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Abstract

To get a solution of a partial differential equation, a numerical method has often to be
applied. However, there is no standard scheme for all problems.
This thesis considers different aspects of modern numerical methods to solve such equa-
tions mainly for fluid mechanics applications. The requirements on such methods are
constantly growing. Although the computer resources become more and more powerful,
complex simulations are still very time-consuming. On the other hand, the numerical ap-
proximation has at least to reflect the most important physical properties of the solution
of the underlying problem. This request sounds trivial but is often very difficult to achieve.
Therefore, efficient and appropriate numerical methods play a crucial role.
For interface problems on an unbounded domain we analyze couplings methods, also for
time-dependent problems. Furthermore, we consider adaptive mesh-refining algorithms
which are steered with appropriate a posteriori error estimators. They lead to more pre-
cise solutions with respect to the degree of freedoms. For some of these algorithms we are
able to prove convergence with optimal rates. To accelerate future multi-tracer transport
we finally develop innovative numerical methods for high performance computing applied
in climate modeling. Several numerical examples illustrate the analytical results and the
effectiveness of our numerical strategies to solve partial differential equations.

Kurzfassung

Eine partielle Differentialgleichung muss oft mit Hilfe einer numerischen Methode gelöst
werden. Leider gibt es nicht ein Standardverfahren für alle möglichen Gleichungen.
Diese Arbeit beschäftigt sich mit modernen numerischen Methoden zur Lösung von Prob-
lemen, die hauptsächlich in der Strömungsmechanik auftreten. Die Anforderungen an
solche Verfahren wächst stetig. Trotz ständig steigender Computerressourcen sind kom-
plexe Simulationen immer noch sehr zeitaufwändig. Andererseits muss die numerische
Lösung zumindest die wichtigsten physikalischen Eigenschaften des zugrunde liegenden
Modellproblems widerspiegeln. Obwohl dieser Wunsch naheliegend zu sein scheint, ist er
oft schwer zu erfüllen. Deshalb spielen effiziente und dem Problem angepasste numerische
Methoden eine entscheidende Rolle.
Wir analysieren verschiedene Kopplungsmethoden für Schnittstellenprobleme, welche auch
zeitabhängig sein können. Des Weiteren betrachten wir adaptive Gitterverfeinerungen,
welche durch geeignete a posteriori Fehlerschätzer gesteuert werden. Dadurch bekom-
men wir genauere Lösungen hinsichtlich der Anzahl der Freiheitsgrade. Für einige
adaptive Algorithmen können wir Konvergenz mit optimalen Raten analytisch beweisen.
Schlussendlich entwicklen wir innovative numerische Verfahren für Höchstleistungsrech-
ner, die den mehrfachen Partikeltransport für Klimasimulationen beschleunigen. Mehrere
numerische Beispiele bestätigen die analytischen Aussagen und zeigen das Anwendungspo-
tential der numerischen Verfahren.
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Chapter 1

Introduction

Modeling has been identified as an important tool to describe phenomena and processes
in engineering and natural sciences. The need for more realistic models is growing which
is accompanied with increasingly time-consuming simulations. Efficient and appropriate
numerical methods play a crucial role to get a realistic approximation of the solution in a
reasonable time frame.
By its very nature, mathematical computational science requires a multidisciplinary ap-
proach. My contributions to numerical mathematics and computational science range
from modeling, developing numerical methods, numerical analysis to efficient implemen-
tation (also for high performance computing). In particular, this thesis considers different
aspects of modern numerical schemes to solve partial differential equations (PDE) with a
focus on fluid mechanics applications.
The scientific contribution of this thesis can be split into three major research areas; see
also My Bibliography on page 23:

• Coupling methods: Couplings of the finite element method or the finite volume
method with the boundary element method including a posteriori error estimates
and corresponding adaptive mesh refinements can be found in [MyEra15, MyEOS16,
MyEOS17, MyES17a, MyES17b, MyEES18, MyES20].

• Rigorous convergence proofs with rates for adaptive numerical schemes are published
in [MyEP16, MyEP17, MyEP19a, MyEP19b].

• Semi-Lagrangian schemes on high performance computers for atmospheric modeling
are presented in [MyLEM11, MyELGT12, MyELT13, MyEN14, MyETN16].

My published works include numerical examples, which I will not mention explicitly in the
description below. The numerical verification of theoretical results is very time-consuming
but an indispensable instrument. Furthermore, it gives one new ideas for further theoret-
ical investigations as the examples in [MyELGT12, MyELT13] show.
Other contributions of myself, i.e., [Era05, EP08, EFP08, EFLFP09, Era10, Era12,
EFGP13, Era13a, Era13b, Era14, ES19, EGP20], are listed in Bibliography on page 27.

1



2 Chapter 1. Introduction

1.1 Numerical methods

In this section we demonstrate very briefly the basics of some numerical schemes used
in this thesis. The Finite Element Method (FEM) is a very well known scheme and
would probably not need further explanation. However, the Finite Volume Method (FVM)
with the option of an upwind stabilization, the Boundary Element Method (BEM), the
Streamline Upwind Petrov Galerkin Method (SUPG) and semi-Lagrangian schemes might
be not so common and are often taught only in specialized lectures at universities.

1.1.1 Classical methods for spatial discretization

Let us first consider the following model problem in a Lipschitz domain Ω ⊂ Rd, d = 1, 2, 3:
Find u such that

div(−α∇u + bu) + cu = f in Ω, (1.1a)
u = 0 on Γ := ∂Ω. (1.1b)

The given model data are the diffusion coefficient α, the convection vector b, the reaction
coefficient c, and the volume force f . The weak form of the model problem (1.1) reads:
Find u with u|Γ = 0 such that

Ω
(α∇u · ∇v − bu · ∇v + cuv) dx =

Ω
fv dx (1.2)

for all v with v|Γ = 0.

Finite Element Method (FEM)

Many introduction books exist for the application and analysis of the FEM. We only cite
the books [Bra07, BS08, Ste08] which we used frequently for our work. First of all one
has to define a partition T of Ω, e.g., intervals for d = 1, triangles for d = 2 or tetrahedra
for d = 3. We see an example of a partition T of Ω in two dimensions in Figure 1.1(a).
On such a mesh T we define the ansatz function uh as well as the arbitrary test function
vh which are T -piecewise affine and globally continuous functions (S1). Then the lowest
order, conforming S1-FEM, which is based on the weak form (1.2), reads: Find uh with
uh|Γ = 0 such that

Ω
(α∇uh · ∇vh − buh · ∇vh + cuhvh) dx =

Ω
fvh dx (1.3)

for all vh with vh|Γ = 0.

Finite Volume Method (FVM) with Upwind stabilization

The FVM is probably the most widely used numerical scheme in industrial codes for fluid
mechanics problems [EGH00], not only for hyperbolic but also for elliptic or parabolic
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K

(a) Primal mesh T , a partition of Ω.

K

(b) Dual mesh T ∗.

Figure 1.1. For the cell-centered FVM (1.5) the control volume mesh T coincides with a
standard FEM mesh, e.g., triangles in two dimensions; see (a). The unknowns are located at
the cell-center (filled circles) of the triangles and represent the approximation of the average
value of u on each cell. The approximation uh is a T -piecewise constant function. For the
vertex-centered FVM (1.6) the control volume mesh, the dual mesh T ∗, is built up from
the primal mesh T ; see (b). The vertex-centered FVM is a Petrov Galerkin scheme. The
approximation uh is a T -piecewise affine and globally continuous function whereas the test
space is T ∗-piecewise constant. The unknowns for a S1-FVM are located at the corners of the
triangles (filled circles). Hence, the ansatz space is the same as for S1-FEM.

problems. This has several reasons; the numerical scheme naturally conserves numerical
fluxes since it relies on the balance equation. Thus global mass conservation is guaran-
teed. For convection dominated (with respect to diffusion) problems a natural upwind
stabilization can be applied which does not destroy the numerical flux conservation prop-
erty. With some special configuration FVM guarantees also monotonicity. However, due
to the crucial mathematical justification the FVM is not so favored in the mathematical
analysis as, e.g., FEM. The principle of an FVM relies on the balance equation. Let K ⊂ Ω
denote a control volume of a partition of Ω. Next we integrate (1.1a) over K and apply
the divergence theorem. Then, for u smooth enough, we get the conservation law

∂K
(−α∇u + bu) · n ds +

K
cu dx =

K
f dx (1.4)

over K, where n denotes the unit normal vector pointing outward of K. The way of the
discretization of the diffusive and convective fluxes on the boundary ∂K divides FVM into
two major families.
For cell-centered FVMs the control volume coincides with an element of the mesh T , i.e,
K ∈ T ; see Figure 1.1(a). The unknown uh for the cell-centered FVM is T -piecewise
constant: Find uh such that

E∈EK

F D
K,E(uh) +

E∈EK

F C
K,E(uh) +

K
cuh dx =

K
f dx (1.5)
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for all K ∈ T , where EK is the surface of K ∈ T . The numerical fluxes F D
K,E(uh) and

F C
K,E(uh) approximate the continuous fluxes such that conservation of mass is satisfied.

The easiest approximation of the diffusive flux is based on a first order finite difference
quotient. For more details we refer to [EGH00].
The second family are vertex-centered FVMs. Based on a first mesh T we construct a dual
mesh T ∗; see Figure 1.1(b). The elements of this dual mesh are the control volumes K

in (1.4). The unknown function uh, however, is based on the first mesh T . The unknown
uh for the vertex-centered FVM in this work is always a T -piecewise affine and globally
continuous function, which is in fact the same ansatz space as for the lowest order FEM.
Thus the discretization in a vertex-centered FVM sense reads: Find uh with uh|Γ = 0 such
that

∂K
(−α∇uh + buh) · n ds +

K
cuh dx =

K
f dx (1.6)

for all K ∈ T ∗. More details on the vertex-centered FVM can be found in [KA03].
Note that both FVMs are numerically unstable for convection-dominated problems. This
is the case if α b and the mesh resolution is not high enough. It is not an
option to refine the mesh because the number of degree of freedoms would grow to a
non realistic size to solve the system with a computer. However, for both FVMs an easy
upwind stabilization [EGH00, KA03] can be implemented on the corresponding surfaces
E ⊂ ∂K. Upwind means that the approximation is biased in the upstream direction of
the convection b. Then the FVMs provide stable numerical solutions for practicable mesh
sizes. Furthermore, the numerical fluxes, calculated from the numerical solution, fulfill
the important property of local flux conservation.

Streamline Upwind Petrov Galerkin scheme (SUPG)

For convection-dominated problems the standard FEM (1.3) approximation leads as well
to strong unphysical oscillations in the solution. Although the Céa Lemma and the a priori
estimates also hold for this type of problems, the unknown constant in the estimates grows
as the convection dominance gets bigger. Thus only very small (unrealistic) mesh sizes
would lead to a stable solution. The SUPG, introduced in [HB79, BH82], is often applied
in FEM based implementation to get a direct stabilization on practicable mesh sizes for
such problems. Also higher order schemes are possible. The SUPG is a simple extension
of a standard FEM implementation (1.3). In fact, one adds the weighted residual equation

T ∈T
δT

T
(div(−α∇uh + buh) + cuh)b · ∇vh dx =

T ∈T
δT

T
fb · ∇vh dx

to (1.3). Here, δT > 0 is a user-chosen parameter, which strongly depends on the model
problem. In general, δT can not be determined a priori. Note that the discrete formulation
of FEM is extended in the direction of b, which in fact adds artificial diffusion only in
streamline direction. For more details we refer to [RST08].
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Boundary Element Method (BEM)

In this thesis we apply the BEM only for a Laplace problem on an unbounded exterior
domain Ωe = Rd\Ω, d = 2, 3. To solve problems on Ωe, the main advantage of BEM is
that we do not have to truncate the computational domain and set artificial boundary
conditions. Thus we present the scheme on such a model problem although the principle
is transferable also on bounded domains Ω and other problems. Generally, if we know the
fundamental solution of the underlying differential operator we can transfer the problem
into a boundary integral equation. The discretization of this equation on the boundary
with the aid of a Galerkin ansatz is called Boundary Element Method (BEM). Let us
consider the following model problem: For ue with

−Δue = 0 in Ωe, (1.7a)
ue(x) = C∞ log |x| + O(1/|x|) for |x| → ∞, d = 2, (1.7b)
ue(x) = O(1/|x|) for |x| → ∞, d = 3, (1.7c)

and the constant C∞ > 0 there holds formally the representation formula

ue(x) = −
Γ

G(x − y) ∂

∂nue(y)|Γ dsy +
Γ

∂

∂ny
G(x − y)ue(y)|Γ dsy. (1.8)

for x ∈ Ωe. Here, n is the normal vector on Γ pointing outward with respect to Ω. The
fundamental solution of the Laplace operator is given by

G(x) :=




− 1
2π

log |x| for x ∈ R2\{0},

1
4π

1
|x| for x ∈ R3\{0}.

Taking the trace and the cornormal derivative on the boundary Γ we get for the exterior
problem (1.7) with ξ = ue|Γ and φ = ∂

∂nue|Γ the Calderón system

ξ = (1/2 + K)ξ − Vφ, (1.9)
φ = −Wξ + (1/2 − K∗)φ. (1.10)

Here, V is the single layer integral operator, K the double layer integral operator, K∗ the
adjoint double layer integral operator, and W the hypersingular integral operator. Hence,
applying a Galerkin ansatz to (1.9) and/or (1.10) leads to the BEM. For example, if the
Dirichlet condition ξ = ue|Γ = uD of our model problem is given on Γ = ∂Ωe we arrive at
Symm’s integral equation Vφ = (−1/2 + K)uD. With the aid of a variational formulation
and a discretization of the function spaces over a mesh on Γ we approximate φ with a
piecewise constant ansatz function φh, i.e.,

Γ
(Vφh)ψh ds =

Γ
((−1/2 + K)uD)ψh ds

for all piecewise constant test functions ψh. Finally, we calculate the solution ue in Ωe

with (1.8). A detailed introduction to BEM, in particular to the integral operator theory,
can be found in the books [McL00, Ste08, SS11].
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Dk

Ak

(a) Lagrangian area.

Dk

Ak

FE

(b) Flux area for FE .

Dk

Ak
FS

(c) Flux area for FS .

Dk

AkFW

(d) Flux area for FW .

Dk

Ak

FN

(e) Flux area for FN .

Figure 1.2. The figures show the movement of the departure grid cell Dk to the arrival cell
Ak ∈ T . In the grey area of (a) we calculate the reconstruction ψn

k,rec for the remapping
semi-Lagrangian scheme (1.12). For the flux-form semi-Lagrangian scheme (1.14) we have to
calculate four fluxes FE , FS , FW , and FN . In (b)–(e) we see the mass which flows through the
corresponding edges {E, S, W, N} in one time step [tn, tn+1].

1.1.2 Semi-Lagrangian scheme

Semi-Lagrangian schemes are widely used in numerical climate and weather predic-
tion [SC91, Dur10] since they allow longer time steps than classical time discretization
schemes such as Runge Kutta schemes. We focus on two schemes for climate modeling on
high performance computers; see Section 1.4. In this section, we want to outline the main
ideas for the approximation of the standard transport or continuity equation in two di-
mensions. A semi-Lagrangian scheme combines ideas from Eulerian and Lagrangian type
schemes. Eulerian type schemes consider the rate of change of a variable on a fixed mesh.
In Lagrangian type schemes, however, one follows individual parcels in time along their
trajectories in the fluid, i.e., the mesh travels in the fluid. In this work we consider back-
ward semi-Lagrangian schemes, i.e., the semi-Lagrangian scheme interpolates a function
from a Lagrangian mesh to a regular Eulerian mesh at every time step. For that we fix
an arrival/target mesh T which consists of quadrilaterals. For each arrival cell Ak ∈ T ,
there exists a corresponding departure cell Dk, i.e., Dk moves in one time-step [tn, tn+1]
to Ak; see Figure 1.2. We remark that the arrival cell Ak is always static and thus the
same, whereas the shape of the departure cell Dk changes at every time step.
The first scheme is a remapping scheme, which is based on the Lagrangian form of the
transport equation. In two dimensions Cartesian plane this reads without a source or sink:
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Find ψ(x, t) such that
D

Dt A(t)
ψ dx = 0 t ∈ (0, T ]. (1.11)

With the wind velocity (u1, u2) the Lagrangian (material) derivative is D
Dt = ∂t + u1∂x1 +

u2∂x2 , A(t) is the area (volume) in which ψ evolves in time along the Lagrangian trajec-
tories, (0, T ] is the time interval with T > 0, and the initial condition is prescribed as
ψ(x, 0) = ψ0(x) at time t = 0. The temporal discretization of the material derivative in
the time step [tn, tn+1] with tn ⊂ (0, T ], n ∈ N, is a simple finite difference, i.e.,

Ak

ψ dx −
Dk

ψ dx /(tn+1 − tn) = 0.

With ψ
n+1
k we approximate ψ as the average in Ak ∈ T at time step tn+1. We construct

ψn
k,rec from the cell averages ψ

n
k and use it to calculate the integral over the departure cell

Dk; see Figure 1.2(a). Thus a semi-Lagrangian step reads

ψ
n+1
k |Ak| =

Dk

ψn
k,rec dx (1.12)

for all arrival cells Ak ∈ T . Note that A(tn) = Dk, A(tn+1) = Ak, and |Ak| is the volume
of Ak. For a high order numerical scheme the reconstruction ψn

k,rec has to be of high order.
Furthermore, the reconstruction has to be done carefully to ensure mass conservation and
monotonicity of the scheme.
An equivalent formulation of the transport equation (1.11) is the starting point for our
second semi-Lagrangian type scheme. The flux-form of (1.11) in two dimensions Cartesian
plane reads without a source or sink: Find ψ(x, t) such that

∂ψ

∂t
+ ∂(u1ψ)

∂x1
+ ∂(u2ψ)

∂x2
= ∂ψ

∂t
+ div F = 0 t ∈ (0, T ], (1.13)

where (u1, u2) is the wind velocity vector, F = (u1ψ, u2ψ) is the flux, (0, T ] the time
interval with T > 0, and the initial condition is prescribed as ψ(x, 0) = ψ0(x) at time t = 0.
This flux-form formulation (1.13) allows to apply a classical finite volume discretization
ansatz, i.e, we integrate (1.13) spatially over each arrival cell Ak ∈ T and temporally over
the time interval [tn, tn+1]. Finally, with the divergence theorem and a finite difference
approximation of the time derivative we arrive at the balance equation for one time step

ψ
n+1
k |Ak| = ψ

n
k |Ak| − (FE + FS + FW + FN ) (1.14)

for all arrival cells Ak ∈ T . Here, ψ
n
k is again the average of ψ at tn in Ak and |Ak| is the

volume of Ak. The flux FX of an edge X, X ∈ {E, S, W, N}, is the approximation of the
continuous flux. Roughly speaking, this flux is the mass transported through the area,
where the edge X of the departure cell Dk follows the trajectory to the corresponding edge
X of the arrival cell Ak; see Figures 1.2(b) to 1.2(e). This approach has the advantages
that a possible loss of mass due to numerical errors is avoided since the discrete formulation
with fluxes also ensures conservation of fluxes. Note that there exist several possibilities
to approximate these fluxes.
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1.2 Coupling methods

A solution of a problem may have different physical properties in different parts of the
domain. Therefore, it makes sense to consider couplings of different numerical methods to
get the best possible numerical approximation of the solution which reflects these prop-
erties. If we consider such problems in an unbounded domain the situation is even more
delicate. With classical domain-based discrete schemes we have to truncate the domain
and describe artificial boundary conditions. Hence, we change the physical properties
of the model. However, if we know the fundamental solution of the PDE, e.g., for the
Laplace, Helmholtz, and Laḿe equation to mention only a few but not all, we can rewrite
the problem into a boundary integral equation; see Section 1.1.1. The discretization of this
integral equation with a Galerkin method is called BEM. These observations motivate us
to consider interface problems, where we apply the FEM or the FVM in a bounded domain
to solve more complicated problems. In the corresponding unbounded domain we apply
the BEM which avoids the truncation of the domain. This leads to a FEM-BEM or FVM-
BEM coupling method. Another interpretation of such coupling methods is that BEM can
“replace” the possible unknown boundary conditions of a problem [Era12, Remark 2.1].
The idea and the analytical verification of a FEM-BEM coupling goes back to [JN80].
This coupling is also known as Johnson-Nédélec or the nonsymmetric FEM-BEM cou-
pling. There exist other types of FEM-BEM couplings. We only want to mention the
symmetric and three field coupling. Here, symmetry should be understood with respect
to a diffusion-diffusion interface problem [Cos87]. A more general approach in the context
of domain decomposition [BM94] can be seen as the basis for the three field coupling.
In Section 1.2.1 we consider a stationary interface problem, whereas in Section 1.2.3 we
extend the model problem to a parabolic-elliptic interface problem.

1.2.1 Coupling of the finite volume method and the boundary element
method

In many fluid mechanics problems the boundary conditions may be unknown, or the
domain may be unbounded. Also conservation of mass and stability with respect to
dominating convection is substantial. To address all these issues we analyze the coupling
of finite volume methods with the boundary element method. Let Ω ⊂ Rd, d = 2, 3, be a
bounded domain with connected polygonal Lipschitz boundary Γ := ∂Ω and Ωe = Rd\Ω
is the corresponding unbounded exterior domain. The model problem reads: Find u and
ue such that

div(−A∇u + bu) + cu = f in Ω, (1.15a)
−Δue = 0 in Ωe (1.15b)
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with the radiation conditions

ue(x) = C∞ log |x| + O(1/|x|) for |x| → ∞, d = 2, (1.15c)
ue(x) = O(1/|x|) for |x| → ∞, d = 3, (1.15d)

and with the coupling conditions across the interface given by

u = ue + g on Γ, (1.15e)

(A∇u − bu) · n = ∂ue

∂n + h on Γin, (1.15f)

(A∇u) · n = ∂ue

∂n + h on Γout. (1.15g)

Here A is a symmetric diffusion matrix, b is a possibly dominating velocity field, c is a re-
action function, f on the right-hand side is a known volume force, and C∞ is an unknown
constant. We allow prescribed jumps g and h on Γ. The coefficients are allowed to be
variable. Furthermore, n is the normal vector on Γ pointing outward with respect to Ω.
The coupling boundary Γ = ∂Ω = ∂Ωe is divided in an inflow and outflow part, namely
Γin := x ∈ Γ b(x) · n(x) < 0 and Γout := x ∈ Γ b(x) · n(x) ≥ 0 , respectively. The
radiation conditions (1.15c) or (1.15d) guarantee that our problem has a unique solution.
Note that for the two dimensional case the additional hypothesis that the diameter of Ω is
less than one is mandatory. An existence and uniqueness proof for the solution of (1.15)
in two dimensions can be found in [Era10, Era12], which is also valid for three dimen-
sions. The problem in the bounded interior domain Ω, i.e., (1.15a) is the prototype of
a stationary flow and transport problem in porous media. The first mathematical jus-
tification of a vertex-centered FVM-BEM coupling to approximate (1.15a) can be found
in [Era10, Era12]. The approximation with a cell-centered FVM-BEM coupling approach
was studied in [Era10, Era13a], but a rigorous analysis of this coupling type is still missing.
These couplings are based on the so called three field approach, which is a modification
of the symmetric coupling [Cos87]; see also [BM94] for a more general approach in the
context of domain decomposition. The symmetric and the three field FEM-BEM cou-
plings are built from the standard weak formulation of (1.15a) and the weak form of the
complete Calderón system (1.9)–(1.10), i.e., both equations are used and there is the need
to discretize all four integral operators. The difference is that for the three field coupling
ξ (the exterior trace) is kept as additional unknown. Hence, the system of linear equa-
tions is larger than for the symmetric coupling. However, the symmetric coupling is only
symmetric with respect to a diffusion-diffusion transmission problem which can be used,
e.g., to apply fast numerical equation solvers. We note that the presence of convection
in the interior domain destroys this property. To get an easier coupling formulation and
a smaller system of linear equations the nonsymmetric coupling approach [JN80] is of
interest since only the first equation of the Calderón system (1.9) is used. Hence, only
the singular layer and the double layer integral operator appear in the weak form but not
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solve estimate mark refine

outputcontinue

Figure 1.3. The principle loop of an adaptive algorithm. On a start mesh with a certain
number of elements (e.g., triangles, tetrahedra) we solve the PDE with a numerical scheme.
Next, we estimate the error with the aid of an a posteriori error estimator. This estimator
provides us the basis for our marking strategy. Roughly speaking, we mark the elements of a
mesh where the local error contributes most to the global error. We refine the marked elements
and have to ensure certain properties of the mesh, e.g., avoid hanging nodes, ensure an angle
condition. With the new mesh we continue and start the procedure again.

the adjoint double layer or the hypersingular integral operator. Contrary to the three
field approach the exterior trace is not an extra unknown. Thus the resulting scheme is
computationally cheaper than the symmetric or the three field coupling approach. The
analysis of a nonsymmetric FEM-BEM coupling in [JN80] relies on the compactness of the
double layer operator which in fact needs the assumption that Γ is smooth. It took almost
three decades to find a proof for nonsmooth domains [Say09]. Note that the analysis of
the symmetric approach [Cos87] was already done for nonsmooth domains.
In [MyEOS17] we analyze a nonsymmetric coupling approach of the finite volume method
with the boundary element method. The system does not have a “global” Galerkin orthog-
onality and therefore the analysis differs significantly from known paths in the literature.
This discretization also provides naturally conservation of local fluxes and with an upwind
option also stability in the convection dominated case. We aim to provide a first rigorous
analysis of the system for different model parameters; stability, convergence, and a priori
estimates. This includes the use of an implicit stabilization, known from the finite element
and boundary element method coupling; see [Ste11, AFF+13]. The analysis technique dif-
fers significantly from the three field coupling FVM-BEM of [Era12]. Some numerical
experiments conclude the work and confirm the theoretical results; see also [MyEOS16].

1.2.2 A posteriori error estimators and adaptive coupling

A posteriori error estimators are often used to monitor whether a numerical approximation
is sufficiently accurate or to steer an adaptive mesh refinement algorithm. The principle of
such algorithms is visualized in Figure 1.3. This mesh refinement refines the mesh locally
and thus allows us to adapt the discretization to resolve possible singularities or shock
regions most effectively. The refinement procedure is often done heuristically. But in the
last decade a rigorous mathematical analysis of such algorithms has been started for a
bunch of application problems. In Section 1.3 we provide our results in the convergence
analysis of some adaptive mesh refinement strategies. From a mathematical point of view
it is mandatory to prove reliability and efficiency of an a posteriori error estimator if we
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want to use it for an adaptive algorithm. Hence, the estimator has the same asymptotic
convergence behaviour as the error. That means that we estimate the error u − uh by
the a posteriori error estimator η(uh) up to a constant by an upper and lower bound;

Ceffη(uh) ≤ u − uh ≤ Crelη(uh),

where uh is the approximation of u. The constants Crel, Ceff > 0 are the reliability and
efficiency constants. The estimator η depends only on known model data and uh. If we
want to use it for a refinement algorithm the estimator has to be the sum of local terms.
Furthermore, the heuristic mesh-refinement strategy is a direct consequence of the proof
of local efficiency of the estimator, e.g., the local error appears to be large where the local
estimator is large. The probably most known estimator is of residual-type introduced and
analyzed in [BR78]. Since then the mathematical investigations of such a posteriori error
estimators seem to be countless. Publications on this topic with all kind of variations and
new developments can be found in the literature for different numerical methods. Hence,
we only want to mention the survey in [Ver13] for a posteriori estimation techniques
for finite element methods. For BEM, FVM and FEM-BEM we want to mention the
works [CS95b, Ang95, CS95a] as the starting points for further investigations.
The cell-centered FVM-BEM coupling with a posteriori estimates was introduced with
the aid of a three field approach in [Era10, Era13a] for the model problem (1.15). Since
the cell-centered FVM is widespread in industrial codes for fluid mechanics [EGH00], also
the coupling to BEM is of particular interest. The discrete system relies on an additional
interpolation on the coupling boundary. Hence, compared to the vertex-centered FVM-
BEM coupling we have an additional block in the system. This links the discontinuous
displacement field of the cell-centered FVM with the continuous boundary ansatz functions
for BEM on the boundary. A priori results for this type of coupling are still missing. To
get an a posteriori error estimator, the piecewise constant FVM solution is usually post
processed through an interpolation; see, e.g., [Nic05] for conforming meshes. In [Era10,
Era13a] a Morley-type interpolant for the FVM part, which belongs to a certain conforming
finite element space [Nic06], is used.
In [MyEra15] we replace the conforming by a nonconforming Morley interpolant of the
FVM-BEM coupling to develop an a posteriori error estimator of residual-type for a
diffusion-diffusion interface problem. It seems to be more natural to develop an error
estimator which is based on a nonconforming interpolant of the piecewise constant FVM
solution and supports nonconforming meshes [Era05, EP08]. Furthermore, conforming
methods are in general not easy to extend on meshes with hanging nodes. Note that
the a posteriori analysis for nonconforming methods relies on a Helmholtz decomposi-
tion [DDPV96]. We warn the reader that the work [MyEra15] is not simply gluing the
works [Era13a, EP08] together. The proof for the upper bound relies on two Helmholtz
decompositions for the discontinuous Morley error which also affects the exterior part.
The first a posteriori estimates for the vertex-centered FVM-BEM coupling were derived
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in [Era10, Era13b] for the three-field coupling approach. It is a logical consequence to in-
vestigate a posteriori error estimates of residual-type also for the nonsymmetric FVM-BEM
of [MyEOS17] which was done in [MyES17a, MyES17b]. As a model problem serves (1.15)
which can be convection dominated in the interior domain. Thus we have a special focus
on robust estimates, i.e., the reliability as well as the efficiency constant should not de-
pend on the size of convection or reaction terms relative to the diffusion. For our coupling
the upper bound is fully robust whereas the lower bound is only semi-robust, i.e., the
constant additionally depends on the local Péclet number. This is a consequence of doing
the analysis in the natural energy (semi)norm. Note that for standalone FEM fully robust
estimates in both bounds are obtained in the energy norm plus a (noncomputable) dual
norm [Ver05]. However, it is not possible to use the same technique for a FEM-BEM or
FVM-BEM coupling [Era13b, Remark 6.1]. We remark that the error estimator quantities
for FEM approximations for the robust and semi-robust estimates are exactly the same. In
fact, the nonlocal and non computable dual norm absorbs basically the convection terms.
Consequently, the semi-robustness or the robustness does not affect the output (meshes)
of an adaptive algorithm. Hence, the optimal distribution of the degree of freedoms is not
influenced by the semi-robustness; see also [MyEP19b].

1.2.3 Coupling methods for parabolic-elliptic interface problems

In electromagnetism, the magnetoquasistatic approximation leads to an eddy current prob-
lem. The study of two-dimensional problems ends up in a parabolic-elliptic interface prob-
lem. Here, we have a parabolic PDE in the interior domain Ω and an elliptic PDE in the
unbounded exterior domain Ωe. For a practical example with a numerical solution we
refer to [Sch19, Section 4.1.2]. However, such parabolic-elliptic interface problems are not
only limited to electromagnetism. We apply this model type to a fluid mechanics problem
with a FVM-BEM coupling approximation. First we have to analyze the corresponding
FEM-BEM coupling since the analysis of vertex-centered FVM-BEM coupling is based on
that. We use the same notation as for model problem (1.15). Formally our model problem
with a fixed end time T reads: Find u and ue such that

∂tu − Δu = f in Ω × (0, T ), (1.16a)
−Δue = 0 in Ωe × (0, T ) (1.16b)

with the initial and radiation conditions

u(·, 0) = 0 on Ω, (1.16c)
ue(x, t) = C∞(t) log |x| + O(1/|x|) for |x| → ∞, d = 2, (1.16d)
ue(x, t) = O(1/|x|) for |x| → ∞, d = 3, (1.16e)



1.2. Coupling methods 13

and with coupling conditions across the interface given by

u = ue + g on Γ × (0, T ), (1.16f)
∂u

∂n = ∂ue

∂n + h on Γ × (0, T ). (1.16g)

Note that besides the spatial direction x the functions u, ue, f , g, and h additionally
depend on the time t. Furthermore, Δ has to be understood with respect to x. This
physical problem is the main motivation in [MS87] to consider a FEM-BEM discretization.
The work is based on [JN80] and therefore needs a smooth coupling boundary to apply a
compactness argument. With this restriction the work provides the well-posedness of the
problem via the method of Galerkin approximation as well as quasi-optimal error estimates
for semi-discrete Galerkin approximations, i.e., only the spatial direction is approximated
by a numerical scheme. In general, such an approach is called line method, i.e., after the
spatial discretization (semi-discretization) follows the discretization in time. There is a
complete analysis in [CES90] available with a symmetric FEM-BEM coupling formulation
in space and a Crank-Nicolson time discretisation. Note that in [CES90] they need the
usual regularity assumptions for the model data and the solution in the time component to
do the analysis also for the time stepping scheme. But their proof also holds for Lipschitz
boundaries and is mainly based on an elliptic projection with corresponding error estimates
in L2. In fact, the analysis relies on duality arguments [Whe73]. Unfortunately, due to the
lack of adjoint consistency for the nonsymmetric coupling a complete analysis for a fully
discrete system does not carry over through a simple combination of [CES90] and [Say09].
In [MyEES18] we close this gap in the analysis of the nonsymmetric coupling method
for parabolic-elliptic interface problems. For the nonsymmetric FEM-BEM semi-
discretization we establish well-posedness for problems with polygonal interfaces and prove
quasi-optimality under minimal regularity assumptions. Even more, the analysis is carried
out for arbitrary finite dimensional subspaces. A variant of the implicit Euler method for
the time stepping scheme allows us to prove well-posedness and quasi-optimality for the
fully discrete scheme under minimal regularity assumptions. A key idea for the analysis is
the use of appropriate energy norms. Error estimates with optimal order follow directly
for both, the semi- and the full discretization with standard ansatz spaces. We remark
that our analysis techniques also allow to consider a classical implicit time stepping scheme
with the usual regularity assumption in the time component.
In [MyES20] we further extend the model (1.16) to a convection-diffusion reaction problem
in the interior domain Ω. As for the stationary model (1.15) we have to consider an
inflow boundary Γin and an outflow boundary Γout. Instead of a nonsymmetric FEM-
BEM coupling in spatial direction we apply a nonsymmetric vertex-centered FVM-BEM
approximation. We provide a convergence and a priori analysis. The results still hold if
we use an upwind stabilization which is mandatory for convection-dominated applications.
Note that our system does not have a “global” Galerkin orthogonality. Although we apply
many ideas of [Era12] and [MyEOS17, MyEES18], the new contribution of [MyES20]
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Figure 1.4. The flow diagram shows the main steps to prove linear convergence and optimal
convergence rates for an adaptive algorithm in the spirit of Figure 1.3. According to [CFPP14]
it is enough to show stability on non-refined elements, reduction on refined elements, general
quasi-orthogonality, and discrete reliability. However, for FVM and SUPG it is not possi-
ble to prove general quasi-orthogonality directly. Even more, for FVM discretizations linear
convergence relies on the so called oscillation marking strategy.

is to handle the time components which is different to [MyEES18]. We remark that
in [Sch19] the coupling of the streamline upwind Petrov Galerkin Method (SUPG) with
BEM is introduced and analyzed as well. This is an alternative FEM-based coupling for
convection-dominated problems.

1.3 On the convergence (with rates) of adaptive schemes

The mathematical theory of a posteriori error estimators started with the pioneering
work [BR78]. A very brief overview on a posteriori error estimators was given in Sec-
tion 1.2.2. There, the estimator was built up of local components and was used to steer
(heuristically) an adaptive algorithm. Naturally, the following mathematical questions
arise:

• Does the adaptive algorithm or our adaptive strategy converge?

• Is the convergence rate optimal (at least asymptotically)? Or in other words, do we
get the best possible numerical solution with respect to the degree of freedoms for
our model problem and our chosen numerical method with that adaptive algorithm?
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More than two decades ago the analytical investigation of such an adaptive algorithm
started with [Dör96] for FEM and is still ongoing; see also [MNS00, BDD04, Ste07,
CKNS08] for FEM and [FKMP13, Gan13] for BEM to mention a few but not all.
In [CFPP14] some previous results are combined with new ideas to put the analytical
investigations into a general framework. The conclusion of this work is that a numeri-
cal discretization scheme, the corresponding a posteriori error estimator and the adaptive
algorithm have to fulfill four criteria (called axioms in [CFPP14]), namely, stability on non-
refined elements, reduction on refined elements, general quasi-orthogonality, and discrete
reliability. For the contribution below we visualize the general strategy in Figure 1.4.
Our work [MyEP16] is the first in the literature which proves the convergence of an adap-
tive vertex-centered FVM with optimal algebraic rates for a symmetric model problem,
i.e., for a stationary diffusion problem. The lack of a classical Galerkin orthogonality and
the fact that the test space is not nested lead to some difficulties. Our adaptive algorithm
provides a sequence of successively refined triangulations T with the corresponding FVM
solutions u and the residual-based a posteriori error estimators η ; see Figure 1.3. With
the newest vertex bisection refinement our strategy leads to a linear convergence in the
sense of

η +n ≤ Cqn η for all , n ∈ N0 (1.17)

with some independent constant C > 0 and 0 < q < 1. However, since a direct proof of the
general quasi-orthogonality is not possible for FVM, we cannot simply apply [CFPP14]
to prove (1.17). As in [MNS00] we mark elements with respect to the data oscillations
to overcome the lack of a classical Galerkin orthogonality property of FVM. Under an
additional assumption on the marking, which can be monitored a posteriorly, we prove
optimal convergence behavior

η ≤ C (#T − #T0)−s (1.18)

for each “possible” algebraic rate s > 0. Here, #T denotes the number of elements in T
and T0 is the start mesh. The key ingredient to prove (1.18) is a variant of the discrete
reliability property. Furthermore, we show a novel generalized Céa lemma for the FVM
solution on arbitrary grids. This states that the FVM solution u is quasi-optimal with
respect to the so-called total error, i.e., the sum of energy error plus data oscillations:

C−1 η ≤ min
v

|||u − v ||| + osc (v ) ≤ |||u − u ||| + osc (u ) ≤ C η . (1.19)

As a consequence, we additionally show a standard convergence result and some error
estimates for the FVM discretization without additional regularity assumptions on the
solution. In [MyEP17] we show (1.19) for a general second order linear elliptic PDE. The
proofs of (1.17) and (1.18) for such extended model problems are more crucial.
The major contribution of [MyEP19a] is the proof of (1.17) for FVM under some mild
regularity assumptions on the dual problem. In fact, the missing Galerkin orthogonality
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and the lack of an optimal L2 estimate for FVM seem to be the bottlenecks. All other
criteria follow almost verbatim from [MyEP16] including the fact that we additionally have
to mark the oscillations. We remark that [MN05] uses a similar regularity assumption to
prove convergence for an adaptive FEM procedure but needs slightly more restrictions
on the model data and on the mesh-refinement. The transfer of the ideas of [FFP14] for
FEM to FVM, where no duality argument is applied, seems to be difficult. They apply
the classical Céa lemma which does not exist for FVM discretization, again, due to the
non-existing Galerkin orthogonality for FVM. Besides the flux conservation an outstanding
feature of FVM is the option of an upwind stabilization for convection dominated problems.
However, a rigorous convergence proof for an adaptive mesh-refinement with an upwind
stabilization seems to be even more complex and is not available yet.
In case of dominating convection and an FEM discretization, the streamline upwind
Petrov-Galerkin method (SUPG) is a good choice since one can easily add the SUPG
stabilization to an existing FEM code. Another feature of SUPG is, contrary to the FVM
upwind stabilization, that the mathematical structure of the method still allows a varia-
tional setting. In particular, one can apply the strong toolbox of functional analysis and
hence some results of the existing convergence analysis in the literature. However, two
SUPG stabilized discrete solutions on different grids only fulfill a perturbed orthogonality
property. This requires further ideas which are presented in [MyEP19b]. The work seems
to be the first one which concerns the optimal adaptivity for SUPG FEM.

1.4 Multi-tracer efficient semi-Lagrangian schemes for at-
mospheric modeling

The climate crisis affects the whole humanity. Although a precise forecast of the climate
is very difficult, climate models predict a tendency and help us to understand the complex
system. One state-of-the-art climate model with atmosphere, ocean, land, and ice com-
ponent is the Community Earth System Model (CESM), see http://www.cesm.ucar.edu,
which is used as an IPCC-class model. The Intergovernmental Panel on Climate Change
(IPCC) summarizes the current state of scientific climate research with the goal to im-
pact political discussions and decisions. One important part of an earth system climate
model is the atmosphere. The atmosphere plays a key role in the climate process. In
CESM the Community Atmosphere Model (CAM) is the atmospheric component which
runs also standalone. The heart of such an atmosphere model is the dynamical core which
is built up by the primitive equations. To solve these equations global spectral methods
and finite volume methods have been the dominant methods [Wil07]. Since the FVM nat-
urally preserves local conservation of the numerical fluxes it is not surprising that they are
commonly used to approximate the atmospheric flow. However, scalability beyond 10000
processors is a non-trivial task for FVM applications. Here, computational scalability is
the speed up of the algorithm proportional to the number of used processors. Another

http://www.cesm.ucar.edu
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(a) The cubed-sphere. (b) The cells for the semi-Lagrangian
schemes. The dashed lines mark the spectral
element border.

Figure 1.5. The figure (a) shows the cubed-sphere whereas in (b) the finite volume grid on
the spectral element grid (dashed lines) on the cube faces is visualized. This grid results of a
gnomonic projection of the sphere. The cells are not equidistantly spaced as it is shown here
for the sake of simplicity.

issue for computation is that the natural spherical coordinates, the latitude/longitude
grids, have a (geometrical) singularity at the poles. Nowadays, massively parallel petas-
cale computers with hundreds of thousands processor cores have become available. To
use the computer power most efficiently a dynamical core based on spectral element was
integrated into CAM; see [DEE+12]. This dynamical core is based on the cubed-sphere ge-
ometry resulting from a gnomonic equiangular projection of the sphere; see Figure 1.5(a).
The cubed-sphere avoids the pole problem and provides a natural partition of the sphere
on parallel platforms, where the spectral elements mark a possible partition. An impor-
tant part of the atmospheric model is the transport of tracers. Tracers, e.g., air density,
water vapor, aerosols, are passively transported in the spectral element dynamical core,
i.e., the tracers fulfill the continuity equation (1.13), where the wind velocity is calculated
through another model component. In fact, in modern atmospheric climate models one
has to solve the continuity equation more than 30 times (multi-tracer). The chemistry ver-
sion considers hundreds of tracers. Besides the performance question, a numerical scheme
for these climate models has to conserve mass, to be positivity preserving and to be of
high order to ensure accuracy. The default time discretization for the tracer transport
in CAM [DEE+12] is based on a Runge-Kutta approach [GTSC14]. The scheme fulfills
all criteria but requires three communications per time step on parallel platforms with a
relative small time step. Thus, this Eulerian type (fixed mesh) scheme is computationally
expensive for multi-tracer transport applications. Therefore, Lagrangian type methods,
which allow longer time steps, have a long tradition in the weather and climate community.
Note that for such methods one follows individual parcels along trajectories. However, the
parcel can deform over time. To benefit from both approaches, semi-Lagrangian schemes
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do an interpolation from a Lagrangian mesh to a regular Eulerian mesh at every time
step. Therefore, mass conservative, positivity preserving, multi-tracer efficient, high order
accurate, and scalable semi-Lagrangian schemes are of highest interest. In this work we
consider basically two types of semi-Lagrangian schemes for tracer transport in the atmo-
sphere. As an Eulerian mesh we use a finite volume grid based on the spectral element
grid on the six faces of the cube; see Figure 1.5(b).
In [MyLEM11] we analyze the stability and error behavior of a simplified flux based semi-
Lagrangian scheme. For that the search for overlap areas is eliminated [HAC74]. This
leads to a much simpler and robust algorithm. We show numerically as well as analytically
that for sufficiently small Courant numbers (approximately CFL≤ 1/2) the simplified (or
swept area) scheme can be more accurate than the original incremental remapping scheme.
In [MyELGT12] we provide the first efficient algorithm of the conservative semi-Lagrangian
scheme developed by [DB00, LNU10] on a massively parallel system on the cubed-sphere;
see Figure 1.5. The remapping scheme is based on the Lagrangian form of the transport
equation (1.11). The passive mass variable ψ in our applications can be the fluid density
ρ or the tracer density ρq, where q is the mixing ratio. We remark that in CAM the
domain decomposition follows along the horizontal cubed-sphere grid whereas the vertical
direction is realized by 25 levels and a one dimensional remapping scheme. Roughly
speaking the scheme used in [MyELGT12] calculates the departure elements (backwards);
see also Section 1.1.2 and Figure 1.2(a). For that we need the given velocity (in CAM
they are given from the dynamics) and a given arrival element (Eulerian). To get a high
order scheme we use a 5 × 5 finite difference stencil in order to approximate the departure
integral of (1.12). Although this stencil overlaps some cells, the novel algorithm and its
data structure only need one communication for each tracer per time step. This strategy
leads to a highly scalable algorithm. The scheme on multiple processor systems is still
multi-tracer efficient, third order accurate, conserves mass, preserves positivity, and is
highly scalable.
However, having the capability to apply the method on high resolution grids with such an
efficient algorithm we learned of an ill-conditioned analytical integration of the originally
scheme. Unfortunately, it is not enough to simply replace the analytical expression by a
robust quadrature, since this violates mass conservation. Hence in [MyELT13] we ana-
lyze the mass conservation for general high-order high resolution remapping schemes. In
these schemes mass conservation relies on elaborate integral constraints over overlap areas
and reconstruction functions. However, these integral constraints may be violated on the
sphere due to inexact or ill-conditioned integration. Therefore, we propose a quite general
enforcement of consistency technique. This guarantees that the integral constraints from
the continuous space are also satisfied in the discrete space. Our approach is independent
of the accuracy of the numerical integration method and slight inaccuracies in the com-
putation of overlap areas, which is even more important on parallel platforms. Numerical
examples confirm the theory.
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In [MyEN14] we develop a scheme on the cubed-sphere, which is based on the flux-form for-
mulation (1.13). For that we extend the multi-moment finite volume approach [CXLY11].
In this new scheme, auxiliary points are introduced which are then transported with a
traditional non-conservative semi-Lagrangian method, i.e., the points are transported in
the grey area of Figures 1.2(b) and 1.2(e). The semi-Lagrangian update of these auxiliary
points is only used in order to obtain an edge flux for each cell. This edge flux is then
used to update the cell centers (1.14). Using a flux formulation ensures conservation of
mass and with the flux-corrected transport (FCT) [Zal79] technique we get monotonicity.
The traditional non-conservative semi-Lagrangian step to compute the fluxes makes large
time steps possible. A novelty of the scheme is that it avoids searching the upstream cell
intersections and area integration over the upstream Lagrangian cells, as used in typi-
cal cell-integrated semi-Lagrangian methods. The biquadratic polynomial reconstruction,
which leads to third order accuracy, is done on a single Eulerian cell. With this local
stencil and the easy search algorithm this scheme is very attractive also for non-uniform
(unstructured) grids running on parallel platforms. Numerical examples show that our
approach is suitable for unstructured grids, multi-tracer efficient, third order accurate,
conserves mass, preserves positivity, and is highly scalable. This approach is of similar ac-
curacy as the remapping type scheme, but 2-3 times faster because it avoids the expensive
mesh intersection computations.
In [MyETN16] we give a review of the two semi-Lagrangian schemes in CAM. Further-
more, we develop a new hybrid version of the dynamical core CAM-SE, e.g., we replace
the spectral element transport scheme in CAM by the above semi-Lagrangian schemes.
More precisely, we introduce a special adapted departure grid algorithm to calculate the
upstream points. Note that we still use the velocities provided by the spectral elements dis-
cretization. This improves computational efficiency of CAM significantly for uniform grids
and for multiple tracers, i.e., for 100 tracers we are 1.5 times faster with the remapping
scheme and 2.5 times faster with the flux form scheme.
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