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Abstract
We systematically study the query complexity
of learning geodesically convex halfspaces on
graphs. Geodesic convexity is a natural gen-
eralisation of Euclidean convexity and allows
the definition of convex sets and halfspaces on
graphs. We prove upper bounds on the query
complexity linear in the treewidth and the min-
imum hull set size but only logarithmic in the
diameter. We show tight lower bounds corre-
sponding to well-established separation axioms
and identify the Radon number as a central pa-
rameter bounding the query complexity and the
VC dimension. While previous bounds typically
depend on the cut size of the labelling, all param-
eters in our bounds can be computed from the
unlabelled graph. We empirically compare our
proposed approach with other active learning al-
gorithms and provide evidence that communities
in real-world graphs are often convex.

1. Introduction
We present a systematic characterisation of active learning
geodesically convex halfspaces on graphs. While unlabelled
graphs such as social networks are readily accessible, ob-
taining many labels is a tedious and labour intensive task.
Active learning reduces the labelling effort by iteratively and
carefully selecting the vertices to be labelled. Abstract con-
vexity spaces in general and geodesic convexity on graphs
are natural generalisations of Euclidean convexity. How-
ever, while learning convex classes and halfspaces has been
intensively researched in the machine learning community
for over half a century, geodesic convexity on graphs has
been largely overlooked so far. To test the hypothesis that
geodesic convexity is indeed a natural concept on graphs,
we performed a preliminary experimental study that con-
firms that many communities in social networks are indeed
convex. For a concise presentation of our theoretical results
in this paper, we concentrate on binary classification, that is,
active learning geodesically convex halfspaces.
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After introducing the terminology and tools of graph and ab-
stract convexity theory (in Section 2), we show that general,
worst-case upper and lower bounds holding for the set of all
graphs are inherently loose. To derive tighter lower bounds,
we structure the space of graphs along the so called sepa-
ration axioms of abstract convexity theory. We show that
an upper bound—related to treewidth, diameter, and hull
set of the graph—is tight across all sets of graphs induced
by the separation axioms and derive tighter lower bounds
for each of these sets. This allows us to significantly close
the gap between upper and lower bounds and present the
first precise characterisation of active learning geodesically
convex halfspaces on graphs (in Section 3). Note that a
similar characterisation does not carry over to Euclidean
convexity: While the separation axioms partition the space
of all graphs into non-empty sets, all separation axioms hold
in all linear spaces such as the Euclidean ones. We discuss
related areas like active learning convex sets in Euclidean
spaces, passive learning geodesically convex halfspaces, ac-
tive learning bounds in terms of the cut size between the
classes, and other related learning theoretic concepts (in
Section 4). In particular, we also provide a novel bound on
the VC-dimension of geodesically convex halfspaces. After
presenting an empirical validation of our assumptions and
approach (in Section 5), we conclude with a discussion of
promising furture work.

2. Convexity spaces
In this section, we introduce important and necessary con-
cepts of convexity theory. For a more thorough introduction
on convexity theory, we refer the reader to van de Vel (1993)
and Pelayo (2013).

For a set X and a family C ⊆ 2X of subsets, the tuple
(X, C) is a convexity space if (i) ∅, X ∈ C, (ii) C is closed
under intersection, and (iii) C is closed under nested union.
For finite set systems, property (iii) always holds. Any
set in C is called convex. If a set C and its complement
X \ C are convex, both are called halfspaces. Two disjoint
sets A,B are separated by a halfspace C if A ⊆ C and
B ⊆ X \ C. A mapping σ : 2X → 2X is a convex hull
(or closure) operator if for all A,B ⊆ X with A ⊆ B
(i) σ(∅) = ∅, (ii) σ(A) ⊆ σ(B), (iii) A ⊆ σ(A), and
(iv) σ(σ(A)) = σ(A). Any convexity space (X, C) induces
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a convex hull operator by σ(A) =
⋂
{C ∈ C | A ⊆ C}.

Note that a set A ⊆ X is convex, that is A ∈ C, if and only
if is equal to its convex hull, A = σ(A).

Convexity spaces can be characterised by their ability to
separate sets via halfspaces, following a related notion in
topological spaces.

Definition 1 (Separation axioms (van de Vel, 1993)). A
convexity space (X, C) is:

S1 if and only if each singleton x ∈ X is convex.

S2 if and only if each pair of distinct elements x, y is
halfspace separable.

S3 if and only if each convex set C and elements x ∈
X \ C are halfspace separable.

S4 if and only if any two disjoint convex sets are halfs-
pace separable.

If S1 holds, the remaining axioms are increasingly stronger:
S2 ⇐ S3 ⇐ S4. For classical convex sets in Euclidean
spaces, all four separation axioms hold (Kakutani, 1937).

We also use the following concepts. A set H ⊆ X is a hull
set if its convex hull is the whole space, σ(H) = X . For
A,B ⊆ X , the setA/B = {x ∈ X | A∩σ(B∪{x}) 6= ∅}
is the extension of A (away from B). For a, b ∈ X , the
extension {a}/{b} is called a ray a/b. Two disjoint sets A1,
A2 form a partition of A ⊆ X if A1 ∪A2 = A. A partition
A1, A2 of A is a Radon partition if σ(A1) ∩ σ(A2) 6= ∅.
The Radon number is the minimum number r such that any
subset of X of size r or larger has a Radon partition.

A particular type of convexity is an interval convexity.
Apart from the convex hull σ(·), they have an interval
mapping I : X × X → 2X such that for all x, y ∈ X ,
(i) x, y ∈ I(x, y) and (ii) I(x, y) = I(y, x). We call
I(x, y) the interval between x and y. We denote I(A) =⋃
a,b∈A I(a, b). A set A in an interval convexity space is

convex if and only if A = I(A). Denoting I1(·) = I(·)
and Ik+1(·) = I(Ik(·)), it holds that σ(A) =

⋃∞
k=1 I

k(A).
A well-known instance of interval convexity spaces are
metric spaces (X, d). There, the interval contains all the
points for which the triangle inequality holds with equality:
Id(x, y) = {z ∈ X | d(x, y) = d(x, z) + d(z, y)}. In Eu-
clidean space, this corresponds to a line segment and leads
to the classical notion of convexity.

We are interested in the geodesic convexities induced by
graphs. The geodesic convexity (or shortest path convexity)
of a connected graph G = (V,E) is given by the interval
mapping Id, where d is the shortest path distance in the
graph. For unweighted graphs it is the number of edges
on any shortest path and for graphs with edge weights, w :
E → R>0, it is the sum of the edge weights on any shortest

path. Using this definition, a subset of vertices C ⊆ V is
convex if and only if every shortest path with endpoints in
C stays in C, corresponding to the Euclidean case.

We denote the Radon number of the induced geodesic con-
vexity space of a graph as r(G) and the size of the min-
imum hull set as h(G). The notion of rays simplifies
for graphs: for an edge {a, b} in an unweighted graph
a/b = {v ∈ V | d(a, v) < d(b, v)} and for a weighted
graph a/b = {v ∈ V | d(b, v) = d(b, a) + d(a, v)}. A
vertex v is extreme if V \ {v} is convex, that is, {v} is a
halfspace. We will denote the set of extreme vertices of a
graph G as Ext(G). In the unweighted case, v is extreme
if and only if its neighbours form a clique. The diameter
d(G) of a weighted or unweighted graph G is the maximum
number of edges in any shortest path in G.

We say a graph is Si, for i = 1, . . . , 4, if for the induced
geodesic convexity space the respective separation axiom
holds. Moreover, there are graphs that are Si but not Si+1

for i = 1, 2, 3 (Bandelt, 1989), see supplementary for some
examples. In this regard, graph convexity spaces are more
general than the Euclidean one, for which always all four
separation axioms hold.

3. Active learning halfspaces on graphs
Having introduced the necessary concepts from convexity
theory, we now present the main theoretical results of the
paper. In active learning on graphs, an undirected graph
G = (V,E) with unknown vertex labels λ : V → {0, 1} is
given and the goal is to accurately predict all labels using
as few as possible iterative vertex queries λ(v). Edges
between vertices with different labels are called cut edges.
We consider active learning on graphs where the vertices of
the same class form a geodesically convex set. We achieve
upper (Theorem 6) and lower bounds (Theorem 8) on the
number of queries required to deduce all labels of the graph
for binary classification on connected undirected graphs. In
this case, the classes form halfspaces, we call the labelling
halfspace separable, and denote the least number of queries
required to identify any halfspace separable labelling in the
worst-case, the query complexity, by qc(G). To reduce the
gap (Proposition 9) between the upper and lower bounds, we
inspect the graph families induced by the separation axioms
and derive increasingly tighter lower bounds (Theorem 10).
All proofs, multi-class settings, and adaptations for directed
and disconnected graphs can be found in the supplementary.

3.1. Upper bounds on the query complexity

To derive a first simple upper bound we consider that one
immediate consequence of the halfspace assumption is that
any shortest path can have at most one cut edge. Therefore,
either the endpoints of a shortest path P have the same label
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or we can find a cut edge by binary search with at most
1 + dlog d(G)e queries, as |V (P )| − 1 ≤ d(G), where log
is the base 2 logarithm. We can generalise this approach
to the whole graph using shortest path covers. A shortest
path cover S is a set of shortest paths whose vertices jointly
cover the graph:

⋃
P∈S V (P ) = V (G). Binary searching

each of the paths in the cover gives our first upper bound.
Proposition 2. For any weighted graph G with minimum
shortest path cover S∗ the query complexity can be bounded
as qc(G) ≤ |S∗|(2 + dlog d(G)e).

By considering a particular fully connected weighted graph
with an arbitrary number of paths with independent cut
edges, we can show that this bound is tight:
Proposition 3. For any d, s ∈ N, there exists a weighted
graph G with diameter d(G) = d and minimum shortest
path cover S∗ of size s such that qc(G) ≥ |S∗| log d(G).

For many graphs, however, we can do much better, as the
labels of different paths in the cover are typically not inde-
pendent. Consider for instance a k-dimensional hypergrid
with edge length `, that is, the Cartesian product of k paths
with ` vertices each: More than k`−1/̀ shortest paths are
needed to cover the hypergrid but 1 + dlog(k`)e queries
suffice to identify the labelling of the graph.

This leads directly to an idea for improving the bound and
deriving our algorithm for active learning geodesically con-
vex halfspaces: after each query, we deduce additional labels
using convex hulls and extensions. Our proposed algorithm
first queries the vertices of a hull set until it finds two ver-
tices with different labels or concludes that all vertices in
the graph have the same label. Then it performs a binary
search on a shortest path between these two vertices to
identify a cut edge {a, b}. Finally, Algorithm 1 efficiently
queries the remaining vertices. It initialises the sets A and
B with the convex hull of the rays a/b and b/a, respec-
tively. The main loop queries any vertex v in the region
Ŵ=ab = V (G)\ (σ(a/b)∪σ(b/a)) and updates the known
labels with the new vertex using convex hulls and extensions.
Lemma 4 states the queries needed in the first two steps.
Lemma 4. Let G be a graph with halfspace separable
labels. We can either find a cut edge or determine that
all vertices of the graph have the same label using h(G) +
dlog d(G)e queries.

Lemma 5 shows that the initialisation and updates of A and
B in Algorithm 1 are indeed valid.
Lemma 5. Let G be a weighted graph with halfspace sep-
arable labels λ and let A ⊆ {x ∈ V (G) | λ(x) = 1} and
B ⊆ {x ∈ V (G) | λ(x) = 0}. For any v ∈ σ(A/B), it
holds that λ(v) = 1

We can bound the number of queried vertices of Algo-
rithm 1 using the set W ∗=ab = Ŵ=ab \ {v ∈ Ŵ=ab | ∃w ∈

Algorithm 1 Halfspace querying

Input: graph G, cut edge {a, b} ∈ E(G)
A := σ(a/b), B := σ(b/a)
while A ∪B 6= V (G) do

query any vertex v ∈ V (G) \ (A ∪B)
if λ(v) = λ(a) then
A := σ((A ∪ {v})/B), B := σ(B/(A ∪ {v}))

else
A := σ(A/(B ∪ {v})), B := σ((B ∪ {v})/A)

Ŵ=ab such that v ∈ w/a∩w/b}. Intuitively, it is enough to
know the labels of the vertices in W ∗=ab to deduce all labels
of Ŵ=ab. Theorem 6 shows that Algorithm 1 is correct and
summarises our main upper bound.

Theorem 6. Let G be a weighted or unweighted graph.
Finding a cut edge with a minimum hull set and then apply-
ing Algorithm 1, results in the query complexity

qc(G) ≤ h(G) + dlog d(G)e+ max
{a,b}∈E(G)

|W ∗=ab| .

Note that Algorithm 1 does not need to explicitly compute
the set W ∗=ab. To give a more intuitive bound for the un-
weighted case, we relate the last term of the bound to the
treewidth tw(G), a well-studied graph-theoretic parameter
(Bodlaender, 1996) measuring the ‘tree-likeness’ of a graph:
Any cut edge {a, b} together with W ∗=ab has a complete
bipartite minor K2,|W∗=ab| which implies tw(G) ≥ |W∗=ab|/2
(Bodlaender et al., 1997). This means that many real-world
graphs such as molecules (Horváth and Ramon, 2010) and
infrastructure networks (Maniu et al., 2019) which have
small treewidth, and thus small W ∗=ab, can be queried effi-
ciently by Algorithm 1. Corollary 7 summarises this result.

Corollary 7. Let G be a unweighted graph with hull set
H and treewidth tw(G). Then, for the query complexity it
holds that qc(G) ≤ h(G) + dlog d(G)e+ 2 tw(G).

3.2. Lower bounds under separation axioms

Having discussed our upper bounds on the query complex-
ity, we now turn to a simple lower bound based on the
extreme vertices Ext(G) of the graph, recall each of them
is a halfspace by definition.

Theorem 8. For a weighted graph G with extreme vertices
Ext(G), it holds that qc(G) ≥ |Ext(G)|.

Considering a graph consisting of paths that coincide only
in their endpoints, we can show that this bound is also tight
and therefore that the gap between it and both our upper
bound can be arbitrarily large.

Proposition 9. For any d, s ∈ N, there exists an unweighted
graph G with d(G) = d and minimum shortest path cover
S∗ of size s, such that qc(G) ≤ 2 and Ext(G) = ∅.
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This shows that the lower bound in Theorem 8 is best possi-
ble for general graphs, even when d(G) and |S∗| are large.
The main insight of our work is that structuring the set of all
graphs along separation axioms gives increasingly tighter
lower bounds.
Theorem 10. For a weighted graph G, the following holds
for the query complexity qc(G).

• G is S2: qc(G) ≥ max(log d(G), |Ext(G)|),

• G is S3: qc(G) ≥ max(log d(G), h(G)), and

• G is S4: qc(G) ≥ max(log d(G), h(G), r(G)− 1).

Each bound is tight in the respective family and stronger
axioms lead to tighter bounds.

To see the final statement, notice that all extreme ver-
tices are by definition contained in any hull set and hence
|Ext(G)| ≤ h(G). The two parameters h(G) and r(G) are
independent of each other, in the sense that there are graphs
with h(G) < r(G) but also graphs with r(G) < h(G).
Theorems 6 and 10 together imply tight bounds (Table 1,
supplementary) for various graph families studied in metric
graph theory (Bandelt and Chepoi, 2008), convexity theory,
and machine learning (Seiffarth et al., 2019).

3.3. Computational aspects

Above, we derived lower and upper bounds on the query
complexity of learning halfspaces on graphs. We now dis-
cuss computational aspects of our algorithm and bounds.

Computing a minimum shortest path cover S∗ is an open
problem (Manuel, 2018). We show that greedily covering
the graph with longest possible shortest paths gives a loga-
rithmic approximation:
Theorem 11. For a given weighted graph G, we can com-
pute a O(log d(G))-approximation for the minimum short-
est path cover S∗ in time O(|V |4).

Computing the Radon number of a graph is even hard
to approximate within any factor sublinear in |V | (Coelho
et al., 2015). However, we can bound the Radon number
with the size of the largest clique minor (the Hadwiger
number), which in turn is upper bounded by the treewidth.
Proposition 12. For any graph G, it holds that r(G) ≤
tw(G) + 2.

Computing intervals and hulls is possible in O(|V (G)|3)
time by first solving the all-pairs-shortest-path problem and
afterwards check the triangle inequality for each triplet of
vertices. The diameter d(G) is computable by a generalised
Dijkstra algorithm, see supplementary. Computing the set
of extreme vertices is possible in time O(|V ||E|) by eval-
uating the neighbourhood of each vertex. Computing the

minimum hull set size h(G) is APX-hard (Coelho et al.,
2015). For graphs of bounded treewidth (Kanté et al., 2019)
however, the problem is solvable in polynomial time and
our algorithm achieves then the bound of Corollary 7 in
polynomial time. For other graphs heuristic approaches can
compute a hull set H and achieve the query complexity
bounds in Theorem 6 with |H| queries instead of h(G). De-
ciding whether all separation axioms hold is possible in
time O(|V (G)|7) by examining all quadruplets of vertices,
so-called Pasch combinations (Seiffarth et al., 2019). Such
strategies for the other cases are unknown.

4. Discussion
In this section, we discuss our assumption as well as related
active and passive learning results.

Convexity in real-world datasets In some applications
convexity-based assumptions are already implicitly or ex-
plicitly used. For example in gene similarity networks, it is
well-known that shortest paths largely preserve functional
relationships and the category in the gene ontology (Zhou
et al., 2002). Similar results were achieved on protein-
protein-interaction networks, where shortest paths between
known cancer-related genes are used to identify a candidate
set of novel genes that are likely to be cancer-related, as
well (Li et al., 2012; 2013). Aside from protein and gene
networks, Marc and Šubelj (2018) and Šubelj et al. (2019) re-
cently found that connected subgraphs of real-world graphs
like collaboration networks are often convex. We performed
preliminary experiments on different networks with ground
truth communities. Table 2 (in the supplementary) shows
the number of convex communities in six datasets from
SNAP (Leskovec and Sosič, 2016). We found that on the
DBLP network more than 85% of the 5000 communities are
convex, supporting the results of Šubelj et al. (2019). On
the Amazon product network we have similar results with
roughly 80%. On the Youtube social network we found that
roughly 60% of the communities are convex. On the remain-
ing datasets less than a third of the communities are convex.
Clearly convexity on graphs is application dependent.

Relationships to Euclidean convexity Halfspaces in Eu-
clidean space have been at the core of various learning algo-
rithms, like the Perceptron (Rosenblatt, 1958; Novikoff,
1963) and support vector machines (Boser et al., 1992;
Cortes and Vapnik, 1995), and are still an active research
area (Daniely, 2016; Diakonikolas et al., 2020; Hopkins
et al., 2020). Graph and other finite convexity spaces, how-
ever, are not equivalent to the Euclidean convexity in the
sense that it is not always possible to embed a graph into
Rm or the other way around while preserving the convex
hull σ(·). Euclidean spaces are always S4 while graphs do
not have to be. Further discussion are in the supplementary.
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Cut-based bounds Most previous bounds for active learn-
ing on graphs are linear in the size of the set of cut edges C
or cut vertices ∂C, that are the vertices incident to the cut
edges. In the batch setting, one such bound was given by
Guillory and Bilmes (2009), see supplementary for further
discussions. We will present two bounds in the iterative
setting here on the k-dimensional hypercube graph labelled
according to some halfspace. Theorem 6 shows that one
binary search on a shortest path connecting opposing cor-
ners is enough to deduce all labels with O(log k) queries.
Afshani et al. (2007) gave a worst-case query complexity of
c+ |∂C|(1 + log(|V |/|∂C|)) under balancedness assump-
tions where c ≥ 2 is the number of connected components
in G without the cut edges C. As ∂C = V , this results in
a bound > |V | for the hypercube. The more recent bound
of Dasarathy et al. (2015), besides the number of cut ver-
tices, depends on the clusteredness κ of the cut, which is
at least the largest distance between any two cut vertices
of the same class in the same connected component of the
graph with cut edges removed. Their upper bound is at least
|∂C|(1 + log κ). On the hypercube κ ≥ k− 1 and ∂C = V
resulting again in a bound > |V |. We see that both bounds
can be vacuous and exponentially larger than our bound.

Margin-based bounds Bressan et al. (2021) study the
query complexity of identifying geodesically convex clus-
ters in a nearest neighbour graph given by a semi-metric
space using same-cluster queries. Even though they rely
on additional assumptions, like a large margin, their upper
bound is very similar to our main result. They use same-
cluster queries, which are binary queries on a pair of points
to test whether they are in the same cluster, instead of vertex
label queries. However, these two query types are equiva-
lent in terms of their query complexity up to a multiplcative
factor given by the number of classes. They work on an ε
neighbour graph, assume that the weight of any cut edge
is > βε for an β ∈ (0, 1], and use an interval with mar-
gin γ ∈ (0, 1]: Iγ(a, b) = {x ∈ V | d(a, x) + d(x, b) ≤
(1 + γ)d(a, b)} to define convex sets. The regular geodesic
convexity corresponds to γ = 0. Using these, they state

an O
(

log |X|+
(

6
βγ

)dens(X)
)

upper bound on the query

complexity for any semi-metric space X with binary la-
bels under the assumption that two vertices with different
labels are already given, where dens(X) is the density di-
mension of the space (Gottlieb and Krauthgamer, 2013).
Even though they make stronger assumptions to achieve this
bound, there exist graph families where our bound in Theo-
rem 6 is exponentially better. For example, take the 2× k
grid. If we allow any halfspace, the margin is γ < 2/k. This
results in a bound of at least log(2k) + (3k)dens(X) with
dens(X) ≥ 1 while our bound predicts that 2 + log(k + 1)
queries are enough. Even with a large margin our bound
remains slightly better.

Passive learning halfspaces Passive learning halfspaces
on graphs was studied by Seiffarth et al. (2019; 2020) and
de Araújo et al. (2019). Seiffarth et al. (2019) rely on the
separation axiom S4 to bound the number of convex hull
computations needed to construct a halfspace. Stadtlän-
der et al. (2021) investigate the more general problem of
learning weakly convex sets in a metric space (X, d). Here,
weakly convex sets with parameter θ ≥ 0 are given by the
interval mapping Iθ(a, b) = {x ∈ X | d(a, x) + d(x, b) =
d(a, b) ≤ θ} ∪ {a, b} corresponding to our interval map-
ping on a pair a, b with d(a, b) ≤ θ. Moran and Yehudayoff
(2019) established that the VC dimension of halfspaces of
any convexity space is smaller than the Radon number of
the space. Building on that, we can show that VC dimension
is exactly determined by the Radon number in S4 convexity
spaces. This includes the classical result that in Rm the VC
dimension of halfspaces is m+ 1.
Proposition 13. The VC dimension of the hypothesis class
of halfspaces of an S4 convexity space is exactly one less
than the Radon number of the space.

For S4 graphs, r(G) determines the VC dimension and gives
a lower bound on the query complexity (Theorem 10), estab-
lishing the Radon number as a central parameter for learning
geodesic halfspaces. Proposition 12 together with the above
bound of Moran and Yehudayoff (2019) establishes:
Proposition 14. The VC dimension of halfspaces in a graph
G is smaller than tw(G) + 2.

5. Experiments
Having discussed our bounds on the query complexity and
the conceptional benefits of the halfspace assumption in
terms of theoretical upper bounds, we want to see whether
the same holds experimentally, as well. Two practical query-
ing strategies based on Algorithm 1 are greedy and selective
sampling.The greedy strategy tries to maximise the number
of known vertex labels with each query. For that, it queries
the vertex v that would maximise the minimum number of
known labels after the update of A and B in Algorithm 1.
More precisely, after the update with a vertex v we will know
the labels of the set σ((A ∪ {v})/B) ∪ σ(B/(A ∪ {v}))
or the set σ(A/(B ∪{v})) ∪ σ((B ∪{v})/A). The greedy
strategy thus selects the vertex v that maximises the size
of the smaller one of these two sets, corresponding to the
minimum number of labels we will know after the update.
As performing the described greedy maximisation for each
query is rather computationally expensive, we propose a
simpler strategy based on selective sampling (Cohn et al.,
1994) as an alternative. Instead of performing the actual
maximisation, this strategy simply picks a vertex uniformly
at random from V (G)\ (A∪B) in Algorithm 1. To find the
first cut edge, we use a hull set as in Lemma 4. As discussed,
computing a minimum hull set is in general not tractable.
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Figure 1: Found cut vertices and accuracy plotted against number of queries

Therefore, we propose to use the selection strategy (greedy
or selective sampling) also to iteratively construct a hull
set until two vertices with different labels are found. For
that we start with A,B = ∅ and select vertices using the
selection strategy and update A and B according to Algo-
rithm 1, until we find two different labels. Implicitly this
process will construct a (typically non-minimum) hull set
H . That way the query complexity bound in Theorem 6
still holds, as it is independent of the specific selection strat-
egy used; only the h(G) is replaced with the size of the
heuristically computed H . We compare these two strategies
with the state-of-the-art graph-based active learning algo-
rithm S2 (Dasarathy et al., 2015), the classical active label
propagation of Zhu et al. (2003b), and baseline non-active
random sampling. The code is available at Github.1 We use
the ε-nearest-neighbour graphs of two moons 2 and Iris 3.
We also use a 20 × 20 grid and a 210 hypercube, labelled
with a random but fixed halfspace. More details and further
experiments are in the supplementary.

Query evaluation Dasarathy et al. (2015) propsed to
count the number of found cut vertices after each query
as a measure to compare querying algorithms without rely-
ing on any classification method. An efficient graph-based
active learner should detect these as fast as possible. The
results for 20 iterative queries in the upper half of Figure 1
show that our approaches identify the cut vertices more
efficiently than S2, active label propagation, and random
sampling by deducing many labels after each query. Our
greedy approach requires less than 5 queries to deduce all
vertex labels on all four datasets emphasising the strength
of convexity-based assumptions. The selective sampling
approach is only slightly worse using 2-8 queries more. The
other approaches can find at most one cut vertex per query

1https://github.com/maksim96/subsetml_
active_graph_halfspaces

2make_moons(noise=0.1, random_state=0) in
scikit-learn (Pedregosa et al., 2011); ε = 0.14

3first class vs the other two (Fisher, 1936); ε = 0.3

as they do not rely on convexity assumptions.

Predictive performance We also evaluated the predictive
performance of the chosen queries. Our two approaches
predict the labels of the computed hulls and default to the
majority of known labels when they do not know the label of
a vertex. The other three approaches perform label propaga-
tion (Zhu et al., 2003a) with the default Gaussian similarity
and σ = 1. In the lower half of Figure 1, we can see that
again our greedy approach identifies the vertex labels of the
whole graph on all datasets within 5 queries. The accuracy
of the other three approaches is significantly worse, even
unstable. The main reason is that label propagation favours
small cuts (weighted by similarity), and thus has problems
predicting halfspaces with large cuts.

6. Conclusion and future work
In this work, we employed convexity theoretical concepts to
achieve novel bounds on the query complexity of learning
halfspaces on graphs. On the one hand, we derived two
general upper bounds, one based on shortest path covers and
the other based on the diameter, hull sets, and the quantity
max{a,b}∈E(G) |W ∗=ab|, which we in turn bounded by the
treewidth of the graph. On the other hand, we stated a simple
general lower bound based on extreme vertices and increas-
ingly tighter lower bounds for graph families corresponding
to separation axioms. We compared our bounds to previous
results based on the cut-size and found that the halfspace
assumption enabled learning with large cuts, while previous
bounds often become vacuous in this case. On the practical
side, we found that ground-truth communities in real-world
networks tend to be convex. We compared our approaches
with two previous active learning strategies and found that
our algorithms require considerably less queries to identify
the correct halfspace. Unifying the ideas of Seiffarth et al.
(2019), Stadtländer et al. (2021), and Bressan et al. (2021)
with ours by developing general querying and prediction
strategies is an interesting research direction.

https://github.com/maksim96/subsetml_active_graph_halfspaces
https://github.com/maksim96/subsetml_active_graph_halfspaces
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A. Proof details
We state some facts that we will often use in the following
proofs. For that let V+ = {x ∈ V (G) | λ(x) = 1} and
V− = {x ∈ V (G) | λ(x) = 0} be the labelled halfspaces.

Fact.

1. If S+ ⊆ V+ then I(S+) ⊆ σ(S+) ⊆ V+. Equiva-
lently:
If S− ⊆ V− then I(S−) ⊆ σ(S−) ⊆ V−.

2. If S+ ⊆ V+ and S− ⊆ V− then S+/S− ⊆ V+ and
S−/S+ ⊆ V−.

Proof.

1. Since S+ ⊆ V+, we have σ(S+) ⊆ σ(V+) = V+ by
the monotonicity of σ(·). I(S+) ⊆ σ(S+) by defini-
tion. S− ⊆ V− follows analogously.

2. Assume there is an x ∈ (S+/S−) ∩ V−. By definition
of S+/S− there is a y ∈ S+∩σ(S−∪{x}). Using the
previous Fact 1, we get σ(S− ∪ {x}) ⊆ V− but also
S+ ⊆ V+, which implies that y ∈ V+ ∩ V−, clearly a
contradiction. S−/S+ ⊆ V− follows analogously.

Proposition 2. For any weighted graph G with minimum
shortest path cover S∗ the query complexity can be bounded
as qc(G) ≤ |S∗|(2 + dlog d(G)e).

Proof. For each path in S∗ first query the endpoints. If they
are the same, the whole path must have this label by the
halfspace assumption. Otherwise, it has exactly one cut
edge, that is, an edge where the label change. We can find
this edge with binary search using ≤ dlog d(G)e.

Proposition 3. For any d, s ∈ N, there exists a weighted
graph G with diameter d(G) = d and minimum shortest
path cover S∗ of size s such that qc(G) ≥ |S∗| log d(G).

Proof. Fix d, s ∈ N. Consider the unit vectors e1, . . . , es ∈
Rs+1 and shifted copies of them: ej + i · es+1, for
j ∈ {1, . . . , s} and i ∈ {1, . . . , d}. Construct the fully
connected graph of these s · d points with edge weights
corresponding to the Euclidean distance. The minimum
shortest path cover will have size s and the diameter will
be d. We can label each shortest path Pj of the form
(ej , ej + es+1, . . . , ej + d · es+1) with at most one cut edge
at an arbitrary position, independently of the other paths.
The resulting labelling is halfspace separable, because the
only shortest path between two vertices on different paths
Pj ,Pj′ is the edge connecting them. Hence, to deduce all
labels we will need ≥ log d queries per path.

Lemma 4. Let G be a graph with halfspace separable
labels. We can either find a cut edge or determine that
all vertices of the graph have the same label using h(G) +
dlog d(G)e queries.

Proof. Let H be a hull set of size h(G). The convex hull
of H is the whole graph. If all vertices in H have the
same label, the whole graph must have this label by Fact
1. Otherwise, we can take two vertices in H with different
labels and find one cut edge on a shortest path between them
using dlog d(G)e queries.

Lemma 5. Let G be a weighted graph with halfspace sep-
arable labels λ and let A ⊆ {x ∈ V (G) | λ(x) = 1} and
B ⊆ {x ∈ V (G) | λ(x) = 0}. For any v ∈ σ(A/B), it
holds that λ(v) = 1.

Proof. The claim directly follows by applying Fact 2 to
A/B and then Fact 1 to σ(A/B).

Theorem 6. Let G be a weighted or unweighted graph.
Finding a cut edge with a minimum hull set and then apply-
ing Algorithm 1, results in the query complexity

qc(G) ≤ h(G) + dlog d(G)e+ max
{a,b}∈E(G)

|W ∗=ab|.

Proof. By Lemma 4, we can use h(G)+dlog d(G)e queries
to find the first cut edge {a, b} or deduce that the all vertices
have the same label. Applying Lemma 5 to a/b and b/a, we
only have to deduce the labels of Ŵ=ab = V (G)\(σ(a/b)∪
σ(b/a)).

Algorithm 1 queries iteratively a vertex label in V \
(σ(A/B) ∪ σ(B/A)) ⊆ Ŵ=ab. We want to bound the
number of queries made by Algorithm 1 by the size of the
set W ∗=ab = {v ∈ Ŵ=ab | @w ∈ Ŵ=ab such that v ∈
(w/a) ∩ (w/b)}. For that we show that the algorithm de-
duces at least one new vertex label from W ∗=ab after each
update of A and B. If we query a vertex in W ∗=ab the claim
holds, as we never query the same vertex twice, because it
is afterwards either in A or B.

If we query a vertex v ∈ Ŵ=ab \W ∗=ab, we know by the
definition of W ∗=ab that there is a vertex w ∈ W ∗=ab with
v ∈ (w/a) ∩ (w/b), which means that v ∈ σ({a,w}) ∪
σ({b, w}). By applying Fact 1 to one of the convex hulls
σ({a,w}) or σ({b, w}), depending on the label of w, we
get the label of v. The vertex v will be hence correctly
added to A or B in the following update where the convex
hulls σ(A ∪ {w}/B) ⊇ σ({a,w}) or σ(B ∪ {w}/A) ⊇
σ({b, w}) are used.

This shows that after at most |W ∗=ab| iterations, we will
know the labels of W ∗=ab. It remains to show that we will
also have all missing labels in Ŵ=ab \W ∗=ab. For that, let
v ∈ Ŵ=ab \W ∗=ab, which implies that there is a w ∈W ∗=ab
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such that v ∈ (w/a) ∩ (w/b). By applying Fact 2 to w/a
or w/b, depending on the known label of w, we get the
label of v. Hence, v will be correctly added to A or B in
the following update, because w/a ⊆ σ(B ∪ {w}/A) or
w/b ⊆ σ(B ∪ {w}/A).

Corollary 7. Let G be a unweighted graph with treewidth
tw(G). For the query complexity it holds that qc(G) ≤
h(G) + dlog d(G)e+ 2 tw(G).

Proof. Let {a, b} be a cut edge. We claim that in an un-
weighted graph, the vertices a and b together with W ∗=ab
form a K2,|W∗=ab| minor of G. To show that, we first prove
that any vertex v ∈ W ∗=ab is adjacent to a/b and b/a, that
is, there is an edge going from v to a/b and to b/a. As-
sume this does not hold. Then, without loss of generality,
v is not adjacent to a/b and there exists a w ∈ W ∗=ab such
that w ∈ I(a, v). By the definition of Ŵ=ab ⊇ W ∗=ab,
the distance from a and b to any vertex in Ŵ=ab is the
same and hence d(b, v) = d(a, v) = d(a,w) + d(v, w) =
d(b, w) + d(v, w). This means w ∈ I(b, v), which im-
plies that v ∈ (w/a) ∩ (w/b). This is a contradiction to
v ∈W ∗=ab. It follows, that v is adjacent to a/b and b/a.

For each v ∈W ∗=ab, we can identify an edge ev = {va, v}
with va ∈ a/b on a fixed shortest path from a to v. The
same holds for a fixed shortest path from b to v with an
edge e′v = {vb, v} and vb ∈ b/a. Contracting all edges on
these shortest paths, but the ev and e′v for all v results in a
complete bipartite graph K2,|W∗=ab|, with the two vertices a
and b as one partition and all v as the other. This complete
bipartite graph is a minor of G. The largest k such that
K2,k is a minor of G is bounded as k ≤ 2 tw(G) by the
treewidth (Bodlaender et al., 1997), which in turn bounds
|W ∗=ab| ≤ k ≤ 2 tw(G).

Theorem 8. For a weighted graph G with extreme vertices
Ext(G), it holds that qc(G) ≥ |Ext(G)|.

Proof. As any extreme vertex s is a halfspace, we have
s /∈ σ(V (G) \ {s}). Thus, to decide between the labelling
according to the halfspaces ({s}, V (G) \ {s}) and the case
where all vertices have the same label, we have to query
s.

The above result still holds, if we only allow proper halfs-
paces (neither empty nor V (G)) in general, as can be seen
by the clique graph where each vertex is extreme.

Proposition 9. For any d, s ∈ N with s ≥ 3 and d ≥ 2,
there exists an unweighted graphG with diameter d(G) = d
and minimum shortest path cover S∗ of size s, such that
qc(G) ≤ 2 and Ext(G) = ∅. The graph G is S1 but not
S2.

...

· · ·

...
...

...
...

· · ·

· · ·
· · ·

...

Figure 2: Example graph Pd,s that is not S2 and has at most
two proper halfspaces.

Proof. Consider the graph Pd,s consisting of s interior
vertex-disjoint paths of length d with same endpoints, see
Figure 2. It follows that d(G) = d, the minimum shortest
path cover S∗ has size s and the number of extreme ver-
tices is 0. We claim that if d is even, the graph has only
two non-proper halfspaces V (Pd,s) and ∅ and if d is odd
additionally two halfspaces cutting each path in two halves
of same length.

To show that, we identify three of the paths with
vertices (v1, . . . , vd+1),(v1, w2, . . . , wd, vd+1), and
(v1, x2, . . . , xd, vd+1). Without loss of generality we can
assume that there is a cut edge vk, vk+1 with k < (d+ 1)/2
and labels λ(vk) = 0, λ(vk+1) = 1. The ray vk+1/vk
implies by Fact 2 that λ(vd+1) = 1, and the opposite
ray vk/vk+1 that λ(v1) = 0, λ(wd+1−k) = 0 and
λ(xd+1−k) = 0. Finally, vd+1 ∈ I(wd+1−k, xd+1−k),
which is a contradiction. This implies that a cut edge
{vk, vk+1) can only be placed at k = (d+ 1)/2 for an odd
d.

This also means that Pd,s is not S2.

The graph P2,3 is just the complete bipartite K2,3.

Theorem 10. For a weighted graph G the following holds
for the query complexity qc(G):

• if G is S2, then qc(G) ≥ max(log d(G), |Ext(G)|),

• if G is S3, then qc(G) ≥ max(log d(G), h(G)), and

• ifG is S4, then qc(G) ≥ max(log d(G), h(G), r(G)−
1).

Each bound is tight in the respective family and stronger
axioms lead to tighter bounds.

Proof.

• Any two different vertices with a halfspace (S2):
The lower bound using extreme vertices Ext(G) holds
for all graphs by Theorem 8 and hence also for S2

graphs. We can place a cut edge anywhere on any
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fixed shortest path with size of the diameter on any S2

graph, which requires log d queries to be found in the
worst-case.

• Any convex set and a vertex not in this set can be sepa-
rated with a halfspace (S3):
On S3 graphs with minimum hull set H∗, we can sep-
arate any vertex h ∈ H∗ from the ramaining hull set.
This means that we have to query all vertices in H∗ in
the worst-case.

• Any two disjoint convex sets can be separated with a
halfspace (S4):
For any graph, there exists a set R of size r(G) − 1
that has no Radon partition. In S4 graphs we can thus
extend any partition of R to halfspaces and thus have
to query each vertex in R in the worst-case.

We shortly discuss the bounds in Table 1. It contains graph
families often studied in metric graph theory (Bandelt and
Chepoi, 2008) and convexity theory, such as partial cubes,
weakly median and meshed graphs. Meshed graphs satisfy
the following triangle condition (Bandelt and Chepoi, 2008):
for any three vertices u, v, w with 1 = d(v, w) < d(u, v) =
d(u,w) there exists a vertex x adjacent to v and w such that
d(u, v) = d(u, x) + 1. For example, the triangle conditions
holds for meshed graphs, including weakly modular graphs.
S4 weakly modular graphs are the weakly median graphs
(Chepoi, 1994). Bipartite graphs and their S3 variant partial
cubes (Bandelt, 1989) are also a classical topic in graph
convexity theory. For bipartite graphs, S2 ⇐⇒ S3. Table 1
also contains trees, and K2,3 minor-free graphs a superset
of outerplanar graphs, studied by Seiffarth et al. (2019).

Trees The lower bound follows by Theorem 10, because
rees are S4 and h(G) = |Ext(G)|. The upper bound
follows by Theorem 6 by the fact that for any edge
{a, b}, we have that Ŵ=ab = ∅.

K2,3 minor-free graphs Seiffarth et al. (2019) shows that
K2,3 minor-free graphs are S4, which gives the lower
bound by Theorem 10. The upper bound follows by
Corollary 7. In fact, if k is a constant the upper bound
also holds for any K2,k minor-free graph.

Partial cubes Partial cubes are exactly the S2 (equivalently
S3) bipartite graphs, which gives the lower bound by
Theorem 10. The upper bound holds by Theorem 6 as
in bipartite graphs for any edge {a, b}, we have that
Ŵ=ab = ∅. If there would be an x ∈ Ŵ=ab it would
form a cycle of odd length with a and b, which is not
possible in bipartite graphs.

Weakly median graphs Weakly median graphs are S4 and
hence by Theorem 10 we get the lower bound. The up-
per bound holds for the much broader class of meshed
graphs. In fact, we only need the triangle condition to
achieve that the number of queries of Algorithm 1 is
≤ r(G)− 1.

By the triangle condition, we have that for any v ∈
W ∗=ab, there exists a common neighbour w of a and
b that is on the shortest path of a to v, respectively
b to v. So if d(a, v) = d(b, v) > 1, we would have
v ∈ w/a ∪ w/b and thus v /∈ W ∗=ab, which is not
possible. So, v = w and adjacent to a and b.

|W ∗=ab| ≤ r(G) does not hold in general and therefore
we can not use the query bound of Theorem 6. Instead,
we will directly bound the size of the set of vertices
Q ⊆ W ∗=ab queried by Algorithm 1. We claim that
any two different vertices v, v′ ∈ Q are adjacent. If
not, there will be a shortest path from v to v′ through
a and b respectively, because v and v′ are adjacent
to a and b. This implies v ∈ a/v′ ∩ b/v′ and v′ ∈
a/v ∩ b/v. Without loss of generality v is queried
before v′. Therefore, after the update in Algorithm 1
with v, A or B contains v′. That means, v′ will no be
queried, a contradiction. Thus, all vertices in Q are
adjacent resulting in a clique. Any clique has no Radon
partition, because any subset of a clique is convex, and
thus r(G) > |Q|.

Tightness of the bounds For some example graphs that
are Si but not Si+1 for i ∈ {1, 2, 3} and an S4 graph, see
Figure 3. For any choice of parameters (diameter, minimum
hull set size, Radon number) in the bounds of Table 1 there
are graphs achieving these in the respective graph family.
That means that we have tight bounds for S3 graphs (that
are not S4) and S4 graphs. The lower bound of Theorem 10
matches asymptotically the upper bound of Theorem 6. The
same holds for S2 graphs that are not S3, which can be seen
by the graph family depicted in Figure 4. Each graph in
this graph family is S2 (and not S3) and by adjusting the
length of the path in the middle and the number of leaves
on top, we can freely select the diameter and the number
of extreme vertices. Again, the lower bound and the upper
bound on the query complexity asymptotically coincide, as
h(G) = Ext(G) + 2 and |W ∗=ab| ≤ 1 for all edges {a, b}.

Shortest path covers and generalised Dijkstra In this
section we discuss how to compute the diameter and small
shortest path covers using a generalised Dijkstra’s algorithm.

Theorem 11. For a given weighted graph G, we can com-
pute a O(log d(G))-approximation for the minimum short-
est path cover S∗ in time O(|V |4).

Proof. We first describe a procedure to compute a shortest
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Table 1: Tight bounds for specific unweighted graph families

graph family sep. axiom bound on qc(G) remark

trees S4 Θ(log d(G) + |Ext(G)|) Ext(G) are exactly the leaves
K2,3 minor-free S4 Θ(log d(G) + h(G)) including outerplanar graphs
partial cubes S3 Θ(log d(G) + h(G)) O(·) holds for bipartite graphs
weakly median S4 Θ(log d(G) + h(G) + r(G)) O(·) holds for meshed graphs

path with a maximum number of vertices. More generally,
we will describe an iterative procedure covering the vertices
of the graph. Each round we will compute a shortest path
with a maximum number of vertices that have not been
covered yet.

We can assume that the graph is directed, because if it is
undirected, we can transform the graph into an equivalent
directed graph by duplicating each edge {x, y} to (x, y) and
(y, x) of same weight. For that, we define new weights w∗

for each directed edge e = (a, b) in the graph as w∗(e) =
(w(e), 0) if b is already covered and (w(e),−1) otherwise.
We note that w(e) > 0 for all edges e by assumption. Let us
define the lexicographic order ≺ on the w∗ tuples: (a, b) ≺
(c, d) if and only if (a < b) or (a = b and c < d). Note that
≺ gives a total order on the w∗ tuples. The w∗ weight of
a path is the component-wise sum of its edges w∗ weight.
This results in the following behavior. Two paths of the
same w-weight, but with one path covering a larger number
of not yet covered vertices, have different weights according
to w∗ and ≺. The path covering more vertices has a smaller
w∗ weight. We thus can apply the generalized Dijkstra’s
algorithm of Sobrinho (2002) to compute aw∗-shortest path,
which gives us a w-shortest path that covers the maximum
number of not yet covered vertices.

Iteratively computing such w∗-shortest paths results in a
shortest path cover S. Our problem of iteratively covering
a graph using shortest path is an instance of the general set
cover problem. Our covering approach selecting the short-
est path covering the maximum number of yet uncovered
vertices is an instance of the greedy algorithm for the gen-
eral set cover problem (Chvatal, 1979). Hence, we achieve
at least the same approximation ratio as this more general
algorithm, which gives us |S| ≤ (1 + ln(d+ 1))|S∗|.

In a similar way, we can compute the diameter by applying
the generalised Dijkstra of Sobrinho (2002) to each vertex
in the graph again with the weights w∗.

Proposition 12. For any graph G, it holds that r(G) ≤
tw(G) + 2.

Proof. Consider a set F ⊆ V (G) of size r(G) − 1 that
has no Radon partition. For each pair of vertices a, b ∈ F ,

we can take a path in I(a, b). The set of such paths for all
vertex pairs do not overlap on the interior vertices, because
otherwise we could construct a Radon partition using the
overlapping paths. Contracting the edges on such path to
one edge we get a clique of size |F |. The Hadwiger number
is the maximum size of any such clique minor, which is
known to be ≤ tw(G) + 1. This can be seen by the fact that
any clique C has treewidth tw(C) = |C| − 1 and that any
graph minor F of a graph G has treewidth tw(F ) ≤ tw(G),
see for example Diestel (2017, Lemma 12.4.1).

A.1. Passive learning halfspaces

Moran and Yehudayoff (2019) established that the VC di-
mension of halfspaces of any convexity space is smaller
than the Radon number of the space. We prove it here for
completeness. Let (X, C) be a convexity space and r(X, C)
its Radon number. We only have to show we can not shat-
ter a set R ⊆ X of size r(X, C). By definition, R has
a Radon partition R1, R2 with σ(R1) ∩ σ(R2) 6= ∅. As-
sume there is a halfspace C separating R1 and R2, that is
R1 ⊆ C and R2 ⊆ X \ C. Then by the definition of halfs-
paces and the monotonicity of the convex hull we have that
σ(R1) ⊆ σ(C) = C and σ(R2) ⊆ σ(X \ C) = X \ C,
contradicting that the two sets overlap.

Proposition 13. The VC dimension of the hypothesis class
of halfspaces of an S4 convexity space is exactly one less
than the Radon number of the space.

Proof. It only remains to show that we can shatter a set
F of size r(G) − 1 using halfspaces. The convex hulls
σ(F1), σ(F2) of any partition F1,F2 of F do not overlap
and hence they can be separated by halfspaces in an S4

space. Thus, halfspaces shatter F .

Proposition 14. The VC dimension of halfspaces in a graph
G is smaller than tw(G) + 2.

Proof. Combining the fact of Moran and Yehudayoff (2019)
with Proposition 12 it follows that the VC dimension of
halfspaces in G is < r(G) ≤ tw(G) + 2.
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(a) Graph is S1 but not S2. There are no proper halfspaces.

a c

b

(b) Graph is S2 but not S3. Vertices a and c are not separable
from vertex b.

c d

a b

(c) Graph is S3 but not S4. Vertices a and d are not separable
from vertices b and c.

(d) Graph is S4. Any two disjoint convex sets are separable.

Figure 3: Examples for S1 to S4 graphs. Inspired by Bandelt
(1989).

B. Additions to the discussion
Graph and other finite convexity spaces are not equivalent
to the Euclidean convexity in the sense that it is not always
possible to embed a graph into Rm or the other way around
while preserving the convex hull σ(·). As Euclidean con-
vexity spaces are always S4 while graphs do not have to be,
there is no straightforward way to transform bounds on the

· · ·

...

Figure 4: Example of a S2 graph family that is not S3 with
tight bounds.

Table 2: Number of convex communities.

dataset convex communities

DBLP 4308/5000
Amazon 3999/5000
Youtube 2990/5000
LiveJournal 1649/5000
Orkut 363/5000
Eu-core 7/42

query complexity from one setting to the other. But even
for S4 interval spaces, the convex hulls given by the interval
mapping Id in a finite metric space (X, d) with X ⊆ Rm
do not always coincide with the classical convex hulls in
(Rm, d).

To see that, take any tree graph with at least 3 leaves, which
has the property that the convex hull of any two leaves
contains a non-leaf vertex but no additional leaf. However,
if we try to reconstruct this behaviour in Rm for arbitrary
m, any three points, with at least one non-leaf vertex, must
lie on one straight line and hence all points lie on the same
straight line. But this implies that either one non-leaf vertex
is not contained in the convex hull of one pair of leaves or
the convex hull of two leaves contain another leaf.

For the other direction, take the triangle in the Euclidean
plane with points a, b, c and a point d in its interior, which
has the property that any two points are convex, and the
convex hull σ({a, b, c}) contains d, see Fig. 1c) in the main
paper. Reconstructing this with any finite metric convex-
ity space, including graphs, is not possible. If we assume
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convex edges, I({a, b, c}) = I(a, b) ∪ I(a, c) ∪ I(b, c) =
{a, b, c}, the set {a, b, c} is convex and does not contain d.

We can phrase this in terms of halfspaces. In the Euclidean
plane, a, b, c and d are not halfspace separable, however in
any finite metric convexity space that has convex edges they
are. In general, if two sets are linearly halfspace separable
in Euclidean space, they will be separable by halfspaces
in the corresponding fully connected graph with Euclidean
distances.

Cut-based bounds In the batch setting, the first query
complexity bound was given by Guillory and Bilmes (2009),
subsequently further improved (Guillory and Bilmes, 2011)
and extended by the line of work of Cesa-Bianchi et al.
(2010). Let δ(T ) denote the set of outgoing edges of
T ⊆ V . Guillory and Bilmes (2009) introduced Ψ(L) =
min∅6=T⊆(V \L) |δ(T )|/|T | to bound the error of the min-
cut-based prediction strategy (Blum and Chawla, 2001) as
|C|/Ψ(L). Guillory and Bilmes (2011) thus propose to se-
lect a setL that maximises Ψ(L) to make the bound smallest
possible. On the hypercube with halfspace separable labels,
the cut size |C| is always V/2.

LetG = (V,E) be 2×k grid vertices, where k is a multiple
of four. We will show that for any L of size |L| ≤ |V |/4,
it holds that |C|/Ψ(L) ≥ |V |/2. That means that even if
the algorithm is allowed to query a quarter of the graph, it
can still only guarantee that it will be correct on one half of
the graph. Note that this is 2/3 of the unqueried number of
vertices.

The worst-case halfspace will contain exactly one shortest
path with k vertices, resulting in k cut vertices to ther other
half of the graph. Thus |C| = |V |/2. As k is a multiple of
four we can divide the grid into 2 × 2 blocks. Using the
fact that |L| ≤ |V |/4 we see that there must be one block
F ⊆ V \L of four vertices that is unqueried. The number of
outgoing edges of F is bounded as |δ(F )| ≤ 4. This implies
that Ψ(L) = min∅6=T⊆(V \L) |δ(T )|/|T | ≤ |δ(F )|/|F | ≤
1. Plugging this into the error bound of Guillory and Bilmes
(2009) we see that |C|/Ψ(L) ≥ |C|/1 = |V |/2. This
shows that even after |V |/4 arbitrarily selected queries, the
bound predicts an error not better than random guessing.

Margin-based bounds We shortly discuss here, why
dens(V ) ≥ 1 for the 2× k grid graph. For a set A ⊆ V let
M(A, r) be the maximum cardinality of any subsetA′ ⊆ A
such that all distinct a, b ∈ A′ satisfy d(a, b) > r. Let
B(a, r) = {b ∈ V | d(a, b) ≤ r} denote the ball of ra-
dius r around a. The density constant of a semimetric
space is µ(V ) = min{µ ∈ N | (v ∈ V and r > 0) ⇒
M(B(v, r), r/2) ≤ µ}. The density dimension of a semi-
metric space is defined as dens(V ) = log2 µ(V ).

For a unweighted graph B(v, 1) is simply the neighbours

(a) Two moons NN-graph.

(b) Iris dataset NN-graph.

a

c

bd

(c) Halfspace separable in the graph, but
not in R2.

Figure 5: Halfspace separations on different graphs.

of v, including v. Thus,M(B(v, 1), 1/2) is also again the
set of all neighbours v, because any pair of vertices a, b has
distance d(a, b) ≥ 1 > 1/2. This means that µ(V ) is larger
than the maximum degree of the graph. Concluding we have
µ(V ) ≥ 2 for any graph with at least one edge and thus
dens(V ) ≥ 1.

C. Experiments
We made all implementations and information on how to
reproduce the experiments publicly available4. As described
in the main text, we evaluated our two approaches greedy
and selective sampling against S2 (Dasarathy et al., 2015),
active label propagation (Zhu et al., 2003b) and random
sampling. We performed 10 independent runs on each
dataset, where the first vertex query was the same for all 5
approaches. It was sampled uniformly at random from the
same class in the dataset on each run, to guarantee the same
starting accuracy for each appraoch.

For each dataset, the average accuracy after each query is
depicted in Figure 6 including error bars representing the

4https://github.com/maksim96/subsetml_
active_graph_halfspaces

https://github.com/maksim96/subsetml_active_graph_halfspaces
https://github.com/maksim96/subsetml_active_graph_halfspaces
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10% and 90% quantile of the 10 runs. The same is visualised
in Figure 7 with the average number of found cut vertices
after each query instead of the accuracy.

We find that our greedy approach identifies the correct half-
space using 5-6 queries most of the time on all datasets.
Only occasionally two more queries on the two moons and
Iris dataset are reqiored. The selective sampling based ap-
proach takes some more queries, usually requiring roughly
1.5 to 2 times as many queries as the greedy approach. We
thus conclude that, at least on these benchmark datasets
the greedy maxisation significantly reduces the number of
required queries.

Inspecting the other approaches, we find that they not only
take substantially more queries to get close to the correct
prediction but also that all of them are unstable. This is
meant in the sense that their performance depends a lot
on the first drawn vertex and the inherent randomness of
the algorithms. Sometimes this even leads to a significant
accuracy decrease with more queries, as can be especially
be seen on the Iris dataset, see Figure 6b. Here, the accuracy
of the predictions start to decrease after the 8th query for S2

and after the 17th query for active label propagation. One
reason might be that label propagation favours small cuts
(weighted by Gaussian similarity) and hence has problems
classifying the cut vertices correctly. Indeed, the Iris dataset
has 38 cut edges while two moons only six and here all
three label propagation based methods perform well. For
example, S2 identifies the correct halfspace after 14 queries.

In terms of the found cut vertices per query, see Figure 7,
our approaches use convex hulls and extensions to deduce
many labels after each single query. The other approaches
do not rely on the halfspace assumptions and hence can only
identify at most one cut vertex per query. S2 performs well
still, identifying a cut vertex on almost every query after a
few initial queries. This is not surprising however, as S2 was
designed with explicitly this goal in mind (Dasarathy et al.,
2015). The other two approaches, active label propagation
and random sampling, have difficulties finding cut vertices.

D. Extensions
Multi-class settings Our results for halfspaces can be
generalised to the case where we have k different labels
and each corresponding vertex set is convex. Using short-
est path covers we get the query complexity upper bound
O(|S∗|k log d(G)) in this case, as we have to binary search
each path at most k − 1 times to identify the at most k − 1
possible cut edges. Also our main approach Lemma 4
can be adapted to find a cut edge for each pair of dif-
ferent labels using h(G) + k2 log d(G) queries. How-
ever, Lemma 5 does not hold anymore in general. Algo-
rithm 1 can be adapted to the multi-class setting but it is

not clear how to generalise the W ∗=ab based upper bound.
We are convinced that similar ideas to the ones of Bressan
et al. (2021) can be used to achieve an upper bound like
O(h(G) + k2(log d(G) + max{a,b}∈E(G) |W ∗=ab|)).

Directed graphs For directed graphs one has to adjust
the definition of the interval mapping I(x, y). The default
way (Chartrand and Zhang, 2000; Pelayo, 2013) to fix the
symmetry property, I(x, y) = I(y, x), is by first defining a
directed interval ID(x, y) = {z | d(x, z) + d(z, y)}, where
d is the directed shortest path distance which is not neces-
sarily symmetric, and then simply taking the union of both
directions, I(x, y) := ID(x, y) ∪ ID(y, x). The remain-
ing definitions follow as before. Note that this implies that
I(x, y) can contain vertices from shortest paths of differ-
ent length, as the shortest x-y-path can be shorter than its
reversed counterpart.

Disconnected graphs If the graph G is connected all con-
vex vertex sets will induce a connected subgraph. Usually,
for a vertex set to be convex in a disconnected graph it is
additionally required that the induced subgraph is connected
(Pelayo, 2013). To allow halfspace separation in discon-
nected graphs on multiple connected components, we ignore
this restriction. The main difference to connected graphs is
that in disconnected graphs the shortest path distance may
become unbounded/undefined (for disconnected vertices).
In such cases, we have to redefine the interval I(x, y) =
{x, y} if x and y are disconnected and keep the original
definition I(x, y) = {z ∈ V | d(x, y) = d(x, z) + d(z, y)}
for connected vertices.
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(a) Two moons.

(b) Iris.

(c) 20× 20 grid.

(d) 210 hypercube.

Figure 6: Accuracy against number of queries on four benchmark datasets.
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(a) Two moons.

(b) Iris.

(c) 20× 20 grid.

(d) 210 hypercube.

Figure 7: Number of found cut vertices against number of queries on four benchmark datasets.
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