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Abstract: With its unrivaled and global land monitoring capability, the Sentinel-1 mission has been
established as a prime provider in SAR-based flood mapping. Compared to suitable single-image
flood algorithms, change-detection methods offer better robustness, retrieving flood extent from
a classification of observed changes. This requires data-based parametrization. Moreover, in the
scope of global and automatic flood services, the employed algorithms should not rely on locally
optimized parameters, which cannot be automatically estimated and have spatially varying quality,
impacting much on the mapping accuracy. Within the recently launched Global Flood Monitoring
(GFM) service, we implemented a Bayes-Inference (BI)-based algorithm designed to meet these ends.
However, whether other change detection algorithms perform similarly or better is unknown. This
study examines four Sentinel-1 change detection models: The Normalized Difference Scattering Index
(NDSI), Shannon’s entropy of NDSI (SNDSI), Standardized Residuals (SR), and Bayes Inference over
Luzon in the Philippines, which was flood-hit by a typhoon in November 2020. After parametrization
assessment against an expert-created Sentinel-1 flood map, the four models are inter-compared
against an independent Sentinel-2 classification. The obtained findings indicate that the Bayes change
detection profits from its scalable classification rules and shows the least sensitivity to parametrization
choices while also performing best in terms of mapping accuracy. For all change detection models, a
backscatter seasonality model for the no-flood reference delivered best results.

Keywords: flood mapping; change detection; SAR; Sentinel-1; datacube; Philippines

1. Introduction

Flooding is a significant concern all over the world. In global disaster assessment
reports, it consistently ranks among the most destructive of natural disasters. Unfortunately,
flood frequency and severity are expected to increase for most of the world due to climate
change [1], with further increased human exposure due to population growth. Therefore,
rapid assessments of flood extent and impacts using Earth observation satellites are of
great importance. Due to their capacity to capture high-resolution images of the Earth’s
surface even in stormy weather, Synthetic Aperture Radar (SAR) sensors are unrivaled
in their capability to map large-scale flooding. Hence, most disaster mapping services,
such as the Copernicus Emergency Management Service (CEMS) [2], and the Sentinel
Asia initiative [3] utilize SAR satellites for their operations. In the past, these services
have delivered SAR-based flood maps only upon requests from affected areas, manually
operated by human experts. This implies that flood events may be missed in the case of
late or non-activation. To avoid this and improve timeliness, CEMS has recently launched
a Global Flood Monitoring (GFM) service that analyses Sentinel-1 SAR data in a fully
automatic fashion [4].

In principle, mapping flood extent from SAR images is relatively straightforward
given that backscatter from open water bodies is normally relatively low compared to
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backscatter from the surrounding land surface areas. Thus, when mapping flooded areas
from individual SAR images on demand, SAR image analysts usually work with simple
thresholding techniques. However, selecting a threshold value that works everywhere
under all weather conditions is clearly impossible [5,6]. Therefore, in the fully automatic
GFM service, a relatively simple problem turns into the significant scientific challenge of
finding a robust flood detection model that works globally without the need for manual
fine-tuning of its parameters.

A large variety of methods to map flood extent from SAR imagery has already been
published, including change detection-based approaches [7,8], split-window or tiled thresh-
olding techniques [5,9–11], Bayesian [12–16] and machine learning methods [17–19]. Most
studies yielded excellent results for specific test areas, but the performance on a large
scale is often not known [20]. Moreover, while reviews and assessments of these SAR
flood and inundation mapping methods are available [21–23], it has been pointed out that
direct performance comparisons are limited [24]. However, such comparisons are crucial in
designing and improving operational systems that perform at large scales, e.g., regional or
global extents. Last but not least, distinct parameterizations might be required for these
methods to perform at the same level in different areas. Thus, the robustness of parameteri-
zation is a crucial indicator when selecting flood mapping workflows for implementation
at scale [25–27]. Unfortunately, this aspect usually is not treated explicitly in the scientific
literature so far.

For the design of robust flood detection models and their parameterization, it is highly
advantageous to work with SAR backscatter data cubes that allow efficient access to the data
not just in the spatial but also temporal dimension [28,29]. Using the Sentinel-1 backscatter
data cube built up at the Earth Observation Data Centre (EODC) [30], it has, e.g., been
possible to parameterize a Bayesian flood detection model at the level of individual pixels
by analyzing backscatter time series for each pixel [27]. Another example is the Sentinel-1
data cube implementation at the Google Earth Engine [31], which already hosts several
waterbody and flood mapping workflows [32,33].

In this contribution, we compare the performance of four change detection models for
mapping floods using Sentinel-1 SAR data (Section 2). Compared to approaches that map
floods only based on single SAR images, the parameterization of change detection models
is normally less problematic, allowing to apply them over large and diverse domains.
Nonetheless, even the parameterization of change detection models may involve a lot
of choices that can have a strong impact on the accuracy of the derived flood maps, in
particular, the choices of the no-flood reference image and the threshold for labeling an
SAR pixel as flooded. Hence, in our study, we investigated how sensitive the different
model are to changes in their parameterization.

As a study case, we chose a flood event that occurred in the Cagayan river basin in the
Northern Philippines in November 2020. This choice was motivated by the fact that the
area, which is situated in the Pacific typhoon belt, is projected to be significantly impacted
by climate change, including a general rise in precipitation with an indication of higher
frequency of heavy rainfall events [34] and, consequently, a greater threat of flooding [35].
The study region and data are described in Section 3. The methods for intercomparing
the four change detection models and assessing the robustness of their parameterizations
are introduced in Section 4, followed by the presentation of the results on parametrization
and model-intercomparison in Sections 5 and 6. Finally, Section 7 contains the discussion
and conclusions.

2. Change Detection Algorithms

Change detection approaches for flood mapping compare in one way or another an
SAR backscatter image potentially containing flood pixels with a reference SAR scene
describing a non-flooded situation. By comparing two images, spatial signal variations are
reduced, simplifying the task of finding suitable thresholds and model parameterizations
that work for different land cover classes. Furthermore, the use of a no-flood reference
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image allows for excluding other low backscatter areas that tend to be mislabeled as a
flood. Nonetheless, factors such as speckle and overall high variability of the backscatter
measurements prompt the need for some additional means of normalization. This problem
is solved differently in the four change detection models that we selected for this study,
namely the Normalized Scattering Difference Index, the Shannon’s entropy of NDSI, the
Standardized Residuals, and a Bayesian Inference method. Given that the choice of the
no-flood reference and different thresholding techniques has an important impact on the
performance of these four models, these parameterizations are discussed separately in
Sections 2.5 and 2.6.

2.1. Normalized Difference Scattering Index

Indices such as the Normalized Difference Scattering Index (NDSI) [36] and the Nor-
malized Difference Ratio [37], while differently named, are similarly computed from
backscatter data from a flood image and a no-flood reference. For our purposes, we
adopt the NDSI for the rest of the document and compute it with:

NDSI =
σ0 − σ0

r

σ0 + σ0
r

(1)

where σ0 represents the SAR image pixels that are potentially flooded and σ0
r the no-flood

reference. Both σ0 and σ0
r are expressed in m2m−2. In this formulation, flooded areas

are associated with large negative numbers due to the decrease in backscatter when the
land surface is inundated, i.e., a pixel is labeled as flooded when NDSI is smaller than
a chosen threshold value. The normalization term σ0 + σ0

r helps to reduce the impact of
signal variations in the reference image.

2.2. Shannon’s Entropy of NDSI

Ulloa et al. [36] extends the NDSI concept further by computing the Shannon’s entropy
of NDSI using a 9 × 9 moving window. The premise of this approach is that flooded pixels
are often adjacent to other flooded pixels (save for boundaries) and, thus, should primarily
have a smooth texture. Furthermore, since entropy measures the level of uncertainty of
possible grayscale values in a given area, it also serves as a textural measure. Shannon’s
entropy of NDSI, referred to here as SNDSI, is computed by:

SNDSI = −∑
n

p ∗ log2 p (2)

where p is the probability of NDSI estimated from a normalized histogram count for all n
pixels in the moving window. As for the NDSI, pixels are classified as flooded when SNDSI
becomes smaller than a chosen threshold.

2.3. Standardized Residuals

An alternative approach to normalize the difference term σ0 − σ0
r is to use a measure

of variance of the backscatter measurements [7,8,32,38]. Here, we adopt the terminology of
Schlaffer et al. [7] who computed Standardized Residuals (SR)

SR =
σ0 − σ0

r
StDev(σ0)

(3)

where StDev(σ0) is the temporal standard deviation of σ0 for non-flooded conditions.
StDev(σ0) is computed from historic σ0 time series for each pixel describing the variability
of the backscatter measurements due to changes in soil moisture, vegetation, or other
environmental factors for each location. Thereby, a pixel is considered to be flooded if SR
has a large negative value which indicates that σ0 is outside the expected signal range. Note
that because of the need to compute StDev(σ0) from historic time series, the SR model is
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substantially more input-data-demanding than the NDSI and SNDSI models that can in
principle be run with just two input images. Nonetheless, similar to NDSI and SNDSI, one
needs to chose a threshold.

2.4. Bayesian Inference

Instead of normalizing differences, another method of comparing flood and no-flood
situations is to use probabilistic approaches. The method adopted here is based on a pixel-
based Bayesian Inference (BI) method [16,27] that considers the temporal SAR backscatter
information of a non-flooded pixel to estimate its non-flooded conditional probability
distribution, p(σ0|N). The conditional flooded probability distribution, p(σ0|F), can be
estimated from geographically distributed calm open water samples. The probability that a
σ0 measurement over one pixel indicates flood conditions is calculated with [13,14,16]:

BI ≡ p(F|σ0) =
p(σ0|F)p(F)

p(σ0|F)p(F) + p(σ0|N)p(N)
(4)

where p(F) and p(N) are the prior probabilities of a pixel being flooded and non-flooded
(in short simply “priors”). Here, we adopt non-informed priors, with both p(F) and p(N)
assumed to have equal, i.e., 0.5, prior probability. A pixel is labeled as a flood if the flood
probability p(F|σ0) is greater than 0.5. For ease of discussion, we refer to the numerical
value of p(F|σ0) as BI in the following sections. Note that in contrast to the other three
models, the final decision criterion is well defined, i.e., BI > 0.5. Like SR, the BI model is
input-data demanding, requiring a backscatter data cube to pre-compute p(σ0|N) per pixel.

2.5. Thresholding Techniques

Except for the BI method, the change detection models introduced above require the
choice of a threshold to label an SAR pixel as flooded or non-flooded. The choices one can
make range from choosing one fixed threshold value for all SAR images and the entire
study domain to threshold values computed for each SAR image individually or even
subsets of a SAR image. Similar to the work of Landyut et al. [24], we test fixed threshold
values taken from the literature and thresholds dynamically selected using histogram-
based methods. In particular, we investigate the performance of global Otsu’s [39] and
Kittler and Illingworth’s (KI) methods [40] along with best performing fixed value from the
source materials.

2.6. Selection of No-Flood Reference

In principle, the selection of the no-flood reference σ0
r has a great effect on all models

described above. When choosing a real SAR image as reference, one would like to choose
a scene that resembles—except for the inundation areas—the unflooded conditions as
good as possible in terms of land cover and environmental conditions. This may, e.g., be
the latest pre-flood image or a SAR image acquired in the same season the previous
year. While automated methods for the selection of such real reference images have been
proposed [20,41], the computation of synthetic no-flood reference is a viable alternative
approach when working with SAR backscatter data cube. Here, we test the generation
of synthetic σ0

r images by computing the mean backscatter and the expected seasonal
backscatter value for the day of year [7]. Median, as used by Clement’s work [8] was left
out in the analysis due to its similarity with the mean estimate for this study site.

3. Data and Study Site
3.1. Sentinel-1 Data Cube

The analysis was performed on a Sentinel-1 SAR backscatter data cube that includes
all imagery acquired over the study region from January 2018 to December 2020. The data
cube was generated with a dedicated pre-processing engine that ingests Sentinel-1A/B
Ground Range Detected (GRD) products, as outlined in detail in Wagner et al. [30]. The pre-
processing workflow includes (1) application of precise orbit file, (2) border noise removal,
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(3) thermal noise reduction, (4) radiometric calibration, (5) range-doppler terrain correction,
and (6) resampling and reprojection to the Equi7Grid tiling system [42]. The data cube was
abstracted from these hierarchically organized Sentinel-1 images using the yeoda package
developed by TU Wien [43]. The backscatter data cube was filtered for VV polarization and
Sentinel-1’S relative orbit, to obtain all images from the same observation geometry.

3.2. Study Area

The study area is situated on Luzon, the largest and most populous island of the
Philippines. The study area extent is defined by the 100× 100 km-sized tile “E058N117T1”
from the Equi7Grid tiling system, shown as the red footprint in Figure 1. The area covers a
part of the Cagayan valley, where vast tracks of agricultural fields are situated. The Cagayan
River traverses the tile from south to north. Urban settlements can mostly be found near
the river, while most of the western portion of the tile is dominated by mountainous terrain.
All subsequent analysis in this work were performed at 10× 10 m resolution native to
this data cube tile. Collected data sets were rasterized, if needed, and reprojected to the
Equi7Grid tile.

Figure 1. Our study area in the northern Philippines under normal/no-flood conditions as in July
2020. Left: A Sentinel-2 true color image of the tile’s area from July 2020. Right: Mean Sigma Nought
backscatter value generated from Sentinel-1 data cube, filtered for the relative orbit used for this
study’s flood event.

The flooding event investigated in this study was caused by typhoon Vamco that hit
the northern Philippines from 9 to 13 November 2020. The typhoon affected more than
five million individuals [44], and many along the Cagayan River were flood-stricken. The
flood scene for the analysis was captured by Sentinel-1B on the ascending orbit 069 on
13 November 2020 around the time of peak flooding.

3.3. Reference Flood Maps

Due to the fleeting nature of floods ground truth is often lacking [45]. This is also the
case here, but two satellite-based reference flood maps are available. The first is a flood map
(in shapefile format) generated from the same Sentinel-1 flood scene from 13 November
2020 by experts working at the Sentinel Asia [3] who were well familiar with the study area
and the flooding caused by the typhoon Vamco (Sentinel Asia Typhoon Vamco Activation—
https://sentinel-asia.org/EO/2020/article20201111PH.html, accessed on 12 December
2022). From personal communication with the operators, we know that the Sentinel Asia
product was created from the SAR intensity difference, whereas the threshold was manually

https://sentinel-asia.org/EO/2020/article20201111PH.html
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selected and optimized. However, it should be noted that the experts at Sentinel Asia also
did not have access to ground observations.

We generated a second reference flood map, using a pair of optical multispectral
images from Sentinel-2 (Table 1), one acquired two months before (on 9 September 2020)
and one during the flood event (on 13 November 2020). Specifically, we used Level2A
(Bottom of Atmosphere) images downloaded from the Copernicus Open Access Hub and
processed them using Sentinel-2 toolbox of SNAP v8.0 [46], applying thick clouds and
cirrus cloud mask. Then we computed the Modified Normalized Difference Water Index
(MNDWI) that was designed to delineate water and built-up areas [47]. The flood extent
was finally derived by comparing the two MNDWI images and fine-tuning the threshold.
Due to the significant cloud cover on 13 November 2020, only a portion of the flood scene
could be mapped. Fortunately, the main channel of the Cagayan River is cloud-free and
offers sufficient samples. While the Sentinel-2 acquisition took place 7 h after Sentinel-1, no
major appreciable differences in the flood extent are visible (See Figure 2).

Table 1. Sentinel-2 data for validation.

Sentinel-2 Scene Description

S2B_MSIL2A_20200909T021609_N0214_R003_T51QUV_20200909T065335 No-flood reference
S2A_MSIL2A_20201113T021941_N0214_R003_T51QUV_20201113T055836 Flood scene

Figure 2. Reference flood maps. Left most flood maps shows the Sentinel-1 based flood map from
Sentinel Asia. Right most panels showing the Sentinel-2 derived reference flood map, with cloud-
covered areas in gray. Zoomed in map panels showing the high agreement of the flood extents from
both reference maps.

3.4. Auxiliary Data

The workflows implemented in this work require auxiliary information on topography
and geomorphology. In this study, we used the Height Above Nearest Drainange (HAND)
Index [48] and the Projected Local Incidence Angle (PLIA) as shown in Figure 3. The HAND
index data was derived from the Copernicus Digital Elevation Model (CopDEM GLO-
30—https://doi.org/10.5270/ESA-c5d3d65, accessed on 9 November 2022) upsampled
to the resolution of the working tile. The PLIA map was generated as a by-product of
the Sentinel-1 pre-processing workflow and is thus stored in the same tile’s projection
system. The applicability of these auxiliary data—HAND and PLIA are discussed in the
following section.

https://doi.org/10.5270/ESA-c5d3d65
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Figure 3. Auxiliary Data. Left panel: map showing the Height Above Nearest Drainange (HAND)
Index values. Right panel: map showing the the Projected Local Incidence Angle (PLIA) of the used
Sentinel-1 relative orbit.

4. Methods

To compare the performance of the four change detection models and their sensitivity
to changes in their parameterization, we follow a two step approach: In the first step, we
assess for each change detection model separately how different parameterizations impact
the results. As we are only interested in the relative performance of the parameterizations
when applying the models to Sentinel-1 data, the benchmark in this step is the Sentinel-1
flood map produced by the experts of Sentinel Asia. In the second step, we intercom-
pare the performance of the four change detection models with their best-performing
parameterizations by assessing their accuracy against the Sentinel-2 flood map.

The detailed workflow is shown in Figure 4. The starting point is the Sentinel-1
backscatter data cube from which all required VV backscatter images from relative orbit 69
and the corresponding projected local incidence angle (PLIA) are extracted. Furthermore, a
common set of geomorphological and exclusion masking post-processing steps are applied
to all flood maps. First, the Height Above Nearest Drainage (HAND) index is used to
mask for terrain distortions in the SAR data, such as radar shadow and layover [49] at a
height above 20 m (in this case) from drainage. Second, a PLIA mask is applied to remove
pixels which have PLIA outside the typical range of incidence angles for flat areas (where
floods are typically appearing), following the approach by [27]. These masks helped to
reduce the number of falsely classified flood pixels over the mountainous parts of the
study area—which are generally troubling SAR retrievals—thereby slightly improving
the accuracy of the flood maps. Lastly, 5 × 5 spatial majority filters are applied as a
morphological correction of salt-and-pepper-like classification coming from SAR signal
components unrelated to flood conditions.

4.1. Paramterizations

To test the NDSI, SNDSI, and SR models —and their parameterizations—we computed
a multitude of flood maps using different combinations of the no-flood reference and
the thresholding technique to parameterize the models. Here, we show the results for
the combination of three no-flood references and three different thresholds, yielding in
total 3 × 3 × 3 = 27 flood maps. With respect to the no-flood reference, the three used
parameterizations are:
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• Mean Backscatter: We computed the mean and standard deviation of σ0 per pixel
over the three year long data record (2018–2020). Note that while the NDSI and SNDSI
only require the mean as input, the SR requires both the mean and StDev(σ0).

• Harmonic Model: To account for seasonal signal variations, we fitted a harmonic
model to the data record, yielding for each pixel and each day of year (DOY) an
estimate of the expected backscatter intensity and its standard deviation, respectively.
For a detailed description of this Harmonic model formulation we refer the readers to
the recent work of Bauer-Marschallinger et al. [27].

• Pre-flood Image: A Sentinel-1 image acquired about two weeks before the flood
event on 1 November 2020 and from the same relative orbit was selected as no-flood
reference of the backscatter intensity. As the SR and BI models also require an estimate
of the backscatter dynamics, we compute StDev(σ0), similar to harmonic formulation,
using the Root Mean of Square of the difference between backscatter in the time-series
data record and the expected no-flood backscatter (from pre-flood image).

The three models NDSI, SNDSI, and SR require a threshold for label pixels as either
flood or no-flood. In the course of finding an optimal threshold, we apply the simple
pre-filtering technique applied by Schlaffer et al. [7] using the HAND index, where the
pixels of high HAND values, i.e., HAND > 20, are removed from the histogram before
thresholds are determined.

We tested three different methods to determine the threshold:

• Fixed: Here, we rely on published reports. Among the NDSI and SNDSI implementa-
tions, thresholds from the work of Ulloa et al. [36] were adopted. These are −0.725 for
NDSI and 0.78 for SNDSI. While for SR a fixed value of −1.5 was found by several
studies to provide good results [8].

• Otsu: In the method of Otsu [39], an assumption of bi-modality is followed by fitting
two distributions by minimizing intra-class intensity variance. Hence, we determine
the threshold from the intersection of the fitted distributions within our reference- and
flood-images.

• Kittler and Illingsworth (KI): As an alternative we also tested the KI method [40].
Also known as the Minimum-Error thresholding method, it seeks to fit the two distri-
butions, using the minimum error criterion, to a given model histogram. Hence, the
threshold is similarly determined from the intersection of the fitted distributions as
with Otsu above.

To test the BI model, we employ the same three no-flood reference parameterizations
to derive the full conditional probability function p(σ0|N). While BI does not rely on
parameterized thresholds, we test the application (and non-application) of distribution-
based masking methods introduced in the previous work of Bauer-Maschallinger et al. [27].
Accordingly, the BI method is improved by excluding pixels with high classification un-
certainty, either from very similar a priori distributions for flood and no-flood, or from
actual observation values that fall in-between the two. Consequently, the significant Proba-
bility Density Function (PDF) overlap between flooded and non-flooded classes, and in
this paper, we refer to this as PDF exclusion mask. Hence, for BI we test 1 × 3 × 2 = 6
parameterizations, and finally obtain a set of 33 flood maps for our experiment.

4.2. Accuracy Assessment

The flood maps are evaluated by comparing them to the two reference flood maps
described in Section 3.3. Given that these two expert-produced reference maps also do not
represent an absolute “truth”, the computed accuracy metrics must be interpreted with
some caution. Nonetheless, as we are mostly interested in understanding the relative per-
formances of the algorithms and their parameterizations, they represent a good benchmark.

We computed traditional land cover classification metrics: Overall Accuracy (OA),
Producer’s Accuracy (PA), and User’s Accuracy (UA). OA was selected over chance agree-
ment corrected metric, i.e., Kappa coefficient, from recommendation in the literature [50,51].
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In addition, we calculate the Critical Success Index (CSI), which is often used in data
science and flood mapping work to address the inequality of the classes. CSI has been
specifically found to provide good insights for flood mapping accuracy assessments at the
same scale [24]. All of these metrics were computed from a binary confusion matrix and
its four elements: True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN), among classified pixels, according to the following formulas:

OA =
TP + TN

TP + TN + FP + FN
(5)

UA =
TP

(TP + FP)
(6)

PA =
TP

(TP + FN)
(7)

CSI =
TP

(TP + FP + FN)
(8)

Following good practice examples and sampling size determination equations from
Foody’s work [52], we acquired a total of 5000 random samples. Independent random
samples per change detection model were taken to remove possible bias in the application
of model-dependent exclusion masks. From this, we surmise that a difference greater than
2% in OA implies a consequential distinction between the results.

Figure 4. Workflow from Sentinel-1 datacube and derived parameters, joined by auxiliary topography
data, to generate and assess the flood maps. For four different change detection models (NDSI, SNDSI,
SR, and BI), a multitude of different parameterizations are assessed (determined by one out of three
no-flood references, as well as by algorithm settings for threshold and exclusion; results in Section 5).
Best-performing flood maps undergo model inter-comparison in the final stage (see Section 6).

5. Model Parameter Assessment

In this section, we analyze the sensitivity of the four change detection models to
changes in their parameterization by comparing the derived flood maps to the Sentinel-
1 reference flood map produced by Sentinel Asia (Sections 5.1–5.4). Furthermore, we
select the best performing parameterizations for each method to be subject of our model
inter-comparison in Section 6.



Remote Sens. 2023, 15, 1200 10 of 21

To allow a well-founded interpretation of the performance of the four models, we first
examine their statistical bases used for the distinction between flood and no flood. Figure 5
shows the histograms and maps of the observed backscatter σ0 together with the calculated
NDSI, SNDSI, SR, and BI with, as an example, the mean image as no-flood reference. From
this compilation, it can be observed that the histograms of the model values allow in
most cases an improved distinction between flooded and non-flooded sections, compared
with the initial flooded σ0 image. Generally, the decrease in backscatter during floods
is highlighted, and the change detection models show—as expected—increased image
contrast and more distributed histograms. The SR map (Figure 5m–p), however, appears
to highlight different signatures within the observed σ0 image while not transforming the
shape of the histogram. Another observation is that particularly the SR and BI data manage
to register the pattern from the permanent water surfaces along the river, thus supporting
the delineation against flood bodies.

For the whole area, NDSI (Figure 5e–h) provides the most considerable increase in the
relative spread of values. The SNDSI (Figure 5i–l) shows less improvement in this regard,
but reduces the spatial dispersion of these values compared with NDSI, which structurally
features a noise-like spatial pattern (see e.g., in Figure 5h). Meanwhile, SR shows the least
gain in contrast, and we would argue that there is no significant effect on the separability
of the classes in its histogram (see in Figure 5m). This is most apparent in permanent low
backscatter areas, such as the river pixels, that are not as well delineated as for the other
methods (see in Figure 5p).

Concerning the threshold parameters (indicated by colored lines in the histograms
of Figure 5), speciffically for SR and σ0, we observe that the respective Otsu and KI thresh-
olds follow the same characteristics described by [24]. The results show more liberal flood
labeling for Otsu’s method and more conservative labeling using KI. Meanwhile, the NDSI
and SNDSI indicate significant variance and instability when it comes to finding the respec-
tive thresholds. This could be attributed to the seemingly non-Gaussian distributions of the
non-flood class and flood class (as observed in Figure 5e,i), noting that these thresholding
algorithms assume Gaussian distributions.

In the BI model data (Figure 5q–t), most of the visually perceived flooded areas were
successfully assigned with high flood probability. Overall, the Bayes probability values
show intriguing results, as the river pixels show a low flood probability in spite of the
locally significant distribution overlaps coming from the river/water signature. While
this is a positive result, this behavior could easily swing from non-flooded and flooded
classes, as seen in the salt and pepper appearance of probability values along the river (see
in Figure 5t). This similar noise-like appearance is also apparent in the probability values
found in agricultural areas.

5.1. Parameterization of NDSI Model

We now examine the NDSI model and the performance of its different parameteriza-
tions. As shown in Table 2, the harmonic approach performs best of the no-flood references,
while KI performs best of the threshold methods. Consequently, the combination of these
two (represented by parameterization no. 6) builds the favored parametrization. This
combination features a CSI value larger than 85%. One can observe the significant variance
in the UA, ranging from moderate (59%) to excellent performance (97%). In contrast, the PA
has smaller differences, with most showing excellent results above 90%. This suggests that
the models favor, in general, overestimation. Thus, KI thresholding is a proper method to
dampen this effect. One can also notice the erratic performance of the tested thresholding
methods for the NDSI model. We attribute this to the fact that the NDSI histogram does not
form a Gaussian distribution, a precondition leading to previous findings as e.g., by [36].
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Figure 5. Compilation of Sentinel-1 flood scene and results from the four change detection models,
which are parameterized with the mean backscatter as no-flood reference (selected as example in
this illustration). Top row (a–d): Sentinel-1 flood image acquired on 13 November 2020, followed by
rows for NDSI, SNDSI, SR, and BI values. Leftmost column (a,e,i,m,q): histograms for images in the
second column, plus relevant thresholds. Second column (b,f,j,n,r): maps for the whole extent of the
study area tile. 3rd column (c,g,k,o,s): corresponding maps zoomed to Tuguegarao City. Rightmost
panel (d,h,l,p,t): further zooming into the Cagayan River section that is adjacent to the city.
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Table 2. Accuracy metrics (in percent) for the nine different parameterizations of the NDSI model.

Parameterization No-Flood
Reference Threshold User’s

Accuracy
Producer’s
Accuracy

Overall
Accuracy

Critical
Success Index

1 Mean Fixed 82.8% 96.0% 88.0% 80.0%
2 Mean Otsu 76.5% 97.6% 83.8% 75.0%
3 Mean KI 59.6% 99.4% 66.0% 59.3%
4 Harmonic Fixed 86.9% 95.4% 90.5% 83.5%
5 Harmonic Otsu 72.1% 97.8% 80.0% 71.0%
6 Harmonic KI 97.3% 87.7% 92.6% 85.6%
7 Pre-flood Fixed 77.2% 94.0% 83.1% 73.6%
8 Pre-flood Otsu 65.2% 96.6% 72.5% 63.7%
9 Pre-flood KI 94.8% 87.2% 91.2% 83.2%

5.2. SNDSI Parameterization

Similar to NDSI, the harmonic no-flood reference leads to the best performance
(see Table 3), followed by the pre-flood and the mean reference. The best-performing
parameterization combines the harmonic reference and KI thresholding method. However,
Otsu’s method appears to be the most stable among the thresholding methods, probably
due to the fact that SNDSI shows no propensity towards overestimation as the NDSI does.
Moreover, using Shannon’s entropy appears to be an effective spatial morphological filter
to reduce noise-like classification.

Table 3. Accuracy metrics (in percent) for the nine different parametrizations of the SNDSI model.

Parameterization No-Flood
Reference Threshold User’s

Accuracy
Producer’s
Accuracy

Overall
Accuracy

Critical
Success Index

1 Mean Fixed 95.0% 68.7% 82.5% 66.3%
2 Mean Otsu 81.9% 88.0% 84.3% 73.7%
3 Mean KI 98.3% 54.0% 76.5% 53.5%
4 Harmonic Fixed 99.7% 65.8% 82.8% 65.7%
5 Harmonic Otsu 98.4% 85.6% 92.1% 84.5%
6 Harmonic KI 95.1% 92.3% 93.8% 88.1%
7 Pre-flood Fixed 99.7% 63.3% 81.6% 63.2%
8 Pre-flood Otsu 97.8% 83.9% 91.0% 82.4%
9 Pre-flood KI 97.1% 85.9% 91.7% 83.7%

5.3. Standardized Residuals Parameterization

In general, aside from UA, SR shows a similar large variance in accuracy metrics of
the parameterizations (see Table 4). Concerning no-flood reference parameterization, also
here, the harmonic outperforms mean and pre-flood references. The pre-flood reference
does not perform well for this method because of the larger standard deviations in the
temporal model for the three-year period we tested. The fixed SR = −1.5 threshold shows
the best performance for this model in this study site. It shows a slightly better performance
compared to Otsu’s method, while KI underperforms in this model. Overall, the model
leans towards improving UA rather than PA values. The reported propensity towards
underestimation by KI’s method is apparent for the SR model, as indicated by the lower
PA results.

5.4. Bayes Inference Parameterization

In the case of the BI method, no threshold needs to be found, and the general rule
of labeling is based on higher probability, i.e., >50.0%. Instead, Table 5 includes the PDF
exclusion (see Section 5) as an option. One can see that there are minimal variations in
the accuracy metrics for the BI method compared to the other change detection methods.
The BI consistently performed very well in terms of UA; almost no non-flooded pixels are
labeled as a flood and slightly lower PA indicates minor underestimation. Furthermore,
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all parametrizations reached a high CSI larger than 80%. Overall, the best-performing
parameterization No. 4 uses the harmonic no-flood reference and the PDF-based exclusion
masks from the Bayes model.

Table 4. Accuracy metrics (in percent) for the nine different parametrizations of the SR model.

Parameterization No-Flood
Reference Threshold User’s

Accuracy
Producer’s
Accuracy

Overall
Accuracy

Critical
Success Index

1 Mean Fixed 97.7% 83.5% 90.8% 81.9%
2 Mean Otsu 98.1% 81.8% 90.1% 80.6%
3 Mean KI 99.9% 63.0% 81.5% 63.0%
4 Harmonic Fixed 96.3% 85.9% 91.3% 83.1%
5 Harmonic Otsu 98.8% 81.6% 90.3% 80.8%
6 Harmonic KI 99.9% 64.9% 82.4% 64.9%
7 Pre-flood Fixed 98.5% 72.5% 85.7% 71.7%
8 Pre-flood Otsu 99.9% 44.8% 72.4% 44.8%
9 Pre-flood KI 99.6% 59.9% 79.8% 59.8%

Table 5. Accuracy metrics (in percent) for the six different parametrizations of the BI model.

Parameterization No-Flood
Reference PDF Exclusion User’s

Accuracy
Producer’s
Accuracy

Overall
Accuracy

Critical
Success Index

1 Mean No 98.8% 82.0% 90.5% 81.2%
2 Mean Yes 99.6% 84.9% 91.3% 84.6%
3 Harmonic No 98.8% 83.4% 91.2% 82.6%
4 Harmonic Yes 99.8% 84.9% 91.7% 84.8%
5 Pre-flood No 99.6% 82.9% 90.5% 82.6%
6 Pre-flood Yes 99.6% 83.7% 91.0% 83.4%

Based on the nominal values of OA and CSI, the BI method using harmonic reference
slightly outperforms the other no-flood references. It should be noted that these differences
are too marginal to conclude a significant distinction. Unlike in other methods, the pre-
flood image performs similarly well as the mean and harmonic no-flood reference. It is also
noticeable that the introduction of PDF exclusion masking consistently improves the BI
model, albeit by small margins in CSI and OA. This, however, comes at the cost of masking
some areas that could not be reliably classified.

5.5. Parameterization Summary

Table 6 collects the best-performing parameterization for each change detection model.
All four models perform best with the harmonic model for the no-flood reference. The mean
and pre-flood no-flood references performed variably depending on the other parameters.
Concerning threshold method, KI’s method performed the best for NDSI and SNDSI.
Despite KI’s method being found to be more conservative in thresholding [24], it performs
best for certain instances due to improved separability of flood and non-flood pixels in the
models (see histograms in Figure 5). For the SR model; however, the fixed threshold was
found to provide consistently good results for this study site, while KI and Otsu depend
on the no-flood reference. While Otsu’s method is not present within the collection of
best-performing parameterizations, it shows less variance in performance compared to KI.
This result is consistent with reports of Otsu’s performance [24]; here, significant flooding is
apparent in the study site. Thus, its propensity to overestimate floods is not as pronounced.
Lastly, the application PDF Exclusion step consistently improves the accuracy metrics for
BI, albeit by only small percentage points.
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Table 6. Best Performing Method Parameterization.

Method No-Flood Reference Threshold

NDSI 6 Harmonic KI
SNDSI 6 Harmonic KI

SR 4 Harmonic Fixed

Method No-flood Reference PDF Exclusion

Bayes 4 Harmonic yes

After comparing different parameterizations for each change detection method, we
infer the robustness of the methods for this study site given by the variability of the resulting
accuracy metrics. The highest robustness is shown by the BI method. We suspect that
the use of statistical distributions instead of a particular threshold is responsible for the
superior robustness.

6. Model Intercomparison

The optimal parameterizations for each of the four change detection methods are iden-
tified in Section 5 and are summarized in Table 6. These are considered in the subsequent
step, where the accuracy assessment metrics are computed against the Sentinel-2 flood map
(see Table 7).

Table 7. Method Comparisons Sentinel-2 flood result as reference.

Method Users Accuracy Producers
Accuracy

Overall
Accuracy

Critical Success
Index

NDSI 6 92.6% 72.2% 83.2% 68.2%
SNDSI 6 87.7% 77.0% 83.1% 69.5%

SR 4 91.8% 69.8% 81.8% 65.7%
BI 4 95.9% 74.6% 85.3% 72.3%

After parameter optimization, there are generally few false positive pixels in the SAR-
based flood maps, as all selected flood maps show User’s Accuracy (UA) values greater
than 87%. The Bayes method used has the highest value of 95.9%. As expected, the PA of
all methods is significantly lower than UA. The PA results range from SNDSI with 77.0% to
SR with 69.8%. Based on our assumption that there is no significant difference in the flood
extent due to little time lag between the Sentinel-1 observation and the Sentinel-2-based
reference map, this result can be attributed to the limitation of SAR-based methods over
certain land cover types. As reported already by Bauer-Marschallinger et al. [27], the
SAR-based flood mapping is challenged in densely vegetated and urban areas, where
optical systems such as Sentinel-2 can detect floods under good circumstances and in the
absence of clouds.

The OA results indicate good or excellent general agreement between the tested
flood maps and the reference maps, which is also promoted by the overall large area
and the relatively large flooding event. Among the selected parameterizations, the Bayes
method shows the highest OA value with 85.3%, while the last-ranked method SR has
only a difference of 3.5%. Based on the little differences in OA, it can be said that BI has
the only noteworthy difference from the other methods tested based on 2% difference
criteria we established in Section 4.2. When examining the Critical Success Index (CSI)
results, the Bayes method is also ranked best with 72.3%, followed by the SNDSI with
69.5%, NDSI with 68.2%, and SR with the lowest result at 65.7%. Only the BI method
has CSI greater than 70.0%, while all others are rated closely. However, in reflection of
the underlying differences in flood mapping mechanisms between optical and SAR-based
maps, we consider all methods to perform well.
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It should be noted that the above statistical metrics show a generalized performance
description for the whole scene. Therefore, we have a closer look at the qualitative differ-
ences for some selected areas. PA and UA relate to classification pixels of false negatives
(omission errors) and false positives (commission errors), which describe (dis-) agreement
well when zoomed in on particular areas of interest. Figures 6 and 7 show representa-
tive subsets and their confusion maps between the tested model’s flood maps and the
Sentinel-2 reference map. These maps highlight the area near the city of Tuguegarao with
its meandering river channel and surrounding agricultural areas, respectively.

Figure 6. Spatial detail from model inter-comparison for the vicinity of Tuguegarao City. Top left:
Sentinel-1 scene from flood event on 13 November 2020 at larger scale, with zoom-in-box (in red) for
other panels. Bottom left: clear-sky, no-flood Sentinel-2 image (for orientation). Other panels show,
overlaid to the Sentinel-1 observation, the confusion maps for NDSI, SNDSI, SR, and BI, indicating
areas where algorithm classify false negatives (omission errors) and false positives (commission
errors) against the Sentinel-2 reference flood map.

The four methods successfully remove non-water areas of permanent low backscatter,
such as the Cagayan airport shown in the upper right edge of the maps in Figure 6, fully
exploiting the strength of the change detection concept. Moreover, the BI method shows
an excellent delineation of the permanent river courses, being excluded in the flood result
through the PDF exclusion approach. The SR method shows suitable results for permanent
water exclusion but could be improved by further morphological operators as only small
patches are observed. The NDSI-based results, show poor performance in this regard.
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Figure 7. As Figure 6, but a spatial detail on agricultural areas.

In contrast to the other models, SNDSI shows larger patches of false positives over
the built-up areas in the center and east of the zoom-in (Figure 6). In this area, high
backscatter from double bounce effects are clustered, which results in low entropy values
that lead to erroneous labeling. The observed improvement in the NDSI and SNDSI in
parameter transformation for thresholding does not significantly improve these methods
compared to the other tested methods. This degraded performance could be attributed to
the limitation of the parameter formulation to account for false positives, which are clearly
seen in the confusion maps. For example, low SNDSI values mainly refer to swaths of
water in an image, but are also likely for radar shadows which may have been missed by
the post-processing masks. Another observation is the NDSI, and SNDSI results have more
overestimation in flooded agricultural areas (Figure 7), while the SR and BI methods are
less prone to this type of commission error.

As also seen in Table 7, SR has notably more false negatives. These are generally
observed in agricultural areas, as exemplified in Figure 7, and can be attributed to the
higher temporal variance from agricultural activities (in the historical time series), which
dampens the SR parameter. Surprisingly, the BI method performs better than the other
methods, considering that agricultural areas were recognized in need of improvement for
the BI method presented by [27].

In terms of spatial cohesion of the flood maps, as inferred from the confusion maps
in Figures 6 and 7, the SNDSI and BI method show more cohesive overall results. For the
area of Tuguegarao, Figure 6, the NDSI map shows noisy or patchy results in terms of
higher rates of both FP and FN, while SR has the same concern to a lesser degree in the
specific regions. At the same time, Figure 7 show much noise in all methods, including
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the BI result illustrating the challenges of such areas in flood mapping. It could be argued
that NDSI and SR methods could further be improved with better morphological filtering
during a post-processing step. Alternatively, by use of Shannon’s entropy as in the SNDSI,
a filter-like improvement is achieved, which slightly improves the overall result for this
case study.

However, notable in the BI result in Figure 7 are the patches of excluded areas. While
in most cases, these coincide with misclassifications in the other maps, thus highlighting
the PDF exclusion’s effectiveness. For example, some areas such as the old river meander
in the lower left corner of the BI map in Figure 6 were excluded rather than labeled being
as flood. Despite this and other things considered, the BI method generally performs better
than the other methods tested in this study.

7. Conclusions

This study tested and compared four automated SAR-based change detection flood
mapping methods and their parameterization against Sentinel-1-based expert data for
the case study in the northern Philippines. Our parameterization experiments comprise
the testing of different threshold and masking options, as well as the suitability of three
different methods to generate the no-flood-reference map, which is crucial to any change
detection approach. We further carried out an inter-comparison of the four best-performing
model parameterizations, with accuracy assessment against a Sentinel-2-based flood map
specifically generated for this study.

In our assessment of the model parameterizations against the semi-manual results
from Sentinel Asia (using Sentinel-1), the Bayes Inference (BI) method showed the most
consistent performance, regardless of the input no-flood reference. The BI model was found
to be robust in the sense that it does not require tailor-fitting, whereas the other change
detection methods were found to be more significantly impacted by one’s choice of input
non-flood reference and the thresholding method. Focusing on the latter, Otsu’s method
was found to work well with the SR and SNDSI methods. In contrast, KI’s method showed
a better result for NDSI and SNDSI, albeit showing highly variable results when the input
no-flood reference is changed. The published threshold of SR ≡ −1.5 also showed a good
result for this study area. Lastly, considering that we applied a HAND-based prefiltering
before thresholding and the obtained variability of the results, it is recommended to explore
spatial prefiltering techniques with these models, which are driven by temporal parameters.

Concerning the no-flood-reference parameterization, the harmonic model lead to the
best results for all four change detection models, apparently profiting from the good fit of
the seasonally expected backscatter. The missing consideration of the backscatter’s seasonal
variability causes the lower performance of the mean. The pre-flood image is generally
observed close to the flood event and hence is expected to represent actual conditions such
as vegetation state or soil moisture most accurately. Nevertheless, results from the pre-flood-
parameterized models are less consistent compared to the harmonic model. We found that
the pre-flood image—as an actual single-time observation—still holds speckle that leads to
noise-like classifications, which is effectively removed in no-flood references made from
temporal aggregations. Therefore, we recommended that the datacube-derived no-flood
reference are further investigated, such as other time-series models, e.g., exponential filters,
or parameter tuning through, e.g., modulating the length of the contributing time-series.

The evaluation of the best-performing model parameterizations against the optical-
derived Sentinel-2 reference showed that the BI method performed best. Considering the
parameterization results and this final comparison suggest that the BI core concept is gener-
ally more robust and possibly more adaptable to other study sites. Albeit computationally
more demanding, the BI approach of taking the sample’s full distribution into account
proves to be more adaptive than the discrete thresholding in the other methods.

All tested datacube flood mapping methods show meaningful agreement with the
reference flood maps from Sentinel-2 and a semi-automatic expert product by Sentinel
Asia. The best-performing methods all achieved good to excellent results based on OA and
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CSI. The four tested change detection methods show very satisfying User’s Accuracies,
mainly through a correct classification of permanent low backscatter areas. The Producer’s
Accuracies, on the other hand, also had reasonable performance but exhibit well-known
SAR-related deficiencies over challenging land covers.

To summarize, this study represents one of the first efforts to inter-compare several
SAR change-detection-based flood mapping methods and their parameterizations, with a
view on the feasibility of applying them in an operational fashion over large areas. Overall,
all four change detection models performed reasonably well considering that their input
parameters were neither locally optimized nor adapted by a human operator. Nonetheless,
the sensitivity of the NSDI, SNSRI, and SR models to parameterizations suggests the need
for further localized tests. On the other hand, the Bayesian Inference model coupled with
the harmonic model as no-flood reference seems to be relatively stable in its performance,
which is an important prerequisite for (global) automatic operations.
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Abbreviations
The following abbreviations are used in this manuscript:

CEMS Copernics Emergency Management Service
CSI Critical Success Index
DEM Digital Elevation Model
DOY Day Of Year
EODC Earth Observation Data Centre for Water Resources Monitoring
GRDH Ground Range Detected High-resolution SAR product
GFM Global Flood Monitoring
HAND Height Above Nearest Drainage
IW Interferometric Wide Swath mode of Sentinel-1
OA Overall Accuracy
PA Producer Accuracy
PLIA Projected Local Incidence Angle θ

UA User Accuracy
PDF Probability Distribution Function
MNDWI Modified Normalized Difference Water Index
NDWI Normalised Difference Water Index
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NDSI Normalised Difference Scattering Index
NRT Near-Real-Time
OA Overall Accuracy
SA Sentinel Asia
SAR Synthetic Aperture Radar
SSE Sum of Squared Errors
SIG0 Sigma Nought backscatter coefficient σ0
SNDSI Shanon’s entropy of Normalised Difference Scattering Index
SR Standardized Residuals
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