
From Backend to Frontend
Case study on adopting Micro Frontends from a

Single Page ERP Application monolith

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Ing. Manuel Kroiß, BSc
Matrikelnummer 01526926

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ. Prof. Dr. Schahram Dustdar
Mitwirkung: Dr. Andrea Morichetta

Wien, 21. April 2021
Manuel Kroiß Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

From Backend to Frontend
Case study on adopting Micro Frontends from a

Single Page ERP Application monolith

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Ing. Manuel Kroiß, BSc
Registration Number 01526926

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dr. Schahram Dustdar
Assistance: Dr. Andrea Morichetta

Vienna, 21st April, 2021
Manuel Kroiß Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Ing. Manuel Kroiß, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. April 2021
Manuel Kroiß

v

Danksagung

Ich möchte mich bei meinem Betreuer, Dr. Andrea Morichetta, für die zahlreiche Unter-
stützung bedanken. Die schriftliche Kommunikation sowie die Online Meetings waren
stets sehr aufschlussreich und die Unterstützung bei der Suche nach hilfreicher Literatur
hat mir sehr geholfen. Ich konnte die Arbeit nach meinen eigenen Vorstellungen und
Gedanken verfassen und bin dankbar für seine Denkanstöße in die richtige Richtung.

Weiters möchte ich mich bei meiner Freundin Katharina bedanken, die mich vor allem in
den für mich schwierigen Anfangs- und Endphasen dieser Arbeit oft aufbauen konnte und
mir viele hilfreiche Anmerkungen zum struturellen Aufbau meiner Arbeit gegeben hat.

vii

Acknowledgements

I would first like to thank my thesis advisor Dr. Andrea Morichetta for the support. We
had constructive written communication and very revealing online meetings. His help in
looking for relevant literature was beneficial. He allowed me to include my own thoughts
and ideas into the work, but steered me in the right direction when ever he thought it
was necessary.

Additionally, I want to thank my girlfriend, Katharina. She often steered me up, especially
in the beginning and ending phase of this thesis, and gave me various hints on structuring
my thesis.

ix

Kurzfassung

Viele Softwareunternehmen verwenden bereits eine Microservice (MS) Architektur, um
deren Software sowie die Entwicklungsteams dieser Software skalieren zu können. Diese
Architektur verbessert die Projektwartbarkeit und erlaubt es den Entwickler*innen,
schnell auf geänderte Anforderungen zu reagieren oder neu entwickelte Technologien
einzusetzen.

Dennoch verwenden viele Firmen diesen Architekturtyp nur für Services, welche im
Hintergrund laufen, und entwickeln eine einzige, monolithische Frontend Applikation,
welche mit den verschiedenen Services im Hintergrund kommuniziert.

Existierende Micro Frontend (MF) Entwicklungsansätze werden meistens direkt von Soft-
waregiganten wie Amazon oder SAP entwickelt, welche sich hauptsächlich auf serverseitige
Renderingansätze spezialisieren. Es gibt nur wenig Literatur, welche die Verwendung
des MS Architekturtyps für clientseitig gerenderte Frontends geprüft hat. Keine dieser
Arbeiten behandelt eine MF Performanceanalyse oder benutzt verschiedene clientseitige
Frontend Technologien in einer MF Architektur.

Diese Arbeit liefert eine Analyse von existierenden MS Arbeiten und zeigt, wie diese
Prinzipien auf MFs übertragen werden können. Die in dieser Arbeit durchgeführte
Fallstudie inkludiert eine Implementierung der gleichen Applikation als monolithisches
Frontend, eine MF Architektur aufbauend auf dem single-spa MF Framework und eine
MF Architektur, die mit Webpack Module Federation entwickelt wurde.

Der letzte Teil der Arbeit beschreibt eine Performanceanalyse, welche diese drei Fallstudien
in der gleichen Umgebung bereitstellt und überprüft. Diese Analyse zeigt auf, dass
es möglich ist, ein monolitisches Frontend durch eine MF Architektur zu ersetzen,
ohne Performanceverluste hinnehmen zu müssen. Stattdessen profitiert man von dieser
Ersetzung und kann auf die Vorteile, die bereits jetzt in MSs genutzt werden, auch im
Frontend zurückgreifen.

Schlüsselwörter: Micro Frontend, Application Shell, Micro Frontend Performanceana-
lyse.

xi

Abstract

Many software engineering companies already use Microservice (MS) architectures to
support scaling their software and the development teams. This architecture improves
the project’s maintainability and allows developers to react to changing requirements or
use newly developed technology.

Nevertheless, most of those companies utilize this architectural style only for the backend
services and build one extensive monolithic frontend application that communicates with
the different MSs.

Existing Micro Frontend (MF) development approaches are mostly directly developed by
big software engineering enterprises such as Amazon or SAP and mainly focus on server-
side rendering. Only a few research papers analyzed using the MS architectural style for
client-side rendered frontend solutions. None of those papers covers MF performance
analysis or uses different client-side frontend technologies in one MF architecture.

This paper provides an analysis of existing MS literature and shows how one can adopt
those principles to MFs. A case study performed in this work exposes an implementation
of the same application as a monolithic frontend, an MF architecture using the single-spa
MF framework, and an MF architecture built with Webpack Module Federation.

The last part of the thesis presents a performance analysis that investigated those three
cases in the same deployment environment and reveals that one can replace an existing
monolithic frontend over an MF architecture without losing runtime performance but
profit from the advantages that MSs already exhibit for the backend.

Keywords: Micro Frontend, Application Shell, Micro Frontend Performance Analysis.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 State-of-the-Art 7
2.1 Concepts and requirements of Microservices 7
2.2 Micro Frontend approaches . 20
2.3 Related Work . 29

3 Adoption of Microservice Concepts and Principles to Micro Fron-
tends 33
3.1 Micro Frontend Characteristics . 33
3.2 Adoption of Micro Service principles in Micro Frontends 40

4 Case study 45
4.1 Micro Frontend framework analysis . 46
4.2 Comparison attributes’ definition . 46
4.3 Case selection . 49
4.4 Introduction to the example application 50
4.5 Implementation details . 52

5 Evaluation 59
5.1 Quality metrics . 59
5.2 Performance metric selection based on literature analysis 65
5.3 Performance metric measurement on the monolith and the Micro Frontend

implementation . 66
5.4 Comparison and evaluation . 67

6 Conclusion 75
6.1 Future work . 76

xv

List of Figures 77

List of Tables 79

Glossary 81

Acronyms 83

Bibliography 87

Appendix 95

CHAPTER 1
Introduction

In 2018, Camunda Inc. [2] conducted a survey of 354 software engineering companies,
revealing that already 63 percent use Microservices (MSs) as an integral part of their
system architectures. The main reasons reported by the survey attendants were improved
scalability (64%), faster time to market (60%), and supporting digital transformation
as well as generating autonomy for development teams (both 64%). While performing
research for this thesis, only a few companies (less than 20) using distributed frontends
could be found. Most software engineering companies still use a frontend monolith.

Tim Berners-Lee [8] first introduced the Hypertext Markup Language (HTML) in 1991,
which was the basis of the World Wide Web (WWW) we know today. After that, many
companies and researchers worked on pioneering projects based on the initial HTML
version or later introduced standards with extended functionality.

Since then, the number of online services grew, and people have tried to make everything
accessible to their users via the internet. These services got complex over time, and
businesses and researchers realized the need for a modern and agile approach for software
development and distributed computing. In 2004, Service-oriented architecture (SOA) was
first announced. [30] A few years later, people started to focus on Cloud Computing [16] to
support essential features like auto-scaling, Continuous Delivery (CD), hot deployments,
and high availability. [86] Soon, new research areas like Infrastructure as a Service
(IaaS) [88], Platform as a Service (PaaS) [7], or Software as a Service (SaaS) [3, 74]
emerged, which led to greater efficiency in the operation by allowing to scale just some
parts of a system on-demand to reach better resource usage.

This Everything as a Service (XaaS) [27] trend needed decoupled solutions to develop and
deploy independently. MSs soon started to gain interest in both the research community
and IT businesses. Lewis and Fowler [51] state that the Microservice Architecture (MSA)
"is an approach to developing a single application as a suite of small services, each running
in its own process and communicating with lightweight mechanisms, often an HTTP

1

1. Introduction

resource API." Dragoni et al. [26] describe an MS as "a cohesive, independent process
interacting via messages" and the resulting MSA as "a distributed application where all
its modules are microservices."

Many companies already focus on using an MSA, with their initial goal to have vertical
silos that can deal with everything from storing the data in a database to providing a
User Interface (UI) for manipulating this data. Current MSAs only deal with splitting
the backend into multiple services and provide a horizontal UI layer.

With the growing number of MSs, implementing horizontal UIs requires more frontend
developers in one team, which raises many concerns. The more developers are hired
to work on the project, the more the monolithic frontend’s codebase increases. Those
monolithic applications often exhibit concepts of poor isolation with adverse effects
reflected in different aspects:

• The Developer Experience worsens because the focus transfers from coding to
addressing the developed solution’s maintainability. Developers need to spend
additional time in meetings to discuss the dependencies between the different parts
of the system instead of coding.

• On the business side, the company faces problems with deploying new features in
an appropriate amount of time to fulfill customers’ needs.

• The company has difficulties in getting new hires. One reason is that they have to
stick to their old technology because updating or replacing their frameworks and
maintaining the codebase is very costly and time-consuming.

• Each deployment is a very crucial step for companies since it needs a large number
of tests for maintaining the old features’ quality constraints. Those tests can become
even more complicated than the system itself.

Some companies like Amazon, Facebook, Zalando, SAP, Dazn, AirBNB, HelloFresh,
Allegra, Klarna, and others have already found and implemented unique solutions
tackling their company-specific frontend problems. Most of them use a Server-Side
Rendering (SSR) approach that requires numerous servers and frameworks to manage
components’ composition on the server-side. Those techniques are also known as Micro
Frontend architecture (MFA).

Betts et al. [9] present software architecture and design trends (see figure 1.1) and mention
that Micro Frontends (MFs) are intended to bring the MS benefits to the UI. Smaller
companies can not invest such a considerable amount of time implementing a complicated
and distributed frontend infrastructure. Numerous companies use single page application
frameworks like Angular 1, Vue.js 2, React.js 3, or others for their web development.

1https://angular.io/
2https://vuejs.org/
3https://reactjs.org/

2

Figure 1.1: Software architecture and design trends 2020 [9]

In particular, the example application in the Enterprise Resource Planning (ERP) field
implemented in this thesis is a very descriptive example of why it is necessary to convert a
big monolithic architecture in an MFA. There is a significant rise in industry 4.0. Nearly
all machines used in modern manufacturing halls offer a Human Machine Interface (HMI)
that provides data necessary for the company.

More and more companies want to be able to manage all of their processes in one single
tool. Further, one can see a considerable rise in adapting the work in a company from
static processes to processes that focus on using mobile devices. [25, 39, 49, 56,60] These
processes require to have different implementations of a UI to provide a perfect User
Experience (UX) for back-office employees (working with a monitor, a keyboard, and a
mouse), and for manufacturers in the production hall, who often just have a small touch
display and maybe a barcode scanner like described in the patent by Hicks et al. [44].

However, newly deployed MF solutions can represent a possible way out for compa-
nies. This thesis answers the following research questions to fill the gap of developing
independent frontends.

• Can an MFA replace a monolith ERP Single Page Application (SPA) with a
client-side rendering solution without losing performance and, therefore, UX?

• Can the MF approach lower the risks of updating or adding a new feature in a
complex web application?

The thesis shows that the following hypothesis can be confirmed.

3

1. Introduction

• An MFA reduces upgrading/adding feature risks and improves or at least maintains
page load speed compared to a monolith SPA.

The thesis covers the following parts to evaluate the MF topic.

In the first part, there will be a state-of-the-art analysis of existing solutions for MSs.
With this analysis’s findings, the paper shows how one can adopt the requirements and
specifications of MSs to MFs in the second part.

Then, the thesis presents a case study on a migration from a monolithic Angular
application to an MF-based implementation in the context of an ERP application.
The thesis analyses existing MFAs and frameworks. The focus of this research will
be on frameworks that support client-side rendering, especially single-page application
frameworks, but the paper will also briefly mention other available solutions like SSR,
including Edge Side Includes (ESI) or Server Side Includes (SSI). Each of the implemented
applications will use different SPA frameworks like Angular, React.js, Vue.js, or others
to fill the literature gap where only one specific framework was used to implement the
MFA. [67, 92]

Figure 1.2: Thesis flow chart

Lastly, the thesis compares the implementation of the same system with the two different
MFAs. In the end, the thesis shows quality metrics such as bundle size, Time to interact
(TTI), Time To First Byte (TTFB), and others to evaluate the results.

Since using Continuous Integration (CI)/Continuous Delivery (CD) is an essential feature
required by MFs, the thesis provides a working CI/CD pipeline configuration. With that
in place, the thesis shows how one can quickly deploy a bug fix or a new feature in an
MFA context.

4

Another interesting question of MFs is how to provide a consistent UI to all the different
MF applications. Since this is a highly complex topic on its own, which is related to
UX/UI design, this thesis will not cover that part of implementing an MFA.

The following chapters are structured as follows (Figure 1.2 visually represents the steps
performed in this thesis). Chapter 2 shows the current state-of-the-art of MSs and MFs
approaches, and introduces related works that handle monolith to MF migrations. In
chapter 3, the thesis analysis literature concerning MF principles and challenges and
adopts the MS concepts to MFs. The case study is presented in chapter 4, followed by
an evaluation in chapter 5. Chapter 6 summarizes the results and presents future work.

5

CHAPTER 2
State-of-the-Art

This chapter describes the state-of-the-art of the different research fields that the thesis
uses to answer the research questions. A literature review using GoogleScholar1 and
IEEE XPlore2 was performed to find information regarding MSs, MFs and MF-related
papers. The chapter contains three sections, presenting the summary of the literature
analysis. The first section (see 2.1) describes the current state-of-the-art concerning MSs.
In the second section (see 2.2), the thesis summarizes all currently available concepts
and methods available for implementing MFs. Section 2.3 shows existing papers that
deal with implementing MFA related systems.

2.1 Concepts and requirements of Microservices
This section presents MS concepts and requirements, which form the basis for the adoption
of MS concepts in the frontend discussed in Chapter 3.

Before one can analyze the MSs architectural style [34], it is essential to define what a
microservice is. Lewis [50] first introduced the term MS in 2011. About the same time,
Geroge [37] gave a talk about the MSA at the YOW! conference in Melbourne.

This architectural style already existed even though it had different names. For example,
Netflix started to migrate its monolithic architecture towards an MSA and named the
new architecture fine-grained SOA. [89]

In 2014, MSs started to attract the interest of large organizations. Di Francesco et al. [23]
show in their research that there was a significant rise in the number of published research
papers regarding MSs (see table 2.1).

1https://scholar.google.at/
2https://ieeexplore.ieee.org/Xplore/home.jsp

7

2. State-of-the-Art

Year 2010 2011 2012 2013 2014 2015 2016
Published research papers 1 2 1 0 3 23 41

Table 2.1: Research distribution of MSs [23]

Since then, there is a considerable discussion whether the MSA is a new architectural style
or it belongs to SOA. Newman [62] describes MSs as "one way of doing SOA (right)," and
Dragoni et al. [26] state that MSs are the second iteration of SOA and service-oriented
computing (SOC). SOA, in this regard, describes one possible approach to realize the
SOC concepts. [66]

MSs focus on simple services that implement a single functionality and leave away
unnecessary levels of complexity. [26] James Lewis, in an interview with Thones [84], state
that "a microservice, [. . .], is a small application that can be deployed independently,
scaled independently, and tested independently and that has a single responsibility",
and that "it does only one thing and one thing alone and can be easily understood."
James Lewis [84] mentions that the "key thing is to make the stack lightweight." Further,
Hasselbring and Steinacker [41] argue that MSs typically have no centralized control.

Zimmermann [94] states that there are two contrary positions of microservices. The first
one is the position by Lewis and Fowler [51], who describe the MSA as follows:

"The microservice architectural style is an approach to developing a single
application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API.

These services are built around business capabilities and independently
deployable by fully automated deployment machinery. There is a bare

minimum of centralized management of these services, which may be written
in different programming languages and use different data storage

technologies." [51]

Newman [62] defines MSs via seven principles:

• Model Around Business Concepts
• Adopt a Culture of Automation
• Hide Internal Implementation Details
• Decentralize All the Things
• Independently Deployable
• Isolate Failure
• Highly Observable

8

2.1. Concepts and requirements of Microservices

Characteristics described by Lewis and Fowler [51] Relationship Newman’s principles [62]

1. Componentization via services (running in own process and
communicating with lightweight mechanisms) (Similar to) Hide Internal Implementation Details

2. Organized around business capabilities (Matches) Model Around Business Concepts
3. Products not projects (No pendant)
4. Smart endpoints and dumb pipes (Included in)
5. Decentralized governance (enabling polyglot programming) (Subset of) Decentralize All the Things
6. Decentralized data management (and polyglot persistence) (Subset of)
7. Infrastructure automation (and decentralized management) (Subset of) Adopt a Culture of Automation

(attribute in definition, but not elaborated upon in dedicated
section of article) (Matches) Independently Deployable

8. Design for failure (Superset of) Isolate Failure
9. Evolutionary design (No pendant)
10. (No pendant) Highly Observable

Table 2.2: MS definition comparison [94]

Both definitions mix process, architecture, and development concerns, and one could ask if
the definition should include process-related and organizational aspects. [94] Presumably,
this inclusion is because of Conway’s law, which the thesis briefly describes in Section
2.1.2. Zimmermann [94] provides a comparison of those two definitions that one can find
in table 2.2.

The thesis structures the following sections as follows. Section 2.1.1 describes nine reasons
why one could benefit from using MSs. The next section (see 2.1.2) concentrates on
the principles that MSs exhibit. Lastly, Section 2.1.3 deals with common challenges a
company faces when developing an MSA.

2.1.1 Microservice characteristics

Performance and maintainability are the most investigated quality attributes as mentioned
by Di Francesco [21] when it comes to migrating monolithic applications to an MSA.
Linthicum [52] states that if one turns a monolith into a complex, distributed system,
one must require that the new system is more productive, agile, and cost-effective.

Both researchers [21, 52] explain why it makes sense to migrate a monolithic application
into an MSA. The following section summarizes MS characteristics that literature often
mentions as arguments for using MSs.

Nine reasons to use Microservices

The following listing orientates itself on a survey of 21 practitioners who moved to an
MSA, which was carried out by Taibi et al. [83], and combines it with the arguments of
Di Francesco [21] and Linthicum [52].

Further, the listing includes answers from a survey performed with 25 experts involved in
projects related to an MSA by Ghofrani and Lübke [38]. Newman [62] provides reasons
to split a monolith. The listing includes the initial thoughts by Lewis and Fowler [51] and

9

2. State-of-the-Art

integrates migration reasons from Balalaie et al. [5], who define 15 migration patterns
one can work off while migrating from a monolith to an MSA.

Di Francesco et al. [23] provide characteristics from a systematic mapping study of 71
studies. Dragoni et al. [26] researched on MSs covering the history, the state-of-the-art
in 2016, and a future outlook. The authors of [95] describe characteristics found when
researching the possibility of an incremental integration of MSs in cloud applications.
Another work by Balalaie et al. [4] provides MS characteristics from a project on migrating
from a monolithic application to an MSA.

In the following paragraphs describe those nine main characteristics in detail.

Scalability Scalability [4, 5, 23, 26, 38, 51, 83, 95], which is a crucial factor to reach the
goal of availability [4] is the attribute that the research mentions most frequently. For
large software systems, one should scale the system according to users’ needs without
losing performance. [21, 23] It is important to note that with the use of MSs, the scaling
does not imply duplication of all parts of the system, but it is possible to scale each MS
independently. [26]

Maintainability Maintainability [23,26,38,83], which is closely related to small services
and automated deployment, primarily means to reduce the complexity [51, 83] of the
system so that it remains easy to fix bugs. Newman [62] states that maintainability can
increase the pace of change. Separate, autonomous units loosely coupled into small and
isolated services [91] can be changed faster than one big monolith. [62] Each microservice
is independent of other services and has a very high cohesion [26]. This independence
leads to a lower amount of Lines of Code (LOC) and can therefore increase the code
understandability. [83] The small codebase [26] and the limited amount of functionalities
of MSs [26] make the code easy to understand [4] and therefore help to limit the scope
of bugs. [26] Maintainable systems are easy to extend [38], and easily re-used for other
systems [5].

Delegation of Team Responsibilities Delegation of Team Responsibilities is a major
reason why it is useful to migrate from a monolithic architecture to an MSA. [83] With the
use of MSs, it is possible to split large teams into more efficient small teams, developing
their belonging service independently. [83] These smaller teams lead to a reduced need for
coordination and therefore reduced communication overhead. [83] Ghofrani and Lübke [38]
and Di Francesco et al. [22] as well as Balalaie et al. [4] and Zúñiga-Prieto et al. [95]
mention that agility is a very relevant aspect when migrating towards an MSA. Smaller
development teams help to achieve the required agility and make it possible to grow the
development teams in a controlled way. [51]

DevOps Support An MS enables and requires DevOps [46] support because each
team needs to be able to easily develop, test, and deploy their MSs independent of
other teams. [83,86] This independent deployment [4, 62,95] allows gradual transitions

10

2.1. Concepts and requirements of Microservices

to new versions, often supported by continuous integration [33], which allows to test
and investigate changes of a module in isolation without the requirement for a complete
reboot of the system. [26] The small size of each service makes it easier to automate the
deployment [5] and enables short re-deployment times. [26]. One can easily containerize
and execute each service [83], which leads to the ability that services can be auto-scaled
separately. [52] Separate auto-scaling means that it is possible to expand and de-expand
resources depending on each service’s resource needs without the need to scale services
with lower resource consumption. [52]

Reliability Ghofrani and Lübke [38], Taibi et al. [83] and Di Francesco et al. [23]
mention that an MSA can greatly improve the reliability and fault tolerance of a software
system. In a monolithic architecture, a failure of one component affects the whole system,
whereas a failure in one service in an MSA impacts this one service only, and the rest of
the system can still work as expected. [83] Further, a faulty MS can be quickly restarted
compared to a large monolithic application, or it is even possible to replace the faulty
MS with an old, working version that one can run in parallel for reliability reasons. [83]

Independent Technology The ability to use different technology in each MS is an
immense advantage compared to a monolithic architecture. Each team can decide to
write their service in the most appropriate programming language for the task. [4, 62, 83]
MSs allow teams to use a different internal structure that fits their needs. [83] As an
example, it can be necessary to use different programming languages if one service needs
to communicate to a database, one service makes use of a logic programming library,
and another service implements a machine learning model. [4] Di Francesco et al. [23]
describe this aspect of MSs with the term functional suitability. This flexibility supports
all necessary modifications to a system without the danger of a vendor lock-in. [4, 26]

Responsibility Separation Separation of Software Responsibilities means that each
MS is responsible for one task with well-defined boundaries that is self-contained in
a closed system. [83] Taibi et al. [83] mention that splitting a software system into
smaller parts can significantly simplify the development. Balalaie et al. [5] state that this
separation of responsibilities can be of particular interest when one wants to persist data.
With the possibility to split a big database into small parts, MSs help to decentralize
data governance. [5] The separation forces an independent communication scheme via
language-agnostic APIs, for example, via Representational State Transfer (REST) [87],
which can further increase the complex software system’s understandability. [52]

Security In general, security is a complex topic that becomes even more complicated
when it comes to distributed systems. [10, 23, 36] Newman [62] mentions that MSs do
not only increase the effort one has to invest into security, but an MSA can also apply
additional protection mechanisms like easier monitoring or special data protection for
data belonging to services with the requirement for high security.

11

2. State-of-the-Art

Innovation Lewis and Fowler [51] write that with the use of MSs, companies can
innovate quickly because of the aforementioned reasons. The ability to be flexible in
using the new technology can avoid market loss in the future as it could be possible if
a company makes the wrong technology choice for a monolithic application. [83] Each
service should be built around business capabilities. [95] This flexibility enables companies
to get new functionalities out fast [95] and reduces time-to-market [4]. Additionally, the
small and independent services can make use of the elasticity and better pricing model
of cloud environments compared to an on-premise installation. [4]

2.1.2 Microservice principles
According to the characteristics of MSs (see Section 2.1.1), one can derive principles
that an organization should follow when implementing an MSA. The following sections
describe those MS principles that the literature mentions. The first section describes the
aspect that choreography is a better choice for an MSA than orchestration. The next
section underlines what is important to consider when one thinks about communication
between MSs, followed by a fragment that mentions the importance of CI/CD [45,72].
Service Responsibility talks about the right MS size and independence, and the MS teams
section describes what culture a company should have when using MSs. The last section
explains some common patterns that are useful when dealing with an MSA.

Choreography over orchestration

Dragoni et al. [26] and Newman [62] state that with many cooperating MSs, it becomes
essential to prefer and use choreography [65] over orchestration [55]. Orchestration would
require a central manager that would conflict with the share-nothing philosophy [38]
and the need for no centralized control. [62] Dragoni et al. [26] mention that using
orchestration would lead to "coupling and uneven distribution of responsibilities," whereas
when applying choreography, one could use events or publish/subscribe [23] mechanisms
to establish a collaboration between services inherited from SOA. [26]

Communication

Decentralize all the Things is one of the seven microservice principles that Newman
uses in his definition of MSs. [62] He mentions that for an MSA, it is crucial to use
dumb middleware and smart endpoints. [62] One can extend this with the concepts of
smart endpoints and dumb pipes, which Zúñiga-Prieto et al. [95] recommend to enable
inter-service communication via simple messaging. One can confirm those communication
strategies that Newman [62] and Zúñiga-Prieto et al. [95] provide with the findings by
Dragoni et al. [26] who state that one needs simple components with clean, published
interfaces for message passing to achieve high reliability.

The communication over the network can imply network issues that negatively impact
the communication between the services. [26] Therefore, one has to find and define
well-bounded contexts [31] for the MSs to lower the message rate over the network [26]

12

2.1. Concepts and requirements of Microservices

because it is evident that in-memory calls are much faster and less error-prone than
network communication. [26]

Continuous Integration / Continuous Delivery

Zúñiga-Prieto et al. [95] refer to infrastructure automation, Dragoni et al. mention that
one should use MSs with CI/CD and Newman [62] and Humble and Farley [45] state that
the use of MSs requires to adopt a culture of automation and to practice CD and DevOps.
Besides, Balalaie et al. [4] indicate that if the number of services rises, it becomes more
and more interesting to use an automated delivery process, otherwise at some point, one
would spend more time on deployment tasks than on developing. At Netflix [53], they
also transformed their monolith to an MSA. The major reason was that they wanted to
deploy in seconds to satisfy the fast-changing business requirements. This example of
Netflix coincides with the statement of Zúñiga-Prieto et al. [95] that one has to introduce
CI/CD to enable changes in the software system at the pace of business change. Di
Francesco et al. [23] confirm this tight coupling between MSs and DevOps.

One should "separate the source code, the configuration, and the environment specifica-
tion." [4] CI/CD allows automated configuration for different environments like a test
system and a production system.

Service Responsibility

One key question is how big a service should be. On the one hand, Hatton [42] and
Compton and Withrow [19] already found that small-size software can have a very
high fault density in the early days of software development. El Emam et al. [29],
on the other hand, state that if a software increases in size, one can also determine
an increased fault proneness. There are no general rules like the amount of LOC or
number of files an MS should have. Newman [62] states that currently, there is no
"commonly-accepted definition of the desired size of a microservice." In literature, almost
all researchers agree that services should be modeled around business concepts [62,95]
and that a service should have a bounded context and only include functions related
to that context. [26] Domain-Driven Design (DDD) [31] is a well-known approach to
model service responsibility from a business context. If a developer feels that an MS
becomes too large, one should split it up to preserve the granularity and focus on a single
responsibility. [26] This "componentization of services" helps to fulfill the goal of MSs
that they should be independently replaceable and upgradeable. [95]

Shared or decentralized data governance is a central principle of microservices. [62]
Each MS team needs the opportunity to use the right technology (tool, language, data
storage) for the job, and each MS needs to be the one and only owner of the data it is
processing. [95] Technology agnostic APIs help to hide those implementation details from
the service consumers. [62]

Since each service has the aforementioned freedom, it has to ensure that it can provide the
offered functionalities with correctness. The small size of the services assists developers in

13

2. State-of-the-Art

reaching this goal. The service isolation enables independent tests, improves testability,
and limits tests’ scope if changes occur. [26] Dragoni et al. [26] confirm this fact when
they write that "discovering a bug and or adding a minor improvement do [sic] not have
any impact on other services and on their release schedule," with the condition that the
service is backward compatibly and the interface remains unchanged.

Microservice Teams

A company that decides to use the MS pattern [71] as their primary software architecture
has to change how they organize their development teams. Conway’s Law [43] describes
how the company structure affects the output that teams produce in their daily work.
Mezzalira [57] mentions the Inverse Conway Maneuver and states that "teams and
organizations" should "be structured according to" the "desired architecture and not vice
versa."

Zimmermann [94] uses the term "cross-fertilization" to describe this aspect and states
that there is a relationship between the architectural style of software and the engineering
process and culture, and also Villamizar et al. [86] mention that an MSA requires an
according company structure. It is, therefore, crucial to gain a general agreement on how
the business organizes teams. Zúñiga-Prieto et al. [95] introduce the important aspect
"Products, not Projects." Each development team should be responsible for a complete
product and not work on a project until it is finished and quickly forget about it.

In 2016, Amazon Chief Technology Officer (CTO) Werner Vogels introduced the principle
"you build, you run it.” [64] Newman [62] states that one should structure each microservice
team so that the team is responsible for taking full ownership of a software system, from
the database to the UI. If a change or a new feature is requested for a specific MS, only
the owning team should be responsible for changes to the MS. [62] Teams should be
responsible for the complete software stack and take full responsibility for the software
in production. [95] Newman [62] widens this by saying that an MS team should cover
all aspects of a software development lifecycle, "from sourcing requirements to building,
deploying and maintaining the application."

If a company applies this culture, each team will have "an incentive to create services
that are easy to deploy," which will lead to increased autonomy and delivery speed. [62]

Independent development can, of course, lead to a large number of duplicated LOC
where teams could agree that it would make sense to share those parts of their systems
across all teams. This independence can lead to unwanted coupling between the MSs. To
overcome this issue, Newman [62] recommends treating the shared code as "Internal Open
Source." Only one MS team should be responsible for a shared library, and if another
team needs some change in that code, they can ask the owning team to perform the
change, or they do it by themselves and submit a pull request. [62] Dealing with shared
code as an open-source library allows sharing code between teams while the owning team
still controls it. [62] Hasselbring et al. [41] provide a reason why one should favor internal
open-source over shared private libraries:

14

2.1. Concepts and requirements of Microservices

"Apparently, open sourcing the code instead of sharing common private
libraries seems to be almost the same. However, the open-source approach
has some psychological effects: Developers show a tendency to apply higher
quality standards if they know that the code will be publicly available." [41]

Microservice Patterns

Some explicit works [48,71] are available in the literature dealing with MS patterns. Most
of the time, authors do not explicitly define recommendations as patterns, and one could
also see those patterns as recommended infrastructure services each MSA should contain.
The following five paragraphs describe patterns that literature analyzed as being useful
when dealing with MSs.

Business Microservice A business MS is one of many MSs that implement the main
logic for the system. Pavlenko et al. [67] mention that a business MS should handle only
one business problem, and different MSs "should not introduce indirect communication
through a database."

Adapter Microservice An adapter MS embeds an external system into the MS
environment and maps requests from different protocols that the underlying external
services use to a protocol that the MSA can understand. [67]

API Gateway The API Gateway [5, 23, 62, 69, 86] is the pattern that the literature
mentions most frequently. The goal is to have one single entry point, sometimes also
called edge server [69], responsible for receiving and forwarding traffic from outside (e.g.,
a frontend). [5] Newman [62] states that the API Gateway becomes "one giant layout
for all our services," which is the goal of using this pattern, but it introduces some new
problems. With the use of an API Gateway, one can lose the isolation of MSs and limit
independent releases because a new service will probably also lead to a change of the
API Gateway. [62]

Backend for Frontend Instead, or additional to, an API Gateway, Newman [62]
introduced the Backend for Frontend (BFF) pattern. He mentions that, using the BFF
pattern, the UI teams also handle server-side components, namely the BFF, which acts
as an API Gateway but can also include some logic to call and collect data from multiple
APIs and transform the received data into a format that the UI can understand. Pavlenko
et al. [67] describe the BFF as an orchestration layer that calls and combines responses
from multiple MSs. In addition to the message conversation, the BFF can filter the
received data and remove information that the client does not need to decrease the
message size. [67] Newman [62] already mentions that this approach has the danger
that the BFF could also include business logic. Instead, the BFF "should only contain
behavior specific to delivering a particular user experience." [62]

15

2. State-of-the-Art

Circuit Breaker A Circuit Breaker [23, 62, 63] is a piece of software that one usually
integrates into an API Gateway or a BFF to isolate failure from underlying MSs. Possible
implementations could, for example, cache the last result from an API call and return it
in case of an error or a timeout of the underlying service or cache pages for listed entities
that the client may request in the future. [67]

Service Discovery / Load Balancer Linthicum et al. [52] define the location inde-
pendence pattern, which explains the ability to discover services at runtime and activate
them with late binding. The primary technical solution to satisfy the requirements of
this pattern is service discovery. [5] MSs register themselves at the service discovery,
also called service registry, and , e.g., a BFF that wants to call a service can ask the
Service Discovery where to find it dynamically. [67] Additionally, to locate one service, it
is possible to integrate a Load Balancer [5, 23] that can take care of forwarding requests
to multiple, scaled services of the same type to balance the load across those instances.

Other Infrastructure Services Additionally to the aforementioned patterns, there
are other recommendations for infrastructure services. Di Francesco et al. [23] mention
monitoring services that deal with logging and profiling as well as a health management
service as a system-level management service in addition to an autoscaling and load
balancing service. Balalaie et al. [5] argue that an MSA could benefit from a configuration
service that allows administrators to change the service configurations without redeploying
the code. Pavlenko et al. [67] describe the Log Aggregator pattern, where a service
can handle all logging messages from the different MSs. The Correlation identifier (ID)
pattern assigns a unique ID to each request from the frontend. [67] Each service should
use this ID in their log messages to trace a frontend call through all involved services.

The patterns API Gateway and BFF need caution. Whereas they offer some simplification
in the communication, they can create a single big bottleneck because they see an MSA
as an architecture with multiple backend services and one big frontend. This aggregation
of services is not the initially intended meaning of MSs that should take responsibility
from the database to the UI. The API Gateway pattern especially could be problematic
because it introduces a layer that combines all APIs from the different MS teams into
one big layer that exposes those APIs like a monolithic application would do.

2.1.3 Microservice challenges

From the previous discussion, it is clear that developing MSAs is not an easy task. This
section explores the main challenges. Taibi et al. [83], as mentioned in Section 2.1.1,
ran an empirical study with 21 practitioners who migrated from a monolith to an MSA.
Their interview partners reported several issues that arose during the migration, which
they categorized into three types of issues: (i) technical issues, (ii) economic issues, and
(iii) psychological issues. [83] This output coincides with the findings from Di Francesco
et al. [22], who reported technical challenges (e.g., infrastructure automation, distributed

16

2.1. Concepts and requirements of Microservices

debugging) and organizational challenges (e.g., creation of cross-functional teams, long
time to release new features, low productivity of developers).

The following three sections make use of this categorization into the three types of
challenges regarding MSs and combine the results from the studies by Taibi et al. [83]
and Di Francesco et al. [22] with other literature. At the end of this section, the thesis
presents in two paragraphs lessons learned while migrating towards an MSA as well as
reasons when it is not helpful or recommended to use an MSA.

Technical Challenges

Di Francesco et al. [22] report that the most challenging part when implementing an
MSA is the initial infrastructure setup. One has to deal with numerous new components
like a Service Discovery or monitoring and managing services. [5] Additionally, the
DevOps infrastructure setup effort is much higher than when one opts for a monolithic
architecture. [83] As an example, one can consider how a company should maintain its
source code. This task can already take a substantial amount of working hours since one
has to decide between different solutions like using a mono-repository, a multi-repository,
or a hybrid approach like Brousse discusses in [13]. Mezzalira [57] also investigates the
pros and cons of multi-(poly-) and mono-repositories. Pavlenko et al. [67] also describe
those repository organization possibilities and add information about the git-repo tool3
and compare the different methods (see 2.1).

Figure 2.1: Repository organization possibilities [67]

Testing can also be a tricky part of a microservice environment. With an increased
number of services, the system will become fault-prone on the integration level. [83]
This integration needs integration tests, which check the working connections and
communication between the components to ensure correctness because some "anomalies
can emerge from collaboration of a number of services." [26]

3https://gerrit.googlesource.com/git-repo

17

2. State-of-the-Art

In Section 2.1.1, the thesis mentioned the possibility of using different technologies for
different MSs as an MS benefit. This characteristic can also be a disadvantage. Dragoni
et al. [26] mention that it can require additional effort to define service composition
contracts in different languages. Taibi et al. [83] state that different technologies can
require extra effort for library conversions because one can not simply reuse a library
written in one language in an MS implemented in another programming language. Lewis
and Fowler [51] recommend defining technology guidelines that contain a subset of all
available technologies that should be mainly used in the company.

Particular challenges do arise when one tries to migrate a monolith system into a system
with an MSA. Balalaie et al. [5] and Di Francesco et al. [22] express that it can be
tough to decompose a system into small units because of the often high level of coupling.
Many companies use an incremental migration process because it would be difficult and
dangerous to perform the migration with a big-bang approach. Di Francesco et al. [22]
mention that companies often have difficulties identifying the boundaries of services.
Taibi et al. [83] state that decoupling parts of a monolithic system can be challenging,
especially in database migration and data splitting.

Organizational Challenges

Dragonie et al. [26] mention that distribution is the greatest weakness of MSs and
state that "programming distributed systems is inherently harder than monoliths."
Zimmermann [94] describes this fact as follows: "Microservices usage promises to be
more dynamic and flexible, requiring more runtime and configuration effort than coding."
Further, Zimmermann [94] states that "in general, syntactic and semantic contracts
always exist, either implicitly or explicitly (as machine- and human-readable contracts)."
The main concern about this is that currently, MSs have only informal documentation,
mostly in a natural language only, which is very error-prone because of the potential
ambiguities. [26]

"Effort Estimation and Overhead" is another big challenge when one uses MSs. [83] The
estimation accuracy is generally lower for MSs as for a monolith, and one has to deal
with a lot of effort overhead when implementing MSs, which is often compensated much
later in the maintaining phase of a system. [83] Villamizar et al. [86] state that MSs
should be a long-term strategy and not a project where it is clear that additional effort
is required and one has to develop an MSA incrementally. The following quote by Taibi
et al. [83] illustrates this issue related to the Return on Invest (ROI).

"Microservices-based systems are less expensive than monolithic systems in
the long run, allowing for good ROI. Our interviewees reported that ROI is
achieved during maintenance of the system, as maintenance costs are lower
than in monolithic systems." [83]

18

2.1. Concepts and requirements of Microservices

Psychological Challenges

Taibi et al. [83] mention a challenge related to people’s minds. It happens that older
developers do not believe in the new technologies and often do not "want to accept a big
change to ’their’ system." [83]

Lessons Learned Balalaie et al. [4] present their lessons learned when migrating a
monolithic system to an MSA. The following list summarizes their learnings:

• Deployment in the development environment is difficult
MSs bring an additional burden on developers because they need to deploy

dependent services locally.

• Service contracts are double important
Balalaie et al. [4] recommend avoiding service versioning. Their advice is to

use techniques like Tolerant Readers, which "make every attempt to continue with
message processing when potential violations are detected." [24]

• Distributed system development needs skilled developers

• Creating service development templates is important
The use of different programming languages can be a benefit for an MSA, but

they could also result in chaos and maybe make the system unmaintainable. [4]
Balalaie et al. [4] advise defining standards and provide templates for developers
allowing to start developing quickly.

• Microservices are not a silver bullet
The "challenges should be considered before the adoption of microservices." [4]

Reasons against Microservices As Balalaie et al. [4] already mentioned in their
lessons learned, the implementation and use of an MSA is not a silver bullet. Zimmermann
[94] mentions that MSs introduce an inherent complexity and that MSs are highly flexible
due to their fine-grained dynamic nature, but there are numerous subtleties one has to
tackle.

Taibi et al. [83] recommend not to use this architectural type for quick prototypes or small
projects because the overhead that MSs introduce can not be compensated. Newman [62]
states that at first, one has to understand the domain and, in the case of a migration, the
monolith. If that is not the case, one should first invest time to learn what the system
does and look at the module boundaries before splitting it into MSs. [62] For greenfield
projects, Newman [62] recommends starting with a monolith and splitting it up if it gets
too big.

I had the chance to define and implement an MSA. The most challenging part was
splitting the data into independent databases, and we did not come up with a solution

19

2. State-of-the-Art

that uses distributed databases. Write access can often be granted to one single service,
but many services often require read access, and we thought that we could not perform a
network request for simply reading a single row in a table. For big companies or projects
where many developers are involved, it can make sense to strictly encapsulate the services.
Smaller companies or smaller projects with only two or three teams working on the
project, in my opinion, need to find a trade-off between the power of a "real" MSA and a
system consisting of functional services.

2.2 Micro Frontend approaches
MFs were first introduced at the ThoughtWorks Technology Radar at the end of 2016. [1]
Some big companies like Amazon4, SAP5, IKEA6, Zalando7, Thalia8, Spotify9, or DAZN10

already use MFs to create their web applications.

Geers [58] mentions that with the increase of the project scope and team size, knowledge
silos arise when one uses a monolithic frontend the same way as when using monolithic
backends. Thus, one could start to split the application into smaller parts. Multiple
teams own one or more distinct MFs that are then combined to form the final page.
There is currently no general definition of MFs. People often speak of the term MF but
mean the frontend code only. Geers [58] describes an MFA as an architectural style where
each MF includes everything from the database to the UI with one team responsible
for all parts without the need for a central UI team. Peltonen et al. [68] mention that
"Micro-Frontends extends the Microservice architecture idea and many principles from
Microservices apply to Micro-Frontends."

One can implement web frontends in many ways. Schulte-Coerne [73] describes different
options of frontend integration. One can use a frontend monolith SPA that offers strict
separation between the frontend and the backend and divide this monolith into modules
that can already solve some maintainability problems. [73] Another approach is the flat
SPA, where one app acts as a dashboard that provides links to different standalone
pages. [73] When it comes to MFs, Schulte-Coerne [73] mentions three general approaches.
(i) Use links on the page to route between different pages, or (ii) use client-side transclusion
that loads parts of the system dynamically from some Content Delivery Network (CDN)
and inject those parts dynamically into the Document Object Model (DOM), or (iii) use
iframes to include different pages into one page.

Mezallira [57] and Peltonen et al. [68] state that there are two ways to implement an MFA.
4https://www.amazon.com/
5https://luigi-project.io
6https://www.infoq.com/news/2018/08/experiences-micro-frontends/
7https://www.mosaic9.org/
8https://tech.thalia.de/another-one-bites-the-dust-wie-ein-monolith-kontrolliert-gesprengt-wird-teil-

i/
9https://engineering.atspotify.com/2014/03/27/spotify-engineering-culture-part-1/

10https://www.youtube.com/watch?v=BuRB3djraeM

20

2.2. Micro Frontend approaches

(i) The vertical split shows only one MF per time. (ii) The horizontal split composes one
view out of many different MFs.

The following sections explain the current state-of-the-art MF concepts. One can split
a webpage vertically, which means to separate the application into different pages, and
horizontally, which describes composing the view out of many small fragments. Section
2.2.1 explains how one can implement a vertical split, and Section 2.2.2 explains horizontal
composition techniques. Both, vertical and horizontal splitting, require communication
models described in Section 2.2.3. One special approach of horizontal splitting is the
application shell architectural style. The case study (see Chapter 4) will make use of this
approach, and Section 2.2.4 explains the concepts.

2.2.1 Vertical split: Page transition via links
The most straightforward approach to implement an MFA is to create an infrastructure
where each MF is a standalone application. The distribution of the MFs works via a
web server that delivers a complete page via a specific route. [47] The different MFs
reference each other through hyperlinks, and one can provide context information via
Uniform Resource Locator (URL) or query parameters. [58, 79] To provide a better user
experience for pages that require authentication, Steyer [79] recommends using Single
Sign-On (SSO) so that the user does not have to perform the authentication on every
route change.

The following paragraphs describe the advantages and disadvantages of this approach,
provide information on how one can deal with contracts between teams, and show how a
reverse proxy can improve the UX.

Advantages The most significant advantage of the hyperlink approach is that it is
straightforward. [80] Each application is a standalone application that leads to loose
coupling between the different MFs and, therefore, high robustness. [58] Besides, it is
possible to optimize the bundles for each domain separately. [80]

Disadvantages Exchanging one MF through another using a hyperlink requires a full
page reload each time the user navigates between different pages. [47, 92] If one uses
frameworks to build the individual MFs, each page transition leads to a reload and
re-initialization of the framework code. [78] Both the application before and after the
route change lose the application state and the page’s control. [78,92] Geers [58] mentions
that it is impossible to combine two MFs into one view with the hyperlink option. Since
each team needs to implement the whole page, technical redundancy (e.g., using the
same code for the page header) can occur. [58]

Contract between teams Each MF team should be independent and isolated and
should not know how other teams deploy their MFs and where to find other teams’
MFs. One can define one well-known machine-readable location where teams provide

21

2. State-of-the-Art

their internal routes (e.g., via a JavaScript Object Notation (JSON) file on a server),
and other teams can access these routes via pre-defined team namespaces. [58] Uniform
Resource Identifier (URI) templates11, JSON-home12 or the Swagger OpenAPI13 can
help to achieve this.

Server-side routing via Reverse Proxy Route changes in the browsers’ address
bar can be annoying for users. It is possible to use a reverse proxy that can load different
applications from multiple HTTP servers based on some well-defined re-routing rules
that match parts of the URL to overcome this issue and improve the UX. [58, 90, 92]
Geers [58] provides two strategies for defining re-routing rules:

• Team routes only
Assign an URL prefix (e.g., the teams’ name) to each team and route each

request matching this prefix to the teams’ web server.
Example: www.my-cool-site.com/team-1/welcome-page

• Dynamic route configuration
Define a re-routing rule for each page of the teams.
Example: www.my-cool-site.com/article/5

It is crucial to have in mind that using a reverse proxy will introduce a single point of
failure into the system, and one needs people that operate this reverse proxy, which might
become a bottleneck for all teams. [58]

2.2.2 Horizontal split via Composition
Another approach that one can use in combination to split the app into vertical slices is
to build one page out of many components horizontally. Jackson [47] mentions that one
can use a build-time integration approach to compose one big application out of many
individual applications with the disadvantage that one needs to recompile the whole
system if a change in one MF occurs.

Another option is to implement a transclusion mechanism via "client-side includes." [68]
With transclusion, one can append or change MFs to the DOM dynamically. [68]

Big companies (e.g., Amazon, IKEA, Zalando) use a server-side composition technique
where the server renders the complete page and delivers the result to the client. [68]
Geers [58] and Pavlenko et al. [67] mention that it is possible to include client-side
integration techniques into the server-generated markup for deferred loading so that it is

11https://tools.ietf.org/html/rfc6570
12https://mnot.github.io/I-D/json-home
13https://swagger.io/specification

22

2.2. Micro Frontend approaches

still possible to inject dynamic parts (e.g., those fragments that are not initially visible
in the user’s viewport) at the client.

With server-side integration techniques like the well-proven SSI or ESI methods, one can
reach an excellent first page load performance and good Search Engine Optimization
(SEO) support. [58] Nevertheless, those integration methods are not always easy to
configure and provide no technical isolation between the MFs. [58] Further, Peltonen et
al. [68] and Geers [58] state that for an app-like UI that should instantly react to user
input, a server-side integration is probably not the best choice because one has to send
many requests to the server if each page is personalized for the user.

The following paragraphs describe the possible server-side and client-side integration
options in detail.

Server-side: Server Side Includes SSI, which dates back to the 1990s, is an approach
where one can get better load times for fetching fragments from multiple servers because
of the faster internal network traffic. [58] One defines specific SSI HTML tags with an
URL that a web server can identify and replace through the requested markup.

Example: <!--#include virtual="/my/url/to/include" -->

It is possible to include a timeout and error fallback that the server renders in case of a
failure. [58] There exist implementations (e.g., NGINX14) that can load the markup for
multiple SSI tags in parallel.

Server-side: Edge Side Includes A similar approach to SSI is using ESI [76, 85].
The Varnish Reverse Proxy15, for example, implements ESI.

Example: <esi:include src="https://my.example/fragment" />

The ESI standard supports error fallbacks by default but has no timeout support. [58]

Server-side: Other options "The response time for the complete markup, also called
time to first byte (TTFB), is defined by the time it takes to generate the page markup
and the time of the slowest fragment." [58] A server implementing the SSI standard does
not start sending the composed markup until it resolved every SSI tag request. The same
behavior applies to ESI. Frameworks like Tailor or Podium can help to overcome this
issue because they support streaming, allowing to start sending available DOM fragments
as soon as they arrive. [58]

14https://www.nginx.com/
15www.varnish-cache.org

23

2. State-of-the-Art

Zalando Tailor16 is a server-side composition library supporting fallbacks for slow or
faulty fragments out of the box and has built-in streaming support. The Tailor framework
further has some extended functionality like asset handling via HTTP headers.

Podium17 is another server-side composition library that improves the Tailor concepts by
using a manifest where one can define where to find the content, the fallback DOM, or
the assets.

Client-side: iframe embedding The presumably easiest approach to include markup
from different MF teams at runtime is the integration via iframe embedding. [58, 68, 75,
79,90,92] Each iframe gets a standalone hosting environment from the browser that is
fully encapsulated from the rest of the page. [92] Communication between iframes is
possible via the window.postMessage18 API. [92]

Steyer [79] recommends using the iframe integration approach if one needs high isolation
of the embedded fragment or embedding a legacy system or systems from other vendors.

The integration of fragments via iframe is probably the fastest way to build a client-side
integrated MSA. [58] With the iframe approach, one can independently develop each
module and use different technology in each MF. [90,92] The iframe tag is a web standard
and works in every browser. [58] The most important aspect of using iframes is that one
gets strong and technical isolation that has a huge benefit on security because it is not
possible that scripts inside the iframe leak vulnerable code. [47, 58,80,90,92]

Wang et al. [90], Yang et al. [92], and Jackson [47] mention that using iframes leads
to large bundles because it is not possible to share dependencies between the iframes
due to the strong isolation, which leads to higher download times. Besides, Geers [58]
mentions that iframes bring a considerable performance overhead because of the isolation
that needs extra memory and Central Processing Unit (CPU) power. SEO is difficult
when using iframes because the crawler would index each iframe embedded fragment as
a separate page. [58] These separate pages also hurt the page accessibility. [58] Assistive
technologies like screen readers have a hard time processing a page with iframes because
each iframe is a separate page with its own <head> tag. [58] Wang et al. [90] mention that
nested iframes are problematic. Geers [58] reports that iframe usage leads to probably
unwanted layout constraints and coupling between MFs. The outer document that embeds
a fragment via iframe needs to know the iframe’s exact height to maintain the intended
fragment style and size (except one uses additional libraries like the iframe-resizer19 for
auto-resizing iframes). [58]

Client-side: AJAX Jackson [47], Geers [58] and Hasselbring et al. [41] mention the
runtime integration of features using client-side Asynchronous JavaScript and XML

16https://github.com/zalando/tailor
17https://podium-lib.io/
18https://html.spec.whatwg.org/multipage/web-messaging.html
19https://github.com/davidjbradshaw/iframe-resizer

24

2.2. Micro Frontend approaches

(AJAX). One can create a separate bundle for each MF that the client can load and
mount when it is needed. [47]

One advantage of this approach is that one can pre-load shared dependencies to reduce
the bundle size of the separate feature bundles. [47] Geers [58] states that the AJAX
approach results in a natural document flow where all the content is available in one DOM,
enabling excellent SEO and accessibility support. Using client-side JavaScript (JS), one
can implement progressive enhancement and flexible error-handling, such as providing
fallbacks to the requested standalone MF or the possibility of showing alternative static
content instead of the dynamically loaded fragment. [58]

The asynchronous loading of the different MFs has the negative effect that the client
renders the fragments with some delay that can lead to "site jumps and wiggles." [58]
Besides, each user interaction that triggers an AJAX call resides in a server request that
can lead to a bad UX, especially on poor network conditions. [58]

With the client-side integration via JS, one does not have any technical guarantee for
isolation. [58] Geers [58] recommends namespacing everything that belongs to one team,
including "cookies, storage, events, or unavoidable global variables," as well as styles and
to wrap scripts in Immediately Invoked Function Expressions (IIFEs)20. One possible
option to lower boilerplate code for AJAX call is the use of wrapper libraries like h-
include21. [58] A project setup with automated namespacing rules can help to avoid
collisions at runtime. [58]

Geers [58] states that one should use the AJAX approach when a system already provides
server-generated markup, but one must keep in mind that those JS calls introduce lots of
interactivity. Working with the local state can be tricky, and a high number of reloads
can annoy users using the site with high network latency.

Client-Side: Web Components The term Web Component is an umbrella term
that combines CustomElements, ShadowDOM, and HTML templates. [58, 92] Web
Components behave like standard HTML elements and can be defined via

window.customElements.define.

Using Web Components allows developers to declare domain functionality with business
logic encapsulated in the component. [58]

Each Web Component offers a technology-neutral interface with the lifecycle methods

constructor, connectedCallback,disconnectedCallback, and
attributeChangedCallback that developers can use to run custom code when those
events occur. [58] An example of Web Components is AngularElements22.

20https://en.wikipedia.org/wiki/Immediately_invoked_function_expression
21https://github.com/gustafnk/h-include
22https://angular.io/guide/elements

25

2. State-of-the-Art

The ShadowDOM API is a central part of web components. One has to enable the Shad-
owDOM with the attachShadow() function that initializes a shadowRoot property,
which holds a reference to the opened ShadowDOM. [58] Using ShadowDOM enables "to
isolate a subtree of the DOM from the rest of the page," which leads to the fact that "no
prefixing or explicit scoping is required." [58]

This isolation via the ShadowDOM makes the app robust since it enables an iframe-like
technical isolation that prevents global styles from leaking into MFs. Web Components
are a widely implemented web standard. [58] They allow developers to create reusable
custom elements with encapsulated functionality. [92]

A current drawback of Web Components is that not all browsers provide full support. [92]
Specifically, the ShadowDOM API is problematic, and existing polyfills are heavy and
rely on heuristics. [58] Besides, Web Components require JS to work, and there is no
possibility to declare the ShadowDOM via HTML. [58] Web Components are similar
to client-side AJAX composition because each "JavaScript bundle has to load first and
register the components in order for the DOM to load." [92]

Geers [58] recommends using Web Components when one wants to build an app-like
application with lots of interactivity.

2.2.3 Communication

MFs need to communicate with each other, although Geers [58] mentions that lots of UI
communication can show bad project boundaries. Steyer [78] states that one possible way
to communicate between MFs is via the backend. Each MF can send requested changes
to the backend that persists those changes, and other MFs can request this data again. It
is not always possible due to performance reasons to communicate via the backend but to
communicate on the client-side. The following paragraphs show different communication
strategies between MFs. The described options do not uniquely apply to those strategies
but can also be useful for the other shown strategies.

Page-to-page communication The simplest form of communication is vertical com-
munication between pages. One can use simple links with URL or query parameters
to exchange data between sites. [58] This approach is easy to implement, allows deep
linking, URL sharing, and the MF load order is irrelevant. [78]

Parent-to-fragment communication An MF that includes another MF can com-
municate with its child via simple HTML attributes. One can achieve unidirectional
data-flow by simply changing the HTML attributes of the child element. [58] The child
fragment needs to subscribe to the attributeChangeCallback in order to get notified
about attribute changes. [58]

26

2.2. Micro Frontend approaches

Fragment-to-parent communication Communication from a child fragment to a
parent MF is possible via the CustomEvents API. [58, 78, 92] There, the child fragment
emits an event on which the parent component can react.

Steyer [78] and Geers [58] describe sending events using an event-bus approach via built-in
browser events. Other fragments can listen to those events dispatched by the MF. An MF
can dispatch an event the other fragments can listen on. Geers [58] recommends dispatch-
ing the events via element.dispatchEvent instead of window.dispatchEvent
and let the event bubble through the DOM. Dispatching events on the element has the
benefits that the event origin (event.target) is maintained, and that a receiver of an
event can stop further bubbling through the DOM via event.stopPropagation. [58]

Fragment-to-fragment The most straightforward way to communicate between two
MFs on the same hierarchical level is direct communication. Direct communication means
that one could search the DOM for the element to which a message should be sent and
invoke a function that this element provides directly. Geers [58] recommends not using
this option because it will create very high coupling between those fragments.

Another possibility to achieve fragment-to-fragment communication is the orchestration
via the parent. [58] This communication style combines fragment-to-parent and parent-
to-fragment approaches. The disadvantage of using parent orchestrated communication
is that every change regarding the communication interface requires the change of MFs
owned by two teams. [58]

The Broadcast Channel API 23 is another communication option where an MF can
publish a broadcast channel, and other MFs can subscribe to this channel to receive
messages. [58] The Broadcast Channel API enables an application to exchange messages
across browser windows, tabs, and iframes. [58] This approach is very powerful, but one
must be careful with exchanging complex data because it can introduce coupling. [58]
Geers [58] recommends to keep the payload to a minimum and use the Broadcast Channels
for sending notification events only without transferring data.

Other communication mechanisms Sometimes it can be necessary to have some
globally available context information about the currently active user like GPS coordinates,
the preferred currency, or the logged-in state. [58] One can provide this information via
HTTP headers or cookies that a backend service or proxy can set on each request. [58]
Other options are to use a global JS API or browser storage to share this global
information. [58]

2.2.4 Application Shell
Pavlenko et al. [67] state that with "the growth of usage of mobile devices and poor
coverage of high-speed mobile internet, any reload of the page should be avoided." One

23https://developer.mozilla.org/en-US/docs/Web/API/Broadcast_Channel_API

27

2. State-of-the-Art

can avoid page reloads by replacing or loading the content dynamically into the DOM
on the client-side. One can implement this dynamic page reload with the previously
explained concepts of client-side horizontal composition techniques. Another prominent
approach is using SPAs. Mikowski and Powell [59] explained that SPAs are written in JS,
where one browser environment displays dynamic content to the user without reloading
the page during use.

A SPA is a standalone, monolithic application usually delivered as a single bundle. [67]
Existing lazy loading techniques allow splitting a SPA into multiple modules (chunk
splitting) that one can deploy as separate files on one CDN that a browser can fetch
when needed. [67] This split into multiple chunks happens at compile time from one
monolithic codebase.

SPA frameworks like Angular, Vue.js, or React.js currently do not provide options to
separate parts of the monolithic application into standalone applications that one can
deploy to different CDNs from which a browser can request the chunks.

The application shell is the proposed solution that solves deploying multiple standalone
MFs and loading them into one application at the client-side. [58, 68, 75, 78, 80] Those
MFs can internally use any framework. Geers [58] defines the name Unified SPA that
describes an application shell for SPA MFs. He recommends using a Unified SPA when
users of an application often need to switch between multiple parts of an application
(MFs owned by different teams) and where productivity is more relevant than the initial
page load time.

The following two paragraphs explain what an application shell is and how to implement
the routing between the different MFs.

What is an Application Shell? The application shell is a standalone application
that operates as the parent application for all included MFs. [58] This shell application
receives all routing requests from the browser and bootstraps the currently required MF
into one index.html file by dynamically creating and inserting the MFs root elements
into the DOM. [78]

The shell has four essential parts described by Geers. [58] (i) Provide a shared HTML
document that will be the root document for all MFs. (ii) Handle client-side routing by
mapping URLs to team pages. (iii) Create and Render the matching MF into the root
DOM. (iv) (De-) initialize the previous/next page on navigation.

Geers [58] states that since the application shell will be the main application that handles
every other MFs, it should be as simple as possible. The shell can handle some additional
tasks like collecting and providing context information (e.g., preferred language, users
country, authentication state) or common requirements like, e.g., performance monitoring
or metadata handling. The MF teams only need to publish their URL mappings that
the application shell needs to map to the different MFs.

28

2.3. Related Work

Using the application shell as an integration layer for multiple MFs provides a great
UX. [78] This integrated solution does not require page reloads and preserves the
application state during application usage. [80] An MF change or adding a new MF only
requires to update the shell. [58]

The drawbacks of the application shell approach are that one needs an extra meta-
framework. [78] This meta-framework provides the additional infrastructure code that
one needs to load and switch between MFs. [80] Further, using SPA frameworks to
implement the MFs can lead to an increased download size of the overall app because
each MF has to load its framework code. [80] Nevertheless, there are ways to share the
framework code between multiple MFs (e.g., using Webpack 5 Module Federation [81]),
introducing coupling between MFs that need to agree on shared dependencies. Developers
need to keep in mind that an application shell will become a single point of failure, where
an error in one MF can affect the whole system. [58]

Routing inside the Application Shell Geers [58] describes two navigation types.
(i) Hard navigation, where the client loads the required HTML from the server on page
transition, and (ii) Soft navigation, where the client performs the page transition via
client-side rendering. [58] Using an application shell enables two types of client-side
routing. [58] (i) The application shell can use hard navigation between MF teams, and
each MF internally uses soft navigation. [58] (ii) A Unified SPA shell can dynamically
load the MFs on demand, which leads to soft navigation between the MFs.

One can implement this routing via the HTML5 history library. [67] Each team should
have a prefix, and the application shell can determine the required MF based on that
prefix. [78] This routing solution enables multi-level routing where the application shell
only handles the first part (team prefix) of the URL, and the currently active MF handles
its internal routing. [58]

2.3 Related Work
The MF topic is a very new research field, and only a few papers exist that investigate
that topic. This section describes works related to an MFA that already present solutions
for migrating from a monolithic frontend to an MFA.

Pavlenko et al. [67] provide a report of a case study on the implementation of an
Education Hub System, a software that "aggregates online courses from different online
course providers to serve as a single entry-point and search engine for users." They use the
BFF pattern (see 2.1.2) to provide a single entry point for the frontend. For the frontend
implementation, Pavlenko et al. [67] used the single-spa24 framework for building their
MFA and ReactJS25 as the SPA framework for all their MFs. This paper acts as a basis
for implementing the second case study in Chapter 4. Nevertheless, Pavlenko et al. did

24https://single-spa.js.org/
25https://reactjs.org/

29

2. State-of-the-Art

not perform any performance measurements, and used only one SPA framework for all
MFs. This thesis includes and analyzes those missing parts.

Mena et al. [56] present a Progressive Web App (PWA) with an algorithm that can
select components based on the user’s context. This context is, e.g., whether the user is
using the app on a desktop or a mobile device or the user’s location. [56] The frontend
sends this context information to a backend service that uses a "Component Selection
Algorithm" to select appropriate components for the requesting user. [56] The component
service sends those components to the frontend, which then composes a view of those
components. With their solution, they achieve showing the same data from the backend
in two different variations on the frontend (e.g., show data on a map or as a list), based on
the user’s device screen size. In their paper, Mena et al. [56] do not describe any technical
aspect of their solution on how they implement, deliver, and compose the components.

Yang et al. [92] built an MF-based Content Management System (CMS) using the Mooa26

framework. The Mooa framework is an MF framework based on the single-spa framework
and Angular, optimized for iframes. They use a server for storing the application
configuration. This configuration file contains the locations for the separately deployed
MFs. When deploying a new version of an MF, they only have to point the apps.json
file of the main application to the latest configuration file to inform the main application
about the new MF deployment. [92]

Wang et al. [90] provide research on an Educational Management Information System.
They use iframes to include legacy code and WebComponents for new features. [90] The
current version of each MF is stored in a configuration file that the parent application
loads when composing the system.

Both works ([92] and [90]) use a configuration file for storing the MF deployment
information. This thesis builds upon and expands this configuration file idea by deploying
it to a separate server and changing it on MF updates (see Section 4.5).

Hasselbring and Steinacker [41] report on migrating a monolithic architecture at Otto.de
towards an MSA. They use so-called verticals (fragments) to compose the shop’s pages. [41]
Client-side AJAX acts as the leading technology for integrating verticals that are not
primary content or initially invisible fragments. [41] (e.g., the shopping cart preview
"that is included on almost every page") Server-side ESIs (see 2.2.2) are used to integrate
primary content at the server-side. [41] This integration is well-suited for content-rich
applications. This thesis does concentrate on highly interactive applications that would
not profit from such a technique.

None of those works evaluated the performance of their MFA. This thesis provides an MF
performance analysis and compares MFs with a monolithic system. This performance
analysis also includes an evaluation of an MFA implementation that uses multiple different
SPA framework in the MFs. Furthermore, Section 5.4.2 evaluates whether and how an
MFA can help to speed up the development and deployment. The thesis also shows how

26https://phodal.github.io/mooa/

30

2.3. Related Work

one can expand the configuration file approach by Yang et al. [92] and Wang et al. [90]
by using import maps and an import map deployment tool.27

27https://github.com/single-spa/import-map-deployer

31

CHAPTER 3
Adoption of Microservice

Concepts and Principles to Micro
Frontends

MFs are closely related to MSs. Mezzalira [57] already showed how one could adopt
the seven MS characteristics from Newman [62] to MFs. However, there are many more
principles and characteristics than those seven described by Newman. Section 2.1 shows
a summary of MS features.

Currently, there are no papers available (except for the book preview by Mezzalira [57])
that looked at how one can adopt the MS knowledge to MFs. In this chapter, the thesis
tries to fill this gap. The thesis uses the findings from the literature review in chapter 2
and combines these with information from other scientific sources and grey literature
(e.g., blog posts, magazine articles). The information about MSs and MFs was then
compared and set against each other to gain knowledge for MFAs.

The following Section 3.1 explains MF characteristics found in the (grey) literature,
followed by Section 3.2 that presents a table on how one can transfer the MS features to
MFs.

3.1 Micro Frontend Characteristics
In 2020, only very few research papers concerning MFs were available. Yang et al. [92]
stated in 2019 that the concept of MFs is still in an exploration stage and not mature
enough to use them in productive systems. Peltonen [68] performed a literature review
in July 2020 and found only one peer-reviewed conference paper and 41 sources from
grey literature (e.g., articles, blog posts, videos, books, and podcasts). In the following

33

3. Adoption of Microservice Concepts and Principles to Micro Frontends

section, the thesis analyzes and reports the findings from both, peer-reviewed conference
papers as well as grey literature.

Geers [58] wrote the book Micro Frontends in Action, which covers many aspects of MFs.
Mezzalira [57] currently works on a book called Building Micro Frontends, which was
only available as a preview version when writing this thesis. Not the whole content of
the book was available. Therefore, the thesis includes just parts of the book.

Springer [75] wrote a short article on how one can adopt the benefits of MSs to MFs.
Harms et al. [40] present guidelines on applying frontend architectures and patterns to
an MS-based system.

Furthermore, it is essential to look at the problems of frontend implementations that
use the monolithic architecture pattern. [70] Villamizar et al. [86] and Balalaie et al. [4]
evaluated the monolithic and the microservice architecture patterns focusing on deploying
web applications in cloud environments.

The following sections are structured as follows:
Section 3.1.1 shows problems that arise when one uses a monolithic approach for building
big frontends. Section 3.1.2 shows the general principles of MFs. Available MF approaches
are shown in Section 2.2. Section 3.1.3 describes the challenges that arise when using
MFs. Section 3.1.4 describes when one should use an MSA, and Section 3.1.5 describes
when using MFs is not recommended.

3.1.1 Monolith problems
Dragoni et al. [26] state that "a monolith is a software application whose modules cannot
be executed independently." This monolithic architecture [70] is the leading architecture
that companies use when they develop applications. However, at some point, with
increased project size, a monolithic architecture is no longer sufficient. The following
paragraphs show common problems that researchers found when analyzing monolithic
architecture.

Maintainability The maintainability [20,67,90,92] of the software system is the biggest
problem when the system gets more and more features. The complexity increases [67,86]
because the code base gets more extensive [20], and it becomes difficult to understand the
code. [4] Pavlenko et al. [67] report that those many LOC often lead to a "dependency
hell" where it is tough to understand how the systems interact with each other.

Deployment Monolithic systems bring many issues concerning the deployment. [67,92]
Villamizar et al. [86] mention that with monoliths, a release requires a restart of the
whole system, which leads to a bad UX. Wang et al. [90] confirm this issue and state that
each change requires a re-deployment of the whole system, leading to high downtimes
during the system reboot and, therefore, an increased deployment time, even for small
updates on some insignificant modules, because it is necessary to build and deploy the
entire codebase on every change. [4, 57, 67] Mezzalira [57] reports that changes in one

34

3.1. Micro Frontend Characteristics

part of the system can introduce new bugs or even break some interfaces that affect the
whole deployment. It becomes more complicated to guarantee that all parts of the system
work as expected when one adds features or implements a simple change of existing
modules. [86] A monolith is always a single point of failure. [86]

Scalability Many research papers [4,20,67,90,92] report scalability issues on monolithic
systems. In the frontend, different from the scalability of MSs, scaling does not mean to
run more instances in parallel but instead refers to an increased compile time due to the
large file size, which has adverse effects on the download time. [20]

Innovation For companies, it is crucial to stay up to date and be innovative to meet
user requirements. Monolithic systems have a significant impact on this innovation.
Companies cannot easily switch the technology used in a legacy system. [67, 86] Balalaie
et al. [4] state that one makes a long-term commitment to the technology stack with the
decision to use a monolith.

3.1.2 Micro Frontend principles

MFs try to solve the problems of frontend monoliths (see Section 3.1.1). The following
paragraphs show the main principles of MFs that current research tries to solve with
different solutions.

Maintainability Steyer [78] mentions that the primary aspect for the use of MFs is
maintainability. Geers [58] and Pavlenko et al. [67] and Hasselbring and Steinacker [41]
coincide when they describe that the loose coupling and the small codebase make an MF
easier to understand. An MFA should have a shared-nothing architecture, where one
accepts "redundancy in favor of more autonomy and higher iteration speeds." [58]

Scalability Geers [58] mentions that technically, scaling does not apply to the frontend
code. MFs scaling refers to scaling software regarding its complexity and therefore scaling
of the development teams, which enables faster feature development. [41]

Adopted to business needs An MF should be modeled around business domains. [68]
It should represent the business domain in order to make sure that the team members
feel responsible for the features they build. [57] The agile approach reduces the need for
slow and formal inter-team communication and helps developers to deliver business value
as soon as possible without waiting for other teams. [58, 78]

Fault Tolerance Fault tolerance and failure isolation are key aspects of an MFA. [58,68]
An MF should be resilient in a way that each "feature should be useful even in the case
if JavaScript failed or did not run." [58]

35

3. Adoption of Microservice Concepts and Principles to Micro Frontends

Automation Hasselbring et al. [41] and Mezzalira [57] state that automation is the
key to DevOps success. Peltonen et al. [68] and Yang et al. [92] also mention a significant
need for a culture of automation with CI/CD pipelines. "Solid automation pipelines
will allow our micro-frontends projects to be successful, creating a reliable solution for
developers to experiment, build, and deploy." [57] This automation is especially critical
when one uses horizontal composition (see Section 2.2.2) because it can lead to many
(tens or hundreds) of artifacts. [57]

Mezzalira [57] recommends using the Infrastructure as Code (IaC) principle for new
pipelines. This IaC principle allows each MF team to create the pipeline with the
companies’ best practices easily. Therefore, one can keep feedback loops as fast as
possible, which leads to lots of iterations and constant feedback in, at most, minutes. [57]
The pipelines should be visualized so that every team member can see their pipelines
constantly (e.g., on a big screen in the office) so that teams can review and adapt their
pipelines as soon as they fail or begin to take too long.

Each team should own separate pipelines that enable a fast and independent release
of updates. [79] These separate releases reduce the update’s scope [79] and reduce the
downtime because of faster pipelines. [67]

Autonomy and Independence When one looks at existing papers and tries to find
principles that one should keep in mind when developing an MFA, nearly every author
mentions independent development and especially independent deployment as a key
attribute of an MF. [57,58,68,75,78,90,92] Autonomous or autarkic teams decoupled
from other teams enable this independence. [58, 78] Each team owns one MF that is self-
contained [58] and allows them to make decentralized decisions. [68] This decentralization
of decisions lets each team decide on the technology stack and "micro architecture" they
want to use. [58, 78, 79, 92] With the possibility to freely choose a different technology
in each architecture, one enables companies to support new technologies and avoids the
need for a rewrite of the complete frontend if one wants to use a different framework in
some parts of the system. [58,90] The autonomous codebase [57] enables teams to test
individually [92] and hide implementation details. [68] Teams need to define contracts
for their MFs that other teams can use to interact with hidden implementations. [68] To
avoid conflicts when one combines the different MFs into the complete system, Geers [58]
and Yang et al. [92] recommend to isolate the team’s code and use a prefix for each
team to avoid runtime conflicts and collisions with shared runtimes, global variables or
Cascading Style Sheet (CSS) class names. This prefixing further allows identifying the
ownership of parts of the code. [58]

3.1.3 Micro Frontend Challenges

MFs are not the only solution that developers will use in the future. They bring lots of
challenges one has to tackle. The following paragraphs briefly explain common problems
developers will face when implementing an MFA.

36

3.1. Micro Frontend Characteristics

Micro Frontend Teams Steyer [77] and Springer [75] state that introducing different
teams that probably use different frameworks to build an application adds additional
complexity to the development process and the resulting system. This system complexity
leads to a steeper learning curve for new developers, even if they already know the used
frontend framework. [79]

Although good team boundaries will reduce inter-team communication, teams must create
contracts for their application to share with other teams. [93]

Geers [58] and Pavlenko et al. [67] state that the initial setup is challenging and leads to
higher organizational complexity. Furthermore, in case of a bug or negative web page
performance, it can become challenging to find the team responsible for a bug or lousy
performance. [58]

Other aspects are cross-cutting concerns like analytics, monitoring, error tracking, or
running an internal npm registry. [58] One has to define which team is responsible for
those shared topics or even decide to have specialized component teams like the Spotify
Infrastructure Squads1. [58]

Nevertheless, Geers [58] states that "when done right, the boost in productivity and
motivation should be more significant than the added organizational complexity."

To ease the initial setup, Mezzalira [57] recommends providing an MF blueprint (e.g., a
Command Line Interface (CLI) tool) to scaffold a new MF project that already includes
common libraries (e.g., a logging library) or a sample pipeline configuration.

Isolation and Independence Isolation of MFs is not always as easy as running
different MS in separate processes. One has to think of solutions on how to avoid collisions
in the shared browser environment. [93] MFs can bring considerable heterogeneity into a
system by allowing each development team to freely choose their preferred technology.
This freedom can become challenging for developers, especially if there is a need that
a developer switches between teams. Geers [58] recommends discussing the level of
freedom an MF team has and possibly limiting the allowed technologies to a subset of
all available technologies. [58] It could become a nightmare if each MF setup is different
from others without the possibility to provide templates for new projects. Not sharing
but duplicating code can also lead to problems because one can not easily fix a bug of a
function implemented by different teams. [58]

Fault Tolerance and Error Handling Geers [58] mentions that it can become tricky
to find the error origin in an MFA. Finding memory leaks due to inadequate cleanup can
also become a challenge when the browser dynamically loads several MFs into one big
HTML document.

1https://engineering.atspotify.com/2014/03/27/spotify-engineering-culture-part-1/

37

3. Adoption of Microservice Concepts and Principles to Micro Frontends

Performance and Dependency Management Dynamic resource loading requires
more frontend code than a monolithic UI implementation, and it is essential to keep
an eye on web performance. [58] Geers [58] recommends using the performance budget
concept where one can, e.g., define a maximum bundle size for the individual MFs.

Springer [75] mentions that loading multiple MFs can lead to higher transfer rates because
each MF includes the required libraries. Therefore, it is crucial to think of dependency
management and options "how to avoid one library to be loaded more than once." [93]

Compiling One can deploy an MS as a single service, e.g., as a container. [75] In an
MFA, all MFs have the same client-side browser as a runtime environment. [75] Therefore,
one needs a strategy on how to compile and deploy an MF. Using server-side integration
techniques allows to inline script and style tags into the MF markup, leading to redundant
script tags that the browser executes multiple times, which can have unforeseen side-
effects and increases the CPU load. [58] One needs to decide on bundle granularity, from
an all-in-one bundle over team bundles to page and fragment bundles. [58] Geers [58]
and Steyer [78] recommend using just one bundle for one MF. Loading multiple bundles
from one server was a performance problem with the HTTP protocol, but with HTTP/2,
this is not an issue anymore. [58] The HTTP/2 "protocol reduced the overhead cost of
loading multiple resources from the same domain. Its built-in multiplexing and server
push features removed the need to manually inline assets into the page, which reduces
complexity in the application and is also great for cacheability." [58]

Asset handling A possible option to decrease the MF’s download size is to reduce or
reuse vendor libraries. [58] One can share a library as a global script tag that makes this
library available in all MFs. [58] Other possible solutions for sharing libraries are:

• Asset referencing via RequireJS2

• Asset referencing via CommonJS3

• The proposed new web standard Import maps4, which maps a unique name to an
absolute URL. [58]

• Webpack externals

• ES Modules with Rollup.js5, a web standard without the need for extra libraries
that allows dynamic loading of required vendor bundles [58]

• "ngx-build-plus" Tool [78], which produces a UMD bundle that allows splitting an
MF into library code and custom code

2https://requirejs.org
3http://www.commonjs.org
4https://github.com/WICG/import-maps
5https://rollupjs.org/

38

3.1. Micro Frontend Characteristics

• Webpack DLL plugin6

These options have the problem that teams need to agree on a global version or accept
that the same framework code in different versions needs to be downloaded, which
increases the download size.

Another problem is caching libraries or MF code. Each time a bundle changes, one needs
to make sure that the client fetches the library’s correct version. Geers [58] recommends
the use of cache busting, where each filename includes a hash. This naming strategy
requires to update all references to the new bundle name. One can reference the bundle
via the non-hashed name and use a server redirect that redirects a request to the hashed
version. Using a server-side rendering approach, one could fetch the latest bundle from
the teams’ server via SSI or ESI.

Another challenge can be to keep the markup and available bundle versions in sync. [58]
Using a load balancer, it is possible that on an update, a request arrives at an already
updated version of a container and an "old" container receives the fetch request of the
required dependency, which does not yet know the new bundle version. [58] Possible
solutions are sticky sessions in the load balancer that send all requests from one origin to
the same container or a global CDN that one needs to update before the actual markup
so that it serves old and new assets. [58]

Style Wang et al. [90] state that using an MFA should not harm the UX. That includes
the UI’s consistency, and one has to think of "how to manage common styles and make
sure that UX is consistent." [93]

Jackson [47], Wang et al. [90], Steyer [80], and Geers [58] recommend using a shared
UI component library that defines the basic look and feel of a system and provides a
consistent look for the whole application.

Testing An MFA consists of many separate parts that need to interact with each other.
One can test each MF individually to control the internal correctness. Nevertheless, there
is a high need for a solid testing strategy with End-to-End (E2E) tests to ensure functional
integration of the different MFs. [57] When using an application shell, Mezallira [57]
recommends making the shell team responsible for the E2E tests because it can access
all MFs.

3.1.4 When to use Micro Frontends
The web frontend is the prime interaction surface for users. [58] However, using MFs
is "not about the software. It’s about the people designing and building it." [58] In the
best case, users do not recognize any adverse effect when one migrates from a monolithic
architecture to an MSA.

6https://webpack.js.org/plugins/dll-plugin

39

3. Adoption of Microservice Concepts and Principles to Micro Frontends

An MFA is best for the web. [58] A native app is monolithic by design, with the possibility
of splitting it into vertical REST APIs and a horizontal monolithic UI layer. Thus, the
MF approach does not fit into the native app world.

Geers [58] states that the most significant difference to a monolith is the team structure.
Like MSs, one would move towards an MFA with an increasing project scope. At some
point, large groups lead to a lot of communication overhead and, therefore, complicated
decision-making. [58] MFs try to solve this problem.

The team size should be between five and ten due to the Two-Pizza Team rule suggested
by Amazon Chief Executive Officer (CEO) Jeff Bezos. [17]

3.1.5 Reasons against Micro Frontends
Springer [75] states that one "might not need Micro Frontends" and provides some
preconditions to fulfill when thinking of migrating towards an MSA. The application
needs to have extended functionality, which means to be involved and big enough. [75]
Otherwise, the overhead that one has to invest in MFs is not worth the time. [75]
When thinking of implementing an MFA, one should consider that it needs separated
development teams with a high degree of autonomy, e.g., taking the right tool for the
job. [75] Each team should own a database, the backend, and the frontend; and be
responsible for the implementation, the release, and the maintenance. [75]

Steyer [78] also mentions that it is essential to make sure that one needs MFs and that
they solve occurring problems. On a survey with five companies about MFs, one company
decided not to use an MFA because they have just one agile team without needing
a separate deployment. [78] Therefore, an MFA would introduce too much additional
complexity for development and deployment. [78]

Harms et al. [40] state that the "use of a UI monolith should be considered when UI
changes occur frequently across service boundaries or if the application’s domains cannot
be unambiguously assigned to the microservices."

Geers [58] coincides when he says that one should not use MFs with few developers where
communication is not an issue or if one has an unclear domain or overlapping features.

3.2 Adoption of Micro Service principles in Micro
Frontends

In this chapter, the thesis shows how one can adopt the MS principles and characteristics
to MFs. To do that, it was required to analyze and group the findings from Section 2.1
and map the to the principles and challenges from Section 3.1. Table 3.1 shows those
adoptions. The table has the following structure.

In the first column, Features, one can see a categorization into different features closely
related to the headings in Section 2.1 and 2.2. The second column, Microservices, contains

40

3.2. Adoption of Micro Service principles in Micro Frontends

the detailed principles or characteristics of the feature, which belongs to MS concepts
and requirements. The Relationship column defines the characteristics’ relationship from
MSs to MFs. There are three possible characters in this column.

+ The "+" sign means that the given MS principle does thoroughly apply to MFs

- A "-" sign shows that one can not adopt the MSs principle in this row to MFs

o The "o" character highlights that one can partially apply the given MS principle to
MFs.

Column 4, Difference in Micro Frontends, shows a brief explanation of why one can not
apply the MS characteristic to MFs or briefly explains the difference to MFs.

The following paragraphs describe the principles from table 3.1 that have a - or o sign in
the Relationship column. One can find the row’s explanation by matching the paragraph
name and the letter in the table’s Ref column.

a Availability concerning MSs means that one can scale the number of services according
to the system’s current load. MFs do not require such a property because the client-side
will perform most of the work.

b Scaling services independently is a significant benefit of an MSA, which helps to scale
only those parts of the system with a higher load. An MFAs, as described in paragraph
a, does not have the requirement to scale services. Scaling can also mean to be able to
scale the number of development teams. This team scaling applies to MSs and MFs.

c Preventing performance loss by scaling the system depending on the load is only
partially related to MFs. As mentioned in paragraph (a), most of the code runs in the
client’s browser. When one uses server-side rendering, scaling with regards to prevent
performance loss can probably be a required MF characteristic if the server has to execute
lots of logic to construct the pages.

d Auto-scaling MSs is a crucial feature, which, as described in paragraphs (a) and (c)
does not apply to MFs.

e In an MSAs, it is possible to run multiple instances of the same service, possibly with
different versions, to quickly route the incoming traffic to another service if one instance
fails or a newly deployed version contains a bug. An MF is only a chunk of code that
one can request in order to use this MF. Therefore, restarting an MF on the server is
impossible, but one can deploy multiple versions of the same MF and provide an older
MF version as a fallback for newer versions.

41

3. Adoption of Microservice Concepts and Principles to Micro Frontends

Feature Microservices Relationship Difference in Micro Frontends Ref

Scalability
availability - does not apply to MFs a
independent scaling o scaling refers to scaling of teams, not to components b

prevent performance loss (scale depending on load) o Server-side: maybe scaling required
Client-side: code executed in the browser c

Maintainability

reduce complexity +
increase pace of change +
loose coupling +
high cohesion +
increase code understandability +
small codebase +
limit bug scope +
extendable +
reusable +
Choreography over orchestration +
no-centralized control +
share-nothing philosophy +

DevOps Support independent development/test/deployment +
auto-scaling - scaling does not apply to MFs d

CI/CD

test and change parts of the system automatically +
short re-deployment times +
culture of automation +
needed because of high number of services +
separate test and production system +

Reliability
improved fault tolerance +
reduce impact area of failure +
quick restart/replace of faulty part o replace faulty part possible e

Independent Technology

support for different technologies +
different internal structure +
avoid vendor lock-in +
Possibly hard sharing of libraries +
Requires technology guidelines +

Responsibility Separation well-defined boundaries +
self-contained +
closed system +
hide implementation details behind API o hide implementation details behind fragment f
no commonly accepted size +
modelled around business concepts +
bounded context +
split if too large +
Split if not dealing with single responsibility +
decentralized data governance o decentralized API governance g
technology agnostic APIs - need to decide on technology (e.g. Web Components) h

Security increased effort because of distributed system +
additional protection (e.g., for services with critical data) - protection does not apply to frontend i

Innovation

limit threat of wrong technology choice +
develop and deploy new features fast +
reduce time-to-market +
use elasticity and pricing model of cloud environments o not as important as in MSs j

Communication

dumb middleware o applies to an application shell
Maybe difficult when using ESI or SSI k

dumb pipes +
smart endpoints o smart fragments/pages l
simple components with clean interface +
simple messaging +

Organization

Conway’s Law/Inverse Conway Maneuver:
structure teams and organizations according to architecture +

team responsible for product not working on project +
team responsible for complete stack (including pipeline, . . .) +
cover complete software lifecycle +
efficient small and independent teams +
reduce coordination and communication overhead +
Architecture as a long-term strategy (not project) +

Code Sharing Internal Open Source +

Patterns

API Gateway - usually not used, MF should have its own service m
Adapter MS / BFF +
Circuit Breaker o fallbacks if fragment/page can not be loaded n
Service Discovery o find MF bundle o
Load Balancer - not necessary p
Monitoring +
Logging (Log Aggregator) - logging already only in browser q
Profiling - not required in frontend r
Health Management Service - not necessary s
Configuration Service +
Correlation ID Pattern +

Development Templates define standards, provide templates for project start +

Challenges

Initial Setup +
Migration of legacy system +
Finding service boundaries o decide on horizontal or vertical split (including boundaries) t
Communication between services over network - communication of fragments/pages in same environment u
additional configuration effort +
More complex effort estimation +
Need for skilled developers +

- Shared Runtime v

Table 3.1: Adoption of MS Concepts and Principles to MFs

42

3.2. Adoption of Micro Service principles in Micro Frontends

f An MS commonly exposes its features via an API and hides the implementation
details behind it. When looking at MFs, one has to differentiate between vertical and
horizontal composition. Vertical composition, which divides an application into multiple
pages owned by different teams, exposes a complete page with hidden implementation
details and possibly configuration options (e.g., via query parameters). A horizontal MFs,
also called fragment, is self-contained and exposes, e.g., HTML attributes for configuring
it and emits events on which the parent component can listen (see 2.2.2).

g In an MSA, each service should own a separate database. An MF does not directly
communicate with a database to get information. Instead, an MF requests the required
data from an MS. It is recommended that each MF only communicates with its assigned
backend MS.

h MSs are entirely technology-agnostic. An MSA only requires that each MS exposes
its API via a commonly accepted, technology-agnostic interface like a REST API. An
MFA can require to deploy each MF for a specific technology (e.g., Web Components,
single-spa parcels). Nevertheless, the technology behind this "wrapper" technology can
be different for each MF.

i An MS can implement special protection mechanisms if it deals with critical data.
This protection does not apply to the frontend and is therefore not relevant to MFs.

j A browser loads the MF code and performs possible computations on the client-side.
Therefore, cloud pricing models are not relevant to MFs because they only require some
simple cloud space for hosting them.

k, l In an MSA, service implementations should be smart, and messaging as well
as possible middleware should be dumb. Those requirements also apply to MFs. An
application shell can act as middleware, and a page or a fragment is the pendant to a
service. Problems can arise when one combines client-side and server-side composition
techniques. There, it is relevant to keep the middleware (e.g., a CDN that uses ESI or
SSI) as simple as possible.

m As previously described in paragraph g, each MF should own its backend service.
One should not use the API Gateway pattern in an MFA because it would introduce
coupling between MFs.

n A Circuit Breaker deals with faulty or unreachable MSs. One can apply this pattern’s
principles to an MF parent application (e.g., an application shell) in a way that the MF
parent implements fallback mechanisms in case of a faulty or not available MF.

o Service Discovery can locate MSs locations at runtime. An MFA can adopt this
pattern by introducing a runtime discovery mechanism for MFs.

43

3. Adoption of Microservice Concepts and Principles to Micro Frontends

p Since most of the computation power required by an MF will be requested from the
client machine, an MFA does not require a load balancing mechanism.

q MSs are distributed across multiple server instances. This fact does not hold for MFs
because an MFA combines all the different fragments into one computation environment
and, therefore, already one central log destination. It can be valuable for MFs to use a
shared logging library that provides a consistent log message format.

r, s Profiling and Health management are not required for MFs since there are no
running instances of MFs.

t Finding service boundaries is even more involved in an MFA compared to an MSA.
One has to find service boundaries for a vertical split that will probably have the same
boundaries as the MS. Additionally, one has to think of extracting horizontal parts that
can the different vertical MFs can reuse.

u, v Network communication does not occur between MFs because they already live
in the same environment and can use other communication mechanisms. This shared
runtime introduces additional challenges that are not present in an MSA. One can find
those challenges, e.g., namespacing rules, in Section 3.1.3.

44

CHAPTER 4
Case study

Section 2.2 describes the different approaches that are currently known for building an
MFA. One can generally divide those implementation techniques into client-side and
server-side rendering techniques.

Server-side rendering is perfectly suitable for content-rich web application (e.g., a Web-
shop), because server-side rendering is faster than client-side rendering, mostly because of
caching abilities. This thesis concentrates on architectures that operate on the client-side,
especially on architectures that deal with implementing an MFA where each MF uses an
SPA. As one can see in Section 2.2, one can best implement an MFA with SPAs as its
main building blocks using the application shell approach.

The focus of this thesis is to evaluate whether one can use MFs for ERP application, as
mentioned in the introduction (see 1). ERP applications do not deal with huge content.
Instead, the main goal is to allow users managing the company’s processes. Users of such
applications spend a lot of their working time manipulating data via the ERP software.
Most of the newly developed applications use SPAs frameworks for implementing the
frontend. Therefore, this case study also concentrates on different methods to implement
an application shell-based MFA for SPAs.

Various MF frameworks exist. When performing research on MFs, no evaluation of the
existing MF frameworks could be found. Therefore, the thesis provides this framework
analysis.

Chapter 4.1 performs an analysis of existing client-side MF frameworks. In the following
sections, the thesis describes the use cases this thesis implemented (Section 4.3), introduces
the example application (Section 4.4), and describes the use case’s implementation details
(Section 4.5).

45

4. Case study

4.1 Micro Frontend framework analysis
Currently, no literature exists that analyzed available MF frameworks. Table 4.1 shows a
framework analysis of 26 MF frameworks to fill this gap in the literature. Each row in
the table represents one MF framework. The columns specify the examined attributes
which one can look up in Section 4.2.

Table 4.1 colors the cells in red, yellow, and green, which acts as a heatmap where one
can quickly check whether a framework exhibits specific attributes or not. A red-colored
cell shows that the framework represented in this row does have the attribute, or it was
not possible to analyze this feature due to a lack of documentation. A yellow-colored cell
either shows that the framework has only pieces of documentation or that the framework
only works for server-side rendering, which is not the topic of this thesis. A green-colored
cell shows support for the given attribute.

When looking at the table 4.1 heatmap, one can filter out two frameworks, which support
nearly every attribute. Those two frameworks are Web Components and single-spa. Web
Components are a new web standard that, at the time of writing this thesis, every well-
known web browser supports. Canopy1 initially developed the single-spa framework. This
framework looked most mature when comparing all the different client-side frameworks
listed in table 4.1.

4.2 Comparison attributes’ definition
This section explains in the following paragraphs the attributes one can find in the column
headings of Table 4.1.

Documentation The Documentation column shows the framework documentation
quality. Possible options are no, partly, and good. No shows that the framework does
not provide any documentation at all. Partly means that there is, e.g., only a short
readme file with a simple how-to-start guide and probably some boilerplate code that one
needs to start using the framework but no further documentation about the framework.
The value good in the documentation column shows that there is online documentation
available on the web. Most frameworks with good documentation often provide working
examples one can clone or download. Especially in such a new field, this helps a lot when
trying out a new framework.

Free tooling choice Free tooling choice refers to the option for a developer to freely
choose a build tool like rollup.js2 or webpack3. When a free tooling choice is not possible,
the framework either provides its own tools or requires to stick to the one specific build
tool.

1https://www.getcanopy.com/
2https://rollupjs.org/guide/en/
3https://webpack.js.org/

46

4.2. Comparison attributes’ definition

Technique This column specifies the technique that the frameworks try to support.
Frameworks analyzed in this thesis either work client-side, server-side, or a combination
of both. Additionally, the table shows frameworks built for bundle-loading, which is
required load the different MFs at the client.

Type The type column specifies the framework type. The Mosaic9 framework is a
collection of multiple different frameworks and services that one has to use together to
implement a server-side MFA. Server-side composition means composing the view out of
many files requested from different CDNs similar to ESI or SSI. A component library
is just a collection of pre-defined components one can use to build a frontend. Those
components are sometimes loaded at runtime or already included at compile time. A
framework with the type application shell is described in Section 2.2.4.

Boilerplate / Code Scaffolding / CLI This column shows whether the framework
provides a CLI tool or another tool that allows framework users to generate boilerplate
code. This generation, also called code scaffolding, is an essential feature for MFs, as
mentioned in Section 3.1.3 to allow MF teams to start with new projects quickly.

Multi-framework support Some of the analyzed frameworks allow splitting a mono-
lith into different MFs. Not all of them can handle different SPA frameworks but require
to stick to one framework pre-defined by the selected MF framework. Other MF frame-
works support the use of a different SPA framework for each MF. This multi-framework
support fulfills the requirements to a good MFA that each team should be able to select
its individual technology stack, independent of other MF teams.

Base framework Some frameworks are built on top of another MF framework. The
base framework column shows this framework that is used as a basis for the given MF
framework.

License It is interesting to note that 25 out of 26 MF frameworks are open source.
Only Bit, a component library, provides a paid solution to users. The other frameworks
are either and web standard or use the MIT or Apache-2.0 open source license.

47

4. Case study

Fr
am

ew
or

k
D

oc
um

en
ta

tio
n

Fr
ee

to
ol

in
g

ch
oi

ce
Te

ch
ni

qu
e

Ty
pe

B
oi

le
rp

la
te

ge
ne

ra
to

r
/

C
od

e
Sc

aff
ol

di
ng

/
C

LI
M

ul
ti-

fra
m

ew
or

k
su

pp
or

t
Ba

se
fra

m
ew

or
k

Li
ce

ns
e

Li
nk

M
os

ai
c9

pa
rt

ly
no

Se
rv

er
-s

id
e

se
rv

ic
e

co
lle

ct
io

n
ye

s
no

M
IT

lic
en

se
ht

tp
s:/

/w
w

w
.m

os
ai

c9
.o

rg
/

Pu
zz

le
JS

no
ye

s
Se

rv
er

-s
id

e
Se

rv
er

-s
id

e
co

m
po

sit
io

n
no

no
M

IT
lic

en
se

ht
tp

s:/
/g

ith
ub

.c
om

/p
uz

zl
e-

js/
pu

zz
le

-js
Po

di
um

go
od

?
Se

rv
er

-s
id

e
Se

rv
er

-s
id

e
co

m
po

sit
io

n
no

no
M

IT
lic

en
se

ht
tp

s:/
/p

od
iu

m
-li

b.
io

/
Bi

gP
ip

e
pa

rt
ly

no
Se

rv
er

-s
id

e
Se

rv
er

-s
id

e
co

m
po

sit
io

n
no

?
M

IT
lic

en
se

ht
tp

s:/
/g

ith
ub

.c
om

/b
ig

pi
pe

/b
ig

pi
pe

Bi
t

go
od

no
Se

rv
er

-s
id

e
co

m
po

ne
nt

lib
ra

ry
ye

s
ye

s
pa

id
ht

tp
s:/

/b
it.

de
v/

Lu
ig

i
go

od
no

Se
rv

er
-s

id
e

ap
pl

ic
at

io
n

sh
el

l
no

no
A

pa
ch

e-
2.

0
Li

ce
ns

e
ht

tp
s:/

/l
ui

gi
-p

ro
je

ct
.io

/
W

eb
C

om
po

ne
nt

s
go

od
ye

s
C

lie
nt

-s
id

e
H

T
M

L
st

an
da

rd
no

ye
s

Po
ly

m
er

W
eb

st
an

da
rd

?
Si

ng
le

-s
pa

go
od

ye
s

C
lie

nt
-s

id
e

ap
pl

ic
at

io
n

sh
el

l
ye

s
ye

s
M

IT
lic

en
se

ht
tp

s:/
/s

in
gl

e-
sp

a.
js.

or
g/

Q
ui

an
ku

n
pa

rt
ly

?
C

lie
nt

-s
id

e
ap

pl
ic

at
io

n
sh

el
l

ye
s

ye
s

Si
ng

le
-s

pa
M

IT
lic

en
se

ht
tp

s:/
/g

ith
ub

.c
om

/u
m

ijs
/q

ia
nk

un
Pi

ra
l

go
od

ye
s

C
lie

nt
-s

id
e

ap
pl

ic
at

io
n

sh
el

l
ye

s
no

R
ea

ct
M

IT
lic

en
se

ht
tp

s:/
/p

ira
l.i

o/
Fr

in
tJ

S
pa

rt
ly

no
C

lie
nt

-s
id

e
ap

pl
ic

at
io

n
sh

el
l

ye
s

ye
s

M
IT

lic
en

se
ht

tp
s:/

/g
ith

ub
.c

om
/f

rin
tjs

/f
rin

t
M

oo
a

pa
rt

ly
?

C
lie

nt
-s

id
e

ap
pl

ic
at

io
n

sh
el

l
no

ye
s

Si
ng

le
-s

pa
M

IT
lic

en
se

ht
tp

s:/
/g

ith
ub

.c
om

/p
ho

da
l/

m
oo

a
N

gx
Pl

an
et

pa
rt

ly
no

C
lie

nt
-s

id
e

ap
pl

ic
at

io
n

sh
el

l
no

no
M

IT
lic

en
se

ht
tp

s:/
/g

ith
ub

.c
om

/w
or

kt
ile

/n
gx

-p
la

ne
t

ic
es

ta
rk

no
?

C
lie

nt
-s

id
e

ap
pl

ic
at

io
n

sh
el

l
no

ye
s

M
IT

lic
en

se
ht

tp
s:/

/g
ith

ub
.c

om
/i

ce
-la

b/
ic

es
ta

rk
Is

om
or

ph
ic

La
yo

ut
C

om
po

se
r

pa
rt

ly
?

cl
ie

nt
an

d
se

rv
er

-s
id

e
Se

rv
er

-s
id

e
co

m
po

sit
io

n
+

fro
nt

en
d

ro
un

tin
g

no
ye

s
Si

ng
le

-s
pa

/T
ai

lo
rX

A
pa

ch
e-

2.
0

Li
ce

ns
e

ht
tp

s:/
/g

ith
ub

.c
om

/n
am

ec
he

ap
/i

lc
O

pe
nC

om
po

ne
nt

s
pa

rt
ly

no
cl

ie
nt

an
d

se
rv

er
-s

id
e

co
m

po
ne

nt
lib

ra
ry

ye
s

ye
s

M
IT

lic
en

se
ht

tp
s:/

/g
ith

ub
.c

om
/o

pe
nc

om
po

ne
nt

s/
oc

A
R

A
pa

rt
ly

?
cl

ie
nt

an
d

se
rv

er
-s

id
e

ap
pl

ic
at

io
n

sh
el

l
ye

s
ye

s
A

irb
nb

H
yp

er
no

va
M

IT
lic

en
se

ht
tp

s:/
/a

ra
-fr

am
ew

or
k.

gi
th

ub
.io

/w
eb

sit
e/

W
eb

pa
ck

5
M

od
ul

e
Fe

de
ra

tio
n

go
od

no
Bu

nd
le

-lo
ad

in
g

?
no

ye
s

W
eb

st
an

da
rd

ht
tp

s:/
/w

eb
pa

ck
.js

.o
rg

/c
on

ce
pt

s/
m

od
ul

e-
fe

de
ra

tio
n/

Sy
st

em
js

pa
rt

ly
no

Bu
nd

le
-lo

ad
in

g
?

no
ye

s
M

IT
lic

en
se

ht
tp

s:/
/g

ith
ub

.c
om

/s
ys

te
m

js/
sy

st
em

js
nu

z
pa

rt
ly

?
Bu

nd
le

-lo
ad

in
g

?
ye

s
?

M
IT

lic
en

se
ht

tp
s:/

/d
oc

s.n
uz

.a
pp

/i
nt

ro
du

ct
io

n/
ov

er
vi

ew
/

O
ne

-a
pp

no
no

?
co

m
po

ne
nt

lib
ra

ry
no

no
A

pa
ch

e-
2.

0
Li

ce
ns

e
ht

tp
s:/

/g
ith

ub
.c

om
/a

m
er

ic
an

ex
pr

es
s/

on
e-

ap
p

N
ut

no
?

?
?

?
?

M
IT

lic
en

se
ht

tp
s:/

/g
ith

ub
.c

om
/n

ut
-p

ro
je

ct
/n

ut
C

el
lu

la
r

JS
no

ye
s

?
?

?
?

M
IT

lic
en

se
ht

tp
s:/

/g
ith

ub
.c

om
/a

fse
c/

ce
llu

la
r-

js
M

isk
pa

rt
ly

?
?

?
ye

s
no

R
ea

ct
A

pa
ch

e-
2.

0
Li

ce
ns

e
ht

tp
s:/

/c
as

ha
pp

.g
ith

ub
.io

/m
isk

-w
eb

/
Sc

al
ec

ub
e-

js
no

?
?

?
?

?
A

pa
ch

e-
2.

0
Li

ce
ns

e
ht

tp
s:/

/g
ith

ub
.c

om
/s

ca
le

cu
be

/s
ca

le
cu

be
-js

Be
ria

l
no

?
?

?
?

?
M

IT
lic

en
se

ht
tp

s:/
/g

ith
ub

.c
om

/b
er

ia
ljs

/b
er

ia
l

Ta
bl

e
4.

1:
M

ic
ro

Fr
on

te
nd

fra
m

ew
or

k
co

m
pa

ris
on

48

4.3. Case selection

4.3 Case selection
The thesis goal is to answer the research questions defined in Chapter 1, which are
repeated here:

• Can an MFA replace a monolith SPA with a client-side rendering solution without
losing performance and, therefore, UX?

• Can the MF approach lower the risks of updating or adding a new feature in a
complex web application?

To evaluate these questions, it is required to implement two general things. (i) One
needs a traditional SPA implementation that acts as a reference point for analyzing the
implemented SPA MSAs. (ii) One needs one or more implementations of a SPA MSA.

The monolithic application represents applications implemented by most companies
who use an SPA framework. This monolith is the basis for the evaluation of the MFA
implementations, and also aligns with the research question that tries to answer whether
one can use an MFA instead of a monolith without loosing performance. The exact chosen
case itself is not relevant to the evaluation. It is required that the case study contains
different pages which refer to the vertical split defined in Section 2.2.1. Furthermore,
horizontal composition (see Section 2.2.2) is a major part of such complex web applications
to avoid code duplication. All of these standalone pages and fragments need some type
of communication between themselves. The case studies show one possible approach for
this communication, as it is described in Section 2.2.3.

This thesis uses three cases to evaluate the aforementioned research questions that the
following three paragraphs describe.

Monolithic Angular Single Page Application The Angular monolith SPA is the
reference implementation implemented using the Angular4 SPA framework. This imple-
mentation will use the lazy-loading technique that allows the application to ship just the
main application initially and dynamically reload more modules as users will request
them. (e.g., by clicking on a navigation item)

Multi-framework Single Page Application based on a Micro Frontend Frame-
work One major factor for using MFs is to allow the developers to choose the required
technology stack freely. This feature can be enabled by using the single-spa5 MF frame-
work, which allows to implement separate MF applications and load them dynamically
in one application shell. The decision to use the single-spa framework was made because
the framework evaluation (see 4.1) revealed that this framework offers the most features.
The single-spa framework especially provides excellent documentation, including sample

4https://angular.io/
5https://single-spa.js.org/

49

4. Case study

applications, which allows building such a complex architecture quickly. It is important
to note that one should not expect the same performance as the Angular monolith since
each framework will require to load its own framework code. This case primarily focuses
on showing the possibility to fulfill the MF requirements one can find in chapters 3.1.2
and 3.

Angular Micro Frontend using Module Federation At the time of writing this
thesis, a lot was going on in blogs and social media entries concerning MFs and the new
Webpack 5 feature Module Federation6, which was released in October 2020. The most
exciting blog entry concerning this topic is from Manfred Steyer [82], who shows a short
case study on using the new Webpack 5 ModuleFederation Plugin to implement an MF
using Angular. Therefore, the third case study of this thesis will implement and evaluate
this new feature, which will probably be the new "gold standard" for implementing an
MFA.

4.4 Introduction to the example application
As already mentioned in the introduction (Chapter 1), using an MFs architecture is very
relevant for ERP applications. An ERP application is mostly a huge application where
users log in to the system once and then use the system for their daily working tasks.
Therefore, a server-side rendering approach that is especially suitable for content-rich
applications like webshops is not the best approach for the ERP scope. Users need
to interact with the system and often change between different pages that load data
dynamically, which shows the need for a SPA that was designed for such tasks since they
do not require a page reload on navigation or data managing tasks.

Therefore, the decision fell on implementing a simple ERP application as the example
app. A Welcome page (see figure 4.1a) shows just a simple welcome message, a navigation
panel, and a button that navigates the user to a login page. There is a simulation of
different teams where each team is responsible for specific parts of the system to simulate
a big ERP system development company. One can identify the parts of each team’s
system by looking at the colored borders in figures 4.1, 4.2, and 4.3.

The following sections describe the different pages that separate teams would implement
in a real-world application.

4.4.1 Navigation Panel
The team navigation implements a navigation panel (see figures 4.1, 4.2, 4.3) that displays
Links to different other teams’ modules. An anonymous user only sees a login button,
whereas an authenticated user can see further links to the available pages. It is interesting
to note that the login button is encapsulated into a so-called user panel (see figure
4.1b) that either displays the login button only if no user is logged in to the system

6https://webpack.js.org/blog/2020-10-10-webpack-5-release/

50

4.4. Introduction to the example application

or displays the current user’s name and a logout button to simulate inter-fragment
communication between different MF fragments. Team authentication provides this user
panel as a separate MF fragment, and team navigation uses this fragment from the other
development team.

Figure 4.1: Case Study Application: (a) Welcome Page and, (b) User Panel

4.4.2 Login
The login page (see figure 4.2a) provides a simple username/password login form. The
Angular monolith and the Angular Module Federation case studies implement this page
as part of a login module implemented in Angular. The single-spa case study implements
this case study as a single-spa React7 application.

Figure 4.2: Case Study Application: (a) Login and (b) Dashboard

4.4.3 Dashboard
As soon as a user correctly logs in to the system via the login page, he or she will be
redirected to the dashboard page (see figure 4.2b) that the team dashboard owns. The

7https://reactjs.org/

51

4. Case study

dashboard page only shows some placeholder images in the example application that
would display statistics or other vital information in a real-world application. The team
dashboard implements this application as an angular SPA in all three study cases.

4.4.4 Article Administration / Sales

The team article provides an overview (see figure 4.3a) of articles that the example
company produces to simulate an ERP application. Team Sales provides an overview
for a salesperson to manage article orders (see figure 4.3b). The singles-spa case study
implements those pages a Vue.js8 applications.

Figure 4.3: Case Study Application: (a) Article Administration and (b) Sales Adminis-
tration

4.5 Implementation details
This section covers the case studies’ implementation details and explains some specifics
of each approach. Section 4.5.1 explains how those MFs were implemented. Section 4.5.2
explains how and where the applications were deployed.

4.5.1 Case Study implementations

Implementing a new technology can often be very challenging, especially if there is only
little documentation available. For the architectures implemented in the case studies
for this thesis, one had to research various web pages, example videos, and blog posts.
Furthermore, especially for using the single-spa MF framework, it was necessary to
contribute to the open-source project by notifying the maintainers about small but still
existing bugs. Thankfully, the developers from single-spa reacted very quickly so that
those problems could be solved very fast.

The backend for those applications is just an example REST API that would, in a
real-world architecture, be an MSA (see figures 4.4, 4.5, 4.6). It does simply expose some

8https://vuejs.org/

52

4.5. Implementation details

example GET endpoints that provide some dummy data. The thesis used Node.js9 with
the Express.js10 framework for implementing these REST endpoints.

The following paragraphs briefly explain the most important implementation details and
the system architecture.

Angular Monolith The Angular monolithic application does not use any new tech-
nology. It was created to have a reference point for the performance measurements (see
Chapter 5). To have an MF-ready application, the application was already divided into
different modules that represent the single MFs. The application uses the Angular Lazy-
loading technique to shrink the download size of the initial app download. This behavior
is already similar to loading MFs dynamically, but in a traditional Angular application,
the complete code, including all modules, has to be compiled together. Nevertheless, the
lazy loading technique requires that the builder compiles the application into multiple
files that the browser can request when needed. Figure 4.4 shows this architecture. The
application and it’s modules are bundled at once. Each module gets a separate bundle
that the main application can load on demand.

Figure 4.4: Case Study Application: Monolith Architecture

Single-spa Micro Frontend To create a single-spa application, the single-spa team
provides the create-single-spa11 CLI interface to create boilerplate code. This CLI can
create three types of a single-spa application where this case study uses two of them. The
main building block of a single-spa architecture is a so-called root-config. This root config

9https://nodejs.org/en/
10https://expressjs.com/de/
11https://single-spa.js.org/docs/create-single-spa/

53

4. Case study

is a shell application responsible for loading the registered MFs based on the current
route. It uses the browser’s history API to do that.

Each single-spa MF is called a single-spa application and can use a different SPA
framework. To allow the single-spa root-config to load an application, it is required that
the application exports three lifecycle properties (bootstrap, mount, and unmount).
The single-spa root-config calls those lifecycle properties accordingly. The bootstrap
function is called exactly once before the application gets mounted for the first time.
The mount function gets called when the application is currently not mounted, and the
single-spa root-config determined a route change that matches this application’s route.
This mount function should then create, e.g., DOM elements, to render its content.
The unmount function gets called when an application is currently active but is not
requested anymore. The task of the application is then to clean up itself (e.g., remove
DOM elements, free allocated memory).

At the single-spa root-config, one can then use registerApplication to register a
single-spa application that provides those lifecycle methods. Each single-spa MF appli-
cation should be deployed separately. (for more details, see the following Section 4.5.2)
To determine where to find the applications, it is recommended to use an importmap12,
which is an object of key-value pairs that the browser queries for a specific key (a unique
value for an MF) and gets the corresponding value (an URL that points to the location of
the MF to load). Currently, not all browsers support the importmap standard. Therefore,
single-spa root-config uses SystemJS13, a JS library that provides the same functionality
as a native importmap.

As one can see in Section 4.4, the team navigation has to include a fragment from the
team authentication, namely the user panel. The team authentication implemented
the login page as a single-spa application and a separate fragment, the user panel, as a
Web Component to test and show how one can use WebComponents (see Section 2.2.2)
combined with single-spa. To enable communication between applications and the user
panel fragment, the architecture uses the Broadcast Channel API (see Section 2.2.3).
The fragment code, including CSS, is encapsulated into the ShadowDOM to prevent style
or script leakage to other components outside the user panel.

One can find an architecture diagram in figure 4.5.

Module Federation Micro Frontend As described in the first paragraph of this
section, Angular Monolith, it was not possible to build an application with lazy-loaded
modules where one or more modules are separate projects until the Release of Webpack
5 in October 2020. Webpack 5 now supports Module Federation. With this approach,
one can tell Webpack that parts of the application do not exist locally but can be loaded
into the application at runtime.

12https://wicg.github.io/import-maps/
13https://github.com/systemjs/systemjs/blob/master/docs/import-maps.md

54

4.5. Implementation details

Figure 4.5: Case Study Application: single-spa Architecture

Module Federation generally provides two different operation modes that one can specify
via the Webpack 5 Module Federation Plugin. The first operation mode can be used
for applications built separately and later loaded into another application. One can tell
the module federation plugin one or more modules that the application exports at this
operation mode. Each exported application needs to have a unique name so that it
the consuming application can identify it. One can use the second operation mode in
applications that want to consume exported modules from other projects. It is necessary
to define the exported modules in the consuming applications ’remotes’ property of the
Module Federation plugin.

This requirement to specify remotes with the MFs locations upfront introduces coupling
between the exported applications and the consuming application. But there is some
other way to consume an exported module without knowing the remote applications’
URLs at compile time.

The Module Federation case study uses this approach in the shell application similar
to the single-spa root-config. With the help of the function loadRemoteModule from
the @angular-architects/module-federation package14, one can dynamically
register remote applications for specific routes and lazy-load them dynamically when
they are requested. This example application loads the importmap, as described in
the previous paragraph, via a LookupService to obtain existing remotes and their
location. Each application defined in the importmap gets a navigation item assigned at
the navigation bar so that users can navigate to the different MFs. Figure 4.6 shows this
architecture.

4.5.2 Continuous Integration / Continuous Deployment
A working and reliable CI/CD setup is essential when dealing with an MFA. Each part
of the system should be independent of other systems to avoid unwanted dependencies
between the individual parts. Thus, this thesis implemented the case studies by following
all the guidelines and requirements reported in Section 3.1.2 and Chapter 3. As already
mentioned in those previous sections, there are multiple ways to organize the source code
(e.g., single repository per project, monorepo). The two MF case study implementations

14https://github.com/angular-architects/module-federation-plugin

55

4. Case study

Figure 4.6: Case Study Application: Module Federation Architecture

use the single repository per project approach, supporting the independence principle.
One can find all the repositories online at public Gitlab15 repositories. The URLs to
those repositories are provided in the appendix (see Chapter 6.1).

Google Cloud Platform Google provides a free tier for new users with a 300 USD
credit that one can spend on the Google Cloud Platform (GCP)16, which offers various
cloud services like Virtual Machine (VM) instances, Cloud Storage or Kubernetes17

clusters. This thesis makes use of this offer for deploying the case study implementations.

The Angular monolith application is containerized using an Nginx18 container image that
is configured to serve the static Angular deployment files.

The single-spa MFA also uses a containerized Nginx instance for serving the root-config.
The individual MFs are packaged into single JS files, which are then served on a publicly
exposed Google Cloud Storage Bucket.

The same procedure is used for serving the Angular Module Federation case study. The
shell application lives inside a containerized Nginx instance, and the packaged MF files
are statically served via the Google Cloud Storage.

CI/CD pipeline Gitlab, which stores the source code of the applications, also provides
a free and easy to use CI/CD pipeline infrastructure with publicly available agents.

Each repository has its pipeline for building, testing, and publishing each MF individually.
Each pipeline automatically runs on a push to the repository.

For the Angular Monolith, the single-spa root-config, and the Module Federation shell,
the pipelines operate in three steps. Step one (build) builds the project to ensure that
the current commit’s code is still buildable. In the second step (package), the project
is containerized using Docker19, and the resulting container is published to the GCP

15https://gitlab.com/
16https://console.cloud.google.com/
17https://kubernetes.io/
18https://www.nginx.com/
19https://www.docker.com/

56

4.5. Implementation details

container registry. Step three (deploy) calls the Kubernetes cluster running inside the
GCP to update the currently running containers with the newly deployed container
image.

The other MFs (e.g., the dashboard MF) are built in a first step and then pushed to the
Google Cloud Storage Bucket. Each deployment file gets assigned a unique hash value in
its name to ensure that the browser always downloads the newest MF version.

When a pipeline pushes a new version of an MF to the Google Cloud Storage, it is
necessary to make the shell (root-config) applications aware of those new versions. As
explained in the previous paragraph, an importmap is used to accomplish this task. This
importmap (a JSON file consisting of key-value pair that contains mappings of unique MF
names to URLs) is stored next to the MF deployment files on the Google Cloud Storage.
When a new commit is pushed to an MF repository, the pipeline’s last step is to update
the importmap so that the belonging MF name (the key of the importmap’s) points to
the new filename of the currently deployed MF. When this importmap file gets updated
by two or more pipelines synchronously (e.g., team navigation and team authentication
publish a new version of their MF simultaneously), it is possible that race conditions
apply and one of those two updates are lost. To resolve this issue, the single-spa team
created a tool called import-map-deployer20. This thesis implementations use this import
map deployer, which is again deployed as a Docker container to the GCP Kubernetes
cluster and has access to the Google Cloud Storage. The import-map-deployer exposes
API endpoints that allow a developer to update, insert or delete an importmap entry.
The import-map-deployer takes care of possible synchronous updates to the same import
map and ensures that no changes are lost during the update process.

20https://github.com/single-spa/import-map-deployer

57

CHAPTER 5
Evaluation

The case studies described in Chapter 4 describe the different approaches with their used
technology and the implementation details. To evaluate the thesis research questions
(see Chapter 1), it is essential to evaluate the deployed architectures. For evaluating the
first research question dealing with performance, it was necessary to perform website
performance tests. The second research question, whether an MF approach can lower
the risks when changing a frontend software system, can be answered by conducting the
architecture metrics defined in Section 5.1.2.

A correct and reproducible evaluation ensures comprehensible results. This thesis deployed
the case study applications on the GCP. Deploying all artifacts in the same region and
zone is crucial to avoid negative side-effect like network latency issues. Figure 5.1 shows
the evaluation architecture. All services required for running the tests live inside the
eu-west-3a region/zone provided by the GCP. A private WebPageTest1 instance was
also deployed in the same zone. Section 5.3.1 describes the exact evaluation details.

This chapter is structured as follows: Various quality metrics for measuring website
quality exist in literature that Section 5.1 describes. Not all of these metrics are suitable
for evaluating this thesis’ case study, and Section 5.2 will briefly mention the metrics
this thesis conducts for the evaluation. Section 5.3 explains how the measurements for
those metrics were performed, and Section 5.4 presents and describes the results.

5.1 Quality metrics
To evaluate the implemented MFs compared to a monolithic system, one must research
existing quality metrics for web pages. There are two general ways in research for analyzing
how users think of UIs. UX research deals with analyzing the "acceptance, experience,

1https://github.com/WPO-Foundation/webpagetest

59

5. Evaluation

Figure 5.1: Case Study Application: Evaluation Architecture

and crucial design factors," while Quality of Experience (QoE) primarily focuses on
"technical aspects and subjective perception of waiting times." [6] The following Section
5.1.1 only focuses on QoE aspects relevant for analyzing MFs load times compared to
monolithic systems. Furthermore, it is relevant to validate that a distributed architecture
like an MFA helps improving the maintainability of a software system compared to a
monolith. Cojocaru et al. [18] presented a survey that shows metrics to analyze the
quality of MSs automatically decomposed from monolithic applications. Section 5.1.2
analyzes those metrics for measuring the complexity of a distributed software system a
software system and presents the metrics that one can use to measure the MFA quality.

5.1.1 Quality of Experience
Bouch [12] and Galetta et al. [35] already analyzed how page load times impact user
satisfaction. Bocchi et al. [11] state that companies like Amazon, Google, or Shopzilla
report up to 12% increased revenue due to load time reductions by just a few seconds.
Butkiewicz et al. [15] report that more than 50% of randomly selected web pages from
the Quantcast2 top-20000 have a page load time of more than 2 seconds. "User studies
and industry surveys show that users are likely to be frustrated beyond this two second
threshold." [61] The higher a web page’s delay, the lower the QoE is, resulting in worse
UX and, therefore, a higher likelihood of user disengagement leading to more considerable
economic losses. [11]

Barakovic et al. [6] describe QoE as the user’s "degree of delight or annoyance." They
performed a QoE survey and found that many studies (11) report that the "waiting

2http://www.quantcast.com/top-sites

60

5.1. Quality metrics

time is the key influencing factor when it comes to end-user Web QoE." [6] Egger et
al. [28] state that "QoE tries to link performance as closely as possible to the subjective
perception of the end user." They formulated the WQL hypothesis, which claims that the
"relationship between Waiting time and its QoE [. . .] is Logarithmic." Figure 5.2 shows
this logarithmic correlation between page load times and the MOS on typical loading or
search tasks.

Figure 5.2: "User satisfaction for various constant page load times" [28]

The following section shows metrics for analyzing the QoE of web pages. Bocchi et al. [11]
provide a categorization into four categories. (i) Time-Instant metrics, (ii) Time-Integral
metrics, (iii) Compound scores, and the (iv) Mean Opinion Score. The Mean Opinion
Score is a benchmark for other metrics that calculates the average users’ subjective ratings
and is not further analyzed due to the challenging task of collecting MOS points. [11]
The following paragraphs list and briefly describe metrics of the first three categories
that Bocchi et al. [11] provide and extend them by metrics from other literature.

Time-Instant metrics

Time-Instant metrics are easy to measure but can not express complicated dependencies
between rendering tasks and the perceived UX. The following paragraphs briefly explain
Time-Instant metrics.

61

5. Evaluation

onLoad The onLoad (also called Page Load Time) measures the time taken to load all
page objects and is generally excepted as the leading performance indicator. [11]

Time To First Byte The TTFB metric expresses the page reactivity. [11]

DOM event The DOM event occurs when the browser downloaded the DOM, and
the rendering can start. [11]

Time To First Paint The Time To First Paint (TTFP) metric shows when the first
object is rendered. [11]

Above-the-Fold Above-the-Fold (ATF) [14] defines the time at which a browser shows
all content visible in the user’s viewport. Calculating this metric is very complicated
since it requires taking screenshots during the rendering phase and pre-process those for
calculating the ATF metric. [11]

Other Time-Instant metrics

• The total number of objects loaded [15]

• The number of these loaded objects that are JSs [15]

• The total web-page size [15]

• The number of servers contacted to load a page completely [15]

• The number of origins contacted in loading objects on the page [15]

• the TTI that defines the period before a user can interact with UI [40]

• The latency for the initial web page call [40]

• The load time for a page change [40]

Time-Integral metrics

The most prominent metric in this category is Google’s SpeedIndex. The Speed Index
considers the whole process leading to the visual completion of the web page. [11] To
calculate the Speed Index, one needs to take snapshots of the web browsing session
(default: 10fps) and compose a filmstrip from those snapshots using it to infer the visual
page completion. [11] Bocchi et al. [11] state that the Speed Index metric has limited use
due to computational complexity. It is interesting to note that Time-Integral metrics have
a lower bound given by the TTFB because rendering can not start before the first byte
of payload arrived at the client. [11] Additionally, Bocchi et al. [11] claim that besides
time-integral metrics are more fine-grained, "any time-instant metric can be considered
as the upper bound of the time-integral metric."

62

5.1. Quality metrics

Compound Scores

Compound Scores like Yahoo’s YSlow 3, Google’s Page Speed Insights4, or dynaTrace5

are usually expressed as a set of heuristics combined with weights. [11] Those heuristics
(e.g., image compression rate) are often "unrelated to event timing" and, therefore, hard
to map to QoE.

Besides those metrics, Barakovic et al. [6] mention that since the extensive use of HTML/5
and AJAX, not only the page load times are interesting to calculate but also how users
perceive element refreshes triggered by dynamically load fragments. They recommend
addressing this issue in future research. Furthermore, they describe that it can be of
particular interest to examine the web QoE on real interactive page views that a given
task requires instead of just gathering metrics for different sites separately. [6]

5.1.2 Micro Frontend Architecture metrics

Decomposing a monolithic architecture into individual parts must not negatively influence
the UX or even improve it. Companies decide to implement an MFA because they want
to improve, e.g., system maintainability, deployment speed, and others, as this thesis
describes in Section 2.1.1. When developing such a system, it is crucial to evaluate
whether the requirements can be fulfilled or not. Cojocaru et al. [18] presented metrics
that one can classify into two types. (i) Static analysis, and (ii) dynamic analysis. The
following sections and paragraphs present those metrics defined by Cojocaru et al. [18],
adopted to MFs, which one can use to measure the migration effects when migrating
from a monolithic frontend application to an MFA.

Static analysis

The static analysis deals with analyzing a software system without the need to run a
system. [18]

Granularity This metric measures the system size. One can analyze the LOC count
or the number of exposed interfaces as a workload for this metric.

LOC and Open Interfaces Cojocaru et al. [18] define the LOC and Open Interfaces
metrics, which are already included in the aforementioned granularity metric. They
mention that this LOC metric is "rather informative than reliable" and that it is more
useful to use this metric for comparing the relative size between components instead of
conducting the plain LOC count to identify possible "big components." [18]

3http://yslow.org/ruleset-matrix/
4https://developers.google.com/speed/docs/insights/v5/get-started
5https://www.dynatrace.com/

63

5. Evaluation

Cohesion Cohesion measures whether the service has only single responsibility or not.
One can calculate this metric by determining the ratio of "operations per client" and
the "operations per client times the available operations" of the complete system. A low
cohesion value can reveal possible candidates that could be further decomposed into
standalone parts.

Coupling Coupling measures the dependencies between MFs. If this metric shows
circular references between the individual parts, those can be seen as merge candidates.
One can calculate this metric by analyzing the ratio between the number of exposed
attributes and events and the number of attributes and events consuming from other
MFs.

Technology Heterogeneity This metric counts the number of involved technologies
in an MF.

Dynamic analysis

Dynamic analysis operates on running software and can be used for validating static
analysis metrics or "identifying new flaws." [18]

Execution cost The execution cost is the monetary value required for hosting an MF.
Since most of the computing power will reside on the client-side and not on the server,
this metric will not be very informative, but MFs can introduce some additional running
service costs (e.g., an import-map-deployer as described in Section 4.5), which one must
have in mind.

Usage frequency The usage frequency in an MSA describes the ratio of requests to
an MS and the overall requests to all services of an MSA. One can adopt this metric vy
calculating the ratio of the number of MFs that consume another MF and the overall
number of MFs.

Reusability The usage frequency metric is related to the reusability metric and can
be used to analyze the reusability of MFs.

Maintainability The maintainability metric is a combination of other metrics (gran-
ularity, technology heterogeneity, coupling, and cohesion). A good maintainable MFA
should exhibit high cohesion, low coupling, and a homogenous technology stack.

Deployment and Agility To raise the maintainability of a software system, it is
crucial to shortening deployment cycles. A good and fast CI/CD setup helps to achieve
this goal by automating manual deployment tasks. One can measure the deployment
times in an MFA by measuring the pipeline runtimes of the individual MFs.

64

5.2. Performance metric selection based on literature analysis

Health Management The Health Management metric is a boolean indicator that
describes whether an MF can deal with failures. In an MF case, this metric shows
whether the MF team provides fallbacks to static content if the MF is not available.

Organizational Alignment This metric is related to Conway’s Law (described in
3.1.2) and shows how good or bad a company structure is related to the software
architecture. This metric is rather intuitive, and Cojocaru et al. [18] did not define any
calculations for it.

5.2 Performance metric selection based on literature
analysis

This section explains the metrics this thesis uses for evaluating the case studies. The
following Section 5.2.1 describe the webpage performance metrics and Section 5.2.2 lists
the used architecture metrics.

5.2.1 Performance metrics
Section 5.1.1 describes the available QoE metrics. The thesis uses the following metrics
for the evaluation of the case studies:

• onLoad

• DOM event

• Total web-page size

As described in Section 5.1, those time-instant metrics are an upper bound for time-
integral metrics. Thus, it is not necessary to evaluate any time-integral metrics for
answering the research questions.

5.2.2 Architecture metrics
In addition to those performance metrics, architecture metrics described in Section 5.2.2
help to formally analyze whether architectural requirements to an MFA can be fulfilled
with the technologies used in the case studies.

This thesis will evaluate the following architecture metrics:

• LOC

• Technology Heterogeneity

• Deployment and Agility

65

5. Evaluation

5.3 Performance metric measurement on the monolith
and the Micro Frontend implementation

As described in Section 4.5, the thesis used GCP for deploying the different MFA parts in
a cloud environment. All those services were deployed in the eu-west-3a region/zone,
a Google Datacenter in Frankfurt in Germany. To decrease the risk of measurement
errors due to network latency, it is essential to run the tests from a virtual machine that
lives in the same zone as the services.

The following Section 5.3.1 describes how the performance metrics were gathered, and
Section 5.3.2 describes the architecture metrics data origins.

5.3.1 Performance metric gathering - WebPageTest
SPAs have a significant advantage compared to other technologies like SSR in that
they operate entirely on the client-side and, therefore, do not require a page reload
on navigation or data loading operations. Thus, it is impossible to perform "normal"
webpage tests that send a request to each of the different pages and measure the data
required for calculating the performance metrics. To solve this problem, the open-source
software WebPageTest and a WebPageTest Agent were deployed as a private instance
on the GCP Kubernetes cluster in the same zone as the case study deployments (see
figure 5.1). The WebPageTest software offers a frontend to interact with the test system
manually and offers an API that one can use to send test requests to the system. This
thesis used the API approach for the evaluation. Furthermore, WebPageTest allows
performing scripted tests. Scripted tests provide a browser instance that is observed
regarding performance while one can use JS to perform actions on the page. One can
define multiple events that perform any number of JS commands. Each of those steps is
analyzed by the WebPageTest system.

This thesis uses a test scenario of five steps that one can find in the WebPageTest Script
repository (see appendix 6.1):

1. Navigate to the Home page: Instruction that loads the system’s home page

2. Navigate to the Login page: Script that clicks on the login button in the top right
corner

3. Login: Fills the login form with test user data and clicks the login button to
simulate a user login

4. Navigate to Article Administration

5. Navigate to Sales Administration

For the analysis, the script was executed on the deployed case study implementations.
Each test script was executed with three runs, which means that each test case was

66

5.4. Comparison and evaluation

executed three times on clean web browser instance and the results show the average
values of those runs. A private WebPageTest instance allows publishing test results to
the publicly available WebPageTest instance. This thesis’s test results were published to
the public instance. (One can find the links to those test results in the appendix 6.1)

5.3.2 Architecture Metrics
Most of the data required for calculating the architecture metrics come from the actual
case study implementations. For counting the LOCs, the thesis used the CLOC6 program.
The pipeline runtimes come from the pipelines on Gitlab and are show the mean value of
all succeeded pipelines for each project.

5.4 Comparison and evaluation
As described in Section 5.3, the case study implementations were analyzed using the
open-source software WebPageTest. Each test case was executed three times to lower the
risk of anomalies in testing. Additionally, in each of those three runs, the test system
was conducted to test the given webpage using a first-view and a repeat-view test. A
first-view test always runs on a clean browser instance with a clear cache, whereas a
repeat-view test runs on the same browser instance as the first-view test. The browser
cache is not cleared between the first-view and the repeat-view test. The repeat-view test
is crucial for testing SPA applications since they mostly act as a native app-like software
system. One can consider the first-view test as an installation step and the repeat-view
test as the "normal" operation test. One can strengthen this argument by stating that
such applications are often PWAs that offer a real "installation" step, which is also known
as "add to home screen." The following two sections present the test results. Section 5.4.1
shows the performance metric evaluation, and Section 5.4.2 presents the evaluation of
the architecture metrics.

5.4.1 Performance metric evaluation
The following paragraphs explain the WebPageTest results from testing the three case
studies. As mentioned above, it is essential to differentiate between the first-view and
the repeat-view.

Total web-page size Figure 5.3 shows the different page’s download sizes of the three
case studies. The Angular monolith loads most of the framework and application code
already on the main page. The 0 value of the login page is explainable because the
Authentication Module is already loaded with the Main page that uses the UserPanel
component, which is part of the Authentication module. The dashboard has a slightly
higher value because it includes static files. When looking at the single-spa bars, one can
recognize that this approach uses different MF implementation frameworks. The login

6https://github.com/AlDanial/cloc

67

5. Evaluation

page uses React.js, the dashboard uses Angular, and the article and sales page use Vue.js.
The Angular Module Federation MF benefits from using only Angular. Nevertheless, one
can identify a slightly higher download size than the Angular monolith.

Figure 5.3: Performance Evaluation: Total Webpage size

DOM event The DOM event is fired when all DOM objects are available, and the
browser can start the rendering process. Loading a monolith SPA framework requires
the most upfront loading time (see figure 5.4). The MF approaches are more lightweight
in the beginning. They have to perform more work afterward when running the page
scripts.

onLoad The onLoad event (see figure 5.5) occurs when the browser finished loading
all page objects. When comparing the onLoad event and the overall page load time (the
time at which the page is completely loaded, including the execution of all scripts) shown
in figure 5.6, one can see that the single-spa MF architecture has to perform extra work
in the browser to initialize the MFs. The first-view always requires more loading time for
the MF implementations, which is expected because more code is needed to initialize
and mount the MF. Additionally, both MF implementations require a lookup in the
importmap, requiring one more additional request to the server than the monolith. It is
interesting to see from the measurement results that the repeat-view has nearly the same
performance on all three architectures.

68

5.4. Comparison and evaluation

Figure 5.4: Performance Evaluation: DOM event

Overall page load time The overall page load times (see figures 5.7 and 5.8) coincide
with the webpage size. The higher values for the login and the dashboard page at the
first-view come from using different SPA technologies in the MFs.

5.4.2 Architecture metric evaluation
The following paragraphs explain the architecture metrics evaluation to show that using
an MF approach can help a company to generate maintainable code that multiple,
separates teams can develop and quickly deploy separately.

LOC Figure 5.9 shows the LOC count for all project repositories (see appendix 6.1).
The figure visualizes the HTML, CSS, and JS LOC counts as a stacked bar for each
source code repository. When implementing an MFA, the primary goal is to have a more
flexible and maintainable system. Splitting a monolith project into many smaller projects
(MFs) helps to achieve this goal as figure 5.9 illustrates.

Technology Heterogeneity Technology heterogeneity improves the project’s main-
tainability because a low number of different technologies lets developers exchange their
knowledge among themselves. The Angular monolith and the Module federation case
studies use only Angular and therefore provide excellent technology heterogeneity. On
the other hand, an MFA should allow companies to avoid a vendor or technology lock-in.

69

5. Evaluation

Figure 5.5: Performance Evaluation: onLoad event

The single-spa case study shows that using a different SPA framework in each MF is
possible. The technology heterogeneity is, therefore, lower. Each company has to decide
when and how many different technologies they allow.

Deployment and Agility It is crucial for an MFA that developers do not have to
spend lots of time performing recurring tasks like running unit tests or deploying the
system. Furthermore, there is a need that companies can deliver new features or bug fixes
to customers as fast as possible. It is not up-to-date anymore to have long release-cycles.
CI/CD pipelines help achieve this goal, and splitting a monolithic frontend into small
MFs can help speed up those deployment times further. Figure 5.10 shows the project’s
pipeline runtimes on Gitlab. One can see that deploying a monolithic application requires
more time than deploying the individual MFs. The high deployment time of the module
federation shell comes from the fact that this pipeline did only run once and could not
make use of the pipeline’s caching options (especially for the node_modules folder).

To summarize this chapter, this paragraph briefly explains the steps performed to
gather and evaluate the results. For the data gathering, a WebPageTest instance at the
same geographical location as the servers serving the web applications was deployed.
Scripted tests were sent to this WebPageTest instance that performed the tests in a
first- and repeat-view test. Each test was executed multiple times, and the mean values
for the performance times were used to decrease measurement errors. Furthermore,
architecture metrics were calculated to analyze the Developer Experience improvements
and performance gains for company processes by decreasing deployment times.

In figure 5.11, one can see a summary of the performance evaluations. The left part of

70

5.4. Comparison and evaluation

Figure 5.6: Performance Evaluation: Page fully loaded

the figure shows repeat-view values, and the right part shows first-view values. This
figure clearly shows that once the web application has passed the "installation" step, it
has nearly the same or even better performance when using an MF approach compared
to a monolithic application. All architectures (monolith and MFA) require more work
on the first load and afterward profit from caching, which one can see as the "normal"
operation for an app-like webpage. A monolithic application needs the most time to load
everything at the beginning is fast afterward. An MF using the single-spa framework
differs from a monolith and requires more time when an MF with a "new" (not already
used and loaded by another MF) SPA framework has to be loaded.

Furthermore, the LOC count is reduced for each MF compared to a monolith, but
summed up requires more LOCs because of the boilerplate code needed in each MF.
CD/CD runtimes are significantly reduced, which helps to deploy faster, and developers
get possible failure response quickly.

71

5. Evaluation

Figure 5.7: Performance Evaluation: Load time page-first

Figure 5.8: Performance Evaluation: Load time page-repeat

72

5.4. Comparison and evaluation

Figure 5.9: Performance Evaluation: LOC count (HTML, CSS, and JS)

Figure 5.10: Performance Evaluation: CI/CD runtimes

73

5. Evaluation

Figure 5.11: Performance Evaluation Summary

74

CHAPTER 6
Conclusion

This thesis covered an in-depth study on the maturity of MFs, investigating their principles,
the state-of-the-art of this architectural approach, and testing it in the case of an ERP
application, providing performance analyses. In the first part, the work inspected the
current limitations and discussed how the MS approach can serve this scenario.

The initial MSA definition by Lewis and Fowler [51] already intended that an MS is a
small part of a bigger system that can handle everything, from storing data in a database
to providing a UI for users to deal with the software. The current state-of-the-art of
MSAs mostly adopted those initial thoughts and focused on all parts of the intended
architecture except handling the UI as an essential part of an MS.

MS literature provides many interesting insights and findings into MSAs that where
studied in this thesis to gain knowledge for implementing an MFA. The most important
reasons for using an MSA are increasing team scalability, implementing maintainable
code, and getting fast and reliable DevOps support to deliver features faster than using
a monolith. Furthermore, an MSA offers the possibility of using independent technology
to avoid vendor lock-in and stimulate innovation.

MS patterns like the API gateway show that developers could implement solutions that
fill the gap between a backend MSA and a monolithic frontend. These solutions also show
that there is a need for frontend architectures comparable to a backend MSA. Nevertheless,
concepts and solutions that deal with MFAs exist. One can classify those solutions into
two types - server-side and client-side. Both types already have multiple implementation
options, which are currently not well researched, and most of the literature sources are
grey literature like books or blog posts.

Big companies like Amazon use a server-side MF approach because their pages heavily
rely on rendering large content. This work did not deal with those technologies but
focused on client-side rendering using SPAs. Those applications are primarily useful for

75

6. Conclusion

native app-like software systems that help users in their daily work, which was previously
mostly a program directly installed on the Operating System (OS).

The thesis showed how to adopt existing, well researched MS principles to MFs and found
that most of the findings for MSs are directly applicable to MFs. The framework analysis
revealed that many MF frameworks exist with little to no documentation, and most of
them appear as they are a Proof of Concept (PoC). Furthermore, no generally accepted
MF solutions could be found, and it seems that every company that tries to implement
an MFA develops its own framework. Completely new approaches like the Webpack 5
Module Federation are currently not researched at all.

In the practical part of this thesis, three case studies were implemented. Those case
studies are based on (i) an Angular monolith, (i) a single-spa MFA, and (iii) a Module
Federation MFA implementation with Angular. There are just a few implementations
of similar architectures available in the literature. The Module federation approach
and the single-spa approach using different SPA frameworks were never researched until
now. Besides, when performing research for this thesis, no information on how to set up
working CI/CD pipelines was found. This work closes this gap.

This thesis’s evaluation part shows that a client-side MFA using SPAs has less perfor-
mance than a monolithic application on a first-page load (without cached resources)
but can provide the same performance as a monolithic frontend application as soon as
cached sources are available. Such a distributed architecture requires more effort when
implementing the system, but in the end results in a more maintainable system that
allows faster deployment cycles due to independent releases. Furthermore, it helps a
company to be able to scale the development teams individually and allow teams to be
more productive since there is less communication overhead in smaller teams.

6.1 Future work
One exciting research question would be whether or how it is possible to use the MF
architectural style for native applications since all existing works focus on web engineering.

This thesis used case studies to answer the research questions. It would be fascinating
to research on migrating a big, existing monolithic frontend application to an MFA.
Especially for evaluating metrics defined by Mazlami et al. [54], who performed a study
on migrating a monolithic backend into an MSA using an automated migration tool.
Those metrics are the team-size-reduction-ratio metric based on contributions (commits)
to the source code and the domain-redundancy metric that analyzes how well the split
into the different services worked.

76

List of Figures

1.1 Software architecture and design trends 2020 [9] 3
1.2 Thesis flow chart . 4

2.1 Repository organization possibilities [67] 17

4.1 Case Study Application: (a) Welcome Page and, (b) User Panel 51
4.2 Case Study Application: (a) Login and (b) Dashboard 51
4.3 Case Study Application: (a) Article Administration and (b) Sales Adminis-

tration . 52
4.4 Case Study Application: Monolith Architecture 53
4.5 Case Study Application: single-spa Architecture 55
4.6 Case Study Application: Module Federation Architecture 56

5.1 Case Study Application: Evaluation Architecture 60
5.2 "User satisfaction for various constant page load times" [28] 61
5.3 Performance Evaluation: Total Webpage size 68
5.4 Performance Evaluation: DOM event . 69
5.5 Performance Evaluation: onLoad event . 70
5.6 Performance Evaluation: Page fully loaded 71
5.7 Performance Evaluation: Load time page-first 72
5.8 Performance Evaluation: Load time page-repeat 72
5.9 Performance Evaluation: LOC count (HTML, CSS, and JS) 73
5.10 Performance Evaluation: CI/CD runtimes 73
5.11 Performance Evaluation Summary . 74

77

List of Tables

2.1 Research distribution of MSs [23] . 8
2.2 MS definition comparison [94] . 9

3.1 Adoption of MS Concepts and Principles to MFs 42

4.1 Micro Frontend framework comparison . 48

79

Glossary

API "An application programming interface (API) is a computing interface that defines
interactions between multiple software intermediaries."1. 8, 11, 13, 15, 16, 24, 26,
27, 40, 42, 43, 52, 54, 57, 66, 75

Developer Experience Developer Experience (DX) describes the experience that de-
velopers make in their everyday life when designing and programming software
systems. Mezzalira [57] states that it is crucial to study and explore tools that
developers use in der daily life, with the main goal to simplify the development
process from setting up the system until deployment.. 2, 70

DevOps "DevOps is an approach to culture, automation, and platform design intended
to deliver increased business value and responsiveness through rapid, high-quality
service delivery. This is all made possible through fast-paced, iterative IT service
delivery. DevOps means linking legacy apps with newer cloud-native apps and
infrastructure."2. 10, 13, 17, 36, 75

HTTP "The Hypertext Transfer Protocol (HTTP) is an application layer protocol for
distributed, collaborative, hypermedia information systems."3 [32]. 8, 22, 24, 27, 38

MOS The MOS (Mean Opinion Score) is the arithmetic mean over all individual values
(resulting in a range of 1 to 5), which represents the overall quality of a stimulus or
system.4. 61

1https://en.wikipedia.org/wiki/API
2https://www.redhat.com/en/topics/devops
3https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
4https://en.wikipedia.org/wiki/Mean_opinion_score

81

Acronyms

AJAX Asynchronous JavaScript and XML. 24–26, 30, 63

ATF Above-the-Fold. 62

BFF Backend for Frontend. 15, 16, 29, 42

CD Continuous Delivery. 1, 4, 12, 13, 36, 55, 56, 64, 70, 71, 73, 76, 77

CDN Content Delivery Network. 20, 28, 39, 43, 47

CEO Chief Executive Officer. 40

CI Continuous Integration. 4, 12, 13, 36, 55, 56, 64, 70, 73, 76, 77

CLI Command Line Interface. 37, 47, 53

CMS Content Management System. 30

CPU Central Processing Unit. 24, 38

CSS Cascading Style Sheet. 36, 54, 69

CTO Chief Technology Officer. 14

DDD Domain-Driven Design. 13

DOM Document Object Model. 20, 22–25, 27, 28, 54, 62, 65, 68, 69, 77

E2E End-to-End. 39

ERP Enterprise Resource Planning. 3, 4, 45, 50, 52, 75

ESI Edge Side Includes. 4, 23, 30, 39, 42, 43, 47

GCP Google Cloud Platform. 56, 57, 59, 66

HMI Human Machine Interface. 3

83

HTML Hypertext Markup Language. 1, 23, 25, 26, 28, 29, 37, 43, 63, 69

IaaS Infrastructure as a Service. 1

IaC Infrastructure as Code. 36

ID identifier. 16

IIFE Immediately Invoked Function Expression. 25

JS JavaScript. 25–28, 54, 56, 62, 66, 69

JSON JavaScript Object Notation. 22, 57

LOC Lines of Code. 10, 13, 14, 34, 63, 65, 67, 69, 71, 73, 77

MF Micro Frontend. 2–5, 7, 20–30, 33–47, 49–57, 59, 60, 63–65, 67–71, 75, 76, 79

MFA Micro Frontend architecture. 2–5, 7, 20, 21, 29, 30, 33, 35–41, 43–45, 47, 49, 50,
55, 56, 60, 63–66, 69–71, 75, 76

MS Microservice. 1, 2, 4, 5, 7–19, 33–35, 37, 38, 40–44, 60, 64, 75, 76, 79

MSA Microservice Architecture. 1, 2, 7–20, 24, 30, 34, 39–41, 43, 44, 49, 52, 64, 75, 76

OS Operating System. 76

PaaS Platform as a Service. 1

PoC Proof of Concept. 76

PWA Progressive Web App. 30, 67

QoE Quality of Experience. 60, 61, 63, 65

REST Representational State Transfer. 11, 40, 43, 52, 53

ROI Return on Invest. 18

SaaS Software as a Service. 1

SEO Search Engine Optimization. 23–25

SOA Service-oriented architecture. 1, 7, 8, 12

SOC service-oriented computing. 8

SPA Single Page Application. 3, 4, 20, 28–30, 45, 47, 49, 50, 52, 54, 66–71, 75, 76

84

SSI Server Side Includes. 4, 23, 39, 42, 43, 47

SSO Single Sign-On. 21

SSR Server-Side Rendering. 2, 4, 66

TTFB Time To First Byte. 4, 62

TTFP Time To First Paint. 62

TTI Time to interact. 4, 62

UI User Interface. 2, 3, 5, 14–16, 20, 23, 26, 38–40, 59, 62, 75

URI Uniform Resource Identifier. 22

URL Uniform Resource Locator. 21–23, 26, 28, 29, 38, 54–57

UX User Experience. 3, 5, 21, 22, 25, 29, 34, 39, 49, 59–61, 63

VM Virtual Machine. 56

WWW World Wide Web. 1

XaaS Everything as a Service. 1

85

Bibliography

[1] Micro Frontends (2016), https://www.thoughtworks.com/radar/techniq
ues/micro-frontends, (last visited: 2020-12-12)

[2] Usage study on Microservices (2018), https://www.globenewswire.com/
news-release/2018/09/20/1573625/0/en/New-Research-Shows-63
-Percent-of-Enterprises-Are-Adopting-Microservices-Archite
ctures-Yet-50-Percent-Are-Unaware-of-the-Impact-on-Revenue
-Generating-Business-Processes.html{#}:{~}:text=Sixty-t, (last
visited: 2021-03-23)

[3] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Others: A view of cloud computing.
Communications of the ACM 53(4), 50–58 (2010)

[4] Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to Cloud-Native architectures
using microservices: An experience report. Communications in Computer and
Information Science 567, 201–215 (2016)

[5] Balalaie, A., Heydarnoori, A., Jamshidi, P., Balalaie, C.A., Heydarnoori, A.,
Jamshidi, P.: Microservices Migration Patterns. Software: Practice and Experi-
ence 48(11) (2015)

[6] Baraković, S., Skorin-Kapov, L.: Survey of research on Quality of Experi-
ence modelling for web browsing. Quality and User Experience 2(1) (2017).
https://doi.org/10.1007/s41233-017-0009-2

[7] Beimborn, D., Miletzki, T., Wenzel, S.: Platform as a service (PaaS). Business &
Information Systems Engineering 3(6), 381–384 (2011)

[8] Berners-Lee, T.: www-talk from september to october 1991 (1991), https://li
sts.w3.org/Archives/Public/www-talk/1991SepOct/0003.html, (last
visited: 2020-12-12)

[9] Betts, T., Humble, C., Bryant, D., Stenberg, J.: Software Architecture and Design
InfoQ Trends Report (2020), https://www.infoq.com/articles/archite
cture-trends-2020/, (last visited: 2020-12-01)

87

[10] Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The role of trust manage-
ment in distributed systems security. In: Secure Internet Programming, pp. 185–210.
Springer (1999)

[11] Bocchi, E., De Cicco, L., Rossi, D.: Measuring the quality of experience of web
users. Internet-QoE 2016 - Proceedings of the 2016 ACM SIGCOMM Workshop on
QoE-Based Analysis and Management of Data Communication Networks, Part of
SIGCOMM 2016 46(4), 37–42 (2016). https://doi.org/10.1145/2940136.2940138

[12] Bouch, A.: Quality is in the eye of the beholder: meeting users’ requirements for
Internet quality of service (2000). https://doi.org/10.1145/332040.332447

[13] Brousse, N.: The issue of monorepo and polyrepo in large enterprises. In: Proceedings
of the Conference Companion of the 3rd International Conference on Art, Science,
and Engineering of Programming. pp. 1–4 (2019)

[14] Brutlag, J., Abrams, Z., Meenan, P.: Above the fold time: Measuring web page
performance visually. In: Velocity: Web Performance and Operations Conference
(2011)

[15] Butkiewicz, M., Madhyastha, H.V., Sekar, V.: Understanding website com-
plexity: Measurements, metrics, and implications. Proceedings of the ACM
SIGCOMM Internet Measurement Conference, IMC pp. 313–328 (2011).
https://doi.org/10.1145/2068816.2068846

[16] Buyya, R.: Cloud computing: The next revolution in information technology. In:
2010 First International Conference On Parallel, Distributed and Grid Computing
(PDGC 2010). pp. 2–3. IEEE (2010)

[17] Choi, J.: Why Jeff Bezos’ Two-Pizza Team Rule Still Holds True in 2018 (2018),
http://blog.idonethis.com/two-pizza-team/, (last visited: 2020-12-09)

[18] Cojocaru, M.D., Oprescu, A., Uta, A.: Attributes assessing the quality of microser-
vices automatically decomposed from monolithic applications. Proceedings - 2019
18th International Symposium on Parallel and Distributed Computing, ISPDC 2019
(1), 84–93 (2019). https://doi.org/10.1109/ISPDC.2019.00021

[19] Compton, B., Withrow, C.: Prediction and control of ADA soft-
ware defects. Journal of Systems and Software 12(3), 199–207 (1990).
https://doi.org/https://doi.org/10.1016/0164-1212(90)90040-S, http://www.sc
iencedirect.com/science/article/pii/016412129090040S

[20] Darling, J.M., Nation, D., Jibins, J.: Systems and methods for developing a web
application using micro frontends (2020)

[21] Di Francesco, P.: Architecting microservices. Proceedings - 2017 IEEE Interna-
tional Conference on Software Architecture Workshops, ICSAW 2017: Side Track
Proceedings pp. 224–229 (2017). https://doi.org/10.1109/ICSAW.2017.65

88

[22] Di Francesco, P., Lago, P., Malavolta, I.: Migrating Towards Microservice Ar-
chitectures: An Industrial Survey. Proceedings - 2018 IEEE 15th International
Conference on Software Architecture, ICSA 2018 (Section VII), 29–38 (2018).
https://doi.org/10.1109/ICSA.2018.00012

[23] Di Francesco, P., Malavolta, I., Lago, P.: Research on Architecting Microservices:
Trends, Focus, and Potential for Industrial Adoption. Proceedings - 2017 IEEE
International Conference on Software Architecture, ICSA 2017 pp. 21–30 (2017).
https://doi.org/10.1109/ICSA.2017.24

[24] Doigneau, R.: Service Design Patterns: fundamental design solutions for
SOAP/WSDL and restful Web Services, vol. 5. Pearson Education, Boston (2012)

[25] Dospinescu, O., Fotache, D., Munteanu, B.A., Hurbean, L.: Mobile enterprise
resource planning: New technology horizons. Innovation and Knowledge Manage-
ment in Business Globalization: Theory and Practice - Proceedings of the 10th
International Business Information Management Association Conference 1-2, 73–79
(2008)

[26] Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin,
R., Safina, L.: Microservices: yesterday, today, and tomorrow. Present and Ulterior
Software Engineering pp. 195–216 (jun 2016). https://doi.org/10.1007/978-3-319-
67425-4_12, http://arxiv.org/abs/1606.04036

[27] Duan, Y., Fu, G., Zhou, N., Sun, X., Narendra, N.C., Hu, B.: Everything as a
service (XaaS) on the cloud: origins, current and future trends. In: 2015 IEEE 8th
International Conference on Cloud Computing. pp. 621–628. IEEE (2015)

[28] Egger, S., Reichl, P., Hosfeld, T., Schatz, R.: ’Time is bandwidth’? Nar-
rowing the gap between subjective time perception and Quality of Experi-
ence. IEEE International Conference on Communications pp. 1325–1330 (2012).
https://doi.org/10.1109/ICC.2012.6363769

[29] El Emam, K., Benlarbi, S., Goel, N., Melo, W., Lounis, H., Rai, S.N.: The optimal
class size for object-oriented software. IEEE Transactions on Software Engineering
28(5), 494–509 (may 2002). https://doi.org/10.1109/TSE.2002.1000452

[30] Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M., Newl-
ing, T.: Patterns: service-oriented architecture and web services. IBM Corporation,
International Technical Support Organization New York, NY (2004)

[31] Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software:
Amazon.de: Eric J. Evans: Fremdsprachige Bücher 7873(415), 529 (2003)

[32] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: Hypertext transfer protocol–HTTP/1.1 (1999)

89

[33] Fowler, M., Foemmel, M.: Continuous Integration (2006), https://www.though
tworks.com/continuous-integration, (last visited: 2020-11-17)

[34] Gabbrielli, M., Giallorenzo, S., Guidi, C., Mauro, J., Gabbrielli, M., Giallorenzo, S.,
Guidi, C., Mauro, J., Self, F.M., Microservices, R., Ábrahám, E., Bonsangue, M.,
Broch, E., Theory, J.: Self-Reconfiguring Microservices To cite this version : HAL
Id : hal-01336688 Self-Reconfiguring Microservices. Theory and Practice of Formal
Methods (2016)

[35] Galletta, D., Henry, R., McCoy, S., Polak, P.: Web Site Delays: How Tolerant are
Users? J. AIS 5, 0– (2004). https://doi.org/10.17705/1jais.00044

[36] Gasser, M., Goldstein, A., Kaufman, C., Lampson, B.: The Digital distributed
system security architecture. In: Proceedings of the 12th National Computer Security
Conference. pp. 305–319 (1989)

[37] George, F.: Micro service Architecture (2012), https://slides.yowconferen
ce.com/yow2014/George-ImplementingMicroserviceArchitectures.
pdf?feature=oembed, (last visited: 2020-12-12)

[38] Ghofrani, J., Lübke, D.: Challenges of Microservices Architecture: A Survey on the
State of the Practice. Zeus (April), 9–16 (2018)

[39] Gronau, N., Fohrholz, C., Plygun, A.: Mobile Prozesse im ERP. HMD Praxis der
Wirtschaftsinformatik 49(4), 23–31 (2012). https://doi.org/10.1007/bf03340715

[40] Harms, H., Rogowski, C., Lo Iacono, L.: Guidelines for adopting frontend archi-
tectures and patterns in microservices-based systems. Proceedings of the ACM
SIGSOFT Symposium on the Foundations of Software Engineering Part F1301,
902–907 (2017). https://doi.org/10.1145/3106237.3117775

[41] Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility
and reliability in e-commerce. Proceedings - 2017 IEEE International Conference
on Software Architecture Workshops, ICSAW 2017: Side Track Proceedings pp.
243–246 (2017). https://doi.org/10.1109/ICSAW.2017.11

[42] Hatton, L.: Reexamining the fault density component size connection. IEEE Software
14(2), 89–97 (mar 1997). https://doi.org/10.1109/52.582978

[43] Herbsleb, J.D., Grinter, R.E.: Architectures, coordination, and distance: Conway’s
law and beyond. IEEE software 16(5), 63–70 (1999)

[44] Hicks, B.J., McWhirter, B.K., McArthuer, D., Williams, B.: Mobile Barcode Scanner
Gun System with mobile Tablet Device having amMobile Pos and Enterprise Resource
Planning application for customer checkout/order fulfillment and real time in store
inventory management for retail establishment (2016)

90

[45] Humble, J., Farley, D.: Continuous delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education, Inc. All, Boston
(2011)

[46] Hüttermann, M.: DevOps for developers (expert’s voice in Web development).
Apress, Berkeley, CA, USA (2012)

[47] Jackson, C.: Micro Frontends (2019), https://martinfowler.com/article
s/micro-frontends.html, (last visited: 2020-12-03)

[48] Krause, L.: Microservices: Patterns and Applications: Designing fine-grained services
by applying patterns (2015), http://www.amazon.com/Microservices-Pat
terns-Applications-Designing-fine-grained-ebook/dp/B00VJ3N
P4A)

[49] Kurbel, K., Dabkowski, A., Jankowska, A.M.: A Multi-tier Architecture for Mobile
Enterprise Resource Planning. Wirtschaftsinformatik 2003/Band I (January 2003)
(2003). https://doi.org/10.1007/978-3-642-57444-3

[50] Lewis, J.: Micro services - java, the unix way (2012), http://2012.33degree.
org/talk/show/67, (last visited: 2020-12-03)

[51] Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term
(2014), http://martinfowler.com/articles/microservices.html,
(last visited: 2020-11-17)

[52] Linthicum, D.S.: Practical Use of Microservices in Moving Workloads to the Cloud.
IEEE Cloud Computing 3(5), 6–9 (2016). https://doi.org/10.1109/MCC.2016.114

[53] Mauro, T.: Adopting microservices at netflix: Lessons for team and process design.
(2015), https://www.nginx.com/blog/adopting-microservices-at-n
etflix-lessons-for-team-and-process-design/, (last visited: 2020-11-
17)

[54] Mazlami, G., Cito, J., Leitner, P.: Extraction of Microservices from Monolithic Soft-
ware Architectures. Proceedings - 2017 IEEE 24th International Conference on Web
Services, ICWS 2017 pp. 524–531 (2017). https://doi.org/10.1109/ICWS.2017.61

[55] Mazzara, M., Govoni, S.: A case study of web services orchestration. In: International
Conference on Coordination Languages and Models. pp. 1–16. Springer (2005)

[56] Mena, M., Corral, A., Iribarne, L., Criado, J.: A Progressive Web Application Based
on Microservices Combining Geospatial Data and the Internet of Things. IEEE
Access 7, 104577–104590 (2019). https://doi.org/10.1109/access.2019.2932196

[57] Mezzalira, L.: Building Micro Frontends. O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472 (2020)

91

[58] Michael Geers: Micro Frontends in Action (2020)

[59] Mikowski, M., Powell, J.: Single Page Web Applications: JavaScript End-to-End.
Manning Publications Co., USA, 1st edn. (2013)

[60] Møller, C.: ERP II - Next-generation Extended Enterprise Resource Planning.
Supply Chain Management An International Journal 18, 6 (2002), http://pure
.au.dk/portal/files/32334597/0003167.pdf

[61] Nah, F.F.H.: A study on tolerable waiting time: how long are web users willing to
wait? Behaviour & Information Technology 23(3), 153–163 (2004)

[62] Newman, S.: Building Microservices. O’Reilly Media, Inc., 1st edn. (2015)

[63] Nygard, M.T.: Release it!: design and deploy production-ready software. Pragmatic
Bookshelf (2018)

[64] O’Hanlon, C.: A conversation with Werner Vogels. Queue 4(4), 14–22 (2006)

[65] Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In:
2014 {USENIX} Annual Technical Conference ({USENIX} {ATC} 14). pp. 305–319.
{USENIX} Association, Philadelphia, PA (2014), https://www.usenix.org/c
onference/atc14/technical-sessions/presentation/ongaro

[66] Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented comput-
ing: State of the art and research challenges. Computer 40(11), 38–45 (2007)

[67] Pavlenko, A., Askarbekuly, N., Megha, S., Mazzara, M.: Micro-frontends: Applica-
tion of microservices to web front-ends. Journal of Internet Services and Information
Security 10(2), 49–66 (2020). https://doi.org/10.22667/JISIS.2020.05.31.049

[68] Peltonen, S., Mezzalira, L., Taibi, D.: Motivations, Benefits, and Issues for Adopting
Micro-Frontends: A Multivocal Literature Review (2020), http://arxiv.org/
abs/2007.00293

[69] Richardson, C.: Pattern: API Gateway / Backends for Frontends (2017), https:
//microservices.io/patterns/apigateway.html, (last visited: 2020-11-
14)

[70] Richardson, C.: Pattern: Monolithic Architecture (2017), https://microservi
ces.io/patterns/monolithic.html, (last visited: 2020-11-14)

[71] Richardson, C.: Microservices patterns. Manning Publications Company, (2018),
http://microservices.io/patterns/microservices.html

[72] Rossberg, J., Olausson, M.: Continuous Delivery. In: Pro Application Lifecycle
Management with Visual Studio 2012, pp. 425–432. Springer (2012)

92

[73] Schulte-Coerne, T.: Optionen der Frontend-Integration. Entwickler Spezial 22, 76–83
(oct 2019)

[74] Schütz, S.W., Kude, T., Popp, K.M.: The impact of software-as-a-service on software
ecosystems. In: International Conference of Software Business. pp. 130–140. Springer
(2013)

[75] Springer, S.: Vom Backend ins Frontend. Entwickler Spezial 22, 84–90 (2019)

[76] Steinacker, G.: On Monoliths and Microservices (2015), https://dev.otto
.de/2015/09/30/on-monoliths-and-microservices/, (last visited:
2020-12-04)

[77] Steyer, M.: A Software Architect’s Approach Towards Using Angular (And SPAs In
General) For Microservices Aka Microfrontends (2018), https://www.angulara
rchitects.io/aktuelles/a-software-architects-approach-towa
rds/, (last visited: 2020-12-09)

[78] Steyer, M.: 6 Steps to your Angular-based Microfrontend Shell (2019), https:
//www.angulararchitects.io/aktuelles/6-steps-to-your-angular
-based-microfrontend-shell/, (last visited: 2020-12-02)

[79] Steyer, M.: Architektur für agile Teams. windows .developer 6, 40–46 (2020)

[80] Steyer, M.: Enterprise Angular: DDD, Nx Monorepos and Micro Frontends. Leanpub,
Online (2020), https://www.angulararchitects.io/book

[81] Steyer, M.: The Microfrontend Revolution: Module Federation in Webpack 5 (2020),
https://www.angulararchitects.io/aktuelles/the-microfron
tend-revolution-module-federation-in-webpack-5/, (last visited:
2020-12-09)

[82] Steyer, M.: The Microfrontend Revolution – Part 2: Module Federation with Angular
(2020), (last visited: 2021-01-27)

[83] Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, Motivations, and Issues for Migrating
to Microservices Architectures: An Empirical Investigation. IEEE Cloud Computing
4(5), 22–32 (2017). https://doi.org/10.1109/MCC.2017.4250931

[84] Thönes, J.: Microservices. IEEE Software 32(1) (2015).
https://doi.org/10.1109/MS.2015.11

[85] Tsimelzon, M., Weihl, B., Chung, J., Frantz, D., Basso, J., Newton, C., Hale, M.,
Jacobs, L., O’Connel, C.: ESI Language Specification 1.0 (2001), (last visited:
2020-12-04)

93

[86] Villamizar, M., Garces, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., Gil,
S.: Evaluating the monolithic and the microservice architecture pattern to deploy web
applications in the cloud. 2015 10th Colombian Computing Conference, 10CCC 2015
(October), 583–590 (2015). https://doi.org/10.1109/ColumbianCC.2015.7333476

[87] Vinoski, S.: REST Eye for the SOA Guy. IEEE Internet Computing 11(1), 82–84
(2007)

[88] Vosshall, P.: Web scale computing: The power of infrastructure as a service. In:
International Conference on Service-Oriented Computing. p. 1. Springer (2008)

[89] Wang, A., Sudhir, T.: Announcing Ribbon: Tying the Netflix Mid-Tier Services
Together (2013), https://netflixtechblog.com/announcing-ribbon-
tying-the-netflix-mid-tier-services-together-a89346910a62,
(last visited: 2020-11-17)

[90] Wang, D., Yang, D., Zhou, H., Wang, Y., Hong, D., Dong, Q., Song,
S.: A Novel Application of Educational Management Information System
based on Micro Frontends. Procedia Computer Science 176, 1567–1576 (2020).
https://doi.org/10.1016/j.procs.2020.09.168, https://doi.org/10.1016/j.pr
ocs.2020.09.168

[91] Wolff, E.: Microservices: flexible software architecture. Addison-Wesley Professional
(2016)

[92] Yang, C., Liu, C., Su, Z.: Research and Application of Micro Frontends.
IOP Conference Series: Materials Science and Engineering 490(6) (2019).
https://doi.org/10.1088/1757-899X/490/6/062082

[93] Zafer, Ö.: Understanding Micro Frontends (2020), https://hackernoon.com/u
nderstanding-micro-frontends-b1c11585a297, (last visited: 2020-12-09)

[94] Zimmermann, O.: Microservices tenets: Agile approach to service development and
deployment. Computer Science - Research and Development 32(3-4), 301–310 (2017).
https://doi.org/10.1007/s00450-016-0337-0

[95] Zúñiga-Prieto, M., Insfran, E., Abrahao, S., Cano-Genoves, C.: Incremental inte-
gration of microservices in cloud applications. 25th International Conference on
Information Systems Development, ISD 2016 (July), 93–105 (2016)

94

Appendix

Gitlab repositories

• Angular Monolith
https://gitlab.com/01526926/magicshop-angular-monolith

• single-spa
https://gitlab.com/01526926/single-spa-root-config

https://gitlab.com/01526926/single-spa-authentication

https://gitlab.com/01526926/single-spa-navigation

https://gitlab.com/01526926/single-spa-dashboard

https://gitlab.com/01526926/single-spa-sales

https://gitlab.com/01526926/single-spa-article

• single-spa Helper
https://gitlab.com/01526926/single-spa-helper

• Import Map Deployer
https://gitlab.com/01526926/import-map-deployer (copy of

https://github.com/single-spa/import-map-deployer)

• Module federation
https://gitlab.com/01526926/module-federation-shell

https://gitlab.com/01526926/module-federation-authentica
tion

https://gitlab.com/01526926/module-federation-dashboard

https://gitlab.com/01526926/module-federation-article

https://gitlab.com/01526926/module-federation-sales

• WebPageTest script
https://gitlab.com/01526926/webpagetest-script

95

WebPageTest Results

• Angular monolith
https://www.webpagetest.org/results.php?test=210128_Di3

P_92a9d083d527067bf5521791fe7f2cda

• single-spa
https://www.webpagetest.org/results.php?test=210128_Di6

8_aeba988d13ef793991b055e63ebe0864

• Module Federation
https://www.webpagetest.org/results.php?test=210128_DiB

W_45af0f4a463d2b1d9956de7532a1be8c

96

