered new vulnerabilities by abstracting the cloud, IoT device, and
companion app with the help of state machines. As a result, they were able to find
invalid state combinations and unexpected state transitions. Those can lead, among other
security problems, to device hijacking. Wang et al. [49] followed another approach to
detect vulnerabilities through companion apps. They observed that IoT devices reuse and
customize components from each other. Consequently, also vulnerabilities are propagated
to other devices if they are using common components. Therefore, they developed a
similarity analysis for companion apps. With this analysis, they were able to discover 324
potentially vulnerable devices. Since the analysis does not require any hardware, similar
to the goal of this thesis, they were able to analyze in total 2,081 companion apps. In
comparison to this thesis, their approach can only discover known problems from other
companion apps.

Some previous papers also focused on finding privacy leaks with the help of companion
apps. Clik et al. [10] developed a static analysis tool called SainT. With the help of
SainT, they were able to find in 138 of 230 apps from the Samsung SmartThings market
sensitive data flows. Additionally, they published IoTBench, a test suite containing
SmartThings applications with data leaks. In contrast, this thesis focuses on Android
companion applications, which are more widespread. WearFlow [46] developed by Tileria
et al. is a static analysis approach based on FlowDroid [5]. The focus of WearFlow is on
detecting PII leaks across companion apps running on smartwatches and the smartphone.

5
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They also released Wear-Bench as a testing suite for analysis techniques focusing on
leaks across wearable apps. With their approach, they were able to perform a large-scale
analysis and detect various privacy violations.

Companion apps can not only be used for static analysis. Ren et al. [42] installed in
total 81 IoT devices in two labs, one in the United Kingdom (UK) and one in the United
States (US) for detecting privacy leaks in network traffic. They automated the interaction
over the application for devices that are controllable with companion apps. Consequently,
they were able to control the devices automatically and repeat the interaction more
often. With this setup, they looked at the network traffic produced by the IoT devices.
Furthermore, they examined where devices connect to. Remarkable is that European
devices tend to communicate less with third-parties. This behavior might be due to the
privacy regulations within the European Union (EU).

Because companion apps communicate with smart devices and clouds, they need to
"speak" a common protocol. Researchers used that to find vulnerabilities and learn
more about protocols used by smart devices. One protocol frequently used is Blue-
tooth Low Energy (BLE), which works as follows: the device broadcasts packets with
universally unique identifiers (UUIDs). The packets are received by nearby devices,
where the corresponding companion app can recognize the UUIDs, pair with the smart
device, and further exchange data. Because the UUIDs are typically fixed, Zuo et al. [58]
were able to use companion apps to gather UUIDs and later fingerprint smart devices
with the collected identifiers. As a countermeasure, they presented the use of dynamic
UUIDs, which change after each usage. Therefore, the application needs to compute new
identifiers after establishing a connection and send them to the device and the cloud as
backup.

Cars are also becoming more and more connected. Modern cars use Controller Area Net-
work (CAN bus) commands for control. Unfortunately, only a few commands are
standardized. These commands can even differ between different models of the same
manufacturer. Since cars also have companion apps for controlling some functionalities,
like playing music, the mobile apps send CAN bus commands directly or indirectly over
the cloud, according to Wen et al. [52]. To automatically reverse the commands at a
large-scale Wen et al. [52] developed CanHunter. CanHunter makes use of static and
dynamic code analysis. With the help of their approach, they were able to discover
182,619 unique CAN bus commands.

Mohanty et al. [32] developed a static analysis approach for finding security problems in
hybrid mobile apps. A hybrid mobile app executes web code and shows it in an embedded
web browser. This strategy can reduce the development overhead since the core code can
be used for Android, iOS, and the actual web. With their analysis technique, they were
able to identify different security issues within 102 companion apps.

6
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For detecting unauthorized access to IoT cloud APIs Li et al. [29] developed the IoT-
ApiScanner framework. The framework uses dynamic and static analysis methods to find
cloud API endpoints in companion apps. Their analysis aims to find API endpoints from
which they can access the smart device without authorization. With their approach, they
found 21 APIs in 5 smart devices which are vulnerable to unauthorized access.

1.4.4 Endpoint Analysis
Another research area of our thesis has connections to mobile requests and domain
analysis. Since one part of the thesis is to detect local communication, we have to
reconstruct the connection endpoints and further evaluate those.

Shen et al. [45] analyzed which domains receive private information from mobile applica-
tions. They evaluated the telemetry data from 17.3 million users, collected by a security
product. In the end, they showed which domains received the most privacy-related data
and from which country this data is transferred to which other one. In contrast to our
thesis, they worked with general data and did not specifically investigate companion
apps.

A static approach to gather URLs in Android applications was made by Rapoport et
al. [37]. They called their approach Stringoid, where they statically simulate string
concatenations. Besides analyzing 30,000 applications, they compared the results from
20 apps with the results generated by a dynamic approach. They showed that both
approaches find URLs the other does not. They identified dynamic loaded URLs as
one of the main reasons why static analysis cannot detect all URLs. Compared to our
work on detecting local communication and reconstructing URL values, their approach
does not reconstruct URLs constructed with other objects like okhttp3.HttpUrl. More
importantly, the information is lost with Stringoid, where the URLs are used in the code.
That information is needed for our further flow analysis.

Jin et al. [21] developed MobiPurpose, to give users more knowledge of why apps are
collecting their data. MobiPurpose uses machine learning to automatically detect what
data is sent and categorize why the data is collected. However, their analysis requires
dynamically generated data for the classification. Therefore, we cannot use their analysis
to classify the URLs obtained from our local communication search.

1.5 Structure
The remaining thesis is structured as follows: in Chapter 2 we explain fundamentals
needed for the thesis. In Chapter 3 we give an overview of our approach and in Chapter 4
we show the corresponding implementation details. In the following Chapter 5, we present
our results gathered and discuss them in Chapter 6. In addition, we show there the
limitations of our approach and give a glimpse of our future work. Lastly, we summarize
our thesis and conclude it in Chapter 7.

7





CHAPTER 2
Background

2.1 Internet of Things

Smart devices often consist of three components. Besides the device itself, there is often
a cloud backend and a mobile app component. For example, a smart vacuum cleaner is
constantly sending out the taken route to the cloud to keep its users updated. In the
cloud, this information is stored and can be used for further calculations. The mobile
applications provide the collected information to its users, enabling users to take further
control decisions. In our vacuum cleaner example, a user could decide to stop the cleaning
process or restart it. The control commands are most likely transferred from the phone
over the cloud to the device in this scenario.

Compared to mobile phones and personal computers, IoT devices have other needs. They
often have few resources, like computation power, memory, or power supply. Device
manufacturers might think it is not worth adding more resources to the smart devices
because it would make the device more expensive. In the end, the customer might not
buy it because of that. Also, there are IoT devices that need to be small and light, like
smartwatches. Consequently, there is no space for a large battery. Another property of
IoT is that there is more machine-to-machine (M2M) communication than in previous
IT technologies, like mobile apps.

To better fit the properties of IoT devices, new communication protocols are arising,
such as MQTT, COAP, LoWPAN, BLE, or NFC. New technologies can always lead to
new vulnerabilities, especially when they were not designed with security in mind. Jia et
al. [20], discovered problems within MQTT. Those problems allow attackers to perform
DoS attacks or read data from other users and perform actions on other devices in the
worst-case.

9



2. Background

2.1.1 Companion Apps
As we have seen in the vacuum cleaner example, the companion app is a central component
for IoT devices. The example only provided one possible communication scenario between
the device and the phone. For the above scenario, the vacuum cleaner first needs to get
connected to the internet. For devices without a user interface, one way to do this is
to connect through another communication channel to the app, transmit the required
Wi-Fi information (e.g., SSID, password), and later communicate over the cloud if the
connection was successful. Another reason why companion apps are communicating
over the local network is to transfer large amounts of data. For example, if the screen
of a mobile phone is shared with a Smart-TV, the data is usually sent over the local
network. Other device types, like smartwatches, are often connected over Bluetooth with
the mobile app. For synchronization, the mobile app might forward data to the cloud in
such cases.

Another essential functionality companion apps often provide are update mechanisms for
smart devices. If a user wants to update the device, a companion app can download the
firmware and transmit it over the local network, Bluetooth, or another communication
channel to the device. Then, on the device, the update is finally executed. From a
security perspective, the update mechanism is especially interesting because many things
can go wrong. In the worst case, an attacker could take over the device or make it
unusable. Another less harmful scenario is that an attacker can download it and reverse
engineer it to get further insights into the device.

Since the companion app is a central part of many IoT devices, it can contain lots
of information about devices, like communication endpoints, flows of personal data,
communication protocols, or information about firmware updates.

2.2 Android
Android is an open-source operating system for mobile devices. Since the first Android
device was launched back in 20081 it massively grew. In 2020, Android had a market
share of 72 %.2 A primary reason for its success are the additional functionalities provided
through apps. In the official Google Play Store,3 are more than 2.8 million apps to
download.4

Most apps are written in Java or Kotlin, but it is also possible to write code in C for
better performance. In the end, apps are getting compiled and distributed as APK files.

1"The history of Andorid: The evolution of the biggest mobile OS in the world," https://www.
androidauthority.com/history-android-os-name-789433/, accessed: 05.02.2021

2"Mobile Operating System Market Share Worldwide," https://gs.statcounter.com/
os-market-share/mobile/worldwide, accessed: 05.02.2021

3Google Play, https://play.google.com/store/apps, accessed: 05.02.2021
4"Number of apps available in leading app stores as of 3rd quarter 2020," https://www.statista.

com/statistics/276623/number-of-apps-available-in-leading-app-stores/, accessed:
05.02.2021
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2.2. Android

1 |-- AndroidManifest.xml (contains information among others about the
�→ app version, permission and components)

2 |-- classes.dex (compiled code in dex format, in the case there
�→ are more than 65,536 methods, it needs to be split up into
�→ multiple dex files)

3 |-- kotlin/ (additional information for the compiler for
�→ Kotlin classes, since the app or some part of the app (libraries)
�→ are written in Kotlin)

4 |-- lib/ (libraries)
5 |-- META-INF/ (manifest file containing the list of files

�→ with their signature, certificate information, version information)
6 |-- res/ (resources not in resources.arsc)
7 |-- resources.arsc (compiled resources)

Listing 2.1: Sample APK content

An APK is basically a ZIP file containing compiled code and other resources. Sample
content of an APK file is shown in Listing 2.1.

Every app is running in a sandbox because of security and privacy reasons. In more
detail, every app gets a user ID assigned, which is used for restricting the access of files
belonging to apps. Additionally, every app is running in an own virtual machine (VM),
according to Android [2].

If an app needs access to privacy sensitive data, the app needs to request the corresponding
permissions. For example, if an application wants to access Bluetooth, it declares it
in the Android manifest file. Before using Bluetooth functionalities, the permission
must be requested from the user. If a user does not grant permission, the app usually
cannot provide its full functionalities. Not all permissions need to get requested at
runtime. Some, like the internet permission, are automatically granted on installation
when declared in the manifest. That apps request permission at runtime and users can
manage them individually was not always the case. Before Android version 6.0, it was
only possible to accept or deny all permissions at installation. If permissions were not
granted, it was therefore not possible to use the app. Even if runtime permissions are a
step in the right direction, they cannot completely prevent PII leaks. One scenario is
that a permission is granted to an app for a legitimate use case, but the app misuses the
trust later. For example, a companion app requests permission to scan the local network
to find a corresponding IoT device. Afterward, the companion app could continuously
scan the network and transmit the results to its servers even if it is not intended from the
user anymore. Of course, it is possible to revoke granted permissions, nevertheless the
average user hardly ever does it. Reardon et al. [41] showed that apps send out personal
data for which they do not have permissions. They found a library saving the unique
IMEI number encrypted on the SD card if an app that uses the library has permission to
read the IMEI. Later, other apps using the library were also found transmitting the IMEI
even if they did not have the corresponding permission. Regarding companion apps,
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permissions provide only limited protection. Companion apps might leak data initially
received from the smart device, which is not manageable via Android permissions.

Besides declaring permissions inside the Android manifest, the manifest contains other
essential information. For example, the targeted Android version is specified there.
Usually, also a minimum Android version is set too. In addition, every component of
the app needs to be declared in the manifest file. There are four different components in
Android:

• Activities representing single screens of applications. For example, in a vacuum
cleaner robot app, a screen containing a map from the last cleaning can be one
activity and a screen to set a schedule for the robot another one.

• Services are components running in the background and performing long-running
tasks. Back to the vacuum cleaner robot app, a service can be used to constantly
receive the current location of the vacuum cleaner in the background.

• Broadcast receivers allow apps to listen to broadcast events. Apps can even
receive events if they are not running.

• Content providers are managing the data of apps. Like saving data in an SQL
database or storing a file. If content providers allow it, other apps can use them to
read or change data belonging to another app.

2.3 Static Analysis
One approach for static analysis is data flow analysis. Therefore, paths personal data
can take through the program are computed. Taint analysis can be seen as a form of
flow analysis, which can be used to find PII leaks. Taint analysis is similar to debugging.
Variables are getting "tainted" if problematic values are assigned. An example from
debugging is investigating a null pointer exception. Therefore, null value assignments
are searched. Afterward, the value is getting traced through the program. If it reaches
a critical statement, a possible problem is reported. For PII leak detection, critical
statements are among others those which send data out. For taint analysis, methods
returning critical values are called sources, and the statements leaking critical values are
called sinks.

We provided an example in Listing 2.2. At line 3 a source locationManager.getLastKnownLocation
�→ (provider); is called and the variable lastLocation gets tainted. At the next line,
the method sendRequest is called with the tainted variable. As a consequence, the taint
is carried further to the parameter of the method. At line 9, the tainted parameter is
concatenated, and the result is getting tainted. Since the concatenation result is used
for building an object, the whole request object is getting tainted (line 8). At line 12, a
sink is called with a tainted value. Therefore a taint analysis tool would report a leak.
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1 public void leakExample() throws IOException {
2 LocationManager locationManager = (LocationManager) getSystemService(

�→ LOCATION_SERVICE);
3 Location lastLocation = locationManager.getLastKnownLocation(provider

�→ ); //source
4 sendRequest(lastLocation);
5 }
6
7 public Response sendRequest(Location location) throws IOException {
8 Request request = new Request.Builder()
9 .url("http://some-backend.com/" + location.toString())

10 .build();
11
12 return client.newCall(request).execute(); //sink
13 }

Listing 2.2: Taint analysis example

Due to the amount of different static analysis approaches for Android, researchers found
the need to compare the different techniques [9, 28]. Even if there are many different
approaches out there, many of them are based on Flowdroid [5] or Argus [50].

FlowDroid [5] is an open-source static taint analysis tool. Its focus is on Android
applications in general, which have several additional challenges compared to Java
applications. FlowDroid is based on the Soot framework [48]. Soot was originally made
for Java bytecode optimization. Nowadays, it is widely used for static analysis approaches.
For tracking data flows, FlowDroid makes use of the IFDS [44] framework. In contrast to
the idea of this thesis, FlowDroid is generally built for Android applications and does not
satisfy the specific needs for analyzing companion apps out of the box. FlowDroid is still
actively developed (latest released version 2.8 from July 2020 and new commits every
few days)5 and overall performs well in comparisons. Therefore, we are using it as a base
component for this thesis. Also, many other researchers before extended FlowDroid to
better match the needs for their analysis, some examples are [26, 27, 34, 46, 53].

Argus [50] is another analysis program. Although FlowDroid inspired it, it has some
fundamental changes. The main difference is that Argus focuses on tracking inter-
component communication (ICC), which is only rudimentary integrated into FlowDroid.
As for FlowDroid, Argus is generally built for Android applications. Therefore it does
not perfectly fit the needs of companion apps out of the box. We did not use Argus for
the analysis, even if it supports useful features for the value set analysis. Since it is not
actively developed anymore, the last commit is two years old (January 2019).6

5FlowDroid Github, https://github.com/secure-software-engineering/FlowDroid, ac-
cessed: 08.02.2020

6Argus-SAF Github, https://github.com/arguslab/Argus-SAF, accessed: 08.02.2020
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2.3.1 Terminology
In this subsection, we summarize essential terminology frequently used in combination
with static analysis.

• Sound: If the analysis is sound, every reported leak must be truly a leak. Conse-
quently, a sound analysis does not produce any false positives. Nevertheless, an
analysis is still sound if it misses out on leaks. In an extreme case, the analysis
is sound if it never reports any leak. Such an analysis would not add any value.
Worse, it gives a false feeling of safety.

• Complete: A complete analysis does not produce any false negatives. Such an
analysis finds all privacy leaks in the program. An analysis is still complete if it
reports more privacy leaks than there are. An analysis could report everywhere
privacy leaks to be complete. However, such analysis is also worthless.

• Precision: Precision is the fraction of true positives from totally reported results
(true positives and false positives). It can be computed as follows:

true_positive
(true_positive+false_positive) [36].

• Recall: Recall is the fraction of the found leaks from the totally existing leaks
(true positive + false negative). In practice, it is extremely hard to calculate the
recall of analysis. The whole program needs to be analyzed manually to know
how many false negatives there are. Even if this is done, leaks can be easily
missed, which results in a wrong recall. The recall can be computed as follows:

true_positive
(true_positive+false_negative) [36].

• Flow-Sensitivity: If an analysis is flow-sensitive, it is aware of the statement
order. For example, in Listing 2.3 a flow-insensitive analysis could conclude that
data from the humidity sensor and the temperature sensor are sent out. While a
flow-sensitive analysis knows that the temperature sensor was assigned after the
data was sent out. Flow-insensitive analysis can switch statements in order to
simplify the graph generation, for example [28].

• Field-Sensitivity: If an analysis is field-sensitive, it keeps track of the combination
field and object. Field-insensitive analysis taints the whole object if a single filed
of the object gets tainted. In Listing 2.4 a field-insensitive analysis detects two
leaks in line 11 and line 12 because the whole object gets tainted in line 10. A
field-sensitive approach distinguishes between the different fields and therefore only
reports the correct leak in line 11 [3].

• Context-Sensitivity: A context-sensitive analysis considers the calling context
while analyzing the called function. In Listing 2.5 a context-insensitive analysis is
not able to distinguish if the humidity or temperature sensor called readValue [28].
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1 public void flowSensitivityExample(){
2 Sensor sensor = new HumiditySensor();
3 sensor.sendValue();
4 sensor = new TemperatureSensor();
5 }

Listing 2.3: Flow-sensitivity example

1 public class TemperatureData implements Sensor {
2 String[] symbols = new String[]{"C", "F"};
3 Float temperature = null;
4 int unit = 0;
5 //...
6 }
7
8 public void fieldSensitive() {
9 TemperatureData temperatureData = new TemperatureData();

10 temperatureData.temperature = readSensorData(); //source
11 sendData(temperatureData.temperature);
12 sendData(temperatureData.symbols);
13 }

Listing 2.4: Field-sensitivity example

• Access Path: An access path is the sequence of fields in order to access a value. In
Listing 2.4 the access path in line 11 is temperatureData.temperature, for example.
One thing to consider while working with access paths is that there could exist
infinity long ones. For instance, in recursively defined data structures. Static
analysis tools limit the length and truncate everything afterward to handle this
problem. For example, if the limit is 2, data.prev.prev.prev is handled as data.

�→ prev.prev.*. As a consequence, the analysis is losing precision but is at least
able to handle it [3].

• Program slicing: Program slicing was introduced by Weiser [51] as a debugging
strategy. Program slicing intends to reduce the complexity regarding a specific
property without changing the interesting program behavior. For example, if the
task is to compute possible values of a URL at a specific point in the program,
it can be helpful to extract the corresponding program slice. This slice needs to
contain all operations involved in the URL computation.
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1 public Sensor getSensor(Sensor sensor){
2 return sensor;
3 }
4
5 public void contextSensitivityExample() {
6 Sensor sensor;
7 Sensor humidity = new HumiditySensor();
8 Sensor temperature = new TemperatureSensor();
9

10 sensor = getSensor(humidity);
11 sensor = getSensor(temperature);
12 sensor.readValue();
13 }

Listing 2.5: Context-sensitivity example

2.3.2 Challenges
As well known, the halting problem is undecidable. Consequently, a perfect static analysis
with no false positives and false negatives is not possible. Moreover, even single sub parts
of static analysis are undecidable, as shown by Landi [24].

As a result, developers of static analysis have to make trade offs between completeness
and soundness. Bonett et al. [9] took a closer look at design decisions regarding soundness
and completeness of static analysis approaches for Android apps. For future developers,
the fact that not all those decisions are well documented can turn out as a problem.
If another analysis is built on top of the original, the problem also gets inherited. For
detecting unsound design decisions, the researchers build a framework and reported
previously undocumented ones.

Android Specific Challenges

In addition to the general challenges of static analysis, there are several Android specific
ones. Some of them are inherited from Java, as: reflection, native code or multi-threading
others are not.

The first Android specific challenge is converting apps byte code into an intermediate
representation (IR) for the analysis. Static analysis approaches usually work on an IR to
make further computations easier. FlowDroid uses Dexpler [7] for converting Dalvik byte
code of apps into the Jimple format the analysis is using.

In comparison to most other programming languages, Android applications do not have
a main function. Instead, there are several different program entry points. Figure 2.1
shows the lifecycle of activities. As we can see, the activity is entered over the onCreate()

method if the activity is opened the first time. Afterward, the user might switch to
another app and later continue using the first app again. Then the component is entered
over the onResume() method instead of the onCreate() as before.
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Figure 2.1: Activity lifecycle (Figure from: https://developer.android.com/
guide/components/activities/activity-lifecycle, accessed: 09.02.2020)
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1 public void computations(int toAdd, int toMultiply, String baseString) {
2 int i = 1;
3 i = (i + toAdd) * toMultiply;
4 String newString = baseString + "/";
5 String anotherNewString = new StringBuilder().append(baseString).

�→ append("/").toString();
6 }

Listing 2.6: Java code which was the basis for Listing 2.7

As mentioned in Section 2.2 apps can interact with components from other apps. Also,
the app itself can use mechanisms like intents to communicate between its components.
This communication is called Inter Component Communication (ICC). However, the ICC
makes it hard for analysis techniques to track flows between different components.

While developing Android applications in Java or Kotlin, it is also possible to write parts
in C code. Most Android static analysis techniques can handle only rudimentary C code.
Therefore leaks could get hidden within the native code. Fortunately, researchers [38]
found out that only approximately 14.5 % of apps make use of native code in 2015.

Just like for regular Java programs, it is possible to load code in Android applications
dynamically. Since static analysis is not executing the application, it also cannot analyze
the dynamically loaded code.

2.3.3 FlowDroid

This subsection contains details about different components of FlowDroid and the IFDS
framework FlowDroid’s analysis is based on. The analysis performed by FlowDroid is
context-sensitive, flow-sensitive, field-sensitive, and object-sensitive, which are excellent
preconditions for static analysis.

Jimple

FlowDroid is using intermediate representations for its computations. The default
representation used from Soot and FlowDroid is called Jimple [47]. Byte codes like the
Dalvik or Java byte code usually have lots of different operations. In comparison, the
representations used from static analysis tools are much simpler. While byte code is
optimized for execution speed, Jimple is optimized for analysis tools. As a result, there
are fewer operations, and instead of a stack, local variables get introduced. In addition,
nested instructions are getting split up into simpler ones. All those mechanisms make
life easier for static analysis. An example Jimple code is shown in Listing 2.7 with the
corresponding Java code in Listing 2.6.
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1 public void computations(int, int, java.lang.String)
2 {
3 com.example.bluetoothdevice.JimpleExample r0;
4 int $i0, $i1;
5 java.lang.String $r1, $r3;
6 java.lang.StringBuilder r2;
7 r0 := @this: com.example.bluetoothdevice.JimpleExample;
8 $i0 := @parameter0: int;
9 $i1 := @parameter1: int;

10 $r1 := @parameter2: java.lang.String;
11
12 $i0 = 1 + $i0;
13 $i0 = $i0 * $i1;
14
15 r2 = new java.lang.StringBuilder;
16 specialinvoke r2.<java.lang.StringBuilder: void <init>()>();
17 virtualinvoke r2.<java.lang.StringBuilder: java.lang.StringBuilder

�→ append(java.lang.String)>($r1);
18 virtualinvoke r2.<java.lang.StringBuilder: java.lang.StringBuilder

�→ append(java.lang.String)>("/");
19 $r3 = virtualinvoke r2.<java.lang.StringBuilder: java.lang.String

�→ toString()>();
20
21 r2 = new java.lang.StringBuilder;
22 specialinvoke r2.<java.lang.StringBuilder: void <init>()>();
23 virtualinvoke r2.<java.lang.StringBuilder: java.lang.StringBuilder

�→ append(java.lang.String)>($r1);
24 virtualinvoke r2.<java.lang.StringBuilder: java.lang.StringBuilder

�→ append(java.lang.String)>("/");
25 $r1 = virtualinvoke r2.<java.lang.StringBuilder: java.lang.String

�→ toString()>();
26
27 return;
28 }

Listing 2.7: Jimple code generated from the byte code of Listing 2.6
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IFDS

IFDS stands for inter-procedural, finite, distributive, subset, all properties a problem
needs to have to apply the IFDS framework. Since the IFDS framework was presented [44]
there have been improvements [33], among others FlowDroid switched from Soots IFDS
solver [8] to a more efficient one [3]. Using the IFDS framework for computing data
flows combined with access paths for taint abstractions enables FlowDroid to be context-
sensitive, flow-sensitive, and object-sensitive. The general idea of IFDS used in FlowDroid
is to generate a graph and compute the reachability of taints on it. More concrete starting
from an inter-procedural control flow graph, FlowDroid creates a so called exploded
supergraph. That means each node is also holding facts. The fact 0 is a special fact
which always holds. For the flow analysis, the facts represent tainted data. The exploded
supergraph contains an edge between two nodes n1, n2 if there is a connection in the
Interprocedural Control-Flow Graph (ICFG) from n1 to n2, and the fact holding at n2
also previously held in n1. Flow functions are used to compute the facts for the successor
nodes. The flow function can generate, kill, or retain facts/taints. Depending on the
current statement, FlowDroid distinguishes between the following four types of flow
functions:

• Call flow functions handle method calls. They are applied on the call site and
handle the mapping from the arguments to the parameter. In addition, call flow
functions need to take care of the base object from a method if there is one.

• Return flow functions get triggered if a method is left. That can happen either
due to a return statement or when an uncaught exception is thrown. The return
flow function does the opposite of the call flow function. Therefore, it has to map
the parameters back.

• Call-to return flow functions are method calls which skip the callee. This rule
is used for excluded methods, which get treated as black boxes, for example.

• Normal flow functions are statements not handled by call nor return flow
functions like assignments, arithmetic computation, or conditions.

Based on the flow function, the decisions to generate, kill or retain the taints are taken.
In Figure 2.2 an example from FlowDroid [3] is provided. In the first line a = source();

the variable a is getting tainted. The statement is handled from the call to return flow
function rule because we treat the function as a black box that returns a tainted value.
This means that a new taint is generated for variable a, symbolized with an edge from
the special fact 0 to the variable a. The variables c.a and b are not involved in the
computation. Therefore, their facts are retained. The second program statement b = a;

gets handled by a normal flow function. The fact of variable a gets passed on to variable b

symbolized in the graph by the edge. Also, the other values are not modified. Therefore,
they have edges from their predecessor. Next, a call flow needs to be handled at the
statement callee(b, c);. The variables b and c are used as parameter for the function
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Figure 2.2: IFDS example from FlowDroid [3]

callee. As a result, there are edges from b and c.a to the local variable of the function
callee p1.a and p0. The next three statements inside the callee functions are again normal
flows and a call-to-return flow as we had it before. After the last statement of the callee
function, the control flow returns back into the caller. The taints need to be mapped
back. In the figure, the return flow is symbolized with the blue arrows.

Alias Analysis

Listing 2.8 shows an example where alias analysis is needed. Otherwise, it would miss
the leak in line 10 (assuming getCurrentLocation is a source and sendOutData a sink).
Static analysis needs to search for aliases to circumvent missing a leak. The search is
done in the opposite direction then the analysis is performed. Therefore, FlowDroid
performs it backwards. There are two different strategies when alias analysis is performed:
either if a new variable is tainted or if a heap variable is read. Both strategies have their
disadvantages. Performing the alias analysis when a variable is tainted might result in
more unnecessary alias searches. In addition, if aliases are found, it might be the case
that they are carried unnecessarily onwards. On the other hand, performing the alias
analysis when a heap variable is read can be very complex and computation expensive in
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1 public class AliasExample {
2 public class SomeDTO {
3 public Location location;
4 }
5
6 public void aliaExample() {
7 SomeDTO currentLocation = new SomeDTO();
8 SomeDTO locationCopy = currentLocation;
9 currentLocation.location = getCurrentLocation();

10 sendOutData(locationCopy.location);
11 }
12 }

Listing 2.8: Alias analysis example code

some edge cases. Nevertheless, normally the lazy strategy is used.

FlowDroid uses the IFDS framework for the alias analysis. To achieve this, the CFG is
getting inverted, and a new IFDS solver instance is started. If an alias is found, it is
getting injected into the normal forward solver, handled, and propagated as a new taint.

Taint Propagation Wrapper

To make FlowDroid practical, it is not analyzing the internals from Java and Android
libraries. Otherwise, it would take more time to analyze the libraries than the app. In
the worst case, the analysis would need much more resources. Therefore the analysis
would not finish within a reasonable time. The method calls to excluded libraries still
need to be simulated to circumvent losing precision. In order to achieve this, FlowDroid
works with pre-defined rules provided by the EasyTaintWrapperSource.txt. The rules
provide information about taint handling, if new taints are getting generated, killed,
or all existing taints maintained because the handled method is excluded. Excluded
methods are not changing existing taints. As an example, the rules from Listing 2.9 have
the following meaning:

• The first line containing the method addAll, defines that the Set is getting tainted
if an already tainted collection is added.

• Since the clear method removes all objects from the Set. Also, the taint needs to
be killed if the Set was tainted before.

• The last line does not generate new taints and not killing old ones. Therefore, it is
excluded and returns the taints as they are.

Every handled method needs to be added to the wrapper list manually. For many
use cases, it is helpful to exclude widely used third-party libraries, like networking or
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1 <java.util.Set: boolean addAll(java.util.Collection)>
2 -<java.util.Set: void clear()>
3 ~<java.util.Set: int size()>

Listing 2.9: Sample taint propagation rules for Java Set methods

advertisement libraries. The advantage of excluding library code is, as before, the speed
up of the analysis. To address this problem Arzt and Bodden developed StubDroid [4].
StubDroid can compute taint rules for library code, which are saved in XML files.
FlowDroid can later reuse those rules for the taint analysis. Since the library code is not
analyzed repeatedly for every app, the overall procedure is sped up.

2.3.4 Value Set Analysis
This subsection gives an overview of value set analysis and shows approaches using this
analysis

Static analysis is not only used for detecting privacy leaks. Another use case is extracting
possible values at specific points in programs. As an example, for analyzing if data is sent
to smart devices or remote servers, it is interesting to know the endpoints called from the
program. One possibility is to extract this information by computing values of Uniform
Resource Locator (URL) passed to network methods by the program. The reason why
this is no trivial problem is that URLs are not always constant values. Indeed, they often
get constructed during program execution. Consequently, the URL construction needs to
get traced through the program and the steps taken simulated.

Gadient et al. [18] build a static analysis approach upon the JADX decompiler. In addition
to the URL values, they also reconstructed JSON values. With the data obtained from
their analysis, they searched for potential security problems, like programming code in web
APIs or disclosure of server version information. Compared to approaches building upon
Soot, they do not have the advantage of an IR made for static analysis. Consequently,
their approach built upon the source code has to handle more instructions. As an example,
Gadient et al. mentioned they have to handle StringBuilder.append() and "+" operation
for string concatenation. In an analysis based on Soot only StringBuilder.append()

needs to be handled since Soot is not decompiling the code back into its source code.
Also, the other advantages from the specific guarantees of the Jimple IR are not available
when performing the analysis on the source code or decompiled code.

LeakScope

Zuo et al. [57] identified vulnerabilities of cloud application programming interface (API)
keys in mobile applications, e.g., using a root API key inside the mobile application
or wrongly configured permissions of a key. To test if an app has such a vulnerability,
they needed to extract the keys first. For this task, they built a static analysis approach
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1 {
2 "apk":"example/ValueSetAnalysisExample.apk",
3 "methods":
4 [
5 {
6 "method":"<com.microsoft.azure.storage.CloudStorageAccount: com.

�→ microsoft.azure.storage.CloudStorageAccount parse(java.lang
�→ .String)>",

7 "parmIndexs":[0]
8 }
9 ]

10 }

Listing 2.10: Example LeakScope config from: https://github.com/OSUSecLab/
LeakScope, accessed 17.02.2021

called LeakScope, which makes use of value set analysis [6]. In the end, they performed
a large-scale analysis and were able to find 17,299 vulnerabilities. For another paper,
Zhao et al. [55] used LeakScope to identify hidden behaviors such as master passwords,
backdoors, or "Easter eggs."

To reconstruct possible values, LeakScope transforms the binary code into Jimple and
creates a CFG with Soot. LeakScope builds a data dependency graph (DDG) based on
the CFG. In a DDG, the program instructions are represented as vertices, and if there
are def-use dependencies between two vertices, edges are added. After the creation of
the DDG, backward slicing is applied. Therefore, methods interesting for the analysis
(point of interest) are searched within the application. Those methods are predefined
and passed to LeakScope at the start of an analysis. Listing 2.10 shows a configuration
for reconstructing the first parameter of CloudStorageAccount parse. If LeakScope
finds usages of those methods, it collects all computations involved to build the first
parameter in a program slice. Afterward, the execution of the program slice is simulated,
which results in possible values for the variable at the point backtracking started. Since
LeakScope was developed for extracting API keys, it is only tracing and reconstructing
string values.

Extractocol

With Extractocol [13, 22] it is possible to extract information about HTTP transactions.
It reconstructs information about requests, as URIs, headers, or request bodies statically.
In addition, it is extracting data about responses, like JSON keys. For extracting that
information following approach is used:

1. First, so called "demarcation points" are searched. Demarcation points are program
statements that split the request and response. For example Response response

�→ = client.newCall(request).execute() takes a request object and returns a
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response object. Therefore, it is a demarcation point. From this point, backward
taint propagation is used for tracing the request parameters and forward taint
propagation to reveal the data dependences of response objects. The forward, as
well as backward traced dependences, are called program slices. A slice encapsulates
the corresponding information for a request or response and therefore abstracts
irrelevant information away.

2. The second step performed by Extractocol is the signature extraction. Therefore,
the program further splits the obtained slices from the first step into the URI,
request body, and response body part. Next, the signatures get extracted. That
means that Extractocol is simulating the operations and therefore computing
the objects used within the network requests. To be able to extract interesting
signatures, Extractocol model popular networking, JSON, and XML libraries.

3. As the last step, Extractocol is performing taint analysis to identify dependencies
between different slices. With this strategy, Extractocol can find response objects
that are later used for constructing a request.

Despite some similarities to our strategy for extracting URI information, we have not built
upon Extractocol for several reasons. First, Extractocol is not actively developed anymore.
Second, since Extractocol is directly modifying FlowDroid and little documentation is
available, it is hard to build upon. Besides, as the authors mentioned in their paper, it is
not built for large-scale analysis, which contradicts the idea of our work.
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CHAPTER 3
Methodology

Based on the literature and observations made while analyzing companion apps manually,
we found two aspects of companion apps we focused our flow analysis on:

1. The initial connection process of the smart device with the mobile phone is often
done over the local network.

2. Companion apps often use different protocols to communicate than other apps.

3.1 Local Communication
We saw that smart devices often communicate over a local network to the mobile phone
during the pairing process. If smart devices can connect to wireless networks and do not
have a graphical user interface on their own, a standard procedure therefore is:

1. The smart device spawns an own personal network allowing the mobile phone to
connect. On the left-hand side of Figure 3.1 a corresponding screen from a vacuum
cleaner robot is shown.

2. After the mobile phone connects to the network of the smart device, the communi-
cation between the companion app and the physical device begins.

3. The user enters on their phone information about their home wireless network.
Figure 3.1 shows this step on the right-hand side. As before, the screenshot is taken
from a vacuum cleaner robot app.

4. The companion app transfers the information about the access point to the smart
device, and the smart device connects to the network.
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Figure 3.1: The pairing process for a Tesvor vacuum cleaner over the WeBack app https:
//play.google.com/store/apps/details?id=com.yugong.Backome

5. If the setup was successful, the smart device and companion app communicate
further over the cloud.

Since the local communication described above is not typical for general apps, our focus
is on detecting local connections and trace the corresponding data. To find the local
connections, we decided to reconstruct the URLs used in the mobile app at the points
where the URL is added to the request. In order to do this, we are using value set analysis.
To better fit our usage, we decided to extend an existing analysis. Because we cannot tell
beforehand which statements are used for the local communication, we have to reconstruct
all URLs in the app. Still, this is no disadvantage since the reconstructed URLs contain
countless valuable information. To show the improvements from our extension, we later
compare the results obtained from our analysis to the original implementation, regarding
time spent on the analysis and found results.

Nevertheless, the initial Wi-Fi connection process is not the only case where smart devices
and companion apps communicate over a local network. Other devices have a GUI for
connecting to the wireless network like a Smart-TV or are connected via an Ethernet
cable but still uses the local home network for providing functionalities that require lots
of bandwidth. For example, Smart-TVs often have functionalities for screen mirroring.
That means a mobile phone can mirror its screen, which is displayed on the TV. For
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3.2. Endpoint Evaluation

Figure 3.2: Different scenarios for connecting a local device. The left screenshot is taken
from the DS video app https://play.google.com/store/apps/details?id=
com.synology.dsvideo

providing this feature, both devices must be on the same network. The mobile phone will
scan the network and ask the users to select the device they want to connect to from the
appropriate devices found by the scan. In other scenarios, apps immediately ask the user
to enter the local IP address of the IoT device to communicate with them. In Figure 3.2
screenshots are shown, which uses the above explained strategies. To find those local
communications, we add default values for user-inputted data to know later which values
originate from user input.

For finding the local communication, we recompute URLs that might get passed to
predefined network functions. If we find a local IP address or a default value for an IP
address symbolizing that it originates from user input, we assume that it is used for local
communication.

3.2 Endpoint Evaluation
While working on the value set analysis, we came up with multiple interesting questions
we wanted to investigate further:

• To which countries are the companion apps connecting?

29

https://play.google.com/store/apps/details?id=com.synology.dsvideo
https://play.google.com/store/apps/details?id=com.synology.dsvideo
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• Are companion apps connecting more to Asian countries since many IoT device
manufacturers are from Asia?

• Are there differences detectable between general-purpose apps and companion apps
from the third-party services they call?

• How is the local communication implemented?

To answer those questions, we analyzed selected companion apps and general apps.

Since the collected results by our analysis are not obtained by capturing the network
traffic, we cannot evaluate the frequencies of data sent out to IP addresses nor all
servers the app connects to. Nevertheless, we know some of the endpoints used. For our
evaluations, we extract the domains and IP addresses from the reconstructed URLs. If
we extract a domain or IP address multiple times within an app, we only count those
once. Otherwise, backends with more paths or URLs with more query parameters would
be overrepresented in our evaluations, even if the app might contact them less often.
Based on this preprocessing, we further generated graphs and diagrams to answer the
questions above.

3.3 Flow Analysis
Coming to the second focus, the different protocols used within companion apps. The
focus of protocols used by smart devices is on lightweight and energy-efficient protocols
due to the limited resource of the devices. We found several sources and sinks for tracing
values transmitted over protocols like Bluetooth, BLE, MQTT, or NFC. However, some
protocols like ZigBee require additional hardware, usually not built-in today’s mobile
phones. Therefore, we cannot trace data flows from or to devices over those protocols
directly. In such cases, mobile apps often communicate indirectly with the physical device
over common protocols. For example, to control the IKEA smart lights1 a gateway is
needed which is connected to the local network. Since we already reconstruct the URLs
used and are tracing network methods, we do not have to treat those specially. Besides,
the reconstructed URLs can tell us more about the protocols used, for example, if a
connection is enhanced with TLS or not.

In the end, we integrate the URL reconstruction for finding local network communication
into FlowDroids flow analysis. Besides, we add additional sources and sinks to trace
further protocols used by companion apps. With the extended flow analysis, we are
analyzing all previously selected companion apps and present our findings.

1IKEA Trådfri, https://www.ikea.com/at/de/customer-service/product-support/
smart-lighting/home-smart-beleuchtung-pub1ebae7ef, accessed: 11.04.2021
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CHAPTER 4
Design and Implementation

In the following sections, we provide more details about our implementations and the
extensions to the existing analysis approaches of FlowDroid and LeakScope.

4.1 ValueScope
To find local communication, getting insights about the used protocols, knowledge
about the corresponding cloud, and the smart device, we decided to extend LeakScope.
LeakScope was already used in recent times for various papers [52, 55, 57, 58]. One
advantage over other approaches like Extractocol is that it is not as complex and faster
since it only has a subset of tasks to perform. It is also quite new (last release from May
2019)1 in comparison to other approaches [14, 25].

We had to extend LeakScope since it is not designed for reconstructing URLs. As
mentioned earlier, it is only capable of tracing string values. However, network functions
are not always called with string value arguments. For example, we saw that developers
are using the okhttp3.HttpUrl which can later be passed to the request builder (<okhttp3
�→ .Request$Builder: okhttp3.Request$Builder url(okhttp3.HttpUrl)>) to construct
an executable request. The okhttp3.HttpUrl itself can be constructed over another
builder. It would still be possible to implement the method simulation only with strings,
but we would need to reimplement many different methods and classes. Reimplementing
those is not feasible for each class used in combination with network functions. Therefore,
we extended LeakScope to reconstruct different types of objects. We are now able to
use the original code in the simulation phase instead of reimplementing it. We call our
extension ValueScope.

1LeakScope Github, https://github.com/OSUSecLab/LeakScope/releases, accessed:
16.04.2021
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We first give an overview of the extensions we made and then explain the general approach
of ValueScope in more detail.

First, we faced several problems concerning dependencies used by LeakScope. To solve
this issue, we are now using Gradle2 as build tool. We also removed several files from
the original code since they were just copies from a library and added the library as a
dependency to Gradle. Similarly, we cleaned up the whole source code. Where possible,
we switched to existing libraries. Besides, we removed unused and unnecessary code. We
fixed several bugs found during the whole development process regarding circle detection,
static initialization, and missed code paths. However, our main changes to LeakScope
were in order to trace arbitrary types of objects and not just strings. Consequently, we
had to change the forward computation and the heap object handling. The changes allow
us to rely on existing library implementation without reimplementing them to work with
strings only. The only downside of these changes is that they add more type casts that
are error prone and require extensive testing on changes. At the moment we are modeling
the following object types: Integer, Strings, InetAddress, InetSocketAddress, URI, URL
and okhttp3.HttpUrl.

With our changes to trace arbitrary objects, we also added array handling. Internally we
simulate arrays with array lists due to their easier handling. If a value gets written at
some array index, we first try to look up the index value. If the analysis is not aware of
the index, we append the assigned value to the end of the array. Nevertheless, this can
lead to incorrect results. For example, if some values are not in the correct position and
the array is used later for a string format, the resulting string is mixed up. Handling
unknown read indexes is easier. In this case, all values found for the array so far are
returned.

To avoid running into an endless loop LeakScope is not analyzing cyclic blocks. Originally
LeakScope was removing all cyclic blocks from the analysis. In the end, this had the
effect that values were missed. To avoid missing those values completely, we now check
if a cyclic block has already been visited and only remove it from the analysis if it has
been visited before.

Additionally, we extended the time watcher. Now it is possible to specify separate
timeouts for the backtracking and the forward computation phase. If the time is up, the
analysis gets notified. Then the analysis has some additional time to finish and report
the already found results.

Figure 4.1 shows the different steps performed by ValueScope to analyze an app. First,
Soot gets initialized. It is possible to exclude packages from the analysis to speed up the
whole analysis. Among the excluded packages are the Java and Android core package,
since we model the relevant functions precisely and are not interested in the internal
statements, e.g., how Java internally appends a string. Afterward, all code statements
which are not excluded get loaded, and a call graph is built.

2Gradle Build Tool, https://gradle.org/, accessed: 16.04.2021
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4.1. ValueScope

Figure 4.1: Flowchart of ValueScope

As the next step, a data dependency graph is created. Therefore, the method signatures
which we are interested in are searched. If there is a usage found, the statement is added
to the DDG. This procedure is carried on until all signatures we provided are processed.
If there has been a signature found, the backtracking begins. In this step, we keep track
of which variables are interesting for the analysis. An own program slice handles each
found statement. The program slice has to keep track of its interesting variables. In the
beginning, the parameters we are looking for are the only interesting variables. While
we keep iterative querying the predecessors, we look for variables and values involved in
building those variables. For processing the statements, we have modeled selected methods.
For example, if we have the following statement $r3.<java.lang.StringBuilder: java

�→ .lang.StringBuilder append(java.lang.String)>($r1) and $r3 is interesting to us,
we add $r1 to the interesting variables, since it is involved in constructing $r3. If the
variable of interest is $r1 and we come across the previous statement, we keep $r1 in the
interesting variable list, but not add $r3 since this statement is not changing the value of
$r1. A variable is removed from our list of interesting ones if a constant value is assigned
to the variable. An example statement is $r3 = null. Since we have traced the variable
back to the latest assigned value, we can remove it from our list.

Heap values need special treatment. If a heap object is traced during the analysis, we
need to trace back the code which sets a value to the heap object. The backtracking ends
either if there is no variable of interest left, we have reached predefined maximum steps
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1 //..
2 String base = "https://domin.com";
3 String path;
4 if (base.contains("important")) {
5 path = "destination1";
6 } else {
7 path = "destination2";
8 }
9 String urlString = String.format("%s/%s", base, path);

10
11 URL url = new URL(urlString);
12 //...

Listing 4.1: Example forward execution

back, or a timeout has been triggered.

Afterward, the analysis progresses with simulating the execution steps involved in building
the interesting variables. Therefore, we keep track of possible values for each variable.
We provided an example in Listing 4.1. The backtracking will trace the string used to
create the URL object in line 11 back to the initialization of the base variable in line 2.
The forward simulation starts there and saves for the first statement the information that
the value of base is https://domain.com. The next statement declares the variable path.
Therefore, we save the empty string for this variable. Next, we have an if condition. Since
we are not evaluating the if statements, we do not know that the else branch is always
entered. To avoid missing possible values, we handle both branches as separate execution.
Consequently, we get multiple possible values for the URL in line 11. Lets continue with
the example in line 5 we update the value of the path variable to destination1. In line 7,
we need to add another possible value for path. To model alternative values, we are
saving the possible values in a Set. Hence to be more precise, in the above example, we
are not saving https://domain.com for the variable base in line 2. Instead, we create a
Set and add the string value to it. With this data structure it is now easy to handle
line 7 we just add destination2 into the Set from path. Since we now have two possible
values for the path variable, we also need to evaluate the format string twice and add
both results into the possible value Set from the urlString variable. In the end, we get
both values as results reported for the URL object in line 11. To simulate an instruction,
ValueScope needs to maintain a list of signatures from handled methods. Therefore, the
analysis has to look up each parameter and base object for each matching signature if
their values are already computed. Otherwise, it takes default values for the simulation.
The advantage of taking default values is that partly reconstructed URLs are reported.
Those URLs already provide the desired information in many cases. Furthermore, we can
use library implementations for the simulation and do not have to implement our own
version of the library code because we changed LeakScope to save the variable values as
an arbitrary object.
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Figure 4.2: Flowchart of IoTFlow

After the simulation finished, we match the results with regular expressions to find local
IP addresses. We also add each domain that originated from a UI element as a potential
local communication.

At last, the obtained results are saved into a JSON file if requested.

4.2 IoTFlow
Our work aims to perform a flow analysis with the additional functionalities as described
in Chapter 3. Figure 4.2 shows an overview of the internals of our analysis approach
called IoTFlow.

First, we are initializing Soot. Again, we exclude specific packages that are either handled
by precise rules or are unlikely to occur in data flows. We then run ValueScope as
described earlier, without the Soot initialization since we have already done it.

If ValueScope finds statements that might get used for communicating over the local
network, we still do not have enough information for our data flow analysis. In Listing 4.2
we provided an example, if the URL is added in line 2 and we have <okhttp3.Call:

�→ okhttp3.Response execute()> in our list of sinks, we would only get a data flow
reported from line 2 to line 4. However, such data flow does not provide more information
than the actual information that in line 2 a local request gets built. Therefore, we cluster
the statements found by ValueScope depending on the network libraries or methods
used. Our goal is to find the code that performs the network communication from the
statement where the local URL was added. To achieve that, we run the flow analysis
with a custom source and sink manager. The source and sink manager has the task of
answering whether a specific statement is a source or sink. In this step, our custom
source and sink manager only returns a statement as a source if ValueScope reported it as
used for local communication. The manager reports a statement as sink if the signature
matches one of the provided source-sink mapping file. The mappings from sources to sinks
are defined initially by the user, a simplified version for the okhttp library is provided in
Listing 4.3. The mappings have the following meaning if a local communication from one
of the three provided signatures is found, the corresponding sinks are the ones at the
index 2 of the sinks list below. In this case execute() and enqueue(okhttp3.Callback)

are the corresponding sinks. Since FlowDroid does not keep track of the propagation
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1 //...
2 Request request = new Request.Builder()
3 .url("http://192.168.0.1/getData")
4 .build();
5 Response response = client.newCall(request).execute();
6 String data = response.body().string();
7
8 //...
9

10 RequestBody postBody = new FormBody.Builder()
11 .add("leak", data)
12 .build();
13
14 request = new Request.Builder()
15 .post(postBody)
16 .url("https://www.sink.com/")
17 .build();
18
19 client.newCall(request).execute();
20 //...

Listing 4.2: Sample local communication

path of a taint neither of the source statement, the local communication source finding
task is performed for each mapping category separately. The flow analysis does not keep
track of the taint paths because it merges two taints even if they originate from different
sources. In order to provide the tainted paths to the user, FlowDroid recomputes it in
the end. Nevertheless, this is an optimization since in most cases less taints need to be
propagated.

For the next step, all statements found executing local network requests are added as
sources. As previously, the sources and sink manager mark the statements as sources if
they were found by the local source finding task. The other sources and sinks are loaded
from a provided list.

FlowDroid is already shipped with a predefined list of sources and sinks, automatically
generated by SuSi [39]. However, we found several methods not included in the list that
make sense to add for companion applications. As bases, we are using the sources and
sinks from WearFlow[46]. There are already sources and sinks added which are used
for communicating between Android apps and smartwatch apps running on Googles
Wear OS.3 Since companion apps sometimes scan the local network for IoT devices,
we added Android’s built-in network scanning functions as sources to the list. We
also found multiple apps using the MQTT protocol and therefore added methods from

3Wear OS, https://wearos.google.com/, accessed: 11.04.2021
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1 {
2 "mappings": [
3 ...
4 {
5 "<okhttp3.Request$Builder: okhttp3.Request$Builder url(java.lang.

�→ String)>": 2
6 },
7 {
8 "<okhttp3.Request$Builder: okhttp3.Request$Builder url(okhttp3.

�→ HttpUrl)>": 2
9 },

10 {
11 "<okhttp3.Request$Builder: okhttp3.Request$Builder url(java.net.

�→ URL)>": 2
12 }
13 ...
14 ],
15 "sinks": [
16 [
17 ...
18 ],
19 [
20 ...
21 ],
22 [
23 "<okhttp3.Call: okhttp3.Response execute()>",
24 "<okhttp3.Call: void enqueue(okhttp3.Callback)>"
25 ]
26 ]
27 }

Listing 4.3: Mapping example for the okhttp library

the widely used paho library.4 Besides, we added methods from different networking
libraries and various methods used in combination with NFC, BLE, and BL, which were
previously missing. A list of sources and sinks we added for our analysis can be found in
APPENDIX A.1.

At the last step, IoTFlow is outputting the found data flows. To add further information,
we add the information about the endpoints of network requests previously collected by
ValueScope. The information can help people analyzing the flow. For example, it makes
a difference if personal data is transferred over a connection using TLS or not.

4Eclipse paho library, https://www.eclipse.org/paho/index.php?page=clients/java/
index.php, accessed: 11.04.2021
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4. Design and Implementation

4.3 Endpoint Evaluation
For further evaluating the data obtained by ValueScope, we developed several Python
scripts.

For extracting the domains from the results obtained with ValueScope, we used regular
expressions. To either get the domain or subdomain, depending on the analysis, we
used the tldextract library.5 For resolving the IP address either to use it later for IP
whois queries, or just having a look if the previously obtained domain seems to be valid,
we used the following line of code socket.gethostbyname(domain). For querying the IP
location, we used an IP-Whois library6 for Python.

To generate a world map the GeoPandas7 library was used. Since the whois library is
returning country codes with two letters and the world map uses the three-lettered ones,
we first needed to convert them with another library.8

For the other graphs and diagrams, we used the following libraries: matplotlib,9 pyvis,10

seaborn11 and wordcloud.12

5tldextract library, https://github.com/john-kurkowski/tldextract, accessed: 04.05.2021
6ipwhois library, https://github.com/secynic/ipwhois, accessed: 17.04.2021
7GeoPandas library, https://geopandas.org/, accessed: 17.04.2021
8pycountry library, https://github.com/flyingcircusio/pycountry, accessed: 17.04.2021
9matplotlib library, https://matplotlib.org/, accessed: 04.05.2021

10Pyvis library, https://github.com/WestHealth/pyvis, accessed: 04.05.2021
11seaborn library, https://seaborn.pydata.org/, accessed: 04.05.2021
12word_cloud library, https://github.com/amueller/word_cloud, accessed: 04.05.2021
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CHAPTER 5
Results

The results we present in this chapter were produced on a device with an Intel i7-8565U
CPU and 16 GB 2667 MHz RAM. We executed the Java Virtual Machine (JVM) with
the following additional parameter -Xmx12800M to increase the maximum memory size
available to the JVM.

5.1 Selecting Apps
Kumar et al. [23] provide statistics about the used IoT device types and popular device
manufacturer within the different geographical areas. One device type with significant
regional differences are surveillance devices. They detected that 54.5 % of IoT devices
in South Asia are for surveillance. In comparison, those devices only make up 3.7 % of
the total IoT devices in North America. In contrast, home automation devices mainly
occur in Europe and North America. Kumar et al. also showed that different regions
favor other device manufacturers. One example they provided is Sagemcom, a French
company. The devices found by that manufacturer are nearly entirely located in Europe.

With this knowledge in mind, we wanted to perform our analysis on apps belonging
to devices used worldwide. Since Kumar et al. provided a list of popular IoT device
manufacturers per region and per type, we used that information for our selection. We
later searched the Google Play Store for apps from those manufacturers. We selected 130
apps where most of them are belonging to one of those manufacturers. Due to regional
restrictions of the Google Play Store we were not able to download six of them. In the
end, we performed our analysis with 124 companion apps. The Table 5.2 contains further
details.

In addition, we selected apps based on the top selling free category from the Google Play Store
for the comparison with general applications. In the end, we used the following 38 apps
listed in Table 5.3 for our analysis.
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Figure 5.1: Execution times for LeakScope and ValueScope from the same apps of our
companion app dataset

The country classification shown in both tables was made based on the developer
information from the Google Play Store. If there were location information available, we
used those for querying the country from Google Maps. When the location information
was not available, we used whois to get the country from the provided website domain.
If there was neither a location nor a website provided, we queried the country based on
the email address’s domain.

5.2 Comparison of LeakScope and ValueScope
To compare our extension of LeakScope to the unmodified analysis, we ran LeakScope
on the same companion apps with the same configuration as ValueScope. From the 124
companion apps, the original analysis terminated correctly for 43 of them. To make
it comparable, we only used the results from apps both implementations terminated
without any error. Since our implementation only failed to analyze two apps, it would be
otherwise not comparable. From the 43 apps, both analyzes terminated correctly. They
reconstructed from 31 apps values. There are different reasons why an analysis is not
finding any values. For example, an app might not use any functions we are looking for,
or the app is obfuscated, and therefore the analysis cannot reconstruct any values.

In Figure 5.1 we show for both analysis the execution times. The U: in the diagram
stands for the "unmodified analysis" of LeakScope and the M: for our "extended and
modified implementation," ValueScope. The setup time is the time needed for the analysis
to initialize Soot. Among other things, Soot needs to load and translated the byte code
into the Jimple intermediate representation during this phase. The solve time represents
the time needed to backtrack and later reconstruct the values. The last columns show
the total execution time, which are the Soot setup time and the solve time combined.
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Figure 5.2: Execution times of ValueScope from all 122 companion apps

Besides the execution times, we compared the found domains from both implementations.
We therefore first extracted all subdomains from the results with regular expressions.
ValueScope was able to extract 93 different subdomains from the 31 apps which contained
results. LeakScope found 66 unique subdomains from those apps. We further compared
the unique subdomains found in each app. In such a comparison, our extension found
in total 33 subdomains more. The following example explains why there is a difference
between the per-app and the overall comparison: One implementation might find in the
first and second app followings domains {"google.com", "facebook.com"}, the other one
might find for the first app {"google.com"} and for the second {"facebook.com"}. In an
overall comparison, both implementations have found the same amount of domains, but
the first implementation has found two more on a per-app sight.

We later tried to remove invalid findings by resolving the subdomain. Nevertheless, there
were also valid subdomains removed during this step, espressif.cn is one of them. If
we search for the domain in Google, it seems to be the Chinese domain for Expressif
devices while the international domain is espressif.com. Comparing the filtered results,
ValueScope found 79 valid subdomains and LeakScope 54. The total per-app difference
is 26.

5.3 ValueScope Results
From the 124 companion applications we analyzed with ValueScope, 122 successfully ter-
minated. From the 122 apps successfully executed, we found in 110 of them reconstructed
values. The results contained 948 unique subdomains. From those, we were able to look
up the IP addresses for 646 of them. In total, they belong to 252 different domains. On
a per-app basis, we found on average 12 different subdomains which belong to 4 domains
in average. For 36 apps, our analysis detected some form of local communication. We
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Figure 5.3: Word cloud of all local IP addresses found

visualized the local IP addresses found in Figure 5.3. The word cloud also contains the
string fromUI.local which stands for addresses inputted from the user. In total, our
analysis found six apps containing addresses from user input. We manually analyzed
those apps and found out that, indeed, all of them ask the user to input or select the IP
address of the corresponding device.

In Figure 5.2 we provided detailed information about the execution time of ValueScope.
This time the diagram shows the execution times of all 122 apps we successfully analyzed.
In total, there are even more outlier further outside the represented space. We decided to
cut the diagram at 150 seconds of to keep it better readable. From the apps, we analyzed
the longest runtimes we encountered was for the setup time 2:46 minutes (166.88 seconds),
for the solve time 12:01 minutes (721.95 seconds), and for the total computation time
12:52 minutes (772.68 seconds).

5.3.1 Companion Apps and General Popular Apps
In Figure 5.4 and Figure 5.5 we provide two maps which show the domain locations.
The first map contains the domain locations we found while analyzing the general
apps from Table 5.3. The second map contains the domains found for the companion
apps. To create the maps, we first extracted the unique subdomains per app. Later
we resolved the subdomains and queried the country of the IP address location with
whois queries. We decided to perform the evaluation based on the subdomains since
there are sometimes subdomains of the same domain in different countries. For example,
within a Xiaomi app, we found the following domains cn.register.xmpush.xiaomi.com
and ru.register.xmpush.global.xiaomi.com. If we only look up xiaomi.com we would
think that both are located in China. By querying the subdomains, we find out that
one is located in Russia and the other one in China. Other examples are amazonaws
subdomains. In addition, we provided two pie charts in Figure 5.6, which show the
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Figure 5.4: Subdomain locations from all general popular apps we analyzed

Figure 5.5: Subdomain locations from all companion apps we analyzed

distribution of subdomain locations. For the pie charts, we summarized all countries
from the European Union as EU. Since the United Kingdom left the EU on 31.01.2020,
we added those among others to the "Other" category.

In addition, we visualized the domains from both datasets in Figure 5.7. In that Figure, a
connected graph is displayed, making the overlapping domains from both datasets visible.
In order to keep the graph clear, we decided not to distinguish different subdomains and
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Figure 5.6: The chart on the left-hand shows the distribution of subdomain location
from all general popular apps. The chart on the right-hand side shows the distribution
of subdomain location from all companion apps we analyzed

handle them as one domain. We increased the size of the domain node by one for each
unique subdomain occurring in an app. That means if the subdomains from our previous
example (cn.register.xmpush.xiaomi.com and ru.register.xmpush.global.xiaomi.com) occur
in one app, we set the size of the xiaomi.com node to two. If those two subdomains occur
in another app too, the node’s size is set to four. However, if the same subdomain occurs
multiple times within an app, it is only counted once. For the size of the companion app
and general app node, it is the same. Both represent the number of analyzed apps from
those categories. Also, we categorized the domains into three categories for which we
are not showing the single domains. The categories are as follows: Advertisement and
Tracking, Content Distribution Networks and Social Networks. In the end, we added a
fourth category, other domains, that contains all domains occurring less than three times.

5.3.2 Companion Apps
For a better understanding of the companion apps we analyzed, we decided to show
another connected graph. The graph is provided in Figure 5.9. It shows which domains
are called by an app and which domains share some similarities by connecting to the same
domains. To better see the connections of the non-standard domains, we are not showing
the domains categorized in one of the three categories Advertisement and Tracking,
Content Distribution Networks and Social Networks. In addition, we are not showing
domains occurring less than three times. The size of the domain nodes again depends on
the occurrences of the subdomains. The graph in Figure 5.8 shows the Xiaomi cluster in
more detail. In comparison to the overall Figure 5.9, the domains occurring twice are
also shown here.

We also evaluated which schemes were used within the different URLs found by ValueScope.
We provided the schemes, amounts of value points, the amounts of apps, and the
percentage of apps where we found the scheme in Table 5.1. The amount column
represents the number of value points where the scheme was found. Value points are
statements which are matching one of the signatures for which we were searching. The
amount of the found schemes is increased for each value point where it is found. For
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Figure 5.7: Domains from general popular apps and companion apps

example, if we find in a value point twice http and once https, we increase the amount
of both schemes by one. The app row symbolizes the number of apps in which we have
found the scheme at least once. The percentage is the relation between the apps in
which we have found the scheme and the total number of apps we have found from the
respective category. For the other connection category, we found 108 apps containing at
least one scheme, and for the local connection category, we found in 30 apps schemes.
We can only say for sure that a scheme is used for local communication if it occurs in
an URL with a local IP address or our fall-back value fromUI.local for user-inputted
domains or IP addresses. Still, there are many cases where we could not reconstruct
the host. For example, if it is saved in the shared preferences. Therefore, a scenario is
that the hardcoded or user-selected host address is only used for the first connection.
Later, the address is saved in the shared preferences. For further local connections, the
value from the shared preferences is taken. In such a case, the host is not reconstructed.
We cannot say that it is a local communication even if it is used for such in reality.
Consequently, we count it to the other values. A value point can also contain multiple
schemes. For example, if it is found within a static method. The same comes true for
the local and "other" category. If, for one value of a value point, a scheme combined with
a local address is found, we count it to the local communications. However, if another
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Figure 5.8: A detailed fraction from the Xiaomi cluster

Other Connection Local Connection
Scheme Amount Apps Percentage

of Apps Scheme Amount Apps Percentage
of Apps

https 3487 100 92.59 % http 420 29 96.67 %
http 6612 87 80.56 % https 75 2 6.67 %
other 70 17 15.74 % other 1 1 3.33 %
ws 54 11 10.19 %
file 40 7 6.48 %
jar 94 5 4.63 %
smb 105 3 2.78 %
wss 5 3 2.78 %

Table 5.1: All schemes we found in our results

value is found where we cannot be sure that it is used for local communication, it is
counted for the other category. The other schemes contain default values we used for
reconstructing Java URL and URI objects. For both, we have problems if the protocol is
not matching one of the supported ones. In this case, we need to set default values to
get still results for the already reconstructed parts.

Another analysis we performed based on the results reconstructed by ValueScope, was
a search for privacy related keywords within the reconstructed query parameters. In
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total, we found 27 values belonging to the following keywords: password, SSID, phone,
IMEI, email, latitude, longitude, phonenumber, IP, pass, hostname, mac, secret. We
later discuss two found cases in more detail. Although, most of the found keys belong to
intended flows for setting up the devices or authentication.

Besides, we found in 2 apps firmware update URLs from which we were able to download
the file. However, for other firmware updated URLs found, we need additional parameters
like the current firmware version or the device serial number, which were statically not
reconstructed.

5.4 IoTFlow
As for ValueScope we executed IoTFlow on the collected companion app dataset. For 113
of them, we were able to collect results. The average runtime per app was 6:30 minutes.
In total, there were 255 flows found. Nevertheless, most are less relevant, and some are
redundant. Therefore, we provide from two selected apps the flows we found in detail.
We selected those apps since they contain the most relevant flows found by our approach.

The first interesting flows we want to present were found in the com.wifiaudio.Belkin app.
We found there flows from Wi-Fi scanning, from accessing location information, and local
communication. In addition, ValueScope was able to find additional information about
the endpoints.

In the first flow, we found that the Wi-Fi SSID is read and later sent. Furthermore, Val-
ueScope reconstructed the following URL https://10.10.10.254/httpapi.asp?command=

�→ ConnectMasterAp:ssid=NOT_FOUND:ch=NOT_FOUND:auth=NOT_FOUND:encry=NONE:pwd=:chext

�→ =0.

In another flow, the longitude and latitude are read and later sent. Again ValueScope pro-
vides additional information about the endpoint the data is sent to https://10.10.10.254/

�→ httpapi.asp?command=setTuneinLocation:latitude=:longitude=:serial=.

The last flow to mention here is between two network statements, one flagged as used
locally. Since the network functionalities are handled within util classes used for local
and remote connection, it is not providing additional information. Nevertheless, the
reconstructed values from ValueScope have found lots of further commands for the device
and cloud endpoints.

In com.sercomm.gaia.platform.smarthome the second app, we found a flow where the
IMEI (a unique phone identifier) of the phone is read and sent. The reconstructed path,
from IoTFlow, gives us the information that the data is sent during the logout process.
Since the data flow is found within a non obfuscated method called logout. In this case,
ValueScope is not providing further information since the corresponding URL originates
from a value saved in the shared preferences. Consequently, we cannot reconstruct it
statically.
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APP ID Country Version Number APP ID Country Version Number
com.allegion.leopard USA 3.1.0 com.enphaseenergy.myenlighten USA 3.5.9
com.amazon.dee.app USA 2.2.398067.0 de.sma.energy DEU 1.03.108.R
com.asus.aiextender TWN 1.0.0.1.36 com.eq_3.max_eq3 DEU 3.2.1
com.asus.aihome TWN 1.0.0.6.21 de.eq3.pscc.android DEU 2.6.14
com.asustek.aicloud TWN 2.1.0.0.94 com.hager.mood DEU 1.9.49
com.bitaxon.app.ew001.wizard.freebuds CHN 2.6 com.hager.koala.android DEU 3.8.2
com.bose.bosehear USA 1.5.4 com.espressif.rainmaker CHN 2.2.4 - 5724bef
com.bose.controlspace.remotecustom USA 2.9.0.32554 com.espressif.iot CHN v1.2.5
com.bose.corporation.bosesleep USA 3.0.7 h5.espressif.esp32 CHN 1.2.2
com.bose.monet USA 15.0 com.espressif.provbleavs CHN 2.1.1
com.bose.soundtouch USA 26.0.3 com.xiaomi.smarthome CHN 6.4.701
com.cisco.connect.cloud USA 2.15.5 com.xiaomi.wearable CHN 2.6.3i
com.dlna.asus2 TWN 2.0.0.2.81 com.xiaomi.hm.health USA 5.0.1
com.dragonflow USA 3.1.78 com.duokan.phone.remotecontroller USA 6.0.4G
com.fitbit.FitbitMobile USA 3.39.2 com.sercomm.app.ipcamera USA V2.0.6.0
com.fridaylabs.fridaylock USA 1.0.14 com.sercomm.gaia.platform.smarthome USA 1.0.1274
com.huawei.bone CHN 21.0.1.307 com.sercomm.gaia.tulip USA 0.1.9
com.huawei.ch100 CHN V1.1.11.120 com.zte.linkpro CHN V5.2.4.020
com.huawei.colorbands CHN 1.3.7.128 com.hp.android.printservice USA 21.3.52
com.huawei.overseas_ah100 CHN V1.1.7.120 com.synology.DSfile TWN 4.13.1
com.juanvision.eseecloud30 USA 3.3.33 com.synology.DSfinder TWN 2.3.3
com.specialyg.ippro USA 3.3.33 com.synology.dsdrive TWN 2.3.0
com.insteon.insteon3 USA 1.9.8 com.synology.dsvideo TWN 3.4.3
com.my.leo.switchcontroller USA 151204a com.mcu.iVMS CHN 4.7.7
cn.ubia.xshcam CHN 1.1.2 com.mcu.hilook CHN 3.10.1.0924
hk.bell.doorbell HKG 1.0.182 com.mcu.iVMSHD CHN 4.1.3
cn.ubia.ubellplus CHN 1.0.11 com.hikvision.HikCentralHD CHN 1.5.0
com.hogarcontrols.hogarcamhd3.gcm USA 2.2.2.70 com.mm.android.direct.gdmssphone CHN 4.90.000
com.pg.oralb.oralbapp USA 8.3.1 com.mm.android.direct.gdmssphoneLite CHN 3.53.001
com.philips.ka.oneka.app CAN 7.4.0 com.mm.android.direct.gdmsspad CHN 4.00.000
com.philips.lighting.hue2 USA 3.48.2 com.amazon.storm.lightning.client.aosp USA 2.1.2172.0-aosp
com.signify.hue.blue USA 1.31.0 com.oplayer.silvercrest USA V1.0.33
com.tpvision.philipstvapp2 NLD 2.1.38 com.veepoo.hband CHN 6.2.5
com.philips.cdp.ohc.tuscany CAN 10.0.0 com.jaga.ibraceletplus.smartwristband USA 3.6.5
com.rcreations.ipcamviewerBasic USA 7.3.0 com.xman.tecno.watch CHN 1.9.2.27
com.samsung.android.oneconnect KOR 1.7.64.21 com.qihoo.smarthome USA 7.3.5.0
com.samsung.dockingaudio2.phone KOR 5.0.3 com.lesheng.smart CHN 1.1.6
com.samsung.washer KOR 2.1.40 com.yugong.Backome CHN 5.1.2
com.sierrawireless.mhswatcher USA 7.16.2004.195 com.irobot.home USA 5.4.0-release
com.mode.wdb80 USA 3.0.2 com.roborock.smart CHN 2.3.46
com.sonos.acr USA 11.2.6 com.reecoo.robot.app SGP 1.3.2
com.thetileapp.tile USA 2.75.0 de.flole.xiaomi USA 1.2475-gpe
com.tplink.omada HKG 3.2.8 com.eufylife.smarthome USA 2.5.70
com.tplink.skylight HKG 3.1.18 com.ilife.germany HKG 4.0.17
com.tplink.tpplc HKG 1.3.5 com.ilife.home.global HKG 1.2.3
com.tplink.tpmifi HKG 2.1.1 it.positec.landroid USA 2.0.3
huiyan.p2pwificam.client USA 1.3.25 com.qnap.qfile USA 2.10.8.0218
wansview.p2pwificam.client USA 1.0.18 com.qnap.qvideo USA 3.10.13.0111
com.microsoft.xcloud USA 1.12.2102.0401 com.mm.android.direct.gdmsspadLite CHN 3.60.001
com.osstream.xboxOneController ISR 1.56 br.com.amt.v2 BRA 3.32
com.playstation.remoteplay USA 4.1.0 br.com.intelbras.mibocam BRA 1.2.1
com.playstation.mobile2ndscreen USA 21.3.1 epson.print JPN 7.6.4
com.nest.android USA 5.61.0.2 com.brother.mfc.brprint USA 6.5.0
com.belkin.android.androidbelkinnetcam USA 2.0.5 com.ricoh.smartdeviceconnector JPN 3.14.2
com.belkin.wemoandroid USA 1.29.1 com.primax.MobileSDC220 JPN 1.06
com.wifiaudio.Belkin USA 1.0.1.200925 com.lge.app1 USA 5.0.5
com.belkin.btapp USA 1.0.2 com.lgeha.nuts USA 3.5.1722
com.philips.src.hss CAN 3.10.1 com.plus.ai USA 3.3.2
com.superthomaslab.hueessentials NLD 1.21.0 de.telekom.smarthomeb2c DEU 6.3.0_8d03a177
com.ikea.tradfri.lighting USA 1.14.2 com.dlink.mydlinkunified TWN 2.3.1
com.philips.vitaskin.male CAN 7.1.0 com.dlink.mydlinkmyhome TWN 3.0.11
com.ecobee.athenamobile CAN 8.7+134947 com.tuya.smartlife HKG 3.26.5

Table 5.2: The list of companion apps we used for our analysis

APP ID Country Version Number APP ID Country Version Number
com.instagram.android USA 54.0.0.14.82 com.contextlogic.wish USA 4.47.5
com.uncosoft.highheels USA 1.5.1 com.teacapps.barcodescanner DEU 2.6.9-L
cn.danatech.xingseus CHN 2.12 com.roblox.client USA 2.472.420209
com.whitesquare.animaltransform USA 0.6.1 com.zhiliaoapp.musically SGP 18.9.5
com.innersloth.spacemafia USA 2021.4.2 com.fivebits.emeregencydispatch ISR 1.065
com.disney.disneyplus USA 1.14.1 com.smo.deepcleaninc3d TUR 1.0.34_a
com.smallgiantgames.combat FIN 31.1.0 com.barsstudios.swordplay ARE 2.5
com.playstrom.bob BLR 1.1.1 com.DefaultCompany.CatNDog USA 1.2.5
com.shopify.arrive CAN 2.21.0 com.amazon.avod.thirdpartyclient USA 3.0.293.4645
com.Garawell.BridgeRace ISR 2.026 com.king.crash MLT 1.0.81
com.Pizia.VoodooDoll USA 0.45 com.paradyme.solarsmash GBR 1.4.1
com.gma.water.sort.puzzle AUS 3.0.7 com.game.colorslime TUR 1.49
com.zzkko USA 7.5.2 com.snapchat.android USA 11.23.2.36
com.boltrend.disgaea.en HKG 1.0.254 com.casual.impostor.smasher SGP 1.0.8
us.zoom.videomeetings USA 5.6.0.1592 com.google.android.play.games USA 2021.02.24918
com.paypal.android.p2pmobile USA 7.39.2 com.elex.twdsaw.gp HKG 1.2.3
com.crazylabs.shoal.of.fish ISR 0.0.3 com.discord USA 69.0
org.telegram.messenger ARE 7.6.0 com.crazylabs.diy.make.up ISR 1.1.1
com.amazon.mShop.android.shopping USA 22.7.0.100 com.whatsapp USA 2.21.7.14

Table 5.3: List of generally widely used applications we used for our analysis
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Figure 5.9: Connected graph from the companion app datasets
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CHAPTER 6
Discussion

In the following sections, we discuss the results presented in the previous chapter. We
also show the limitations of our approaches and give a prospect of our future work.

6.1 Observations
6.1.1 Comparison of LeakScope and ValueScope
While comparing ValueScope and LeakScope, the question arises why LeakScope and
ValueScope do not report any results for 81 and two apps, respectively. Our extended
analysis runs out of memory for two apps, and therefore the analysis is aborted. These
apps are com.amazon.dee.app and com.ikea.tradfri.lighting. For the original LeakScope
implementation, we identified three reasons why the analysis is not terminating correctly.
First, it also runs out of the heap space. In addition, the analysis is often aborted
because runtime exceptions are thrown, which are never caught. The third reason is that
a timeout gets triggered for some apps, and the analysis is aborted without gathering
any intermediate results.

Comparing the execution times in Figure 5.1, we can see that ValueScope is faster on
average during the setup. That leads to a faster overall analysis. The main reason for the
faster setup time is that we excluded more libraries that are not relevant for the analysis.
The exclusion of libraries allows us to load less code and therefore speed up the complete
analysis. Taking a closer look at the solve time, we can see that ValueScope takes slightly
longer on average. In addition, the outliers of ValueScope are far higher than the ones
from LeakScope. The reason for this is that we are modeling more network-related
methods. For example, if the following statement <okhttp3.Request$Builder: okhttp3.

�→ Request$Builder url(okhttp3.HttpUrl)> is found by LeakScope, the analysis cannot
backtrack it and therefore cannot compute any values. LeakScope cannot analyze the
statement since it is not aware of how to handle okhttp3.HttpUrl. In comparison, our
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extended version does handle and analyze it. Still, as we can see in Figure 5.1, the speed
up during the setup time outweighs this and results in an overall speedup.

Both implementations did not find any results for the same 12 apps. They do not find
results because apps are obfuscated, using native code for network functionalities, and
one app was not using any network functionalities at all. The differences of the found
domains and subdomains result from the additionally handled objects like the okhttp3.

�→ HttpUrl. Comparing the domains before and after the validation step, around 85 % of
the subdomains found by ValueScope were valid. For LeakScope, around 82 % were valid.
The reason for the higher ratio can again be attributed to the additional handled network
objects. Compared to java.net.URL which can also be used for opening files, the one from
okhttp is only used for actual requests. Therefore, it is more likely that a reconstructed
URL contains a valid domain. For example, in the com.primax.MobileSDC220 app we
found file:/ByteArrayClassPath/float.class and similar URLs. These are used to
load code dynamically. Both analyzes reported these URLs, but since they do not contain
any valid domain, they are discarded during the validation step at the latest.

6.1.2 ValueScope
Looking at the Figure 5.2, it is similar to the one previously shown for the subset of
companion apps. As for the subset, the analysis spends more time setting up Soot than
actually analyzing the code. Comparing the times spent during the different analysis
phases, they are now higher. We assume that the reason is that previously only apps were
selected where the original implementation was also terminating correctly. As explained
above, LeakScope terminates the analysis if it is taking too long without collecting any
results. In addition, it is more likely that a large app contains statements triggering
a runtime exception that LeakScope cannot handle. For the same reason, the 12 apps
where the analysis did not find any results are included in the smaller subset. These are
much simpler for the analysis to handle. If there are no methods found to trace, it is
unlikely that the analysis runs into time issues or that exceptions are thrown.

Next, we take a look at the local IP addresses. The three local addresses we most
often found are 10.0.2.2, 10.0.3.2 and 10.237.14.141. The first two addresses are false
positives. Such values can be used as aliases to access resources on the host while working
on an emulator. Therefore, they can also be used for emulator detection. Some apps
try to detect if they are running on an emulator to make dynamic reverse engineering
harder. We manually investigated the apps where we found 10.0.2.2, and 10.0.3.2. All
occurrences of these addresses were within the "React Native" library by Facebook.1 A
library method will return these IP addresses if it detects that the app is running on an
emulator to avoid errors during the development process.

To answer our questions from Chapter 3, we examine the domain locations visualized in
the Figures 5.4, 5.5, and 5.6. Most apps connect to servers in the US from both datasets.
The second most connected to country is China. Setting the shares in relation to where

1React Native library, https://github.com/facebook/react-native, accessed: 07.05.2021
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the apps were developed, we see that the apps developed in the US slightly drop from
47 % in the general data set to 45 % in the IoT specific one. However, the domains we
found from the US drop significantly from 86 % to 58 %. On the other hand, the share
of apps developed by Chinese developers (7.9 % in the general apps to 28.2 %) behaves
similarly to the share found for the domains belonging to China. Moreover, the increase
of domains from Singapore is consistent with the share of apps developed there. Around
8 % of the companion apps we analyzed were developed in Taiwan. Nevertheless, we
could not find such growth in the contacted domains. For domains found belonging to
countries from the European Union, the fractions stayed nearly the same in both datasets.
The same applies to the shares of applications developed in the EU. In the general one,
around 7.9 % were developed in the EU, compared to around 6.5 % in the companion
app specific dataset.

The differences between the domains connected by general popular apps and companion
apps are visible in the connected graph in Figure 5.7. There are overlaps mainly on
commonly used services like advertisement and trackers, social networks, or services
from big companies like Amazon and Microsoft. However, they differ in what additional
domains they call. Advertisement and trackers play a more important role in general
apps. The general apps we analyzed also contained fewer independent domains compared
to the IoT apps. Looking at the domains from companion apps, we can see that the
different manufacturers often use their own domains. This behavior is usually not the
case for general apps on such a scale. For companion apps, three of the most occurring
domains belong to Xiaomi, namely xiaomi.com, xiaomi.net and mi.com. We identified
three reasons why this is the case. First, we have analyzed multiple apps from Xiaomi.
Second, Xiaomi uses many different subdomains. We found 32 different subdomains for
xiaomi.com. Third, some devices from other manufacturers also call those domains.

Many of the advertisement and tracking related services we found were located in the
US. In contrast, the manufacturer’s domains are generally hosted in their own countries.
These are the main reasons why the share of domains from the US dropped in the
companion app dataset significantly.

In the connected graph in Figure 5.9, it is visible that the applications from the same
manufacturer often use the same set of domains. In Figure 5.8, we show apps connecting
to Xiaomi domains. A pink node is to the right of the marked node in the graph. Both
of them belong to vacuum cleaner robots from two different brands com.reecoo.robot.app
and com.ilife.germany. Interestingly, both connect to similar domains, which indicates a
rebranded device or the use of similar components.

From the Table 5.1 we can infer that http without TLS is still widely used in the
latest companion apps. However, we cannot say for how many connections and data
transmission it is really used. Still, it is pretty shocking that most apps at least have a
fall-back mechanism for its use. In several apps, we found conditions on whether or not
an app will use https based on settings or other criteria.

We found out that the proportion of http to https is even worse for local communication.
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Keeping the private key private while the device and firmware might get reversed is
difficult. Such enhancements represent additional work for the manufacturers and add
more complexity to the development process. Therefore, it is not surprising that the
relation of https is even worse than for other connections. For web sockets, the ones
enhanced with TLS were the minority found in the dataset.

Another interesting point is that we have found 94 value points belonging to five apps
where the jar scheme occurred. JAR files can be used to load code dynamically and
therefore obfuscate the app. We found that all reconstructed samba schemes belong to
network or storage related companion apps. Considering this, the found cases are not
surprising.

As we have mentioned, we found a local connection in 36 apps. However, only 30 apps
contain local communication with schemes. The reason, therefore, is that not for all
found values, we have reconstructed corresponding schemes. Consequently, there are
addresses for which we have not reconstructed any scheme.

Next, we continue with the sensitive keywords found in our search. The first URL
we want to discuss is the following http://fromui.local:not_found/get_camera_params

�→ .cgi?user=not_found&pwd=not_found, found in the com.insteon.insteon3 app. We
assume from the request that it is sent to an IoT device, and some authentication is
performed. It is not recommended to send the password in plain text, even if the request
is sent over the local network.

The other remarkable finding is that we have found OAuth requests where the so called
client_secret is hardcoded. We found such hardcoded secrets in three apps from two
different manufacturers. OAuth is used for getting an authorization token. First, a code
is obtained through GET requests and redirects. Afterward, the code is exchanged for a
token. During this step the client_secret is needed. If the secret is hardcoded, a malicious
app could listen for the responses containing the OAuth code and exchange it before
the actual app does it. To avoid having a hardcoded secret, OAuth recommends using
Proof Key for Code Exchange (PKCE), where a new value is generated for the secret
each time.2 One of the OAuth requests also contains the IMEI as a request parameter.
We discuss a similar case in the next section in detail. Sending the IMEI is a threat to
the privacy of users since there is no necessary scenario for sending it. Also, Google’s
best practices discourage developers from sending hardware identifiers, like the IMEI
number.3

2OAuth2,
https://developer.okta.com/blog/2018/12/13/oauth-2-for-native-and-mobile-apps,
accessed: 16.05.2021

3"Best practices for unique identifiers," https://developer.android.com/training/
articles/user-data-ids, accessed: 10.05.2021
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1 public interface SensorDataService {
2 @GET("temperature")
3 Call<SensorData> getTemperature();
4 }

Listing 6.1: Sample Retrofit annotation usage

6.1.3 IoTFlow
We start with the results obtained from the Belkin app. Even if both flows that send
data from the phone to the local device represent intended functionality, they help us to
get a further understanding of the IoT device. Furthermore, the reconstructed URLs
with the device’s commands surely help test the device. For example, they could be
used further to fuzz the smart device and therefore help to find vulnerabilities. We did
not gather much additional information from the local to remote network flow as the
cloud and device endpoints were already provided by ValueScope. Still, we believe that
such flows hold great opportunities, and we have planned to improve them further in the
future, as we explain in Section 6.3.

The flow where the IMEI is sent out from the smarthome app can be seen as PII leakage.
It is bad practice since private phone data is transferred, which is not necessary. For the
above functionality, a UUID could be generated and used as well. The IMEI number
combined with the authentication can also indicate a backend vulnerability. For example,
if the developers assume that the IMEI is always unique, which can be violated by
spoofing the IMEI.

6.2 Limitation
Each component of the thesis faces its own limitations. For the overall analysis, one must
be aware of these to avoid wrong result interpretations.

6.2.1 ValueScope
One limitation of ValueScope is that it only limitedly supports loops. During backtracking,
the program is not aware of the upper bound of a loop. Therefore, it cannot be analyzed
precisely. The block is only visited once to avoid missing loop blocks entirely.

Some Java and Android libraries nowadays use annotations a lot to provide additional
features. Listing 6.1 shows an example of how a GET request is performed with the
retrofit library.4 The path for the request is added within the annotation. Later, the
library generates the actual class implementation from the interface. With ValueScope, it

4"A type-safe HTTP client for Android and Java," https://square.github.io/retrofit/,
accessed: 11.04.2021
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is not possible to find such annotations. Consequently, the corresponding values cannot
be reconstructed at the moment. To handle this issue, the interesting method search of
ValueScope needs further changes.

By design, ValueScope can only compute values for functions and objects it is modeling.
Consequently, our analysis cannot handle many objects and methods, and therefore no
results are found for them.

Another limitation is that the analysis runs out of heap space while analyzing some vast
apps. Part of our future work is to implement a memory watcher like FlowDroids to
avoid that problem. The memory watcher can help to collect the results and end the
analysis before it runs out of memory. For some apps, a trivial solution would also be
increasing the heap space for the analysis.

The simple privacy keyword search is only looking for a limited set of words at the
moment. It is also only searching for those values in the request keys. That leads to
missed values if the keyword is encoded in the request path, for example.

6.2.2 IoTFlow
Since IoTFlow is based on FlowDroid and ValueScope, the approach inherent all limi-
tations from those two approaches. Similar to the limitation concerning annotations in
ValueScope, IoTFlow can also not handle them. That limits the source finding task for
local communications.

Besides this, apps often use static methods to perform web requests. Such static methods
can be used to communicate with the IoT device and send data to remote servers.
Therefore, IoTFlow might report data flows between remote servers in those cases.

In many cases, we have observed that the flows detected do not help because they are
between the same endpoints. For example, data flows between the same Bluetooth
connection are reported.

6.2.3 Endpoint Evaluation
As described in Chapter 3 we first looked up the IP address of the domains. A real user
located in China might query another DNS server and get different results in the end
than we do. Additionally, not all countries are represented in the GeoPandas5 dataset.
Consequently, our map does not show them.

A limitation of our comparison between general apps and companion apps is that we
selected fewer general popular apps. As a result, the bias of the selected apps is higher,
and the overall picture could differ.

To provide the country locations of the app developers, we used different strategies,
depending on the information provided in the Google Play Store. We either used

5Python GeoPandas library, https://geopandas.org/, accessed: 12.04.2021
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the location, website, or email address provided by the developers. Nevertheless, this
information could point us to other countries than the actual country of the manufacturer.
For example, app developers might have multiple versions of the app for different regions.
Another case where our country association could be wrong is if only the mail address
is provided. For example, suppose that the domain from the email address is from a
commonly used mail domain like gmail.com. We found such a case once by an unofficial
companion app.

6.3 Future Work
We already have several plans for future work. First, we want to perform our analysis on
a larger scale. To speed up the analysis for single apps, we plan to integrate IoTFlow’s
local source finding task better into the single tasks performed by FlowDroid. To remove
the limitation where flows between the same endpoint are found, we plan to categorize the
sources and sinks and only report a flow if they correspond to matching categories. We
can then focus on the flows between the smart devices and the cloud with this extension.
Another future work is to extend the local source finding to a more general source finding
for all found value points. With this extension, we could more reliably report the found
values since they are sometimes not reported if the flow left out the statement where the
URL is added to the request.

We plan to merge domains from the same company, like the ones found from xiaomi.com,
xiaomi.net and mi.com. This improvement can help keep the further evaluation of the
called domains clear, even if performed on a larger scale.

From the found OAuth client_secret, we got the idea to do further testing regarding the
found OAuth requests.

The domains we have treated as false positives, which we could not resolve, also raise an
opportunity for future work. Pariwono et al. [35] showed the threats from abandoned
domains to their user’s privacy and their potential to misuse them for scamming or
phishing. In the future, it would be interesting to investigate further why the domains
are not resolving. Because our static analysis did not reconstruct them correctly or the
domains are abandoned and therefore present further threats to the users.

Additionally, we plan to perform our static analysis on different apps and different
versions of the same app to gather knowledge about how sending data evolved over time.
Such an analysis could give an overview of the influence of the general data protection
regulation (GDPR) [16] on IoT privacy. Similarly, it would be interesting to see how the
GDPR influences the domain locations called by the companion apps.

Our work shows that many data flows found are not data leaks but belong to intended
app traffic. Previous work already faced the problem that not all flows detected by
automated analysis techniques are indeed data leaks. Pan et al. [34] tried to identify
legitimate data flows by natural language processing to avoid false positives. Such an
extension would also be interesting for IoTFlow.
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Furthermore, we plan to automatically classify the domains we obtain through ValueScope
into first- or third-party. That can help us to decide if a data flow represents a privacy
leak or is intended. In addition, we gain knowledge about how serious a leak is since it
makes a difference who has access to the personal data.

ValueScope gives us the ability to reconstruct more values and not only URLs. In the
future, we want to gather additional information about other sources and sinks.

Another exciting opportunity for the future are further evaluations about how companion
apps handle the data concerning obfuscation, encryption, and encoding.
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CHAPTER 7
Conclusion

Large-scale analysis in the IoT area can be seen as the missing link to improve the privacy
and security of smart devices. The importance of a large-scale analysis results from the
diversity of the smart devices. Dynamic analysis hardly scales since the actual devices
are needed, which results in unaffordable analysis. In addition, a dynamic analysis is
time-consuming since it requires extensive reverse engineering for each device. Since
the software and hardware of smart devices are diverse, it is hard to develop a general
strategy for analysis.

With our work, we are making a step towards large-scale analysis of IoT devices. Our
analysis is done statically on companion apps to circumvent the barriers. For the analysis,
we identified two main aspects of companion apps that distinguish them from other apps:
they connect over the local network to their corresponding devices, and there are other
protocols in use.

To identify the communication over the local network, we extended an existing value
set analysis to fit the needs for reconstructing URLs of Android apps. We showed that
our extension is an improvement regarding the obtained results and the analysis speed.
Additionally, the reconstructed endpoints contain valuable information about the IoT
devices themselves and the cloud endpoints, as we showed in our results.

We integrated the local network finding analysis in an existing general-purpose flow
analysis approach. We also adapted further the sources and sinks to cover different
protocols used by IoT devices.

In total, we analyzed 124 companion apps. In addition to the evaluations based on the
reconstructed URLs, we presented the results found from our flow analysis for two apps
in detail. Our results show the possibilities of finding security and privacy problems with
our approach. Furthermore, we highlighted some information obtained by reconstructing
URLs of companion apps.
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There are still further steps to improve our analysis in order to reduce the manual work,
enhance the URL reconstruction, and make further use of the gathered information.

Overall, we are taking a step towards large-scale analysis of PII leakage in IoT companion
apps.
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APPENDIX A
Appendix

A.1 Sources and Sinks Added
1 %------------Source----------%
2 %--------------BL------------%
3 <android.bluetooth.BluetoothAdapter: android.bluetooth.BluetoothDevice getRemoteDevice(byte[])

�→ > -> _SOURCE_
4 <android.bluetooth.BluetoothGattService: int getInstanceId()> -> _SOURCE_
5 <android.bluetooth.OobData: byte[] getLeBluetoothDeviceAddress()> -> _SOURCE_
6 <android.bluetooth.BluetoothDevice: android.os.ParcelUuid[] getUuids()> -> _SOURCE_
7 <android.bluetooth.BluetoothAdapter: java.lang.String getAddress()> -> _SOURCE_
8 <android.bluetooth.BluetoothAdapter: java.util.Set getBondedDevices()> -> _SOURCE_
9 <android.bluetooth.BluetoothAdapter: java.lang.String getName()> -> _SOURCE_

10 <android.bluetooth.BluetoothDevice: java.lang.String getAddress()> -> _SOURCE_
11 <android.bluetooth.BluetoothDevice: java.lang.String getAlias()> -> _SOURCE_
12 <android.bluetooth.BluetoothDevice: java.lang.String getName()> -> _SOURCE_
13 <android.bluetooth.BluetoothSocket: java.io.InputStream getInputStream()> -> _SOURCE_
14 %------------BLE-------------%
15 <android.bluetooth.le.ScanResult: android.bluetooth.BluetoothDevice getDevice()> -> _SOURCE_
16 <android.bluetooth.le.ScanRecord: java.lang.String getDeviceName()> -> _SOURCE_
17 <android.bluetooth.le.ScanResult: android.bluetooth.le.ScanRecord getScanRecord()> -> _SOURCE_
18 <android.bluetooth.le.ScanResult: int getRssi()> -> _SOURCE_
19 <android.bluetooth.BluetoothGattService: java.util.UUID getUuid()> -> _SOURCE_
20 <android.bluetooth.BluetoothGattService: int getInstanceId()> -> _SOURCE_
21 <android.bluetooth.BluetoothGattService: java.util.List getCharacteristics()> -> _SOURCE_
22 <android.bluetooth.BluetoothGattService: android.bluetooth.BluetoothGattCharacteristic

�→ getCharacteristic(java.util.UUID)> -> _SOURCE_
23 %----------paho.mqtt---------%
24 <org.eclipse.paho.client.mqttv3.MqttCallback: void messageArrived(java.lang.String)> ->

�→ _SOURCE_
25 <org.eclipse.paho.mqttv5.client.MqttCallback: void messageArrived(java.lang.String,org.eclipse

�→ .paho.mqttv5.common.MqttMessage)> -> _SOURCE_
26 <org.eclipse.paho.client.mqttv3.IMqttMessageListener: void messageArrived(java.lang.String,org

�→ .eclipse.paho.client.mqttv3.MqttMessage)> -> _SOURCE_
27 <org.eclipse.paho.mqttv5.client.IMqttMessageListener: void messageArrived(java.lang.String,org

�→ .eclipse.paho.mqttv5.common.MqttMessage)> -> _SOURCE_
28 <org.eclipse.paho.client.mqttv3.IMqttToken: org.eclipse.paho.client.mqttv3.internal.wire.

�→ MqttWireMessage getResponse()> -> _SOURCE_
29 <org.eclipse.paho.mqttv5.client.IMqttToken: org.eclipse.paho.mqttv5.common.packet.

�→ MqttWireMessage getResponse()> -> _SOURCE_
30 %-------------NFC------------%
31 <android.nfc.tech.IsoDep: android.nfc.Tag getTag()> -> _SOURCE_
32 <android.nfc.tech.IsoDep: byte[] getHiLayerResponse()> -> _SOURCE_
33 <android.nfc.tech.IsoDep: byte[] getHistoricalBytes()> -> _SOURCE_
34 <android.nfc.tech.MifareClassic: android.nfc.Tag getTag()> -> _SOURCE_
35 <android.nfc.tech.MifareClassic: byte[] readBlock(int)> -> _SOURCE_
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36 <android.nfc.tech.MifareUltralight: android.nfc.Tag getTag()> -> _SOURCE_
37 <android.nfc.tech.MifareUltralight: byte[] readBlock(int)> -> _SOURCE_
38 <android.nfc.tech.Ndef: android.nfc.Tag getTag()> -> _SOURCE_
39 <android.nfc.tech.Ndef: android.nfc.NdefMessage getNdefMessage()> -> _SOURCE_
40 <android.nfc.tech.Ndef: android.nfc.NdefMessage getCachedNdefMessage()> -> _SOURCE_
41 <android.nfc.tech.NdefFormatable: android.nfc.Tag getTag()> -> _SOURCE_
42 <android.nfc.tech.NfcA: android.nfc.Tag getTag()> -> _SOURCE_
43 <android.nfc.tech.NfcA: byte[] getAtqa()> -> _SOURCE_
44 <android.nfc.tech.NfcA: short getSak()> -> _SOURCE_
45 <android.nfc.tech.NfcB: android.nfc.Tag getTag()> -> _SOURCE_
46 <android.nfc.tech.NfcB: byte[] getApplicationData()> -> _SOURCE_
47 <android.nfc.tech.NfcBarcode: android.nfc.Tag getTag()> -> _SOURCE_
48 <android.nfc.tech.NfcBarcode: byte[] getBarcode()> -> _SOURCE_
49 <android.nfc.tech.NfcF: android.nfc.Tag getTag()> -> _SOURCE_
50 <android.nfc.tech.NfcF: byte[] getManufacturer()> -> _SOURCE_
51 <android.nfc.tech.NfcF: byte[] getSystemCode()> -> _SOURCE_
52 <android.nfc.tech.NfcV: android.nfc.Tag getTag()> -> _SOURCE_
53 <android.nfc.tech.NfcV: byte getDsfId()> -> _SOURCE_
54 %-----NFC-Card-Emulation-----%
55 <android.nfc.cardemulation.HostApduService: byte[] processCommandApdu(byte[],android.os.Bundle

�→ )> -> _SOURCE_
56 <android.nfc.cardemulation.HostApduService: byte[] processCommandApdu(byte[],android.os.Bundle

�→ )> -> _SOURCE_
57 <android.nfc.cardemulation.HostNfcFService: byte[] processNfcFPacket(byte[],android.os.Bundle)

�→ > -> _SOURCE_
58 %---Local Network Scanning---%
59 <android.net.wifi.WifiManager: java.util.List getScanResults()> -> _SOURCE_
60 <android.net.wifi.WifiManager: android.net.wifi.WifiInfo getConfiguredNetworks()> -> _SOURCE_
61 <android.net.wifi.WifiManager: java.util.List getConnectionInfo()> -> _SOURCE_
62 <java.net.NetworkInterface: java.util.Enumeration getInetAddresses()> -> _SOURCE_
63 <java.net.NetworkInterface: java.util.Enumeration getInterfaceAddresses()> -> _SOURCE_
64 %-------------P2P------------%
65 <android.net.wifi.p2p.WifiP2pManager.ConnectionInfoListener: void onConnectionInfoAvailable(

�→ android.net.wifi.p2p.WifiP2pInfo)> -> _SOURCE_
66 <android.net.wifi.p2p.WifiP2pManager.DeviceInfoListener: void onDeviceInfoAvailable(android.

�→ net.wifi.p2p.WifiP2pDevice)> -> _SOURCE_
67 <android.net.wifi.p2p.WifiP2pManager.GroupInfoListener: void onGroupInfoAvailable(android.net.

�→ wifi.p2p.WifiP2pGroup)> -> _SOURCE_
68 <android.net.wifi.p2p.WifiP2pManager.NetworkInfoListener: void onNetworkInfoAvailable(android.

�→ net.wifi.p2p.NetworkInfo)> -> _SOURCE_
69 <android.net.wifi.p2p.WifiP2pManager.PeerListListener: void onPeersAvailable(android.net.wifi.

�→ p2p.WifiP2pDeviceList)> -> _SOURCE_
70 <android.net.wifi.p2p.WifiP2pManager.UpnpServiceResponseListener: void onUpnpServiceAvailable(

�→ java.util.List,android.net.wifi.p2p.WifiP2pDevice)> -> _SOURCE_
71
72 %------------SINK------------%
73 %-------------BLE------------%
74 <android.bluetooth.BluetoothGatt: boolean writeCharacteristic(android.bluetooth.

�→ BluetoothGattCharacteristic)> -> _SINK_
75 <android.bluetooth.BluetoothGatt: boolean writeDescriptor(android.bluetooth.

�→ BluetoothGattDescriptor)> -> _SINK_
76 %-----------Apache-----------%
77 <org.apache.http.impl.client.DefaultHttpClient: org.apache.http.HttpResponse execute(org.

�→ apache.http.client.methods.HttpUriRequest)> -> _SINK_
78 <org.apache.http.client.HttpClient: org.apache.http.HttpResponse execute(org.apache.http.

�→ client.methods.HttpUriRequest)> -> _SINK_
79 %-----------OkHttp-----------%
80 <okhttp3.Call: okhttp3.Response execute()> -> _SINK_
81 <okhttp3.Call: void enqueue(okhttp3.Callback)> -> _SINK_
82 %---------paho.mqtt----------%
83 <org.eclipse.paho.android.service.MqttAndroidClient: org.eclipse.paho.client.mqttv3.

�→ IMqttDeliveryToken publish(java.lang.String,byte[],int,boolean)> -> _SINK_
84 <org.eclipse.paho.android.service.MqttAndroidClient: org.eclipse.paho.client.mqttv3.

�→ IMqttDeliveryToken publish(java.lang.String,byte[],int,boolean,java.lang.Object,org.
�→ eclipse.paho.client.mqttv3.IMqttActionListener)> -> _SINK_

85 <org.eclipse.paho.android.service.MqttAndroidClient: org.eclipse.paho.client.mqttv3.
�→ IMqttDeliveryToken publish(java.lang.String,org.eclipse.paho.client.mqttv3.MqttMessage
�→ )> -> _SINK_

86 <org.eclipse.paho.android.service.MqttAndroidClient: org.eclipse.paho.client.mqttv3.
�→ IMqttDeliveryToken publish(java.lang.String,org.eclipse.paho.client.mqttv3.MqttMessage
�→ ,java.lang.Object,org.eclipse.paho.client.mqttv3.IMqttActionListener)> -> _SINK_

87 <org.eclipse.paho.client.mqttv3.MqttAsyncClient: org.eclipse.paho.client.mqttv3.
�→ IMqttDeliveryToken publish(java.lang.String,byte[],int,boolean)> -> _SINK_
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88 <org.eclipse.paho.client.mqttv3.MqttAsyncClient: org.eclipse.paho.client.mqttv3.
�→ IMqttDeliveryToken publish(java.lang.String,byte[],int,boolean,java.lang.Object,org.
�→ eclipse.paho.client.mqttv3.IMqttActionListener)> -> _SINK_

89 <org.eclipse.paho.client.mqttv3.MqttAsyncClient: org.eclipse.paho.client.mqttv3.
�→ IMqttDeliveryToken publish(java.lang.String,org.eclipse.paho.client.mqttv3.MqttMessage
�→ )> -> _SINK_

90 <org.eclipse.paho.client.mqttv3.MqttAsyncClient: org.eclipse.paho.client.mqttv3.
�→ IMqttDeliveryToken publish(java.lang.String,org.eclipse.paho.client.mqttv3.MqttMessage
�→ ,java.lang.Object,org.eclipse.paho.client.mqttv3.IMqttActionListener)> -> _SINK_

91 <org.eclipse.paho.mqttv5.client.MqttAsyncClient: org.eclipse.paho.mqttv5.client.IMqttToken
�→ publish(java.lang.String,byte[],int,boolean)> -> _SINK_

92 <org.eclipse.paho.mqttv5.client.MqttAsyncClient: org.eclipse.paho.mqttv5.client.IMqttToken
�→ publish(java.lang.String,byte[],int,boolean,java.lang.Object,org.eclipse.paho.mqttv5.
�→ client.IMqttActionListener)> -> _SINK_

93 <org.eclipse.paho.mqttv5.client.MqttAsyncClient: org.eclipse.paho.mqttv5.client.IMqttToken
�→ publish(java.lang.String,org.eclipse.paho.mqttv5.client.MqttMessage)> -> _SINK_

94 <org.eclipse.paho.mqttv5.client.MqttAsyncClient: org.eclipse.paho.mqttv5.client.IMqttToken
�→ publish(java.lang.String,org.eclipse.paho.mqttv5.client.MqttMessage,java.lang.Object,
�→ org.eclipse.paho.mqttv5.client.IMqttActionListener)> -> _SINK_

95 <org.eclipse.paho.client.mqttv3.MqttClient: void publish(java.lang.String,byte[],int,boolean)>
�→ -> _SINK_

96 <org.eclipse.paho.client.mqttv3.MqttClient: void publish(java.lang.String,org.eclipse.paho.
�→ client.mqttv3.MqttMessage)> -> _SINK_

97 <org.eclipse.paho.mqttv5.client.MqttClient: void publish(java.lang.String,byte[],int,boolean)>
�→ -> _SINK_

98 <org.eclipse.paho.mqttv5.client.MqttClient: void publish(java.lang.String,org.eclipse.paho.
�→ mqttv5.common.MqttMessage)> -> _SINK_

99 %------------NFC----------------%
100 <android.nfc.tech.MifareClassic: void writeBlock(int,byte[])> -> _SINK_
101 <android.nfc.tech.MifareUltralight: void writeBlock(int,byte[])> -> _SINK_
102 <android.nfc.tech.Ndef: void writeNdefMessage(android.nfc.NdefMessage)> -> _SINK_
103 %--------NFC-Card-Emulation-----%
104 <android.nfc.cardemulation.HostNfcFService: void sendResponsePacket(byte[])> -> _SINK_
105 <android.nfc.cardemulation.HostApduService: void sendResponseApdu(byte[])> -> _SINK_
106 <android.nfc.cardemulation.HostApduService: void sendResponseApdu(byte[])> -> _SINK_
107
108 %------------Both------------%
109 %-------------NFC------------%
110 <android.nfc.tech.NfcV: byte[] transceive(byte[])> -> _BOTH_
111 <android.nfc.tech.NfcF: byte[] transceive(byte[])> -> _BOTH_
112 <android.nfc.tech.NfcB: byte[] transceive(byte[])> -> _BOTH_
113 <android.nfc.tech.NfcA: byte[] transceive(byte[])> -> _BOTH_
114 <android.nfc.tech.MifareClassic: byte[] transceive(byte[])> -> _BOTH_
115 <android.nfc.tech.IsoDep: byte[] transceive(byte[])> -> _BOTH_
116 <android.nfc.tech.MifareUltralight: byte[] transceive(byte[])> -> _BOTH_
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