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Abstract
Cryptography is considered the strongest technical control to protect data, but state-
of-the-art methods suffer from shortcomings when applied in cloud computing or the
Internet of Things. New approaches are needed enabling more agile data handling, sup-
porting computations on encrypted data, and providing long-term security, even against
quantum computer attacks.

In this thesis we present research results in building long-term secure but practi-
cally efficient protocols and systems based on cryptography with information-theoretic
security (ITS) for modern cloud-based applications. It brings together old and new tech-
nologies from the world of information-theoretic cryptography to overcome limitations
of standard cryptographic approaches and enable end-to-end security in modern appli-
cation scenarios. The focus is on secret sharing, multiparty computation and quantum
key distribution, which are well known to the cryptographic community but not broadly
applied in practice.

In essence, we explored the possibilities to build ITS solutions for data storage,
data processing and communication. Nevertheless, pure ITS is not always necessary
nor possible, thus we also study combinations with computational (but also quantum-
safe) symmetric primitives where appropriate for better efficiency. This thesis comprises
three main parts each containing individual contributions.

Firstly, the problem of secure cloud storage and data sharing is addressed. A novel
architecture for a secure distributed multi-cloud storage is presented based on the com-
bination of secret sharing with a Byzantine fault-tolerant (BFT) protocol. To cope with
performance problems encountered in the first proof-of-concept, a performance model
was developed and results from extensive simulations of the networking layer are pre-
sented. We also explored and optimized encoding performance for secret sharing in
software and show the potential for hardware acceleration. Additionally, to also support
means for data integrity monitoring we present an easy to realize and low-cost auditing
approach for the developed storage system. The technique is based on batching which
has also been extended further to generic batch verifiable secret sharing.

Secondly, we present efficient solutions for privacy preserving data processing based
on ITS flavors of secure multiparty computation (MPC). Fortunately, ITS-MPC relies on
secret sharing for encoding and thus nicely extends the previous work on secure storage.
We compared most relevant software frameworks and did intensive performance testing,
revealing only limited scalability of the technology for more advanced computations,
especially with respect to the number of MPC nodes. Therefore, we propose the use
of verifiable MPC to build privacy preserving data markets. By combining MPC with
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compatible zero-knowledge protocols (ZKP) we were able to demonstrate an end-to-
end verifiable but privacy preserving market platform for smart manufacturing which
can efficiently perform auctions with a large number of participants. We also explored
the possibility to run more elaborated market mechanisms based on optimization and
achieved very favorable results for a use case in air traffic management.

Thirdly, regarding secure communication this thesis presents results achieved in re-
searching some particular aspects of quantum key distributions (QKD). A very effi-
cient algorithmic approach for timing synchronization between QKD peers is presented
which helped to free an optical channel in a QKD system developed at AIT. To overcome
the problem of expensive compute hardware to run QKD post-processing on device, we
introduce the novel idea of offloading post-processing from the device in a secure way
and prove that it is possible to securely outsource information reconciliation to a sin-
gle server for the case of direct reconciliation. Additionally, we also show a negative
result for an efficient authentication protocol in QKD already proposed in 2004, which
we were able to fully break with the method presented in this thesis. Finally, we dis-
cuss possibilities to integrate QKD with communication systems and report a real-world
demonstration of the combination of secure storage with QKD to achieve information-
theoretic security from end-to-end in a medical use case.



iii

Acknowledgement
I am deeply grateful to Professor Harmen R. Van As for giving me the opportunity to
conduct my PhD and his continuous support over the many years. He hosted me during
my sabbaticals and offered an open environment to develop and to do research with the
academic freedom I wanted, while giving valuable advice and guidance.

Simultaneously, I would also like to give special thanks to Stephan Krenn for the
outstanding support as my local supervisor at AIT Austrian Institute of Technology,
where I was mainly working during my PhD studies. His support enabled me to work at
the interface of communication technology and applied cryptography, and he motivated
me to follow my interest and curiosity.

During the course of my studies my research was embedded into various research
projects of different scale. Some of them were particularly designed by me to finance
my PhD research and allowed me to follow my passion, but also nibbled away some
time for administration and management. However, during these projects I met so many
interesting and inspiring people that I can say with confidence it was worth the effort.

I would also like to thank my former colleagues at the TU Wien as well as my
collaborators at AIT Austrian Institute of Technology for the many fruitful discussions
and support, particularly Florian Wohner for his helping hand and invaluable knowledge
in software engineering, and Christoph Striecks for his support on batching for verifiable
secret sharing, as well as Benjamin Rainer for the collaboration on BFT performance.

I am also very grateful to my parents, who have supported me throughout my uni-
versity studies in the first place, and taught me to persistently follow my curiosity, even
if it takes longer or requires detours.

Last but not least, I would like to thank my wife Ulrike and my children Mia-Sophie
and Matheo for their endless support, understanding and patience during the last years.
Without their love and dedication to our family I would have not been able to undertake
this exceptional journey.



iv

Contents
1 Introduction 1

1.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background and Research Context . . . . . . . . . . . . . . . . . . . . 3
1.3 Relevance and Research Question . . . . . . . . . . . . . . . . . . . . 4
1.4 Research Approach and Methodology . . . . . . . . . . . . . . . . . . 5
1.5 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Background and Preliminaries . . . . . . . . . . . . . . . . . . . . . . 9

2 Securing Data at Rest 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 New Architecture for Secure Distributed Storage . . . . . . . . . . . . 20
2.3 BFT Performance Modelling and Optimization . . . . . . . . . . . . . 35
2.4 Simpler Configuration and Hardware Acceleration . . . . . . . . . . . 58
2.5 Efficient Privacy Preserving Remote Data Checking . . . . . . . . . . . 70
2.6 Batch Verifiability Against Malicious Clients . . . . . . . . . . . . . . 83
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3 Privacy Preserving Data Processing 101
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2 Performance Comparison of two MPC Frameworks . . . . . . . . . . . 102
3.3 A Novel MPC Based Platform for Data Markets . . . . . . . . . . . . . 118
3.4 Verifiable MPC Solver for the Assignment Problem . . . . . . . . . . . 134
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4 Securing Data in Transit 157
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.2 Timing Synchronization for QKD . . . . . . . . . . . . . . . . . . . . 161
4.3 Offload Post-Processing from QKD Nodes . . . . . . . . . . . . . . . . 171
4.4 QKD Authentication with Non-ITS MAC . . . . . . . . . . . . . . . . 190
4.5 QKD Integration and Discussion . . . . . . . . . . . . . . . . . . . . . 201

5 Summary, Conclusion and Outlook 207

6 Bibliography 211



Chapter 1

Introduction

1.1 Motivation and Challenges

Information and communication technologies (ICT) are driving the next big revolution
and digitalization will be at the heart of the transformation to the information society. A
report by the World Economic Forum [67] identified six megatrends in the field of ICT
which will shape the future:

• Ubiquitous and cloud computing,
• Internet of Things,
• Artificial intelligence and big data,
• Sharing economy and distributed trust,
• The digitization of matter and cyber physical systems, and
• Peoples’ interaction with the Internet.

The huge expectations in the transformation to the information society is due to the rapid
progress made in the development of computer hardware, software and communication
technologies which enable a more connected world. However, the new approaches also
come with many new challenges and risks. Especially security and privacy topics are
considered extremely important for emerging data driven ecosystems but are unsolved
in many aspects.

To illustrate the importance of security and privacy we show two examples. Firstly,
cloud computing changes the way we are accessing ICT resources. It enables us to con-
sume remote resources on demand and to scale in real-time via a self-service paradigm.
However, from a security standpoint, cloud computing raises many interesting ques-
tions and challenges the status quo in data sovereignty. In essence, data is stored and
processed in an external infrastructure which makes protection of data harder from a
data owners’ point of view. Furthermore, the intrinsic multi-tenancy of cloud comput-
ing together with the broad connectivity found in the cloud introduce many new threats.
This combination ultimately leads to increased security risks for data managed in the
cloud, e.g, as pointed out in [68, 69].

1
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Solving security challenges in connected and dynamic environments requires novel
approaches, especially if cryptography is considered, because end-to-end security can-
not be easily achieved anymore with existing methods [41]. Nevertheless, end-to-end
security would be very appealing in the cloud context, because if data is stored outside
the own infrastructure, it is much harder to protect it over the whole lifecycle. For ex-
ample, if it cannot be guaranteed that data is deleted after usage, it has to be protected
with additional cryptographic means to be long-term secure, which is challenging with
the state-of-the-art methods from cryptography. Many of current cryptographic schemes
are susceptible to quantum attacks and may even be broken retrospectively, due to the
progress in hardware development. While post-quantum (PQ) secure schemes exist for
basic primitives, they are not yet fully mature for complex primitives, and PQ schemes
still need to pass a test-of-time. In summary, a multitude of new problems arise with
cloud usage, especially with respect to information security and privacy [70, 71].

Secondly, the Internet of Things (IoT) paradigm is also pushing towards increased
data pooling and sharing in larger ecosystems. A characteristic of IoT applications is
that sensors and actors are connected over cloud infrastructure to enable interaction with
the physical world, i.e., they form cyber-physical systems. Due to the heterogeneity and
distributed nature of IoT application data protection gets even harder compared to pure
cloud outsourcing and novel cryptographic solutions are very desirable to cope with the
large attack surface IoT systems have.

Additionally, it is nowadays a fact that the market for cloud computing and IoT back-
end systems is dominated by the few big hyperscalers which are forming an oligopoly.
In this situation protection of personal data as well as business assets becomes essential
to regain sovereignty for local industries and economies. Therefore, we believe that
future data spaces for seamless and collaborative exploitation of data also require new
cryptographic solutions, supporting richer functionality and long-term security while
protecting the data from end-to-end.

In essence, a common trend in IT is the shift to systems with increased complexity,
connectivity and dynamicity. However, if these three characteristics (sometimes called
the trinity of trouble) come together, security becomes particularly challenging. The
comprehensive use of cryptography can help in this situation to protect data from cy-
berattacks or even unintentional data breaches, e.g., by misconfiguration. The research
in this thesis was motivated by this fact. Thus, novel practical and efficient crypto-
graphic solutions were researched, to be used in emerging use cases like data markets
for improved security and data sovereignty. Ideally, the proposed solutions are able
to re-establish end-to-end security in heterogeneous, large, interconnected infrastruc-
tures, also in the long run. In particular, we focus on application of primitives from
information-theoretic cryptography and analyze the practical aspects and performance
supporting real industry driven use cases.
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1.2 Background and Research Context

Cryptography is considered the strongest technical control to protect data. However,
cryptography is not easy to use and deploy. Even worse, the state-of-the-art suffers from
shortcomings with respect to cloud and IoT usage. The novel ICT paradigms require
completely new approaches enabling more agile data handling, ideally by allowing op-
erations and computations on ciphertext. Additionally, scalable quantum computers will
be able to compromise current cryptographic methods which base their security on the
hardness of number theoretic problems, thus long-term security is in question for these
methods. Even if it is currently not possible to build scalable quantum computer and it
is unclear when they will be available, the threat to data security must be already ad-
dressed today. As an example, consider ciphertext stored in the cloud which is leaked to
an adversary who stores them for future quantum attacks. In the following we describe
some background on the three major challenges driving the research in this thesis.

Limited functionality. The main cryptographic methods used in practice typically
provide secure encryption/decryption functions for confidentiality protection and au-
thenticity by digital signatures or message authentication codes. However, the methods
work in an all-or-nothing fashion, i.e., decryption reveals the full plaintext and signa-
tures only verify complete data. This was sufficient for many decades, but modern
cloud-based data sharing and collaboration patterns for IoT applications require richer
functionalities, e.g., only selectively sharing views on data or statistics about joint data
sets. Therefore, data has to be decrypted in intermediary systems—the cloud—to be
processed in plaintext, if used as input for more complex operations. This undermines
the basic principle of end-to-end security, which was considered a major milestone in
the development of cryptographic security.

Novel cryptographic methods like fully homomorphic encryption or multiparty com-
putation would allow for processing of encrypted data and could therefore help to solve
the problem, however, because they are considered inefficient and not practical they are
rarely used in practice. Additionally, secret sharing, a rather old cryptographic scheme
which can even provide information-theoretic security for data, could be used to achieve
long-term security against all kind of future attacks, but is also not considered practical.

Moreover, secret sharing is also compatible with certain multiparty computation
protocols. Thus, it can be directly used to store MPC input or output data. This is also
a reason we selected this two primitives for our research. In this thesis we address both,
encrypted but agile solutions for data storage and sharing among multiple stakeholders
based on secret sharing and means for data processing based on MPC. Both can be
instantiated with information-theoretic security, and both complement each other well
when applied in decentralized data spaces.
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Quantum computer threat. Quantum computers impose a tremendous threat to
asymmetric cryptography used today and triggered a whole new line of research on
quantum-safe cryptography. To cope with the situation two research strands are de-
veloping quantum-safe technologies. On the one hand, in post-quantum cryptography
replacement algorithms for digital signatures and asymmetric encryption schemes are
developed which are expected to be intractable for quantum computers. On the one
hand, quantum key distribution (QKD) emerged as a novel method offering ITS key
exchange, which is not possible from public key cryptography.

In this work we focus on the latter, because it is information-theoretic and therefore
ideally complements the other technologies, i.e., secret sharing and multiparty compu-
tation. The author also spent significant time of his early career in the development of
practical QKD systems and contributed to the topic on many levels. However, in the
thesis a focus is given on some particular functionalities which have been researched
recently and were considered important for practical application of the technology.

Furthermore, besides looking for direct quantum-safe replacements of affected cryp-
tography, the we investigating the application of ITS cryptography more broadly and
show how it can be used beyond communication, thus leading to quantum-safe systems
and platforms. In particular we study secret sharing methods to build long-term secure
multi-cloud storage and also research practical aspects on privacy preserving computa-
tion on the data for advanced cloud-based collaboration.

Deployment difficulties. Interestingly, the direct application of ITS cryptography
in the context of modern applications worked very well for the problems and use cases
identified. The proposed solutions achieved practical performance, were rich in func-
tionality and provided long-term security. However, because secret sharing and MPC
rely their security on the non-collusion assumption the deployment is very important for
the technology and operators have to understand the principles and basic approaches for
both, to achieve high security [22] for reasonable cost [23]. Furthermore, estimating the
real performance which can be achieved in concrete scenarios and exploring the limits
on scalability turned out to be more difficult and makes the application of the tech-
nologies still very challenging. Our research was therefore accompanied with detailed
scalability and performance analysis as well as evaluation of adequate configurations
and the design of new add-ons to achieve good performance, e.g., by transport layer
optimization for storage or extensions for public verifiability in MPC.

1.3 Relevance and Research Question

The thesis present research results in building long-term secure but practically efficient
protocols and systems for modern cloud-based data sharing and collaborative IoT ap-
plications. It brings together different old and new technologies from the world of
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information-theoretic cryptography to overcome problems with existing cryptographic
approaches suffering from functionality and long-term security issues. Furthermore,
the pure ITS technologies are enriched with additional methods and features relevant
to support emerging data spaces. The goal was to research and overcome inhibitors for
the use of information-theoretic cryptography and to show how it can help to design
modern end-to-end secure cryptographic solutions.

Thesis statement: Methods and tools with built-in information-theoretic security
to achieve long-term secure systems will be extremely valuable for the handling of per-
sonal and sensitive digital information in the future. Future ICT solutions must be de-
signed to support outsourcing to less trusted infrastructure and collaboration between
mutually distrusted parties, and data must be protected over the full lifecycle and ide-
ally from end-to-end. Especially, primitives which naturally support decentralized ap-
proaches, like secret sharing, multiparty computation and quantum key distribution can
be realized in practice and used to build novel cloud-based applications with high se-
curity, if applied and deployed in the right way. However, they need to be adapted,
extended and integrated into higher-level protocols and systems to make best use of
them and to be practically efficient.

Research question: How can information-theoretic cryptography be exploited to
protect data in cloud-based data spaces to provide long-term security and improve data
sovereignty?

Sub-question: How scalable and performant are the concepts and which methods
can be used to overcome bottlenecks or shortcomings encountered for selected real-
world applications?

Sub-question: How can they be combined with existing methods and tools to in-
crease efficiency without sacrificing the good long-term security aspects, i.e., maintain-
ing their quantum-safe property?

1.4 Research Approach and Methodology

In this thesis we focus on the use, extension and integration of information-theoretically
secure cryptographic methods with practical efficiency in modern use cases. We show
that the use of such technologies can not only lead to better long-term security but also
improve functionality in modern interconnected ICT systems. However, we also re-
searched ways to extend our ITS systems where necessary, e.g., to improve efficiency
or allow for coexistence with less restricted data, but without giving up on the main
properties at the core and only using quantum-safe tools. In essence, we explored
the possibilities of information-theoretic cryptography for data storage, processing and
communication in modern application scenarios and with practical performance.
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In the information-theoretic setting, the adversary is modeled as being computa-
tionally unbounded, i.e., no restrictions on the computational capabilities are assumed.
Thus, security does not rely on any unproven complexity assumptions; rather, it is
"information-theoretic". Two types of unconditional security which are distinguished:

(a) Perfect security: Very informally, here the result of a real execution of the protocol
with a real adversary must be exactly the same as the result of an ideal execution
with a trusted party and an ideal-world adversary/simulator.

(b) Statistical security: Here, the result of the real protocol execution needs "only"
be statistically close to the result of an ideal execution, but with negligible proba-
bility.

In cryptography only a few ITS primitives are known, with one-time pad (OTP) being
the most prominent one. OTP is used for perfectly secure communication and per se not
useful, because it requires a secure channel to start with. However, it is frequently used
as sub-protocol and its introduction was groundbreaking.

Secret sharing is another important primitive, which also introduced the concept of
threshold cryptography. It can be used to distribute trust among many parties and is
getting more and more important in modern ICT systems, where a single trusted entity
who centrally manages private keys cannot be relied on anymore. Interestingly, secret
sharing is also an important building block to achieve secure computation on encrypted
data. It has been shown that secret shared data held by different parties can be used to
securely compute any function [72, 73] on them, assuming that more than 2/3 of the
parties are honest (or a simple majority if the parties are additionally given a broadcast
channel). This method is called multiparty computation and another important method
used in the thesis.

Finally, because secret sharing and multiparty computation rely on perfectly secure
communication channels to exchange messages, an additional technology to protect the
communication channels is needed to achieve fully information-theoretically secure sys-
tems. Fortunately, quantum key distribution provides ITS key exchange and can be used
to realize secure communication. Thus, if all technologies are combined, decentralized
collaboration platforms with information-theoretic security can be built, however, the
technologies can also be used in their own right. In this thesis we research the practica-
bility of the different technologies and how they can be potentially leveraged for higher
security in cloud-based solutions. Nevertheless, pure ITS is not always needed or possi-
ble, thus we also study combinations with computational (but also quantum-safe) secure
primitives where appropriate for better efficiency.

The research presented in this thesis was conducted during participation in three
publicly funded collaborative research projects. The line of research comprises crypto-
graphic solutions for communication, data storage and processing of data. The research
was funded by the European Union Horizon 2020 research activity No. 644962 PRIS-
MACLOUD, from the Austrian Research Promotion Agency FlexProd, and the SESAR
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Joint Undertaking under Horizon 2020 grant agreement No 890456 SlotMachine. The
author was contributing as key researcher to the respective projects and also coordinated
two of them. The knowledge gained during these collaborations was an invaluable ex-
perience and also influenced research direction of this thesis on the way.

Especially input from industry partners was helpful in defining realistic use cases
and for evaluation of the solutions. Additionally, we were able to experience the dif-
ficulties encountered in researching and designing real-world cryptographic solutions
in an interdisciplinary team at first hand. Integrating cryptography into applications
is often hampered by a missing common language between different people involved
(cryptographer, software architect, software developer, security experts, etc.). There-
fore, we also developed a new development methodology [28] along the way to improve
communication between different stakeholder which is not part of this thesis. The au-
thor also contributed to research projects in quantum key distribution and gained a lot
of experience on the technology [49, 53] which is also not directly part of the thesis.
Nevertheless, this experience helped to identify the topics included in this work and to
assess the potential for combination of the technologies.

1.5 Outline and Contributions

This thesis comprises three main parts (Section 2-4) each containing individual contri-
butions. Besides that, in the current section the problem and research challenges are
discussed in this section, and conclusions are given in Chapter 5. The structure was
naturally given by different stages in the data lifecycle, i.e., data storage, computation
and communication. In the following we quickly motivate the structure and summarize
results achieved in each chapter to guide the reader.

In Chapter 2 the problem of secure (cloud) storage and data sharing is addressed.
In the early phase of studying the topic, a novel concept for a secure distributed stor-
age was developed and demonstrated [1]. However, the first approach showed serious
performance problems and was missing essential functions. This spawned follow up
research to overcome identified shortcomings. The research results achieved are three-
fold.

Firstly, the performance problems of the initial solutions were analyzed in detail by
modelling and simulation of the networking layer [2]. Secondly, simpler configurations
were studied to improve in performance but also to reduce the cost and flexibility by only
requiring passive storage nodes [3]. Therefore, we also studied optimized implemen-
tations for encoding and decoding performance in secure distributed storage and also
report the results achieved by hardware acceleration of the core components [4]. The
performance improvement by migrating to hardware implementations were substantial
and pave the way for intra-data center usage with high throughput and short response
times. Thirdly, to also support means for system auditing and integrity monitoring we
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investigated efficient protocols for remote consistency checking during operation. We
present an easy to realize and low cost (computational and networking) auditing ap-
proach for our storage system [6], which was also patented [5]. The technique is based
on batching and has been extended further to generic verifiable secret sharing [7].

Chapter 3 deals with cryptographic methods for secure data processing on en-
crypted data. In particular we investigate practical aspects of multiparty computation
(MPC), which can also offer information-theoretic security guarantees. The usage of
MPC is somewhat an extension of our approach on secure distributed storage and can
be integrated with it, because ITS protocols for MPC also rely on secret sharing. A huge
body of work exists on MPC and progress in the last decade led to practical protocols
and implementations. However, achievable performance for concrete applications is not
easy to predict and depends on many factors as shown in [8], e.g., the impact of net-
work imperfections. We also found the security guarantees provided by standard MPC
not satisfactory, if many stakeholders are involved in the computation, because of the
limited scalability of MPC for advanced computational problems. In researched appli-
cations for novel data markets, we still required clients to delegate the computation to
an external MPC system, because not all users could run their own MPC node. Thus,
additional assurance was required from a users’ perspective, which motivated the devel-
opment of a new platform with built-in public verifiability and end-to-end authenticity
[9]. We also explored possibilities to use more elaborated market mechanisms based
on optimization and achieved very favorable results in settings with three to four nodes
[10].

When it comes to secure communication, we looked into particular aspects of
quantum key distributions and present the achievements in Chapter 4. Firstly, we devel-
oped a very efficient algorithmic approach for timing synchronization on the quantum
channel. It was essential to enable free-space applications as demonstrated in [11] and
helped to free an optical channel in fiber-based systems. The developed algorithms are
still part of the original AIT QKD software stack [44] as pre-sifting module. Addi-
tionally, to overcome the problem of expensive investments in compute hardware to run
QKD post-processing on the device, we developed a new method to offload it in a secure
manner, enabling new use cases and more flexible deployment options for QKD. The
work also resulted in a patent [12]. Finally, we worked on certain aspects of QKD proto-
cols to make them more efficient in terms of key usage on the classical communication
layer or in being more flexible in deployment. In fact, we introduced the novel idea
of offloading post-processing from the device in a secure way [13] and prove that it is
possible to securely outsource information reconciliation to a single server for the case
of direct reconciliation. Additionally, we study MPC implementations for cases where
single server offloading is impossible. Another line of research was already started early
in [64] to improve the efficiency of QKD channel authentication by leveraging non-ITS
message authentication codes (MAC). However, the developed protocol had some is-
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sues and researchers already broke certain aspects of our proposal [55]. Nevertheless,
it was during this thesis that we were finally able to fully break our own approach and
therefore showed that non-ITS authentication should not be used in such systems after
all [14], an interesting research result in its own right.

1.6 Background and Preliminaries

Before presenting the results in the following chapters we are quickly introducing most
relevant concepts used in the work. Our intention is to analyze and research practical
aspects of information-theoretically secure cryptographic schemes. Therefore, it is im-
portant to understand the basic notions in the field and to introduce the most important
primitives used in the thesis.

1.6.1 Relevant Cryptographic Primitives and Protocols

The main idea of this thesis is to study practical aspects of secure systems leverag-
ing information-theoretic cryptography at the core. The main primitives and protocols
used in this work are secret sharing, multiparty computation and quantum key distribu-
tion. Additionally, one-time-pad and ITS message authentication codes are also used as
sub-protocol. These are basically the main known ITS primitives and we used them to
secure data at rest, in processing, and on transit. Additionally, we use symmetric cryp-
tography to extend ITS methods where appropriate to achieve additional functionality
or improved efficiency, but we are not directly using any asymmetric protocol. We are
aware of recently standardized post-quantum cryptography (PQC), but did not rely on
them in our work, i.e., we are following a rather conservative approach. However, we
assume PQC is used to establish secure channels in case no alternative can be used, e.g.,
QKD or manual key management.

One-Time-Pad. The so-called Vernam cipher was the first primitive shown to be
information-theoretically secure in the famous work of Turing [74]. By combining a
binary message with a random key of the same length using the exclusive-or operation,
a random ciphertext is generated which do not leak any information about the plaintext.
Although perfectly secure, the concept of OTP is not practical because it requires a
secure channel for key exchange in the first place, it is mainly used as sub-protocol.

Secret sharing. A secret sharing scheme allows a dealer to distribute a secret s
between n parties Pi for i = 1, . . . ,n such that the secret can only be reconstructed if a
qualified set of these parties collaborate, while no other (non-qualified) set can not learn
any information about the secret. The family of all qualified sets form the monotone
access structure of the system. The most important access structure is the threshold
access structure, which only requires a pre-defined threshold of parties to join their
shares. Now, a secret sharing scheme for a monotone access structure is defined as a pair
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of algorithms, share and reconstruct where the first takes a s and generates n shares and
the latter recovers the message from k shares of a qualified set. The main properties of a
basic secret sharing algorithm are completeness and privacy. Completeness assures that
all qualified set can reconstruct the secret, and privacy guarantees that no unqualified
set of parties can reconstruct it. Many variants of secret sharing exist with different
properties for different adversary models. Of importance for this work are standard
schemes, robust secret sharing and verifiable secret sharing which are used in different
scenarios.

Multiparty computation. In secure multiparty computation (MPC) a set of parties
can jointly evaluate a function without leaking information to any of the participating
parties, beyond what they can derive from their own inputs and the result of the compu-
tation.

Interestingly, information-theoretic multiparty computation (MPC) exists, and ITS
variants are also based on secret sharing —as introduced by Ben-Or et al. [72] and
Chaum et al. [73]. Thus, it is possible to obliviously compute arbitrary functions on
secret shared data providing long-term security. The respective class of MPC protocols
with information-theoretic security operate in the honest majority setting, i.e., under the
assumption that an adversary corrupts less than half of the MPC computing nodes. Be-
sides the non-collusion assumption, the protocols also rely on secure channels, which
can be assured by different means. More concretely, MPC provides input secrecy (or
input privacy), i.e., no party learns the input values of any other party, and correct-
ness, i.e., the receiver of the result is ensured that the result is correct. Fortunately,
information-theoretically secure MPC protocols are among the most performant ap-
proaches for computing on encrypted data and achieve practical performance in many
application scenarios.

Quantum key distribution. Quantum key distribution (QKD) is the only known
information-theoretically secure method to exchange keys among peers. As its name
suggest, it leverages quantum mechanic properties to achieve unconditionally secure
key exchange. In a QKD system, quantum bits are exchanged between two peers which
cannot be intercepted or copied without being noticed, contrary to classical signals.
Because QKD is universally composable it can be safely combined with secret sharing
based systems to protect the communication channels between the parties, as proposed
for secure storage and multiparty computation. However, because of many limitations
of the technology in practice, we studied certain aspects in our work to make it more
flexible and efficient.

Information-theoretic MAC. A message authentication code (MAC) appends a se-
cret key-dependent short-length tag to a message which can be safely sent along an
insecure channel. At the receiving side a verification algorithm is run with the same key
as input to verify the message-tag pair received and therefore confirm its authenticity.
Wegman-Carter type MAC (UMAC) follow a special construction template which is al-
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ready four decades old. UMAC are known to be very fast and efficient when compared
to other MAC algorithms that are based on block ciphers or hash functions but were
not very popular on the Internet until recently. However, for our work they are relevant
because they can be instantiated with information-theoretic security to be used for QKD
classical channel authentication or to realize batching in our storage auditing protocol.

Computational symmetric primitives. Besides the ITS schemes and protocols pre-
sented we are also using most prominent symmetric primitives in our work. In partic-
ular, symmetric message encryption, message authentication codes and hash functions
are used on various occasions. In general, mentioned symmetric primitives rely on basic
operations and structures which are well analyzed and understood, and they are designed
in a way to be resistant against all know attacks. It is currently also well established that
this approach is not susceptible to quantum attacks, thus, modern symmetric ciphers are
considered quantum-safe. This is why we are also relying on them in certain protocols.

Zero-knowledge proofs of knowledge. A zero-knowledge proof of knowledge is
a two-party protocol between a prover and a verifier, which allows the prover to con-
vince the verifier that it knows some secret piece of information without revealing it.
Zero-knowledge proofs of knowledge must satisfy three main security properties: cor-
rectness, soundness and zero-knowledge. The latter two seem contradictory in the first
place, however, they also make ZKP an invaluable tool in cryptography, especially for
designing privacy enhancing technologies. Correctness means that honest verifiers can
always be convinced by honest provers. Soundness, on the other hand, assures that
the prover really knows the secret claimed, if the protocol succeeds and the verifier is
convinced, with only negligibly small error probability. Finally, zero-knowledge guar-
antees that the verifier cannot infer any information from the proof, except from what is
known from the claim anyway. In our work we leverage the concept to make our storage
system auditable and we use them to make our multiparty computation system publicly
verifiable, both being important functionalities for practical systems.

1.6.2 On the Security of Cryptographic Primitives and Protocols

In our work we heavily rely on the usage of cryptographic schemes and protocols. It
is important to note, that cryptographic schemes and protocols are always analyzed and
proven secure in a certain model. The cryptographic methods have to provide certain
functionality and can typically be parametrized to a certain extent. However, the partic-
ular security properties have to be well understood to use the respective schemes accord-
ingly. Especially the adversary model a protocol can resist is essential to characterize the
security. This can be particularly challenging for distributed protocols, because many
different flavors of adversaries exist.

To explain the concept, we give a quick example by using simplified multiparty
computation, based on emerging ISO/IEC standard for MPC [75]. In a first step the
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generic model of MPC is defined as well as fundamental requirements. As a bare min-
imum to qualify for an MPC protocol, the solution must enable two or more parties to
compute an intended function while keeping the input private. The computation can
be parametrized by encodings, roles and deployment configurations, but as a minimum
they have to provide correctness and input privacy. Optionally, additional properties can
be given regarding the robustness of the protocol. However, from a security perspec-
tive the adversary model is of major interest. One of the properties is, if the respective
MPC protocol can resist active or passive corruptions and how many nodes can be max-
imally corrupted. The computational limitations of the adversary are other important
restrictions. In our design, we target information-theoretic security for our solutions
wherever possible and reasonable, and do not impose any assumptions there. However,
adversaries can be characterized by many more characteristics as explained below.

1.6.3 Adversary Models

An adversary’s capabilities can be categorized in three mostly independent dimensions:
regarding the computational power, the network model, and the adversary’s power on a
protocol level. In the following we will briefly describe the most important aspects in
each of these dimensions.

Computational Power. Regarding the computational power, we categorize adver-
saries in two dimensions. On the one hand, we specify if we impose limitations on the
computational power available to the adversary. Restricting the capabilities of an adver-
sary is often essential to allow for efficient schemes and is the foundation for modern
cryptography. However, as shown in this thesis, the few known ITS methods are also
relevant and can be helpful in different applications. On the other hand, we addition-
ally distinguish if the adversary has access to quantum resources or not. Although, this
is also some restriction on the capabilities of the adversary, we want to highlight this
difference to emphasize the current trend towards quantum-safe cryptography. In the
following we quickly introduce the different types.

Bounded vs. unbounded. We distinguish computationally bounded and unbounded
adversaries. In the former, we assume that the number of computations the adversary
can perform is bounded above by some polynomial in the security parameter. Security is
then proved under some computational assumption; that is, breaking the scheme would
require the adversary to solve some computational problem which is believed to be-
come super-polynomially more complex when increasing the security parameter. This
approach is taken for most cryptographic primitives, such as encryption or signing. Pro-
tocols secure against bounded adversaries are also said to provide conditional security.
For the latter, we do not pose any restrictions whatsoever on the computational power;
schemes secure against unbounded adversaries are also called information-theoretically
secure or unconditionally secure and are of importance when designing long-term se-
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cure cryptographic systems. This is because security is guaranteed independent of po-
tential improvements on the computational capabilities of the adversary in the future.

Classical vs. quantum. Besides the standard definitions, for our work it is also im-
portant to distinguish between classical adversaries which have no access to quantum
resources and quantum adversaries which can use quantum computers or quantum mea-
surement equipment. In that sense, quantum adversaries with access to scalable quan-
tum computers are assumed to break asymmetric cryptography based on number the-
oretical problems, which are underlying a broad spectrum of schemes used in practice
today. If a protocol can resist quantum adversaries it is called quantum-safe. Currently,
most symmetric schemes, including most hash functions, MACs, or ciphers, are consid-
ered to be quantum-safe, if appropriate parameters are used, together with information-
theoretic cryptography which does not rely on any assumption at all. Additionally, a
whole new branch in cryptography called post-quantum cryptography (PQC) emerged
in the last decades, which aims at development of novel quantum resistant asymmetric
cryptography. PQC relates its’ hardness on problems also assumed to be intractable for
quantum computers. However, post-quantum cryptography is not in the focus of this
work and the protocols and system presented in this work mainly rely on ITS primitives
and partially on symmetric cryptography to achieve quantum-safe properties.

Network Model. Regarding the network model, we mainly distinguish between
Synchronous vs. asynchronous. In synchronous systems, it is assumed that protocols
proceed in rounds: all messages sent in one round are available to their receivers at the
beginning of the next round. This assumption often allows for elegant protocols and rel-
atively simple proofs. However, such a network model is only realistic if all nodes run at
roughly the same speed, the network is very stable, etc. In contrast, in an asynchronous
model, also network latency or simply different computation speeds on different nodes
where one does not want to always wait for the slowest node are modeled. Assuming
an asynchronous network is often far closer to reality, in particular for protocols that are
to be carried out over the Internet and not only, e.g., in a company-internal data center.
However, allowing asynchronicity often causes a considerable overhead in the compu-
tational costs of a protocol, and also results in much more intricate security proofs.

Protocol Level. On a protocol level, there are various properties one has to dis-
tinguish when classifying adversaries. Here we present some relevant categorizations
which were considered when designing our systems.

Passive vs active. This is the most basic categorization of adversaries on a protocol
level. A passive adversary is only allowed to corrupt a party in the sense that he may see
the party’s internal state and all messages it receives or sends, but it is not allowed to
change the behavior of the machine. Such adversaries are also called honest-but-curious
and are, e.g., useful in a cloud-based setting where the provider is trusted to run the right
payload but must be prevented from learning about user data. In contrast, an active or
Byzantine adversary may in general force corrupted nodes to deviate arbitrarily from the
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protocol specification. This could be the right model if data is stored or processed on
untrusted servers.

Adaptive vs non-adaptive. Generally speaking, a non-adaptive adversary has to de-
cide which parties to corrupt right away when the protocol starts. On the contrary, an
adaptive adversary is allowed to corrupt parties depending on what he has already seen
in the protocol so far. That is, an adaptive adversary is allowed to corrupt the “most
promising” parties at a given stage of the protocol. One can think of a non-adaptive
adversary as a malicious party which already compromises a system at manufacturing
time, but which cannot compromise additional devices once they have been shipped,
which would still be able for an adaptive adversary. From a practical point of view,
adaptive security clearly becomes more important with an increasing lifetime of the
system.

Static vs mobile (distributed system). Assuming a static adversary in a distributed
system means that once a party got corrupted, it will stay corrupted until the end of
the system. This may be reasonable for short living systems. However, in the case
of long-term storage scenarios, a single node might be reset to an honest state once
the corruption is detected. We call such an adversary mobile, as he is able to corrupt
different nodes at different points in time. Sometimes the respective corruptions are
referred to as transient. They are relevant in our storage scenario, where we rely on the
non-collusion assumption for long-term security.

Honest vs corrupted dealer (secret sharing). An honest dealer in secret sharing
is always assumed to send consistent shares to all servers, whereas a corrupted dealer
might send arbitrary and inconsistent shares to the servers. In particular, for a corrupted
dealer it cannot be guaranteed that every qualified set of shares reconstructs to the same
secret, or whether it reconstructs to a valid secret at all. While assuming a dishonest
dealer might seem artificial at first glance, this might, e.g., happen due to corrupted
devices sending altered messages on the network interface without the user noticing.
Also, transmission errors on a network level could be detected if a scheme is resistant
against dishonest dealers. Secret sharing protocols that can withstand malicious dealers
are called verifiable, whereas all others are said to be non-verifiable. In our system for
secure data storage and computation, e.g., the client delivering the input data is one
example where the model has substantial impact. If we can assume that the client is
under our full control it is safe to assume a honest dealer, however, if the client device
can be easily compromised a corrupted dealer has to be assumed.

1.6.4 Security Assurance and Proofs

In addition to the different models and assumptions involved in secure protocol design,
there are also different ways to prove the security of protocols. To understand the dif-
ference and implications we quickly present the main approaches.
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Game-based security. In this approach the security of the algorithm is phrased as
a game played between the adversary and a hypothetical challenger. The two entities
are probabilistic processes which interact and the security is bound to an event which
should occur with a certain target probability (0 or 1/2), or in the case of sequences of
games, close to the probability of a game with a different challenger. Security in this
context means that every efficient adversary cannot do better in output guessing of the
security event than with non-negligible probability, i.e., its distribution is close to the
target distribution. Moreover, because in cryptography typically the security relies on
assumptions which cannot be proven ultimately, the game-based technique is used to
prove reductions to problems assumed to be hard. For example, an asymmetric encryp-
tion protocol is shown secure by proving that an adversary able to break the protocol can
also break the underlying hard problem, e.g., the Decisional Diffie-Hellman problem.

Simulation-based security. The simulation paradigm follows a different approach
and defines the security properties to achieve in an ideal model which also make use
of ideal components such as a incorruptible trusted party. The security of a protocol is
then shown by proving that what an adversary can do in a real protocol (real model)
execution is almost the same as in an ideal scenario (simulation), which is secure by
definition. Thus, this approach is also called the real/ideal paradigm, and a protocol is
said to securely compute the ideal functionality, if for every adversary in the real model
there exists a so called simulator in the ideal model, such that the view of the adversary
in the real protocol execution is indistinguishable from the view of the adversary when
executing the simulator in the ideal world.

Universal composability. Universal composability is a very rigorous approach used
to overcome the problem of protocols being analyzed as standalone applications. It
enables the construction of security models where security is retained under protocol
composition which is the most generic result to achieve. Multiple instances of the pro-
tocols can run concurrently or even interact with each other without violating the se-
curity model. Various frameworks can be found in the literature and the methodology
somehow extend the simulation paradigm. The UC framework introduces an adversarial
entity called the environment, who generates the inputs to all parties (including inputs
for honest parties), reads all outputs, and interacts with the adversary in an arbitrary
way throughout the computation. A protocol is said to UC-securely compute an ideal
functionality if for any adversary that interacts with the protocol there exists a simulator
such that no environment can tell whether it is interacting with a run of the protocol with
the adversary, or with a run of the ideal model and an according simulator. However, it
comes with a number of drawbacks, e.g. sometimes impractically high computational
overheads. Thus, designing UC-secure tools requires effort on the primitive level in
order to get efficient building blocks that can be composed in a modular way.
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Direct proof. In a direct proof we can argue about the security of an algorithm or
protocol in a rather ad-hoc way. This approach is rarely used but is sometimes useful in
the information-theoretic setting. In cryptography the more versatile techniques men-
tioned above have been developed. They are able to capture in detail the adversarial
capabilities and define security properties in a fine-grained way.

How we used the different approaches. In our work we rely on the different
approaches above as follows. When we discuss the problem of offloading QKD post-
processing we directly show the properties based on information-theoretic arguments,
i.e., we directly prove the desired property. However, this is a very particular problem
with a very simple nature and therefore the only scheme in this category.

For the case of batch verifiable auditing and secret sharing in the storage section we
leverage game-based proving, because it is well suited to capture the desired security
properties. Simulation-based security proving is heavily used in multiparty computa-
tion. In the part on MPC we build on existing results and rely on secure protocols which
have been proven in this framework.

Besides that, we extend MPC in a very natural way to achieve better security, e.g.,
when we combine MPC with zero-knowledge proof methods to achieve publicly veri-
fiable MPC. Finally, for secure communication we leverage QKD, which has shown to
be universally composable and can therefore be safely combined with other primitives
and protocols. This is what we also exploit in our last part where we integrate it with
secure storage and discuss possibilities for computation.

1.6.5 Performance of Protocols

A particular focus of our work is to research, design and evaluate the practical perfor-
mance of system in advanced use cases. We therefore analyze and optimize protocols
regarding performance which can be categorized in various dimensions.

Round and communication complexity. On the network layer round and commu-
nication complexity are essential factors for a protocol. Round complexity measures the
number of sequential steps in the algorithm, i.e., the number of interactions required by
parties in a distributed protocol. Communication complexity measures the accumulated
number of data (bits) communicated between parties during protocol execution.

Computational complexity. Computational complexity, also known as time com-
plexity, measures the number of operations required to run a particular algorithm or
protocol, i.e., the time needed for execution. However, because it is hard to give abso-
lute numbers, as the complexity generally increases with the size of the input and the
runtime is also hardware (compute model) dependent, the complexity is typically ex-
pressed as a function of the size of the input in the generic form of asymptotic behavior
(big O notation).
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Empirical analysis. Deriving practical performance figures for different deploy-
ments and input is not straight forward in distributed systems. Especially, if the perfor-
mance depends on a combination of computational and communication complexity as
well as network layer behavior, e.g., as it is the case for multiparty computation. Ad-
ditionally, as we have seen in the case of secure storage, the peculiarities of a concrete
transport layer protocol leads to unpredictable behavior if connections are susceptible
to channel imperfections, e.g., packet loss.

Thus, because concrete performance of a real instantiation depends on so many pa-
rameters, settings and side effects, we make heavy use of empirical testing and bench-
marking in our work. Building proof-of-concept implementations and simulations were
a valuable tool to measure or estimate achievable performance for the various protocols
and systems developed.

In our work on distributed protocols the networking layer often turned out to be the
limiting factor in performance, therefore, we were carefully researching this aspect for
different scenarios. The systems for secure storage and processing of data mainly suf-
fered from the interactivity in the underlying protocols which we tried to understand and
optimize in our work. For example, during development of our batch auditing and batch
verifiable secret sharing protocol the goal was to minimize the round and communica-
tion complexity for efficient operation on bulk data. However, for certain aspects where
computation was the bottleneck, we researched efficient algorithms and implementa-
tions, e.g., efficient software and hardware encoding for secret sharing. Additionally,
when we discuss offloading of QKD post-processing in secure communication, we pro-
pose a different approach to increase efficiency for a decoding problem which cannot
be improved upon.





Chapter 2

Securing Data at Rest

2.1 Introduction

Cloud-based data storage and sharing is a very appealing technology and brings many
advantages over conventional local storage systems. In this chapter we present a novel
approach for long-term secure multi-cloud storage developed over recent years. It is
based on the idea, that adopting suitable cryptographic mechanisms from the realm
of information-theoretic cryptography—namely secret sharing—is a reasonable way to
achieve adequate security for outsourced data storage and processing. For the design
of our new type of secure and privacy preserving distributed storage we identified the
following requirements as being important:

• Resist passive and active attacks for confidentiality, integrity, and consistency
• Provide long-term security and specifically resist attacks by quantum computers
• Enable concurrent access for multiple users
• Support increased resiliency and availability
• Support dynamic access rules, e.g., dynamic groups or write only
• Support efficient means for remote consistency checking, i.e., third party auditing

In this chapter we present the research results achieved in addressing these topics.
Results in this chapter were also published in [1, 2, 3, 4, 5, 6, 7]. It is structured in the
following way.

First, a new distributed multi-cloud data storage architecture called ARCHISTAR is
outlined in Section 2.2. It secret shares data among several cloud providers and thus
improves data security and availability compared to existing solutions using a single
provider. The system developed comprises an architecture and protocols together with a
proof-of-concept implementation of selected features. Parts of the implementation have
also been released as open-source software on GitHub1. However, the implementation

1https://github.com/Archistar, accessed 2023-01-10.

https://github.com/Archistar
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only served as a tool to study the practicability of the proposed architecture and helped
to identify shortcomings for subsequent research.

The main identified gaps of the proposed approach were performance issues on the
network layer and data integrity for the secret shared data. To cope with the performance
problems of the consensus mechanism and to optimize performance for imperfect net-
works, a model was developed and evaluated by simulations. The results are shown in
Section 2.3. Furthermore, for the case of passive storage servers, a simplified proxy
approach is introduced in Section 2.4. It has the potential for high-speed encoding via
hardware acceleration, as shown in our performance study, and can therefore also be
used within data centers. Additionally, to overcome the limitations on data integrity in
ARCHISTAR, a very efficient batch auditing solution for secret shared data was devel-
oped in Section 2.5, which also builds the basis for our batch verifiable secret sharing
introduced in Section 2.6.

2.2 New Architecture for Secure Distributed Storage

Based on the discussed requirements, we developed a new framework for secure and
agile data storage and sharing in the cloud without any single point of trust or failure. It
is based on a distributed architecture and provides full multi-user support without com-
plex key management and revocation mechanisms and guarantees long-term security. It
is intended to be used with the most appealing cloud delivery model, which is also the
most vulnerable, i.e., public clouds. It addresses major user concerns in cloud usage as
identified by Cloud Security Alliance [76] which are data breach and data loss.

Additionally, to the high-level security requirements mentioned in Section 2.1 we
derived more concrete implementation features for ARCHISTAR, which are 1) no unau-
thorized user (including the cloud provider) must be able to access the data, 2) that a
data owner must be able to dynamically authorize user access to their data with fine
granularity, 3) authorized user access should be possible at any time without requiring
the data owner’s intervention, 4) data owners must be able to revoke access to data for
any authorized user, and 5) no authorized users must be able to grant or revoke access
rights (unless explicitly allowed to do so by the data owner).

Building such a cloud-based solution requires the combination of various techniques
ranging from authentication mechanisms to access control systems up to strong iso-
lation between different tenants. Strong privacy for user data can only be achieved
through strong encryption techniques which ideally protect confidentiality from end-to-
end. ARCHISTAR is based on secret sharing at the core, to achieve long-term security
in the first place, and extended with additional consensus techniques to achieve integrity,
consistency and the additional usage requirements.
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2.2.1 Problems of Encrypted Cloud Storage

Secret sharing was not only chosen because of its long-term security, but also because
standard cryptographic methods cannot be easily used for secure collaboration on en-
crypted data in dynamic groups. The usage of existing primitives from symmetric and
public key cryptography would lead to very complex key management and thus scala-
bility issues as well as serious problems when it comes to access right revocation. In
particular, if an action is executed, e.g., granting or revoking access rights, the user
performing this action must be online. In order to illustrate the problem with such a
solution, we sketch the procedure of adding and revoking a member of a group:2 to add
a member, the user has to retrieve the random symmetric key and encrypt it again under
the new user’s public key. To revoke access for a particular user (or only his key in
case of loss or exposure), the data owner must perform a re-encryption. Thus, she has
to retrieve and remove all cloud-stored data, decrypt and subsequently encrypt it with
a new random key before uploading the new data and keys to the cloud. The computa-
tion and communication overhead is significant as all computation must be performed
client-side. This limits its usability for mobile or low-power clients. We note that al-
though typically lazy revocation [77] is applied, i.e., re-encryption is delayed to the next
write operation, the effort still can be far too high. Furthermore, this approach requires
a public key infrastructure (PKI) to be available to all users.

Related approaches, e.g,. [78], solve some of the problems associated with this
use case, but introduce other difficulties. Most prominently discussed are currently
attribute-based encryption [79, 80] and proxy re-cryptography[81, 82], which we briefly
discuss below.

Attribute-based encryption. Attribute-based encryption (ABE) [79, 80] is a recent
public key encryption paradigm that allows for end-to-end secure data storage and shar-
ing systems [83, 84]. In ciphertext policy ABE (CP-ABE) approaches [85], a user’s
private key is associated with a set of attributes and a ciphertext specifies an access pol-
icy over a universe of attributes. A private key holder is able to decrypt a ciphertext
if and only if his attributes satisfy the policy of a ciphertext. CP-ABE thus allows to
realize implicit authorization, i.e., authorization is included into the encrypted data and
only people who satisfy the associated policy can decrypt data. People who may de-
crypt may not be known when producing ciphertexts. In a data sharing scenario, keys
can be issued by the data owner or some other authority. Recent works, e.g., [86], con-
sider ABE in data-sharing scenarios and investigate schemes where ciphertexts can be
re-encrypted to stricter policies and also efficient constructions for revocable ABE.

Proxy re-cryptography. The use of proxy re-cryptography [81, 82] can also over-
come the limitations of content encryption in data-sharing applications. The basic idea

2We assume the use hybrid encryption, i.e., to use an efficient symmetric encryption scheme to encrypt
the content data with a key chosen uniformly at random and then store the encrypted content data along
with the random key encrypted under the public keys of the members of the group the data is shared with.
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behind proxy re-encryption is that one can give a re-encryption key to a semi-trusted
proxy that allows the proxy to re-encrypt data encrypted under one key into data en-
crypted under another key without seeing the plaintext. Consequently, re-encryption
can be outsourced, although meaningful (and efficient) proxy re-encryption schemes
only exist for the public key setting. Thus, the application of such schemes does not
eliminate all problems within revocation as discussed above.

However, ARCHISTAR is a new approach based on information-theoretic secret
sharing extended to a multi-user distributed storage system, hence, combining flexibility
with long-term security.

2.2.2 The Cloud-of-Clouds Approach

The use of secret sharing to protect data privacy can also provide increased integrity
and availability. In a distributed storage system, secret sharing can be used to securely
encode data into n fragments (secret shares) for subsequent distribution on multiple
storage providers or servers (parties). Furthermore, the share combinations allowed to
reconstruct the original message can be defined at encoding time as monotone subsets
of the distributed original shares, e.g., a configurable threshold k ≤ n in the simplest
case. Any adversary, i.e., an external attacker or a storage provider, holding less shares
than required for reconstruction, cannot learn the original data. However, plain secret
sharing is just a set of two algorithms (share and reconstruct) and a lot more it needed
to build a secure and robust storage system out of it. ARCHISTAR integrates secret
sharing with protocols known from fault-tolerant computing to resist fail-stop events
or even active attacks without service interruption or data loss and to provide strong
consistency guarantees for multiple transactions processed in parallel.

Advantages. Through their inherently distributed nature, secret sharing based stor-
age schemes provide means for increased data confidentiality, integrity and availability.
This so-called cloud-of-clouds approach is very appealing, as it prevents data breaches
and data loss at the same time. If built without any single point of failure or trust it
additionally mitigates vendor lock-in.

Today’s service-level agreements (SLAs) for cloud storage capacity typically pro-
vide guarantees in terms of uptime but specify little in terms of data availability or data
protection. A typical value for service availability is 99.9%, e.g., as provided by Ama-
zon web services (AWS), one of the leading public cloud platforms. It defines this under
the term “Service commitment" and makes Amazon S3 available with a “Monthly Up-
time Percentage" of at least 99.9% during any monthly billing cycle 3. However, not
much is said about guarantees for data loss or confidentiality and only very limited
compensation is given for service commitment violations. Public cloud offerings still
delegate the ultimate responsibility of protecting against data loss or data breaches to

3https://aws.amazon.com/s3/sla/, accessed 2022-11-17.

https://aws.amazon.com/s3/sla/
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users. To be on the safe side, users should encrypt data and replicate it to different loca-
tions, which means that dutiful users need to use different providers anyway. A secret
sharing based architecture has this property by design and due to the flexibility of the
reconstruction threshold it can be more efficient than simple replication as also shown
in the availability analysis in Section 2.4.

Another advantage of secret sharing based storage systems is that there is no need
for explicit encryption keys and therefore key management issues do not emerge. The
keyless property makes them a very appealing candidate to build cloud-based informa-
tion sharing systems with increased dynamicity and capabilities for advanced sharing
scenarios. Because secret sharing is information-theoretically secure, the strong confi-
dentiality properties can be used to build storage systems which are long-term secure
[87]. Its security is provable against any type of attacker as long as he is prevented from
accessing enough shares to reconstruct the message.

Disadvantages. There are two major disadvantages of secure distributed cloud sys-
tems: while well understood and provably secure, the use of ITS secret sharing intro-
duces a different notion of security than known from encryption schemes. The security
model requires an explicit non-collusion assumption, and the guarantees are only true
for a limited number of colluding nodes (providers). Without additional methods, it is
not possible to protect or detect breaches of any kind if enough parties collude. Thus,
additional mechanisms must be integrated to relax this assumption and add detection
mechanisms for confidentiality or integrity breaches.

In addition, distributed systems are more complex to implement and add additional
administrative overhead. In the case of cloud storage, this disadvantage is less dramatic
as it can relieve the user from the complexity by offering the solution as a service.
Even conventional systems must include backup storage locations to protect against
data loss, if availability is a concern, and single points of failure must be prevented.
Hot-backup sites with full state-replication for immediate fault-recovery lead to systems
that are comparable in complexity and costs to secret sharing systems. Nevertheless, our
research in [22] showed that the usability issues could be a substantial barrier, which is
why we designed the system to be simple in deployment, operation and use.

Related work. Various secret sharing based storage systems have been proposed
and implemented in the last years (cf. [88]). We will briefly summarize the most relevant
ones and discuss their shortcomings when it comes to their applicability as cloud-based
information sharing systems.

TahoeLAFS [89] encrypts data, disperses the encrypted data through erasure-coding
and stores the fragments on multiple active backend storage servers. The storage servers
themselves can utilize locally attached cloud storage for their storage backend. It em-
ploys a proxy-pattern where only a single proxy can access the stored data at a time.

Nubisave [90] allows for flexible combination of operations upon user data. Incom-
ing user data can be deduplicated, erasure-coded and then distributed upon multiple
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cloud storage providers. Cloud providers can be dynamically selected due to run-time
criteria. Operations are mostly implemented though external libraries, the splitter-ng
component can perform limited secret sharing (Shamir) through the JSharing libary.
Parallel access to backend data by multiple Nubisave instances is not supported.

RACS [91] utilizes erasure-coding to distribute data upon multiple cloud storage
providers. Its use-case is prevention of vendor-lock-in, security and privacy is of no
concern, i.e., data is not encrypted. Access to clients as well as to backend storage is
provided through an Amazon S3-compatible protocol. Parallel access to stored data
through multiple RACS instances is achieved through usage of Apache Zookeeper,
which implements the Zab primary-backup protocol for synchronization.

DEPSKY-CA [92] is a Byzantine fault-tolerant storage system. It provides avail-
ability and confidentiality through computational secret sharing [93]. In DEPSKY’s
system model, servers cannot communicate with each other, clients must synchronize
access to files through a low-contention lock mechanism that uses cloud-backed lock
files for synchronization. This mechanism is only obstruction-free and depends upon
synchronized clocks. We would prefer a synchronization directive that is suitable for
high-contention situations (multiple parallel writers) and is robust in face of live-locks
and malicious clients.

In summary, many proposals for storage solutions with information dispersal mech-
anisms have been proposed. They are using secret sharing or similar techniques like all-
or-nothing transforms to protect confidentiality. Some of them even deal with Byzantine
robustness. However, to the best of our knowledge, at the time of writing none of them
supports full concurrency for a multi-user environment, nor does any of them provide a
solution to implement information sharing4. Additionally, none of the proposals discuss
the interplay with access control mechanisms.

2.2.3 The ARCHISTAR Architecture

The ARCHISTAR architecture is intended as distributed storage systems for secure and
resilient cloud based-data sharing. It focuses on data availability and integrity as well
as confidentiality guarantees, even when considering the storage providers as adver-
saries. At the core it integrates secret sharing with protocols for Byzantine robustness
in a multi-cloud setup. To enable secure agile collaboration between stakeholders, it
integrates an authentication and authorization layer. The combination of these three
components leads to a new type of system not yet considered in this context. It provides
a fully decentralized multi-user system without any single point of failure or trust and
increases attacker’s effort significantly compared to other systems.

4We note, however, that there are solutions for the non-distributed case, e.g., [94].
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Figure 2.1: Architectural Overview. On the left (a) the layered architecture is shown
which consists of passive storage servers holding the data, active server components
accepting client request and running the consensus protocol, and clients secret sharing
the data and generating requests. On the right (b) the software components of the active
server nodes are depicted.

ARCHISTAR’s high-level physical structure is shown in Figure 2.1a. Active clients
represent user devices which encode/decode user-data with a configurable secret sharing
scheme. This prevents servers from ever touching plain-text data and therefore increases
the level of security. The use of multiple sharing schemes allows for a configurable
trade-off between security and required communication bandwidth for different client
scenarios ranging from enterprise network access to mobile clients.

On the cloud provider side, the architecture foresees the use of two elements—
passive storage and active server components with the latter running in virtual machines.
Active servers are mandatory for the execution of the Byzantine fault-tolerant protocols
and are necessary to validate user credentials and enforce access control to stored data
fragments. They do not rely on persistent data and should be able to execute from a
read-only certified program image while volatile data is only persisted to the passive
storage layer. Through this separation of active and passive components we achieve
flexibility with regard to storage-provider requirements.

The node architecture is shown in Figure 2.1b. Users access the node through the
Client Application Programming Interface (Client API) which is highly influenced by
the Amazon S3 access protocol. Node-to-node communication is performed through a
Node API but both node and client control flow is unified within the node. All submitted
commands are subject to the Authentication and Authorization component that verifies
user’s identity and their corresponding access rights. Required user and object informa-
tion can be gathered from the User Policy Database (UPDB), object access information
is stored within the Object Policy Database (OPDB). All operations, including access-
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ing UPDB and OPDB, are synchronized through the BFT consensus component before
they are finally executed within the Application Logic Component. To allow for modu-
larity all data storage access is managed by minimal storage system interfaces (“Storage
Int.”).

In general, the ARCHISTAR architecture does not depend on special modifications
of cloud offerings but is rather intended as an overlay or virtual cloud service on top
of them. This approach is preferable to approaches which require modifications in the
used cloud stack.

2.2.4 Byzantine Robustness and Concurrent Access

Within Byzantine fault-tolerant (BFT) systems a defined number of components may
fail arbitrarily without impacting overall system stability. Initially thought to be too
inefficient for general use, practical fault tolerance [95] (PBFT) sparked a renaissance
of BFT algorithms in 2001 which further culminated in a tremendous research push by
blockchain. PBFT turned out to be well suited for our use case, because it is based
on a practical network model (weak-synchrony), provides optimal robustness (lower
than a third malicious servers), and only relies on symmetric cryptography; theoreti-
cally it can even be ITS if perfectly authentic channels are assumed. Until today, it is
still the most efficient protocol not relying on any asymmetric cryptography. However,
subsequent PBFT protocol improvements reduced the minimal replica count and thus
improve performance by either limiting the attacker’s possibilities [96, 97] or introduc-
ing the concept of speculative BFT [98, 99]. Nevertheless, during faults those protocols
commonly fall back to PBFT, therefore, we rely on pure PBFT in our first design.

An overview of PBFT is given in Section 2.3.1 and an overview of the core 3-phase
protocol used in shown in Figure 2.2. ARCHISTAR employs a Byzantine fault-tolerant
distribution algorithm akin to PBFT. PBFT assumes that each server has full access to
the stored plain-text data. As this assumption does not hold for a secret shared storage
system, the protocol had to be adopted. Clients perform secret sharing locally and
pass fragments to each node along with metadata. This can be considered a relatively
simple extension to standard PBFT, where all nodes receive identical data. In that sense,
the received metadata from the client is treated as the original PBFT payload and the
fragments are handled as associated data. Because the associated data is not identical it
cannot be used for transaction matching, but if integrated in this way it does not need
any change to the basic PBFT message flow and does therefore not produce overhead
compared to plaintext transaction.

The use of fragments as associated data in PBFT also influences the result phase
where the client performs a majority voting upon the operation’s result. Also, here only
the metadata can be treated according the original protocol and secret shared data has to
be treated differently. Looping through secret shared fragments is very beneficial for the
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system performance, which is not affected, but lead to significant security implications.
However, the priority was on system performance and the introduction of additional
protocol phases or computational effort had to be avoided.

Concrete impact on the security and system configuration are discussed in the next
section. In a nutshell, because all access to the backend storage is synchronized through
the BFT layer, ARCHISTAR can inherently deal with parallel concurrent write requests,
even from multiple users. However, only the consistency of the metadata can be guar-
anteed in case of a corrupt client. For secret shared data a malicious client could send an
inconsistent sharing in the beginning of the request, which cannot be efficiently detected
by the replicas without adding additional interaction and substantial computational load.
To cope with inconsistent sharings and malicious clients, we subsequently developed
dedicated solutions in Section 2.5 and Section 2.6 which are particularly efficient for
storage applications. However, the first ARCHISTAR proof-of-concept was based on
basic threshold secret sharing techniques which could not prevent from a cheating dealer
(client).

2.2.5 Integration of Secret Sharing

For integration of secret sharing the following relevant protocols have been identified to
support a wide range of use cases. In general, only threshold sharing schemes were se-
lected, because they are the most efficient ones in terms of storage overhead (share size)
and can also be efficiently implemented in software. The four modes are summarized in
Table 2.1 and explained in the following.

Selected schemes. The main ITS scheme used in ARCHISTAR is Shamir secret
sharing [100]. It is a perfectly secure secret sharing (PSS), provides a n-out-of-k thresh-
old access structure and is optimal in terms of share size, i.e., each share is as long as
the message. The scheme is based on the observation that in a field a polynomial of
degree k−1 is uniquely determined by k values, while knowing the function values on
at most k − 1 positions does not reveal any information about the slope on any posi-
tion different from the known ones. Thus, to share a secret s, the dealer now chooses
a random polynomial f (x) of degree k− 1 such that f (0) = s, and gives f (i) to Pi for
i = 1, . . . ,n. To reconstruct the secret from sufficiently many shares, the polynomial can
be reconstructed, and evaluated at 0.

For improved storage efficiency and to support storage of less sensitive data along
with ITS protected data, computational secret sharing (CSS) as introduced by [93] was
selected, because it has a rather simple structure and can be implemented as extension
to PSS. For ideal schemes the storage overhead is the same as when storing n replicas of
the original data. This is significantly worse than in non-private information dispersal
systems [101] (IDS) or in common RAID systems, where the overhead is only about
n/k if the system should be able to compensate for up to n− k losses. Krawczyk [93]
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proposed a system to combine the space efficiency of information dispersal with the
privacy of secret sharing schemes, if one is willing to accept a computationally bounded
adversary. On a high level, the idea is to first encrypt the data m using a symmetric
encryption scheme, and then apply the PSS only to the used key and an IDS to the
resulting ciphertext.

Interestingly, the IDS scheme is similar to Shamir’s scheme. In fact, a simple and
efficient scheme to disperse k elements a0, . . . ,ak−1 ∈ Zq is to define the polynomial
f (x) = ak−1xk−1 + · · ·+a1x+a0, and to output shares σi = f (i) for i = 1, . . . ,n. Now,
if the encryption scheme maps into Zq, this information dispersal scheme—and as a
result also Krawzcyk’s computationally secure secret sharing scheme—asymptotically
achieves the optimal storage overhead of n/k. ChaCha20 [102] is used as instantiation
for the symmetric cipher in CSS.

To cope with active corruptions more efficiently we also implemented robust ver-
sions of the respective schemes. A robust secret sharing (RSS) also comprises two
algorithms (share and reconstruct) but reconstruction can deal with active corruption. A
scheme is called t robust if it can reconstruct the original message even if up to t shares
were maliciously changed by an adversary. It can be shown that Shamir’s secret sharing
scheme is robust for every t < n/3, if k = t +1 is assumed. In general, for a meaningful
definition in a threshold setting, only t < k needs to be considered for confidentiality
reasons. It is thus easy to see that robust secret sharing for t ≥ n/2 cannot be achieved
and maximally robust schemes are given by n = 2t +1 for k = t +1.

To support robustness in the PSS case we rely on the basic scheme from [103] (R-
PSS) often referenced as information checking (IC). In the scheme the dealer extends
the share sent to a party by message authentication codes. That is, for every party Pj,
the share of Pi is authenticated with a tag τi, j, and the corresponding key is given to
Pj. At reconstruction phase, the shares can now be checked for correctness by checking
whether they are accepted by sufficiently many tags. To have a failure probability negli-
gible in λ, MACs with length at least λ bits need to be used, and thus each player needs
to additionally store Ω(λn) bits. If an ITS secure MAC is used for IC in combination
with PSS, it also becomes an ITS secure robust secret sharing (R-PSS). The ITS-MAC
is instantiated with Poly1305 [104], an efficiently computable universal hash family for
message authentication. It is also important to note, that IC supports immediate recon-
struction and can recover the secret as soon as k correct shares are available, whereby
PSS can only reconstruct if � k+n

2 � correct shares are available.

Finally, for the CSS case we leverage the fingerprinting technique (FP) to make
the CSS scheme robust (R-CSS), which was already proposed in [93]. FP significantly
reduces the overhead compared to R-PSS. Namely, instead of using a keyed MAC,
one can simply compute a hash of each share, which is then distributed among the
parties Pi. This distribution is done such that only t + 1 honestly returned parts are
necessary to reconstruct the hash value, i.e., it also supports immediate decoding. Doing
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so, the reconstruction algorithm can then check which shares of the secret were returned
honestly, and the secret can be recomputed. Reconstructing the hash value from partially
altered parts can be achieved by using an error correcting code, where we denote the
coding function by C and the decoding function by D. On a high level, such a code
maps strings of length j into a sequence of n strings in a way that allows to reconstruct
a message if at least d−1

2 indices have not been modified. Here, d is the distance of the
code. As we assume up to d malicious shares, we require the code to have d ≥ 2t + 1.
Secure hash SHA256 is used as collision resistant hash in R-CSS together with a simple
replication code with allows for majority voting in D.

Basic Modes Description Example Suite
M1 Null confidentiality (BFT) None

M2 Perfect security (PSS) ShamirPSS

M3 Robust PSS (R-PSS) ShamirPSS-Poly1305

M4 Computational security (CSS) ShamirPSS-ChaCha20

M5 Robust CSS (R-CSS) ShamirPSS-ChaCha20-SHA256

Table 2.1: Supported modes of encryption also mentioning concrete instantiations used.
Shamir secret sharing is used as PSS. Krawczyk’s scheme as CSS with PSS for key
sharing, ChaCha20 as cipher, and IDS for erasure coding. For R-PSS Rabins IC is
added to PSS with Poly1305 as ITS-MAC. For R-CSS Krawczyk’s FP method is used
with SHA256 for hashing and a repetition code (replication) for encoding.

Impact on PBFT configuration. Now, it is interesting to investigate the implica-
tions on the PBFT configuration for the various types of secret sharing. Given a PBFT
system which is capable of coping with f malicious nodes5, one requires at least 3 f +1
nodes in the system. A successful transaction is characterized by 2 f + 1 nodes being
in the COMMIT state and f +1 identical REPLY messages received by the client, with
additional f malicious REPLY messages in the worst case of f malicious nodes present
in the final quorum.

When secret shared data is added as associated data various problems arise, because
we basically separated transaction consistency from data consistency. Data consistency
cannot be checked within the system easily and majority voting cannot be applied to
recover secret shared data at the client. In fact, a malicious client would be able to send
corrupt data shares unnoticed by the nodes. However, he would not be able to influence
the overall system state based on plaintext metadata managed in the PBFT system. This
approach was taken to prevent from slowdown through cryptographic protocols required
to check consistency of payload. Thus, for the time being we assume a client which

5We assume each replica is holding a fragment of the sharing and use the common terminology of f
for corrupt nodes from now on to also refer to the number of corrupt shares for RSS reconstruction.



30 Chapter 2: SECURING DATA AT REST

always generates a honest sharing of the message and discuss remediation solutions
later. Now, to protect from malicious replicas adequate reconstruction procedures have
to be used and thresholds have to be respected. Furthermore, the threshold for the
sharing cannot be selected freely and has to satisfy certain conditions, i.e., k > f for
confidentiality.

Because PSS can correct up to f = �n−1
3 � errors, for an optimal value of k = f +1

the reconstruction procedure requires at least 2 f +1 correct shares to successfully com-
plete. Thus, f additional answers are required in the last phase of the BFT protocol to
reliably reconstruct in the presence of f malicious replies. Given, that 3 f +1 has to be
a valid quorum in PBFT we end up with an overall system configuration of n = 4 f +1
which is not optimal from a PBFT perspective. However, the amount of system nodes
can be reduced back to optimal by application of robust secret sharing (R-PSS), which
can reconstruct from 2t +1 shares correctly by adding limited overhead in storage and
reconstruction. Therefore, the use of R-PSS is important if most efficient PBFT opera-
tion at n = 3 f +1 is needed or the number of nodes should be minimal. Additionally, if
the RSS schemes support immediate decoding, i.e., reconstruction terminates as soon as
t + 1 consistent shares are available, the system performance is not affected by adding
the secret sharing layer to PBFT. However, linear properties of PSS are lost with R-PSS
which could prevent from advanced operations on the data, e.g., computation on frag-
mented data as analyzed in Chapter 3. Finally, the very same arguments hold for the
CCS and R-CSS variant. Technically, the handling of the R-CSS variant gets even sim-
pler if a repetition code (aka replication) is used for encoding, because the hash values
of all shares can be maintained within the plaintext metadata and produce only linear
overhead in the number of nodes n.

In summary, ARCHISTAR provides a carefully selected set of secret sharing schemes
as presented to minimally impact PBFT performance and give modest storage overhead.
However, it requires stronger assumptions on the client, which has to provide consistent
sharings for the system to work. If this assumption is not valid a dedicated protocol
for efficient offline consistency checking is presented in Section 2.5, which could be
runs regularly on the stored data. Moreover, if immediate verification is required, the
batch verifiable secret sharing (BVSS) from Section 2.6 and be used, which requires
one additional interaction with the client.

2.2.6 Authentication and Authorization

To protect the information from unauthorized external access, strong authentication
methods must be put in place at each node which is not different to conventional sys-
tems. However, to protect data from unauthorized access, we propose to maintain a user
and policy database via the already available BFT functionality. If all changes to user
and policy databases are only made via BFT transactions, globally consistent user and
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access control information is guaranteed. and because the access policies are correctly
enforced by all honest nodes, malicious nodes or clients will never get enough shares to
compromise the system, even if the adversary controls all malicious nodes and clients
in a coordinated way.

Thus, we achieve a fully decentralized data collaboration system without single
point of trust or failure. The components of the node are illustrated in Figure 2.1b,
every node integrates a dedicated stand-alone authentication and authorization module
on top of the BFT layer. Conceptually, it has only read access to the globally maintained
user policy database (UPDB) containing the basic user credentials and the object policy
database (OPDB) containing the access control information for data objects.

In essence, the keyless nature of secret sharing enables enormous flexibility and
agility in data sharing, but it must be combined with dedicated AA system to prevent
from unauthorized access to fragments. By maintaining access right in a consistent
way we achieve the required guarantees and the users can be assured that their data is
secured.

2.2.7 Proof-of-Concept Evaluation

In the following we briefly overview the proof-of-concept implementation, especially
the performance achieved for encoding and decoding of secret sharing and BFT through-
put. A first version of the proof-of-concept (PoC) was developed early during the thesis
to evaluate the basic concept and identify gaps which could be closed by additional re-
search, e.g., performance optimization for PBFT or efficient consistency checking for
secret shared data.

Some components of the ARCHISTAR framework are available on GitHub6 as
open-source software. Effort was spent to create generic components, which can be
used in different use cases and future projects. In general, the major security properties
could be achieved and verified, which shows that that the approach is valid and secure
by design. However, the achievable performance was of major interest for the practi-
cability of the system which could only be evaluated with a real implementation. We
briefly summarize the measured performance of two major system components, i.e., a
secret sharing library and a PBFT implementation.

Secret-sharing engine performance. All mentioned ARCHISTAR secret sharing
modes have been implemented in a Java secret sharing library called archistar-smc.
The software abstracts implementation details behind two important interfaces (Secret-
Sharing and InformationChecking) and thus allows for easy reconfiguration of imple-
mented algorithms. The BouncyCastle library7 is used as algorithm-provider because
the Standard Java CryptoAPI does not provide sufficient error information during de-

6http://github.com/archistar, accessed 2023-01-10.
7https://www.bouncycastle.org, accessed 2023-01-10.

http://github.com/archistar
https://www.bouncycastle.org
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cryption. The initial version was rather slow but continuous optimization led to a well
performing widely used library. The implementation works on byte level, i.e., in a finite
field of GF(28), which enables fast finite field operations via lookup tables. Larger word
sizes would cause a significant slowdown, which is not desirable for storage applica-
tions, except there are particular reasons, e.g., for auditing or multiparty computation
support. Thus, the current library cannot be used for secure computation purposes, be-
cause this would require to use larger prime fields. Nevertheless, the software can be
easily extended if structured data must be secret shared for use in multiparty computa-
tion.

Achieved performance figures with some level of parallelization are shown in Ta-
ble 2.2. Please note, currently parallelization only up to n (maximum number of shares)
threads is used—in our test-case, the embedded Intel Atom processor would offer more
cores than our maximum number of shares, thus no full utilization of the processor cores
is achieved. Sharmir refers to the ITS secure scheme (PSS), and Rabin refers to informa-
tion dispersal (IDS) [101] which is used as sub-protocol for erasure coding in Krawczyk
CSS, i.e. to fragment the encrypted data. In that sense, IDS is a non-systematic erasure
code and works similar to PSS, but instead of evaluating an almost random polynomial,
all coefficients are data words.

In summary, with optimizations we achieved good software performance and were
able to use all available cores. We reached over 400 Mbit/s for PSS and are even able
to saturate a Gbit/s network connection for CSS with a midrange desktop processor.
Even on small embedded processors, we reached more than 16 Mbit/s for PSS and 30
Mbit/s for CSS in a 4/3 sharing configuration. We also found sharing and reconstruc-
tion providing the same speed for PSS and reconstruction being roughly 2 times slower
than sharing in CSS. Although some improvements would be possible by using other
programming languages, no systematic improvements are feasible, especially for use
of IDS which resembles a non-systematic error correcting code where vectorized in-
structions cannot help. The current implementation is reasonably fast and were not a
performance bottleneck in our evaluations. However, it may be too slow for use within
data center. If substantial speed-ups are needed, hardware based solutions should be
studied (c.f. Section 2.4).

Finally, we also researched ways to get reasonable performance for JavaScript,
which enables web based clients. Surprisingly, after a lot of manual optimization we
were able to reach comparable performance to the Java implementation by making use
of asm.js8 The resulting software module archistar-smc-js is also open source and
the detailed results are shown in Table 2.3.

PBFT protocol implementation. For PBFT performance measurements a Java im-
plementation with support for secret shared data has been developed in archistar-bft.
It provides a BFT state machine which is used at each active server/replica and inter-

8http://asmjs.org, accessed 2022-12-12.

http://asmjs.org
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CPU Speed Algorithm Split-Up Combine

i5-4690K 3.5GHz Shamir (PSS) 53753.3 52378.0
C2758 2.4Ghz Shamir (PSS) 8192.0 7881.5
Exynos A9 1.7GHz Shamir (PSS) 6917.8 3932.0
ARM A53 1.2Ghz Shamir (PSS) 3502.4 2056.9
i5-4690K 3.5GHz Rabin (IDS) 694237.3 124498.5
C2758 2.4Ghz Rabin (IDS) 99417.5 26072.6
Exynos A9 1.7GHz Rabin (IDS) 67590.8 10529.6
ARM A53 1.2Ghz Rabin (IDS) 40634.9 4395.2
i5-4690K 3.5GHz Krawczyk (CSS) 167868.9 79844.1
C2758 2.4GHz Krawczyk (CSS) 32507.9 16862.9
Exynos A9 1.7GHz Krawczyk (CSS) 16430.0 6949.4
ARM A53 1.2Ghz Krawczyk (CSS) 9669.5 3765.1

Table 2.2: Performance (Version a8a344b) with multi-core enabled Rabin IDS. Cur-
rently a maximum number of n threads is used. The tested Atom C2758 board offers 8
cores, so it is not utilized to the maximum of its abilities. All values are in kByte/s.

PSS IDS CSS
Enc Dec Enc Dec Enc Dec

Java 22.2 21.9 169.2 58.2 67.1 38.9
JS naive 0.1 2.3 5.5 5.3 2.8 2.6

JS optimized 6.5 28.1 67.1 61.0 38.9 36.9

Table 2.3: Performance comparison of archistar-smc-js JavaScript (JS) with
archistar-smc Java implementation taken on a Core2 Duo E8400 @ 3.00GHz running
Ubuntu16.4, Java8 and Node.js 4.2.6. All values in MB/s.

actions with other servers are implemented through callbacks (inversion-of-control pat-
tern). TCP based communication is used between nodes with optional support for TLS.
Although, the performance seemed reasonable during local testing on a single computer,
after cloud deployment the performance degraded to unacceptable levels.

The same was true for archistar-bft-js, an alternative implementation based
on JavaScript. We investigated a scenario that deals with networks that are less reli-
able than pure LAN implementations, but still have reasonable connectivity, especially
in the optimistic case without node failures. Ideally, we would like a protocol whose
throughput closely tracks the network’s performance especially for the optimal case of
no faults, but under the assumption of unreliable transport. However, in the concrete
practical multi-cloud storage deployment where we compared the performance of the
same implementation, once in a LAN-based setup and once in a cloud-based setup with
Amazon Web Services (AWS) we found the same unexpected behavior as with our first
implementation.
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For reproducibility we configured a Docker container setup which consists of four
nodes, where the RTT between each node is distributed following a truncated normal
distribution with mean 20ms and a variance of 5ms and with a link bandwidth of 1 Gbit/s
(which depends on the host machine, actually it is a net bandwidth of 500 Mbit/s). The
host machine for the Docker based experiments is a Dell Latitude featuring an Intel
Core i7-2640M CPU accompanied by 8 GB of RAM. We use different file sizes for
testing our deployed system. In order to test the upload and download performance
(time until the request/transaction is finished) we used different file sizes: 1 kiB, 500
kiB, 1 MiB. Files with the aforementioned sizes are uploaded or downloaded (obvi-
ously bigger files are fragmented the latest by IP, due to MTU). We further deployed
the system on Amazon Web Services and measured its performance. The upload per-
formance for both setups are depicted by Table 2.4. In the table, “Total” accounts for
the overall processing time of a request (upload/write), which includes encoding the
data (using secret sharing) and uploading them to the replicas (triggering a transaction
for the upload). “Transaction” denotes the time between sending the request to the un-
derlying BFT protocol and receiving all responses (we waited for all responses in our
test to measure overall worst case timing, normally only a majority is used). The ex-

AWS (ms) Docker (ms)
Total Transaction Total Transaction

1 kiB
Upper CI 466 457 322 314
Average 435 426 289 281

Lower CI 404 396 249 262

500 kiB
Upper CI 3338 3078 576 300
Average 2749 2488 553 281

Lower CI 2159 1899 531 262

1 MiB
Upper CI 3612 3043 922 369
Average 3390 2821 905 359

Lower CI 3167 2598 889 348

Table 2.4: Upload performance results (95% confidence intervals) for different file sizes
using archistar-smc-js for our Docker setup and Amazon Web Service (AWS).

periments clearly showed upload and download latencies for the AWS case to be worse
than could be expected. We suspected the reason of this discrepancy to be somewhere
in the interplay of TCP, TLS, congestions, and higher latency. Although this was only
within a single cloud, the transaction times we experienced in our system were already
unacceptable, and we decided to have a closer look at the dependencies of transaction
times on network parameters like packet loss and latency, as multi-cloud settings will
experience even rougher networking conditions (c.f. Section 2.3).
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2.3 BFT Performance Modelling and Optimization

In this section we take a deep dive into the network layer and protocols for PBFT im-
plementations for lossy and medium to high latency channels. To the best of our knowl-
edge, we present the first approach for a performance model of PBFT. We analyze the
core 3-phase view-consensus protocol in PBFT without additional features like leader
change and checkpointing and develop an analytical performance model for success
probability and latency of transactions. Then we present simulation results and analyze
system performance using TCP and UDP as transport protocols. We further explore the
parameters available for tuning such systems and evaluate the model by benchmarking
different configurations. We also propose a hybrid transport mode that is able to increase
performance by making use of both TCP and UDP. The results are then compared to a
real implementation in a comparable environment.

2.3.1 PBFT Protocol

We briefly review the PBFT protocol which is used to develop a performance model
that specifically considers unreliable communication channels, which is always the case
in real systems. This analysis was motivated by the poor performance measured when
deploying ARCHISTAR which used TCP for communication in large scale multi-cloud
environments. Although PBFT is known to perform well in local LAN settings with
high-bandwidth connectivity, low latency, and low loss, we found the performance
achieved in typical multi-cloud settings disappointing.

PBFT is a leader-based state replication protocol with three phases and able to cope
with arbitrary failures. It utilizes a quorum based voting mechanism between all in-
volved servers to provide strong consistency and message ordering in the face of Byzan-
tine faults. Despite the tremendous progress in the field, it is still the most efficient
protocol which does not use any asymmetric cryptography and would be even ITS if the
servers would be connected over perfectly authentic channels. Still, over inauthentic
and unreliable channels as found in communication networks, it only requires methods
from symmetric cryptography (e.g. MAC) to compensate for the channel insecurity.
In contrast, newer consensus protocols make heavy use of asymmetric cryptography to
achieve better efficiency.

PBFT is a state replication mechanism that can work over unreliable channels and
guarantee safety and liveness even in asynchronous environments such as the Internet.
For this, it needs at minimum 3 f +1 nodes, tolerating up to f of them being arbitrarily
faulty in the Byzantine model. The core view-consensus protocol is depicted in Fig-
ure 2.2. It comprises three phases which on a high level work as follows.

Being leader-based, one node takes over leadership in linearizing transactions for a
given period of time, the so-called view, which can also be changed if enough nodes are
not satisfied with the current leader (view-change). During a view, the leader is getting
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Figure 2.2: Message flow diagram of PBFT phases is shown on the left. Corresponding
state diagram on the right shows conditions for protocol progress.

transaction requests from clients and orders them by assigning a transaction identifier.
However, because the client does not know the current leader, it sends the request to
all nodes. For our analysis, which is only looking at the performance of the leader
consensus, this part can be omitted. Having received the request, the leader broadcasts
a PRE-PREPARE message. If nodes receive a PRE-PREPARE they check transaction
data and send a PREPARE message to all other nodes if it is consistent with their state.
If nodes receive enough PREPARE messages from other nodes they enter the prepared
state and send a COMMIT message to all other nodes. A node transitions into the
committed state if it has received at least 2 f + 1 (also including its own) COMMIT
messages, and finally send a REPLY message to the client. The client considers the
transaction to be committed when it has received f + 1 identical REPLY messages. In
fact, if f malicious node are still present in the committed state a total of 2 f +1 REPLY
messages can be required for the majority voting at the client.

The protocol provides safety by only progressing if an honest majority is assured
(at least 2 f +1 nodes are in the same state). In fact, a quorum of q = �n+ f+1

2 � nodes is
required to make progress, but this corresponds to the q= 2 f +1 majority in the optimal
case of n = 3 f + 1. Furthermore, the commit phase is used to guarantee this property
within views and the commit phase is needed to assure it over view changes. Finally,
liveness is guaranteed if the network satisfies weak synchrony conditions, which is often
a reasonable assumption but could lead to large timeouts in software implementations
and bad performance when the right timeout has to be found. Weak synchrony means
that eventually after a bounded time Δt the network becomes synchronous.

The PBFT protocol also applies cryptography to implement authentic channels and
transaction certificates. As an adversary cannot break cryptography this reduces its ca-
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pacity on the channel to delaying and deleting messages, i.e., he cannot introduce new
messages from nodes he is not controlling. From a practical perspective, however, an at-
tacker will not always have control over all communication channels between all nodes
and this model seems unnecessarily restrictive when it comes to performance evalua-
tion. Nevertheless, with our model we want to optimize performance for normal opera-
tion and therefore assume the case of no adversary present but communication channels
which suffer from imperfections. An adversary who would also have access to the com-
munication channels and could arbitrarily delay messages would render performance
modeling inadequate.

Related work. Two types of deployments for PBFT based consensus mechanisms
can typically be found in the literature, LAN and blockchain. If deployed in a closed
network within a single administrative domain, e.g. as a LAN based distributed lock
manager like the ”5 Chubby nodes within Google” environment, best performance is
achieved with the usage of UDP for message transmission. However, as the experiments
of [105] showed, due to congestion, packet loss can occur even in the ideal LAN setting,
and the triggered view-changes severely degrade performance.

If PBFT type of consensus is used in (permissioned) blockchain protocols, different
assumptions and requirements hold [106, 107, 108], and results cannot easily be ported
from one world to the other. Many transactions are typically batched, and consensus
is organized in epochs comprising all currently pending transactions. The models also
assume that a reliable channel can always be established with little overhead over un-
reliable channels and that the network buffers at nodes are infinite. In practice, they
typically apply TCP or its secure variant TLS, if authenticity is required.

When it comes to performance analysis of BFT protocols, benchmarking is typically
used to compare and estimate the performance of protocols [109]. The only known more
systematic approach was presented in [110], which use Stochastic Reward Nets (SRN)
to model “mean time to complete consensus”. However, they model the network as a
reliable channel where the rate of message transmission between all pairs of peers is the
same and fit individual distributions from measurements.

In summary, a large body of research exists in BFT and many protocols have been
proposed and benchmarked, but only little is known when it comes to performance
modeling of such protocols.

2.3.2 Modeling Packet Loss

In this section we focus on modeling transaction success and compare the usage of UDP
and TCP transport protocols, and their impact on the performance of basic PBFT trans-
actions. The optimistic case is analyzed with no malicious nodes present but possibly
unreliable network conditions, which it the most interesting case for normal operation.
The goal of this study is to fully leverage the redundancy inherent in PBFT to achieve
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short transaction times for high throughput respectively. Note that in the case of er-
rors we can always fall back to a standard implementation for non-optimistic case with
known performance degradation. Moreover, the model itself is generic and can easily
be adapted to various scenarios by changing parameters accordingly.

2.3.2.1 Modeling Transaction Success

As mentioned before, if requests time-out they have to be re-requested and an optional
view change can be triggered. View changes inflict high resource costs (especially on
the network level); in addition, new requests can only be executed after the view change
has been completed. Thus, it would be beneficial to know (or at least estimate) the prob-
ability that the system is able to successfully process a request a priori. This knowledge
could significantly improve the overall system performance because if an unreliable
transport mechanism, i.e., UDP, is used the system may switch over to reliable network
communication, i.e., TCP, if the chance of a view change increases.

The employed PBFT protocol heavily relies on network communication between
the replicas. Thus, delay and packet loss can have a tremendous impact on the overall
system performance. There are basically two transport protocols: UDP (connectionless)
and TCP (connection oriented). Both protocols are suited for our system (both provide
disadvantages and advantages), however, UDP employs the least overhead and delay
while TCP requires maintaining a connection and provides a reliable transport service.
In order to minimize communication overhead and delay, UDP is favored. However,
with increasing packet loss, we may run into the problem that nodes do not receive
at least 2 f + 1 messages from other nodes in a phase (cf. Figure 2.2). If this applies
to more than 2 f + 1 nodes, phases cannot be accepted anymore because of missing
(distinct) messages and, therefore, requests will time-out. This leads to re-requesting
timed-out requests and finally ends in even more requests timing-out. Thus, if the packet
loss increases, TCP intuitively becomes superior to UDP, while trading performance for
reliability. Thus, the question “when should TCP be used instead of UDP?” arises,
as well as help and guidance on UDP usage to stay in the efficient regime as long as
possible. For the following considerations f ∈ [0,�n−1

3 �], in order to have more than
f correct working replicas we need n− 2 f > f ⇒ n > 3 f replicas, thus the smallest
number of needed replicas is 3 f + 1 assuming f faulty ones. In the following we will
provide a criterion which answers the aforementioned question based on probability
theory.

Intuition tells us, that we would switch over to TCP if the expected number of nodes
that receives more than 2 f + 1 message is less than 2 f + 1 in order to have enough
replicas transitioning between the declared PBFT phases. Our goal is it to investigate
how errors in the actual transmission between the BFT protocol phases propagate and
how these errors influence the successful completion of a given transaction under the
assumption of f faulty nodes. Without loss of generality, we assume that multicast is
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not in place and, therefore, nodes have to rely on unicasts. If messages are attacked
by man-in-the-middle attacks and are altered (thus altering the recalculated digest) we
assume that the message is lost.

Taking a look at Figure 2.2 and having in mind that messages may get lost we have
the following phases if a request is received by the primary:

1. PRE-PREPARE: The primary sends a PRE-PREPARE message to all nodes (in-
cluding itself). Nodes can only successfully commit a transaction if they suc-
cessfully accept all phases, this also includes the reception of a PRE-PREPARE
message which actually fires off the consensus protocol. Assuming that there
is packet loss, m− 1 out of n− 1 (m,n ∈ N,m ≤ n) nodes may receive a PRE-
PREPARE message. The primary itself sends n− 1 PRE-PREPARE messages
to the other nodes, our of which 2 f have to be received in order to have enough
nodes (2 f +1) in the next state.

2. PREPARE: m (including the primary) nodes broadcast a PREPARE message to
all n nodes. Each node has to receive at least 2 f + 1 PREPARE messages to
successfully accept the PREPARE phase and in order to transition into the next
phase. We start with m nodes and may end up with only k out of m nodes (k,m,n∈
N,k ≤ m ≤ n) receiving at least 2 f + 1 PREPARE messages. A node in this
phase will only need to receive 2 f distinct PREPARE messages from m−1 nodes
because one message is sent to itself.

3. COMMIT: k nodes transition into this phase and broadcast a COMMIT message
to all n nodes. Since only k nodes successfully accepted the previous phase we
again have at most k nodes which can successfully accept the last phase. Thus,
we have j out of k nodes ( j,k,m,n ∈ N, j ≤ k ≤ m ≤ n) which again need 2 f
messages from k−1 nodes.

4. REPLY: j nodes arrive in this phase and will send a REPLY to the client. The
client sees its request as fulfilled if it receives f + 1 identical REPLY messages,
i.e., f +1 REPLY messages in total (best case), or 2 f + 1 messages if malicious
nodes are also considered (worst case), out of j possible ones.

We denote the random variables for the number of nodes reaching certain phases
as follows: M (PRE-PREPARE), K (PREPARE), J (COMMIT), and S (REPLY). We
do not take into account the reception of a request. If a request is not received, no
transaction will be triggered. The final number of nodes, thus, relies on the number of
nodes that are able to successfully accept each phase. We assume that the probability of
successfully transmitting a packet is independent and identically distributed.
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The expected value E[S,J ≥ 2 f + 1,K ≥ 2 f + 1,M ≥ 2 f + 1] as a function of suc-
cessful transmitting a message/packet, should suffice the following properties:

1. Let f ∈ [0,�n−1
3 �], ∀pl,i, pl, j ∈ ]0,1[, pl,i ≤ pl, j :

E[S,J ≥ 2 f +1,K ≥ 2 f +1,M ≥ 2 f +1](pl,i)≤
E[S,J ≥ 2 f +1,K ≥ 2 f +1,M ≥ 2 f +1](pl, j).

2. Let pl ∈ ]0,1[:

E[S,J ≥ 2 fi +1,K ≥ 2 fi +1,M ≥ 2 fi +1]≥
E[S,J ≥ 2 f j +1,K ≥ 2 f j +1,M ≥ 2 f j +1],

∀ fi, f j ∈ [0,�n−1
3 �], fi ≤ f j.

The probability that a client receives s replies from j nodes, where j out of k nodes
accepted the COMMIT phase, k out of m nodes accepted the PREPARE phase, and
m out of n nodes successfully accepted the PRE-PREPARE phase is given by Equa-
tion (2.1). There, we define pl as the probability for successfully transmitting a packet
with length l (we will later derive this probability or provide means to measure it). The
actual probability pl does depend on the underlying transport protocol T . Furthermore,
PT (X = k|y, pl) denotes the probability that k out of y packets/messages are successfully
transmitted given pl using transport protocol T .

Finally, in Equation (2.1) and for all following treatment we assume that we have
an optimal node configuration of n = 3 f + 1, which require each node to wait for q =

2 f +1 messages (including self-message) to transition to the next phase during any-to-
any intermediate phases.

P(S = s,J = j,K = k,M = m) =

PT (X = s| j)

·
�

k
j

�
PT (X ≥ 2 f |k−1) j(1−PT (X ≥ 2 f |k−1))k− j

·
�

m
k

�
PT (X ≥ 2 f |m−1)k(1−PT (X ≥ 2 f |m−1))m−k

·PT (X = m−1|n−1)

(2.1)

Based on Equation (2.1) we can compute the success probability for a given trans-
action as follows. If we sum over all successful cases we get the overall success prob-
ability which is a key indicator of the overall performance. Transactions have to go
through with high probability to achieve good performance. This will avoid additional
retransmissions or view changes which substantially slow down the system.
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The success probability is given in Equation (2.2) also for the optimal node config-
uration and all honest nodes (S ≥ f +1).

Psucc := P(S ≥ f +1,J ≥ 2 f +1,K ≥ 2 f +1,M ≥ 2 f +1) =

=
n

∑
m=2 f+1

m

∑
k=2 f+1

k

∑
j=2 f+1

j

∑
s= f+1

P(S = s,J = j,K = k,M = m)
(2.2)

Alternatively to the success probability Psucc it can be interesting to look at the prob-
ability distribution of S or their expectation, which can also be computed from Equa-
tion (2.1). The model presented so far was based on optimal node configurations with
least overhead. However, a further generalization of the model can be made for non-
optimal node settings. PBFT is based on the idea of a quorum of nodes which is guaran-
teed to eventually be in the same state thus defining the actual status of the system. The
size of the required quorum to make progress in PBFT is given by q = �n+ f+1

2 �, which
results in q= 2 f +1 for the optimal case of n= 3 f +1. However, if PT (X ≥ q−1|m−1)
and PT (X ≥ q− 1|k − 1) are used for the respective terms in Equation (2.1) and re-
spective Equation (2.2) is formulated as P(S ≥ f + 1,J ≥ q,K ≥ q,M ≥ q) arbitrary
configuration can be evaluated.

2.3.2.2 TCP vs. UDP

In the following we derive the probability PT for UDP. Assume that the probability p(l)
of not encountering a packet loss when a message (with length l) is transmitted using
UDP is given. Then pl,UDP := p(l) because UDP does not bother whether a message
has been successfully sent. The probability of receiving j out of n messages using UDP
reads as

PUDP(X = j|n) =
�

n
j

�
p(l) j(1− p(l))n− j. (2.3)

Based on PUDP we can also compute PUDP(X ≥ j|n) by summing up the good cases
as shown below in Equation (2.4). Thus we can directly use both versions of PUDP as
an instantiation of PT in Equation (2.1) and derive the concrete probabilities for each
possible system state as well as the success probability and expected number of replies.

PUDP(X ≥ j|n) =
n

∑
i= j

PUDP(X = i|n) (2.4)

To get a first idea of the basic behavior of the system when using UDP we computed
the success probability Psucc over increasing transmission probability pl . The result for
different failure modes f and according quorums (q = 2 f + 1) and nodes (n = 3 f + 1)
in a standard configuration is shown in Figure 2.3. From the graph, it can be seen that
higher f are favorable in tolerating small errors but perform worse if the transmission
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Figure 2.3: Basic UDP model for different standard configurations.

errors (perr = 1− pl) gets bigger. However, from a system operator point of view it is
clear, that only high success probabilities will lead to god overall performance, because
after every failure the transaction has to be rescheduled or even worse, a view change
has to be triggered. Both cases induce additional overhead which should be reduced to
reasonable values. In practice we would expect values of 99% or 99.9% and higher,
depending on the use case. Thus, in typical working regimes with low error rates we
experience better behavior in systems with larger f comprising more redundancy as
can be also seen in Figure 2.4. Although Psucc is a very good measure to tune system
performance, a service provider may also use the expected value E[S,J ≥ 2 f + 1,K ≥
2 f +1,M ≥ 2 f +1] to decide whether it should switch from a UDP based transmission
to TCP. A criteria for switching the transport protocol could be E[S,J ≥ 2 f + 1,K ≥
2 f +1,M ≥ 2 f +1]< 2 f +1 because at least f +1 (in the best case) or 2 f +1 (in the
worst case) replies are needed by the client accepting the transaction.

The major advantage of TCP usage is that we gain reliable connections at the ex-
pense of (even more) delay for transactions to complete. In fact, using TCP in theory
we can assume a constant transaction success probability of one if we allow for an in-
finite number of retransmissions. Nevertheless, even if transactions are guaranteed to
complete eventually, the resulting performance can be devastating and render the ser-
vice unusable, because of the many retransmissions needed. Even in the good case with
no retransmissions does TCP perform slower, because of the intrinsic acknowledgment
mechanism which always requires two time the network latency to complete. Thus, it is
important to also understand behavior of TCP in detail in order to minimize the impact
of retransmissions, and not only rely on its guaranteed delivery property.
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Figure 2.4: UDP success probability with increasing f for small transaction errors.

2.3.2.3 Number of Retransmissions

In order to shed some light on the probability and expected value of TCP retransmis-
sions (and UDP retransmissions in the following), we assume that TCP connections are
already set up and we only account for the transmission of data segments/messages.
Again, we assume that the probability of successfully transmitting a packet of length l
over the wire/channel is given by p(l). However, a segment is only successfully trans-
mitted using TCP if we receive an acknowledgment (ACK) otherwise a time-out will
trigger, and a retransmission of the segment will be initiated. Therefore, both (segment
+ ACK) have to be transmitted successfully. We do not consider any extensions of
TCP. A message may be divided into several segments which all have to be successfully
transmitted. The probability of successfully transmitting a segment reads as

P(¬M|p) = p(l)(1− p(ACK))+(1− p(l))

P(M|p) = p(l)p(ACK).

If p(l)≈ p(ACK) then we have P(M|p) = p(l)2, in general we have p(l)≤ p(ACK)

and we obtain P(M|p)≥ p(l)2. We derive the probability of successfully transmitting a
segment with a certain number of allowed retransmissions m ∈N0 by Equation (2.5). In
order to derive the probability of successful transmitting a TCP segment, we model this
process (Xn)n∈N by a Markov chain with the state space Ω = {1,2} with the following
transition matrix

P =

�
1 0

P(M|p) 1−P(M|p)
�
.
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p12 = 0

p11 = 1

p21 = P(M |p)
p22 = 1− P(M |p)

Figure 2.5: Markov chain for TCP retransmission modelling. pi j are the transition
probabilities of P. The system starts in state 2 and after a successful transmission of
message an acknowledgment it resumes in state 1. However, for every unsuccessful
attempt it stays in state 2 and initiates a retransmission.

The structure of the Markov chain is also shown in Figure 2.5. In our model we as-
sume that we start in state 2 and transition with ever try to transmit a message. Eventu-
ally we will arrive in state 1 after a successful transmission, i.e., message and acknowl-
edgment are received. However, for our analysis we are interested in the probability
of a successful transmission after a maximal number of retransmissions r, which we
call PRETCP(M|r, p). According to the Kolmogorov–Chapman equation we obtain this
quantity from the probability of being in state 1 after r + 1 transitions when starting
from state 2 as read

PRETCP(M|r, p) := P(Xr = 1|X0 = 2) = Pr
2,1 = P(M|p)

r

∑
k=0

(1−P(M|p))k. (2.5)

Equation (2.5) can also be easily verified by applying induction. However, we still
have to prove the informally introduced property of guaranteed delivery for the case
of infinite retransmissions. Intuitively this property can also be seen from the Markov
chain, because state 1 is the only absorbing state, but we are going to show it formally
in the following.

Proposition 2.3.1. Let (Ω,A ,PRETCP) be a probability space, where Ω = {M,¬M},
with the states accounting for a successful and not successful transmission of a TCP
segment. Where, (PRETCP) is conditional probability measure given a certain number
of retransmissions r ∈ N0. Then the following holds

lim
r→∞

PRETCP(M|r, p) = 1.

Proof. Using Equation (2.5) and the fact that the probability of successfully transmitting
a message (P(M|p)) is Bernoulli distributed, we easily obtain the intuitively result:
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lim
r→∞

PRETCP(M|r, p) = P(M|p) lim
r→∞

r

∑
k=0

(1−P(M|p))k

= P(M|p) lim
r→∞

1− (1−P(M|p))r+1

P(M|p) = 1

Corollary 2.3.1. Equation (2.5) can also be written as

PRETCP(M|r, p) = 1− (1−P(M|p))r+1.

A message sent by our BFT solution may be split up into several TCP segments.
Assuming an i.i.d. packet loss, the success probability of a message which is divided
into u different segments finally reads as

pl,TCP := P


u�

j=1

M j|r, p

�
=

u

∏
j=1

PRETCP(M j|r, p) =

(1− (1−P(M1|p))r+1)u−1(1− (1−P(Mu|p))r+1),

(2.6)

there are u segments where u− 1 are of the same size and the k-th segment may have
a smaller length than its predecessors. However, because the messages sent between
replicas in PBFT are rather short, TCP segmentation is very unlikely to happen and
we can safely consider u = 1 for the rest of this analysis. Now, based on pl,TCP the
probability that a replica receives k messages from n messages sent using TCP reads as

PTCP(X = k|n, pl) =

�
n
k

�
pk

l,TCP(1− pl,TCP)
n−k. (2.7)

The probability PTCP can then be used in Equation (2.1) to calculate overall node
probabilities and subsequently the success probability for TCP for a given number of re-
transmissions. A comparison of different levels of retransmission is shown in Figure 2.6.
Psucc can be significantly increased for higher number of r. Interestingly without any
retransmission, TCP behaves worse than UDP. This is due to the fact that the channel is
used two times for a successful transmission compared to one time with UDP.

Finally, we may also use the insights gained from TCP for UDP. If we set P(M|p) =
p(l) in Equation (2.5) we have the case of UDP with retransmission (repetition code).
In this case we can conduct the very same analysis as done previously in UDP, but
with nodes sending multiple copies of the messages to reduce the transmission error. In
this approach we can try to optimize how often each BFT node should duplicate (incl.
sending) a message in order to arrive at high success probability. This strategy could
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Figure 2.6: Influence of different allowed TCP retransmissions r on the success proba-
bility of transactions (together with UDP as baseline).

be very efficient, because in UDP the duplicates are sent subsequently along with the
original data, which prevents from large delays in acknowledgment-based protocols.
However, because the redundant data is sent proactively it increases traffic and could
therefore cause other negative effects. Nevertheless, before switching to TCP, the BFT
nodes may try to send each message r times.

2.3.2.4 Exploring the Design Space

In the following we discuss the most important parameters and improvements to tune
system deployment to optimize the performance.

Forward Error Correction (Repetition Code). To improve the probability for a
packet being transmitted successfully in UDP without the introduction of a handshake
mechanism like in TCP, we could apply forward error correction (FEC). The simplest
way would be to apply repetition codes, which send the data multiple times. This con-
cept was already mentioned in the previous chapter, where the prerequisites were dis-
cussed along with the theory. In the case of an immediate retransmission in UDP over a
lossy channel with transmission probability pl = p(l), we get a new transmission prob-
ability pl2 for sending an additional duplicate. From a channel user point of view, the
redundancy decreases the effective packet loss in the channel substantially by doubling
the traffic. For our channel model with i.i.d. loss, a message is only received if not both
transmitted messages are lost, which leads to pl2 = 1−(1− pl)

2. This result is the same
as if Equation (2.5) was used with P(M|p) = pl and r = 1.
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In Figure 2.7 we show the simulation results of the influence of different amounts
of retransmissions (replications) r on the success probability of transactions. The im-
pact is huge already for small number of retransmissions and Psucc close to one can be
achieved up to relatively high error rates. However, given that about 2(n+n2) messages
are exchanged in total during a transaction without retransmission, the amount of mes-
sages increases quadratically which could lead to problems on the channel (congestion,
latency, additional loss). Therefore, the system should always operate in the optimal
regime where a minimal number of duplicates is produced.
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Figure 2.7: Influence of retransmissions for repetition codes in UDP.

Additional Redundancy in Nodes. An alternative solution would be the use of
additional nodes beyond the optimal 3 f + 1 robustness bound. For the standard case
with reliable channels it does not make sense to go beyond the optimal number of nodes,
because no robustness is gained. However, from a performance perspective, increasing
the amount of nodes 3 f + 1+ x leads to higher success probabilities in the UDP case
and could improve system performance if switching to TCP could be pushed to higher
error rates or even avoided for the expected communication channels. Nevertheless,
increasing the number of nodes also requires an increase in the quorum size for the
protocol to �n+ f+1

2 �, which is not considered in the formulas above but will be used in
the simulations.

The beneficial effect of additional nodes is shown in Figure 2.8. Although not as sig-
nificant as repetition codes, we see a substantial improvement for smaller transmission
errors. This could be relevant for many use cases, because the overhead on messages
produced is small compared to message retransmission.
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Figure 2.8: Influence of additional nodes on the transaction success probability for UDP.

2.3.3 Simulations and Measurements

In order to investigate the performance of the proposed approach further and to validate
the theoretical results we also simulated the BFT protocol as described in Section 2.3.2.
We selected OMNet++ 5.69 as the underlying simulation environment and use INET 310

as the network simulator on top of which we implemented the altered PBFT protocol us-
ing TCP and/or UDP as transport protocol for exchanging messages on the application
layer. We use a simplified topology where n replicas are connected through a router.
Furthermore, in our simulation we did not consider the computation times of nodes.
Especially the overhead of the cryptographic mechanisms also needed in a full imple-
mentation are assumed to be negligible for this analysis. Finally, we also benchmarked
a real PBFT implementation developed in a project for multi-cloud storage to verify the
results from the event simulation and test improvements.

2.3.3.1 Model Validation

In a first step we validated the accuracy of the theoretical model with the OMNet++
simulation. We set the bandwidth of each link (between node and router) to 100 Mbps,
and the delay is truncated normal distributed (always ≥ 0) with mean 20ms and a vari-
ance of 5ms. We varied the bit error rate of the channel from 0 to 13 ·10−5 in 10−5 steps
and measured the actual packet loss seen at the transport layer. We used 20 replicas,
a message size of 128 bytes, and we assumed the maximum number of faulty nodes
(6 in the case of 20 nodes). For each simulation run we did 100 requests and for each

9https://github.com/inet-framework/inet/issues/75
10https://inet.omnetpp.org/
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simulation parameter configuration we did 20 repetitions. Figure 2.9 depicts the proba-
bility using the model provided in Equation (2.1) (Psucc :=P(S≥ 2 f +1,J ≥ 2 f +1,K ≥
2 f +1,M ≥ 2 f +1)) and the data obtained by the experiment. It is evident that the theo-
retical model fits the observed experimental data. Thus, the presented theoretical model
can be used to explore basic behavior and the presented analysis is a solid foundation
for further performance optimization.
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Figure 2.9: Transaction success probability as a function of packet loss obtained by
experiments vs. Equation (2.1) using UDP.

2.3.3.2 Simulation Results

To better understand and improve the UDP behavior we also explore the design space
available to improve success rates and analyze their impact on the latency in our simu-
lation environment. As discussed, two immediate and easy to realize options exist for
the improvement of the success probability of individual transactions Psucc. One is to
increase the number of nodes and the other to better cope for channel losses by means
of forward error correction (FEC).

To prevent transactions from failing by losing synchronization at certain nodes, in-
creasing the number of nodes seems a good way to increase resilience. However, the
main configuration parameters of a BFT system (n, f ) cannot be freely chosen and have
to fulfill certain requirements. In general, a setting with n = 3 f +1 is believed to be op-
timal and typically used, as the quorum size is also minimal with 2 f +1. We therefore
compared settings with different robustness f from a performance point of view and for
the suitability of UDP. The results are shown in Figure 2.10, and it can be seen that with
increasing number of nodes n, the success probability Psucc also increases. For settings
with a higher number of nodes (e.g. n>= 19) we see higher transaction success even for
substantial packet loss, which indicates that application of UDP can be practical. How-
ever, beyond about 12% packet loss the effect reverses and configurations with more
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Figure 2.10: Success probability over increasing packet loss for UDP with different f
and minimum node configuration n = 3 f +1.

nodes behave worse. Furthermore, as expected the transaction times are much better
with UDP compared to protocols using acknowledgements and only slightly increases
with higher packet loss and number of nodes.

If FEC is used, repetition codes are the most efficient solution in our case, as the
amount of packets should be kept low and only short messages are exchanged in multi-
ple rounds. The effect of repetition codes is shown in Figure 2.11. As expected it raises
Psucc substantially by reducing the effective packet loss on the channels through proac-
tive retransmission of packages. This comes at the cost of an (unnecessary) increase of
messages transmitted. Interestingly, the overall transaction time is not affected if enough
bandwidth is available and the good timing behavior is maintained in all situations.

Given an accurate channel model and some bandwidth left on the network, this
method turned out to be the most effective. However, if the channel changes behavior
or is not known at all, this approach could lead to completely different results, e.g., for
burst failures this FEC strategy would fail. Additionally, overhead on the network is
produced and it should only be used if enough bandwidth is available and no additional
congestion is induced.

Besides the evident options presented above, it is natural to ask if going beyond
optimal configurations of n = 3 f + 1 could make sense from a performance point of
view, although not necessary from a robustness perspective. We suspected that adding
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Figure 2.11: Success probability over increasing packet loss for UDP with f = 1 and
increasing repetitions r.
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Figure 2.12: Success probability over increasing packet loss for UDP with f = 1 and
increasing node redundancy
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additional nodes could help to improve UDP usage even with certain packet loss, but is
was not clear how it would impact the overall latency and how big the improvement in
success probability would be.

In Figure 2.12 we show the results of this analysis. With additional nodes the suc-
cess probability with lossy links can be increased and at the same time we get even
shorter transaction times. The effect is best seen for small configurations which can
benefit from this idea. Nevertheless, because PBFT is a quorum-based protocol, nodes
have to be added pairwise. Adding a single node to an optimal configuration degrades
performance, because the required quorum also increases, i.e., if more than (n+ f )/2
servers have to be in the same phase, the servers have to wait for more PREPARE and
COMMIT messages.

Finally, in our simulations we also verified that TCP behaves worse for increasing
packet loss as is shown in Figure 2.13. Even for no losses the transaction time was
already almost twice as high as with UDP. This can be easily explained by the basic
nature of TCP using acknowledgements. Even worse, with increasing packet loss the
transaction time started to rise to unexpectedly high values in the seconds range and due
to timeout behavior we even saw some transactions not finishing. This result confirmed
our findings from the first experiments mentioned in the introduction.
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Although TCP is an extremely versatile and attractive protocol for many situations
to build reliable channels over unreliable ones, for the BFT type of interactive protocols
with many short messages sent among nodes it turned out to be not a good fit. This
is also aligned with our intuition of TCP being throughput optimized for channels with
high bandwidth-delay product. Nevertheless, in situations with a lot of uncertainty about
the channel and high losses it can be a valuable tool to increase the transaction rate in
such rough conditions. Surprisingly we also found that the success probability was not 1
in all situations, and even with long timeouts some of the transactions did not complete
in scenarios with higher packet loss. This is because of the limit of 12 retransmissions
in the TCP implementation of INET.

Finally, we also tried to compare different TCP types to show their behavior, but
we could find no significant differences between the algorithms implemented in INET
(Tahoe, Reno, New Reno). This may be due to a known problem of this framework [111].

2.3.3.3 System Measurements

In addition to the simulation, we also performed measurements on a real implementa-
tion done in Python [1]. To establish similar conditions for our comparison we opted
for an emulated network on a single Linux PC deployment where each node was run as
a separate instance and the local network stack was used for communication. To eval-
uate different networking conditions the Linux netem kernel module [112] was used to
provoke packet delay and network loss. This setup provided the stable and controllable
environment we needed to verify the results of the simulation and the analytical model.
For the measurements the same channel settings were used as in the simulation, i.e.
normally distributed network latency with 40ms mean and 10ms variance (equals 20ms
mean and 5ms variance in the star topology used in the simulation) with an additional
packet loss varying from 0 to 30%.

The comparison of the measurements and the simulation is shown in Figure 2.14.
Overall, the measurements taken from the PBFT implementation show a very good
match to the simulated results and show that model and simulation are correct and can
be used to estimate performance. The success probability in particular resembles the
simulated values well. The measured latency shows a smoother behavior over increas-
ing packet loss corresponding to smaller variances in the measurements which can be
attributed to buffering effects in the software and OS stack used. We also found a slightly
higher transaction time in the real implementation for increased packet loss, however,
even for very high packet loss it was within 10% margins.

Additionally, in our protocol analysis we found that especially the PRE-PREPARE
phase is susceptible to packet loss and could greatly impact the overall performance in
terms of successful transaction termination. This is due to the leader-based structure
of the core view-consensus protocol in PBFT. In such a protocol one node initializes
the transactions by distributing relevant data to all other nodes, the backups. In this
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Figure 2.14: Comparison of measured value from implementation to simulated vales for
UDP. Measured values are drawn with continuous lines and simulated values dashed.

phase the protocol has less redundancy compared to later phases. Interestingly, adding
redundancy by message repetition only in this phase gives a high increase in success
probability with relatively low additional communication cost. With one retransmission
in the PRE-PREPARE phase only n − 1 packets are added, compared to n2 packets
per retransmission in the other phases, but the success probability can be substantially
increased. To verify this behavior we measured the increase in success probability for
one and two retransmissions in the PRE-PREPARE phase.

The results are presented in Figure 2.15, and the data show that adding one retrans-
mission in the PRE-PREPARE phase leads to the same or even higher Psuccess as adding
two additional nodes, but saves a lot of communication overhead. Given a total of
(rpp + 2)n+ 2n2 messages sent in the view-consensus protocol with its three phases,
with rpp being the number of retransmission in the pre-prepare phase, the overhead
introduced with one additional retransmission is low. For systems which tolerate one
faulty node out of 4 nodes we get about 11% of message overhead, with 5 nodes we see
9% overhead and about 7.7% overhead are required for 6 nodes. This leads to a sig-
nificant improvement compared to the communication overhead introduced by adding
an additional node without retransmission to increase Psucc, i.e., a total of 53% more
messages must be sent if n is increased from 4 to 5. Nevertheless, both measures can
be combined to get UDP performance up to 5% packet loss and more if two additional
nodes are combined with retransmission in the pre-prepare phase as an example.
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Figure 2.15: Measured success probability with retransmission only in the pre-prepare
phase. Lines without retransmission are depicted as continuous lines and results with 1
(2) retransmission of pre-prepare messages are drawn with dash-dot (dashed) style.

2.3.4 Interpretation

From the results we see that careful design on the network layer is essential for PBFT
and protocols with similar communication patterns to achieve best performance in chal-
lenging network settings. Especially multi-cloud configurations fall in this category, but
single cloud deployments with a certain level of geo-separation could also introduce
substantial latencies. As can be seen from the measurements taken at CloudPing [113],
latencies between continents are crucial, for example between Europe and North Amer-
ica, where they range from 100−150ms (50th percentile). Even within a single conti-
nent they are the dominating factor for BFT performance, e.g., they go up to 40ms (50th
percentile) for servers within Europe. Thus even intra-region BFT will face substantial
latencies and has to rely on UDP for performance reasons. However, if UDP is used, its
performance should not degrade if higher packet loss is encountered and switching to
TCP should be avoided if high transaction rates are required.

In general, it is desirable to use UDP and to avoid TCP wherever possible, because
it leads to unacceptable performance degradation for higher error rates on the transmis-
sion channel. Although from a robustness point of view there is no reason to use more
than 3 f +1 nodes to run a PBFT system, when it comes to unreliable communication it
turns out that adding nodes is a means to improve the redundancy on the network layer.
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Additionally, the use of repetition codes can also lead to significant performance im-
provements as UDP can be used over TCP even in situations with increased packet loss.
If the channel behavior is known in advance we recommend to configure the deployment
adequately to stay in the UDP regime. In the end, for our type of application a dedi-
cated network protocol would be desirable which adaptively optimizes retransmissions
and other parameters without increasing latency.

Adaptive and selective network layer. From the structure of the communication
pattern it turned out that unreliable channels have different impact in different phases.
A node missing a single PRE-PREPARE message could already be out of sync for the
current transaction, contrary if f PREPARE messages do not arrive, it will still have
enough information to proceed, the same is true for REPLY messages. This shows
that especially the first broadcast from the primary is relatively more important than the
rest of the messages and measures taken to increase its probability of success will have
a disproportionate impact on the success of the whole transaction. It could therefore
make sense to use TCP only for this phase, or, as we have done, to pro-actively repeat
this message once or twice.

r3 - r4 r2 - r3 r1 - r2

Figure 2.16: Success probabilities for different retransmission modes which are named
rphase,1, ...,rphase,4. A retransmission mode is defined by an array of four r values, one
for each of the four phases of the protocol (PRE-PREPARE, PREPARE, COMMIT, RE-
PLY). Additionally, an optimal strategy is sketched by defining switching point between
modes to stay in the Psucc > 0.998 band.
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However, based on our model we were able to develop good retransmission strate-
gies which take the specific aspects of the different phases into account and achieve high
transaction success probabilities while reducing the overall number of messages sent.
The result of our empirical optimization is shown in Figure 2.16 and we included a
switching strategy for staying above 99.8% success probability up to 25% transmission
errors as an example. This approach shows how adaptive retransmission strategies can
be designed to achieve low-latency systems with high transaction rates.

The presented results show the significant dependency on packet loss probability,
which should ideally be continuously measured and adjusted to. Since, single BFT
nodes have only a local view on the network state/connection(s) we have to signal packet
loss information between the BFT nodes. Especially, in the case of UDP, where the
transport layer won’t track any lost packets. Therefore, we briefly mention a possible
approach where BFT nodes attach their packet loss statistics to the meta-data of each
message. This packet loss statistics are derived as follows if UDP is used. Each node
collects in every phase of a transaction information on how many of the nodes transmit-
ted a matching message for the current phase x of the pending request. Since each BFT
nodes transitions into the next phase if q = 2 f +1 messages have been received but still
keeps listening for further messages, we can add loss statistics in the x+ 2 phase of a
pending request to account for network delay, or the BFT nodes report back to the pri-
mary if it did not receive enough messages. The primary aggregates all information and
calculates the packet loss statistics and sends the updated statistics with each request to
all BFT nodes as an estimate for the new transaction. Based on the new loss estimates,
the nodes set their retransmission mode according a defined strategy, e.g., as depicted
in Figure 2.16.

Byzantine case. If f nodes behave fully malicious, their messages are ignored by
the honest nodes if they do not follow the protocol. Therefore, the best they can do to
slow down transactions—and therefore slow down service time—is to delay their trans-
missions or remain silent. For the network layer this would mean that no redundancy
is left to cope with packet loss as all 2 f + 1 honest nodes have to reach the final state
for the transaction to complete and in this case packet loss would be fatal. However, by
increasing the redundancy beyond 3 f +1 nodes we reach the same regimes as presented
above. In fact if 5 f +1 nodes are used we reach in the worst case similar success prob-
abilities, because such a system would require a 3 f + 1 quorum and leave 2 f overall
redundancy in the system, i.e. f Byzantine nodes and f honest nodes whose message
do not need to arrive. However, this is only true if the adversary does not have access to
the channels between honest nodes, which was the assumption we started from. Alter-
natively, the implementation can always fall back to TCP and therefore emulate reliable
channels over unreliable ones, if the packet loss or the number of node failures is too
big for UDP usage. In essence, the safety property of the system is never compromised,
only performance is improved in rather optimistic scenarios.
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2.4 Simpler Configuration and Hardware Acceleration

The ARCHISTAR architecture introduced provides very strong security and consistency
properties through the combination of secret sharing with an efficient consensus mech-
anism. However, it requires active nodes which are not always available and introduce
substantial cost which are not always justified, e.g., in case of low transaction rates.
Therefore, we also developed a rather straight forward alternative architecture which do
not need any specific code to be executed by the server, the Archistar-Proxy. With this
approach we embrace and enhance existing storage technologies and protocols to allow
for seamless integration.

2.4.1 Proxy Architecture

The basic concept of the Archistar-Proxy was to rely only on passive backend interfaces,
e.g., like the Amazon Simple Storage System (S3). Therefore, all logic had to be put
into the proxy, which was designed to serve as intermediary, ultimately serving end-user
clients. The proxy itself acts as a S3 server and can therefore be transparently plugged
into existing applications. This enables seamless integration into existing infrastruc-
ture and simple centralized management. The S3 interface is accessed as key-value
store which provide functionality akin to non-hierarchical dictionaries [114]. Similar to
block-based storage systems they utilize unique keys for identifying data, in contrast to
block-storage they allow storage of arbitrarily sized values. They focus upon availability
and horizontal scale-out, i.e., sharding, have become prominent for cloud applications.
The foremost known key-value network protocol is the industry-standard Amazon S3
protocol which is served over HTTPS.

Figure 2.17a shows the proxy-based cloud storage scenario: multiple clients and
servers communicate with the proxy which, in turn, communicates with multiple cloud
storage providers at the bottom. A simplified version of the data-flow can be seen in
Figure 2.17b. The Archistar-Proxy assumes that, the backend storage can fail arbitrar-
ily and also suffer from weaker consistency models. Cloud outages and breaches11,12

have shown that this a reasonable assumption and AWS was providing only eventual
consistency for S3 until 202013.

The design of the proxy is rather straight forward if only a single proxy is writing
to the cloud. Different secret-sharing methods are available to split up data—provided
by an actual client—into shares and then distributed upon multiple potentially untrusted
cloud storage providers. However, different research challenges emerged in the devel-

11Gitlab data loss: https://about.gitlab.com/2017/02/01/gitlab-dot-com-database-incident, accessed
06/12/2017.

12Amazon S3 outage: https://aws.amazon.com/message/41926/
13https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-

write-consistency-automatically-for-all-applications/, accessed 17/11/2022.
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(a) High-level network system overview.
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Figure 2.17: High-Level network system overview and example data-flow from backup
clients to the cloud storage servers.

opment which had to be addressed. Firstly, metadata was an important topic to deal
with. The use of a user side proxy provided the opportunity to increase security for
metadata compared the fully cloud-based BFT system. Secondly, S3 introduces a lot of
overhead and good performance is not easy to achieve especially for storage of a large
number of small objects. Thirdly, for large objects as encountered in our demonstration
of health data [115], the encoding and decoding speed based on our software implemen-
tation where a limiting factor. Finally, also multi-user write support turned out to be of
paramount importance and cannot be easily achieved in our setting without any direct
synchronization between the proxies.

Metadata security. To limit the amount of information leaked the proxy server
keeps its own metadata within its so-called index. The index is a container for file data,
i.e., a file’s original name, size, SHA-256 based HMAC and MD514 hashes, modifica-
tion date, content type, used secret-sharing algorithm and other metadata. In addition,
it includes information on where secret-shared parts are stored. This is needed, as we
store each part under a separate identifier to hamper data analysis. Apart from that, each
index can—depending on the versioning configuration—contain a reference to its pre-
decessor. As each index includes information about all available files and directories,
this allows for implicit versioning of all data. To reduce storage overhead, the number
of stored versions, reaching from zero to infinity, can be configured through the backup
server’s configuration.

Using an index also reduces storage overhead from a robustness point of view. Be-
cause the index is encoded with robust secret-sharing and contains MAC keys and tags
of all data object shares, the data shares itself can be encoded by more efficient standard
secret sharing methods. An attacker gaining access to a storage location and learning all
secret shares cannot corrupt data shares, because he would have to modify the share in a

14The MD5 hash is needed for compatibility with the Amazon S3 protocol.
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way that the MAC stored in the index verifies, however, without knowing the randomly
selected key to the MAC he can only guess it with negligible probability. Furthermore,
the index itself is encoded with robust secret sharing and can also not be tampered with
up to RSS robustness guarantees. Thus, the whole system is robust although bulk data
is only encoded with standard secret sharing.

Performance for small objects. The increased security by managing the metadata
in a secure index also turned out to have a performance downside, if the index is also
maintained in the very same multi-cloud configuration. The index grows with the num-
ber of files it contains and if it has to be written often it caused a significant slowdown.
To cope with this effect we introduced smart caching techniques and made the index up-
datable. The idea was inspired by modern copy-on-write file systems which use similar
approaches. This approach led to a very performant system and the index caching had
even more positive effects on speed and privacy. By making status queries about objects
a local operation they perform significantly faster and prevent the cloud providers from
learning the user queries also increasing metadata privacy. This was paramount for per-
formance, as some clients issue a surprisingly high number of such requests before and
after each actual file operation. In addition, this allows the proxy to better cope with
the potential high-latency during accessing networked Amazon S3-compatible storage
servers.

Encoding and decoding speed. Contrary to the effects seen with small files, in
the case of large file transferred to the cloud the encoding engine turned out to be a
bottleneck. For backing up images of virtual machines or when dealing with whole
slide images in a medical use case we were studying [115], the software implementation
reached its limit.

During our research we were already able to significantly improve performance of
the archistar-smc cryptographic library already presented in [1] (cf. Section 2.2.7),
but for high-performance applications more throughput would be desirable. Therefore,
we studied possibilities to accelerate the secret sharing engine with a hardware-based
approach. The results of our study are shown in Section 2.4.3.

Mulit-proxy support. To support multiple proxies operating on the same data we
had to follow a very different path compared to the BFT solution. The research was tar-
geted towards a mechanism which allowed proxies to work on the same cloud storage
and data in a loosely synced way. Proxies must be able to join and leave the system
dynamically and are not allowed to communicate to each other or to use an external
synchronization mechanism, e.g., a locking service. In essence, the proxies have to syn-
chronize via the available clouds only assuming very weak consistency guarantees. It
is clear that total ordering cannot be achieved in such a setting but other protocols are
needed maintain a consistent state. To cope with this situation, we used a conflict-free
replicated data type (CRDT) [116, 117] to maintain the index of the storage system.
If the index is a CRDT, each proxy can maintain its own cached version and update it
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independently. Inconsistencies can be merged without conflict by each proxy individu-
ally through reloading the server side changes after updates from other proxies. Thus,
during operation not all proxy are guaranteed to have the same state, but it is guaranteed
the they eventually converge to a common global state.

Note on secure channels. Besides the research challenges solved, we wanted to
note that the system is only ITS secure if the channels between proxy and cloud are also
ITS. Ideally, the channel would be secured by ITS mechanisms like quantum communi-
cation as demonstrated in [115], or some physically isolation. However, this approach
is very expensive and only relevant if large amounts of very sensitive data is handled.
Nevertheless, if QKD is available it can be added by an additional layer of security
or by integration with state-of-the-art security mechanisms used for secure HTTP con-
nections, i.e., extending TLS with Quantum-TLS [118] or Quantum-Quick [119] (cf.
Section 4.5).

Alternatively, the use of post-quantum cryptography is recommended for the stan-
dard case, ideally in a hybrid version [120]. Currently PQ-TLS is not available from
large cloud providers for S3 connectivity, but work on the transition is ongoing15 and
we expect the post-quantum secure versions of TLS to be available in the near future.

2.4.2 Availability Model

To also highlight the advantages in availability if threshold secret sharing is applied, we
quickly analyze the possibility to compose arbitrary availability for the overall system.
The same argument can be used to calculate the durability (protection against data loss)
and optimized faster response times of the system (cf. Section 2.3).

In reliability theory an n-component system that works if and only if at least k of the
n components work is called a k-out-of-n:G system. The presented storage system is ex-
actly implementing such a structure in a multi-cloud setting which lets us directly apply
some results from reliability theory in our availability analysis. In particular, the relia-
bility R(k,n) of a k-out-of-n:G system with i.i.d. components, i.e., components which
are independent of each other, is equal to the probability that the number of working
components is greater than or equal to k. In particular the reliability is calculated as
follows.

R(k,n) =
n

∑
i=k

�
n
i

�
piqn−1 (2.8)

The k-out-of-n is a generic model for adding fault tolerance to systems by increasing
redundancy, which is exactly what we are doing with secret sharing in the proxy , if we
leave the security aspects aside for now.

15AWS PQ-TLS for KMS: https://aws.amazon.com/blogs/security/
post-quantum-tls-now-supported-in-aws-kms/, accessed November 2022.

https://aws.amazon.com/blogs/security/post-quantum-tls-now-supported-in-aws-kms/
https://aws.amazon.com/blogs/security/post-quantum-tls-now-supported-in-aws-kms/
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If we compare the different settings presented in the previous section with the re-
liability model, we get the following results. For the case of data replication we have
k = 1, which leads to the analogous of a parallel system in the reliability model and
R(1,n) = 1−∏n

i=1(1− pi) = 1− (1− p)n. For the cases of perfectly secure (ITS) se-
cret sharing and computational secret sharing the reliability parameters can flexibly be
adjusted through encoding between 1 ≤ k ≤ n, which leads to a non-trivial k-out-of-n
system if k is selected accordingly (k > 1 and k < n). However, if the redundancy is fully
removed for security reasons (k = n), the systems becomes a simple series system with
R(n,n) = ∏n

i=1 pi = pn. Thus, from a reliability standpoint, both secret sharing variants
provide the same level of reliability, although providing different levels of security and
storage overhead.

Now, based on the parameters of k and n we can directly calculate the system avail-
ability for a given server availability. Alternatively, we can also use this approach to
derive system parameters from a target availability to achieve. Enabling this SLA tailor-
ing via multi-cloud configurations is very attractive, because the standard cloud storage
market provides only limited flexibility in the configuration of service level agreements
(SLA). In fact, serving standardized SLAs to customers is a major feature of cloud com-
puting which helps to enable the elasticity and self-service capabilities the customers
want to have.

We are solving this problem by letting the user design a storage system according to
their needs and requirements as a fault-tolerant composition of different cloud offerings.
In particular, the k-out-of-n paradigm is used to design systems which can theoretically
provide arbitrary high levels of availability. Availability classes are typically given as
number of leading nines of the availability value, i.e., a “three nines” availability means
99.9% which corresponds to a downtime of 8.76h per year or 43.8min per month. We
used this type of availability classes to demonstrate the theoretical values we can reach
in our system with reasonable number of storage nodes.

In Table 2.5 we show the calculated availability classes for different configurations
of n and k, whereby an overall availability of 98% (p = 0.98) is assumed for the individ-
ual cloud storage offerings used to store the data fragments. Composing a system out
of individual services gives the user much more flexibility and enables him to design
his own SLA for a virtual storage service with respect to availability, confidentiality and
integrity on top of existing cloud offerings. This can also help to speed up and improve
the cloud migration process in general [121]. Furthermore, if the configurations would
be matched against cloud services databases, the best provider offerings can be selected
to also get a price optimal solution [23].



2.4 Simpler Configuration and Hardware Acceleration 63

n k
1 2 3 4 5 6 7 8 9 10 11 12

3 5 3 1 0 - - - - - - - -
4 7 5 3 1 0 - - - - - - -
5 8 6 4 2 1 0 - - - - - -
6 10 8 6 4 2 1 0 - - - - -
7 12 9 7 5 4 2 1 0 - - - -
8 14 11 9 7 5 3 2 1 0 - - -
9 15 13 10 8 6 5 3 2 1 0 - -
10 17 14 12 10 8 6 5 3 2 1 0 -
11 19 16 14 11 9 8 6 4 3 2 1 0
12 20 18 15 13 11 9 7 6 4 3 2 1
13 22 19 17 15 12 11 9 7 5 4 3 2
14 24 21 18 16 14 12 10 8 7 5 4 3
15 25 23 20 18 16 14 12 10 8 7 5 4

Table 2.5: Number of leading nines for system reliability R(k,n) for given n and k and
a individual storage node reliability of p = 0.98, which is a typical value taken from
cloud storage provider SLA.

2.4.3 Hardware Acceleration

While various software solutions for secret sharing exist, there are only few hardware
implementations known. However, a dedicated hardware implementation can substan-
tially increase the performance and has the potential to expand its applicability to high-
bandwidth low-latency settings as found in data centers or cloud environments. There-
fore, we investigated the problem of hardware-based encoding and decoding for relevant
secret sharing techniques in storage applications.

When a data object is secret shared, it is first split into words on which the secret
sharing algorithm is applied. Although the security of secret sharing is not influenced by
the word size, there is a trade-off in terms of efficiency and capabilities. Software solu-
tions for storage applications are usually working on byte level, which lower the mathe-
matical complexity for encoding and decoding to achieve best performance. However, if
additional verifiability is required, e.g., for auditing procedures as in [6, 7], small word
sizes do not provide adequate security and efficiency. Therefore, the feasibility and
efficiency of hardware implementations for different bit widths were investigated and
optimized. All investigations were done on a Field Programmable Gate Array (FPGA)
for word-widths of 8, 16, 32, 64 and 128 bits.
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A proof-of-concept of a dispersed secure storage application was developed to eval-
uate and benchmark the developed IP core. A Zedboard 16, containing a Xilinx Zynq-
7000 AP SoC XC7Z020-CLG484, was selected as FPGA platform which is partitioned
into a processing system (PS) and a programmable logic (PL). Synthesis and implemen-
tations were performed with Vivado® 2015.3.

Related work. The developed cores include both, a perfectly secure secret sharing
scheme (PSS) and a computational secure scheme (CSS). For PSS we used Shamir
secret sharing [100] as for our software implementation. and CSS according to [93].

There are only few hardware implementations of secret sharing algorithms known
from the literature and no extensive treatment of such has been done so far. The focus
in these works is different from ours and—to the best of our knowledge—there exists
no speed optimized FPGA implementation for full CSS schemes. Moreover, no work
deals with the analysis and evaluation of different word sizes and their trade-offs.

In [122] secret sharing is used in a network monitoring application. Only the front-
end sharing part, which handles the data at Gigabit rates, was realized in hardware. A
significant performance increase was gained by restricting the bit width of the x-value.
However, the multiplier in the computational core was not optimized for this application
and gives potential for further performance increase. The work was implemented on a
network FPGA card using a Virtex-II Pro 50 FPGA. The isolated examination of the
share generation reveals a throughput of 2359 Mbit/s with the usage of 1633 slices in
this design. These are roughly 3266 4-input look-up-tables. The full key share units
reach a throughput of 343 Mbit/s with 3687 slices and 18 instances of BRAMs.

Another implementation from [123] focuses on secure secret sharing. The target
architectures are application-specific integrated circuits (ASICs), synthesized with Ca-
dence Encounter RTL Compiler with the Nangate 45 nm Opencell library. They apply
robust codes and algebraic manipulation detection to resist strong cheating attacks. Be-
sides the size of the implementation the results are focusing on the efficiency of cheating
detection and correction and the causing area-overhead. There are no performance re-
sults given in terms of throughput or any bit-width dependencies.

There are various software implementations on secret sharing. The crucial parts of
software implementation are the time-consuming polynomial multiplications limiting
the performance. Multiplications of small word-widths can be processed efficiently
with look-up-tables, but the sizes grow exponentially with the used Galois field and
respectively with the bit widths. Therefore, software implementations are only efficient
for a width of up to 16 bits.

In [124] a collection of libraries supporting secret sharing was gathered. The GF-
Share library17 operates in a GF(28) field and was analysed in detail on an Intel i5-
2500K, 3.3 GHz, 8 Gbit RAM, computer system. The achieved throughput for sharing

16http://zedboard.org/ (Accessed: 03.07.2017)
17http://web.eecs.utk.edu/~plank/papers/CS-07-593/ (Accessed: 03.07.2017)

http://web.eecs.utk.edu/~plank/papers/CS-07-593/
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large files for an applied 5/3 threshold scheme was 7.4 Mbit/s. This value is relatively
small compared to Gigabit networks and small extension fields.

In [125] secret sharing schemes were analysed in terms of their performance. The
focus of their work is the comparison of different schemes according to the threshold
parameters n and k. There was no information about the computer system. However,
with Shamir secret sharing a throughput of about 9 Mbit/s could be achieved for gen-
erating 10 shares. The Computational secret sharing achieved a throughput of about 18
Mbit/s for the same amount of shares.

To increase the throughput, efforts were made to use the Graphics Processing Unit
(GPU) for better performance. In [126] it was shown that the benefit of a GPU increases
with higher thresholds. A threshold of 4 achieves a throughput of 48 Mbit/s for the
calculation of one share. Another implementation of secret sharing based on cellular
automata on a GPU [127] reveals a speed of 40-160 Mbit/s in a 5/5 threshold scheme.

The most comprehensive secret sharing library for storage applications was pre-
sented in [1] as part of a full multi-cloud storage application. However, the implementa-
tion is in Java and the reported performance figures are in the order of about 500 Mbit/s
in a 4/3 threshold scheme.

Architecture. The main functional block is structured into a Share Generation Unit
(SGU), a Secret Reconstruction Unit (SRU) and an Advanced Encryption Standard Core
(AES), which performs the Enc and Enc−1 function of the CSS algorithm. Moreover, a
True Random Number Generator (TRNG) based on the design of Wold and Tan [128]
was developed, but excluded from the core to enable different TRNGs in order to reach
the individual space security trade-off. The SGU and SRU are designed to work in PSS
mode as well as in the CSS mode. They are capable to share the key and the payload,
selectable via a single signal. Due to the high resource occupation of the AES, only one
AES is shared in between the SGU and SRU.

While the AES, SGU and SRU operate on streams, independently processing words
of a certain bit width, the overall architecture is packet based for better communication
on the external interfaces and a better combination of payload shares with their accord-
ing key share. Figure 2.18 represents this architecture. Header signals are added to each
packet to enable fragmenting and identifying packets, which are additionally passed
through the CSS core.

While the AES statically works with 128 bits, the SGU and SRU are designed to
work generically at a bit width of 8, 16, 32, 64 or 128 bits. The bit width of the SGU
and SRU is selected before synthesis via generic parameters. The design is then adapted
to certain implementation strategies for the set bit width. All operations are performed
within a Galois field GF(2n), where n corresponds to the bit width.

Share Generation Unit (SGU). The share generation unit supports two modes, PSS
and information dispersal (IDS). Both require the definition of a unique polynomial and
the shares are generated by evaluation at an arbitrary point x with the condition x �= 0,
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Figure 2.18: Architecture of the CSS core.

i.e. f (x) = ∑n
i=0 cixi. In PSS mode the lowest coefficient c0 is a secret word and the

other coefficients are filled with random words, while in the IDS mode all coefficients
c0...cn are filled with secret-words. Evaluating the polynomial directly requires ∑n

i=0 (i)
multiplications and n additions. In the Horner scheme the coefficients are processed in
an opposite way from cn to c0 and allow a significant reduction to n multiplications and
n additions, as shown in Equation (2.9).

f (x) = (...(cnx+ cn−1)x+ ...+ c2)x+ c1)x+ c0 (2.9)

The resulting architecture of the SGU consists of multiple Polynomial Evaluation Units
(PEUs) which perform the evaluation of the Shamir polynomial in parallel. Each PEU
needs k−1 cycles to construct the share, where the coefficients are loaded sequentially.
Each PEU consists of an adder, realizable with XOR operations, a multiplier and a re-
duction circuit, regarding the applied Galois field. Constructing the Galois field by an ir-
reducible polynomial of low weight, the reduction circuit can be realized by a minimum
number of static-XOR connections. The polynomial multiplier shows the strongest size
increase with ascending bit width. As previously mentioned in [122], a significant re-
duction can be realized by restricting the x-value. While this value is generic in the
design, it was set to 8 bit for all results in this paper. By holding the x-value at a certain
bit width, the size grow is linear, which results in a similar share generation performance
for all the investigated bit widths. In Figure 2.19 implementation results are shown for
a parallel generation of 10 shares.
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Figure 2.19: Implementation results of the SGU, where 10 shares can be generated in
parallel.

Share Reconstruction Unit (SRU). The evaluation process of the Shamir polyno-
mial is a linear equation system. Written in matrix notation it leads to Equation (2.10),
with a matrix A containing the coefficients of the polynomial, a matrix S containing a
set of shares for reconstruction and a matrix X with x-values and their powers.���
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(2.10)

By solving the equation after S, the matrix X has to be inverted, which leads to Equa-
tion (2.11) for the reconstruction of a set of secrets.

A = X−1S (2.11)

Because the calculation of the matrix X−1 is of high computational effort and is
only required if new x-values are applied, it has high potential for HW/SW partitioning.
Therefore the PS of the Zynq-7000 SoC calculates all matrix coefficients and loads
these values into the SRU. In the SRU every row of the matrix X is calculated in parallel
and the multiplication results are added and reduced in order to obtain one secret of
the set. Since there is no feedback loop, the whole process can be pipelined. To meet
a custom design trade-off of resources and timing requirements, the core allows to set
the amount of pipelining stages at synthesis time by generics. While the polynomial
multiplier becomes the bottleneck of the SRU, a bit-width limitation of one input, as it
was done for the SGU, is not applicable here.

However, because these multipliers essentially limit the applicability of higher bit
widths, further optimizations were necessary. One approach is applying Karatsuba’s
algorithm [129] to decrease the mathematical complexity. A multiplication of n bits
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is broken down to 3 multiplications of n/2 bits and 4 additions, which reduces the
complexity from O(n2) to O(2log2(3)). This method is applied recursively. In the case
of 6-input LUTs a resource reduction is observable upon a width of 16 bit. Therefore,
in the proposed design, Karatsuba’s algorithm is applied recursively until a 16×16 bit
sub-multiplication is reached.
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Figure 2.20: Implementation results of the CSS SRU with and without the inclusion of
DSPs.

As polynomial multiplications are performed, arithmetic multipliers of FPGA-DSPs
are not directly applicable. The main difference is the absence of the carry bit. Designs
to include DSP multipliers were investigated, even if it is in a less efficient manner.
The implementation results for the SGU, assuming a threshold of 4, are presented in
Figure 2.20, comparing the involvement of DSPs in the polynomial multipliers against
pure LUT utilization.

Results. In order to evaluate the complete architecture in a real setup, a complete
system was developed, embedded in a network environment to manage, share and re-
construct complete files. As target platform the Zedboard was extended by an Ethernet
FMC, where 3 Gigabit Ethernet connections are used. The CSS core was encapsulated
in a wrapper, to correctly distribute each packet of the 3 physical connections to its ac-
cording internal buffer within the CSS core. A specially developed protocol works on
the top of UDP to fragment and identify all packages.

The result is a resource optimized architecture, widely parametrizable for parameters
such as the bit width, x-value range, buffer size, packet size, n/k threshold scheme,
inclusion of DSPs, BRAM/FF usage, pipelining stages and others.

In order to obtain the theoretical throughput, the developed cores were evaluated in-
dependently, and the results were extrapolated for a 50% utilization of the target FPGA,
listed in Figure 2.21. In this theoretical estimation also the data flows and buffers were
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Figure 2.21: The theoretical maximal throughput of a SW and a FPGA implementation
for an 8/4 threshold scheme. The throughput is measured in share-bit/s for the share
generation and secret-bit/s for the secret reconstruction.

Functional Unit LUT (%) FF (%) BRAM DSP P(W)
Complete Design 27745 (100) 35405 (100) 90 144 2.99

PS — (–) — (–) — — 1.53
3 Ethernet IP 7317 (26) 3984 (11) 4 0 0.88
TRNG 146 (0.5) 52 (0.1) 0 0 0.001
Share Switch 119 (0.7) 151 (0.7) 0 0 0.014
CSS Core 17135 (62) 20448 (58) 77.5 144 1.02

AES 2588 (9.3) 8851 (43) 36 0 0.46
SRU 2942 (11) 7467 (36) 0 144 0.3
SGU 1638 (6) 1095 (5.3) 0 0 0.033
CSS Buffers 3154 (11) 9728 (48) 39 0 0.15

Table 2.6: Hierarchical FPGA utilization results for the functional units of a complete
CSS system in a 4/8 threshold scheme.

neglected. DSPs were not included in this design to allow a more universal comparison.
The counterpart was a software-implementation, which also neglected all data flows and
simply performs all of the required calculations, performed on an Intel i5-4590 Quad-
core running at 3.3 GHz and full utilization of all cores. The share generation rate in
the FPGA design could be held almost constant due to the fixed bit width of the x-point.
The reconstruction shows a significant performance decrease with ascending bit width,
for both the software and hardware implementations. Overall, the FPGA design shows
the capability of throughputs 100 to 1000 times faster than its software counterpart. This
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was observed for the software applied in Figure 2.21 as well as the previously described
existing software libraries summarized in Section 2.2.7.

The complete core in the prototype was built with a 64 bit architecture, as it is a good
trade-off in terms of resource utilization and capabilities. It is capable of processing 6.4
Gbit/s, working with 64 bit words and an 8/4 threshold scheme. The bottleneck is the
external Ethernet connection, which is limiting the speed to 1 Gbit/s. The resource
utilization, structured in functional components, is summarized in Table 2.6 as well as
their power consumption.

2.5 Efficient Privacy Preserving Remote Data Checking

One problem that all outsourced storage systems have in common is that one needs to
trust the storage nodes that they actually stored the data. To relieve users from this
trust requirements, proofs of data possession and proofs of retrievability have been in-
troduced [130, 131]. Such schemes allow one to efficiently verify that all data is still
available without having to download everything from the system. In the best case, such
an auditing mechanism is publicly verifiable, i.e., can be executed by an external audi-
tor and not necessarily the data owner himself. However, in the case of shared data it
becomes necessary that the auditing is also private, i.e., an auditor must not be able to
learn anything about the stored data, even when collaborating with a subset of storage
servers.

In this section we propose a highly efficient, flexible, and information-theoretically
private auditing mechanism for secret sharing based storage system as ARCHISTAR.
In more detail, we first formally define the syntax and security requirements of privacy
preserving auditable distributed storage systems. We then present an instantiation based
on additively homomorphic threshold secret sharing schemes, which we concretely in-
stantiate with Shamir’s scheme [100]. In contrast to previous auditing solutions, our
scheme is completely keyless. This is achieved by exploiting non-collusion assump-
tions intrinsic to secret sharing based storage systems. We use the assumption that for
n storage servers, at most t ≤ n−1

2 are corrupted, i.e., that there is an honest majority
of storage nodes. By introducing a batch version of our auditing scheme, we achieve a
constant communication complexity even when auditing an arbitrarily large set of shares
simultaneously. The basic structure of our auditing protocol is depicted in Figure 2.22.

Furthermore, the computational complexity on the servers’ side is essentially given
by computing a sum over the audited data shares, plus a minor constant overhead which
is independent of the number of shares to be batch-audited. Leveraging results of Ate-
niese et al. [130], we further show how this computational complexity can be made
sublinear in the number of shares. On the auditor’s side, the computation consists of
one degree-t interpolation polynomial of n values, and is therefore fully independent of
the batch size. Besides its efficiency, our construction has multiple benefits compared to



2.5 Efficient Privacy Preserving Remote Data Checking 71

S2S1

…
σn,2

σ1,2
σ2,2
σ3,2

…
σn,1

σ1,1
σ2,1
σ3,1

A
(Auditor)

S3 S4

…
σn,3

σ1,3
σ2,3
σ3,3

…
σn,4

σ1,4
σ2,4
σ3,4

c s1

ρ1

σj,i … share of message j held by data server Si
ρi … share i of random value r jointly generated
c … random challenge sent by A
si … server PSi responses sent to A
A verifies shares based on all responses si

ρ2 ρ3 ρ4

c s2 c
s3

c
s4

1

2

3

4 1
2
3
4

D
(Dealer/
Client)

Figure 2.22: Auditing protocol overview with four servers. The protocol enables a
potentially untrusted auditor to verify the consistency of secret shared messages held
by different servers in one round and with fixed length message size. On a high level
the auditor PA broadcasts a random challenge to the servers holding the shares of the
data (step 2). The servers PSi then compute a polynomial hash over their shares σ j,i
with challenge c and send the result back to the auditor (step 3). However, to prevent
PA form learning any information about the data hold by the system, the result value
sent by the sever is also masked with a jointly generated random value not known to
any party, i.e., si = ∑L

j=1 c jσ j,i + ρi . The auditor can then simply check if the results
returned comprise a consistent sharing (step 4). The protocol is intended to work with
linear threshold secret sharing schemes as used in our storage applications.

previous solutions. First, because of not requiring keys or preprocessing, our solution is
very flexible, and offers direct support for modifications (such as additions or deletions)
of data. Second, again because no pre-computation or encoding is necessary before the
data is secretly shared and stored, our auditing mechanism is fully compatible with ex-
isting Shamir based storage solutions such as [1], and can easily be integrated without
having to even touch the stored data. Third, our approach is also compatible with proac-
tive security steps in storage systems. For highly sensitive data, it might be necessary to
renew the shares on the storage nodes at certain discrete points in time.

2.5.1 Related Work

The notions of proofs of data possession and proofs of retrievability have been intro-
duced simultaneously by Ateniese et al. [130] and Juels and Kaliski [131]. Since then,
various publicly and privately verifiable schemes have been proposed, making differ-
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ent underlying assumptions, and having very different efficiencies, e.g., [132, 133, 134,
135, 136, 137].

All these protocols focus on single server storage solutions. In the following we will
give a more detailed discussion about related work for multi server storage solutions,
which achieve far higher performance than simply running multiple instances of the
single server solutions in parallel.

Schwarz and Miller [138] propose a scheme that allows a client to verify the storage
of (n,m) erasure-coded data across multiple sites even if sites collude. The scheme can
also be used to verify storage on a single server and relies on a special construct, called
algebraic signatures. The solution was intended for application in peer to peer net-
works and allows the creation of very large-scale verifiable distributed storage systems.
The authors also propose performance optimizations to achieve checking throughputs of
hundreds of Mbytes/sec. Their approach is the first to show that the distributed setting
allows for very efficient solutions for remote data checking with low computational and
low storage overhead and minimal communication requirements. However, the scheme
only receives an informal security analysis and requires secret keys. Moreover, privacy
of data is not considered and therefore third party auditing is not possible.

Other extensions to remote data checking include extending the data possession
guarantee to multiple servers based on replication without encoding each replica sep-
arately. For example, MR-PDP [139] allows a client that stores t replicas of a file in
a storage system to verify through a challenge-response protocol that (1) each unique
replica can be produced at the time of the challenge and that (2) the storage system uses
t times the storage required to store a single replica. MR-PDP extends previous work
on data possession proofs for a single copy of a file in a client/server storage system.
Using MR-PDP to store t replicas is computationally much more efficient than using a
single-replica PDP scheme to store t separate, unrelated files (e.g., by encrypting each
file separately prior to storing it). Another advantage of MR-PDP is that it can generate
further replicas on demand, at little expense, when some of the existing replicas fail.

In [140] and [141] solutions based on erasure coding are introduced which also in-
clude a sound security treatment. The solution of Wang et al. [140] applies a special
encoding scheme to construct a systematic Reed-Solomon (RS) code together with a
challenge-response protocol which not only detects the retrievability state as a binary
value, but also provides the localization of data error in an efficient way. Additionally,
the scheme supports secure and efficient dynamic operations on data blocks, including:
update, delete, and append. Furthermore, an extensive security and performance anal-
ysis shows that the proposed scheme is highly efficient and resilient against Byzantine
failures, malicious data modification attacks, and even server colluding attacks.

In [141] integrity-protected error correcting codes (IP-ECC) were introduced to-
gether with a data checking framework called HAIL. IP-ECC are cryptographic prim-
itives that act both as a message authentication (MAC) as well as an error-correcting
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code. IP-ECC achieves cross server redundancy through ECC and represents a corrup-
tion resilient MAC on the underlying data. The construction of an IP-ECC in [141] is
based on a (n, l,n− l+1) RS code and can be adapted for systematic RS codes (l is the
number of elements in the file vector yf ). To tag a file f , it is encoded under the RS code,
and then a suitable pseudo random function (PRF) is added to the last s code symbols
(for 1 ≤ s ≤ n being a system parameter), obtaining a MAC on each of those s code
symbols. When reconstructing a file, a codeword is considered valid if at least one of
its last s symbols are valid MACs under UMAC on the decoded file f .

In summary, only few approaches have been proposed for remote data checking in
a distributed setting comprising multiple servers, and what all these schemes have in
common is that they do not give formal privacy guarantees. The situation is similar
for most single-server instantiations, except for a few protocols, e.g., Gritti et al. [142].
Note that simply encrypting the data before storing it into the cloud would mitigate this
problem, but could not offer information-theoretic privacy, which arguably is desirable
for long-term archiving of confidential data.

2.5.2 Preliminaries

Algorithms and parties are denoted by sans-serif fonts, e.g., A,B. For potentially prob-
abilistic algorithms we write a $← A(in), if a is the output of A on inputs in. An in-
teractive protocol is denoted by �A(inA);B(inB)�, where A and B take inA and inB as
inputs, respectively. For a set S , s $← S denotes that s is drawn uniformly at random
from S . Throughout the paper, λ denotes the main security parameter, and |s| denotes
the bitlength of a string or integer s.

Shamir Secret Sharing. We next want to recap the perfectly private threshold se-
cret sharing scheme proposed by Shamir [100]. Let therefore be n the number of partici-
pants, t+1 ≤ n be the threshold required for reconstruction, and Fq be a field with q > n
elements. The scheme is now based on the observation that in a field a polynomial of de-
gree t is uniquely determined by at least t +1 points, while knowing the function values
on at most t positions does not reveal any information about the slope on any position
different from the known ones. To share a secret s ∈ Fq, the dealer chooses a random
polynomial f (x) of degree t such that f (0) = s, and gives f (i) to Si for i = 1, . . . ,n. To
reconstruct the secret from t +1 shares, first the polynomial f (x) is reconstructed using
Lagrange interpolation, and then it is evaluated at x = 0. In the following, the sharing
and reconstruction algorithms of Shamir secret sharing are denoted by ShamirShare and
ShamirRecon, respectively.
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2.5.3 Auditable Distributed Storage Systems

An auditable distributed storage system consists of five algorithms Setup, KGen, Store,
Reconstruct, and Verify, and an interactive protocol �A.Audit;Si.Audit�. In such systems
participants are grouped into dealers (D), auditors (A), and storage servers (S).

The publicly available system parameters are generated using Setup. Depending on
the concrete instantiation this might have to be done by a trusted third party, which in
practice could be realized through a joint computation of multiple parties with varied in-
terests. Afterwards, a dealer D who wants to securely store its data on servers S1, . . . ,Sn

computes its key pair using KGen. A message can then be stored on the servers using
Store, and later be retrieved using Reconstruct. The received parts from the different
storage servers can be verified using Verify. This algorithm is typically not used in the
normal mode of operation, but is only required for security definitions and proofs. Fi-
nally, the interactive auditing protocol �A.Audit;{Si.Audit}n

i=1� is executed between a
potentially external auditor A and the storage servers.

Besides the canonical requirements like completeness, an auditable distributed stor-
age system should guarantee that even if a subset of the storage systems colludes, no
information about the stored messages is leaked to an adversary. Furthermore, the audi-
tor should accept an execution of the audit protocol if and only if all servers have access
to valid and consistent shares of the message that was originally stored by the dealer.
For practical purposes we do not require here that the auditor and the dealer are the same
entity. Therefore, it is of prime importance that even a malicious auditor has no chance
to learn any information about the messages stored by a dealer. This should hold even
if the malicious auditor colludes with a subset of storage servers, and even in case the
servers jointly deviate from the original protocol specification.

2.5.3.1 Syntax

Setup(1λ,n): On input the security parameter λ in unary representation and the number
of servers n, this algorithm outputs system parameters spar.

KGen(spar): On input the system parameters spar, this algorithm outputs a key pair
(skD, pkD) for the dealer.

Store(M,spar,skD): On input a message M, the system parameters spar, and the dealer’s
secret key skD, this algorithm outputs a share σi to be sent to Si for i = 1, . . . ,n.

Reconstruct(spar,skD,{(i,σi)}i∈I ): On input the system parameters spar, the dealer’s
secret key skD, and a set of shares {(i,σi)}i∈I , this algorithm either outputs a
reconstructed message M or ⊥.

Verify(spar,M,skD,{σi}n
i=1): On input the system parameters spar, a message M, the

dealer’s secret key skD, and a full set of shares, this algorithm outputs accept or
reject, depending on whether or not the shares are consistent with M.
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Experiment PrivacyAdv(λ,n, t)
b $←{0,1}
(spar) $← Setup(1λ,n)
(skD, pkD)

$← KGen(spar)
(M0,M1,state) $← Adv(spar, pkD)
(σ1, . . . ,σn)

$← Store(Mb,spar,skD)
b $← AdvO(·)(state)

where O(·) = O(spar, pkD,{σi}n
i=1, ·) behaves as follows:

On input (corrupt,Si), it marks Si as corrupt, and returns σi to the adversary.
On input (corrupt,A), it marks A as corrupt, and returns ε to the adversary.
On input (audit), it simulates all honest parties in an execution of the auditing protocol.

Let t  be the total number of corruption requests.

return (b ?
= b ) ∧ (t

?≤ t  )

Figure 2.23: Privacy game

�A.Audit(spar, pkD);{Si.Audit(spar, pkD,σi)}n
i=1�: This is an interactive protocol be-

tween the auditor and n storage servers. The auditor takes as input the system
parameters spar and the dealer’s public key pkD. On the other hand, each server
takes as input the system parameters spar, the dealer’s public key pkD, and its
share σi. At the end of the protocol, the auditor either outputs accept or reject,
indicting whether or not the servers passed the audit.

2.5.3.2 Security Definitions

Besides the standard properties of completeness and privacy, we also introduce ex-
tractability as a way to prove data possession.

Completeness. This property captures the intuitive requirement that if all parties
are honest and follow the protocol specifications, the auditor should always output
accept. Also, Reconstruct should always return the correct original message if a suffi-
cient amount of shares is received in input. Finally, Verify should always output accept
if all shares are consistent with the message. Because of its limited insights, we omit
here a formal definition.

Privacy. Informally, an auditing system is said to be private if no adversary can
infer any information about the stored message M from a bounded number of shares
and arbitrary many runs of the auditing protocol. More formally, we let the adversary
choose two messages, one of which is distributed among the servers. This message is
then audited upon the adversary’s request. Furthermore, the adversary can corrupt at
most t out of the servers and the auditor. At the end of the game, the adversary should
not be able to tell which of the two messages was distributed in the first phase.
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Experiment ExtractabilityAdv(λ,n, t)
(spar) $← Setup(1λ,n)
(skD, pkD)

$← KGen(spar)
(M,I ) $← Adv(spar, pkD)

where |I | ≤ t
(σ1, . . . ,σn)

$← Store(M,spar,skD)
{tri}m

i=1
$← ES1,...,Sn

1
where {Si}i∈I are controlled by Adv({σi}i∈I ),
and E1 has rewindable black-box access to the system

(σ 
1, . . . ,σ

 
n)

$← (E1
2({tri↓1}m

i=1, . . . ,E
n
2({tri↓n}m

i=1)
where tri↓ j is the ith transcript reduced to only the messages that were exchanged with S j

return Verify(spar,M,skD,{σ 
i}n

i=1)

Figure 2.24: Extractability game

Definition 2.5.1. An n-server distributed storage system with audit is t-private, if for
every PPT adversary Adv there exists a negligible function negl such that the following
holds: ����Pr [PrivacyAdv(λ,n, t) = 1]− 1

2

����≤ negl(λ) ,

where PrivacyAdv(λ,n, t) is defined in Fig. 2.23.

Note that this definition implies privacy of the storage system itself. For instance,
the adversary can get up to t shares and must not be able to tell which message it was.

Extractability. Informally, this property guarantees that a distributed storage system
can only pass a run of the auditing procedure if every server actually stored the share
received from the dealer.

Definition 2.5.2. An n-server distr. storage system with audit is t-extractable with re-
trievability error ρ : N→ [0,1], if there exists a stateless alg. E= (E1,(E

1
2, . . . ,E

n
2)) such

that for every adversary Adv that makes the auditor accept with probability ε> ρ it holds
that:

Pr[ExtractabilityAdv(λ,n, t)] = 1 ,

where the expected running time of E is upper-bounded by poly(λ)/(ε(λ)−ρ(λ)).

The above definition was inspired by that of distributed proofs of knowledge [143],
where multiple provers need to convince a verifier that they jointly know a secret piece
of information. However, our definition differs in several subtle aspects from this defi-
nition:

• First and foremost, the definition of distributed proofs of knowledge would only
have guaranteed that all valid witnesses exist in the system. That is, it is only guar-
anteed that the witness (i.e., all shares) can be extracted from the set of provers
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(i.e., servers). In this setting, it would be allowed that malicious nodes delete
their shares, as long as these shares can be recomputed from the remaining ones.
However, this contradicts the intuition of our auditing procedure, as it needs to be
guaranteed that every single node correctly stored its share. For this reason it is
necessary to split the extractor into two phases, where the actual “extraction” may
only use the interaction of the extractor with the respective server.

• Second, in (distributed) proofs of knowledge, the knowledge extractor takes as
input also the value for which knowledge the witness needs to be proven. This
is meaningful, as the extractor should in particular be able to play the role of the
verifier. However, in our case the verifier (i.e., the auditor) does not know this
value (i.e., M), and thus it would be unnatural to give M to E.

• Finally, the standard definition of (distributed) proofs of knowledge is fully inde-
pendent of valid witnesses, i.e., the σi in our definition. However, in our definition
it is crucial to start from a valid set of shares. In fact, depending on the instan-
tiation the adversary may only be allowed to corrupt a limited number of servers
(parametrized by the allowed size of I ). For the other servers to be able to hon-
estly play their parts in the protocol it is crucial for them to receive their valid
shares as inputs.

2.5.4 Efficient Instantiation Based on Shamir Secret Sharing

In the following, we present an efficient auditable distributed storage system based on
an arbitrary additively homomorphic threshold secret sharing scheme, which we will
instantiate with Shamir’s scheme [100] for clarity of presentation. By exploiting the as-
sumptions required for a meaningful secret sharing based storage system, a completely
keyless system is achieved. Furthermore, the system does not require any pre-processing
of messages. Therefore, our auditing procedure can be applied directly to any data that
has already been stored using Shamir’s scheme, as no precomputation is required.

In Sec. 2.5.4.1, we will first sketch two trivial auditable distributed storage systems
to further motivate our solution. Then, in Sec. 2.5.4.2 the basic protocol of our instan-
tiation is presented, which is formally proven secure in Sec. 2.5.5. In Sec. 2.5.6 we
show how to significantly increase the efficiency of our basic protocol using a batch
technique. For intance, the use of a batching technique allows to audit at once multiple
messages, potentially across multiple dealers. In Sec. 2.5.7 it is discussed how single
storage servers can be blamed in case of failure.

2.5.4.1 Canonical Instantiations

In the following we briefly discuss two seemingly natural instantiations for auditable
distributed storage systems, and explain their shortcomings.
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In a first instantiation, one might try to first encrypt the message using an arbitrary
encryption scheme, and then store replicas on n servers. To audit, each server sends a
hash of the ciphertext to the auditor, who accepts if and only if all servers return the
same hash value. This scheme would be very efficient, and directly support a batch
version (also across different dealers) by simply hashing an entire batch of ciphertexts.
Furthermore, the privacy of the scheme does not depend on a non-collusion assumption
between the servers. However, extractability requires a non-collusion assumption be-
tween any 2 (not t) storage nodes: otherwise, it cannot be guaranteed that each server
indeed stores a full replica of the data, as one server could just send the correct hash
value to another server which stores nothing at all but simply forwards the hash value
to the auditor. Moreover, the scheme is not keyless and, more importantly, is only com-
putationally secure, and is therefore not suited for long-term archiving of confidential
data.

Alternatively, to achieve information-theoretic privacy, one might first share the data
using a secret sharing scheme, apply standard PORs/PDPs techniques to the single
shares, and then audit every server independently. On the positive side, the extractability
property in this case does not depend on a non-collusion assumption, while the privacy
property clearly does. However, the scheme is not keyless, and furthermore none of the
existing publicly verifiable private data checking techniques supports batch verification
across multiple dealers. Furthermore, this approach is not compatible with existing stor-
age solutions, does not (directly) support proactive steps, and also introduces a storage
overhead compared to plain secret sharing.

In the following we therefore present a protocol which is information-theoretically
hiding, allows for efficient batch audits across different dealers, does not require any
storage overhead, supports proactivity, and is backward compatible with existing so-
lutions. This is achieved by leveraging the non-collusion assumption of the underly-
ing distributed storage system to also prove privacy and extractability of the resuling
scheme.

2.5.4.2 An Audit Protocol for Single Messages

In this section we describe our basic protocol for auditing a distributed storage system.
Storing and reconstructing messages is a direct application of Shamir’s secret sharing
scheme (cf. Sec. 2.5.2). The idea of the auditing mechanism is the following. The
parties jointly compute a distributed random value, i.e. each party obtains a share of the
randomness used to blind the shares of the message by simply adding it. If all those
sums are consistent, the auditor accepts the audit, otherwise it rejects.

We again stress that the above construction is fully key-less. In particular, the dealer
does not need to store any information whatsoever, which relieves him from any com-
plex key management issues when accessing the data from different devices.
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Setup(1λ,n): On input the security parameter λ and the number of servers n, this algo-
rithm outputs the system parameters:

spar = (q, t,n,(S1, . . . ,Sn)) .

More precisely, these are: a prime number q > n defining the field Fq, an integer
t ≤ n−1

2 defining the minimum amount of shares required to reconstruct the secret,
and unique identifiers of n storage servers S1, . . . ,Sn.

KGen(spar): On input the system parameters spar, this algorithm outputs a key pair
(skD, pkD) for the dealer. The key pair is computed as follows:

(skD, pkD) = (ε,ε) .

Store(M,spar,skD): On input a message M ∈ Fq, the system parameters spar, and the
dealer’s secret key skD, this algorithm outputs a share σi to be sent to server Si for
i = 1, . . . ,n. The shares σ1, . . . ,σn are computed as follows:

(σ1, . . . ,σn)
$← ShamirShare(M,q, t,n) ,

where ShamirShare is Shamir’s secret sharing algorithm (cf. Sec. 2.5.2). Note
that each Si receives the corresponding σi over a secure channel.

Reconstruct(spar,skD,{(i,σi)}i∈I ): On input the system parameters spar, the dealer’s
secret key skD, and a set of shares {(i,σi)}i∈I ), this algorithm outputs ⊥ if |I |<
t+1. Otherwise, it checks whether there exists a unique interpolation polynomial
f (x) of degree t such that f (i) = σi for all i ∈ I . If this is the case, it outputs
M = f (0); otherwise it outputs ⊥.

Verify(spar,M,skD,{σi}n
i=1): On input the system parameters spar, a message M ∈ Fq,

the dealer’s secret key skD, and a full set of shares {σi}n
i=1, this algorithm outputs

accept, if and only if:

M ?
= Reconstruct(spar,skD,{(i,σi)}n

i=1) .

�A.Audit(spar, pkD);{Si.Audit(spar, pkD,σi)}n
i=1�: This interactive protocol consists of

the following steps.

1. The servers jointly compute a distributed uniformly random value in Fq.
That is, at the end of this interaction, every server has a share ρi of a Shamir-
shared random value r with threshold t.

2. Next, the auditor broadcasts a challenge value c $← Fq to the servers.
3. Each server computes si = cσi +ρi, which it returns to the auditor.



80 Chapter 2: SECURING DATA AT REST

4. Finally, the auditor outputs accept if and only if the provided si are all
consistent, i.e., if:

Reconstruct(spar,skD,{(i,si)}n
i=1) �=⊥ .

2.5.4.3 Distributed Generation of a Random Value.

In Step 1, we use a subroutine for jointly computing a Shamir shared, uniformly random
value in Fq. That is, by the end of the protocol, every Si should have a share of a
uniformly random value. Besides completeness, we require the protocol to be private.
That is, even if up to t servers behave maliciously, they must not be able to learn anything
about the shared randomness. In particular, they must not be able to bias the resulting
value in any sense.

This building block could trivially be instantiated by letting all servers draw a fresh
random secret ri which is shared using ShamirShare(ri,q, t,n). The resulting shares
are sent to the corresponding servers. At the end, each server adds all its shares. The
resulting shared secret is clearly uniformly random as long as there is at least one honest
server in the system. More advanced protocols have been proposed in the literature, and
can be found, e.g., in [144].

2.5.5 Security Proofs

In the following we provide detailed proofs that the system described above satisfies the
security properties defined in Sec. 2.5.3.2.

Theorem 2.5.1. The above scheme is perfectly complete.

Proof. This property follows trivially from the completeness of Shamir’s secret sharing
scheme, the protocol used for computing a shared randomness, and the additivity of
shares for the same threshold.

Theorem 2.5.2. The above scheme is t-private according to Definition 2.5.1.

Proof. Clearly, if the auditor does not get corrupted, privacy follows immediately from
the fact that Shamir’s secret sharing scheme does not reveal any information if at most t
shares are known.

If, on the other hand, the auditor gets corrupted, note that responses received from
honest servers do not contain any information about their original shares (and thus about
the message). This is, because by assumption the subroutine used for computing the
shared randomness guaranteed that all ρi obtained by honest servers are uniformly ran-
dom.

Theorem 2.5.3. The above scheme is t-extractable with retrievability error ρ = 1/q
according to Definition 2.5.2.
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Proof. Assume an adversary that can make the auditor accepting with probability more
than ρ.

In the first phase, the extractor E1 uses its rewindable black-box access to obtain two
different sets of transcripts with the same shared randomness but different challenges c1

and c2. This can be done by rewinding the system of servers to the end of Step 1 in the
auditing protocol, or to the beginning of the protocol. The precise mode of operation of
E1 is identical to the knowledge extractor in the proof that every Σ-protocol is a proof
of knowledge, and can be found, e.g., in Damgård [145]. From there it in particular
follows that the running time of E1 is bounded above by poly(λ)/(ε(λ)−ρ(λ)).

Let the transcripts be given by tr1 =(c1,(s1,1, . . . ,s1,n)) and tr2 =(c2,(s2,1, . . . ,s2,n)).
We then have that tr1↓ j = (c1,s1, j), and similarly tr2↓ j = (c2,s2, j).

In the second phase of the extractor, E j
2 now outputs

σ 
j = (s1, j − s2, j) · (c1 − c2)

−1 ∈ Fq .

Clearly, this computations can be done in polynomial time.

What now remains to show is that these shares are indeed consistent shares for the
original message M. To see this, first note that for i = 1,2, it holds that si,1, . . . ,si,n are
consistent shares for Ri by Step 4. Thus, by the linearity of Shamir’s secret sharing
scheme, σ 

1, . . . ,σ
 
n are consistent shares for M = (R1 −R2) · (c1 − c2)

−1. Now, as by
construction we have that n ≥ 2t + 1, it follows that there are at least t + 1 servers
that replied honestly in both transcripts. Clearly, the corresponding σ 

j are consistent
also with the original message M. This is because si, j = ciσi, j +ρ j and thus σ 

j = σ j.
As those (at least) t + 1 shares uniquely determine the shared message, we have that
M = M.

2.5.6 Batch-Auditing of Stored Messages

The main drawback of the basic protocol specified in Sec. 2.5.4.2 is that it requires a
fresh distributed random number to be computed for each message to be audited. We
therefore show how to reduce these costs to a practically negligible amount if a large
number of data blocks are audited at the same time. This is particularly interesting
in our setting, where no pre-processing is necessary. Namely, it is even possible to
simultaneously audit a large batch of message across different dealers. That is, the
auditor can audit the storage solution of a company as a whole, and does not need to run
this audit individually per employee, as different employees do not need to use different
private keys in the Store phase. The only requirement is that all messages to be batch-
audited have been shared for the same system parameters spar, i.e., using the same
threshold t and the same n servers.
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Assume now that each message M1, . . . ,ML has been distributed and stored accord-
ing to Sec. 2.5.4.2, resulting in shares σ1,i, . . . ,σL,i on each server Si, i = 1, . . . ,n. We
then have:

�A.Audit(spar, pkD);{Si.Audit(spar, pkD,{σ j,i}Lj=1)}n
i=1�: The protocol works just as

in the basic case, except that in Step 3 each server computes its response as:

si =
L

∑
j=1

c jσ j,i +ρi .

That is, the response is computed as a polynomial hash of the shares stored by the
server. It can now be shown that for every constant L, the resulting protocol is a t-
extractable system with retrievability error L/q. The proof is similar to Theorem 2.5.3:
first, rewinding allows one to extract sufficiently many transcripts as in the case of Σm-
protocols [146]. The second step then essentially corresponds to solving a linear system
of equations.

The communication complexity is exactly the same as for the basic protocol, and in
particular is independent of the batch size L. The computational complexity in the batch
setting consists of the joint computation of a single distributed random value, computing
a sum for each server, and calling Verify once on the auditor’s side.

Increased Efficiency through Spot-Checking. The computational complexity on
the server side can further be reduced by using spot checking techniques. For instance,
the auditor could define a random sequence of shares that he wants to audit, and only
these shares are used for computing the responses si. For instance, if for a 10 000 blocks
file the auditor wants to ensure that with 99% probability no server deleted more than
1% of its shares, spot-checking 460 blocks would be sufficient, cf. Ateniese et al. [130].
Applying an error-correcting code to the data before storing it on the servers could then
be used to cope with this potential 1%-loss of data.

2.5.7 Identifying Malicious Servers

Both, the basic and the batch version of our auditing protocol, so far required that n ≥
2t +1, i.e., that the majority of nodes behaves honestly. In this setting it is possible for
the auditor to detect inconsistencies among the servers. However, it is not possible to
identify which shares caused the inconsistency, and thus it is also not possible to blame
malicious storage servers.

This feature can be introduced whenever n ≥ 3t + 1. Using standard results from
coding theory, it is then possible to compute the correct reconstructed value in Step 4,
and to identify the inconsistent shares, e.g., using the Berlekamp-Welch algorithm [147].

Reverting to a Consistent State. Depending on the frequency how often a specific
server fails in the audit mechanism, one might choose to either replace it, or to revert it
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to a consistent state again. In the following we recap a protocol based on the enrollment
protocol by Nojoumian et al. in [148], which allows one to recompute lost shares for a
specific server.

Assume therefore that storage server S j has been identified to be inconsistent with
the other servers, and the auditor has sent a message requesting a recomputation step
for this server to the system. Receiving this message S j returns to the last state that
has been accepted by the auditor and requests the missing shares from a set of storage
servers that were verified positively.

The basic idea is to recompute a missing share σ j for storage server S j by re-
computing f ( j) in distributed fashion. Since the Lagrange interpolation is used for this
computation only k storage servers are needed. The auditor can be in charge of selecting
them. Assume it selected subset {Si}i∈I . Then, the following steps are performed:

1. Each storage server Si, for i ∈ I , computes its Lagrange interpolation constant
γi = ∏1≤l≤k,i �=l

j−l
i−l . Then, it multiplies γi by its share σi and, randomly, splits the

result into k portions, such that γi ·σi = σ1,i+ . . .+σk,i. Finally, it sends value σl,i

to storage server Sl using a private channel.

2. Each storage server Si, for i ∈ I , collects all values σi,l received from the storage
servers Sl , where l ∈ I , and computes σi = ∑l∈I σi,l . Then, it sends σi to storage
server S j through a private channel.

3. Storage server S j computes its share σ j by adding all received values, i.e σ j =

∑i∈I σi.

2.6 Batch Verifiability Against Malicious Clients

In the constructions for auditing so far we showed how to assure an honest dealer that
his data is securely and reliably stored in a system. However, in practice a malicious
dealer might distribute inconsistent shares of data to the storage servers, and then try to
harm the reputation and trustworthiness of storage servers by announcing an unjustified
complaint. This would be possible because in the construction so far the storage servers
have no means to verify the honest behavior of the dealer.

Unfortunately, existing verifiable secret sharing schemes are too inefficient for real
world usage. On a very high level, this is because the dealer has to prove to the share
holders that all their shares resulted from an honest execution of the sharing algorithm.
This is essentially done by letting the dealer commit to his random coins and broadcast
these commitments such that the share holders can then (potentially interactively) verify
that their shares are consistent with the commitments. This might be acceptable for
single data blocks but not the bulk data scenarios we are aiming at. For efficiency
reasons, secret sharing is usually implemented on a several-byte level, while files are
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often megabytes to gigabytes in size such that a file often has to be split into 220 blocks or
more. As a result, the computational overhead of computing, transferring, and verifying
the high number of commitments renders existing VSS schemes impracticable for real-
world usage.

Related work. Verifiable secret sharing has first been introduced by Chor et al. [149].
Since then, a large body of work has been performed in this field. For instance, solutions
that are unconditionally private and committing have been proposed for n ≥ 2t+1 [150,
151, 152]. If one is additionally aiming for perfect completeness one has to use n ≥
3t +1 [153, 154].

For efficiency reasons, many publications consider a setting which is perfectly pri-
vate but only computationally committing. The probably most prominent such VSS
scheme is that of Pedersen [155]. Its computationally private but perfectly commit-
ting counterpart has been proposed by Feldman [156]. An optimized generalization of
Pedersen’s scheme has been presented by Backes et al. [157].

All schemes mentioned consider private verifiability only. That is, only the share
holders are able to verify that the distributed shares are actually correct and consistent.
If computations on the share holder’s side are very expensive, publicly verifiable secret
sharing schemes can be used, where also external parties can verify the consistency of
the distributed shares without learning anything about the shared message [158, 159,
160]. Finally, another line of research also considers VSS in an asynchronous com-
munication model where the adversary is allowed to partially control the network, e.g.,
[157, 161, 162, 163].

In all works mentioned so far, verification is done on a per-message level. The only
papers considering a batch version of VSS have been done by Bellare et al. [164] and
Demirel et al. [6]. Starting from different motivations, both papers show related proto-
cols that allow storage servers to efficiently batch-verify multiple Shamir-shared mes-
sages. However, both these works do not achieve the standard completeness guarantees
for VSS. Namely, one typically requires that the protocol succeeds for all honest servers,
if the dealer is honest and up to t servers are corrupt. However, in [164, 6] completeness
is only guaranteed if the dealer and all servers follow the protocol specification. As a
result, single servers could easily carry out denial-of-service attacks.

Our Contribution In a nutshell, we propose the first practically efficient, batch
verifiable secret sharing scheme that satisfies the standard definitions for VSS.

More precisely, we first formally define what we understand by a batch VSS scheme.
While this is intuitively clear, we believe that a detailed formalization is necessary, in
particular in light of existing definitions of VSS which are often quite informal [157,
165, 155, 160], where it is not formally defined, e.g., at which points in time, the adver-
sary is allowed to corrupt which parties and which information is then revealed.

In the following, we present two instantiations of our definitions based on Peder-
sen’s VSS scheme [155] in a fully adaptive adversary model. Both our instantiations
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are perfectly private and complete, and computationally binding. One instantiation is
perfect (i.e., the shares stored by each server have the same size as the original mes-
sage) but requires that n ≥ 3t +1. In the other instantiation, we only require the optimal
bound n ≥ 2t + 1 while still achieving asymptotical perfectness in the sense that when
batch-verifying m messages, the storage overhead is only 1+O( 1

m) which converges to
1 for large batch sizes.

Our construction. On a technical level, our protocols are closely related to Ped-
ersen’s scheme. First, the dealer shares each message M j using a degree-t polynomial
f j(x) according to Shamir’s scheme. It then draws a random value b0 and shares it
using another polynomial r(x). After having received the shares, the servers first in-
teractively agree on a random challenge w which they send to the dealer. The dealer
then computes commitments to a linear combination of the used polynomials, namely
to F(x) := ∑m

j=1 w j f j(x), using the coefficients of r(x) as randomness. Similar to Peder-
sen’s scheme [155], using these commitments, each server now computes a committed
version of F(i) and checks this against a locally computed commitment of the respec-
tive linear combination of its shares. A high level overview of the protocol is shown in
Figure 2.25.

Efficiency analysis. The savings resulting from our modifications of Pedersen’s
scheme are significant and for the first time make verifiable secret sharing also applica-
ble for large files and messages. Namely, using standard Pedersen, the extension factor
compared to simply transferring the single Shamir shares would be about 2+ c(t + 1),
where c is the extension factor of the deployed commitment scheme. Furthermore, at
least 2m full-length exponentiation have to be computed at each node.

Straightforward approaches to reduce the overhead are the following. First, one
could use batch verification techniques for modular exponentiation (such as, e.g., the
small exponent test) [166]. However, this would only reduce the computational over-
head, but the communication complexity would not be improved. Second, one could
use a vectorized version of Pedersen’s commitment scheme where one commits to many
messages in a single commitment using different bases. This approach would reduce the
communication complexity considerably; however, the number of modular exponentia-
tions at each server would still be linear in m.

In this work, we propose a solution which makes both, the communication and
the computational overhead independent of m. More precisely, our protocols have a
constant communication overhead, and thus the extension factor is only 1+O( 1

m) (with
a small hidden constant). Furthermore, the number of full-length exponentiations is
only about t2, which again is independent of the batch size. As a result, the amortized
costs per message become negligible for large batch sizes, resulting in an (almost) free
verifiability feature for Shamir’s secret sharing scheme.
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Figure 2.25: BVSS protocol overview with four servers. The protocol enables the server
to efficiently check if the received share belongs to a valid sharing. In step1 the client
D (dealer) generates the sharing of the messages along with a random sharing and dis-
tributes the shares. In step 2 a random challenge is generated jointly and sent to D.
Based on the random challenge, D computes a weighted sum of the sharing polyno-
mials and commits to it as in [155] by using the random polynomial for ITS hiding.
The commitments are then broadcast to the servers (step 3). With the commitments the
servers are individually able to check their respective shares by evaluation of the share
generation in the exponent via the available commitments and randomness w.

2.6.1 Preliminaries

We first introduce some notation and then recapitulate the basic cryptographic primitives
that will be used in this section.

For n ∈ N, let [n] := {1, . . . ,n} and let λ ∈ N be the security parameter. We denote
algorithms by sans-serif letters (A,B, . . . ) and sets by calligraphic letters (R ,S , . . . ). For
a finite set S , we denote by s ← S the process of sampling s uniformly from S . For an
algorithm A, let y ← A(1λ,x) be the process of running A, on input 1λ and x, with access
to uniformly random coins and assigning the result to y. We assume that all algorithms
take 1λ as input and we will sometimes not make this explicit in the following. To make
the random coins r explicit, we write A(1λ,x;r). An algorithm A is probabilistic polyno-
mial time (PPT) if its running time is polynomially bounded in λ. Furthermore, we write
Pr[E : Ω] to denote the probability of event E over the probability space Ω. A function
f : N → R is negligible if it vanishes faster than the inverse of any polynomial, i.e.,
if ∀c∃λ0∀λ ≥ λ0 : | f (λ)| ≤ 1/λc. We write (oA;oB;oC)← �A(inA);B(inB);C(inC)� for
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an interactive protocol between participants A,B,C. (Here, inA, inB, inC and oA,oB,oC

denote the inputs and outputs of the different parties.)

2.6.1.1 Homomorphic Commitments Schemes

A commitment scheme with message space G consists of the following three PPT algo-
rithms (CPar,Com,Open).

Parameter sampling. CPar(1λ), on input the security parameter 1λ in unary, outputs a
public parameter pp. (For the sake of readability we will sometimes omit making
pp explicit in the inputs whenever there is no danger of confusion.)

Commit. Com(pp,M), on input message M ∈ G, outputs a commitment-witness pair
(C,d).

Open. Open(pp,C,M,d), on input commitment C, message M, and witness d, outputs
a verdict b ∈ {0,1}.

In the following, we describe the required security properties.
First, honestly computed commitments can always be opened by an honest party:

Definition 2.6.1 (Correctness). A commitment scheme is correct, if for all pp←CPar(1λ),
for all M ∈ G, for all (C,d)← Com(pp,M), the equation Open(pp,C,m,d) = 1 holds.

Next, a commitment must not leak any information about the committed message:

Definition 2.6.2 (Hiding). A commitment scheme is hiding, if for every PPT adversary
A there exists a negligible function negl such that the following holds true:

Pr



b = b ∧M0,M1 ∈ G : b ←{0,1},pp ← CPar(1λ),(M0,M1,st)← A(pp),

(C,d) = Com(pp,Mb),b ← A(st,C)

�
≤ 1

2
+negl(λ) .

The scheme is said to be unconditionally or perfectly hiding if negl = 0 and computa-
tionally hiding otherwise.

Finally, no adversary must be able to open a commitment to two different messages:

Definition 2.6.3 (Binding). A commitment scheme is binding, if for every PPT adver-
sary A there exists a negligible function negl such that the following holds true:

Pr


Open(pp,C,M1,d) = Open(pp,C,M2,d ) = 1∧M1 �= M2∧

M1,M2 ∈ G :pp ← CPar(1λ),(C,M1,M2,d,d )← A(pp)
�
≤ negl(λ) .
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The scheme is said to be unconditionally or perfectly binding if negl= 0, and computa-
tionally binding otherwise.

We will consider a special type of commitment schemes, namely homomorphic
ones. In such schemes, the message space G as well as the co-domain are groups and
computations on commitments have a direct correspondence on the contained messages:

Definition 2.6.4 (Homomorphism). A commitment scheme is homomorphic, if for all
messages M1,M2 ∈ G and random coins r1,r2, for M := M1 ·M2, for all (C1,d1) :=
Com(pp,M1;r1), (C2,d2) := Com(pp,M2;r2), for C :=C1 ·C2 and d := d1 ·d2, it holds
that Open(C ,M ,d ) = 1. (Here, · denotes the respective group operations.)

In the following, we will denote homomorphic commitment schemes by HC.

For concreteness, a reader might simply think of Pedersen commitments [155] as
a concrete instantiation of commitment schemes. In such an instantiation, CPar would
define G as a cyclic group of prime order q such that computing discrete logarithms in G
is hard; further, two generators g,h of G are fixed. To commit to a message M ∈ G, Com
draws r ← Zq and outputs (C,d) := (gMhr,r). Finally, Open outputs 1 if and only if
C = gMhd . It is easy to see that this scheme is homomorphic, computationally binding,
and perfectly hiding.

As an example of a homomorphic, computationally hiding, and perfectly binding
commitment scheme, the reader may think of any homomorphic, perfectly complete,
and IND-CPA secure encryption scheme.

2.6.1.2 Non-Interactive Verifiable Secret Sharing

The most prominent threshold scheme is due to Shamir [100] and is based on the obser-
vation that in a field a polynomial of degree t is uniquely determined by t +1 function
values. It was also introduced in section 2.5.2. Based on this scheme Pedersen [155]
proposed an elegant verifiable secret sharing scheme. In his construction, for a message
M, the dealer chooses a random value b and Shamir shares M and b0 using degree-t
polynomials f (x) := atxt + · · ·+a1 +M and r(x) = btxt + · · ·+b0, respectively. It then
sends ( f (i),r(i)) to server Si. Next, the dealer computes commitments C0, . . . ,Ct to
the coefficients of f (x), using the coefficients of r(x) as randomness, i.e., C j := ga jhb j

where a0 = M. It then broadcasts all (C j)
t
j=0 to the servers. Using these commitments,

every Si then essentially compute a commitment to f (i) with randomness r(i) and check
it against its private shares by verifying that C0 ·Ci

1 · · ·Cim
m = g f (i)hr(i). If this is the case,

Si accepts, otherwise it rejects.

2.6.2 Security Model of Batch Verifiable Secret Sharing

In this section, we introduce the syntax and security requirements of batch verifiable
secret sharing schemes.
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2.6.2.1 Syntax

An (n,m, t)-batch-verifiable secret sharing ((n,m, t)-BVSS) scheme BVSS is a system
consisting of a dealer D and n servers/players S1, . . . ,Sn. Besides the number of servers,
it is parametrized by the reconstruction threshold t +1 ∈ N,1 ≤ t < n, the number m of
messages that can be batch-verified, the message space M , and the share space S .

A BVSS consists of a parameter generation algorithm SPar that generates public
parameters which are accessible to all participants. Depending on the concrete instanti-
ation, it might be necessary that the public parameters are generated by a trusted third
party, or through a joint computation of the different system participants. Furthermore,
the system consists of two interactive protocols (or phases). During an invocation of the
sharing phase, the dealer can share m messages M j ∈ M among the severs S1, . . . ,Sn

in a confidential yet provably consistent way. Then, in the reconstruction phase, the
Si jointly reconstruct the shared messages by broadcasting their shares and calling an
algorithm Rec.

It is required that all algorithms and protocols are PPT. Furthermore, we assume that
each server has access to fresh and uniformly random random coins whenever necessary.

Parameter generation. SPar(1λ), on input unary 1λ, outputs public parameters pp.
(We assume that each server has implicitly access to pp.)

Sharing phase. In the beginning of this phase, the dealer D, on input pp and messages
(M1, . . . ,Mm)∈M m, obtains shares (s1, j, . . . ,sn, j)∈ S n of M j, for all j ∈ [m]. Fur-
ther, D distributes (si,1, . . . ,si,m) to Si, for all i∈ [n]. In each round, each server can
communicate with every other server privately and is eligible to broadcast data.
After the last round, each server Si outputs its shares and an auxiliary parameter
si = (si,1, . . . ,si,m,axi), for i ∈ [n], while the dealer D outputs ε.

Reconstruction phase. In the beginning of this phase, each server Si broadcasts si,
for i ∈ [n]. Further, the deterministic reconstruction algorithm Rec(pp,s1, . . . ,sn)

outputs messages (M1, . . . ,Mm) ∈ (M ∪ {⊥})m which is also defined to be the
protocol’s output.

2.6.2.2 Security Requirements

In the following, we define the formal security guarantees that need to be fulfilled by a
BVSS scheme. Even though these requirements are very similar to the standard security
definitions for VSS, we will discuss them in detail. This is because in the literature the
security of VSS schemes are often formulated in a rather informal way [157, 165, 160],
which might potentially cause subtle differences in the way they are interpreted.

Corruption. From now on, we will say that an adversary is t-valid if and only if
it corrupts at most t servers Si1 , . . . ,Sit . We therefore grant the adversary access to a
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corruption oracle Ocor in all security experiments. At any point in these experiments,
the adversary may ask Ocor to corrupt a server of its choice, receiving its entire internal
view (including all messages received, its share, etc.) as a response. A corrupted server
is then under full control of A, who can, e.g., send or broadcast data on behalf of the
server.

Informally, correctness says that for an honest dealer, it is always guaranteed that the
original messages M1, . . . ,Mm can be recovered from the shares accepted by the servers
— even if up to t servers behaved arbitrarily maliciously during the sharing phase.

Definition 2.6.5 (Correctness). An (n,m, t)-BVSS scheme is correct if for every t-valid
PPT adversary A there exists a negligible function negl such that the following holds
true for all M1, . . . ,Mm ∈ M :

Pr


Rec(pp,s1, . . . ,sn) = (M1, . . . ,Mn) : pp ← SPar(1λ),

(ε;s1; . . . ;sn)←
�
D(pp,(M j) j∈[m]);S1(pp); . . . ;Sn(pp)

��≥ 1−negl(λ) .

Note here that the output of corrupted servers can be arbitrarily chosen by the adver-
sary. In the literature, correctness is sometimes only required if the dealer and all servers
are honest, e.g., [164, 6, 167]. However, we believe this is a too weak requirement for
practical purposes as it would enable any single malicious server to launch denial-of-
service attacks. It is thus important that correctness also gives robustness guarantees
against malicious servers.

A batch verifiable secret sharing scheme is called private (i.e., satisfies privacy) if
no adversary controlling up to t servers can learn any information about the message
distributed by the dealer.

Definition 2.6.6 (Privacy). The privacy experiment, dubbed Exp
privacy
BVSS,A(1

λ), in which
the adversary has access to Ocor, is defined as follows: First, fresh public parameters
pp ← SPar(1λ) are honestly generated and passed to A. Then, A chooses messages tu-
ples (M0,1, . . . ,M0,m),(M1,1, . . . ,M1,m) ∈ M m ×M m and sends these to the experiment.
Next, the experiment tosses a coin b ← {0,1} and executes the sharing phase on one
of the message tuples, i.e., it launches the following protocol, taking the roles of the
dealers and all honest servers:

(ε;s1; . . . ;sn)←
�
D(pp,(Mb, j) j∈[m]);S1(pp); . . . ;Sn(pp)

�
Eventually, A outputs a guess b ; if b = b holds, then we say that A wins and the
experiment outputs 1, otherwise the experiment outputs 0.
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An (n,m, t)-BVSS protocol satisfies privacy if and only if for any t-valid PPT ad-
versary A there exists a negligible function negl such that the following holds true:���Pr

	
Exp

privacy
BVSS,A(1

λ) = 1
�
−1/2

���≤ negl(λ) .

Finally, the commitment property is the distinguishing feature of verifiable secret
sharing schemes. It guarantees that the dealer cannot change its mind about the dis-
tributed value after the sharing phase — even if it adaptively corrupts up to t servers.
That is, if one has access to all shares, then one will always reconstruct the very same
secret message M , even if up to t shares are arbitrarily and adaptively modified by the
adversary.

Definition 2.6.7 (Commitment). Consider the following commitment experiment, which
is dubbed Expcommit

BVSS,A(1
λ), in which the adversary has access to Ocor: First, fresh pub-

lic parameters pp ← SPar(1λ) are honestly generated and passed to A. The experiment
runs the sharing phase

�
D(pp,(M j) j∈[m]);S1(pp); . . . ;Sn(pp)

�
for M1, . . . ,Mm ∈ M cho-

sen by A. Let (si)i�∈C be the shares of the non-corrupted parties. In the next step, the
adversary is given (si)i�∈C as input and outputs two full sets of shares (s i)i∈[n],(s  i )i∈[n],
such that #{i ∈ C : si = s i} ≥ n− t and similar for s  i . The adversary now wins (meaning
that the experiment outputs 1), if and only if Rec(s 1, . . . ,s

 
n) �= Rec(s  1, . . . ,s

  
n).

An (n,m, t)-BVSS protocol is now said to be committing if and only if for every
t-valid adversary A there exists a negligible function negl such that the following holds
true:

Pr
	
Expcommit

BVSS,A(1
λ) = 1

�
≤ negl(λ) .

Let us explain the rationale behind this definition. Namely, the adversary can al-
ready compromise a number of servers before and during the sharing phase. Then, in
the reconstruction phase, all servers broadcast their shares. The adversary is thus al-
lowed to see all shares held by honest servers, and may adaptively corrupt further ones.
(Alternatively, one could have required that the adversary must decide which servers to
corrupt before the shares were revealed; however, we believe that our stronger modeling
is reasonable as it guarantees security against highly adaptive adversaries that might be
able, e.g., to block broadcast messages.) The requirement now is that no matter how the
adversary modifies the shares of corrupted parties, the reconstruction phase will always
yield the same result and, thus, the dealer is committed to this value after the sharing
phase.

Another flavor of verifiable secret sharing sometimes requires that all qualified sub-
sets of shares held by servers that followed the sharing protocol reconstruct to the same
message, e.g., [155, 6]. This definition is weaker than ours in the sense that it only
quantifies over shares of honest parties in the reconstruction algorithm and, thus, does
not offer any robustness guarantees against adaptively modified shares. Formally, this
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means that in Def. 2.6.7, the adversary would only be allowed to delete shares in the
second phase of the experiment which is just a special case of our definition. Conse-
quently, in the optimal case of VSS schemes, where n = 2t + 1 holds, our definition
directly implies the alternative definition mentioned above.

Finally, we also want to point out the relation of our definition to the standard bind-
ing property of commitment schemes. Namely, the adversary first outputs a commit-
ment. (In our definition, this can be thought of as the shares of honest servers.) Then,
the adversary has to come up with two different messages and openings that are consis-
tent with this commitment (in our case, the messages would be the results of Rec and
the openings would be the entire sets of shares).

2.6.3 Efficient Instantiations of BVSS

In this section, we present an instantiations of a (n,m, t)-BVSS scheme and prove that
it indeed satisfies the requirements from Section 2.6.2. Furthermore, we suggest an
variant of our construction for the situation where minimum storage overhead is of prime
importance.

2.6.3.1 Instantiations from Homomorphic Commitments

In the following, we let p be a prime or a prime power, and we define the message
space of our BVSS scheme as M := Zp. Our instantiations are based on any additively
homomorphic commitment scheme (CPar,Com,Open) with message space Zp; for con-
creteness, the reader may simple think of Pedersen commitments [155] in the following.
Furthermore, we use an interactive randomness generation protocol (RPar,RndBVSS) as
an additional building block. Informally, this protocol, executed among the n servers,
has to guarantee that all honest servers receive the same uniformly random output from
Zp, even if up to t of the servers behaved maliciously. For a formal definition and a
concrete instantiation we refer to Section 2.6.3.2.

Asymptotically perfect (n,m, t)-BVSS for n ≥ 2t + 1. We now present an instan-
tiation which works for all n ≥ 2t +1, and is asymptotically perfect in the sense that it
only has a constant additive storage overhead compared to plain Shamir secret sharing.

The algorithms and protocols of our (n,m, t)-BVSS scheme are defined as follows:

Parameter generation. SPar(1λ) obtains pp ← CPar(1λ) as well as
pp  ← RPar(1λ,n, t, p), and outputs public parameters pp := (pp ,pp  ).

Sharing phase. The sharing phase consists of the following steps:

– The dealer D, on input pp and messages (M1, . . . ,Mm) ∈ Zm
p , chooses m+1

degree-t polynomials

f j(x) = a j,txt + · · ·+a j,1x+M j and r(x) = btxt + · · ·+b0
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with (uniform) coefficents a j,v,bv,b0 ← Zp, for all v ∈ [t] and all j ∈ [m].
Further, the dealer D sends shares

(( f j(i)) j∈[m],r(i))

to each server Si, for all i ∈ [n].
– Once every server Si received (( f̂ j,i) j∈[m], r̂i) from the dealer, the servers

engage in an execution of the joint randomness generation protocol
RndBVSS(1λ,n, t, p). Let wi be the output of Si which is send to the dealer
D. The dealer defines w as the majority of the received wi.18

– Next, D computes

(Cv,dv) := Com(pp ,
m

∑
j=1

a j,vw j;bi),

for all v ∈ [t]∪{0}, where a j,0 := M j, and broadcasts (Cv)v∈[t]∪{0}. (After
the broadcast, D outputs ε.)

– Upon having received Ĉ0, . . . ,Ĉt , each server Si verifies the consistency of
its shares by validating that

Ĉ0 ·Ĉi
1 ·Ĉi2

2 · · ·Ĉit
t

?
= Com(pp ,

m

∑
j=1

f̂ j,iw j; r̂i) (2.12)

holds. If the equation does not hold, then Si terminates the protocol; other-
wise, it outputs

si := (( f̂ j,i) j∈[m], r̂i),(w,Ĉ0, . . . ,Ĉt)). (2.13)

Reconstruction phase. The reconstruction procedure is only one-round. Concretely,
each server first broadcasts its entire share to all other servers. Now, on input
(s1, . . . ,sn), Rec first verifies each si by verifying whether the contained values
satisfy (2.12). If less than t + 1 si are valid, Rec outputs ⊥. Otherwise, for each
j ∈ [m], it takes the respective parts of the valid shares and computes the degree-t
interpolation polynomial f  j, and outputs M 

j := f  j(0).

Computational complexity. Looking at our protocol specification, it can be seen that
the computational overhead on the server side is independent of the batch size, except
for the computation of the sum in (2.12). However, in practice, these costs are negligible,
in particular compared to the evaluation of m equations of the same form in the direct
generalization of existing VSS schemes.

18Note that after this step, by definition of the building block, it is guaranteed that all honest Si and the
dealer D hold the same uniformly random value which we denote by w in the following.
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Perfect (n,m, t)-BVSS for n ≥ 3t + 1. Looking at (2.13), one can see that each
server has to store its shares for all M j plus two elements in Zp (i.e., r̂i and w) as well as
t +1 commitments. This storage overhead is fully independent of the batch size and is
practically negligible already for moderately large values of m. In particular, our scheme
is asymptotically perfect in the batch size m.

However, if one is aiming for a perfect BVSS scheme, i.e., a scheme where the
share per server has exactly the same size as the original messages, the following mod-
ification of our protocol could be applied: instead of storing the si as in (2.13), each
server only stores ( f̂ j,i) j∈[m]. Then, in the reconstruction phase, each server would not
verify the shares of other servers by re-evaluating (2.12), but would find the correct in-
terpolation polynomials, e.g., by applying the error-decoding technique of Welch and
Berlekamp [147]. Theorem 2.6.2 proving the security of our scheme would still lit-
erally apply to this modified version, with the only drawback that we would have to
set n ≥ 3t + 1 instead of n ≥ 2t + 1. We believe that for most practical applications
asymptotic perfectness is sufficient and the higher robustness guarantees of the original
scheme are preferable.

2.6.3.2 Joint Randomness Generation

In our BVSS protocol, we require that n servers and the dealer jointly agree on a uni-
formly random value w ∈ Zp in the sharing phase.

Such a joint randomness generation scheme for Zp consists of the following two
algorithms and protocols:

Parameter generation. RPar(1λ,n, t, p) outputs public parameters pp.

Randomness generation. This is an interactive protocol executed between n servers,
at the end of which each server receives an output wi:

(w1; . . . ;wn)← �S1(pp); . . . ;Sn(pp)� .

A joint randomness generation protocol has to satisfy the following property:

Definition 2.6.8 (Uniform output). A joint randomness generation scheme has the uni-
form output property if for all λ, p∈N, all n≥ t+1, all pp←RPar(1λ,n, t, p), all t-valid
PPT adversaries controlling at most t servers, and all

(w1; . . . ;wn)← �S1(pp); . . . ;Sn(pp)� ,

it holds that wi = w j for all honest servers Si,S j, and that this value is uniformly dis-
tributed in Zp.
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For our instantiation, let C = (CPar,Com,Open) be an arbitrary (potentially non-
homomorphic) commitment scheme with message space Zp. RndBVSS together with
the parameter generation RPar is defined as an interactive protocol between the servers
S1, . . . ,Sn as follows:

Parameter generation. RPar(1λ,n, t, p), on input 1λ and integers n, t, p ∈ N, with n ≥
t +1, outputs pp := (pp ,n, t, p), for pp ← CPar(1λ).

Randomness generation. Each server Si, on input pp, samples wi ←Zp and broadcasts
a commitment Ci in the first round, for (Ci,di)← Com(pp ,wi), for all i ∈ [n]. In
the second round, each server Si broadcasts the corresponding opening (wi,di),
for all i ∈ [n]. Let w 

1, . . . ,w
 
l be the received consistent openings, for l ∈ [n]. Each

server Si outputs wi := w 
1 + · · ·+w 

l mod p.

Lemma 2.6.1. The protocol above has the uniform output property according to Defi-
nition 2.6.8.

Proof. As we have n ≥ t+1, after the second round, each server received at least 1 valid
commitment and opening from an honest server, guaranteeing the uniform distribution
of the output. This is because any t-valid adversary could only suppress valid messages
of at most t servers. To see the consistency for honest servers, simply note that by
assumption to the broadcast channel, every server received the same commitments and
openings from malicious servers.

2.6.3.3 Theorem and Security Proofs

Theorem 2.6.2. If RndBVSS is a joint randomness generation protocol in the sense of
Section 2.6.3.2 and HC = (CPar,Com,Open) is a homomorphic commitment scheme,
then the protocol BVSS as described in Section 2.6.3.1 is an (n,m, t)-BVSS protocol,
for n ≥ 2t +1 and for all m ∈ N (where all values are polynomial in λ).

Proof. We need to proof the correctness, privacy, and commitment properties of BVSS.

Correctness. Intuitively, we have to show that even when any t-valid PPT adversary
controls up to t servers during the execution of the protocol, Rec outputs exactly the
messages in the reconstruction phase which were given to the (non-corrupted) dealer D
as input in the sharing phase.

More formally, for all λ ∈N, for all pp ← CPar(1λ), for all non-corrupted D and for
all t-valid PPT adversaries, for all messages M1, . . . ,Mm ∈M , for all D-chosen functions
(( f j) j∈[m],r), for all (w1, . . . ,wn)← RndBVSS(1λ,n, t, p), for the uniform majority value
w of (wi)i∈[n], for all commitments ((Ci,di) :=Com(pp ,a1,iw+ · · ·+am,iwm;bi))i∈[t]∪{0},
we have that Equation (2.12) holds (i.e., all commitments are valid), thus, at least t +1
servers from (Si)i∈[n] output consistent shares of the correct form

si := ((( f j(i)) j∈[m],r(i)),(w,C0, . . . ,Ct))
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at the end of the sharing phase, and Rec outputs the messages (M1, . . . ,Mm) in the re-
construction phase. (Note that since we have n ≥ 2t + 1 and we only deal with t-valid
PPT adversaries, we have a honest majority of non-corrupted servers and the dealer will
obtain the same value w from the majority vote as all honest servers.)

The correctness of Equation (2.12) follows directly from the homomorphism prop-
erty of HC. (Note that D is honest.) Hence, at least t +1 (honest) servers broadcast their
consistent shares in the beginning of the reconstruction phase (which potentially would
suffice to reconstruct the messages). However, we need to show that no t-valid PPT ad-
versary can provide at least one different opening for the D-provided commitments from
the sharing phase (i.e., a consistent opening that that does not, however, correspond to
the D-chosen functions f j,r and value w, for some j ∈ [m], and which will be valid in
the sense of Equation (2.12). Concretely, we show that no such t-valid PPT adversary
can exist assuming the binding property of HC. Concretely, assume that there exist a
t-valid PPT adversary A that is able to provide at least one Zp-value

m �= fv,i ,

for some v ∈ [m] and for some corrupted server Si , that is consistent with a D-provided
commitment from the sharing phase; i.e., concretely, for

(C ,d ) = Com(pp ,
m

∑
j=1, j �=v

f j,i w
j + fv,i w

v; r̂ i),
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we have that C = Ci . Then, A can be used to break the binding property of HC by
providing

(C 
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in a binding experiment with HC. It follows, that no t-valid PPT adversary can pro-
vide inconsistent shares (in the sense of D-chosen functions ( f j) j∈[m] and r) for a given
sharing-phase commitment and, hence, no malicious server Si is able to provide differ-
ent, but consistent shares that reconstruct to different messages using Rec.

Thus, since at least t + 1 honest servers contribute in the beginning of the recon-
struction phase and no malicious server is able to provide different consistent shares in
the sense of above, Rec outputs the messages M1, . . .Mm (since at least t +1 shares are
valid in the sense of Equation (2.12) and the binding property of HC holds).

Privacy. Privacy against any t-valid PPT adversary (that does not corrupt D) follows
directly from the (computational) hiding property of HC and from the degree-t poly-
nomial properties. Note that the D-chosen polynomial Zp-exponents (bi)i∈[t]∪{0} and
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the bit b are uniformly and independently distributed. Since we deal only with t-valid
PPT adversaries, the adversary only sees at most t function evaluations r(i), for some
i ∈ [n]; hence, it cannot reconstruct r. This follows from the polynomial properties.
Note that the adversary chooses the message tuples in the t-privacy experiment and,
thus, the constant term of the polynomials ( f j) j∈[m]. However, the adversary has no
information about b and, hence, does not know which messages were selected as the
constant terms in ( f j) j∈[m]. Further, the adversary is able to corrupt up to t servers and,
thus, can reconstruct all possible ( f j) j∈[m]. However, it cannot compute the correspond-
ing commitments on these polynomials. This follows from the (computational) hiding
property of HC, i.e., all t broadcasted commitments at least computationally hide the
values ( f j(0)) j∈[m] (in particular, a linear combination thereof) and also the coefficients
from r. Hence, any t-valid PPT adversary is only able to win the privacy experiment
with at most negligible probability larger than 1/2.

Commitment. The commitment property holds due to the binding property of HC.
Note that honest servers stop the sharing phase with D if the equation (2.12) does not
hold. Hence, the adversary (which controls the dealer D) must send consistent commit-
ments in the sharing phase. Further, since at least t +1 non-corrupted servers output its
shares at the end of the sharing phase, the output of Rec is uniquely determined except
with negligible probability. (This follows from the correctness property of BVSS.) Fur-
ther, since no t-valid PPT adversary is able to break the binding property of HC with
non-negligible probability, it cannot provide altered shares in the beginning of the recon-
struction phase that reconstructs to a different output of Rec compared to the (implicit)
Rec-value in the end of the sharing phase. (If such an adversary would exist, then we
can use it to break the binding property of HC; see the proof of the correctness property
above for a more detailed discussion.) Hence, any t-valid PPT adversary is only able to
win the commitment experiment with at most negligible probability.

2.7 Discussion

In this chapter we presented the research results achieved during development of a dis-
tributed storage system with long-term security. We presented a new architecture called
ARCHISTAR for secure multi-cloud storage by integrating secret sharing with a pro-
tocol for Byzantine fault tolerance. The architecture enables modern cloud-based data
sharing in dynamic groups but still provides information-theoretic security for the data
held by providers. To evaluate the approach we developed a proof-of-concept imple-
mentation and did intensive benchmarking. However, the evaluation revealed various
shortcomings of the existing approach and spawned consecutive research which was
intended to close the identified gaps for practical application.
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Especially packet loss and latency had a significant impact on the performance of the
PBFT system for used transport protocols. Therefore, we provided an analytical frame-
work and validated the obtained analytical model by simulations. We further explored
the design space available in PBFT deployments to optimize performance. The results
have also been compared to a real implementation. The gained insights are highly valu-
able and help to tune performance of concrete deployments.

For the case where server cannot run computing tasks, i.e., in the case of pure
S3 cloud storage, we also developed a simplified proxy configuration which relies on
loosely synchronized proxies only using passive cloud storage with weak consistency
guarantees (e.g. eventual consistency). However, the proxy allows for high transaction
performance and can also be used in local deployments, e.g., within a cloud data center
as shown in [168]. To explore the limits of high-throughput encoding and decoding for
secret sharing we researched the first hardware-based computational secret sharing core
for FPGA, which integrates information-theoretically secure secret sharing and informa-
tion dispersal as dedicated components along with AES encryption. The proposed core
is widely parametrizable and demonstrated a throughput orders of magnitude higher
than software solutions.

Besides performant operation of a secure storage system, it is also important to have
efficient means to check the integrity of secret shared data held in the system. For multi-
cloud storage efficient ways to continuously check the consistency turned out extremely
important. However, because secret shared data differs in each storage location a new
way for efficient auditing was needed. We therefore defined and instantiated (privacy
preserving) auditable distributed storage systems. Our instantiation is based on any
homomorphic secret sharing scheme, is information-theoretically private, and supports
arbitrary modifications on the stored data, including proactive re-sharing steps. To the
best of our knowledge, our system is the first dedicated distributed storage system with
formal privacy guarantees in case of an external audit, even if the auditor colludes with
a subset of the storage nodes. We further showed various extensions, e.g., for identify-
ing malicious servers or to support batch audits. In the latter case, the communication
complexity as well as the computation complexity on the auditor side are independent
of the batch size, while the single servers simply have to compute sums over their data
shares. In particular, our system does not rely on computationally expensive crypto-
graphic primitives. Finally, we presented an efficient protocol which can be used as a
replacement for verifiable secret sharing schemes under certain rationality assumptions.

Finally, we extended the basic idea of the auditing mechanism to achieve batch ver-
ifiable secret sharing in general. Sharing large batches of data in a practically efficient
way can be a valuable tool in many applications and is of paramount importance when
building secure distributed storage systems. If typical block sizes in the order of bytes
are considered, even the most efficient VSS schemes would not lead to practical storage
solutions when applied in a naïve way. This is due to the overhead they introduce on
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the communication channel as well as computation-wise. The computations necessary
on both sides, the dealer and the different storage nodes, immediately render the naïve
approach impractical. In fact, this is the major reason why verifiability is not supported
by existing dispersed storage solutions. The proposed solutions are extremely efficient
and introduce little overhead in communication and storage compared to plain secret
sharing when larger batches are considered, i.e., it is possible to add verifiability almost
for free. We presented two instantiations which are closely related to Pedersen’s VSS
scheme but introduce a new interaction round between dealer and servers to make the
batch operation possible. Our main instantiation is designed for maximal robustness
and can cope with up to t ≤ �n−1

2 � malicious players. It has constant storage overhead
independently of the batch size, therefore it is asymptotically perfect when amortized
over all blocks. Alternatively, we proposed a variant that does not introduce any stor-
age overhead at all compared to plain secret sharing, i.e., it is ideal in that sense, but is
only robust up to t ≤ �n−1

3 � corrupt system nodes. For both protocols the computational
requirements are also very limited. In fact, the computational overhead for verifying a
batch is the same as verifying a single block in Pedersen’s VSS protocol plus a joint
randomness generation.

In summary, many interesting aspects for multi-cloud storage systems with long-
term security have been researched and new results were achieved which make the tech-
nology practically relevant.





Chapter 3

Privacy Preserving Data Processing

3.1 Introduction

Multiparty computation (MPC) is a technology for computing on encrypted data in a
distributed setting, i.e., with multiple nodes holding only secure fragments of input data
not learning anything from them. The concept has been invented more than 30 years
ago and a huge amount of research went into the topic over the last 3 decades. For a
long time, it was considered only theoretical, but progress in recent years led to many
interesting applications which can be realized with practical efficiency given a suitable
deployment. In principle, MPC can be used to decentralize systems where typically a
central trusted authority is needed to execute a function on behalf of the users. With
MPC the function is evaluated jointly between multiple parties such that the correctness
of the output is guaranteed and the privacy of the inputs of the individual parties is
preserved, only the output of the computation is learned. Furthermore, information-
theoretically secure MPC exist which makes it the ideal method for our ITS toolbox on
long-term secure data protection.

We quickly present the generic model of MPC as introduced in [75], which was also
edited by the author of this thesis. In a generic MPC system there exist different roles
which have to be present in order to qualify as such. Input parties are holding inputs for
the secure computation which must be encoded and are then sent to the compute parties.
The compute parties run the actual multiparty protocol, which is executed among them
as they jointly compute the intended function on the encoded inputs. The function to
be computed is not kept secret and is defined according to the use case. The function is
composed of basic operations available to the MPC protocol and typically composed of
simple gates from a Boolean or arithmetic circuit, depending on the encoding and pro-
tocols used. After the computation the result is held by the compute parties in encoded
form and then sent to the result parties, which can reconstruct the result of the com-
putation. The main security properties as already mentioned are correctness and input
privacy and it is the latter which guarantees the confidentiality of the data. Depending

101
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on the protocol, the security parameters could hold against different kind of adversaries
as described in section 1.6. Additionally, some optional security guarantees are possi-
ble, e.g., fairness, guaranteed output delivery or covert security. Fairness means, that
malicious parties only receive their output if also the honest parties do so. With guaran-
teed output delivery the honest parties always receive their output. Contrary, in a covert
security model, the protocol aborts in case of error and allows for cheater detection.

In our work—which was also published in [8, 9, 10]—we focus on MPC with
information-theoretic security. Protocols from this category work on the basis of secret
sharing, which is why they optimally complement our work on secure storage. There-
fore, we consider MPC as a processing extension for the multi-cloud storage system
if only views of data should be shared between different stakeholders, e.g., as demon-
strated in [169], or collaboration on joint data sets is required. Additionally, as with
secure storage, for the developed MPC extensions we also assure the same stringent
ITS privacy requirements as for the core ITS-MPC protocols, i.e., support for public
verifiability is based on protocols with perfect zero-knowledge leveraging perfectly hid-
ing commitments.

Our first research activity was to study interfacing with data stored in secure cloud
storage systems, especially data encoded with computational secure secret sharing. We
thus explored and compared the throughput achievable by obliviously executing sym-
metric data encryption and decryption algorithms in Section 3.2. This study was also
important to get a good understanding of the different behavior of software frameworks
available. In a second step, we increased the scope of our research and extended the con-
cept to the idea of collaborative data spaces and privacy preserving market platforms.
Our first research results showed that MPC does not scale in practice and setups beyond
three to four nodes are not feasible for more complex functions to compute. Therefore,
we studied the concept of publicly verifiable MPC in Section 3.3. Finally, we tried to
push the boundaries for the developed data markets and studied the feasibility of doing
a full-fledged optimization. The results are show in Section 3.4.

3.2 Performance Comparison of two MPC Frameworks

To better understand the potential of MPC in real life application scenarios we ana-
lyze the problem of interfacing with encrypted storage as a generic application. Being
able to execute symmetric ciphers within MPC systems has many appealing use cases.
However, the performance has to be reasonably good to support privacy preserving data
mining on a larger data set. This study should also give indication about the problems
arising when porting algorithms to MPC in general and on the portability of results.

The research is motivated by recent progress in MPC research reaching practical per-
formance. However, many of the published prototyping results in research papers have
been done under ideal settings typically only considering a very limited scope. Addi-



3.2 Performance Comparison of two MPC Frameworks 103

tionally, many of the open-source frameworks used to generate the results are not very
mature and their behavior differ significantly from the algorithm in question. First tests
also revealed the difficulty in the implementation of common algorithms in a predictable
and portable way. We found it challenging to achieve good performance for algorithms
without a deeper understanding for specific MPC protocols and manual optimization
was in almost all cases necessary.

We are not aware of any such empirical study which tries to identify important pa-
rameters in the usage of MPC technology in a systematic and platform independent way.
We compare similar MPC settings and protocols as close as we could get and therefore
selected two of the most actively developed frameworks which run the same protocols
under the hood and support the same adversary model. For our study we are working
the in the honest-majority setting with information-theoretical security and only semi-
honest adversaries. This is the most basic setting which have all major ingredients to
build more complex scenarios. Computational secure protocols for dishonest majorities
are out of scope for this work. It should also be noted, that we also do not intend to
compare cipher of equal security strength. We are aware, that stream cipher like Triv-
ium do not provide the same security level as AES, however, our goal is to compare how
the two selected MPC frameworks can deal with the different structures of the various
algorithms and what has to be considered in the porting of algorithms to MPC systems.

This study is important for practical application of MPC technologies. The question
about portability of MPC applications is essential to get independence from specific
frameworks, especially if provisioning of MPC-as-a-service is envisioned. Furthermore,
it is important to understand the implications of the usage of certain implementations to
later combine them into hybrid systems which leverage the best of the different worlds.

Contribution. In particular, this section has the following contributions. We imple-
mented, analyzed and benchmarked four different ciphers in two MPC frameworks. We
found that estimating the performance of algorithms for MPC systems in advance is hard
and real performance deviated from the expected in many cases. Our work also shows a
performance comparison for networks with higher latency or loss, where we identified
some unexpected behavior which suggests that there is room for improvement. In our
study Trivium turned out to be most versatile cipher, i.e., it supports the widest range of
MPC frameworks, but it has also the least security level.

3.2.1 Related Work

The most recent and comprehensive work on comparing MPC frameworks was pre-
sented in [170]. It tries to give an overview on the state of the art from a user’s point of
view. It shows the huge amount of work done in this field but also the complexity when
it comes to realization of certain problems and use cases. Furthermore, because [170]
does not focus on a certain technique or scheme, it can only do a high-level compari-
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son. In particular, no performance benchmark was possible because of the very different
approaches considered. Additionally, in the given work they only analyzed basic opera-
tions in the spirit of "hello world" applications as was shown by the code snippets in the
appendix. They did basic multiplications (Multiply Three), an inner product between
two vectors and crosstabulation.

In our work, we follow a different path and focus on benchmarking of more com-
plex algorithms, i.e., symmetric ciphers in our case. We decided to focus on two pop-
ular frameworks using very similar protocols for a fair comparison of the different ap-
proaches. We choose MPyC and MP-SPDZ, two representative frameworks for secret
sharing based MPC, one being very easy to use and leveraging an asynchronous pro-
gramming concept, the other implementing a circuit optimizing compiler together with
an application virtualization concept. Both systems work on arithmetic circuits and pro-
vide the same correctness and privacy properties, i.e., ITS secret sharing by Shamir, if
configured accordingly. To make results comparable, we only use Shamir secret sharing
in both frameworks which in linear and allows for local addition of shares and multipli-
cation with publicly known constants. However, because multiplication of secret values
is a non-linear operation after each multiplication step communication is required be-
tween the nodes to generate a fresh sharing of the product [171], [72], [73], [172]. This
means that the runtime of the protocols is governed by the number of rounds needed
by the protocols and the number of rounds is determined by the multiplicative depth
of the circuit to be executed. Because this is the limiting factor it seems legitimate to
estimate the multiplicative depth of an algorithm to reason about the expected runtime
for a given function to be computed. However, as we show in our work, it is not straight
forward to estimate the runtime from the theoretical number of multiplications neces-
sary, especially for our intended application of encrypting and decrypting bulk data with
symmetric ciphers.

Besides comparing MPC frameworks, this work was also motivated by the progress
made in developing optimized ciphers for application in multiparty computation (MPC),
fully homomorphic encryption (FHE) and zero-knowledge proof systems (SNARKs)
[173], [174], [175], [176], [177] and [178], which are typically only benchmarked in
ideal settings (almost perfect connectivity and fast servers). This somehow contradicts
the idea of generic platform independent secure computation, which should be the goal
for widespread use of the technology. In our work we are using this new cipher designs
and compare them with the baseline being AES. Additionally, we also include well
known stream ciphers in our comparison because they are also considered interesting
candidates for MPC. In fact, this work was motivated by the difficulties encountered
in straight forward implementation of MPC optimized ciphers which turned out to not
behave as expected in all circumstances and are not platform independent in regard
to their performance, i.e., they depend on used data types, necessary data conversions
and communication performance in different networking environments. We are analyz-
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ing important dependencies we encountered during our implementations and show that
further work is necessary to generate portable code and good interoperability between
MPC solutions. It is not the goal of our work to absolutely compare the many proposed
ciphers, but to see how good their structure is suited in general for framework indepen-
dent application and this is only a first step towards broader benchmarking activities and
this is only a first step towards broader benchmarking activities.

3.2.2 MPC Frameworks

Various frameworks have been developed over the last years, specifically in the open-
source domain. As presented in [170], even for experts it is hard to understand the
current status of the given solutions, and even more so for general users. And although
they invested a lot of work, they only tested some basic operations and not their stability
and efficiency for more complex algorithms.

We selected two candidate frameworks, i.e., MP-SPDZ and MPyC, which both have
the capability to work in the semi-honest setting with honest majority and they use
secret sharing based protocols. Nevertheless, on the higher layer and the program-
ming paradigm they follow a completely different approach. In the following we are
discussing the architecture and basic features of the two frameworks used for cipher
evaluation in this work. In Table 3.1 and Table 3.2 we extend the results of [170] for
MP-SPDZ and MPyC which were not considered in their work.

MP-SPDZ MPyC
Protocol family Hybrid MC
Parties supported � �
Mixed-mode � �
Semi-honest � �
Malicious � �
Language docs � �
Online support � ��
Example code � �
Example docs �� �
Open source � �
Last major update � �

Table 3.1: A summary of defining features and documentation types, which extends the
results of [170] with MP-SPDZ and MPyC.

MPyC. MPyC [179] is a fork of the discontinued VIFF framework [180]. Inter-
estingly, although MPyC is the successor to VIFF and actively maintained, it is only
rarely used for MPC benchmarks. In our opinion, it follows an interesting concept
which could lead to both easy access for programmers and reasonable performance. It
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MP-SPDZ MPyC

Data Types

Boolean � �
Fixed int � �
Arbitrary int �� �
Float � �
Array � �
Dynamic array � �
Struct �� ��

Operators

Logical � �
Comparisons � �
Addition � �
Multiplication � �
Division � �
Bit-shifts � �
Bitwise � �

Grammar
Conditional � �
Array acccess � �
Private index ORAM naive

Table 3.2: A summary of functionality and expressibility of each framework which
extends the results of [170] for MP-SPDZ and MPyC.

is a Python framework that implicitly represents multi-party computations as graphs of
regular Python values, secret-shared values, and operations on them. These operations
are implemented by overloading of the corresponding plain-text operators, so the whole
process is mostly invisible to the user of the framework. The resulting graph is built at
runtime and evaluated asynchronously, so no static analysis, and therefore no optimiza-
tion, is performed. However, heavily optimized primitives (mostly vector and matrix
operations) are available.

The framework is passively secure in an honest-majority setting. Only Shamir’s se-
cret sharing and pseudorandom secret sharing are supported. As we are interested in ITS
secure protocols we selected the first one for our comparison. On top of these protocols,
both integer and fixed-point types have been implemented. For integer computations,
there is both a type based on prime fields, and one based on bit fields; the fixed point
type is based on prime fields. Additionally, MPyC provides an overloaded version of
Python lists that can be obliviously indexed by a secret value.

Code written in the framework can be hand-optimized by making use of the built-in
gather() and _reshare() methods. Applying the first method on a shared value will
run all outstanding asynchronous computations and then unpack the share to return an
element of the underlying field. Any further computations on it will then be performed
locally only. Applying the second method to this value will return a shared value again.
Everything that happens in between is therefore part of a single round of communica-
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tion. Obviously, this can destroy correctness, and it is left to the programmer to ensure
that it does not.

Internally, MPyC makes ample use of this facility to improve the performance of
its built-in methods and operators, and to provide efficient vectorized versions of some
common operations. We looked at four of those operations and compare them to their
unoptimized counterparts in Table 3.4.

MP-SPDZ. MP-SPDZ [181] is a fork of the SPDZ2 software which was originally
developed at the University of Bristol and is based on the SPDZ type of protocols [182],
[183], [184]. The name SPDZ is derived from the authors of the original protocol in
[182]. Since forking, MP-SPDZ has integrated more and more protocols and is now
the most prominent framework used for benchmarking MPC protocols in general. It
supports very flexible use of different protocols and also separation of online and off-
line phases for performance measurements.

Its approach is to let users write their programs in a Python-like language that is then
heavily optimized and compiled to bytecode for a fast virtual machine implemented in
C++. Because the framework is geared mainly towards benchmarking, there is no way to
interface with the compiled programs. Inputs have to be passed via specially formatted
files and it is sometimes tricky to do so and the documentation on this has some gaps.

The framework implements a wide variety of protocols for several different security
models, based on arithmetic as well as Boolean circuits. Both integer and fixed-point
numbers are supported and security models of honest majority as well as dishonest ma-
jority are supported, even for both semi-honest and malicious adversaries. In this work
we were only using the shamir-party.x program as this resembles the same protocol
used by MPyC which was required for a fair comparison of the different programming
models and also fulfill the ITS requirements providing long-term security.

3.2.3 Algorithms

In the following we are quickly reviewing the basic principles and properties of the algo-
rithms we selected for implementation. The algorithms have been selected because they
are considered to be lightweight or because they were specifically proposed as ciphers
optimized for application in MPC settings based on secret-sharing with a low circuit
depth for multiplication gates. In general, the algorithms should help to understand
how the two approaches of MP-SPDZ and MPyC are able to optimize the processing of
the various ciphers and how suitable the structures of the ciphers are for the respective
frameworks.

AES. The advanced encryption standard is the de-facto benchmark when it comes
to MPC for the evaluation symmetric ciphers since [185]. Although not considered
as practical in the beginning, a lot of progress was made in the evaluation of AES in
secret-sharing based systems with [186] claiming the best performance. They report on
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a cluster of three 20-core servers with a 10Gbps connection, which carries out over 1.3
million AES computations per second, which involves processing over 7 billion gates
per second. However, these results are achieved with a dedicated protocol for Boolean
circuits supporting only three parties, and a lot of parallelization that can always be
achieved in encryption tasks with symmetric ciphers.

However, these numbers heavily depend on the environment they are measured in,
specifically the network setup (throughput and latency), the level of batching and par-
allelism applied, as well as the overall latency of the system from reading input data to
delivering the result.

AES implementations were available in both frameworks, and we took them as base-
lines for our benchmarks. This is particularly interesting for systems operating on arith-
metic circuits, because AES does not lend itself well to secure computation over prime
fields [187], [188].

ChaCha20. ChaCha20 [102] is a stream cipher and the successor to Salsa20, and is
one of several novel ciphers recommended for new implementations by the eSTREAM
[189]. This cipher is also used in practice, together with the Poly1305 authenticator
[190] it has been adopted in secure protocol implementations such as OpenSSH and
OpenSSL, as well as for Google Chrome on smartphones.

ChaCha20 is a typical ARX-cipher, consisting only of unsigned 32-bit integer addi-
tions, fixed-width bit rotations, and XORs. In the MPC setting, this mixing of integer
and logical operations is a problem and suggests two different implementation strate-
gies: one would be to represent one’s data as integers and convert to and from a bit-
level representation as needed. The other, likely more efficient, strategy would be to use
a bit-level representation throughout, implementing the integer operations via Boolean
circuits, though this seems viable only in the case of addition.

Trivium Trivium, based on a nonlinear feedback shift register (NFSR), is another
one of the ciphers in the eSTREAM portfolio [189] and has been accepted as an ISO
standard [191]. It has a simple structure with only bit operations, so that it can be applied
to resource-constrained environments such as wireless sensors in IoT.

By iteratively using NFSR, the degree increases rapidly and the output is a complex
Boolean function over key and IV bits. The internal state of Trivium consists of 288
bits. It is initialized by a key and IV of 80 bits each, with all other bits except for the
last three set to 0. To complete the initialization, 1152 keystream bits are generated
and discarded. The generation of a keystream bit is the same for initialization phase
and regular operation: the state is shifted by inserting three new bits. One such bit is
generated by two XORs and one AND. The XOR of the new bits is the output bit.

We chose Trivium because of this very simple construction and the low multiplica-
tive complexity it promised. It has also been considered in [192] for usage in homomor-
phic encryption. As detailed, it only takes three multiplications to produce one output
bit, but by construction, this operation can be parallelized for up to 64 bits. This means
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that a fully optimized implementation of Trivium should be able to generate 8 bytes in
a single communication round.

LowMC LowMC is a block cipher based on a substitution-permutation network
which can be parametrized in a very flexible way. The number of rounds needed to
achieve the desired level of security is determined as a function of several parameters.
The way this is done is to consider and try to bound all known attacks and choose the
number of rounds so that the most effective attack for a particular set of parameters is
just not able to violate the security expectation.

The first version of this round ’formula’ was introduced at Eurocrypt 2015 [173].
Soon after, optimized attacks were demonstrated and as a result, an updated round for-
mula for LowMC was proposed by the designers [174] to take these new insights into
account. LowMC is instantiated with these parameters plus, for each round, three ma-
trices and a scalar. One matrix is for the linear layer, its inverse is used for decryption,
and the third is the key matrix that is used to compute a round key.

One round of LowMC takes a block, applies the determined number of 3-bit S-
boxes to it, multiplies it with the linear matrix as detailed below, and then XORs this
new block with the round key and round constant. Decryption is the exact reverse,
using the inverse of the linear matrix. The output of the multiplications involving the
three matrices is such that each bit of the new block (or round key) is the XOR-sum of
the bitwise AND-product of the old block (or secret key) and a row of the respective
matrix.

MiMC / HADES Introduced by [193], MiMC is a radically simplified construction
based on the idea to explore the typical field size used in MPC. The numbers of rounds
is � n

log2 3� (with n mod 2 = 1 as the chosen block size). The round function just adds
the key and a round constant, then takes the result to the power of three. To decrypt,
the process is simply performed in reverse, but with the exponent 2n+1−1

3 instead of
3. As decryption is therefore massively more expensive than encryption, the authors
recommend using modes where it is not needed. Encryption, however, should be very
efficient. Since the design does not contain any S-boxes and only uses addition and
multiplication, the cipher can be evaluated in a binary field without any conversion, and
needing only two multiplications per round.

Later, [177] developed what they call the HADES design. The core idea of this ap-
proach is to apply reduced versions of the non-linear layer in some rounds. Instantiated
for MiMC, this means that the cipher now operates not on a single, but any number of
blocks, and in certain rounds, the exponentiation is only applied to some (in this instan-
tiation: the first) of them. Additionally, a generalized MiMC was also presented [178]
which can cope with prime fields and work on many field elements once and therefore
gives good amortized cost if it can be parallelized. Our work is based on the initial
design in [193] but can be naturally extended to the new versions.
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3.2.4 Implementation Findings

During implementation of the different algorithms we were faced with some design
decisions that we will report together with our findings and some problems we encoun-
tered. The implementations are released as open source modules on Github1

For AES no specific implementation has been done and the existing solutions were
used. In the case of MP-SPDZ two AES implementaions are available and for fair com-
parison we used the one programmed in pseudo language and not the circuit provided
as netlist.

ChaCha20. When implementing ChaCha20, the problem was indeed the mismatch
between logic and arithmetic operations in the MPC setting, suggesting two possible
implementations:

In the first variant, we use the equivalent of unsigned 32bit integers for the additions,
switch to a bit-vector representation for the XOR and bit rotations, then again go back to
the integer representation for the additions, and so on and so forth. Given the structure
of ChaCha20, this necessitates 640 decomposition and 320 recomposition operations
per block of 64 bytes.

In the other variant, we convert the input values only at the beginning and end, and
therefore have to perform addition on the bit-level. This can be done in one multiplica-
tion per bit plus one vectorized multiplication of all bits of the addends.

As expected, the second variant performs better, but we could only test this in MPyC,
as we were not able to correctly implement the first variant in MP-SPDZ. Of note here
is also the wide disparity in performance between the frameworks.

Trivium. Since Trivium operates on bits, there was no question of different ap-
proaches, and the implementation is a straightforward translation of the specification.
MP-SPDZ was able to generate optimal code without any additional work on our part,
but for the MPyC implementation, we had to do some optimizations by hand to achieve
the expected performance.

In the description of Trivium, we said that it allows for (at least) 64 output bits to
be computed in one round of communication.2 We therefore implemented the cipher
so that it always generates blocks of 64 bits, by simply running the output function
64 times in a loop. The MP-SPDZ compiler rolls out this loop, and by analyzing the
data dependencies within, finds that all operations can be performed in one round, and
generates the respective code.

MPyC, however, had to be helped along by way of the gather() operation de-
scribed above. We placed it right before the loop, and the corresponding _reshare()

immediately after, therefore achieving by manual optimization the same result that the
MP-SPDZ had produced automatically.

1https://github.com/Archistar/archistar4mpc-cipher, accessed 2023-01-10.
2It turned out that even 72 bits can be computed per round. As Trivium is initialized by turning over

the internal state (288 bits) four times, initialization can be done 16 rounds of communication.

https://github.com/Archistar/archistar4mpc-cipher
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LowMC. Implementing LowMC was a surprise in many ways. It has already been
observed by [174] that the enormous number of XORs entailed by the matrix operations
of LowMC means that they can no longer be considered free. We found this to be true
to an even larger extent in our setting.

Even though it was clear that the MPyC implementation could only be done on a
bit-level representation with all the overhead it entails - using one of the recommended
parameter sets (256 bits blocksize, 80 bits keysize, 12 rounds), and keeping in mind that
even a small Python integer weighs in at 26 bytes, the multiplication matrices take up
almost 50 mega-bytes - we were still negatively surprised by the resulting performance.

The MP-SPDZ immediately performed closer to our expectations, achieving 6 KB
per second.

MiMC / Hades. MiMC is specified for GF(2n), but can also be used in GF(p). We
chose the first variant, for which no conversion is necessary, as only XORs and multipli-
cations are performed. Our findings indicate that encryption is indeed fast, as expected.
However, the high number of rounds that are necessary to achieve adequate security, has
a noticeable impact on performance. Only a few measurements were done on decryp-
tion as it was immediately obvious that the high cost of reversing the exponentiation
made it as slow as predicted.

From MP-SPDZ to MPyC. As already mentioned above, the two frameworks fol-
low different design paradigms from an architectural view. MP-SPDZ uses a compiler
to generate intermediate byte code which is then interpreted by a virtual machine and
MPyC makes heavy use of asynchronous IO in Python. Therefore, it is interesting
to see what improvements could be achieved by optimizing the circuit in regard to its
multiplicative depth and how this compares to the asynchronous software architecture.
Furthermore, we tested if the best of both worlds could be achieved by a straightforward
combination.

Algorithm r init enc dec s (kB)
AES-128 10 - 53 - 3416
ChaCha20 20 - 1732 1732 1025
LowMC 12 1 12 12 13669
MiMC 82 - 164 15498 1403
Trivium - 13 1 - 241

Table 3.3: Number of rounds, multiplicative complexity, byte code size of the selected
algorithms

In Table 3.3 we give an overview of what the MP-SPDZ compiler was able to do with
our implementations. For each cipher, it first lists the number of rounds of the cipher
itself. This is followed by the multiplicative complexity of the initialization phase, the
encoding, and the decoding operation. Finally, the table lists the size of the resulting
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bytecode. As can be seen, the multiplicative complexity of LowMC seems especially
favorable, taking only one communication round for initialization, and one per round
of encryption/decryption, which means encryption and decryption take a total of twelve
rounds each. Trivium, however, takes 13 rounds for initialization, but then only one
round total for encryption. As expected, the high number of conversions necessary for
ChaCha20 is reflected in its very high multiplicative complexity.

In order to benefit from the optimizations achieved by an optimizing compiler we
developed a transpiler to translate the intermediary bytecode of MP-SPDZ to MPyC
programs. The goal of this effort was to compare the performance of the same byte
code on the two platforms in order to develop a better understanding of the differences
in the evaluation of the same circuit in the two frameworks. Additionally, this solution
gives MPyC users access to an optimizing compiler which can execute circuits with
optimized multiplicative depth.

We tested this approach on the Trivium implementation because the compiled code
is very simple and basically consists of long chains of additions, punctuated by blocks
of batched multiplications. This structure also explains why we did not get any good
performance out of this approach. MP-SPDZ considers additions to be "free" and there-
fore does not vectorize them. In MPyC however, we observed that just adding a number
of scalars is substantially slower than batching them up as vectors and using the built-in
vector_add() operation. The significant difference can be seen in Table 3.4 between
the performance of "naive" operations ("MPyC") and their vectorized built-in counter-
parts ("MPyC Vec").

3.2.5 Performance Evaluation

In this section we report our performance comparison results. We started from an ideal
setting with tree nodes and an almost ideal network setting, i.e., all nodes running on the
same physical host. All tests were done on a rather standard hardware, namely a Dell
Latitude E7440 notebook with a Core i7-4600U CPU running on 2.1 Ghz with 4 cores.

In all our tests we did not try to optimize the overall throughput by exhausting all
hardware resources through massive block level parallelism, we only intended to mea-
sure the time for one block (or a fixed number of blocks) in sequential mode. Compared
to other works which optimize overall throughput by parallelization, we think it is es-
sential to understand the behavior of a single block. This defines the expected latency
from input to output of the basic operation, parallelization is then always possible, if the
higher-level functionality allows it, e.g. for block cipher in counter mode, and enough
hardware resources are available. In our work we focused on other parameters we were
interested in. In particular, we wanted to also understand how the frameworks behave
practical network setting reaching from LAN configurations to worldwide deployments
as well as how many nodes can reasonably supported for the given task.
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3.2.5.1 Performance of Basic Operations

As a basis for the understanding of the expected performance, and as a reference for
the actual platform we use, we provide the actual measured latency for basic non-linear
operations which require network communication. Linear operations can be done local
and are considered to be negligible compared to the ones presented in Table 3.4. In
particular we looked into the timing of multiplication and vectorized version thereof.

n MP-SPDZ MPyC MPyC Vec
map(operator.add, a, b) vector_add(a, b)

1 <1 7 14
10 <1 46 19
100 <1 353 71

map(operator.mul, a, b) schur_prod(a, b)
1 12 59 60
10 13 258 82
100 17 2309 336

reduce(operator.add, a) mpc.sum(a)
1 <1 <1 9
10 <1 33 12
100 <1 507 18

reduce(operator.mul, a) mpc.prod(a)
1 <1 1 12
10 97 381 163
100 1017 3834 416

Table 3.4: Time (ms) for 100 basic operations over vectors a, b of length n

The main observations from this experiment are the following. In MP-SPDZ, la-
tency for addition is vanishingly small; for multiplication, it grows slightly (but clearly
sublinearly) with increasing vector size, except for the multiplicative reduction, which
exhibits an almost exactly linear slowdown with increasing input size. This may seem
surprising at first glance, but is actually to be expected. Contrary to the other three
operations under test, the multiplicative reduction cannot be performed in one commu-
nication round. As it is written, the multiplication operations form a linear list, so one
should expect it to scale linearly with input size. The only optimization possible would
be to organize the multiplications as a tree, so that multiplications on the same level
could be performed in parallel, and the whole operation would scale logarithmically.
Such an optimization is, however, not trivial to find and prove correct. It is therefore not
surprising that the MP-SPDZ compiler did not perform it.

In MPyC, the unvectorized operations scale about linearly with vector size. The
vectorized operations are faster, but only the sum is clearly sublinear in its behavior,
scaling somewhat similar to MP-SPDZ’s vector multiplication; the other operations ex-
hibit a noticeable slowdown as their input vectors grow in size.
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3.2.5.2 Performance of Cipher Implementations

The results from our benchmarking of the cipher implementation with almost ideal net-
working (localhost) is shown in Table 3.5. There the results for AES are the baseline
and show the basic difference and potential of the basic frameworks. In MP-SPDZ AES
latency is about 20 times lower than in MPyC with optimized code. Chacha20, the
lightweight stream cipher, did not perform better. In MP-SPDZ it took almost the same
time and in MPyC it took even twice the time of AES. Most surprisingly LowMC per-
formed worse than expected. Leaving aside the initialization time it took twice the time
of AES on MP-SPDZ and was 6 times slower on MPyC. MiMC the second specifically
for MPC designed cipher performed very well. It could not achieve a speedup on MP-
SPDZ but performed 10 times faster on MPyC for encryption. Unfortunately, because
of its design, decryption takes substantially more time (between a factor of 30 and 50),
which makes it less attractive for some applications. Trivium, another stream cipher un-
der test, performed exceptionally well on both frameworks. On MP-SPDZ it was more
than 5 times faster and in MPyC with certain manual optimization we achieved roughly
a 20-time speedup compared to AES. However, it has to be noted that Trivium in the
standard configuration has only a security level of 80 bits compared to the other ciphers
which provide at least 128 bits. Nevertheless, the structure Trivium is based on seems
well suited for MPC implementations and should be used as a basis for future designs
with stronger security levels.

Cipher MPyC unopt MPyC opt MP-SPDZ
init enc init enc init enc

AES-128 - - - 110 - 5
ChaCha20 - - - 216 - 6
LowMC 764 679 772 637 28 9
MiMC - - - 11 - 5
Trivium 3300 23 780 6 18 <1

Table 3.5: ms/Byte for encryption in 3-party MPC, no latency

3.2.5.3 Network Latency and Loss

Besides the basic performance in ideal settings is it also important to investigate other
aspects that are relevant for the real-world performance of MPC, but that sometimes
gets sidelined: network latency and network loss. One stated reason for not caring (too
much) about it is that it is assumed that performance degrades linearly with increasing
latency. This is indeed what we found in our experiments, however, what was surprising
though was the size of the constant factor, and that it was significantly different between
the frameworks.
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We measured the behavior of the implementations under increasing network delay
and loss. The measurements were done on the very same hardware with all processes
running on the same host and by using kernel level netem features to emulate network
delay and loss. To make the results easier to compare, we performed computations that
used about 1000 rounds of communication, then normalized the obtained time to one
communication round.

The results of our experiments with variable latency are shown in Figure 3.1 and
Figure 3.2 for a one-way delay from 0 to 50 ms. In the ideal zero-latency setting, a
multiplication round takes less than a milli-second in both MPyC and MP-SPDZ; every
5 ms of one-way delay (which can be estimated to equal about 10 ms of round-trip
delay) adds about 5 ms to MPyC, but almost 10 ms to MP-SPDZ. This means that the
seemingly superior performance of MP-SPDZ versus MPyC disappears rapidly with
increasing latency. The situation is slightly, but not fundamentally, different when we
look at batched multiplications. Repeating the same test with vectors of length 100,
with zero latency we get about 3 ms and again less than one ms for MPyC and MP-
SPDZ respectively, and once again an increase of about 5 ms vs. almost 10 ms for
5 ms of one-way delay. This means that multiplications (looked at in isolation) are
faster in MPyC than MP-SPDZ even in low-latency contexts. The breakeven point
for Trivium, on the other hand, is around 35 ms in our measurements, which is in a
realistic range for reasonable distributed deployments which go beyond a single data
center implementation.

All this indicates that although the Python based implementation of MPyC may
be slower and seemingly less capable than MP-SPDZ with its impressive optimizing
compiler, MPC operations are ultimately bound by the network, and MPyC profits from
Python’s highly-optimized asynchronous network stack.
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Figure 3.1: Time for one multiplication with increasing network delay.
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Figure 3.2: Time per communication round of Trivium with increasing network delay.
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Figure 3.3: Time for one multiplication with increasing network loss.
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Figure 3.4: Time per communication round of Trivium with increasing network loss.
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In a second series of experiments we tried to simulate packet loss. The results are
shown in Figure 3.3 and Figure 3.4. The slowdown is somewhat erratic, but otherwise
comparable to the one we observed with one-way delay.

3.2.5.4 Scalability

Although MPC is very appealing, in reality most systems are only supporting two or
three nodes. From an application point of view this is often disappointing, as in many
typical use cases more parties than that want to collaborate. For example, in a secure
auction many more users are submitting bids and if they are not MPC nodes in their own
right they have to trust the MPC nodes not to collude. From the protocol it is clear that
the communication overhead limits the number of nodes for particular computations,
however, in our study we wanted to see what is possible with current frameworks in set-
tings with more than 3 parties, as this could greatly improve the security (reconstruction
threshold) but also the resilience and robustness of the system.

In Figure 3.5 we show the results for more parties in the typical honest majority
setting. Here, MP-SPDZ performs better with increasing number of parties than MPyC,
which experience a significant slowdown with increasing number of parties.
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3.3 A Novel MPC Based Platform for Data Markets

After essential evaluation and benchmarking of MPC frameworks providing information-
theoretic security, we are studying ways to build secure cloud-based systems and plat-
forms out of it. Emerging needs for data spaces in the business domain are driving the
research of new approaches to leverage cloud computing and the Internet of Things in
a more secure and privacy friendly way. One such domain is manufacturing, where
the sharing economy is expected to have a significant impact in multiple dimensions,
ranging from reduced costs, over increased innovativeness and competitiveness to con-
siderable environmental benefits. However, mutual distrust and data sovereignty is of
special concern in the manufacturing industry, e.g., related to corporate secrets and cus-
tomer data.

Control over data is still hampered in large infrastructures and the trend to centraliza-
tion is alarming for a prosper economy. By connecting production facilities to the cloud,
many security and compliance approaches relying on a pure contractual basis (service
level agreements, SLA) must be reconsidered, especially with respect to the existing
oligopoly in the cloud market. A clear understanding of emerging security and privacy
issues is needed, and security paradigms based on cryptography rather than SLAs have
to be considered in order to guarantee confidentiality and data sovereignty in the cloud.

Contributions. In this section, we propose a networked, decentralized architec-
ture for end-to-end verifiable yet privacy-preserving auctions, in order to support future
manufacturing clouds and marketplaces. Our platform combines different technologies
in a new way to provide adequate protection of business secrets as well as transparency
and end-to-end verifiability.

On the technical side, this is achieved by a combination of secure multi-party com-
putation and zero-knowledge proofs of knowledge that also incorporates the edge of the
network to achieve the main properties envisaged by the different stakeholders. The
platform not only allows for determining the lowest bid, but also advanced price-finding
mechanisms based on price-ratio methods. Our solution minimizes the necessary mu-
tual trust, not only between different bidders but also towards the auctioneer. We imple-
mented a proof of concept of our approach, integrating and extending several existing
tools and frameworks, e.g., for MPC and zkSNARKs. The performed benchmarking
demonstrates the practicality for realistic sets of parameters for use cases encountered
in our use case.

3.3.1 Related Work

MPC can be considered the most practical approach for generic computation on en-
crypted data. This means that virtually any function can be computed in an MPC system
in principle, however, due to the overhead introduced by MPC protocols they are slower
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than a classical computer by orders of magnitude. Nevertheless, the first realization of
a real application was demonstrated in an auction held for the Danish sugar beets mar-
ket in 2009 [194]. This was the first large-scale and practical application of multiparty
computation and enabled farmers to get a fair market clearing price. They used a local
setup with three computers in the same room and ran a semi-honest MPC protocol to
calculate the clearing price. About 4000 values for prices were supported at most and
1229 bidders participated in the auction. The inputs from the individual bidders were
encoded by verifiable secret sharing and the computation lasted for half an hour.

This setting already shows the basic problem in the application of MPC. Because
MPC lacks scalability only 3 nodes were chosen to execute the computation. This pre-
vented the bidders from directly participating in the MPC protocol but required them to
encode their inputs for the external MPC nodes, which made the computation on behalf
of the bidders, i.e., it is still an outsourcing problem from a users’ perspective. The
improved security in this setting is evident, but to further increase the trustworthiness
of the system, and to decrease the trust assumptions in the MPC nodes, some form of
public verifiability would be desirable to assure the bidder about the correctness of the
computation.

To cope with this issue new research combined the mechanisms with blockchain
and (non-interactive) zero-knowledge proof (NIZK) techniques. The blockchain is an
ideal candidate to be used for storage of relevant audit data in an accessible manner,
however, because all data written to the blockchain is visible to every party additional
machinery is required to maintain confidentiality and privacy. NIZKs enable parties
to publish proofs about statements without revealing secrets per se (witnesses) and are
therefore an ideal tool to integrate blockchain with the confidentiality preserving MPC
functionality.

Sánchez [195] proposed Raziel, a system that combines MPC and NIZK to guar-
antee the privacy, correctness and verifiability of smart contracts. The idea underlying
Raziel is a smart contract which in addition to the standard properties also guarantees
correctness of auctions. The validity of the generated NIZKs can also be verified by
third parties, thereby achieving publicly verifiability.

Another approach to verifiable auctions has been presented in [196] and a software
prototype can be found on GitHub3. The solution combined homomorphic commit-
ments and NIZK together with a verifiable comparison protocol to achieve a secure
FPSBA. The system is verifiable and privacy preserving against outsiders, however, a
trusted auctioneer is still required because he learns all bids.

Furthermore, Blass and Kerschbaum [197] presented Strain, a protocol to imple-
ment sealed-bid auctions on top of blockchains that protects the bid privacy against fully
malicious parties. In a nutshell, the protocol works as follows: bids are encrypted bit-
wise and are stored on the blockchain. Bidders then to run interactive zero-knowledge

3https://github.com/HSG88/AuctionContract, accessed 2022-02-23

https://github.com/HSG88/AuctionContract
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protocols generating proofs of relations between bids, thereby realizing auctions in a
peer-to-peer fashion. Albeit being scalable by the peer-to-peer nature, the protocol still
needs a semi-trusted auctioneer as arbiter and requires all parties to be online during all
auction phases. It also leaks the full order of all bids compared to the winning bid as
required by auctions.

Kosba et al. [198] presented Hawk, a framework to establish privacy preserving
smart contracts on the Ethereum blockchain. Hawk is intended to protect transaction
data on chain by leveraging zero-knowledge proof techniques. The goal was an easy-
to-use framework providing a compiler managing the cryptographic tasks. Up to our
knowledge, the Hawk framework has still not been released yet. However, it is consid-
ered that the approach cannot be efficiently integrated with MPC.

In another work [199], Galal and Youssef utilized Zero-Knowledge Succinct Nonin-
teractive Argument of Knowledge (zk-SNARK) to realize privacy friendly auctions on
a blockchain. However, their solution makes use of a trusted auctioneer who learns the
bids. This is contrary to our goals; however, the approach contains interesting aspects
and by realizing the auctioneer in a distributed fashion using MPC, the concept resem-
bles the core ideas of our approach. Additionally, cryptocurrencies have been used to
incentivize fairness and correctness, and avoid deviations from the MPC or NIZK pro-
tocol. In these systems money has to be escrowed in deposits which are only returned if
the behave honestly. This in effect encourages parties to strictly follow the protocols to
avoid the financial penalty. Protocols in this direction have been proposed in [200, 201,
202, 203].

Baum [204] proposed publicly auditable MPC; however, this work is mainly of the-
oretical interest and never really implemented. It also integrates with SPDZ but is likely
to be too expensive for practical applications, as the idea is basically to make each com-
putational step verifiable by adding a zero-knowledge proof.

3.3.2 Market Platform

A key requirement in a cloud manufacturing is to optimally match supply and demand,
i.e., available manufacturing resources and customers’ needs. In the following we thus
present a verifiable and privacy-preserving marketplace for manufacturing resources. In
our scenario, we consider a marketplace provider, at which owners of manufacturing
sites can sign up as producers and register their machines as well as meta information
such as configurations, quality levels, etc., cf. also Figure 3.6. Customers (or buyers)
can now put orders, and producers can provide bids to win the order. Leveraging multi-
party computation to ensure confidentiality, blockchain to immutably store encrypted
bids and results, and zero-knowledge proofs to ensure integrity and verifiability, the
marketplace will then match the bids against the order, and announce the winning bid.
The precise data flow will be described in Section 3.3.3.



3.3 A Novel MPC Based Platform for Data Markets 121

Figure 3.6: Use case of cloud manufacturing and marketplace.

3.3.2.1 Security Requirements

In the following, we introduce the security and privacy requirements to a marketplace
for cloud manufacturing applications, which were derived in collaboration with indus-
try partners. On a high level, we found an environment which is aware of their assets
but is currently not sure how they could leverage the data they own because of con-
cerns regarding the insufficient protection of business-critical information, and the risk
of a potentially colluding harmful environment during auctions. More precisely, the
requirements are as follows.

Confidentiality. Confidentiality of the producers’ bids is of utmost importance
through all phases of the auction. In particular, the bids do not only need to be protected
from unauthorized access through competitors, but also from the platform provider. This
is because of the risk of this central entity colluding with certain producers, thereby fully
undermining the price finding mechanisms.

Furthermore, our interviews with industry also showed, that production and shop
floor data can be business critical. That is, competitors should not gain any information
about a producer’s current capacity utilization, machinery status, or process information
on production lines.

Integrity. Besides the requirement of correctness in the case of exclusively honest
entities, it is necessary that the integrity of an auction’s result can also be guaranteed in
the case of a malicious operator of the marketplace. This even needs to hold in the case
that the provider is colluding with other entities in the system, including producers and
buyers, in order to ensure that no party can manipulate the outcome of the auction in
their own interest.

Availability. While this is often not considered in the design of cryptographic proto-
cols, it turned out to be of high importance to our partners. On the one hand, producers
demand assurance that they will not miss opportunities. On the other hand, related to
integrity, producers also need to be guaranteed that they cannot be excluded from an
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auction; that is, whenever a producer places an offer, it shall also be guaranteed that this
offer was indeed considered.

Anonymity and Pseudonymity. In addition to confidentiality of bids, producers
may wish to even hide the information whether or not they placed an offer for a given
auction, as this might already reveal sensitive information about the current utilization
or condition of a production line. Depending on the specific business model of the
marketplace, this requirement, however, needs to be balanced against the marketplace
provider’s needs.

Fairness. Another important aspect for the clients was fairness in terms of fair
conditions. This can also be interpreted as an open and transparent way of computation
and selection of the winning offer. However, the evaluation criteria for matching and
ranking need to be clear and traceable. The goal is to establish a fair comparison of
offers on a comprehensible algorithm to establish fair market prices.

Transparency. Finally, transparency requires that all participants in the system are
able to trace progress and activities on a high level. Our partners were also interested
in historical data in case they were offline for certain times and could not participate in
auctions. However, all this functionality needs to be achieved without compromising
any of the previous goals, especially those related to confidentiality and privacy.

3.3.2.2 Auction Mechanism

Auctions are considered a good mechanism to achieve fair market prices for goods. The
underlying idea is that every bidder in an auction bids the real value which leads to a real
market price. This market mechanism can be undermined in various ways by malicious
parties, especially in centralized online platforms. As summarized in [196] there are
four main types of auctions which are of practical interest and two of which work on
hidden bids.

First-price sealed-bid auctions (FPSBA), where bidders submit their bids in sealed
envelopes to the auctioneer, which opens them to determine the bidder with the highest
bid. Second-price sealed-bid auctions (Vickrey auctions) are similar to FPSBA with the
exception that the winner pays the second highest bid instead.

In addition to the traditional approaches, various other price finding mechanisms are
relevant in the industry. In the requirements assessment for a manufacturing market-
place, it became clear that it is not only the price, which is relevant for selection of the
best offer, but also other parameters. Currently delivery options, logistic costs, quality
requirements and other parameters are also part of the decision process to select the best
offer.

In that sense, it is essential to have a very flexible mechanism for ranking offers. At
the heart of our matching mechanism is thus the idea of a matching score, which allows
to address additional targets and be more versatile in configuration. In this mechanism,
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the buyer can define different criteria and priorities among them, which should be taken
into consideration. This starts from basic capabilities of the production facilities and
can be arbitrarily extended for additional topics as mentioned above. These parameters
are defined as part of the tender and distributed along with it. The matching is then
based on capabilities of a producer, which are immutably registered on a blockchain
when signing up as producers or registering equipment. In essence, this leads to a case
where the price has to be combined with a matching score to rank results.

Specifically interesting are price finding methods based on linear interpolation. The
so-called price ratio methods are often used to compare offers which are not comparable
otherwise. In this approach, a score R for a given bid is computed as:

R = ωL · L
Lmax

+ωP · Pmin

P
, (3.1)

where for simplicity we only consider a single criterion here. In this equation, L means
the level of fulfillment of this criterion by an offer, which corresponds to the matching
score, and Lmax is the best level possible. The actual price for a certain offer is then
given in P, with Pmin being the lowest in the auction. The ωl and ωP are weights for the
respective ratios on fulfillment grade and pricing, which are defined by the buyer and
can be either public and known to the producers as part of the tender or also kept secret,
depending on the preferences of the buyer. By inspecting the method it gets clear that
not all values can be computed at the edge, i.e., on the client side, as in particular the
ratio Pmin

P of the prices requires the minimum over all offers.
From this analysis it becomes evident that simple price ranking is not enough for

winner estimation and the many possible options require a flexible computing system
which goes beyond oblivious sorting of bids. In fact, each buyer would like to define his
specific matching criteria and also decide on a ranking mechanism to fulfill his needs.
This turned out to make the overall system architecture more challenging and rendered
many smart contract based approaches from the literature inadequate. On the other
hand, the MPC solutions available can cope with the degree of flexibility required but
do not provide means for public verifiability as needed for our architecture.

3.3.3 Framework

The proposed framework is designed to address the security objectives defined in Sec-
tion 3.3.2.1, especially bringing together typically contradicting goals of privacy and
verifiability in a single solution. It has a decentralized architecture and follows data
minimization principles.

By the use of secure multiparty computation, the platform itself is operated in a
way that the provider does not learn sensitive data and by making every step of the of
the tendering process verifiable the trustworthiness is achieved. For end-to-end veri-



124 Chapter 3: PRIVACY PRESERVING DATA PROCESSING

fiability, publicly verifiable zero-knowledge proofs of knowledge are generated for all
computations, even for the MPC steps. Finally, to trace all interactions and proofs we
use a distributed ledgers which serves as a trust anchor and immutable append-only data
base.

3.3.3.1 Data Flow

In the following we detail the data flow in our platform. To ease understanding, Fig-
ure 3.7 provides a high-level overview, where we omit setup steps for the sake of clarity.

Figure 3.7: Sequence diagram for an auction.

Setup phase. The following setup steps are necessary to operate the system.

1. On the one hand, ZKSetup is used to generate the common reference string (CRS)
needed for the NIZKs. On input the security parameter and a circuit, this algo-
rithm outputs the CRS which is assumed to be implicit input to all further algo-
rithms and parties. It is important to note that the system is specifically designed
in a way that this step is only needed once and does not need to be invoked again
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if different ranking mechanisms are used, as they are all supported by the specifi-
cally designed circuit with built-in flexibility. In practice this setup algorithm can
be run in dedicated setup ceremony, including, e.g., secure hardware elements or
dedicated MPC-based ceremonies.

2. On the other hand, RegUser is a protocol which is run by the user and the plat-
form to register with the platform. It is used to generate necessary identities and
credentials to authenticate the user and set up the necessary permissions on the
ledger.

Auction phase. After the setup is complete the following steps are conducted in the
protocol for a particular auction.

1. RegEqm. A client registers equipment (machine) for usage in the system. On
input machine parameters, this algorithm outputs a commitment to the machine
parameters which is then stored on the ledger. The registration of new equipment
has to be done before a producer can participate in an auction.

2. ITT. A buyer sends a request for quotation with relevant parameters to all parties
by storing them to the blockchain.

3. Match. Based on the tender information received, the producers compute a match-
ing score for their machines. Based on the score a local matching decision is done
to decide whether or not to participate in the auction. If the producer does not
participate, the local process is aborted.

4. ComInput. If the producer is participating in the bidding, it computes a NIZK for
the matching score and a commitment to the bid. The bid commitment and the
proof are stored in the blockchain.

5. Input. In this step the producers (i.e., bidders) send their bids together and match-
ing scores to the MPC system in a secret-shared fashion.

6. CkInput. The MPC system retrieves the corresponding commitments and proofs
from the blockchain and verifies them in the encrypted domain. This is done by
recomputing the commitments on the shares (for bids and matching scores) at
each node and comparing the reconstructed commitments with the plaintext ones.
Additionally, each node verifies the proof for the local matching score individu-
ally. If either of the checks fails, the system complains about the producer.

7. Compute. The MPC system calculates a ranking based on scores and bids accord-
ing to the ranking function defined by the buyer.
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8. ZKProof. The MPC system generates a NIZK for the winning bid, proving that it
is the best ranked result according to the predefined ranking function. It does so
by each node computing the proof on its share of the result.

9. Reveal. To reveal the result in a verifiable form, the winning bid is reconstructed
from the encodings as well as the final proof enabling the verification of the win-
ner calculation. The data is recorded in the blockchain and finalizes a particular
auction.

There are many variations possible in practice, but this will only result in subtle
changes, e.g., if the winning producer and/or bid has to be kept secret.

3.3.3.2 Protocols

Different protocols have been used, extended and integrated to achieve all desired prop-
erties for our framework. At the core we combine multiparty computation with non-
interactive zero-knowledge proofs of knowledge (NIZK) to achieve confidentiality and
public verifiability that the same time. Regarding MPC we do not rely on any specific
protocol but only require a method which is based on secret sharing. However, because
we aim at public verifiability the correctness of the computation is going to hold even if
all nodes are corrupt. Therefore, depending on the individual assumptions made for the
MPC deployment, it can be sufficient to rely on passively secure protocols.

To achieve verifiability, the system is based on adaptive zk-SNARKs as introduced
in [205]. Working with commitments to track different steps in the process is essential
to guarantee privacy of sensitive data. However, the protocol is not guaranteeing any
authenticity which is essential to track the flow from end to end. Therefore, we leverage
ideas from ADSNARK [206] and use signatures on the commitments to assure the au-
thenticity of the data right from the source. In our use case both can be used, standard
signatures but also group signatures or delegated signatures [17], if a certain degree of
anonymity is still required, e.g., if it should not be visible which subsidiary of a larger
organization the resources belong to.

An important requirement was to reduce the number of times the setup procedures
of the zk-SNARKs have to be executed. Ideally, it has only to be done once when ini-
tializing the platform and can then be reused for all subsequent auctions. Therefore, we
use a hybrid approach that turned out to be very efficient. On the one hand we use the
idea of subroutines (sub-qaps), which are basically predefined subroutines at setup time
but can be connected during proof generation by means of intermediate commitments,
to establish the required circuit. This concept is very flexible with only little overhead,
i.e., the additional commitments increase the proof size and verification time for each
subroutine defined. To enable even more freedom in the configuration of ranking al-
gorithms we integrate the ideas of universal circuits as presented with MIRAGE [207].
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Altogether, at setup time we generate a proof circuitry which comprises both, static el-
ements and freely re-configurable components to get the best of both worlds. Starting
from a common pattern of auction markets, we can now instantiate the right building
blocks to support a wide range of auction systems with extensive configuration options.
To that end, this approach is somehow similar to partially reconfigurable hardware.

3.3.3.3 Security

In the following we will informally discuss the achieved security goals; a more formal
treatment is planned as future work. Moreover, we also give some design rational and
explain several architectural decisions.

Confidentiality. The privacy of sensitive information is protected in our framework
by two main primitives. On the one hand, MPC is used to compute the winner of
the auction in a privacy preserving way and sensitive data is protected by the input
privacy provided by MPC. We rely on information-theoretically secure MPC protocols
to provide long-term security.

On the other hand, to enable transparency we are recording inputs at different stages
in the blockchain. To achieve confidentiality there we use commitments in combina-
tion with NIZK to hide input while making the system verifiable. Given that sensitive
inputs are never handled in cleartext in the system we achieve strong cryptographic
protection, which also results in the discussed properties of bid privacy and posterior
privacy. Furthermore, the selected adaptive zk-SNARK also provide ITS confidential-
ity. In particular, the commitments are perfectly hiding and the resulting NIZK system is
perfectly zero-knowledge. Thus, privacy of data is secure in the long term and will never
be compromised, even if quantum computers will be available. However, the binding
and correctness properties of the protocols are not quantum-safe, and alternative pro-
tocols have to be researched with the advent of quantum computers. Nevertheless, the
system can be considered used as long as scalable quantum attacks are not feasible and
transition to new protocols are not immediately necessary.

In our marketplace, we even apply a decentralized matching which allows for local
computation of a matching score and therefore follows data minimization principles.
Alternatives would be a producer-based matching or a platform-side matching, which
both would lead to problems: For the former, it would be required to share sensitive
information about available capacities and process information with potential competi-
tors, which directly violates the requirements. For the latter, either the platform would
learn sensitive information, or the matching would have to be done in the encrypted
domain.

Integrity and correctness. In essence, the basic idea of the framework is to pre-
serve the integrity and authenticity of data in the system and to prove the correctness
of each computation in between. However, instead of directly signing the input to the
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system, only commitments are signed and also put in a blockchain, which guarantees
that producers are bound to their bids and bids.

In our case we use the extractable commitments presented in [205]. In the original
work these particular commitments were used with a dedicated key to distinguish be-
tween input from different parties, but this key is produced in the initial setup phase and
has to be distributed to parties, which opens up many attack vectors in practical imple-
mentations. We rely on locally generated private keys used to sign the commitments,
which never leave the local area and are registered with the platform or the blockchain.
This would also allow for the use of group signatures for even more flexibility in the
management of edge components without sacrificing the security.

After the tender is initiated and all bidders recorded the required data to participate
in the auction, the MPC computation is started. The input is comprised of the private
bid, the private matching score as well as the data also recorded on the blockchain,
i.e., the commitments on initial machine parameters and the matching score, thereby
guaranteeing confidentiality while still binding bidders to all input values. Finally, the
MPC network not only outputs the winning bid, but also a NIZK proving its optimality,
thereby guaranteeing the correctness of the final result.

It is worth noting that the performed local matching introduces another problem
with the integrity of data: As the matching score is relevant to calculate the ranking on
the platform, it has to be assured that the score was computed correctly. Therefore, the
bidder is required to generate a proof on the score before sending it to the MPC system.
We do so by forcing the bidder to commit not only to the bid but also to the matching
score and additionally to generate a NIZK which is then stored in the blockchain, letting
everybody to also verify the local pre-processing.

Finally, it is important to note that with this approach we are basically tweaking the
security model of MPC for the overall system. Because the correctness of the computa-
tion is publicly verifiable by means of NIZKs, the integrity of the computation can even
be assured if all MPC nodes maliciously deviate from the protocol specification. Even
more, in our setting malicious behavior can be attributed to the right stakeholder, i.e.,
it is not possible to blame the platform for malicious input from bidders or vice versa.
This is achieved by letting the MPC system check all inputs for consistency with the in-
formation in the blockchain before it computes a result. Only if all inputs are consistent
with the stored commitments and the matching score is computed correctly, the MPC
system will incorporate the bid in the auction, and only then it will be able to compute
a proof for the winning bid.

As a result, the full auction flow is accompanied with NIZKs and every participant
can verify the correctness of the auction from end-to-end. Even if privacy is compro-
mised by an adversary which compromises enough MPC nodes to recover the bids, he
will not be able to influence the winning bid or market mechanism.
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Availability. The availability of the system is provided by a blockchain component
which provides the properties to serve as robust and immutable public append only log.
Depending on the deployment of the MPC system, also robustness properties such as
fairness or guaranteed output delivery can be achieved. Additionally, as the system is
non-interactive, client-side computations cannot be interrupted or blocked by individual
participants, resulting in a highly available decentralized architecture. Although the
platform server is currently needed to run auctions it would also be possible to remove
this single point of failure.

Anonymity and Pseudonymity. For the given use case it is not desired to build a
completely open and permissionless infrastructure. The clients in this system are part of
an ecosystem which requires some level of assurance for producers and buyers. There-
fore, we only provide pseudonymity for certain steps in the auction. The pseudonyms
are maintained at the platform which mainly prevents the buyers from bypassing the
business model of the brokerage role of the platform. The only relevant issue for pro-
ducers might be that one can determine whether or not a specific producer has submitted
a bit for a given auction. This leakage can be easily abolished by always participating
in the auction protocol but with a ∞ bid.

Fairness. In our prototype, the tender information was identified as public and could
thus be put into the blockchain, which also serves as a broadcast channel in this step, so
that all participants are reliably informed about new opportunities as well as the detailed
evaluation and ranking criteria of an auction.

Although for certain buyers it would be preferred to not reveal the details of the
ranking mechanism (e.g., the weights in Eq. (3.1)), in all auctions will the matching
mechanism be transparent and consistent for all producers.

Transparency. By logging every step into the blockchain in a privacy-preserving
way and also proving that all computations are correct, we achieve public verifiability.
Every user of the system will thus be able to verify all auctions based on the public data
stored in the blockchain without compromising the privacy of individual inputs, thereby
achieving the requirement of transparency.

3.3.4 Evaluation

In order to evaluate the efficiency and practicability of our framework, a proof-of-
concept prototype has been implemented in Python, which has been used to study and
benchmark different use cases. The basis for the implementation was existing work on
PySNARK4, qaptools5 and MPyC6, which have been integrated and extended with novel

4https://github.com/meilof/pysnark, accessed 2023-01-10.
5https://github.com/Charterhouse/qaptools, accessed 2023-01-10.
6https://github.com/lschoe/mpyc, accessed 2023-01-10.

https://github.com/meilof/pysnark
https://github.com/Charterhouse/qaptools
https://github.com/lschoe/mpyc
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functionality, notably Universal Circuits. The new framework seamlessly integrates the
steps along the data flow.

All measurement results presented in this work have been measured in a local setup
on a single Intel NUC computer equipped with an Intel(R) Core(TM) i5-8259U CPU
running at 2.30GHz maximum frequency.

Winning bid computation. The basic operation in winner determination is finding
the maximum of the ranked bids. The computation depends on inputs of all bidders as
well as the buyer and is therefore done by the MPC system. We present measured com-
puting times for computing the basic result for different numbers of parties without any
additional proofs in Table 3.6. Note that the system we used to take the measurements
only had four CPU cores, so not all of the increase in time between the settings with
four and five parties is attributable to the inherent computational overhead.

#bids 3 parties 4 parties 5 parties

10 0.9 1.3 3.4
100 10.9 16 35
1000 115.3 176.8 -

Table 3.6: Computation time (s) with increasing number of nodes under 3 minutes.

The given measurements hold under the unrealistic assumption of no network la-
tency. We therefore also performed measurements assuming different network delays,
as shown in Table 3.7, which suggests that for our use cases the latency of the network
has a higher effect on the overall efficiency than the selected MPC framework, see also
[8].

#bids 0 ms 2 ms 20 ms

10 0.9 1.1 4
100 10.9 11.4 36.6
1000 115.3 124.1 386.1

Table 3.7: Computation time (s) with increasing network latency between 3 parties.

Winning bid proof generation. For our use cases, the generic approach of proving
the correctness of every computational step turned out to be unnecessarily inefficient.
Alternatively, the size of the equation system used in the zkSNARK, i.e., the quadratic
arithmetic program (QAP), can be significantly reduced by generating a single proof at
the end of the computation, showing the optimality of the announced winning bid with
respect to the defined ranking function.

The proof can be defined as simple as shown in the Listing 3.1, where matching

holds the matching score of all bidders and prices_rec are a list of all reciprocals
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of the prices submitted. The weights defined by the buyer are w_l and w_p, cf. also
Eq. (3.1). res is the output truth value which is 1 if and only if no bid is ranked better
than the winner.

1 res = 1

2 for l, p_rec in zip(matchings ,

3 prices_rec):

4 score = w_l*l + w_p*p_min*p_rec

5 res *= (score >= s_min)

6 res = auction.get_public_output(res)

Listing 3.1: Proof computation for winning bid generation.

This type of proof turned out to be very efficient and the measurements in Table 3.8
show that all steps in proof generation are extremely practical and are even far below
the times needed by the MPC system to compute the winner.

#bids tSetup QAP size tProve tveri f

10 0.4 226 0.3 0.02
100 3.6 2206 2.1 0.6
1000 22.3 22006 18.7 6.6
10000 186 220006 160 65

Table 3.8: Performance comparison. Times are in seconds.

The same performance can be achieved if the winning bid is not the very best but
among a predefined threshold or at a particular place, i.e., like in the Vickrey auction.
This variation can be achieved by counting the number of bids above a threshold and
optionally also below, which results in the same running time as above.

Fixpoint operations. To work with the quotient method as shown above, divi-
sion and fixpoint operations are needed. Implementing this within the MPC compo-
nent would have had a significant impact on the performance and drastically limited
the number of bids which can be handled in reasonable time. We therefore compute
the reciprocal in the pre-processing step at the producer and send it (together with the
bid) as input to the MPC system. To ensure end-to-end verification, we then also have
to generate a proof that the reciprocal was computed correctly, but this introduces only
minimal overhead. In our implementation clients submit the price in integer and fixpoint
representation together with the reciprocal and the resulting error term. This results in
a very simple and efficient proof computed on the producer side and even less work
for the MPC phase, because computation of reciprocals would consume substantial re-
sources. The additional check necessary to prove consistency of fixpoint representation
with price value is shown in the Listing 3.2, where the res is 1 if and only if the multi-
plication of the price p_fxp with the reciprocal p_rec corrected by the error term p_err

equals 1 and the error term given by the representation is within the allowed bound.
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1 res = ((p_fxp * p_rec + p_err) == 1)

2 res *= (s_err * fxpmul_ <= s_fxp)

Listing 3.2: Proof generation for correct fixpoint conversion.

3.3.5 Verifiability with zkSNARKs

As discussed in Section 3.3.2 a marketplace for outsourcing manufacturing tasks re-
quires a very flexible way to compare offers and match producers. zkSNARKs lack in
this respect, because they require the circuits to be proved to be fixed during the setup
phase. We circumvent this downside by integrating two mechanisms: subroutines and
reconfigurable circuits.

Subroutines. On the one hand, we use the properties of adaptive zkSNARKs to also
enable subroutines, as already introduced in [205]. Subroutines are built by committing
to their input and output and therefore interconnect these modules to a larger circuit.
This approach also provides the first level of reconfiguration and reuse. Existing circuits
can be reused without any additional setup call and rewired at runtime by using the
according commitments as wiring mechanism to enforce correctness of signals along
the computation chain. Figure 3.8 shows the main structure used in our framework
which the blocks being subroutines.

Figure 3.8: Internal structure of the proof generation.

Reconfigurable circuits. In addition to the described subroutines, we also incor-
porated universal circuits. They are general purpose computing blocks which can be
reconfigured at runtime without calling setup routines. The concept has been inspired
by MIRAGE [207] but integrated with the subroutine mechanism, which is well suited
for this. In particular, to assure consistent use of signals within the universal circuit
the necessary additional permutation and consistency check was realized as subroutine.
A dedicated subroutine was designed which does all checks and was compared to the
integrated approach of MIRAGE. For our implementation we required only a simplified
version of the first opcode presented in the paper, because we did not need any binary
operations. The most interesting part four our work was to understand the impact of
the size of the universal circuit on the proof generation time and to compare the perfor-
mance of the original approach in mirage to our new way of integrating the permutation
and consistency checks.
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1 p1 = 1

2 p2 = 1

3 for i in range(len(zi)):

4 p1 *= r2 - (zi[i]+r1*l1[i] )

5 p2 *= r2 - (zi[si[i]]+r1*l1[si[0]])

6 res = (p1 == p2)

7 s = 0

8 for i in range(1, len(z1)):

9 s +=

10 (1 - (l1[si[i]] - l1[si[i-1]]))*

11 (z1[si[i]] - z1[si[i-1]])

12 res *= (s == 0)

Listing 3.3: Explicit proof for permutation and consistency check of signals.

Permutation and consistency check are performed on public input li and private input
zi which are part of the interface commitment for the universal circuit as shown in
Listing 3.3. After calculation of sorted indices si the permutation check scores p1

and p2 are calculated. Additionally, the consistency checking score s is also calculated
and both necessary conditions for a successful check are combined into the proof, i.e.,
assert p1 = p2 and s = 0, which assures intermediary signals connecting gates are
consistent, which assures intermediary signals connecting gates are consistent.

Generally, the use of commitments to intermediary results in circuits increases the
size of the proof as well as proofing time. The overhead in size is not an issue for our
use case and verification runtime is typically not a problem at all for marketplaces. The
advantage of not requiring to call setup phase and generation of additional CRS com-
ponents is by far more important in real world applications than the increased size or
running time experienced. In Table 3.9 we show the measured times universal circuit
composed of different amount of gates, ranging from 10 gates up to 10000 gates. The
implemented opcode for our configuration consumes 35 equations in the QAP (20 equa-
tions for the logic and 15 equations for the consistency check) if directly combined in
one subroutine. The overhead of 21 equations is required for a minimal benchmarking
setup.

#gates tsetup Qap size tprove tveri f

10 0.5 371 0.7 0.02
100 2.5 3521 2.2 0.02
1000 32 35021 38 0.1
10000 307 350021 378 0.9

Table 3.9: Performance for universal circuit with integrated consistency checks. Times
are in seconds.
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To further reduce the time for proof generation, we introduced a second approach
for the integration of the consistency checking mechanism. In particular we realized the
permutation and consistency check as separate subroutines. This means that during con-
figuration of the universal circuit a commitment to the secret values is generated. This
commitment is then used together with the public configuration values li to perform the
permutation and consistency check in a standalone sub-QAP. The measurement results
for this variant is shown in Table 3.10. There can be seen that the size for the logical
part can be significantly reduced by about 40% which directly results in reduced prov-
ing times. Interestingly, the size of the QAP needed to do permutation and consistency
checking is in the same order as the pure uc for our opcode and leads to similar proving
times. This is very convenient because it naturally supports parallelization and leads to
a reduced overall time although in total about 10% more equations have to be processed.

#gates uc-Qap tprove check-Qap tprove

100 2004 0.8 1804 1.2
1000 20004 18 18004 19
10000 200004 160 180004 180

Table 3.10: Performance for uc usage with external consistency check. Times are in
seconds.

Overall complexity. When considering static scoring functions, the overall com-
plexity of an auction is not dominated by the runtimes given in Table 3.7 and Table 3.8.
When aiming for a general marketplace supporting flexible scoring functions, also the
runtimes presented in Table 3.10 are to be considered, where the number of gates per
bid strongly depends on the complexity of the scoring function and auctioning logic.
For the case of a FPSBA with the scoring function defined in Eq. (3.1), two gates per
bid are required.

3.4 Verifiable MPC Solver for the Assignment Problem

Air traffic management (ATFM) can also benefit from a privacy preserving data market
similar to the manufacturing domain discussed in the previous section. Efficient ATFM
and thus use of infrastructure and resources is of utmost importance for high competi-
tiveness and low prices for consumers. With the increasing degree of digitization and
the ongoing trend towards cloudification, it becomes easier than ever before to achieve
the goal of efficient resource usage also beyond company boundaries, e.g., in a sharing
economy, where an optimal match between supply and demand has to be found.

One important task in such a scenario is described by the linear assignment problem,
which deals with the question how to assign n tasks to n machines while minimizing the
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total costs, knowing the costs of assigning each task to each machine. Assignment
problems have been studied for multiple decades, and a variety of efficient algorithms
solving such problems can be found in the literature.

However, when assigning resources among competitors, e.g, by the means of an
auction, companies - and in particular potential competitors - might often have con-
fidentiality concerns, as the individual costs per task might be sensitive and contain
company secrets. This might lead to hiding the true valuations [208], or let companies
not participate in an auction at all [209], e.g., because the leaked information might be
used against them by competitors [210].

The classic approach in such a case would be to agree on a trusted party that collects
all inputs from all participants, and locally computes the optimal assignment. However,
finding such a trusted authority might be difficult in many situations, e.g., in the case of
competitors from different countries, or in case of a high frequency of such assignments
close to real-time. In this work we thus study solvers for the linear assignment problem,
guided by the following main requirements:

i) No central authority shall be required in the entire process, i.e., all computations
need to be carried out in a distributed fashion. In particular, all sensitive input data
needs to be protected from unauthorized access by any involved entity.

ii) The output of the distributed computation shall be publicly verifiable (or at least by
all participants), without the need to trust any other entity in the system.

iii) Computations need to be sufficiently efficient and scalable to support a high fre-
quency of executions close to real-time.

Motivating Application Scenario. For specificity, we explain the motivating use
case for our research, which was developed in close collaboration with relevant stake-
holders from the aviation industry as an important step towards practical deployment
[19, 18]. Deviations from original flight plans due to variance and external events such
as changing weather conditions or congestions are part of the day-to-day business at
airports. Therefore, an optimal reorganization of starting and landing sequences across
competing airlines could contribute to minimizing costs or delays on a large scale. Addi-
tionally, other factors and dependencies on airline conditions have to also be considered.
To do so, the current situation at an airport would ideally be continuously monitored and
optimized, thereby considering airline priorities–determined, e.g., by passenger flows,
crew constraints, or maintenance schedules–as well as airport constraints for most effi-
cient operations.

The need for such a system has been underpinned by the European Organisation for
the Safety of Air Navigation (Eurocontrol), which has developed a first system called
User-Driven Prioritization Process (UDPP) [211] to enable airlines to react on varying
conditions and swap flights within their own fleet for given flight sequence. It is as-
sumed that UDPP “has the potential to safe hundreds of millions of Euros over the next
20 years” [212]. However, because airlines only optimize locally within their own fleet,
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the achieved improvement is not optimal on a airport level. Especially low-frequency
carriers such as business aviation suffer from limited degrees of freedom in flight swap-
ping.

One main reason why such a global optimization is currently not possible is the
airlines’ reluctance to share their preferences with other airlines, thus leaving significant
room for improvements regarding the efficient use of limited resources at an airport.
This is due to the fact, that their preferences directly derive from internal cost structures
and processes which they consider sensitive.

In our approach we aim at tackling this problem by leveraging multi-party compu-
tation to develop a decentralized cloud-based platform that enables collaboration for
optimal flight sequencing in challenging conditions. Based on dedicated market mech-
anisms, set up to incentivize airlines to participate in the system, a model for an opti-
mization process was developed [19].

Figure 3.9: Non-linear cost function of departure or arrival delay.

For an airline, delay of a flight means additional costs which is often described by a
non-linear step function with significant excess cost if certain delay targets are not met,
e.g., connecting flights are missed. Hence, each flight has one or more delay targets
as shown in Figure 3.9. From a modeling point of view, a weight map is used by
airlines to define flight priorities for particular slots in the flight sequence as shown in
Figure 3.10. Looking at the modeling of the optimization problem, it turns out that it
basically resembles a so-called linear sum assignment problem (LSAP). The overall size
of the problem which has to be handled is in the order of hundreds of slots to manage
flight sequences in the upcoming hours at an airport. Thus, the problem would be easily
solvable in the clear but gets already challenging if it must be done in the encrypted
domain to protect the inputs of the parties.

Furthermore, related to (ii), given the financial and economic impact of slot assign-
ments, airlines have a strong requirement regarding the authenticity of any slot assign-
ment in order to overcome the risk of unjustified prioritization of a single airline. This is
especially true for integration into a distributed platform [9], where strong authenticity
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Figure 3.10: Flight prioritization is modeled by a weight map where priorities are as-
signed to each slot for each flight.

guarantees from end-to-end are key to increase user trust and willingness to participate.
Even worse, because MPC does not scale well in the number of compute nodes, only a
very limited number of nodes (3-5) seem feasible and not every airline can run its own
node, i.e., also from this standpoint are means to verify optimization results essential.
Nevertheless, being able to develop novel community-based collaborative applications
as shown in Figure 3.11, without strong involvement of regulatory bodies can signifi-
cantly speed up innovation in the air traffic flow management (ATFM) domain.

Finally, slots need to be assigned multiple times per hour due to the high traffic
volume at major airports, and the frequency of delays, changing weather conditions,
etc., thus requiring computations to be carried out in seconds to minutes at most, cf. (iii).

Related work. In the following we provide a brief overview over related work. Nu-
merous privacy-preserving algorithms for different types of matching algorithms have
been proposed in the literature. Considering general two-party linear programming
(LP), [213] provide an efficient protocol for semi-honest parties, as well as extensions
to prevent certain malicious behavior. Linear programming using MPC was considered
by [214, 215, 216, 217].

Regarding specific assignment tasks, [218, 219] provide a privacy-preserving ver-
sion of the famous matching algorithm by [220], based on mix networks and homomor-
phic encryption, however only considering a weak (passive) adversary model. A first
MPC-based implementation was presented by [221], scaling to multiple thousand input
values. A first provably secure and scalable implementation was later presented by [222]
based on garbled circuits [223]. Specifically for LSAP, a privacy-preserving version of
the Hungarian algorithm (as in Section 3.4.2.2) based on homomorphic encryption was
presented by [224]. However, only the theoretical complexity of the protocol is ana-
lyzed, and no performance data is available.
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Figure 3.11: Overview of message flow and cryptographic approach for a fully decen-
tralized marketplace with data privacy and authenticity from end-to-end. The participat-
ing airlines (AU) can collaborate and optimize their flight sequences without involve-
ment of a trusted party.

None of these protocols offers means to publicly verify the correctness of the com-
putation result, which however is a key requirement for our use case. A notable excep-
tion is the work by [225], who present verifiable MPC-based solutions for general linear
programming. However, due to the generality of LP as well as the choice of primitives
for the correctness proofs, our efficiency requirements cannot be achieved by this work.
An efficient publicly verifiable auctioning platform for traditional sealed-bid auctions
was recently proposed by [9].

For the sake of completeness, we also mention [204, 226] who give a generic frame-
work for publicly verifiable multi-party computation, which however is mainly of theo-
retical interest in our setting due to the computational overhead.

Contributions. Following the above guiding principles, the main contributions of
this section can be summarized as follows. In a first step, we perform a comprehensive
analysis and comparison of secure multi-party computation (MPC) based approaches
to solve the assignment problem in a privacy-preserving way. Secondly, we provide
optimized implementations and benchmarks to compare the performance of different
approaches, achieving an improvement over existing implementations by a factor of
50. Finally, we extend our implementation by public verifiability mechanisms based
on zkSNARKs and Bulletproofs, thereby significantly outperforming related work and
demonstrating the practical efficiency of decentralized, privacy-preserving, verifiable
solvers for the assignment problem.
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3.4.1 MPC Approaches to LSAP

In this section we briefly review the linear sum assignment problem (LSAP) and discuss
important aspects when it comes to the realization of a privacy-preserving version based
on MPC.

Assignment Problem. An instance of LSAP is described by a weight matrix W ,
where each wi, j represents the cost associated with matching task i of the first set (a
flight in our case) and resource j of the second set (a slot in our case). The goal of the
optimization is then to find a complete assignment of flights to slots which is of minimal
cost according to a defined objective function, which is essentially the sum of weights.

Formally, let X be a Boolean matrix where xi j = 1 if and only if row i is assigned to
column j. Then the cost of the optimal assignment is computed as

min∑
i

∑
j

wi jxi j

where the minimum is taken over all X , where each row is assignment to at most
one column, and each column to at most one row. In our analysis the matrix W was
assumed to be quadratic, however, it can be easily generalized to a rectangular problem
by techniques discussed below.

A large number of algorithms has been developed for the LSAP, cf., e.g., [227,
228, 229, 230]. They range from primal-dual combinatorial algorithms, to simplex-like
methods, cost operation algorithms, forest algorithms, and relaxation approaches. The
worst-case complexity of the best sequential algorithms for the LSAP is O(n3), where
n is the size of the problem.

For this work we selected at least one representative for each important class of
algorithms and analyzed/implemented a MPC version of it to measure the practical per-
formance which can be achieved. The selected algorithms are the

• simplex based solution strategy, where we leveraged linear programming based
on the max-flow formulation approach.

• Hungarian algorithm (aka Munkres), one of the most important candidates for the
primal-dual strategy,

• auction algorithm, a algorithm working in the dual domain of "shadow prices",
and

• variants of shortest augmenting path (SAP) algorithms.

If the weight matrix is quadratic in size n, i.e., there is the same number of tasks and
resources, the LSAP is called balanced. It means that both parts of the bipartite graph
have the same number of vertices, when treating the problem as matching in bipartite
graphs.

In the unbalanced case, the number of vertices is different for each side in the corre-
sponding bipartite graph, resulting in a rectangular cost matrix n×m. In that case, either
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not every machine can be matched to a task or not every task is occupied. Fortunately,
most of the algorithms tested can be directly generalized to unbalanced problem solv-
ing. However, even if the solver only works for balanced problems, there are methods
to convert an unbalanced solution to a balanced one. The straight forward technique
is to augment the smaller set of vertices with |n−m| additional entries and to connect
them to the existing vertices with edges of cost 0. There also exist even more efficient
technique [231] requiring even less additional edges. As a result, all these techniques
are also compatible with MPC and only result in an additional pre-processing step.

MPC Aspects. Multi-party computation (MPC) allows parties to jointly perform
computations in a way that only designated receivers obtain a result at the end of the
computation, while no further information is revealed to any other participant in the
system. In particular, the inputs are kept confidential from all other participants in the
system. MPC can be considered the most practical approach for generic computation
on sensitive data. It allows to perform arbitrary computations in principle, however, de-
pending on the concrete computation to be performed, MPC protocols are often slower
than a local computation by orders of magnitude.

Generally speaking, the algorithms used to solve the LSAP are not MPC-friendly.
By their nature, they are mostly sequential with very little potential for vectorized oper-
ations. One such vectorizable operation is testing for zero. Even though this is a costly
procedure in MPC that involves random number generation and comparisons, it can eas-
ily be done for a whole array in parallel, because testing one element does not involve
any other elements of the same array. Also, the result can be cached, is only invalidated
if the value itself changes, and can easily be recomputed on demand.

With most other operations, however, this is not possible. Take for example the min-
imum of a collection of elements. Finding it involves in the order of log n comparisons
that have to be performed in sequence. Any change of the collection over which the min-
imum was computed could possibly change the minimum, so caching it is not viable.
(When an element is added or changed, a single comparison is sufficient to recompute
the minimum, but when an element is removed, the minimum has to be recomputed
from scratch.)

To get tolerable performance we must trade-off between privacy and speed and in-
evitably leak some indirect information, e.g., branches been taken. However, the final
assignment will be public and is known to be optimal, which also means some leakage.
If that is not enough, [232] have shown how to efficiently implement graph algorithms
that, like ours, reveal branching information, yet do not leak information by just oblivi-
ously permuting the original data.

Another problem is that every algorithm that uses some form of ε-scaling needs
to use floating-point numbers. This is not just a question of numerical stability. If
the underlying numerical representation is not precise enough, ε-scaling may terminate
with a solution that is not optimal, or may not even terminate at all. In [233] the authors
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propose to multiply every element of the n ∗ n matrix by (n+ 1) and use only integer
values (down to 1) for ε but notes that this may in practice lead to integer overflow
because prices can then be somewhere in the order of n2 max(i, j)∈A |ai j|.

3.4.2 Algorithm Evaluation

In the following we compare MPC performance of different solution strategies used to
solve the assignment problem. The different algorithms have been implemented and
benchmarked in MPyC7 with default settings and a 3 party configuration. MPyC is
based on secret sharing and is targeted towards semi-honest adversaries, however, the
results can also be transferred to other frameworks with reasonable effort. The perfor-
mance of the simplex solver from [225] served as a baseline for our comparison and
was included in our analysis as shown below. A single Intel NUC computer equipped
with an Intel(R) Core(TM) i5-8259U CPU running at 2.30GHz maximum frequency
and with 32GB of memory was used as hardware, to make the results comparable. All
parties were run in a local setup without any additional network latency and other re-
stricting settings, if not explicitly stated otherwise. If not explicitly stated otherwise, all
presented runtime are in seconds.

3.4.2.1 Simplex for Linear Programming

The assignment can be viewed in different forms. In essence, it is a special case of
the transportation problem, which itself is a special case of the minimum cost flow
problem, which belongs to category of linear programs. Therefore, the most generic
solving approach would be to leverage existing simplex implementations in MPC and
model the problem accordingly.
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Figure 3.12: Bipartite graph structure for matching and minimum cost flow modelling.

The two major representations in LP form are shown in Fig. 3.12. They are either
modeled as minimum cost matching in a bipartite graph or min cost flow problem.

7https://github.com/lschoe/mpyc, accessed 2023-01-10.

https://github.com/lschoe/mpyc
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The latter may be rather counter intuitive because one would more likely expect the
formulation as an integer program because of the binary nature of a match.

The corresponding LP is defined as follows. In a bipartite graph each edge (i, j),
where i is in A and j is in T , is assigned a weight wi j. Additionally, for each edge
(i, j) we have a binary variable xi j indicating if a certain edge is in the solution or not.
Therefore, the resulting LP is given by:

minimize ∑(i, j)∈A×T wi jxi j

subject to ∑ j∈T xi j = 1 for i ∈ A,
∑i∈A xi j = 1 for j ∈ T

with 0 ≤ xi j ≤ 1 for i, j ∈ A,T,
xi j ∈ Z for i, j ∈ A,T.

(3.2)

Because of the binary variables the model resembles an integer linear program. For-
tunately, the problem can still be solved with standard methods known from continuous
LP, albeit the integrality constraints, by simply dropping the integrality constraint. This
is due to the fact, that for optimal solutions variables always take integer values, despite
fractional values being allowed.

Furthermore, converting the problem to a maximization solution by inverting the
weights leads to a further simplified formulation with less slack variables. In the pre-
sented use case we where anyhow maximizing the utility which is represented by the
cost. Reducing the number of slack variables and problem size is essential for MPC
performance and by converting the equality constraints to ∑ j∈T xi j ≤ 1 and ∑i∈A xi j ≤ 1
the most compact formulation is achieved.

The implementation used is based on the simplex version presented in [225] and the
results of our performance measurements are shown in Table 3.11. The upper part in
the table are benchmarks for randomly generated weight matrices and the lower part is
for typical sample data from our use case. Because the use case data is more structured
slightly better runtimes can be expected, but the improvement is not significant. Even
worse, the implementation was not able to generate the dual certificate also incorpo-
rated in the implementation because of the high memory usage required for problem
sized bigger than 50. Furthermore, also the implementation itself also stopped working
because of networking problems for problem sizes beyond 70. We did not further in-
vestigate this behavior as we were interested in alternative solution approaches anyway,
however, this measurement served as a reference for our other implementations.
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s n m iter tsimplex tdual

10 100 20 23 7.8 1.1
20 400 40 41 61.8 12.8
30 900 60 71 275 57
40 1600 80 104 806 157
50 2500 100 145 1920 410
60 3600 120 167 3468 -
70 4900 140 224 7333 -

10 100 20 21 7.1 1.1
20 400 40 41 59.7 11.9
30 900 60 66 253 57
40 1600 80 86 690 180
50 2500 100 117 1643 378
60 3600 120 140 2869 -

Table 3.11: Running time in seconds of LP solver with random weight vectors (above)
and sample data from slot management problem (below). s is the size of the quadratic
weight matrix and n×m is the dimension of the respective dimension of the A matrix in
a LP of the form Ax ≤ b.

3.4.2.2 Hungarian Method

Our second implementation is based on the Hungarian algorithm, also known as the
Munkres or Kuhn-Munkres algorithm [234, 235, 236]. It was one of the first polynomial-
time algorithms for solving the assignment problem. The basic idea of Munkres algo-
rithm is to iteratively improve the matching in a bipartite graph along augmenting path
between unmatched vertices. It has the fastest strongly polynomial run-time complexity
with O(mn+ n2 logn), where n is the number of vertices and m is a number of edges,
when implemented with Fibonacci heaps.

Our MPC version is based on a standard implementation as presented in [214]. Con-
trary to the original algorithm for manual evaluation with 4 phases, it comprises 6 steps
but follows the main paradigm of finding minimum coverings of zeros in the weight
matrix manipulated by reducing rows and columns.

However, a fully oblivious implementation would be rather slow and would require
further measures to prevent from leaking information. Therefore, we opted to reveal
certain aspects during computation, which will be discussed in Sec. 3.4.2.6. With this
approach we achieved a substantial performance speedup compared to the simplex vari-
ant and after some manual optimization we achieved a speedup of almost a factor of 30
compared to the simplex.

The detailed performance results are shown in Table 3.12. The table shows the
duration of an optimization run in seconds depending on the problem size. It also con-
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size #steps tmunkres #iszero #min

10 38 0.8 400 821
20 86 4.4 1981 4016
30 184 17.8 10309 20734
40 308 33.7 26368 52931
50 441 67.0 52714 105712
60 601 125 98444 197280
70 775 170 154046 308603
80 962 220 230023 460682
90 1193 345 336901 674583

100 1401 412 460890 922709

10 36 0.9 399 818
20 92 5.0 2633 5323
30 185 16.1 10219 20556
40 341 53.0 34020 68253
50 488 77.8 67730 135772
60 725 215 149425 299310
70 959 293 264503 529618
80 1183 350 396112 792990
90 1450 546 591673 1184293

100 1770 869 884127 1769411

Table 3.12: Running time in seconds of Munkres with random weight vectors (above)
and sample data from slot management problem (below).

tains information about the amount of costly MPC operations needed (minimum finding
and zero testing) in the processing. Interestingly, for Munkres the average performance
measured for the random case is twice as fast as for the particular use case data which
is more structured. This is in contrast to the simplex solver where the algorithm could
benefit from the structure in the use case data.

3.4.2.3 ε-scaling Auction Algorithm

The auction algorithm is an intuitive method for solving the classical assignment prob-
lem. It was first introduced in 1979 by [237], and has since then evolved as a valuable
tool in network optimization [233]. Auction algorithms were selected for implementa-
tion because they have good practical average performance, although worst case perfor-
mance is the same as for the Hungarian algorithm, i.e., O(n3).

In this paragraph we quickly recap the description from [233], which is based on the
idea of economic equilibrium problem that turns out to be equivalent to the assignment
problem; for a detailed presentation, we refer to [228, 238, 239].

The auction algorithm works in the dual of the problem acting on the so called
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shadow prices. In a first step, it determines ε to be the highest absolute cost, then
repeats the auction with progressively smaller ε until it is smaller than n (the number of
participants/objects). The rate α of decrease can be freely chosen.

This seems to indicate that floating point numbers have to be used in order to guar-
antee correctness and termination of the algorithm. However, as mentioned before, it is
possible to scale all costs by n+ 1 and remain in the integer domain, with the risk of
integer overflows.

In practice, the auction algorithm is very MPC-unfriendly. To find the initial ε in-
volves taking the maximum of the whole cost matrix, and afterwards repeatedly finding
the two indices at which the current price vector is minimal. As the price vector is highly
variable, there is no possibility of caching. Given the high overhead of floating-point
arithmetic in our development environment, initial benchmarks showed a slowdown of
a factor of more than 10 compared to all other solutions already for small problem sizes,
such that this type of algorithms was not further considered in our analysis.

3.4.2.4 Shortest Augmenting Path Algorithms

Another important category of algorithms are shortest augmenting path algorithms such
as the Jonker-Volgenant-Castanon (JVC) [240]. These algorithms are somewhat similar
to Hungarian method but apply a better way to update solutions together with a num-
ber of pre-processing techniques, including column reduction, reduction transfer, and
reduction of unassigned rows. While the Hungarian algorithm finds any feasible aug-
menting path, JVC and a number of other algorithms find the shortest augmenting paths
in a minimum cost network flow, where each node in S transmits one unit and each unit
in T must receive one unit of a single commodity. Indeed, an optimal solution can be
found by considering one source in S at a time and finding the shortest path emanating
from it to an unassigned node in T .

We compared two implementations of this class. The first implementation is based
on a solution used in the optimization module of SciPy module8. The second imple-
mentation is based on the py-lapsolver project9, which itself is based on the Stanford
ACM-ICPC teams site10.

8https://github.com/scipy/scipy/blob/v1.7.0/scipy/optimize/rectangular_lsap/
rectangular_lsap.cpp, accessed 2023-01-10.

9https://github.com/cheind/py-lapsolver, accessed 2023-01-10.
10https://github.com/jaehyunp/stanfordacm/blob/master/code/MinCostMatching.cc, ac-

cessed 2023-01-10.

https://github.com/scipy/scipy/blob/v1.7.0/scipy/optimize/rectangular_lsap/rectangular_lsap.cpp
https://github.com/scipy/scipy/blob/v1.7.0/scipy/optimize/rectangular_lsap/rectangular_lsap.cpp
https://github.com/cheind/py-lapsolver
https://github.com/jaehyunp/stanfordacm/blob/master/code/MinCostMatching.cc
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random use case random use case
n tscipy tscipy #iszero #min tlapsolve tlapsolve #iszero #min

10 1.2 1.7 641 199 0.7 0.9 492 380
20 7.1 11.9 5155 998 3.4 4.5 2860 1940
30 20.4 35.3 17535 2797 8.2 10.4 8322 5480
40 35.9 64.3 42641 5996 17.0 22.9 18429 11800
50 74.0 97.5 78803 10995 34.9 38.2 34280 21700
60 128 135 126972 18194 56.5 57.4 58762 35980
70 176 174 186655 27993 86.7 73.5 88404 55440
80 262 224 267247 40792 116 103 129582 80880
90 393 255 381406 56991 149 138 182114 113100

100 438 289 526712 76990 185 188 247934 152900

Table 3.13: Running time in seconds of scipy_lsa and lap_solver with random weight
vectors and sample data from slot management problem. Measurement of number of
zero tests and minimum search were done on use case data.

The performance results of the MPC implementation are summarized in Table 3.13.
For random data the SciPy version performs similar to Munkres, but the algorithm also
benefits from the structure in typical use case data. However, the MPC version of the
ACM-ICPC solver turned out to be the fastest in class and also in general. It is more than
two times faster than the SciPy version and more than four times faster than Munkres
for the use case specific data. Nevertheless, in this version the smart updating mecha-
nism based on augmenting paths did not make a real difference for different data types.
Overall, the MPC-ACM-ICPC solver performs about 55 times better than the state of
the art based on simplex solver which pushes practical applications to bigger problem
sizes as in the case of the markets for air traffic management slot exchange.

3.4.2.5 Impact of Network Latency

To make the results comparable all benchmarks were done on the same single PC with
the very same software framework and the same configuration. However, no delays
between network nodes have been introduced. In principle network delays increase
the time during sub-protocols for non-linear operations, i.e., multiplication steps in our
protocols (cf. see [2]). Therefore, the experienced slowdown depends linearly on the
multiplicative depth of the arithmetic circuit defining the function to be computed. To
show the impact in practical terms, in Table 3.14 we show the impact of latency between
MPC nodes. Real world solutions have to take this effect into account. It could lead to
substantial performance penalties for distributed setups with larger network latency [8].
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n → 10 20 30 40 50
latency ↓

0 0.7 3.5 9.1 16.4 34.8
5 5.3 30.4 72.6 134.3 305

10 10.1 56.4 132 239 536
15 14.4 80.2 184 335 751
20 18.4 102 238 435 978

Table 3.14: Performance (running time in seconds) of MPC version of ACM-ICPC
solver for different network delays and problem sizes. Latency is in milliseconds.

3.4.2.6 Leakage and Countermeasures

To achieve a good performance, trade-off between privacy and efficiency had to be
accepted, which we will discuss in the following.

The Hungarian method is a completely sequential algorithm, and branching encodes
information. Therefore, a fully oblivious version would run in constant time and not
even reveal the number of iterations needed. However, this is not practical and render
the technology obsolete for the aspired goal and problem sizes. Certain trade-offs were
already considered in [225], where also minimal information is leaked by the algorithm
to achieve better performance, e.g., the number of iterations.

In our implementation we never reveal costs at any time. Yet, we carry out certain
tasks, such as the row and column covering, in the plaintext domain. This reveals in-
formation about the position of minimum elements in rows and column by doing public
zero testing after the minimum of certain rows and columns have been subtracted obliv-
iously. This leakage could enable an observer (e.g., a semi-honest MPC node) to learn
certain aspects about the structure of the cost matrix by following the covering results
for rows and columns over the iterations.

Similarly, for the class of shortest augmenting path algorithms, the MPC-ACM-
ICPC implementation is completely sequential and therefore leaks in case of non-oblivious
branching, while never revealing costs themselves.

To cope with certain leakages, dedicated countermeasures can be put in place in
form of pre- and post-processing. For instance, for the Hungarian method, the leakage
of the index of the minimum cost in a row or column can be defeated by obliviously
permuting rows and columns before running the algorithm and reversing the operation
after a solution is found. This is due to the fact, that an optimal solution is given by
a full covering will all columns marked, i.e., reversing the permutation fully removes
all information about the intermediate steps for an adversary. Computing permutations
can be done highly efficiently with only a minimal overhead compared to the actual
optimization process. This approach still enables reasonable performance but prevents
from attributing row and column properties to the real cost matrix.
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To be more concrete and estimate the overall runtime of the pre- and post-processing
phase we implemented an oblivious shuffle2d and unshuffle2d algorithm permuting
rows and columns of a n× n cost matrix through appropriate matrix multiplications.
The runtimes are shown in Table 3.15. However, oblivious generation of the permuta-
tion matrix is included in the shuffling time, which can be clearly done offline to further
speed up the process.

n shuffle2d (s) unshuffle2d (s)

10 0.1 0.02
50 1.1 0.2

100 5.5 0.9

Table 3.15: Performance (running time in seconds) of permutation based pre- and post-
processing. The values for shuffling and unshuffling are different because the time for
distributed permutation matrix generation is included in the first one.

3.4.3 Public Verifiability

As discussed earlier, a solver for the assignment problem should not only protect the
privacy of the inputs, but also give formal guarantees about the correctness of the re-
sult. That is, the computation result should also come with a cryptographic certificate
(or proof) that allows any party to check whether all computations have been carried
out correctly, without leaking any information about the inputs. Such an approach,
called publicly verifiable MPC, minimizes the trust that needs to be put into the MPC
network, as soundness can even be guaranteed in case that all MPC nodes get cor-
rupted. To achieve this, we deploy non-interactive zero-knowledge proofs of knowledge
(NIZK) [241].

The idea for this type of optimization was introduced in [225]. The approach is based
on the duality theorem which defines for every linear program an equivalent problem
in the dual with dual variables and a dual objective function. In fact, the efficient al-
gorithms presented before already make use of the duality internally, which make them
also good candidates for extension with verifiability. By directly proving the optimality
of the dual solution, it is no longer necessary to prove the correctness of every single
computational step, which would not be feasible in a reasonable amount of time.

The dual of the linear assignment problem in (3.2) is as follows:

maximize ∑ui +∑v j

subject to ui + v j ≤ ci j for i, j ∈ A,T,
with ui,v j ∈ Z for i, j ∈ A,T.

(3.3)
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Here ui and vi are the dual variables which an not restricted to positive values contrary
to the primal variables. The dual variables are also interpreted as shadow prices which
is why operations in the dual are often called auctions.

Thus, in order to efficiently prove the correctness of a optimization result we first
need to compute the corresponding dual, which has to be kept private. This can be
achieved by augmenting the MPC algorithms to also compute the dual in the oblivious
domain and only reveal the primal solution in the clear. Secondly, in order to prove
optimality, it is necessary to show that:

1. the optimum is indeed the sum of the costs (NIZK or directly),
2. the constraints of the primal are fulfilled (this can be done in clear),
3. there exist dual variables such that the primal optimum is equal to the dual, i.e.

∑u+∑v = fopt (NIZK), and
4. the dual variables fulfil the constraints (NIZK).

The most challenging task are the last two steps which have to be done without
revealing the dual variables or the costs which requires the usage of NIZK and the
generation of them within the MPC system, without revealing any witness to any entity
in the clear. In the following we explain how this can be achieved efficiently using MPC
and NIZK.

3.4.3.1 Augmented LSAP

In a first step, the optimization algorithms have to be adapted to also provide the dual
solution. We use the idea of augmented algorithms which provide both, an optimal
solution of the original problem as well as the corresponding dual variables.

Verifiability for general LP. For the case of LP the approach has already been demon-
strated in [225], and we use this implementation as a baseline for our improvements.
The respective solution also comes with verifiability, and consists of four main steps:

1. the basic simplex operation,
2. computation of the solution,
3. computation of the dual, and
4. verification of the dual and optimality.

Unfortunately, especially the verification step turned out to be very resource intensive.
Besides adding another 20% of overhead to the computation time, especially the mem-
ory usage was extensive. As shown in Table 3.11, we were not able to conduct tests
beyond problem sizes of 40 slots on our test machine, rendering the implementation
impractical for our requirements.
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Overcoming limitations for LSAP. In our work we thus developed and tested an aug-
mented version of the Hungarian algorithm, as it also follows a primal-dual approach.

The core extensions to the Hungarian algorithm are shown in Listing 3.4 and 3.5.

1 for i in range(n):

2 # Find min value for each row

3 minval = min(cost_matrix[i])

4 # Subtract minval from every element in the row.

5 for j in range(n):

6 self.C[i][j] -= minval

7 # Update dual u_i

8 self.u[i] = minval

Listing 3.4: Augmented Munkres Step 3

1 for i in range(self.n):

2 for j in range(self.n):

3 if self.row_covered[i]:

4 self.C[i][j] += minval

5 if j == 0: self.u[i] -= minval

6 events += 1

7 if not self.col_covered[j]:

8 self.C[i][j] -= minval

9 if i == 0: self.v[j] += minval

10 events += 1

11 if self.row_covered[i] and not self.col_covered[j]:

12 events -= 2 # change reversed , no real difference

Listing 3.5: Augmented Munkres Step 6

In step 3 of the algorithm the ui have to be updated with each row modification and
in step 6 ui and v j are updated according row and column modifications. All other steps
are not affected and the necessary modifications in steps 3 and 6 are also very MPC
friendly, i.e. only addition and subtraction on secure values.

Because shortest augmenting path (SAP) algorithms are very similar in nature to
Hungarian, we expect similar results for them although we did not implement them.

3.4.3.2 Adaptive zkSNARKS

We now explain how the necessary NIZKs to prove the optimality of the dual solu-
tion are computed in our system, thereby significantly improving over the efficiency
achieved by [225].

In our first approach we use the adaptive zkSNARKs by [205], which are well suited
and optimal in terms of proof size. The idea is to have commitments on all relevant
witnesses for the proof, which could, e.g., be stored on a blockchain to make them
publicly available.
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As described above, the proof is composed of four components where three have to
be shown in zero-knowledge and the evident plaintext constraints are omitted. Because
the commitment used in the zkSNARKs system are homomorphic, the correctness of
the optimum can be shown directly by combining the respective commitments on the
input weights. However, if the more efficient vector commitments are used a dedicated
proof has to be computed explicitely in the MPC system, which is also straight forward.
The same has to be done for the dual solution which also has to sum up to the optimum
with no slack space left to the primal.

The most challenging task is proving the dual constraints. Basically, we have to
prove n2 inequalities on the dual variables. If we consider the fact that the slack for cost
incorporated in the final solution is zero, we can convert n inequalities to equalities,
however, because of the use of vector commitments they also have to be integrated into
the same proof and cannot be done at the verifier.

To measure performance we implemented a version based on PySnark11 and Qap-
Tools12 which is shown in Listing 3.6. It is a fully privacy-preserving version with index
and optimum also hidden (inside a commitment), and proves the optimum of the primal
and the dual as well as all dual constraints in a single proof.

1 @pysnark.runtime.snark

2 def is_optimum(C, ind, opt, u, v):

3 n = len(C)

4 res = 1

5

6 # verify primal optimum is correct

7 cost = 0

8 for r, c in ind:

9 cost += C[r.value][c.value]

10 res *= opt == cost

11

12 # verify optimum primal -dual

13 res *= opt == (sum(u) + sum(v))

14

15 # verify dual constraints

16 for i in range(n):

17 for j in range(n):

18 z_ij = u[i] + v[j]

19 res *= z_ij <= C[i][j]

20 return res

Listing 3.6: zkSNARK example for optimality proof.

The achieved performance is shown in Table 3.16. From the figures it can be seen
that the proof computation is the only relevant factor but is still faster than the opti-
mization process. It should be noted that the proof computation is independent of the

11https://github.com/meilof/pysnark, accessed 2023-01-10.
12https://github.com/Charterhouse/qaptools, accessed 2023-01-10.

https://github.com/meilof/pysnark
https://github.com/Charterhouse/qaptools
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network latency and does not need any communication between MPC nodes except for
a final reconstruction step.

n genprog (s) prove (s) verify (s)

10 0.03 1.9 0.07
20 0.10 3.5 0.07
30 0.22 5.7 0.07
40 0.39 9.4 0.11
50 0.61 18 0.21
60 0.89 21 0.21
70 1.23 37 0.40
80 1.71 42 0.42
90 2.15 65 0.40

100 2.45 72 0.75

Table 3.16: Runtime in seconds for public verifiability of MPC based LSAP solving
with adaptive zkSNARKs. The table shows results for different problem sizes n.

3.4.3.3 NIZK Without CRS

Despite their practicality, zkSNARKs require a common reference string (CRS), which
needs to be computed in a setup phase. Although this CRS can also be generated in
distributed way (e.g., in an MPC ceremony) in order to ensure that no entity knows,
e.g., any trapdoor information of the CRS, it is sometimes undesirable to require a setup
phase, in particular as the purpose of the NIZK is to protect against malicious MPC
nodes, and thus an independent MPC network would be required for the MPC ceremony.

To also support a method without a CRS we leverage Bulletproofs [242], which
were designed to support efficient range proofs, the most demanding step when proving
(3.3). When batching u interval proofs for intervals of bitlength v, the resulting proof
size is only 2(log2(u)+ log2(v))+4 group elements plus 5 Zp elements.

Table 3.17 shows proof generation and verification times for different batch sizes
and problem sizes. The major issue at the moment are the size of the input commit-
ments, because vector commitments are not supported and for each witness a dedicated
Pedersen commitment is needed, which results in n2 +2n commitments for the weight
matrix and the dual variables.

The benchmark results only consider the computationally intensive part of range
proof processing, however, because the additional comparisons can be directly done
at the verifier in parallel, they are good estimates for overall performance. A fully
integrated implementation also supporting MPC is currently under development.

The times for MPC based optimization can be summed with the corresponding prove
times for the given problem size to get an overall time. Additionally, the verification
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n prove verify fast proof
verify size

(s) (s) (s) (elem.)

4 0.26 0.14 0.1 20
5 0.25 0.27 0.2 22
8 1.04 0.54 0.4 24
11 2.07 1.09 0.81 26
16 4.14 2.17 1.61 28
22 8.28 4.33 3.22 30
32 16.5 8.65 6.45 32
45 33.0 17.2 12.8 34
64 66.2 34.5 25.7 36
90 132 68.8 51.5 38

128 267 138 102 40

Table 3.17: Runtime and size for optimality proofs based on Bulletproofs. Results for
different problem sizes n are shown.

times is only done by the results parties. Moreover, in some use cases the verifiability
part could be done offline to further speed up overall application performance.

3.5 Discussion

In this section we explored ways to use MPC in decentralized data markets for two
relevant use cases. To do so, we first compared and benchmarked two generic MPC
frameworks in Section 3.2, both using the same linear ITS secret-sharing protocols, but
with a fundamentally different software approach. As expected, MP-SPDZ performed
best in a local setup but was harder to use and manage. MPyC on the other hand, is
extremely flexible and easy to use. We implemented various symmetric ciphers from
the literature, some of them particularly optimized for MPC, and did extensive testing
and benchmarking with both frameworks. The goal was to understand how universal
and generic the available software is and to which extend they can be used without
special knowledge about MPC core protocols.

From our tests we learned that even for the most versatile software frameworks
available it is hard to get things right and MPC is still far from being usable for soft-
ware developers not familiar with the field. Furthermore, we showed that the practical
performance cannot be trivially estimated from the algorithms to be implemented by
estimating the multiplicative depth in advance. It is often additional work introduced by
data format conversion which significantly penalizes the speed of the algorithms and a
lot of manual optimization is needed to get optimal performance.
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It was also unexpected, that the specifically developed algorithms optimized for
lower number of multiplications did not perform as expected, i.e., substantially better
than AES, and also some stream ciphers turned our to be not well suited for ITS-MPC.
We found Trivium being the best cipher for platform independent application in MPC
and we recommend it for applications where the lower security parameter is not an
issue. A very interesting open question is if the Trivium approach can be scaled up
to generate more than 64 (and maybe even arbitrarily many) keystream bits per round
of communication without weakening security or exponentially increasing the size of
the internal state. Recently, [192] proposed Kreyvium as an extension of Trivium, but
focused on improving security without increasing multiplicative complexity.

Additionally, we did intensive benchmarking for various scenarios. Contrary to most
existing literature we were also addressing non-optimal network settings. In our tests
we found, that although MP-SPD performs by far better in high throughput low latency
settings, it gets surprisingly outperformed by MPyC in scenarios with higher network
latency. The asynchronous architecture of MPyC achieves more efficient use of the
network layer in those scenarios and could even compensate for the optimizing com-
piler used by MP-SPDZ. However, for the scalability in the number of parties we found
the opposite, here MP-SPDZ behaved as expected and MPyC seem to experience sig-
nificant slowdowns. 8Generally—independent of the framework—ITS-MPC is not very
scalable in the number of nodes and only small number of nodes are realistic if advanced
functions must be computed.

In Section 3.3 we explored ways to leverage MPC in more complex use cases, specif-
ically building a market platform for smart manufacturing. We showed that simple
cryptographically secured sealed bid auctions are not suitable for complex application
scenarios like markets places in the manufacturing domain and MPC can deal with more
advanced mechanisms. From the requirements established together with relevant stake-
holders, we identified many challenging and partially contradicting objectives which
motivated the design of a new architecture and framework. The framework enables
secure and privacy-preserving price finding for outsourcing tasks in the production in-
dustry, but also beyond [19]. For increased trustworthiness it further enables every
participant to publicly verify all steps in the auction in a privacy-friendly way. This was
achieved by extending secure multiparty computation with zero-knowledge proofs of
knowledge in a seamless way for the designer of the application. To assess the practical
performance, we implemented a proof-of-concept and tested various scenarios. As our
main result we were able to show that many requirements given could be achieved with
our approach in a single framework and with practical performance. Furthermore, we
also showed that the proposed framework is suitable to realize complex use cases in a
proof-of-concept implementation.
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Finally, in Section 3.4 we researched the possibility to go beyond auctions and do
full optimization. From our previous experience we knew that it is difficult to esti-
mate MPC performance for more complex functions without empirical analysis and
manual optimization. This was especially true for solving the linear assignment prob-
lem in a privacy preserving but verifiable manner, as encountered in a use case from
air traffic management. Therefore, we did a comprehensive analysis of solving the
LSAP with MPC. We were able to improve by a factor of 50 compared to the existing
simplex-based approach and also showed that shortest augmenting path algorithms are
the fastest solvers in the MPC setting. On top of privacy, we also demonstrated that effi-
cient zero-knowledge proof generation is possible by selecting most appropriate NIZK
frameworks. Compared to the existing approach based on Schnorr proofs the usage
of modern NIZK techniques showed major speedups and practical relevance. Further-
more, the platform still provides information-theoretic privacy, because the integrated
NIZK rely on perfectly hiding commitments and protocols with perfect zero-knowledge.
However, their soundness property is not quantum-safe. Thus, future work will be on
protocols with soundness properties based on intractable problems for quantum com-
puters. Nevertheless, the systems can be safely used until scalable quantum computers
are available, because privacy is guaranteed in the long term and cannot be broken ret-
rospectively.





Chapter 4

Securing Data in Transit

4.1 Introduction

To achieve information-theoretic security for message transmission, i.e., to establish se-
cure channels, adequate key agreement protocols are required. It is known that secure
key exchange can only be achieved with asymmetric cryptography, which is suscepti-
ble to quantum computer attacks and can never be realized with information-theoretic
security. However, with quantum key distribution (QKD) a new technology is on the
horizon to break the limitations of asymmetric cryptography and provide information-
theoretically secure key exchange, the ingredient necessary to achieve ITS secure com-
munication.

QKD is fundamentally different in many ways to existing approaches. In this chapter
we present our research results achieved by addressing some aspects in the use of the
novel technology. Although, QKD seems very appealing at first sight to replace existing
key exchange protocols, the technology suffers from many shortcomings and limitations
compared to an algorithmic approach. In this thesis we discuss aspects researched to
make QKD more practical and efficient. We also discuss how we integrated QKD with
technologies from previous chapters.

Quantum key distribution is a new technology for key exchange which is uncon-
ditionally secure and thus is also quantum-safe. It was first proposed by Bennett and
Brassard in [243] and its’ security is governed by and can be reduced to the laws of
quantum mechanics, a well-established theory. Thus, it relies on a very strong security
assumption. QKD is used to agree on a key between two peers—typically called Alice
and Bob—but not to directly transmit information, however, when combined with per-
fectly secure one-time-pad encryption it results in a perfectly confidential and authentic
communication channel.

Since its’ first proposal in 1984, QKD has attracted a lot of research from different
domains ranging from theoretical physics, experimental physics, optics, quantum op-
tics, electrical engineering to computer science and cryptography. QKD is a hardware-
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based technology and fundamentally different to solutions we use in cryptography today,
which are based on algorithmic concepts. That is one factor, why its’ introduction and
commercialization was hampered in the past.

However, research in QKD made a lot of progress and culminated in the realization
of first QKD networks around 2009 [53]. First commercial systems for link encryption
have been presented already around 2004 and were first deployed in 2007 to protect
Swiss election1, but commercial success was hampered by the many limitations of QKD
[244, 245]. Nevertheless, research continued and after a period of less activity in the
field, the technology is now considered ready for large scale deployment [246, 247,
248, 115]. The topics researched in this work were encountered during discussions
with industry partners in our collaborative projects and contribute to the challenges in
integrating QKD.

In the following we will quickly introduce the basic QKD system at AIT used for
our work and then present our improvements and findings, which were also published
in [11, 12, 13, 14]. First, we show how we reduced the number of optical channels
required by researching an algorithmic synchronization mechanism called pre-sifting in
Section 4.2. By independently registering photon detection times at both peers with high
precision, we were able to remove the dedicated synchronization channel used by the
AIT-QKD system. After that we investigate another practical aspect for post-processing
in Section 4.3. We study the possibility to offload computationally intensive tasks from
the device to external and potentially untrusted hardware to improve flexibility and cost
efficiency of QKD devices. During our research on pre-sifting algorithms, we also
encountered a novel attack on a previously developed channel authentication scheme,
which we were finally able to fully break, as presented in Section 4.4. Finally, in Sec-
tion 4.5 we analyze how QKD can be reasonably combined with the other technologies
presented in the previous chapters.

4.1.1 Quantum Key Distribution

Quantum key distribution (QKD) was invented almost 40 years ago and is currently a
more vital field of research than ever. With commercial impact on the horizon, appli-
cation of QKD is gaining substantial momentum and the technology is expected to be
deployed at large scale in the upcoming years. This is true for both, terrestrial applica-
tions as well as space communication.

QKD is the only known information-theoretic primitive for key exchange and can
be considered a part of the quantum-safe toolbox to build long-term secure ICT systems
which resist quantum computer attacks. However, its’ wide adoption is still hampered
by various challenges which must be overcome to make QKD practically relevant and

1https://www.newscientist.com/article/dn12786-quantum-cryptography-
to-protect-swiss-election/, accessed 2022-12-05.

https://www.newscientist.com/article/dn12786-quantum-cryptography-
to-protect-swiss-election/


4.1 Introduction 159

facilitate commercial adoption. On the one hand, research is thus continuously improv-
ing protocols and optics/electronics to achieve better bandwidth and distance, as well
as co-existence with existing infrastructure. On the other hand, miniaturization and
electro-optical integration are important topics to make the technology more reliable
and cost-effective.

Contrary to most other cryptographic primitives, quantum key distribution (QKD)
is a key-agreement protocol which derives its’ security from properties of the physical
layer. It uses a quantum channel to exchange quantum information which cannot be
perfectly copied or eavesdropped according to the laws of quantum mechanics. In a
prepare and measure QKD protocol, so called quantum bits (qubits) are encoded and
transmitted over a quantum channel. Typically, the qubits are encoded on photons and
the transmission channels are either fiber optics or free space. Finally, the qubits are
measured at the receiver and decoded. From the measurement of quantum bits classical
information is derived and all following steps are done in the classical domain. How-
ever, due to their interaction with the environment and/or eavesdropper, photons are
subject to distortion and absorption. To detect and cope with these modifications in the
transmission channel, post-processing steps have to be applied in order to get the full
key agreement primitive with practical correctness and secrecy.

The outstanding property of QKD is that it is an information-theoretic secure (ITS)
and universally composable (UC) key agreement protocol [249] given that its classical
communication is performed over an authentic channel (note that all key-agreement
protocols are insecure over non-authentic channels). ITS message authentication codes
based on universal hashing [250] which use pre-shared keys in the first round and QKD
keys from previous rounds in later rounds, are a means to generate an ITS authentic
[251] channel. Thus, QKD is a very powerful cryptographic primitive which cannot be
realized with non-quantum protocols.

A basic prepare and measure scheme is shown in Figure 4.1. Alice is the sender and
encodes information into the polarization of single photons. For each photon (qubit) it
generates two random classical bits. The first bit is used to select one out of two bases
to encode the photon, and the second bit to decide the concrete polarization between the
two orthogonal choices. In essence, the two bits are used to randomly select one of four
possible polarization encodings. The photon is then sent over the quantum channel to the
receiving peer (Bob), which is measuring the photon in one of the two bases at random.
The measurement is done with single photon detectors registering photons as classical
binary information (clicks). After the qubit transmission on the quantum channel all
information at both peer is fully classical (non-quantum), and the post-processing is
started as explained below. This is also evident from the described behavior, Alice only
remaining with the random bit string used to describing the polarization encoding of the
qubits sent (2 bit per qubit), and Bob only storing the received polarization encoding
within the randomly selected basis (2 bit per qubit).



160 Chapter 4: SECURING DATA IN TRANSIT
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Figure 4.1: Basic functionality of BB84 protocol (adapted from [252]). Qubits are
randomly encoded by Alice in one of four polarizations, corresponding to two bases, and
sent over the quantum channel. Bob randomly chooses bases and measures polarization
of incoming qubits. Because measurements are only correlated for Qubits measured and
encoded the same basis, all other events are eliminated to extract the shared key among
the peers.

4.1.2 QKD Post-Processing

In the following we quickly introduce QKD post-processing to better understand the
results in this work. QKD comprises two main phases to arrive at a shared key with
strong correctness and security guarantees. First, qubits are randomly generated on
one side, transmitted over the optical quantum channel, and measured on the other
side to generate the so-called raw key. In the second phase, a non-quantum (classi-
cal) post-processing is executed to agree on identical keys (correctness) on both ends of
the transmission line, and to render useless any information a potential attacker could
have learned by attacking the transmission phase (privacy/secrecy).

In detail the steps necessary to extract a secure key from the raw data of the trans-
mitted quantum bits are as follows:

(i) In sifting, non-relevant information is removed from the raw key; e.g., for conju-
gate coding protocols, events prepared and measured in different bases would be
deleted. Also, events not received by Bob are discarded in discrete-variable pro-
tocols (cf. Section 4.3.2). Discarding of empty slots can be optionally done in a
dedicated pre-sifting step. (cf. Section 4.2).
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(ii) After that, error estimation determines an upper bound on the information leak-
age on the quantum channel to an adversary and provides information to optimize
the information reconciliation. Although more advanced methods have been pro-
posed in the literature, this is typically done by cut-and-choose methods. Addi-
tionally, the idea of using a confirmation phase to replace error estimation was
proposed by Lütkenhaus [253].

(iii) In information reconciliation—which often uses methods from forward error
correction—errors in the remaining raw key are corrected so that sender and re-
ceiver should obtain identical keys. The classical (non-quantum) messages ex-
changed in this process must not leak information on the final key. Typically, the
leakage is tracked and treated during the privacy amplification step.

(iv) In the confirmation step, the peers check that their keys are identical after the
error correction step. If it fails, the parties go back to the error correction step or
abort the QKD protocol.

(v) Finally, in the privacy amplification step, the information leaked during all pro-
tocol steps (quantum and classical) is eliminated from the final key by running a
(strong) randomness extraction protocol between the peers.

All processing steps together enable Alice and Bob to agree on a final key which is
ε-close to an ideal key. The post-processing steps are also visualized in Figure 4.2.

Various optimizations of the above key agreement process have been proposed in
the past, either for efficiency reasons or implementation aspects, but the basic steps are
typically contained in one form or another.

4.2 Timing Synchronization for QKD

One of the main problems encountered in the realization of the first QKD demonstrators
at AIT, was the effort and resources needed to synchronously measure photon detection
events in entanglement-based systems. The first entangled QKD prototypes developed
used a dedicated time-stabilized channel to perform synchronization of the distant peers
[65, 49]. Especially for fiber-based systems working at telecom wavelength the synchro-
nization was needed to operate indium gallium arsenide (InGaAs)-detectors in gated
mode, i.e., only enabling them if a photon was expected. However, with the newly devel-
oped free-running InGaAs-detectors [254] at AIT such additional synchronization was
no longer necessary for detector gating and enabled the development of a free-running
mode for our third generation QKD-system EPR-S405. In this section, we present our
results on replacing a dedicated synchronization channel with a network based algo-
rithmic synchronization mechanism called pre-sifting. This section also serves as an
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Figure 4.2: Overview post-processing steps with a dedicated pre-sifting phase where
lost signal is removed first. The compression rate in the last privacy amplification step
depends on all information about the key in previous steps plus an addition factor de-
pendent on the actual error rate.

introduction on QKD technology to make the reader familiar with the topic, which is
substantially different to the algorithmic approaches used in the previous chapters.

In Figure 4.3 the EPR-S405 is shown. It is a fully functional QKD-system capa-
ble to use both, free-space or fiber channels to distribute photons to the communication
partners. It integrates all the optics and embedded electronics to generate and distribute
entangled photon pairs, measure and process them to extract a secure shared keys be-
tween the two devices.

The goal of our research was to develop a self-synchronizing acquisition system for
entanglement-based protocols which do not need a dedicated synchronization channel
or precise and stable atomic reference clocks. This requirement also prohibited the use
of external reference systems like the global positioning system (GPS).

To this end, we successfully exchanged the synchronization channel by a pure soft-
ware solution and which in fact leverages the photon pair distribution to eliminate offset
and drift between free running clocks in a extremely efficient way. The novel software
module introduces a pre-sifting step in the post-processing stack, which is handling the
synchronization. Contrary to the intuition and previous proposals, we show that time
bases algorithms perform better than frequency-based solutions and are able to provide
real-time synchronization for high rates even on embedded systems with limited com-
puting capabilities.
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Figure 4.3: AIT-EPR-S405 QKD lab prototype used for research and teaching.

Related work. The possibility of synchronizing two local clocks by exploiting cor-
relation information had already been demonstrated, however, the proposed solutions
did not yet meet our needs. AIT already provided special correlation finding algorithms
for preliminary satellite communication scenarios [255], which are optimized for low
signal rates, high offset search ranges and large block sizes. Another approach from
[256] uses Fast Fourier Transform (FFT) based convolution algorithms for offset find-
ing, which are rate independent. Nevertheless, to find the offset with high accuracy, the
limitation in the block size requires high rates for signal locking. Our current approach
overcomes these limitations.

4.2.1 System Overview

As shown in overview Figure 4.4, the entangled photon pairs are generated in a sponta-
neous parametric down conversion (SPDC) source, which is basically a nonlinear bar-
ium borate (BBO) crystal pumped with a strong continuous laser. The entangled photons
generated in the BBO crystal are then distributed to the receivers at Alice and Bob. To
this end it is different to the standard BB84 protocol for prepare and measure, however,
if the detection of one entangled photon is done locally at Alice as in our implemen-
tation, it resembles a BB84 protocol where the random encoding of the photon sent is
done optically.

The photons are analyzed in polarization modules (BB84-module) in the receiver
which has one output for each polarization state to be detected by single photon detec-
tors (Si-SPADs). All detection events are finally registered with a dedicated timestamp
in a time-tagging module (TTM8) which uses its own local clock. Thus, the two de-
vices are free running with respect to their local clocks and can only communicate over
a network connection used to exchange information in the post-processing phase and for
management purposes. We used the network connection to also synchronize the embed-
ded computers which are part of the devices to achieve a first rough common reference



164 Chapter 4: SECURING DATA IN TRANSIT

Quantum-
channel A

BB 84
Si-SPADs

Time-

tagging

TTM8

SPDC

Laser

BBO

Clock-A

PC

Internet

Quantum-
channel B

BB 84
Si-SPADs

Time-

tagging

TTM8

Clock-BAlice Bob

Source

up to 10km

PC

Figure 4.4: Schematic overview of AIT QKD system. SPDC is source for entangled
photons. BB84 modules are passive polarization separators and Si-SPADs are the single
photon detectors. Events are then registered at TTM8 with a resolution of about 100ps.

time. By using the precision time protocol (PTP) over a direct Ethernet connection we
were able to synchronize the PC-clocks within 1ms. This served as the starting position
for our search algorithm which was required to further synchronize the clock down to
sub-nanosecond level continuously.

The acquisition system was integrated into the AIT-EPR-S405 demonstration sys-
tem [257] as part of the post-processing software stack [44]. The system implements
the BBM92 [258] protocol for entanglement based QKD, a variant of the original BB84
protocol [243]. In this protocol, the correlated measurement results of a shared entan-
gled state are used to generate a secure key, as follows: Alice keeps track of all her
detection events together with the measured polarization states; Bob communicates to
Alice which of the synchronization triggers resulted in a detection event on his side and
also communicates his measurement basis; Alice deletes all entries in which Bob did
not detect a photon and where the bases did not match. Both parties share then a sifted
key, which is further processed through the QKD protocol stack to yield a secure key.

However, to align events on both sides without a common clock the newly developed
pre-sifting algorithm is run at Alice to calculate the time and frequency offset between
the two local clocks. Bob sends the timetags of all received events to bob but without
any additional information to not compromise the security. With all timetags available
Alice is able to calculate the exact time and frequency offset of the local clocks in the
so-called pre-sifting step which is then used to correlate the events on both peers. After
this filtering the standard QKD-protocol stack is executed to generate the secure key
shared between Alice and Bob.

In Figure 4.5, the times and distribution of the photon arrival at the device of Al-
ice are shown, whereby the pair-photons are indicated by a flag. The counterparts are
detected at Bob’s site, but a difference in clock frequency causes a relative drift of all
measured events.
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Figure 4.5: Measurement timing at both peers with offset and jitter.

The QKD software stack is located on two embedded computers, one connected
to Alice and the other to Bob. All classical communication between them is routed
over a standard network connection and the AIT QKD stack [44] war used to generate
the keys. Alternatively, the QKD stack could run directly on the embedded CPU for a
single-chip quantum cryptography solution [58]. QKD post-processing is known to be
computationally intensive, and the concrete implementation was limited to key rates of
1 kbit/s due to the limitations of the embedded CPU. To impede a man-in-the-middle
attack, all communication between Alice and Bob is authenticated by applying secure
message authentication in the form of an ITS MAC [250].

4.2.2 A Novel Pre-Sifting Method

From a data acquisition point of view the scheme is very similar to BB84, because the
entanglement source is integrated with the Alice device and the random measurement
of Alice’ photon determines the state of the other photon which is transmitted to Bob.
The main difference is that the random polarization encoding is selected passively via
optical elements and the photons are generated spontaneously, i.e., they follow an expo-
nential distribution, and are not synchronously generated with a fixed clock. The goal
of the pre-sifting module is timing synchronization and alignment, i.e., to enable a sta-
ble synchronization to identify photons from the same entangled pair. To do so, some
preconditions have to be fulfilled on the hardware level. The photon source has its own
source stabilization which guarantees stable production and coupling of photons into
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the quantum channel. The state alignment does automated alignment of the entangled
state of photons and additional polarization alignment compensates polarization drifts
in the quantum channel.

One of the main challenges in our approach was to cope with the relatively large
clock drift of cheap commercial-of-the-shelf crystal oscillators as clocks. No expensive
atomic clocks or any GPS based synchronization mechanisms as used in previous works
were available. Thus, the pre-sifting algorithm has to cope with short term drift due to
frequency offset between the clocks and also long-term drift due to other imperfections,
e.g., power stability or aging. In fact, the drift (difference in frequency) in crystal os-
cillators is continuously varying within substantial bounds also based on environmental
conditions and susceptible to fluctuations. The only stability requirements we required
for the local clocks were, that frequency differences could be approximated as constant
within intervals up to a second, as discussed later. The measured time drift for the given
clocks over time is shown in Figure 4.6 and shows significant variation.
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Figure 4.6: Measurement of clock drift between free running clocks at Alice and Bob.
The same signal is fed into the two modules and the change in time offset is measured
each second. A measured difference in time after one second of 1 ns/s corresponds to a
frequency offset Δ f = 10−9 1/s.

The time domain algorithm developed is based on a multi-step process to compen-
sate for the different effects in a structured way. It assumes two coarsely synchronized
peers within 1ms and implements a stateful signal tracking mechanism to optimize re-
source usage. The corresponding state diagram is shown in Figure 4.7 and it operates on
block level, where each block contains all measurement events within tb = 250ms in our
case. In a first step, a potential signal is searched based on a dedicated signal-to-noise
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(SNR) measure as introduced in Equation (4.1), which is set to a relatively low thresh-
old. The used coincidence window is broad and frequency offset between clocks is not
considered, thus, it works in a coarse mode corresponding to states 0 and 1. Looking at
the transition between the states, it is clear that the states also represent the number of
consecutive blocks with a tracked signal. If the weak signal is confirmed by a second
block, a more detailed search can be used in a so called finesync mode (state 2 and 3)
including parameter estimation for time and frequency offset as well as optimal coinci-
dence window settings. The system then remains in state 3 as long a signal is locked,
which is defined by a good SNR together with an accurate prediction of current offset,
indicating a valid time offset and drift estimation in previous blocks. The algorithm
significantly reduces search space in finesync mode and continuously update parameter
estimations on consecutive blocks.

0

start

1

2

3

SNR >= 4

SNR >= 4 and
(Δtoff −Δfest ∗ tb) < 100ns

else

SNR >= 4 and
(Δtoff −Δfmeas ∗ tb) < 10ns

else

SNR >= 10 and
(Δtoff −Δfmeas ∗ tb) < 10ns

else

Figure 4.7: State machine for drift correction algorithm developed. After each block a
state transition occurs. Δto f f is the change in offset measured between two blocks. Δ fest
and Δ fmeas are the estimated and measured drift (frequency offset). tb is the length of a
block in seconds, i.e., 0.25s in our case.

The algorithm itself is working in the time domain and capable to process data in
real-time. It is executed at one peer after both measured events of a corresponding block
and the remote peer sent the extracted timetags. For the alignment of events at this level
the local PC time is used which is synchronized via PTP over the network. I is also
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used to compute a first estimate of coarse offset to f f after cold start (state 0). The first
estimate for the frequency drift Δ f is taken from previous calibration measurements.

4.2.3 Time Domain Algorithm

After all input data (events) are available the main time domain search is started which
works as follows. The registered events at Alice and Bob are represented as ordered sets
{ta} and {tb} and their sizes na,nb can be estimated by assuming a Poisson distribution
with rates ra and rb being the mean number of arrivals per time interval. The number
of valid coincidences per second is given by rc. The correlation algorithm works with
blocks of 250ms and searches for the real offset as correction Δ toff of an estimated offset
toff in the vicinity of ±tsearch as follows:

• all events in {tb} are offset by to f f and scaled according to (tb,i+(tb,nb −tb,1)/2)(1+
Δ f ) to bring them to the same time base as Alice’ events, the corrected timetags
are {t  b};

• for all timetags in {ta} the differences to corrected timetags in {t  b} within ta,i ±
tsearch are computed and stored as histogram with full resolution bin size, which
is about 100 ps in our setup with TTM8, and the better toff is known, the smaller
tsearch can be, leading to very efficient search in higher states, e.g., a factor of 1000
in our case with a switch from 1ms to 1µs;

• the histogram data are then convoluted with different rect functions representing
different window sizes and ranging from 20 ns down to ns;

• the window which delivers the best SNR is selected and the corresponding events
are communicated to Bob.

The algorithm turned out to be very efficient for our system configuration. However,
the design of a meaningful SNR to adaptively find optimal settings for time windows
based on histogram data was challenging but essential to achieve high QKD key rates.
After a thorough empirical analysis we choose the following definition in our work
which delivered very favorable results.

SNR =

ncorr
twin

nhist−ncorr
2tsearch−twin

−1 (4.1)

Where nhist is the number of events contained in in the histogram, ncorr is the number of
correlations found for a given coincidence window twin.

Additionally, through the use of a stateful algorithm we are able to improve the
estimations for time and frequency offset toff and Δ f after a signal is found which makes
the processing very efficient. In state 3 the time and drift are not only corrected but the
frequency offset Δ f itself is updated based on the time offset found to the last block.
Thus, by averaging over the last few blocks and updating Δ f , the uncertainty in time
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offset and drift estimation can be dramatically reduced which helps to reduce search
space. Additionally, with access to precise frequency offset it is also possible to narrow
down coincidence windows leading to higher SNR and ultimately higher QKD key rates.

4.2.4 Results

With the proposed approach we were able to achieve very favorable results, especially
in continuous operation with a tracked signal, it required only negligible computing re-
sources compared to QKD post-processing. Also cold start operation achieved good
performance with the given compute resources. Interestingly, because key generation
was only triggered in state 3, the computing capacities otherwise used for QKD post-
processing could be used for faster signal search in parallel during course mode, i.e.,
when signal lock was lost. Thus, the tasks of system synchronization and key gener-
ation ideally complement each other and make efficient use of the compute hardware
in a time-sharing approach possible. In Table 4.1 we compare our approach with the
different algorithms proposed in the literature.

Algorithms

TD1 [255] TD2 [this work] FFT [256]

Throuphput low high high

Offset search high medium low / high ∗

Resolution max max high / low ∗

Real-Time no yes yes

Δ f compensation no yes no

Time complexity O(N2tstb +
N2tstb log(N2tstb)

O(N2tstb + ts
tres

) O( tb
tres

log tb
tres

)

Space complexity O(N2tstb) O( ts
tres

) O( tb
tres

)

Table 4.1: Comparison of algorithm properties and their complexity. The input size N is
the number of events per second assumed to be equal at both peers for this comparison,
tb is the block size and ts the search window (short for tsearch) in seconds. tres is the res-
olution to achieved. For complexity we look at the relevant part of timetag processing.
∗ trade-off due to limited size of the vector for the FFT-algorithm.

Additionally to the qualitative analysis of our algorithm, we also give some concrete
figures measured in the laboratory setup. For cold start in course mode searching for
time differences of ±0.5ms for block size of 250ms at 65 kEvents/s takes about 50
ms/block and at 500 kEvents/s it takes 200 ms/block. These values show, that real-time
operation is possible even with weak signals that could be identified in our experiments.
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After a signal is found in course mode the finesync mode is entered for the next block
searching only ±0.5µs around a locked signal. This adaptive approach is 1000 times
faster and requires only negligible CPU time in the continuous regime, therefore freeing
up CPU resources for key generation tasks.

Most interestingly, the time-based approach significantly outperformed an FFT based
approach, which we tried alternatively. This is due to the fact, that we only calculate
a small fraction of the convolution of the signal compared to a full convolution which
have to be computed with FFT. Therefore, the benefits of reducing the search space
more than compensates for the O(n logn) speedup achieved with FFT based processing.
To show this behavior, in Figure 4.8 we depict the expected runtime of a FFT based con-
volution, for the given parameters of 2.5 ns resolution and 250ms block size we would
need the signals encoded in vectors of size 108, no matter how many detection events
are actually occurring.
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Figure 4.8: Limitations of FFT usage for increasing vector size. For our application
vector sizes of > 107 are required independent on the signal strength and event rate,
which makes real-time processing not possible and also means fully CPU usage for
synchronization only for the given platform, i.e., an additional processing power would
be needed for key generation.

Furthermore, in Figure 4.9 we show that the state based drift compensation works
as expected and continuously updates drifts between blocks (left) and optimizes the co-
incidence pair rate of the QKD-system (right). The first measurement plot on the left is
over one hour of offset correction from one block to the next (called fine-offset) clearly
indicates the capability of our algorithm to continuously lock to a signal and correct for
offset to f f and drift Δ f in real-time. The adaptive selection of a fine-offset around 0
together with small coincidence window show the optimal operation of the system. The
histogram on the right over the measured coincidence rates shows a symmetric Gaus-
sian function with no pronounced tail towards lower rates, which would be present if
the algorithm fails to synchronize the clocks accordingly.
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Figure 4.9: Evaluation of drift compensation mechanism. The correction of the esti-
mated offset per block is shown on the left and the number of correlated pair rate per
block is shown on the right. Both graph indicate proper operation of the new algorithm.

4.3 Offload Post-Processing from QKD Nodes

After introducing a pre-sifting phase to save a dedicated synchronization channel in
QKD and to enable free running clocks in entanglement based QKD, we looked at
other possible means to make QKD more practical and flexible. One particular aspect
of QKD, which seemed to prevent from deployment of the technology in access net-
works, was the complexity and size of the compute hardware needed to process the key
material. The high-performance hardware needed for post-processing is also a major
factor in energy consumption and system cost for QKD devices. Therefore, we looked
at ways to offload post-processing from devices or hardware sections where sensitive
key material is handled to simplify the development and operational aspects of QKD.

Related work. A huge body of research exists on QKD post-processing and im-
proving the efficiency or throughput of the post-processing phase is still an interesting
challenge. Research is focused on algorithmic improvements to reduce computational
effort (c.f. [259, 260, 261, 14]), on extending the local computational resources with
special hardware for high-performance computing and or graphics processing units [44,
262, 263], and on developing dedicated hardware designs in field programmable hard-
ware designs as co-processing units and local deployments [264, 265].

In contrast to current efforts in making the equipment more cost-effective, our work
focuses on the possibility to offload (outsource) computationally intensive tasks in the
QKD post-processing phase to external infrastructure without compromising the overall
security. Being able to outsource these tasks to external data centers allows for simpler
and less power-hungry devices in the field and ultimately results in more versatile QKD
devices.

Contributions. In this section, we present new methods to securely offload and
therefore outsource computational intense tasks of QKD post-processing. To the best
of our knowledge, offloading or outsourcing QKD post-processing has not been consid-
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ered yet as a means to improve efficiency and performance. To do so we combine our
expertise from QKD and cryptography in order to motivate the problem and show the
benefits as well as present protocols and barriers. We present and analyze protocols for
outsourcing information reconciliation to external and untrusted environments therefore
facilitating new application scenarios, e.g., usage in low power access networks. We fur-
thermore discuss possibilities to outsource the privacy amplification step, which could
further help to reduce the required processing power in QKD nodes. Additionally, we
present use cases in order to undermine the practical relevance of the novel developed
methods.

4.3.1 Motivation to Offload Post-Processing

From a computational perspective, information reconciliation is by far the most com-
putational intense task in the stack and is typically limiting the throughput, especially
in high-speed systems which set out to be used in long distance communication [266,
267]. The second most computationally demanding task is privacy amplification [262].
The rest of the protocol steps are rather simple tasks and can be executed in real-time
even on embedded platform.

Therefore, we introduce and study the idea of offloading these tasks from devices by
outsourcing computation to untrusted or less trusted hardware in an ITS secure way. The
ability to outsource information reconciliation (IR) and potentially privacy amplification
(PA) would enable new applications scenarios for both, the access network and the
transmission systems. Also satellite-based QKD can become more practical if only
lightweight processing resources are required on the devices itself.

The two main advantages gained by offloading processing to external hardware are
increased efficiency and flexibility in the use of compute resources—also resulting in
energy efficiency—and a reduced attack surface by limiting components dealing with
secure key material.

The pooling/hotelling of computational resources allow for more efficient process-
ing use of hardware. Moreover, QKD systems are deployed for long-term security and
produce large CAPEX spending, i.e., they are used over a long period of time. Putting
all the processing power into the devices at build time hinders later updates and pre-
vent the operator to benefit from Moors’ law. If the hardware is outsourced, it could
be updated during the lifetime of the system with new technologies resulting in fur-
ther optimized energy usage. Furthermore, if the hardware has not to be trustworthy
and certified, cheap off-the-shelf hardware could be used. It would even be possible to
completely outsource it to public cloud infrastructures in the extreme case.

Additionally, time sharing allows for further improvements. QKD is typically used
in hybrid encryption protocols to establish session keys, therefore, high key rates of
QKD systems are rarely needed and sharing the computational resources between links
can further reduce CAPEX and OPEX cost.
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Hence, putting the computational expensive tasks into efficient data centers which
do not even need to be trusted is very desirable. It allows for hardware updates and joint
management of all QKD workloads in the field with continuous upgrading probabilities,
which is especially favorable for operators of QKD networks. Because the communi-
cation overhead is minimal compared to the computational one, a clear advantage in
terms of energy efficiency arises and the gained flexibility in managing tasks is very
advantageous.

Furthermore, the technology could also be used within a system. Treating parts
of the system as untrusted could eventually provide the possibility for system updates
without compromising system certification and help to reduce OPEX cost during system
lifetime.

4.3.2 Outsourcing Information Reconciliation

As mentioned in Section 4.1.2, information reconciliation (IR) is the most demanding
task in post-processing of QKD, independent of the protocols being used on the quantum
level. Error correction is computationally intense, because of high error rates encoun-
tered in combination with constraints on the amount of information disclosed during
error correction. The information revealed during the public discussion must be kept as
short as possible to maximize overall system performance, ideally IR works close to the
Shannon limit. If keys have to be processed in real-time, error correction is the bottle-
neck of post-processing, and can introduce substantial problems in resource constraint
environments.

On a quantum level, QKD protocols can be divided into two classes–discrete-variable
(DV) and continuous-variable (CV) QKD–which also result in different requirements
on information reconciliation. In DV-QKD protocols, e.g., BB84 [243], qubits are mea-
sured by single photon detectors. Due to channel attenuation and non-perfect detectors
the rate of detected photons is typically orders of magnitude lower than the rate of
prepared photons. Consequently, in DV-QKD, IR schemes must typically provide the
possibility to operate on raw key rates in the order of Kilobit [268] up to Megabit per
second [266]. In CV-QKD systems signals are only perturbed but not lost through chan-
nel effects, resulting in very high raw-key rates but also high error rates compared to
discrete variable system.

Additionally, two basic types of IR protocols are distinguished in QKD systems.
On one hand, interactive protocols have been developed for highly efficient correction
capabilities near the Shannon limit, with CASCADE [269, 259, 270] being its most
prominent representative. On the other hand, forward error correcting schemes have
been adopted and developed further to be used in operational regimes encountered in
QKD [271]. IR based on low-density parity-check codes (LDPC) is currently the most
efficient representative in this category and used in many prototype systems [272]. Al-
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though interactive two-way information reconciliation can come with smaller leakage
than any one-way protocol, due to the interactive nature their practical performance is
limited by the latency of the classical channel. One-way schemes have many desirable
properties when it comes to realization and can easily be parallelized to increase per-
formance. Moreover, one-way schemes are divided into two usage scenarios: direct
reconciliation (DR) used with DV-QKD, and reverse reconciliation (RR) typically used
in CV-QKD as discussed later.

4.3.3 Linear One-way Information Reconciliation

Before presenting our scheme for offloading protocol, we first explain one-way IR in
the context of DV-QKD in more detail and informally define the concept of secure
outsourcing for IR. Traditional error correcting codes consist of sets of codewords that
contain redundant information. Before sending data over a noisy channel, the data is
encoded into codewords. The contained redundancy can then be used by the receiver to
correct the introduced errors.

One-way reconciliation–aka source coding (or compression) with side information–
has been studied since the 1970s [273, 274]. While related to error correcting codes, the
idea here is that the data is transmitted over a noisy channel without adding any redun-
dancy. Rather, the source additionally sends additional compressed data over a noiseless
channel, which can then be used by the receiver, together with the side information he
has about the message, to decode the original data.

Let H denote the parity check matrix of a linear block code without the typically
included identity sub-matrix known from traditional channel coding, i.e., only com-
posed of the parity matrix. For IR, Alice then encodes/compresses her sifted key kA by
computing the corresponding syndrome as:

sA := kAH�,

Bob has obtained a noisy version kB = kA + e, where e denotes the error vector. Fur-
thermore, Alice sends sA over the noiseless classical channel. Bob decodes the key by
(approximately) solving the problem of finding the vector k̂A which among all vectors
with syndrome sAhas the smallest Hamming distance to kB.

Searching for this vector is computationally hard, and can easily be seen to be equiv-
alent to solving the standard channel decoding problem, i.e., which for a given code re-
quires to find a codeword x given y = x+e for an error e with small weight . To see this,
note that for a codeword xH� = 0 holds. Obviously, an information reconciliation de-
coder that works for arbitrary syndromes will find a solution for the all-zero syndrome,
i.e. it will solve the channel coding problem. Vice versa, consider a channel decoder
that corrects a noisy version y = x+ e to x. Effectively, due to the linearity, channel
decoders make only use of the syndrome yH� and not directly of y to find e. Thus they
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solve the problem to find e given the syndrome yH� = eH�. Consequently, they can
find e given kB and sA, because in that case eH� = kBH�−kAH� = kBH�− sA. Thus
linear channel decoders solve the linear information reconciliation problem.

In the context of QKD, if Alice computes the syndrome and Bob corrects erroneous
bits to obtain the key of Alice, the protocol is called direct reconciliation (DR). Because
IR in DV-QKD is considered symmetric [275], the roles of Alice and Bob can also be
interchanged. However, the same is not true for CV-QKD where the direction of the
protocol does matter for higher transmission rates as discussed later.

4.3.4 Protocol for offloading direct reconciliation

We present a simple scheme for remote (outsourced) information reconciliation called
REM-IR (remote IR), which allows the computationally intense step of syndrome de-
coding to be outsourced to an untrusted party in a secure way. The idea is to give the
error syndrome, i.e., se = sB − sA = kBH�−kAH� to an external party, which returns
the error vector e with minimal weight satisfying se = eH�.

We want to emphasize, that searching for eH� = se can be done with the very same
algorithms and techniques typically used locally at Bob, e.g., efficient variants as in
[276] or [277]. The problem is of finding e with a minimum hamming weight is fully
equivalent to the problem of finding a k̂B with minimum hamming distance to kB which
fulfills k̂BH = sB, which is due to the linearity of the code. As an example, if LDPC
codes are used which are characterized by a sparse H, all types of decoders can be used
in the very same way to find e close to the zero code word as for finding k̂B close to kB.
The only difference in the two ways error decoding is applied, in the latter k̂B is directly
computed and in the fist case it is computed by k̂B = kB + e.

Informally, the protocol is secure because the information leaked by publishing se
and e additionally to sA, and thus also sB = sA − e does not increase the information of
Eve about the agreed key string kA. The intuition behind is that just learning a bit flip
vector of a largely unknown key does not increase the information about the key. Or
put differently, the information leaked about the final key kA by additionally learning
e is 0, because e is independent of kA and anyway removed from kB in the IR step.
The described protocol is also equivalent to interactive error decoding as introduced in
CASCADE [269], which also leaks parity information and error bit locations during the
public discussion. A detailed description of the protocol is shown in Figure 4.10 and
the security of the protocols is proved in the following.

Theorem 4.3.1 (Security of REM-IR). REM-IR is a secure scheme for offloading di-
rect reconciliation for DV-QKD and does not leak any additional information about the
agreed key by public discussion compared to a local IR, i.e., the mutual information
between Eve’s key and the agreed key is the same as with local IR.
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Protocol REM-IR:

1. Alice generates her syndrome as sA = kAH� and sends it to Bob.
2. Bob generates his syndrome as sB = kBH� and calculates the error syndrome as

se = sB − sA
3. Bob sends the error syndrome se to the third party
4. The third party calculates the error vector e corresponding to se, i.e., it searches for

the e with the minimum weight fulfilling se = eH� and returns e to Bob (generic
formulation of the standard error decoding problem)

5. Optional: Bob verifies that se = eH� and that e has low weight, cf. Section 4.3.6
6. Bob calculates k̂A = kB + e

Figure 4.10: REM-IR Protocol

Proof. Let KA,KB be n bit random variables representing correlated sifted keys at Alice
and Bob, which are used as input to information reconciliation. SA is the random vari-
able representing the syndrome computed by Alice and E the random variable for the
error introduced on n channel usages. The quantum channel between Alice and Bob is
then modeled as a binary symmetric channel BSC(e) with quantum bit error probability
e. Let further LIR

E (K|Q) be the additional information leaked to Eve about the agreed
key K during the information reconciliation phase, beyond what Eve already gained
during the previous steps of the key exchange.

Moreover, H(KA) = H(KB) = n for uniformly random input encoding, and mu-
tual information IAB := I(KA;KB) = n(1−Hb(e)) is defined by the error probability on
the channel. Thus, the amount of information required to be exchanged during pub-
lic discussion is |Q| ≥ H(KA|KB) = nHb(e), where we assume an ideal reconciliation
algorithm which works at the Shannon limit, i.e, equality holds.

Without loss of generality, we assume that Bob will correct his errors and the agreed
key will be k = kA. Note here that in DV-QKD type protocols we have IAE = IBE [275],
which makes them suitable for direct reconciliation. Now, we show that the information
Eve gains about the final key during a protocol run of REM-IR is equal to the information
leaked in local IR where it only sees SA. Concretely, by revealing Se and therefore E,
SB additionally to SA, the information Eve learns about the final key (k) is described as:

LREM-IR
E (K|SA,Se) = LREM-IR

E (K|KH�,EH�) = LREM-IR
E (K|KH�) = LREM-IR

E (K|SA) .

This is due to the fact, that the additional information Eve gains by learning Se,E
and therefore SB is only about EH� which is not correlated to the final key and also
removed from kB during the IR step. It can also be seen by looking at Bob’s key KB =

KA +E, which is the sum of two independent random variables whereby the error term
is removed by IR and do not contribute in any form to the final key string K. Therefore,
the leakage during the protocol run is LREM-IR

E (K|SA) = |SA|= nHb(e).
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Variants of REM-IR could be, e.g., to let Alice and Bob directly send sA and sB, re-
spectively, to the third party, who then computes se = sB−sA. This version is equivalent,
as also in REM-IR the third party knows all syndromes, i.e., it can compute sB = se + sA

from the publicly known se, sA. Furthermore, to increase the reliability and availability
of the results, the computation can be delegated and distributed to an arbitrary number
of third parties. The security is not jeopardized by any extended protocol involving
more external untrusted parties and serves as a general baseline for such scenarios.

4.3.5 On Outsourcing Reverse Reconciliation

For continuous-variable QKD (CV-QKD) we have different requirements than for DV-
QKD which not only impact the modulation schemes but also the information recon-
ciliation. On the qbit level CV-QKD uses homodyne detection which allows for soft
or hard decoding. For simplicity we will look only at discrete modulated CV-QKD, in
particular binary modulation. Therefore, in the following we treat the CV-QKD system
as hard-input–hard-output channel which operates on classical bit strings.

The idea of reverse reconciliation was introduced by Maurer [278] for classical com-
munication and later applied to CV-QKD to overcome the 3dB loss limit [279]. In
essence, reverse reconciliation is based on one-way error correction in reverse configu-
ration with Bob sending the syndrome sB to Alice, and Alice correcting her bits.

The underlying model is based on two channels, one connecting Alice and Bob and
the other connecting Alice and Eve. Interestingly, if reverse reconciliation is applied
in this scenario, a key can still be distilled even if the channel from Alice to Eve is
superior to the one from Alice to Bob. The secret capacity of the channel for reverse
reconciliation in [278] was derived as Cs = Hb(e+ d − 2ed)−Hb(e), when Alice and
Bob have access to a broadcast channel for public discussion. The bit error probabilities
are e,d for the channel from Alice to Bob, and Alice to Eve respectively, and e+d−2ed
for the conceptual channel from Bob to Eve. Hb is the binary Entropy function.

In the classical model of [278] Shannon Entropy is used in the analysis. For the case
of CV-QKD, the mutual information between Bob and Eve has to be replaced by the
Holevo information and finite key effects have to be considered [280]. However, both
refinements do not affect our treatment based on generic BSC channels.

For the secret channel capacity argument to be valid, Alice’ key have to be kept
private, thus, preventing Eve to correct error bits with her key. With this additional
requirement, outsourcing information reconciliation directly as done in REM-IR is not
possible. If both, se and sB are leaked, sA = se + sB can be easily computed and the
advantage over the conceptual channel is lost, because Eve can correct all errors in
the string with Alice and remove uncertainty H(KE |KB). More formally, the following
result shows that fully offloading error corrections—i.e., letting a third party perform the
entire error correction and simply return e—to an untrusted party cannot be achieved for
both, classical reverse reconciliation and in the quantum setting.
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Theorem 4.3.2 (Impossibility of external syndrome decoding for classical RR). For
reverse reconciliation in the classical (non-quantum) setting fully offloading syndrome
decoding is not possible with positive key rate.

Proof. Alice is connected to Bob and Eve over binary symmetric channels (BSC) with
error rates e and d, respectively. She sends out the very same signal kA, which is received
as kB and kE . In the case of RR we further have that Alice sends the signal kA, but
corrects her key for the error received by Bob, i.e., kB is final key k.

For binary random input encoding it holds that H(KA) = H(KB) = 1, and the mu-
tual information IAB := I(KA;KB) = 1−Hb(e) is defined by the error probability on the
channel. KA, KB and KE are the binary correlated random variables at Alice, Bob and
Eve. The amount of information required to be exchanged during public discussion for
reverse reconciliation per channel use is |Q| ≥ H(KB|KA) = Hb(e). For the proof we
assume that optimal codes reaching the Shannon limit are used, i.e., equality holds for
syndromes communicated.

Thus for offloading, any external party taking over the syndrome decoding for n bit
keys based on a public H needs |se| = nHb(e) amount of information to correct for the
errors on the AB channel. Note here that se itself does not carry any information about
the key, yet still fully defines the error e.

We now prove the impossibility in two steps. In a first step (i) we calculate the
change in mutual information by offloading the computation of e by Alice, and therefore
publishing the error syndrome se. In (ii) we then discuss the influence of discussion
needed between Alice and Bob to compute the error syndrome se = sA − sB = kAH�−
kBH� in the first place, which clearly needs contributions from both peers.

Furthermore, we know that Eve is not allowed to learn enough information about k
to correct all errors through its conceptual channel, i.e., IAB − IEB have to be preserved
or at least be larger than 0 to leave Alice and Bob with a secure key.

In the beginning of the protocol we have IAB = 1−Hb(e) and IEB = 1−Hb(e+d −
2ed). After publishing se and computing e in step (i), the mutual information per bit
changes to I(i)AB = 1 and I(i)EB = 1−Hb(e+d −2ed)+Hb(e) = I(i)EA. This means that with
knowledge of se and implicitly e, Alice can correct for all errors with Bob but Eve is left
with some remaining uncertainty.

Now, to compute se = sA − sB, another nHb(e) bits have to be communicated in
advance between Alice and Bob (ii), which further impacts the knowledge of Eve about
the keys. However, after exchanging another nHb(e) bits about kB in public to compute
the error syndrome we still have I(ii)AB = 1 but I(ii)EA is also increased to 1 because I(i)EB +

Hb(e) = 1−Hb(e+ d − 2ed)+ 2Hb(e) > 1. Alice already corrected all errors in step
(i), the additional information does not further increase their knowledge. Contrary, for
Eve the information in step (ii) is useful and further increases the mutual information
with Bob up to the maximum of 1, which means Eve has full knowledge about the
agreed key. This is due to the fact, that the published information is about independent
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random variables KE and KB both contributing to the key agreement individually k =

kB = kA +e. In summary, Eve either learns the key or if step (ii) is encrypted it leads to
a negative key balance for QKD in the region of interest with d ≤ e.

Corollary 4.3.3 (Impossibility for quantum RR). For reverse reconciliation in the quan-
tum setting fully offloading syndrome decoding is not possible with positive key rate.

Proof. The quantum case is based on the same assumptions as the classical case and
derives by looking at the entropies. Bob and Eve are connected to Alice over a quantum
channel respectively, whereby I(KA;KE) ≥ I(KA;KB) holds. We also assume a sym-
metric system with H(KA) = H(KB) = 1, and consequently H(KA|KB) = H(KB|KA) as
well as H(KA|KE) = H(KE |KA), due to Bayes’ theorem. We also know from the defi-
nition of mutual information, that Eve has less uncertainty about the final key, i.e. Bob’s
key, than Alice H(KA|KE)≤ H(KA|KB). Additionally, because the entropy function is
concave we also know that H(KA|KE) ≤ H(KB|KE) ≤ H(KA|KE)+H(KA|KB). Due
to Slepian-Wolf’s theorem [273] we require Bob to communicate H(KB|KA) bits (e.g.
sB) to enable Alice to compute the error syndrome. Furthermore, we require Alice to
eventually publish H(KA|KB) bits (e.g. se) in order to fully outsource error correction
also assuming an optimal code. Contrary to forward reconciliation, both strings pub-
lished are useful for Eve, because the information about the error is independent from
the bits revealed about Bob’s key.

Thus, with access to this public information, Eve is now able to reduce its uncer-
tainty H(KB|KE) about the key, because

H(KB|KE)≤ H(KA|KE)+H(KA|KB)< 2H(KA|KB) ,

leading to I(KA;KE) = 1. In essence, after seeing se and sB, Eve can calculate sA =

sB − se and remove all uncertainty H(KE |KA)< H(KA|KB) about kA and subsequently
the final key k = kB.

However, even with this results in mind, it is unclear if weaker notions of offloading
would enable certain levels of partial or assisted secure outsourcing with positive key
rates. An impossibility result for partial offloading is hard to formalize, as in an edge
case no meaningful computation would be delegated to the untrusted server and the
entire error reconciliation would be performed as local operations. In the following
we argue that no obvious or natural approaches for reasonable (partial) delegation of
computations do exist.

We have seen, that to be left with a secure key after all steps, the outsourced error
reconciliation has to hide either se or sB with ITS properties. However, se cannot be
encrypted by masking, because the nature of the outsourced computation is to find a
minimum weight vector which fulfills eH� = se for a given se and a public H, which
always requires to also publish a target vector e which is the reference for distance
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minimization. Therefore, a simple solution is to encrypt sB during transmission with
previously acquired secure key material. This requires nHb(e) additional key bits lead-
ing to a reduced capacity of Cs−enc = Hb(e+d −2ed)−2Hb(e). Although the protocol
is secure and enables offloading of error correction, it does not lead to positive key rate
for the regions of interest where d < e, which is also shown in Figure 4.11.
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Figure 4.11: Secret key length balance (secret channel capacity) for reconciliation with
encrypted sB enabling error correction offloading to untrusted parties. Values are shown
for different e. Left of the dashed line is the interesting region d < e, which has negative
key balance and is therefore unfeasible.

To give more evidence that an encrypted IR protocol with positive key balance is
not achievable, we review most relevant and evident techniques to protect the key of
Alice or even sA in an ITS sense, to prevent Eve from learning Alice’ key or increase
I(KA;KE). In order to build an encrypted RR protocol, different techniques could be
used, however, the parity check matrix H is considered to be publicly known, which
limits the application of hiding techniques to the raw-key vector. Furthermore, the dis-
cussed solutions should not increase the computational effort to correct errors. We start
from the syndrome decoding equation se = sA − sB = eH� and discuss options to hide
sA from Eve, or to prevent from any increase in IAE by public discussion, e.g., by letting
Eve learn about the bit flip positions.

Encryption. If the goal is to hide sA in an ITS way given H is public, either se or sB

must be one OTP encrypted. sB can be encrypted when transmitted to Bob or already at
the key level, therefore ultimately hiding the key s B = (k+m)H�, where m is a random
masking value, which must also be securely transmitted from Bob to Alice. However,
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in the first case |sB|= nHb(e) bits are optimally required and in the second case number
of raw-key bits |k| are required, which is extremely inefficient. Above, we have already
shown that even the first case leads to negative key rates.

Unfortunately, encryption of se also cannot be used to hide bit error positions, be-
cause decoding requires a start vector to explore the vicinity to. Finding a vector close
to a random vector with public H leaks the bit flip positions e and therefore also se.

Permutation. An alternative method to hide e, se and thus sA would be by permuting
the raw-key bits before running RR with an unencrypted sB. Using a permuted key k =
Π(k) for the post-processing would render error correction information useless for Eve,
however, has to be random for each block and applied on both peers in secret. Thus, a
huge amount of shared key material is required given the permutation has to be selected
randomly from the n! possible ones, which requires O(n log(n)) bits to represent. In
the end, if the selected permutation has to be communicated over the public channel via
OTP the key balance is even worse than with syndrome encryption.

Padding. Padding the raw key with dummy bits could be used to hide error bits if
combined with permutation. This corresponds to the technique of mixing raw key with
dummy key bits. However, also in this case the positions and value of the dummy key
bits have to be agreed on secretly by Alice and Bob, which also requires too many bits.

Finally, additional errors could be introduced only at Alice. Because the remaining
error margin in practical CV-QKD is already very small, this technique can only hide
small amount of information and substantially increases the computational work at the
remote instance through the increased error rate.

In summary, all natural approaches for partially offloading RR with positive key rate
to a single server in general seem unfeasible.

4.3.6 Verifiability of Outsourced IR

Besides the challenge of efficient yet secure outsourcing of information reconciliation,
it is also important to have a means to efficiently check the correctness of the solution.
This prevents from actively malicious behavior of the remote instance doing the actual
work.

Fortunately, the problem of error decoding comes with an efficient algorithm to
check the result:

1. Check if eH� = se, abort otherwise
2. Check if the weight of e is indeed below the threshold of the code, abort otherwise.

The firsts check can be easily computed by conducting the vector matrix multipli-
cation and only requires m · n additions modulo 2 (XOR). The second check is even
faster. The Hamming weight of e must be smaller than the distance of the code. This
is guaranteed by the code used and the expected error rate from error estimation phase.
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Ultimately, in the final confirmation phase an additional check is done to assure the key
error probability, however, directly verifying the IR outsourcing step enables attribution
of errors to external servers and flexible reaction besides aborting the whole process.

In summary, verifiability immediately follows from the nature of the problem. This
makes protection against malicious remote servers possible with minimal effort and
does not require a full re-computation by Alice.

4.3.7 Multiparty Computation Based Outsourcing

In the previous subsections we presented an efficient solution for offloading direct rec-
onciliation (DR) to a single server and discussed problems for RR. Although relying
on a single untrusted server seems the most desirable use case, it is natural to ask how
efficient a multi-server configuration would be in cases where single server offloading
is not possible. If multiple servers are available, ITS multiparty computation proto-
cols (MPC) based on secret sharing—as introduced by Ben-Or et al. [72] and Chaum et
al. [73]—can be used to obliviously compute arbitrary functions on sensitive data, thus
they can also be used in CV-QKD because the inputs are kept private from the servers.
The respective class of MPC protocols with ITS security operate in the honest major-
ity setting, i.e., under the assumption that an adversary corrupts less than half of the
MPC computing nodes. Besides the non-collusion assumption, the protocols also rely
on secure channels, which can be assured by different means as discussed in use cases.

More concretely, in MPC a set of parties can jointly evaluate a function without
leaking any information to any of the participating parties, beyond what can be derived
from their own inputs and the computation result itself. Thus, MPC provides input
secrecy (or input privacy), i.e., no party learns the input values of any other party, and
correctness, i.e., the receiver of the result is ensured that the result is correct. In an
honest-majority setting with less than half corrupt servers, ITS secure MPC protocols
are among the most performant approaches for computing on encrypted data and achieve
practical performance in many application scenarios.

We therefore looked into the problem of MPC-based information reconciliation with
ITS security on the basis of secret sharing [100]. If IR is done in MPC, the decoding can
be done without learning anything about the error syndrome se (private input) or error
vector e (private output), but the parity check matrix can still be kept in clear. In this
model the peer (Alice for RR) offloading IR is encoding the error syndrome as private
input for the MPC system. The MPC system then obliviously computes the bit flip
vector by executing a distributed protocol realizing a privacy preserving LDPC decoder.
The result of the computation is secret shared among the MPC nodes after the protocol
run and sent back to the peer (Alice), who can reconstruct it.

To demonstrate the feasibility of the solution, we study the practical efficiency of
error decoding for low-density parity-check (LDPC) codes in an existing MPC frame-
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work and estimate the performance that can be achieved. To the best of our knowledge,
this is the first time this problem is considered: The only known related work has been
presented by Raeini and Nojoumian [281], who however only considered Berlekamp-
Welch decoding for Reed-Solomon codes.

In general, we distinguish two main types of message-passing algorithms for LDPC
decoding: bit-flipping algorithms and belief propagation [282]. The decoding approach
typically used in QKD is from the category belief propagation (BP), and specifically
uses sum-product mechanisms to update beliefs, an approach which works very effi-
ciently on plaintext data. Unfortunately, this approach is not well suited for direct appli-
cation in MPC. This is because the algorithm works on floating point numbers and uses
trigonometric functions in the belief update part, both being very inefficient in MPC.
Thus, to initiate the research topic we focused on bit-flipping algorithms (BF) first in
our implementation approach, because it seemed more promising, although they are
suffering from inferior performance in terms of information rate. BF algorithms have a
very simple structure and work extremely fast, e.g., if implemented in hardware.

The bit-flipping algorithm is a non-probabilistic hard-input hard-output decoding al-
gorithm and works on the Tanner graph representation of the code. The messages pass-
ing forth and back are all binary. The main structure of the BF algorithm is similar for
all variants. In a first step, the variable nodes send their current value to the check nodes.
Then the check nodes compute its value and feed back the result to the adjacent vari-
able nodes signaling if the check is valid. After each variable node received the check
bits from all connected check nodes the current guess for the code word is updated.
Different approaches exist to update the variable nodes and to the best of our knowl-
edge no optimized codes and methods for the particular case of QKD have been studied
or analyzed. Therefore, we selected one of the most prominent solutions—Gallager’s
Algorithm [283]—to demonstrate feasibility and applied it to (non-optimized) codes
available for BP algorithms.

We developed a MPC version for the bit flip decoding algorithm which is shown
in Figure 4.1, and where [[·]] denote variables which are processed in the encrypted
domain and are therefore kept confidential. The implementation assures that the code-
word itself as well as related information is only kept in secret shared form among the
parties and never revealed during computation. On a high level the algorithm performs
message passing in a Tanner graph defined by the parity check matrix H with binary
variables represented by public integers with values 0 and 1. We encode the bits on
integers, because ITS-MPC work on algebraic circuits with additions being almost for
free compared and multiplications requiring interactions between nodes. This allows us
to quickly count the number of ones in a vector of bits and also enables exclusive-or
over vectors by reducing modulo 2 after summing them up. The algorithm comprises 4
major steps which are iteratively repeated until a valid codeword is found or maximum
of iterations is reached:



184 Chapter 4: SECURING DATA IN TRANSIT

• In the first step, variable nodes pass their values to the check nodes where they
are combined to compute the check value, which is 0 when the check is fulfilled
and 1 if not.

• In the second step, the values of the check nodes are passed back to the variable
nodes where they are aggregated, i.e., the number of check nodes not satisfied are
counted for each variable node.

• Thirdly, the algorithm terminates if all check nodes are 0.

• Finally, the algorithm computes which variable nodes have to be flipped. Here
we used Gallager’s Algorithm B [283] in our implementation, which basically
compares the counts computed in step two against a threshold value to decide
which bits are flipped. Although the threshold value to compare to is public, the
comparison has to be done obliviously to protect the variable node state as well
as the bit flip information.

From a performance point of view, all steps except the last one are extremely fast in
MPC, given that additions are only local operations and do not need any communication
among the MPC peers and the reductions in step 1 can be done in parallel. The oblivious
comparisons necessary to decide for each bit if it has to be flipped or not are the costly
operations and are limiting the throughput in a MPC implementation. However, modern
highly optimized MPC systems like MP-SPDZ2are able to achieve good performance
even for this task as the results in Figure 4.2 show. This results indicate that MPC-based
real-time decoding for QKD is possible.

Clearly, to achieve the best performance, optimized codes must be studied and de-
signed in tandem with MPC protocols [8]. Also, BP based alternatives to sum-product
decoding should be studied to see how fast MPC versions of belief propagation meth-
ods can be pushed. Additionally, for CV-QKD approximation approaches combined
with multiedge-type codes [272] seem promising for fast MPC implementation. Nev-
ertheless, our experiment already shows first results and paves the way for practical
rates.

Finally, optimization-based decoding would also be possible as an alternative to
message passing algorithms, i.e., by leveraging linear programming (LP). In LP de-
coding [284, 285] the maximum likelihood decoding problem is formulated as linear
program. Thus, it is possible to decode a symbol by solving an associated LP with
conventional approaches, e.g., with a simplex algorithm where also MPC versions ex-
ist [214]. However, for the QKD use case with block sizes k in the range of 104 to
106 bits and high error rates, the formulation would lead to a relatively large simplex
tableau. Very low rates can be expected for this solution approach given the measured
performance for MPC-based LP solving reported in [10].

2https://github.com/data61/MP-SPDZ, accessed 2023-01-10.

https://github.com/data61/MP-SPDZ
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Algorithm 4.1: MPC version of bit flip decoding with allager’s Algorithm B
Input: [[c]] being the codeword to correct as list of 0/1 bits [[ci]] stored in

secure integer
h representing H as adjacency list of a Tanner graph with hi being a

index
list of ones in row i of H
t is a vector containing the number of 1s of each column in H
n,k, p as code parameters
itermax iteration limit

Result: [[c]] the corrected codeword after updating
1 iter ← 0
2 while True do
3 iter ← iter+1

/* step 1: calculate sum at check nodes */
4 for row ∈ h do
5 [[vi]]← ∑i∈row [[ci]]
6 [[vi]]← [[vi]] (mod 2)

/* step 2: count failed checks for every code bit */
7 [[ f ]]← [0 . . .0]
8 for i ← 1 to p do
9 for node ∈ hi do

10 [[ fnode]]← [[ fnode]]+ [[vi]]

/* step 3: if all checknodes are 0 then exit */
11 [[ fsum]]← ∑i∈{1,..,n}[[ fi]]

12 if fsum = 0 or iter > itermax then
13 break while

/* step 4: calculate and apply bit flip vector */
14 lvl = 1
15 while True do
16 for j ← 1 to n do
17 [[b j]]← [[ f j]]> �(t j/(lvl +1))�
18 [[bsum]] = ∑[[bi]]
19 if bsum = 0 then lvl ← lvl +1
20 else
21 [[c]]← [[c]]+ [[b]]
22 break while
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block size bit width circuit depth time data rounds bitrate@10iter
[s] [MB] [bps]

1000 4 9 0.06 3.0 65 1571
1000 8 11 0.09 3.8 80 1116
10000 4 9 0.11 4.4 85 8932
10000 8 11 0.14 4.7 95 7054
100000 4 9 1.2 44 805 8354
100000 8 11 1.4 47 846 7117

Table 4.2: Performance comparison of MPC-based oblivious bit flip vector calculation
as described in algorithm 4.1 (step 4) for LDPC decoding. The measurements were
done in MP-SPDZ with sharmir.sh for three nodes with different block sizes and bit
width of secure integer, circuit depth is then the multiplicative depth of the MPC cir-
cuit as processed by MP-SPDZ VMs and time is the time to compute the circuit. Data
is the amount of information exchanged over the network during rounds of communi-
cation required by the VMs as reported by MP-SPDZ. Bitrate@10iter is the estimated
throughput which can be achieved based on the measurements. The values show that
the kilobit per second regime is feasible even without optimizations and block level
parallelization.

4.3.8 Offload Privacy Amplification

Privacy amplification (PA) is another important step in the in the post-processing stack,
cf. Section 4.1.2. It also requires a public channel for communication and is typically
based on application of a randomly selected hash of a universal hash family thus achiev-
ing information theoretical secure randomness extraction. PA is used to extract the mu-
tual information between Alice and Bob such that the adversary Eve is left without any
information, except for a negligible error which can be made arbitrarily small.

Although the underlying matrix-vector multiplication seems rather efficient, because
of finite key effects and its influence on the secure key rate large block length have to
be used [280]. Therefore, also this step is computationally very demanding [262] and
solutions to entirely offload this task from the device, or at least from the trusted area
within a device, would be desirable.

In a PA protocol, Alice randomly selects a hash from a family of universal hashes
with the right compression rate—based on Eves potential knowledge on the key—and
communicates the selected function publicly to Bob. Both peers then apply the same
function on the local reconciled key and arrive at the final shared key. The main property
of a universal hash family is that they guarantee a low number of collisions even if the
input is chosen by an adversary.

Because the block length in QKD is large, the complexity of the universal hashes
is also relevant. One family of strongly universal hashes is given by multiplication of
the raw key with a random matrix which would need a lot of randomness. Neverthe-
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less, to reduce the randomness needed, a Toeplitz matrix can also used for PA, which
requires only n+m random bits compared to the n ·m for a random matrix. The use of
the Toeplitz matrix also reduces the computational effort for PA, because the diagonal
structure also enables the use of a number theoretical transform for faster processing of
the vector matrix product.

Assume that k 
A = k 

B = k is the reconciled key at Alice and Bob, respectively, with
length n and k is the final keys of length m. Then PA works as follows:

1. Alice randomly generates a uniform string of length n+m−1 defining the Toeplitz
matrix T and sends it to Bob.

2. Alice computes k = k T as final key.
3. Bob receives T from Alice and also computes his key as k = k T.

Thus, both parties do the same vector matrix multiplication to shrink the identical keys
from n to m bits, where the ration n/m for CV-QKD is computed as in [280] and for
DV-QKD as shown in [275].

If we want to offload PA, we would have to offload the core vector matrix multipli-
cation which reduces the n raw-key bits to m final bits. The ratio is already known at the
beginning of the PA step, but the Toeplitz matrix has to be generated for each block and
exchanged in clear, which makes offloading a problem. Encrypting the PA matrix is not
an option, it can be immediately seen that the key balance is negative if the encryption
key for the matrix is longer than the raw key processed. Thus, hiding the input/output
keys while still offloading the computation is not feasible in a single sever model.

However, if multiple servers are available, a very efficient protocol is possible, by
offloading to two or more severs in a non-interactive way, i.e., without requiring the
servers to communicate. The protocol is shown in Figure 4.12. The peer shares the raw
key into n parts with a linear secret sharing scheme—working over F2 or a larger prime
field Fp—, and sends them to the servers (one share per server). The servers compute the
[k] = [k]T where [] denotes the sharing of a value and the multiplications and additions
are done on the shares without interaction between the servers. The linearity of the
sharing is used here. The result is then sent back to Alice and reconstructs to the final
key. For the case of prime fields Alice additionally reduces the result vector mod 2.

The security of the protocol against passive adversary is governed by the security
of the underlying secret sharing scheme: Because the parties do not interact with each
other but only communicate with the peer, they cannot learn any information about the
final key as long as an ITS linear secret sharing is used, e.g., additive or Shamir secret
sharing [100]. The computational effort of the solution is the same for every server
which would also be the same as for local computation.

Unfortunately, the REM-PA protocol does not provide efficient verifiability beside re-
computation or spot checking, and therefore efficient protection against active attackers
cannot be easily achieved during the PA phase. However, if the confirmation round
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Protocol REM-PA:

QKD-Peer Q:

1. Generates a sharing of [k] by calling share of a linear secret sharing algorithm
2. Sends shares [k]i to Party Pi
3. Receive enough shares [k] i to reconstruct k 
4. Reduce elements of vector k mod 2
5. Return k 

MPC-Party Pi:

1. Receive share of key string [k]i
2. Calculate [k ]i = [k]iT with conventional PA algorithm
3. Send [k ]i back to Q

Figure 4.12: REM-PA Protocol

is shifted after PA, it will detect errors in the keys and prevent from erroneous keys by
aborting the protocol. Thus, it can also detect malicious behavior of the external servers,
but not directly attribute the errors to them. Additionally, a secure channel is required to
distribute the shares to the severs. However, contrary to the MPC based LDPC decoding
not interaction between servers is required.

4.3.9 Use Cases

To answer why offloading computationally intensive tasks is interesting at all, we present
the expected benefits in general and discuss advantages for certain networking scenar-
ios.

The overall goal which can be achieved are savings in energy and/or cost at the
device side beneficially impacting the cost-effectiveness of the end-user equipment.
Therefore, if the devices are simpler and require less computational power, the cost
savings could be substantial, e.g., in cases where the user buys the equipment. Com-
pared to data center environments, the devices are also less energy-efficient for running
computation-intensive tasks. If this part can be offloaded to a more efficient data center
also the overall operational cost can be lowered in addition. Therefore, dedicated cloud
solutions which further pool information reconciliation for a larger amount could fur-
ther help to reduce energy consumption. By regularly updating the external hardware
resources, the system can benefit from Moore’s law and the continuous drop in cost of
compute resources. They can even be shifted flexibly between different locations and
data centers to optimize energy usage and cost if more offerings are available. In gen-
eral, it would be even possible to leverage public cloud services for REM-IR, which
requires no trust assumption at all about the environment. Because of these arguments,
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we think the ability to offload and relocate computationally intensive tasks also leads to
higher energy efficiency of compute resources.

Additionally, it could also lead to more flexibility on the QKD level, i.e., QKD as a
service. The virtualization of the computationally expensive post-processing tasks could
be convenient in the future. Not all optical network units (ONU) have access to QKD
functionality but the same hardware may be used for coherent passive optical networks
(PON) and CV-QKD [286, 287]. So, we may provide QKD to them by just allocating
additional processing resources while also switching their software-defined transceiver
into QKD mode. Furthermore, networking equipment is installed for longer times and
not often updated. This is even more true for high-cost security-certified equipment, be-
cause upgrading security-certified equipment is a cumbersome and costly process which
typically requires re-certification. Being able to update certain non-critical components
without needing to exchange or re-certify the core QKD device hardware can greatly
simplify the upgrade process.

To show how the advantages relate to concrete use cases we quickly mention three
examples.

Access networks. In the case of access networks, we find constraint resources (com-
puting energy) and the network units must be low-cost because they are the driving
cost factor, especially, because only very low key rates are typically required (AES key
refreshing). If computational resources are pooled in such a scenario, cost can be sub-
stantially reduced, not just in case of a reduced user subscription ratio, but also due
to time sharing of centralized CPU resources. Furthermore, because the optical part is
low energy the dominant cost and energy factor is when a CPU is partially idle, which
should be avoided.

Satellite communication. Satellites have a particularly long lifetime (20-30 years)
and have to be remotely operated and maintained. They also have limited access to
energy resources and reducing energy consumption is of paramount interest. This is
especially true if low-cost (mobile) earth stations should be supported or even for inter
satellite links. Offloading post-processing can make satellite transceiver possible and
increase the connectivity for individual satellites.

Integrated COTS Hardware. Finally, beside the evident advantages of outsourcing
protocols like REM-IR to data centers, the concept can also be interesting when applied
within the device. QKD devices are complex systems [49] and comprise many differ-
ent components which makes security auditing and certification very hard. To achieve
strong security guarantees only trustworthy hardware and software can be used to pro-
cess key material in plaintext [58]. Furthermore, to prevent from side channel attacks
and backdoors it would be desirable to reduce the number of trusted components and the
complexity of the secure environment in a device as good as possible. Therefore, if the
components processing sensitive key material can be reduced, this results in a smaller
attack surface, simplifies security analysis and helps in the certification process. The
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MPC-based protocols presented can be used for this purpose, i.e., to reduce the trusted
environment on the device architecture level with all its benefits. Within a device it is
also feasible to realize the secure channels required in the MPC model. Thus, it would
allow for the integration of COTS hardware in QKD systems only processing keys in
encrypted form.

4.4 QKD Authentication with Non-ITS MAC

During our work on timing synchronization we also discovered a new attack on an spe-
cific authentication method developed at AIT and used on the communication channel.
It was originally proposed in [64] to save key material and make QKD more efficient
by leveraging non-ITS message authentication as sub-protocol. The protocol was de-
veloped to improve the net key balance for QKD by reducing key consumption for
authentication of short messages, but partial attacks emerged after publication [288, 55]
and made some weaknesses evident. However, it was only during this thesis that the
author developed a new attack strategy which led to a full break of the original protocol
and variants thereof. The full analysis was presented in [14] where all possible protocol
scenarios where discussed. Before we present the attack we recap the non-ITS authen-
tication protocol and also introduce the BB84 protocol with post-processing in more
detail.

4.4.1 Overview of Non-ITS MAC Protocol

The standard cryptographic approach ensuring authenticity of communication messages
against malicious attackers is to use a message authentication code (MAC) [289]. A con-
venient class of MACs are systematic MACs which replace the original message with a
concatenation of the message itself and an additional tag which is the image of a keyed
hash function applied to the message. It is well-known that Strongly Universal2 (SU2),
and more generally Almost Strongly Universal2 (ASU2) hashing is an ITS primitive
that can be used to calculate systematic MAC tags. This is also the standard method for
channel authentication in QKD.

The authentication mechanism proposed in Ref. [64] aimed to consume less key than
ASU2 authentication. The intended goal was a positive key balance for the combination
QKD plus authentication even in realizations that use (relatively) short blocks in the
post processing step. Note that later experimental progress has made these objectives
not so relevant, as short key blocks are no longer necessary from an implementation
perspective [290]. Still, a complete security analysis of the authentication mechanism
of [64] is intriguing from a theoretical point of view as the mechanism has interesting
properties not shared by any of the methods mentioned above.
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To start with, we summarize the proposal and introduce some notation. The basic
principle of the protocol is depicted in Figure 4.13. The proposal relies on a two-step
hash function evaluation: t = gK(m) := hK( f (m)), where f : M → Z is a publicly
known hash function and hK : Z → T belongs to an SU2 hash function family H . Here,
M is the set of messages to be authenticated, Z is an intermediate set of strings, and T
is the set of tags with |M | � |Z|> |T |.

Public𝑀 𝑍 𝑇Secret

𝑚𝐴 𝑧𝐴 𝑡𝐴
𝑓 ℎ𝑘

𝑀 = 2𝑚 𝑍 = 2𝑟 𝑇 = 2𝑛𝑚 > 𝑟 > 𝑛
Figure 4.13: Principle of non-ITS MAC algorithm as proposed in [64]. An intermediate
public hash is used first to compress message and subsequently input in a ITS secure
MAC based on universal two family of hash functions.

The proposed two-step authentication method is not information-theoretically se-
cure, because a known classical hash function is used within the protocol, but it was
argued that nevertheless it does not compromise the security of QKD. The security of
the above protocols is informally given by the following two properties.

Insertion of messages is ruled out. Assume that Eve attempts to calculate or guess
the tag for a fixed message mE that she wants to insert. In that case she has a success
probability of 1/|T | (irrespective of her computing power). This is because the key K
which identifies the SU2 hash function is not known to her. Thus, the authentication
mechanism is (first-)preimage resistant, i.e. knowledge of the authentication tag alone
does not allow to find messages yielding the same tag.

Substitution with given messages is ruled out. Let us further assume, Eve has
intercepted a (valid) message-tag pair (mA, t) from Alice and wants to substitute it with
her fixed message mE and some tag. Then Eve’s chances increase slightly because she
now has access to the intermediate value f (mA), and can check if f (mA) = f (mE). If
there is a collision, Eve knows that (mE, t) is a valid message-tag pair and can just send
this, otherwise she guesses the tag as above. The total probability of success is now
bounded by the guessing probability plus the collision probability, and assuming that
mA is random to Eve and that f is a good hash function, the collision probability is low
(for details see [64]).
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So this two-step authentication works well in a situation when Eve is given a fixed
message mE to generate the tag for. One immediate consequence is that Eve cannot
perform the straightforward MITM attack with significant success probability since she
would need to generate tags for messages mE from her devices without knowledge of
K, for which case the above bound applies.

The weakness. However, the protocol also has a weakness which turned out to be
useful in breaking the approach. One should note that using the intercepted message-
tag pair (mA, t) and enough computational power, Eve can in principle search for other
preimages of t under f . If she can find (at least) one message m̃E such that f (mA) =

f (m̃E) then hK( f (mA)) = hK( f (m̃E)) and therefore (m̃E, t) is a valid message-tag pair
for any key K. She can now replace mA with m̃E with success probability of 100%. Now
the question is if this (one of these) m̃E can be used in place of the message mE. It would
seem that, if Eve strictly follows the appropriate QKD protocol (random settings, best
possible bit error rate, . . . ), this is not possible.

However, Eve is not forced to follow the precise requirements of the QKD protocol
[291]; she only needs to make it seem to Alice and Bob that she does so. For example,
Eve does not need to use random settings (e.g. preparation bases and raw keys), or
even correctly send all settings she used. If it helps her, she can use a fixed sequence
of settings or report other settings for some qubits than the ones actually used. This
constitutes the basis for a sophisticated MITM attack that can break simplified QKD
protocols. However, in this section we propose a different approach which targets the
quantum transmission together with the sifting phase and achieves a full break with high
probability.

4.4.2 Generic BB84 with Immediate Message Authentication

For our analysis we state a typical BB84 protocol also falling in the category of prepare-
and-measure protocols. Each individual message is authenticated by the method laid out
before. It is, however, straightforward to apply the attack discussed below to the case
of an entanglement based protocol. As usual, Alice and Bob must provide for time
synchronization between the state preparation and the measurement.

It is implicitly assumed, that on receiving messages Alice and Bob only accept valid
message tag pairs of incoming messages and abort otherwise. In general, the BB84 pro-
tocol can be divided in two separate parts: (S) quantum state transmission and sifting
which is heavily dependent on the quantum level implementation, and (P) post pro-
cessing consisting of more generic classical building blocks like error estimation, error
correction, confirmation, and privacy amplification. For our attack we only have to in-
terfere in (S) and rely on correct operation of part (P) which takes the result of (S) (i.e.
the sifted keys) as input.
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Alice

Bob

dA

bA

ρ

bB

(S1):
ρA

ACK

(S2):
mack, t1

(S3):
bA, t2

&

&

(S4):
bA=B, t3

sA

sB

Figure 4.14: BB84 Protocol (Quantum exchange and sifting only). Time flow is from
left to right. Single (double) lines represent classical (quantum) communication. Local
protocol actions are depicted by boxes: ρ depicts state preparation, the indicator is a
quantum measurement device, the ACK box denotes that Alice waits for Bob’s message
until she continues with the protocol, = denotes the calculation of identical bases, &
denotes the filtering of signals (in different bases).

The basic protocol flow for the BB84 quantum state transmission and sifting are
shown in Figure 4.14. To run the protocol Alice and Bob have to be given three pre-
shared keys (K1, K2, K3) to authenticate messages on the classical channel, i.e., mes-
sages (S2), (S3), and (S4). Thus, it is assumed that all messages are protected by the
respective authentication algorithm. The relevant protocol phase comprises the follow-
ing steps:

(Sa) Alice creates two random bit strings of length N: her raw key dA (data bits), and
the bases string bA (preparation bases), dA,bA ∈r {0,1}N . For all pairs of bits�
dA

k ,b
A
k

�
Alice generates the corresponding quantum states ρA

k ∈ {ρ0,ρ1,ρ2,ρ3}.
Using quantum channel Q , Alice sends the quantum state ρA =

�N
k=1 ρA

k (“string”
of all ρA

k ’s) as (S1) to Bob, i.e., (S1) := (ρA)

(Sb) Bob creates a random bases string bB ∈r {0,1}N . Bob measures ρA in bases bB

and obtains dB ∈ {0,1,empty}N , where empty corresponds to no measurement
result at Bob, e.g., due to absorption in the channel, or the imperfection of the
detectors. For all k with dB

k = empty, Bob sets bB
k = empty. Using the classical

channel C , Bob sends an acknowledgement message (S2) to Alice, with, (S2)
:= (mack,gK1(mack))

(Sc) Alice waits until she has received (S2), ensuring that the measurements have been
finished before bases exchange is performed. If correctly received, Alice sends her



194 Chapter 4: SECURING DATA IN TRANSIT

bases string with authentication tag to Bob using C , i.e. (S3) := bA,gK2(b
A).

(Sd) After receiving (S3), Bob calculates a bit string bA=B, such that bA=B
k = 1, if

bA
k = bB

k , and bA=B
k = 0, otherwise, for 1≤ k ≤N. Thus, if Alice and Bob prepared

and measured ρA
k in the same basis bA=B

k = 1, and bA=B
k = 0 if either the bases

were different, or Bob did not measure a signal. Additionally, Bob removes from
dB all bits dB

k where bA=B
k = 0 and obtains sB. Finally, using C , Bob sends the

information about selected bits as (S4) to Alice, i.e., (S4) := bA=B,gK3(b
A=B)

(Se) Upon receiving (S4), Alice removes from dA all bits dA
k where bA=B

k = 0 and
obtains sA.

After the steps Sa-Se the post processing steps are executed as follows: error esti-
mation, correction and confirmation information is computed by Alice and sent to bob
(Pa), Bob corrects key for error and confirms it before sending back the real error rate
(Pb), Alice selects an adequate privacy amplification function, sends it to Bob and also
applies it locally (Pc), and Bob also applies the privacy amplification function to the
local key to arrive at the same key as Alice with high probability.

4.4.3 Man-in-the-Middle Attack

In our initial version of the attack, we leverage a rather simple idea to attack the quan-
tum communication and sifting phase. Besides performing a conventional man-in-the-
middle attack, we introduce the concept of an approximate attack to break one of the
security assumptions from the original protocol. In fact, we argue that it is possible for
an unbounded adversary Eve to search for an approximate message leading to the same
tag in the first stage hashing step which is useful in later steps and eventually lead to
common keys with Alice and Bob respectively.

Figure 4.15: Overview of subsequence selection method. After the attack on the quan-
tum (optical) channel Eve arrives at a state where she shares a key with Alice fully
known to her and a different but smaller key with Bob. To successfully attack the proto-
col Eve has to send Alice a new sifting message selecting a subsequence corresponding
to Bobs key. Eve succeeds if she can find a useful (approximate) collision for in the first
stage non-ITS MAC of the authentication protocol.
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The basic pattern of the attack is to learn all events from Alice by measuring after the
basis have been revealed and to force Alice and Bob to agree on a common key although
they did not work with the same qubits. To do so, Eve has to send random signals to
Bob first in order to provoke Alice to release her bases after Bob acknowledged the
measurements. After the attack on the quantum channel Alice knows the signal sent
by Alice through its own measurement and the bases measured by Bob from the sifting
message of Bob. The main task of Eve is then to exchange the sifting message of Bob to
fit own needs, i.e., to remove all events where Eve and Bob had different bases. If Eve
manages to make Alice only keep event where Eve and Bob where in the same basis, she
will learn the key without being noticed and successfully break the protocol. To make
this attack possible, Eve has to be able to find valid collisions close to messages she
would like to exchange, and she must be able to extract a subsequence/substring from
the key shared with Alice to map the key shared with Bob. The subsequence approach
is essential for this attack and is shown in Figure 4.15.

In the following we describe the attack for the specific protocol introduced as also
depicted in Figure 4.16:

(Sa) Alice performs step (Sa) of the protocol (prepares ρA and sends it in (S1)).
(Sa’) Eve intercepts (S1) from Alice and stores ρA in her quantum memory, e.g, simple

delay fibre. Then Eve performs exactly as Alice in step (a) of the protocol: Eve
determines random dE and bE, prepares a state ρE and sends it in (S1’) to Bob.

(Sb) Bob performs step (Sb) of the protocol measuring the state Eve has prepared, ρE,
instead of ρA, as in the protocol (in the following denoted as ρA → ρE). Bob also
sends the acknowledgement (S2) to Alice now that he measured a signal.

(Sc) Alice performs step (Sc) of the protocol. She sends (S3).
(Sc’) Eve intercepts (S3), i.e. bA and the corresponding tag t2 := gK2(b

A), and measures
her quantum memory in bases bA and obtains an identical copy of Alice’s raw key,
dA.

(Sc”) Eve determines b̃E (e.g. using an exhaustive search), such that the intercepted t2
validates b̃E and dH(b̃E,bE) is small (cf. Corollary 4.4.2), and sends (S3’) to Bob.

(Sd) Bob performs step (Sd) of the protocol based on (S3’) received (bA → b̃E, bA=B →
bB=E), obtains sB and sends message (S4).

(Sd’) Eve intercepts (S4), i.e. bB=E and the corresponding tag t3 := gK3(b
B=E). Eve

removes from dE all bits dE
k where bB=E

k = 0 and obtains sE↔B ≈ sB (in general
sE↔B �= sB because Eve had to send b̃E instead of her true basis choice bE in step
(Sd”)).

(Sd”) Using the algorithm detailed in 4.2, Eve searches for a subsequence of dA that
coincides with sE↔B and calculates bA=E such that in Alice’s next step, (Se), Alice
would create sA ≈ sE↔B as her sifted key. Typically Eve will have to allow for
O(

√
n) bits that will be different between sA = sE↔A and sE↔B (see Lemma 4.4.3).

(Sd”’) As in step (Sd”) Eve determines b̃A=E with small Hamming distance to bA=E,
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this time validated by t3 obtained in step (Sd’), calculates the actual sifted key of
Alice, sE↔A ≈ sE↔B and sends (S4’) to Alice.

(Se) A performs step (Se) of the protocol (bA=B → b̃A=E) and obtains sA = sE↔A.

After interfering on the sifting stage, Eve has almost reached her goal, as now
sA ≈ sE ≈ sB holds. In the following steps of the protocol Eve only listens to Alice’s
messages on the classical channel for information reconciliation (e.g. syndrome for er-
ror correction), confirmation and privacy amplification to correct and check her sifted
key sE and privacy amplify it to her final key KE which is identical to Alice’s and Bob’s
key, i.e. KA = KE = KB. Thus, with Eve knowing all bits of the generated key she
succeeded in fully breaking the protocol. Furthermore, Alice and Bob are not able to
detect the attack and abort key generation.

Alice

Eve

Bob

dA

bA

ρ

dE

bE

ρ

A1

bB

(S1):
ρA

(S1’):
ρE

ACK

(S2):
mack, t1

&

(S3):
bA, t2

(S3’):
b̃E, t2

A2

&

(S4):
bE=B, t3

(S4’):
b̃A=E, t3

sA

sE

sB

Figure 4.16: Attack on Protocol BB84Time flow is from left to right.

As shown in [14], the attacks can be adapted to all variations found in the field
ranging from swapping roles between Alice and Bob in the post-processing or delaying
authentication of certain protocol steps.

4.4.4 Success Prob. for Approximate and Correlation Attacks

After presenting the main ideas of the attack and a concrete attack strategy we now show
that the attacks are practical in the sense that approximate messages and subsequence
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exist. The essence of the attack is to intercept a valid message-tag pair (sent by Alice
or Bob) and—using large computational resources and/or leveraging weaknesses of the
public hash function algorithm—find further preimages of the tag (messages that hash
to the same hash value as the intercepted message) that are useful for the eavesdropper.
Additionally, it must be feasible to find a subsequence in a given random sting to map a
shorter different key.

4.4.5 Finding Hash Collisions in a Set of Messages

Assume that Eve has intercepted a message-tag pair (mA, t) from Alice. The following
lemma gives a lower bound for the probability that (under a mild assumption) a set M of
messages contains at least a single message mE that collides with mA, i.e. hK( f (mE)) =

t.

Lemma 4.4.1. Let us assume that f maps all messages in M randomly onto Z. Then
the probability that at least one of the messages in M is validated by the given tag
t = hK( f (mA)) is

P succ
coll = Pr

�
∃mE ∈ M : hK( f (mE)) = t)

�
> 1− exp

�−|M ||Z|−1� .
Proof. By assumption, the probability that f maps any (randomly chosen) message m
of M onto any fixed value z of Z is 1/|Z|:

m ∈R M ,∀z ∈ Z : Pr{ f (m) = z}= 1/|Z|. (4.2)

Applying hK to f (m) and z in the argument of Pr (which potentially increases the value
of the probability), setting z = f (mA), and using t = hK( f (mA)) we obtain

m ∈R M : Pr{hK( f (m)) = t} ≥ 1/|Z|. (4.3)

Consequently, the probability that t authenticates at least one message of all |M | differ-

ent messages in M is at least 1− �
1−|Z|−1�|M |, and using that (1− 1/n)n < e−1 for

n > 1 finishes the proof.

If desired, 1/|Z| can be replaced by any lower bound on the probability to allow for
non-uniform distributions. Since no assumptions on the computational power of Eve
are imposed, she will be able to find with probability P succ

coll such an mE. Note, that
|M |= |Z| is sufficient to get P succ

coll > 0.63.

4.4.6 Finding Hash Collisions with Small Hamming Distance

Assume that Eve has intercepted a message-tag pair (mA, t) from Alice. The following
corollary of Lemma 4.4.1 states that (under a mild assumption) for any fixed message
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mE, that Eve would like to send, there exists with probability almost 1 a message m̃E,
such that (i) m̃E is almost identical to mE, i.e. m̃E has small Hamming distance to mE,
and (ii) (m̃E, t) will be accepted as authentic, i.e. hK( f (m̃E)) = t.

Corollary 4.4.2. Let B be the closed ball of all messages m having a Hamming distance
to mE not exceeding w:

B =
�

m : dH(m,mE)≤ w
�
,

and let us assume that f maps all messages in B randomly onto Z. Then the probability
that at least one of the messages in B is validated by the given tag t = hK( f (mA)) is

P succ
coll = Pr

�
∃m̃E ∈ B : hK( f (m̃E)) = t)

�
> 1− exp

�−|B||Z|−1� .
For simplicity we can loosen the bound and replace |B| by

� L
w

�
< |B|, where L is the

length of the binary message mE.

Proof. The proof follows from Lemma 4.4.1 by setting M =B . Finally, |B|=∑w
k=0

�L
k

�
>� L

w

�
.

If desired, 1/|Z| can be replaced by any lower bound on the probability to allow for
non-uniform distributions. Since no assumptions on the computational power of Eve
are imposed, she will be able to find with probability P succ

coll such an m̃E. For typical
parameters, e.g. |Z| = 2256, and L = 212 (213, 214, 215, 216, 217), a Hamming distance
w = 32 (28, 25, 22, 20, 19) is sufficient to reach a success probability of 99.9%.

4.4.7 Subsequence Problem

Eve is given two fixed bit sequences, sE↔B (sifted key that Eve wants to achieve) and
dA (the raw key of Alice). Her goal is to find a subsequence of dA that coincides with
sE.

Algorithm that finds a subsequence. First we give a simple algorithm that takes
two sequences s = s1|s2| . . . |sm, S = S1|S2| . . . |Sn as inputs and returns the index set
J = { j1, . . . , jm}= { ji : S ji = si} if s is a subsequence of S (denoted s � S).

Probability for finding a subsequence in a random sequence. We assume that
both sequences consist of i.i.d. Bernoulli trials with p(0) = p(1) = 1/2 and calculate
the (success) probability that s � S.

s � S iff S is of the form

S = s̄1| . . . |s̄1|s1|s̄2| . . . |s̄2|s2| . . . |s̄m| . . . |s̄m|sm|x1|x2| . . . . (4.4)

Here, s̄ j denotes the negation of s j (written above as s j to improve readability), while
each xi can independently take value 0 or 1. All sequences s̄ j| . . . |s̄ j are optional. Let S
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Algorithm 4.2: Find Subsequence (s, S)
Input: two non-empty binary sequences K and S.
Output: index set J if K is a subsequence of S, else /0.

1 i ← 1, j ← 1, m ← length(s), n ← length(S), J ← /0
2 do
3 if Ki = S j then
4 J ← J ∪{ j} //store position
5 i ← i+1 //compare next bit of s

6 j ← j+1 //compare next bit of S
7 while (i ≤ m and j ≤ n) //neither end of s nor end of S reached
8 if i ≤ m then return /0 //end of s not reached, but end of S reached
9 return J

be the number of different valid sequences, i.e. sequences S, that contain s as a subse-
quence. Obviously S does not depend on s, but only on m and n. To calculate S we can
therefore choose s to be the all zero sequence of length m. Consequently, S is equal to
the number of different binary sequences of length n that contain at least m zeroes. The
success probability

Prob{s � S}= S/2n = 2−n
n

∑
l=m

�
n
l

�
. (4.5)

Application to Eve’s attack. Note that Eve wants to find the sifted key sE↔B in Al-
ice’s raw key dA. If both bases are used with equal probability (as in standard symmetric
BB84), then m ≈ n/2. Obviously,

Prob{s � S}> 1
2
⇐ m ≤ �n/2�. (4.6)

However, it is not necessary, that s is an exact subsequence of S. We can allow for
some errors that will be removed during the subsequent error correction step. Using
Hoeffding’s inequality (Theorem 1 in Ref. [292]) we can give a non-tight (but exponen-
tial) lower bound on Prob{s̃ � S} if we allow for approximately k errors in the resulting
subsequence s̃:

Prob{s̃ � S} ≥ 1− exp
�
−2k2

n

�
⇐ m̃ = �n/2�− k. (4.7)

Here, only m̃ bits of s form a subsequence of S. For moderate values of k this probability
reaches almost unity.
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4.4.8 On the Practicality of the Attack

Finally, we are able to give some concrete figures for attacking the presented BB84
protocol with typical parameters as used in our various experiments.

Attacking the sifting stage—hiding in the noise. Let us assume that during the
sifting stage the legitimate parties will exchange messages that contain one bit per prepa-
ration/measurement basis (time slot). Let us assume further that Eve can successfully
attack the protocol (as discussed above), if she can substitute such a message, say mA,
with a sifting message of her choice, say mE. From Corollary 4.4.2 it follows that if
Eve replaces mA with m̃E instead of mE, she will introduce at this step (at most) an
additional error ε = w/L≈ 0.78% (0.34%, 0.15%, 0.067%, 0.031%, 0.014%) (with pa-
rameters from above; in the worst case each modified basis bit could result in one flipped
sifted key bit). This strategy allows Eve to hide the substitution of sifting messages in
the usual noise on the quantum channel, since the following error correction step will
also remove these small additional deviations. Obviously, the larger the message length
L, the easier Eve’s task is.

Correlating the sifted keys of Alice and Bob. Assume for the moment that Eve has
intercepted the quantum bits from Alice and has saved them into her quantum memory.
Assume further that she managed to fool Alice, so that Alice announces her the corre-
sponding preparation bases. Then Eve can measure the quantum bits and get Alice’s
raw key.

The strongest of the presented attacks is based on the fact that once Eve knows the
raw key of Alice, she can by using a modification of Bob’s sifting message ensure with
high probability that the complete sifted key of Alice will be almost identical to that of
Bob (cf. description of Protocol 1 and step (Se”) of the attack against it.).

Lemma 4.4.3. Let dA ∈R {0,1}n be the raw key that Alice has used to prepare her
quantum bits. Once Eve knows dA she can determine �n/2�− k bits of any fixed sifted
key sE that she wants Alice to create with probability

P succ
sift-attack ≥ 1− exp

�
−2k2

n

�
(4.8)

by replacing Bob’s sifting message with a message bA=E that she has prepared.

Eve’s attack will succeed if a subsequence of sE (derived by deleting some elements
without changing the order) of length at least �n/2�− k is also a subsequence of dA.
The proof and a simple and efficient algorithm to generate bA=E is given in 4.4.7. Note,
that k = O(

√
n) is sufficient for P succ

sift-attack ≈ 1.
The presented attack also works without access to a quantum memory for Eve and

immediate measurement of Alice’s signal with random basis selection, however, it will
results in a smaller success probability in the ideal transition model for the subsequence
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problem. Nevertheless, if additional attenuation as found in practical systems is as-
sumed, the same arguments can be used to achieve a probability of almost one for a
successful attack.

Summary. We have shown that the attack strategy presented is feasible for a pow-
erful adversary and not only of theoretical interest. Being able to generate approximate
messages in the sifting stage and to correlate different raw keys by subsequence selec-
tion fully breaks the proposed approach for all possible protocol variations. If the mod-
ifications can be hidden in the noise—which is later corrected for in the post-processing
steps—it enables Eve to successfully mount a man-in-the-middle attack for the pro-
posed non-ITS authentication protocol. Although, different countermeasures have been
developed to cope with the presented approach, it is recommended to only rely on a
ITS-MAC for future designs and not use the researched non-ITS protocol. The pro-
posed countermeasures are still not ITS and even worse, they have to be designed for
particular protocol variants and are not generally viable.

4.5 QKD Integration and Discussion

In the last part of this chapter, we discuss how QKD systems can be integrated with
different applications. We will quickly explain how QKD integrates with secure channel
protocols in its own right. Additionally, we analyze how secure channel can support
long-term secure storage and advanced data sharing scenarios, as demonstrated in a
medical use case. Finally, we look how QKD can augment MPC. In general, a huge
effort is spent on all levels to push integration of QKD technology [293] and we will
only briefly discuss most relevant options.

4.5.1 QKD for Secure Channels

For the realization of secure communication based on QKD two major scenarios should
be distinguished which differ in the underlying connectivity on the quantum layer, i.e.,
direct or indirect.

Link encryption with QKD. The most evident usage for QKD generated keys is
link encryption, i.e., the implementation of a secure channel between two peers directly
connected through a quantum channel. Integration of QKD on all layers of the network
stack have been shown in the past ranging from layer 2 MACsec [294] to IPsec [57] up
to transport layer TLS [118] and QUICK [119]. In essence, they follow a common idea
and use QKD keys during the key exchange phase where subsequent symmetric encryp-
tion keys are negotiated. QKD is therefore used as an ITS replacement for asymmetric
key exchange mechanisms (KEM) used in respective protocols. Although it would be
possible to use QKD keys for one-time pad encryption (OTP), this mode of operation
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cannot be widely found in the field, because of the limited key bandwidth and compati-
bility issues with existing protocols.

However, recently a new trend emerged for QKD integration into link encryption.
Contrary to replacing key exchange on an ad hoc basis, novel provably secure hybrid
protocols have been presented which allow for a cryptographically sound combination
of keys generated by different methods. A hybrid key exchange has been proposed
in [295], which seamlessly combine the different keys such that the strength of the
different technologies are preserved. This approach has also been extended to post-
quantum cryptography [296], such that we don’t have to choose between technologies
but can use them concurrently to get the best of all worlds.

Quantum key distribution networks. One of the main problems of QKD from a
user perspective is the intrinsic distance limitation for direct peer to peer key genera-
tion. The limitation stems from the attenuation encountered when transmitting photons
through media together with the security properties of QKD protocols. Given that the
security of QKD is based on the no-cloning property of quantum information which
prevents from perfectly copying qbits, this property also prevents from amplifying sig-
nals along the way. The only possibility to overcome this problem would be by usage of
quantum repeaters, however, quantum repeaters are not expected to be practical in the
distant future [245]. Therefore, alternative solutions were developed in the last years to
address the limitations in the connectivity of QKD.

On the one hand, trusted repeater networks have been proposed and demonstrated.
If longer distances have to be bridged and secure channels have to be established be-
tween cities, countries or even continents, the physical limitations of QKD introduce
real challenges. Trusted repeater networks are currently the only feasible solutions to
overcome the distance limitation and the first step in building a quantum internet [297].
The basic idea behind trusted repeater networks is to concatenate QKD links on the clas-
sical layer, i.e., key management layer. Trusted repeaters nodes are generating keys with
adjacent nodes in a network but have to translate encrypted messages from one link key
to another, if secure traffic is forwarded. Thus, in pure QKD trusted repeater networks,
any repeater can see the plaintext of forwarded messages and needs to be fully trusted,
as the name already suggests. Hence, end-to-end security is not possible in this type
of network and security depends on the implementation and operation of intermediary
nodes, which is a substantial downgrade. The first trusted repeater networks were pre-
sented in [53, 298] and are still under active development. Additionally, tamper-proof
hardware for long distance hop-by-hop forwarding has been proposed to operate trusted
repeater even in less trusted environments.

On the other hand, practical end-to-end security for QKD networks is researched to
overcome the limitations of trusted repeater networks with different strategies. If peers
in a trusted repeater network communicate over multiple disjoint path and encode the



4.5 QKD Integration and Discussion 203

messages with secret sharing, ITS secure communication can be re-established under the
non-collusion assumption. The concept is known as perfectly secure message transmis-
sion (SMT) and is well understood, but was never applied in practice for conventional
networks. However, it is very attractive for QKD networks. If adequate routing and
forwarding mechanisms are developed, it can significantly increase security for larger
QKD networks which are densely connected.

Alternatively, space based long-distance QKD has been proposed in the literature
and already experimentally demonstrated. However, form a networking perspective this
is still a trusted repeater network, because the satellite as well as the ground stations will
be trusted intermediaries for practical applications.

Additionally, end-to-end security for QKD networks can also be achieved in com-
bination with post-quantum cryptography (PQC), although not in an ITS way. Never-
theless, this combination can be useful in many application scenarios, e.g., on the last
mile in access networks or in wireless radio networks, and can also be used within the
QKD control plane or to provide end-to-end authentication. If combined in a seamless
way, it can complement QKD where optical channels are not available but still ensure
quantum-safe security.

4.5.2 QKD Integration with Secure Storage

After discussing ITS secure communication, it is natural to ask how it can be integrated
with the proposed storage solution. In fact, the integration turns out to be straight for-
ward. The ARCHISTAR storage system assumed ITS secure channels to prevent from
attacks during up-/download operations. Thus, if QKD is used to secure the links, a
fully ITS system can be achieved.

We evaluated the combination in a demonstration for ITS secure sharing of me-
dial data. The use case was based on a digital pathology workflow where different
pathologists and additional healthcare professionals are involved [299]. To achieve ITS
secure data sharing between two hospitals we combined the ARCHISTAR-Proxy from
Section 2.4 with QKD link encryptors to do a real-world evaluation. In Figure 4.17
the network structure and geographical distribution is shown. We used two data cen-
ter which were connected to two hospitals each over dedicated QKD links. On each
side we run a ARCHISTAR-Proxy configured with 2-out-of-2 secret sharing. In the
demonstration, medical institutions from two different organizations were collaborat-
ing on digital pathology data in real-time. Given the huge amount of data produced in
digital pathology, mainly due to managing high resolution whole slide images (WSI),
not only ITS secure schemes were used but also alternative quantum-safe symmetric
bulk encryption methods. This could be achieved by defining different security policies
for different buckets in the proxy service. In particular, perfectly secure secret sharing
(PSS) was used for sensitive information and computation secure algorithms (CSS) for
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Figure 4.17: Basic concept of OpenQKD use case in Graz dealing with data sharing of
medical information between two hospitals (cf. [115]).

bulk data which was less sensitive but still contained a lot of private information about
patients. Additionally, different access control policies were enforced by using read
only properties for certain buckets, thus further reducing the attack surface.

The basic structure of the deployment for the demonstrator is shown in Figure 4.18.
It was tested for about 2 month and the final results from a user perspective were pre-
sented in [115]. From a technical perspective, we achieved to fulfill the user require-
ments and show ITS secure data sharing platform as feasible and can even increase user
acceptance.

Finally, looking at the communication pattern in detail, it shows that we it also re-
sembled non-interactive (single round) secure message transmission [300]. Data com-
municated between the hospitals are secret shared and communicated over two disjoint
paths leaving all QKD peers without information as long as they don’t collude. How-
ever, the options and possibilities are much richer compared to a configuration using
plain SMT to connect the hospitals and a local server for data storage.

4.5.3 QKD Integration with Multiparty Computation

In the previous section we showed how QKD can be integrated with secure channel
protocols and more complex data storage and sharing scenarios. Therefore, it is natural
to ask how QKD can improve security in secure data processing scenarios. For this
thesis we did not do any evaluation in a real testbed, but we show first results of our
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Figure 4.18: Components used to achieve secure data storage and sharing in the cloud
based on the combination of secret sharing and QKD. Data shared between hospitals
flows securely over two disjoint paths protected by hop-by-hop QKD based link encryp-
tion. The use case is leveraging the ARCHISTAR-Proxy as explained in [115].

research. In the following we give a quick overview of ways to achieve QKD assisted
MPC, i.e., we show ways to leverage QKD for improved MPC security.

As discussed in Chapter 3, MPC protocols with ITS security are based on secret
sharing. In that sense it is an ITS method for privacy preserving computation. How-
ever, all ITS secure protocols rely on the existence of secure channels which cannot
be realized from traditional cryptography. ITS secure key agreement from algorithmic
approaches is not possible. Therefore, the natural way is to use QKD to establish ITS
secure channels to be used for MPC communication. This combination is straight for-
ward and is feasible, similar to the extension of the distributed storage system. The
only thing to do is to estimate the communication complexity for the compute task in
question in order to see if the respective QKD system is capable to deliver the required
amount of key.

Interestingly, there is another important point of contact in MPC protocols where
QKD can help indirectly. This is due to the fact, that QKD is technically related to
quantum oblivious transfer (QOT). In a nutshell, the very same hardware can be used
to realize either functionality (QKD or QOT) by simply modifying the post-processing
protocol. Therefore, QOT is another primitive from the quantum world which can be
practically realized. Its security is well understood [301] and has also been shown com-
posable [302], although only under hardness of symmetric cryptography. Nevertheless,
it is an improvement compared to standard OT which requires asymmetric cryptography.
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QOT can be used in the pre-processing phase of dishonest majority MPC protocols.
Especially SPDZ [182], which uses an ITS-MAC in combination with secret sharing
in its online phase, can benefit from the extension with QOT. If QOT is used in an
OT type of pre-processing protocol like MASCOT [303], the security can be increased,
because no asymmetric cryptography is required anymore. However, more research is
required to understand the detailed requirements, assumptions, and consequences for
the mentioned combination.
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Summary, Conclusion and Outlook

This work is dedicated to the direct application of information-theoretic cryptography
in modern ICT applications. The goal was to leverage the strong security guarantees
against an unbounded adversary and provide systems with long-term security. Such
systems would not be affected by the advent of scalable quantum computers or any other
future computing paradigm. However, pure ITS systems may not always be necessary
and there are always some trade-offs to make. Nevertheless, we wanted to build systems
which preserve the ITS core properties as good as possible but are at the same time
practically efficient and relevant. As a rule, we wanted to keep free from the use of
asymmetric cryptography and tried to push the boundary for symmetric systems. In
fact, the systems designed are distributed and rely their security on the non-collusion
assumption rather than on number theoretical assumptions.

During the work on this thesis post-quantum cryptography made enormous progress,
which will replace currently used asymmetric cryptography in the near future. However,
there is still a lot of research ahead on the topic and first candidates were just recently
standardized by National Institute of Standards and Technology after a four-year com-
petition. There is also still a lot of uncertainty in the hardness assumptions used for new
algorithms when it comes to resistance against quantum computers. Relying only on
ITS and symmetric cryptography was therefore considered a conservative approach and
we explored how far we can get in terms of practical systems.

Interestingly, we were able to build efficient systems with strong security for all
three data protection realms in the data lifecycle. We researched ways to protect data at
rest, during processing and in transit and designed new systems and platforms to directly
leverage ITS primitives to achieve long-term security.

Firstly, to protect data at rest we designed a novel secure multi-cloud storage system
by integrating secret sharing with a Byzantine fault-tolerant protocol. We analyzed and
optimized performance on the network layer as well as researched efficient software
and hardware encoding engines for most relevant secret sharing schemes. Additionally,
we developed novel efficient mechanisms to remotely check data consistency with re-
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quiring only little communication on the network and simple computation at the severs.
The protocol can be even executed by untrusted parties and therefore enables public au-
diting. Additionally, the batching auditing approach has also been extended to provide
efficient batch verifiable secret sharing. In essence, we were able to show that modern
data sharing applications can be realized in a multi-cloud setting with strong security
guarantees and advanced features.

Secondly, to protect data during processing we leveraged information-theoretic mul-
tiparty computation to build novel decentralized but privacy preserving marketplaces.
We showed the feasibility of using publicly verifiable multiparty computation to achieve
end-to-end authenticity for auction platforms in smart manufacturing. Adding verifia-
bility was necessary due to the limited scalability of MPC for serious computational
tasks which prevented users in the system from running their own nodes. Being able to
verify the correctness of a privacy preserving computation turned out to be important
to strengthen users’ trust into the system and increase their willingness to participate.
We also showed that even multi-stakeholder optimizations are possible for solving the
assignment problem in a dedicated use case for air traffic management. In summary, we
were able to show that MPC nicely extends our work on secret sharing based storage
and can be used to build modern decentralized data markets with built-in privacy and
data sovereignty, but also end-to-end authenticity.

Finally, to protect data in transit we worked on certain aspects of quantum key distri-
bution, which is mainly used as link encryption tool in combination with one-time-pad
encryption or symmetric ciphers. Because it is the only known ITS key exchange pro-
tocol, it nicely complements the work done on the other topics. Concretely, for a QKD
system at AIT we developed a software-based synchronization system which is compu-
tationally very efficient and suitable to run on constrained embedded devices. To further
reduce the computational effort on QKD devices we researched ways to offload compu-
tationally demanding tasks of post-processing in QKD, i.e., we showed that offloading
error correction to a single untrusted sever is possible for discrete variable QKD. These
results should help to increase energy efficiency of QKD devices and make them more
flexible in usage. Unfortunately, we could not confirm the security of a very efficient
message authentication protocol introduced in earlier work, instead we were able to
develop an attack which fully broke the protocol based non-ITS MAC. Finally, we ana-
lyzed possibilities to combine QKD with other results in this work. In fact, we were able
to demonstrate the combination of the ARCHISTAR-Proxy with QKD in a real-world
medical use case, where digital pathology data was exchanged between two hospitals
over multiple clouds and paths.

In conclusion, we achieved very positive research results and show that ITS cryp-
tography can contribute to the security of modern ICT systems. Emerging applications
in the Internet of Things are well suited due to its distributed nature and open up many
new opportunities. By leveraging the non-collusion assumption, it is possible to design



209

systems which are long-term secure and can also provide increased robustness. The
achieved performance figures for evaluated use cases are very promising and the limi-
tations were mainly induced by communication. Additionally, using multiple clouds is
getting more and more the norm and many infrastructure providers are already available
to really implement the proposed concepts. In fact, two start-ups already licensed results
of this thesis and are working on the commercialization thereof. The company Fragmen-
tiX1 is using the research results in the domain of multi-cloud storage to develop novel
storage products, also in combination with QKD as demonstrated in the medical use
case. The company Catch.Direct2 is using our ideas on end-to-end verifiable MPC to
develop a commercial data market for outsourcing manufacturing capacities. Not to
forget the enormous progress made in the development of QKD networks on a Euro-
pean scale, which are also expected to be available for customers within the next years.
Hence, we believe that the research results are very relevant and have the potential to be
integrated into commercial solutions in the upcoming years.

We also identified many interesting new topics which will hopefully be covered in
future work. The performance models developed for BFT protocols can be further ad-
vanced in different directions, e.g., modeling latency or view changes. Additionally,
many new BFT protocols have been proposed in recent years which may also benefit
from our modelling approach. Interestingly, during our work with MPC implementa-
tions we also found that the network layer is not accurately covered and especially the
interplay with topics from the BFT world are not considered, e.g., correct broadcast
protocol implementations. We think, that researching at the interface between BFT and
MPC can lead to many new insights and better software implementations. Also, the ex-
tension with verifiability aspects for both, storage and processing, turned out to be very
fruitful an should be continued. It can be a strong argument to foster collaboration of
mutually distrusted parties. In the future, the development of NIZK systems which pro-
vide quantum-safe soundness together with perfect zero-knowledge will be important,
which should be transitioned to once quantum computers are really available. Finally,
most interesting topics to push forward from our work on QKD seem the combination
of MPC with QOT based on QKD hardware, as well as MPC based offloading of post-
processing to reduce the attack surface of QKD devices.

1https://fragmentix.com/, accessed 2023-01-10.
2https://www.catch.direct/, accessed 2023-01-10.

https://fragmentix.com/
https://www.catch.direct/
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