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Abstract

In fuel cell electric trucks, the energy management strategy controls the operation of
the fuel cell and battery systems. Besides the considerable impact on fuel consumption
and driving range, properly designing this control function is essential to ensure that
the powertrain components meet the lifetime requirements of long-haul transportation.
Even though the literature on energy management strategies for fuel cell electric vehicles
is vast, there is a fundamental research gap in studies focused on long-haul trucks,
nowadays considered the most promising fuel cell application in the automotive sector.
During his doctoral studies, the author has conducted state-of-the-art investigations and
addressed this gap in several publications, significantly contributing to the research
on energy management strategies for fuel cell electric trucks. The present doctoral
thesis describes his research on the topic and summarizes the most relevant findings.
In particular, it proposes innovative energy management strategies to reduce the fuel
consumption and component degradation of fuel cell electric trucks and foster their
market penetration.
The main focus of this thesis is predictive energy management, a topic that will play
a critical role in the development of intelligent fuel cell electric trucks. Indeed, the
thesis demonstrates that implementing predictive strategies is the only effective way
to achieve optimal vehicle performance in high-demanding driving cycles (for example,
due to the heavy truckloads on mountain routes). In particular, considering long-term
elevation forecasts is essential to anticipate driving conditions that are challenging from
an energy management standpoint and achieve optimal performance.
One of the main contributions of this thesis is the development of a dual-stage control
structure for predictive energy management strategies that enables achieving optimal
performance even in challenging route topographies. The dual-stage structure has two
advantageous characteristics. First, it can consider the elevation profile of the entire
route in the energy management optimization with low computational complexity. Sec-
ond, it allows the implementation of dynamic programming to find globally optimal
solutions, overcoming the well-known barriers of non-causality and high computational
complexity.
Moreover, the proposed predictive energy management strategy has high flexibility re-
garding the optimization targets. Initially, it is implemented to optimize only the fuel
consumption while controlling the battery state of charge. Then, an innovative formula-
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tion is presented for the simultaneous and multi-objective optimization of fuel consump-
tion, fuel cell degradation, and battery degradation. The benefits of this predictive and
health-conscious energy management strategy are assessed in real-world driving sce-
narios, also considering different battery sizes and degradation states. Eventually, the
simulation results demonstrate the absolute superiority of the proposed strategy against
standard approaches.
The thesis also proposes innovative solutions to establish synergies between the energy
management strategy and other control functions from a holistic standpoint. Novel
concepts are presented to significantly reduce degradation by exploiting the interaction
with battery thermal management and the intelligent activation of multi-module fuel
cell systems. Moreover, the co-optimization of vehicle speed and energy management
using dynamic programming is proposed for optimal eco-driving, substantially reducing
fuel consumption and enabling longer driving ranges to cope with the limited hydrogen
refueling infrastructure.
Eventually, the innovative strategies proposed in this thesis can significantly contribute
to the development and market penetration of fuel cell electric trucks thanks to lower
fuel consumption and component degradation. Indeed, by adopting these strategies,
truck manufacturers can achieve better performance and lower ownership costs, closing
the gap with conventional diesel trucks for long-haul transportation.
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Kurzfassung

In Brennstoffzellen-Elektro-Lkws regelt die Energiemanagementstrategie den Betrieb
der Brennstoffzellen- und Batteriesysteme. Neben den beträchtlichen Auswirkungen auf
den Kraftstoffverbrauch und die Reichweite ist die richtige Auslegung dieser Steuerungs-
funktion von entscheidender Bedeutung, um sicherzustellen, dass die Komponenten des
Antriebsstrangs die Anforderungen an die Lebensdauer im Fernverkehr erfüllen. Obwohl
die Literatur über Energiemanagementstrategien für Brennstoffzellen-Elektrofahrzeuge
sehr umfangreich ist, gibt es eine grundlegende Forschungslücke bei Studien zum Thema
Langstrecken-Lkw, welcher heutzutage als die vielversprechendste Brennstoffzellenan-
wendung im Automobilsektor gilt.
Während seines Promotionsstudiums hat der Autor Untersuchungen nach dem neuesten
Stand der Technik durchgeführt und die Forschungslücke in mehreren Veröffentlichun-
gen aufgegriffen, wodurch er einen wesentlichen Beitrag zur Erforschung von En-
ergiemanagementstrategien für Brennstoffzellen-Elektro-Lkw geleistet hat. Die vor-
liegende Dissertation beschreibt seine Forschungen zu diesem Thema und fasst die
wichtigsten Erkenntnisse zusammen. Insbesondere werden innovative Energiemanage-
mentstrategien vorgeschlagen, um den Kraftstoffverbrauch und die Bauteildegradation
von Brennstoffzellen-Elektrofahrzeugen zu reduzieren und deren Marktdurchdringung
zu fördern.
Das Hauptaugenmerk dieser Arbeit liegt auf dem prädiktiven Energiemanage-
ment, einem Thema, das bei der Entwicklung von intelligenten Brennstoffzellen-
Elektrofahrzeugen eine entscheidende Rolle spielen wird. In dieser Arbeit wird ver-
anschaulicht, dass die Implementierung von prädiktiven Strategien der einzige effektive
Weg ist, um eine optimale Fahrzeugleistung in anspruchsvollen Fahrzyklen, wie etwa
aufgrund einer vollen Lkw-Ladung auf Bergstrecken, zu erreichen. Insbesondere die
Berücksichtigung langfristiger Höhenprognosen ist von entscheidender Bedeutung, um
Fahrbedingungen zu antizipieren, die aus Sicht des Energiemanagements schwierig sind,
und um eine optimale Leistung zu erzielen.
Einer der Hauptbeiträge dieser Arbeit ist die Entwicklung einer zweistufigen Regel-
struktur für prädiktive Energiemanagementstrategien, die es ermöglicht, auch bei
anspruchsvollen Streckentopographien eine optimale Leistung zu erzielen. Die zweistu-
fige Struktur hat zwei vorteilhafte Eigenschaften. Erstens kann sie das Höhenpro-
fil der gesamten Strecke bei der Optimierung des Energiemanagements mit geringem
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Rechenaufwand berücksichtigen. Zweitens ermöglicht sie die Implementierung der dy-
namischen Programmierung, um global optimale Lösungen zu finden, und überwindet
damit die bekannten Hindernisse der Nicht-Kausalität und der hohen Rechenkomplex-
ität.
Darüber hinaus bietet die vorgeschlagene prädiktive Energiemanagementstrategie eine
hohe Flexibilität in Bezug auf die Optimierungsziele. Zunächst wird sie so implemen-
tiert, dass nur der Kraftstoffverbrauch optimiert wird, während der Ladezustand der
Batterie geregelt wird. Anschließend wird eine innovative Formulierung für die gle-
ichzeitige und mehrzielorientierte Optimierung des Kraftstoffverbrauchs, der Degrada-
tion der Brennstoffzelle und der Degradation der Batterie vorgestellt. Die Vorteile dieser
vorausschauenden und Energiemanagementstrategie werden in realen Fahrszenarien be-
wertet, wobei auch unterschiedliche Batteriegrößen und Degradationszustände berück-
sichtigt werden. Schließlich zeigen die Simulationsergebnisse die absolute Überlegenheit
der vorgeschlagenen Strategie gegenüber Standardansätzen.
In dieser Arbeit werden auch innovative Lösungen vorgeschlagen, um Synergien
zwischen der Energiemanagementstrategie und anderen Regelfunktionen aus einem
ganzheitlichen Blickwinkel heraus zu schaffen. Es werden neuartige Konzepte
vorgestellt, um durch Ausnutzung des Zusammenspiels vom Thermomanagement der
Batterie und der intelligenten Ansteuerung von Mehrmodul-Brennstoffzellensystemen
die Degradation deutlich zu reduzieren. Darüber hinaus wird die Ko-Optimierung
von Fahrzeuggeschwindigkeit und Energiemanagement mittels dynamischer Program-
mierung für ein optimales ökologisches Fahrkonzept vorgeschlagen. Dies ermöglicht
eine erhebliche Reduzierung des Kraftstoffverbrauchs sowie eine Erhöhung der Reich-
weite, wodurch das Problem der begrenzten Infrastruktur für die Wasserstoffbetankung
bewältigt wird.
Letztendlich können die in dieser Arbeit vorgeschlagenen innovativen Strategien dank
des geringeren Kraftstoffverbrauchs und der geringeren Abnutzung der Komponenten
erheblich zur Entwicklung und Marktdurchdringung von Elektro-Lkw mit Brennstof-
fzellen beitragen. Durch die Anwendung dieser Strategien können Lkw-Hersteller
niedrigere Betriebskosten erzielen und so die Lücke zu herkömmlichen Diesel-Lkw im
Fernverkehr schließen.
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Chapter 1

Introduction

This chapter provides an overview of fuel cell electric trucks and their role in the de-
carbonization of the transport sector. It describes what energy management strategies
are and why using predictive strategies is essential in heavy-duty vehicles to ensure op-
timal performance. Lastly, it summarizes the main contributions of this doctoral thesis,
followed by its outline and a list of publications.

1.1 Overview
Climate change is the single biggest health threat to humankind because it affects
the main determinants of health: clean air, safe drinking water, sufficient food, and
secure shelter [1]. Air pollution is undoubtedly the leading cause of climate change.
Indeed, over the past century, the increasing concentration of greenhouse gases in the
atmosphere caused a steady growth of the average temperature on Earth.
The transport sector is among the leading contributors to air pollution, so a massive
global effort is ongoing to develop zero-emission vehicles and decarbonize the entire
sector. In this context, the decarbonization of heavy-duty commercial vehicles is the
most urgent and, at the same time, the most challenging task. In particular, heavy-
duty trucks massively contribute to air pollution, representing less than one-tenth of
all vehicles but roughly 40% of their carbon emissions [2]. This issue will worsen in the
future, considering that freight activity will double within the next two decades [3].
The good news is that the development and commercialization of electric vehicles have
significantly accelerated in the last few years, mainly thanks to the decrease in Lithium-
ion battery costs. However, since the transport sector is vast and diverse, there is no
one-solution-fits-all technology that will dominate the market of electric vehicles. For
example, the low-cost, long-range, and high-utilization transportation markets are not
served well by Lithium-ion-powered electric vehicles [4].
Fuel cell technologies will likely lead the long-range and high-utilization heavy-duty
transportation markets in the near future. Indeed, fuel cell electric vehicles offer the
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Figure 1.1: Electrification prospects and advantages of fuel cell electric vehicles.

same operational experience as conventional vehicles while maintaining the benefits
of electrification, including zero tailpipe emissions, low noise, low vibration, and fast
acceleration [5].
Fuel cells are electrochemical devices that use hydrogen to generate electricity through
redox reactions. The hydrogen stored in the on-board tank system can usually satisfy
the daily energy requirements thanks to its high gravimetric energy density. Moreover,
the tank can be rapidly refueled once it is empty. The powertrain of fuel cell electric
vehicles always includes batteries as a buffer between the fuel cells and the electric loads
to increase efficiency and reduce degradation. However, unlike battery electric vehicles
(BEVs), there is no need to plug the vehicle into the grid to recharge the batteries.
Several studies acknowledged the superior performance of fuel cells for heavy-duty ve-
hicles compared with batteries [2]–[16]. The main advantages of fuel cell electric trucks
are more extended and cost-effective range, faster refueling, supply of higher loads, and
ability to carry more payload. For these reasons, fuel cell electric vehicles (FCEVs)
are ideal for high-utilization and long-range transportation markets. Examples of ap-
plications are long-haul delivery, drayage, refuse, cement, utility, and mining trucks.
Figure 1.1 summarizes the main prospects and advantages of FCEVs.
The insufficient hydrogen refueling infrastructure is the most limiting barrier to the
market penetration of fuel cell electric trucks. However, the recent hydrogen economy
roadmaps established by several countries are pushing to promote hydrogen utilization
in the transport, industrial, and energy sectors, increasing the research and development
investments for hydrogen production, storage, and refueling infrastructure [6]. A key
factor for the advancement of such policies is that hydrogen is the most convenient way
to store renewable energy. Therefore, fuel cell electric trucks can be the cleanest option
for a sustainable transport sector.
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Recently, the California Fuel Cell Partnership released a vision document calling for
additional investments in fuel cell electric trucks, which are essential to achieve Califor-
nia’s ambitious energy, environmental, and transportation policy goals. In particular,
the document envisions that, with adequate policy support, 70.000 fuel cell electric
trucks and 200 hydrogen stations can be achieved by 2035. This scenario would de-
termine a tipping point for the self-sustainability of the market without the need for
government financial incentives [17]. Similar calls for action are happening all around
the world. In Europe, for example, a consortium called HyTrucks has been formed by
Air Liquide, DATS 24, and the ports of Rotterdam, Antwerp, and Duisburg, pledging to
deploy 1.000 fuel cell trucks and 25 hydrogen refueling stations by 2025 [18]. Two truck
manufacturers, Scania and Hyzon Motors, recently joined the consortium, committing
to deliver their class 8 fuel cell electric trucks.
Several truck manufacturers have chosen fuel cell technologies for their long-haul vehicle
markets. The most notable are Hyzon Motors, Hyundai, Nikola Motor, Mercedes-Benz,
Quantron, Scania, and Volvo. Table 1.1 lists the fuel cell electric trucks already on the
market (or close-to-be), along with the key characteristics of the fuel cell powertrain.
Notably, some manufacturers claim that their fuel cell electric trucks will have a driving
range of up to 1.500 kilometers (similar to diesel trucks) with a refueling time of around
20 minutes, thanks to high-capacity tanks [19, 20].

Table 1.1: Powertrain characteristics of fuel cell electric trucks and prototypes.

Manufacturer/Vehicle FCS power Hydrogen tank Battery capacity Gross weight
(kW) (kg) (kWh) (tons)

Hyzon HyMax 24 [21] 80 30 70 24
Hyzon HyMax 46 [21] 240 70 140 46
Hyzon HyMax 70 [21] 240 95 140 70
Hyundai XCIENT Fuel Cell [22] 190 32 73 36
Mercedes-Benz GENH2 Truck [23] 300 80 70 40
Nikola Tre FCEV [19] 200 60-100 140 37
Nikola Two FCEV [19] 300 60-100 250 42
Quantron QHM FCEV [20] 240 54-116 118 42
Scania [24] 90 33 56 27
Volvo [25] 300 - - 42-65
Project FC4HD [26] 310 30 72 42
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Figure 1.2: Prototype of the 42-ton fuel cell electric truck under development
within the Austrian research project FC4HD.

The last entry of Table 1.1 refers to the 42-ton fuel cell electric truck (depicted in
Figure 1.2) under development within the Austrian research project FC4HD, which
aims at building a prototype to demonstrate the benefits of fuel cells for heavy-duty
long-haul transportation [26]. The FC4HD consortium is led by AVL List GmbH and
includes several partners from the automotive industry, universities, logistics, green
hydrogen production and refueling. Among these partners, the Institute of Mechanics
and Mechatronics of TU Wien contributed by developing predictive control strategies for
innovative and intelligent energy and thermal management of the fuel cell powertrains.
This doctoral thesis contains research conducted by the author in FC4HD [26] and the
predecessor project HyTruck [27].

1.2 Motivation
A recent review study identified six central research areas for fuel cell electric trucks:
public policies, hydrogen supply chain, environmental impact, powertrain technology,
fuel cell technology, and hydrogen tank system [12]. Among these topics, research
on powertrain technology is essential to ensure that fuel cell electric trucks meet the
durability and efficiency requirements of heavy-duty vehicles.
Fuel cell powertrains are hybrid, meaning that multiple power sources work together
to satisfy the load demanded by the driver. In particular, fuel cell powertrains include
batteries to assist the fuel cells during fast load changes, which are common in vehicular
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applications. Therefore, as in all hybrid vehicles, a supervisory controller is required
to distribute the load between the power sources. This supervisory control task is
usually called energy management or power-split, and it significantly impacts the overall
efficiency and durability of the powertrain components [28].
The literature on energy management strategies for hybrid vehicles is vast. Over the last
decade, several studies have been conducted considering different methods, targets, and
powertrain configurations. Historically, the first investigations focused on hybrid electric
vehicles (HEVs), in which battery-powered electric motors assist internal combustion
engines in acceleration and regenerate braking energy in deceleration. However, the
rapid growth of the electric vehicle market then pushed the research interest away from
HEVs and towards zero-emission FCEVs, which have the same advantages as BEVs but
also the long-range and fast refueling typical of conventional vehicles.
Comprehensive reviews of energy management strategies for HEVs can be found in [29],
for FCEVs in [30]–[32], and for fuel cell-ultracapacitor-battery vehicles in [33]. Since
a one-solution-fits-all energy management strategy does not exist, several approaches
have been studied in the literature. Relevant works focused on fuel cell vehicles for
light-duty applications are [34]–[45], for heavy-duty [46]–[53], and for long-haul trans-
portation [54]–[65]. The most relevant methods and results from the literature are
analyzed in more detail in Section 3.1. However, the literature survey identified a fun-
damental research gap in energy management strategies for long-haul fuel cell trucks.
This gap indicates that the academic world did not swiftly follow the industrial one in
the shift from passenger to long-haul applications. Indeed, besides the author’s works
[57]–[65], only a few recent studies focused on this topic [54]–[56].
The energy management strategies developed for light-duty vehicles are usually less
effective for long-haul trucks. For example, most works on EMS design for fuel cell
passenger cars neglect the elevation profile of the route. However, this assumption is
unreasonable in long-haul transportation due to the substantial vehicle weight, which
greatly impacts the electric load demands. On the contrary, using long-term route
elevation forecasts for predictive control can be highly beneficial for fuel consumption.
Research on predictive energy management strategies with long-term load forecasts has
already been conducted for other vehicular applications in [66]–[69], and for fuel cell
electric trucks in the author’s work [60]. Figure 1.3 provides a concept visualization of
predictive energy management strategies for an intuitive demonstration of their benefits.
In particular, if the predictive EMS ensures that the battery is fully discharged before
a long downhill, it maximizes the amount of regenerative braking energy that can be
absorbed. On the other hand, if the battery is fully charged before a long uphill, the
predictive EMS can use the stored energy to assist the fuel cell in delivering the load,
avoiding fuel cell high-power operation, which is less efficient. Therefore, predictive
strategies can be highly beneficial for fuel consumption, especially on hilly or mountain
routes. Moreover, they can prevent the worst-case scenario in which the vehicle must
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Figure 1.3: Concept visualization of predictive energy management strategies.

slow down or even stop because the battery is fully discharged and the fuel cell cannot
sustain the load demand on its own.
As mentioned, the energy management strategy defines how the fuel cell and battery
systems operate. Therefore, properly designing this supervisory control task is critical
in ensuring that the powertrain components meet the lifetime requirements of long-haul
transportation. Health-conscious energy management strategies have been developed
for light-duty fuel cell vehicles, including component degradation within the optimiza-
tion targets [40]–[44]. However, the trend shift from passenger cars to trucks exacerbates
the durability challenges for fuel cells and calls for more research on the topic.
In particular, the energy management design in fuel cell electric trucks must consider
fuel consumption, component degradation, and battery charge sustaining (or SoC con-
trol). Since these targets are often contrasting (e.g. fuel consumption versus degra-
dation), the power-split task is a challenging control issue in hybrid vehicles. Such
a high complexity makes it an exciting topic for academic research. Several methods
can be adopted from the optimal control theory to find the better suited for on-board
implementation and to yield the best trade-off between the optimization targets.
Among all methods, dynamic programming has been extensively adopted in the litera-
ture because it can find the global optimum solution to the optimal energy management
problem. This method has been almost exclusively used as a benchmark for EMS de-
sign. Indeed, dynamic programming cannot be directly implemented in the vehicle
for on-board control because it requires complete and apriori knowledge of the driv-
ing cycle. Moreover, another barrier to on-board implementations is its computational
complexity, which is too high for real-time applications.
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1.3 Contribution
This doctoral thesis focuses on predictive energy management strategies for fuel cell
electric trucks, addressing the efficiency and durability challenges for long-haul trans-
portation in realistic driving scenarios.
The main contributions of this thesis are summarized as follows.

• It conducts novel investigations to fill the research gaps on energy management
of fuel cell electric trucks for long-haul transportation. Additionally, it devel-
ops control-oriented models from measurement data to design optimization-based
control strategies and simulate vehicle performances in real-world driving cycles.

• It proposes a dual-stage control structure for predictive energy management strate-
gies to meet the high-performance driving requirements of fuel cell electric trucks
in challenging route topographies. The dual-stage structure favors the implemen-
tation of dynamic programming for optimal energy management with a compu-
tational complexity that is adequate for real-time control. The simulation results
demonstrate that using long-term speed and elevation forecasts for predictive
energy management significantly improves the overall performance in fuel con-
sumption, component degradation, and SoC control.

• It develops a novel health-conscious energy management strategy for the simul-
taneous optimization of fuel consumption, fuel cell degradation, battery degra-
dation, and SoC control. A detailed analysis of the Pareto fronts between the
optimization targets demonstrates the goodness and flexibility of the proposed
strategy. For example, assuming that the fuel cell and battery systems cannot
be individually replaced, the health-conscious EMS can ensure balanced degra-
dation, considerably extending the component life compared to the optimal fuel
consumption solution.

• It assesses the benefits of predictive energy management strategies for the total
cost of ownership of fuel cell electric trucks depending on the battery size. More-
over, it is the first work in the literature that shows how the progressive fuel cell
and battery degradation impacts the overall vehicle performance.

• Lastly, it proposes innovative solutions to establish synergies between the energy
management strategy and other control functions from a holistic standpoint. In
particular, the degradation can be significantly reduced by exploiting the inter-
action with battery thermal management and the intelligent activation of multi-
module fuel cell systems. Moreover, an eco-driving strategy that co-optimize ve-
hicle speed and power-split can substantially reduce fuel consumption, enabling
longer driving ranges to cope with the limited refueling infrastructure.
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1.4 Thesis outline
The thesis is structured as follows.
Chapter 2 provides an overview of modeling for heavy-duty fuel cell electric vehicles
and realistic driving scenarios, which are the basis for the present study. Moreover, it
describes the main characteristics of dynamic programming: the method adopted from
optimal control theory for developing predictive energy management strategies.
Chapter 3 describes the robust design of a novel dual-stage predictive energy manage-
ment strategy for optimal fuel consumption and SoC control of fuel cell electric trucks
after analyzing the benefits and drawbacks of typical methods in the literature.
Chapter 4 focuses on the multi-objective optimization of fuel consumption and com-
ponent degradation, developing a health-conscious predictive energy management strat-
egy based on dynamic programming. Moreover, it establishes the significant impact of
battery size on fuel consumption, component degradation, and predictive energy man-
agement. Lastly, this chapter studies the impact of progressive component degradation
on the performance of fuel cell electric trucks.
Chapter 5 describes an adaptive energy management strategy to improve the battery
thermal management. Moreover, it proposes a health-conscious activation strategy for
vehicles with multi-module fuel cell systems to mitigate fuel cell degradation. Lastly,
a novel method to co-optimize the vehicle speed and power-split is proposed for eco-
driving strategies based on the route elevation profile.
Chapter 6 summarizes the main conclusions and outlines future research directions.

1.5 List of publications
The scientific quality of the research presented in this thesis is already demonstrated
by the twelve publications that the author produced during his doctoral studies. In
particular, the thesis includes contents, methods, and results deriving from the following
publications:

1. Alessandro Ferrara, Michael Okoli, Stefan Jakubek, and Christoph Hametner. Energy man-
agement of heavy-duty fuel cell electric vehicles: Model predictive control for fuel consumption
and lifetime optimization. IFAC-PapersOnLine, 53(2):14205–14210, 2020. [57]

2. Alessandro Ferrara and Christoph Hametner. Rule-based energy management strategy of fuel
cell ultracapacitor battery vehicles: winner of the IEEE VTS motor vehicles challenge 2020. In
2020 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, November 2020. [70]

3. Alessandro Ferrara, Stefan Jakubek, and Christoph Hametner. Energy management of
heavy-duty fuel cell vehicles in real-world driving scenarios: Robust design of strategies to
maximize the hydrogen economy and system lifetime. Energy Conversion and Management,
232:113795, March 2021. [58]
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4. Alessandro Ferrara, Saeid Zendegan, Hans-Michael Koegeler, Sajin Gopi, Martin Huber,
Johannes Pell, and Christoph Hametner. Calibration of adaptive energy management strategies
for fuel cell trucks using real-world driving scenarios. In International Simulation Conference.
AVL, June 2021. [59]

5. Saeid Zendegan, Alessandro Ferrara, Stefan Jakubek, and Christoph Hametner. Predictive
battery state of charge reference generation using basic route information for optimal energy
management of heavy-duty fuel cell vehicles. IEEE Transactions on Vehicular Technology,
70(12):12517–12528, December 2021. [60]

6. Alessandro Ferrara, Saeid Zendegan, Hans-Michael Koegeler, Sajin Gopi, Martin Huber,
Johannes Pell, and Christoph Hametner. Optimal calibration of an adaptive and predictive
energy management strategy for fuel cell electric trucks. Energies, 15(7):2394, March 2022. [61]
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Chapter 2

Technical background

This chapter provides the theoretical background for simulating heavy-duty fuel cell elec-
tric vehicles in real-world driving cycles and formulating predictive energy management
strategies. In particular, the chapter details the vehicle dynamics and powertrain com-
ponent modeling, the real-world driving scenarios, and the method adopted from the
optimal control theory to develop the predictive control strategy.

2.1 Modeling of fuel cell electric vehicles
This section presents a detailed description of the vehicle model developed within the
Austrian research projects FC4HD [26] and HyTruck [27], in collaboration with the
industrial partner AVL List GmbH. The model was used to evaluate the performance
of heavy-duty fuel cell electric vehicles in realistic driving scenarios for long-haul trans-
portation and to develop optimal model-based control strategies. Figure 2.1 depicts
the powertrain architecture of the vehicle under investigation in this work. The elec-
tric motor and fuel cell systems are connected to a DC bus through power converters,
whereas the battery system is directly linked. The cooling systems of the battery, fuel
cell, and motor are depicted together for compactness.
The vehicle modeling approach can generally be forward-facing or backward-facing [29].
The latter assumes that the vehicle always meets its desired performance to follow the
speed profile strictly. Speed, acceleration, and road slope are used to calculate the power
required to drive the vehicle without checking against the actual powertrain capabilities.
On the other hand, the forward approach includes a driver model, which generates a
power request by comparing actual and desired speeds. In this case, if the powertrain
cannot provide the requested power, the vehicle slows down and starts to deviate from
the desired speed. This thesis adopts the forward-facing modeling approach to simulate
the vehicle performance and the backward facing one to develop the optimal control
strategies [58].
The simulation model is developed in MATLAB/Simulink, adopting a fixed-step solver
with a sample time of 200 ms. The implementation is shown in Figure 2.2, providing an
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Figure 2.1: Powertrain architecture in fuel cell electric vehicles.
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overview of the model structure and connections between the main component blocks.
However, several signals are hidden and exchanged between subsystems for better read-
ability. Following the forward-facing modeling approach, a driver model defines the
desired electric load Pel,des that the fuel cell and battery systems have to provide so
that the vehicle can follow the specific driving cycle. In the driver model, a PI con-
troller defines the load based on the deviation between the actual vehicle speed v and
the desired one vdes following a classical approach from the literature [73]. Additionally,
the road slope θ is used to create a feed-forward term to improve the tracking of the
desired speed [61]. Eventually, the desired electric load is expressed as:

Pel,des = f(v, vdes, θ) , (2.1)

already including the electric losses associated with battery and motor cooling, and
the remaining auxiliary loads shown in Figure 2.1. On the contrary, the actual load
provided on the DC bus by the fuel cell and battery systems is:

Pel = Pfcs ηdc,dc + Pbat − Pfcs,cool , (2.2)

where Pfcs is the net FCS power, ηdc,dc is the DC/DC converter efficiency, Pbat the
battery power, and Pfcs,cool the electric losses associated with fuel cell cooling. The
vehicle slows down if the powertrain does not provide sufficient power.

2.1.1 Vehicle dynamics
Figure 2.3 depicts the longitudinal motion dynamics of road vehicles. Three main
resistant forces oppose the vehicle motion: rolling friction, gravity due to road slope,
and aerodynamic drag. These resistant forces are calculated based on the vehicle speed
and road slope as follows:

Froll = mv g cr(v) cos θ (2.3a)
Fslope = mv g sin θ (2.3b)
Fdrag = v2Av cx ρair/2 (2.3c)

where g is the gravitational acceleration and the remaining parameters of the vehicle
dynamics model are listed in Table 2.1. In particular, it is assumed that the rolling
friction coefficient cr(v) in (2.3a) changes linearly as a function of the vehicle speed.
The total resistant force acting on the vehicle is:

Fres = Froll + Fslope + Fdrag . (2.4)

The vehicle acceleration, v̇, is calculated depending on the provided power at the wheels,
Pw, as:

v̇ = Pw/v − Fres

mv
. (2.5)
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Figure 2.3: Scheme of longitudinal vehicle dynamics.

Table 2.1: Parameters of vehicle dynamics model.
Parameter Symbol Value

Vehicle mass mv 22–42 t
Rolling friction coefficient at 0 km/h cr 0.0055
Rolling friction coefficient at 100 km/h cr 0.0081
Vehicle frontal area Av 9.6 m2

Drag coefficient cx 0.58
Air density ρair 1.20 kg/m3

Auxiliary loads Paux 11.5 kW
Total efficiency ηT 0.87

The power at the wheels is calculated depending on the electric power (2.2) as:

Pm = Pel − Paux (2.6a)
Pw = Pm η

sgn(Pm)
T − Pbr , (2.6b)

where Pm is the electric motor power, Paux the auxiliary loads, and Pbr the braking sys-
tem power. All the auxiliary loads external to the powertrain (e.g. cabin conditioning,
power-steering pump, battery cooling, cargo refrigeration) are assumed to be constant
and equal to the value in Table 2.1. In deceleration, a system of mechanical brakes
absorbs the negative loads that cannot be regenerated with the electric motor due to
the battery charging power constraint. Lastly, the total efficiency ηT from the motor
to wheels includes all the losses due to drivetrain components, inverters, and electric
motors.
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2.1.2 Fuel cell system
Fuel cells are electrochemical devices that convert hydrogen into electricity through
chemical reactions. Fuel cells are connected in series to form stacks and increase the
voltage and output power. Generally, a fuel cell system includes one or more stacks
and auxiliary components (e.g. air compressors, humidifiers, circulating pumps) that
perform necessary tasks for fuel cell operation.
The operation of fuel cell systems depends on many variables. The most important are
current, temperature, relative humidity, and partial pressure of the reactants. Detailed
modeling of stacks and auxiliary components is required to capture the complex dy-
namics of fuel cell systems. In addition, fuel cell efficiency and degradation strongly
depend on low-level control strategies. References to dynamic models with different
detail levels are available in [74]–[78].
However, due to the high computational cost, dynamic models are not suitable for
optimization-based energy management strategies for real-time control. Thus, this work
considers a simplified quasi-static model, a standard approach for system-level studies
in the literature [28]. Here, the net fuel cell power, Pfcs, is intended as:

Pfcs = Pfcs,H2 − Pfcs,heat − Pfcs,BoP , (2.7)

where Pfcs,H2 is the hydrogen chemical power, Pfcs,heat the electrochemical losses, and
Pfcs,BoP the losses due to the balance-of-plant (BoP) components (i.e. compressors,
humidifiers, pumps, valves, sensors). Following the quasi-static modeling approach, the
terms in (2.7) are expressed as a function of the net fuel cell power. The hydrogen
chemical power is defined as:

Pfcs,H2 = Pfcs,H2(Pfcs) = ṁH2(Pfcs) LHVH2 , (2.8)

where ṁH2 is the hydrogen consumption rate, and LHVH2 the hydrogen lower heat-
ing value (i.e. 120 MJ/kg). The losses due to electrochemical conversion and BoP
components are:

Pfcs,heat = Pfcs,heat(Pfcs) , (2.9a)
Pfcs,BoP = Pfcs,BoP(Pfcs) . (2.9b)

Eventually, the overall efficiency of the fuel cell system is defined as the ratio between
the net power and the ideal power contained in the consumed hydrogen:

ηfcs = Pfcs

Pfcs,H2

. (2.10)

Therefore, combining (2.8) and (2.10), the hydrogen consumption rate is written as:

ṁH2 = Pfcs

ηfcs LHVH2

. (2.11)
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Figure 2.4: Begin and end-of-life characteristic curves of the overall fuel cell
system efficiency, hydrogen consumption rate, BoP losses, and elec-
trochemical losses as functions of the net system power.

The fuel cell system considered in this work has a nominal net power: Pfcs,nom = 310
kW. The peak system efficiency is 55% at 74 kW, whereas the efficiency at nominal
power is 39%. Figure 2.4 depicts the characteristic curves of the overall fuel cell system
efficiency, hydrogen consumption rate, BoP losses, and electrochemical losses as func-
tions of the net system power. These characteristics were derived from a complex grey
box developed by AVL, which was then tuned to fit experimental data.
The characteristics in Figure 2.4 are reported at begin-of-life (BoL) and end-of-life
(EoL) conditions. It is important to note that at EoL, the fuel cell system can provide
a maximum net power of only 281 kW, which is approximately 91% of the BoL value.
Moreover, fuel consumption drastically increases because of the higher electrochemi-
cal losses. Eventually, the peak efficiency at EoL is 51%. The fuel cell degradation
mechanisms are detailed in Section 2.1.4.
For clarity, the nominal fuel cell system power is considered constant, whereas the
maximum power changes depending on the state of degradation. The fuel cell model is
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Figure 2.5: Characteristic curve of the DC/DC converter efficiency.

implemented with the following power constraints:

0 ≤ Pfcs ≤ Pfcs,max (2.12a)
|Ṗfcs| ≤ 0.10 Pfcs,max (2.12b)

where Pfcs,max is the maximum net power, and the rate of change is limited to the 10%
of the maximum power per second.
The fuel cell system is connected to the DC bus via a power converter to reach the
same voltage level as the battery system. Even though the electrical losses are low, this
work considers the converter efficiency in (2.2) as a function of the fuel cell net power:

ηdc,dc = ηdc,dc(Pfcs) . (2.13)

Figure 2.5 depicts the characteristic curve of the converter efficiency.
Fuel cell thermal management is a challenging aspect for automotive applications. Usu-
ally, liquid cooling is implemented by adopting a similar structure to conventional ve-
hicles, where a radiator removes the heat from the coolant to ambient air. However,
fuel cell radiators must have a larger frontal area because of the lower operating tem-
peratures of fuel cells (i.e. 80°C) compared with internal combustion engines [79]. In
the system under investigation, a large fan is mounted on the radiator to improve the
cooling with forced convection. A quasi-static modeling approach is also adopted for
a simplified representation of the power consumption of the fuel cell cooling system,
Pfcs,cool, which is required to power the radiator fan. In particular, a tridimensional
static map is considered to express the consumption as:

Pfcs,cool = Pfcs,cool(v, Tamb, Pfcs,heat) (2.14)

depending on the vehicle speed, ambient temperature Tamb, and fuel cell heat generation.
Figure 2.6 depicts the characteristic maps of the fuel cell cooling system.
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Figure 2.6: Characteristic maps of the fuel cell cooling system as a function of
vehicle speed, ambient temperature, and fuel cell heat generation.

2.1.3 Battery system
The equivalent circuit depicted in Figure 2.7a is adopted for battery modeling. The
open circuit voltage source, Voc, is connected in series with the internal resistance, Rint.
The battery power is expressed as:

Pbat = Vbat Ibat = (Voc − Rint Ibat) , (2.15)

where the battery voltage, Vbat, is calculated using Kirchhoff’s law. The battery current
and power are assumed positive during discharge. The current is expressed as a function
of the battery power by inverting (2.15):

Ibat = (Voc −
√

V 2
oc − 4 Pbat Rint)/(2Rint) . (2.16)

The battery SoC is defined as the ratio between actual and maximum charge as:

SoC = Qbat

Qbat,max
, (2.17)

and its rate of change as:
d
dt SoC = − Ibat

Qbat,max
. (2.18)
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(a) Equivalent circuit model.
(b) Cell characteristic curves of open cir-

cuit voltage and internal resistance.

Figure 2.7: Battery scheme and parameters.

The heat generation in the battery system due to ohmic losses is calculated as:

Pohm = Rint I 2
bat . (2.19)

The open-circuit voltage, internal resistance, nominal charge, and maximum capacity
of the battery cell are scaled to the battery pack as in (2.20), where Np is the number
of parallel branches, each of which has Ns cells connected in series.

Voc = Voc,cell Ns (2.20a)
Rint = Rint,cell Ns/Np (2.20b)

Qbat,max = Qmax,cell Np (2.20c)

Based on experimental data, the battery cell open-circuit voltage and internal resistance
depend on the SoC as depicted in Figure 2.7b. The impact of the cell temperature is
neglected. The nominal energy of the battery system is calculated as:

Ebat,nom = Vnom,cell Qnom,cell Np Ns , (2.21)

where Qnom,cell is the nominal cell capacity, and Vnom,cell the nominal cell voltage. For
clarity, the nominal cell capacity is considered constant, whereas the maximum cell
capacity Qmax,cell changes depending on the state of degradation.
The battery power is constrained to meet the cell voltage and C-rate limits indicated
in Table 2.2, which are essential to avoid accelerated battery degradation.
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Table 2.2: Parameters of battery system.
Parameter Symbol Value

Nominal cell capacity Qnom,cell 2.7 Ah
Nominal cell voltage Vnom,cell 3.65 V
Number of parallel branches Np 32
Number of cells in series Ns 317
Maximum cell voltage max Voc,cell 4.2
Minimum cell voltage min Voc,cell 2.6
Maximum C-rate max C-rate 8
Minimum C-rate min C-rate -2.5

2.1.4 Component degradation models

Fuel cell degradation
Frequent start-up/shut-down cycles, transient loading, low-power and high-power oper-
ations accelerate fuel cell degradation. Therefore, in automotive applications, lifetime
expectations are typically shorter than stationary ones (e.g. 5000 h vs. 40000 h [80]). In
a review of experimental techniques to measure degradation, Zhao and Li [81] identify
average voltage degradation rates of 1 µV/h in stationary operation and 100 µV/h in
transient operation.
Table 2.3 summarizes the principal degradation phenomena reported in [80]–[83]. In
particular, dynamic/transient loading induce temperature/humidity changes, potential
cycling, and reactant starvation. Temperature/humidity changes induce cracks, de-
lamination, ionomer redistribution, and pinholes in the membrane electrode assembly.
Potential cycling accelerates the degradation of platinum particles on carbon supports
due to dissolution, migration, agglomeration, and Ostwald ripening [84]. Local hydro-
gen starvation causes critical potentials in the cathode that corrode the carbon support.
Global hydrogen starvation induces abnormal reactions in the anode that corrode the
carbon support. Air starvation lowers the cathode potential, inducing abnormal reac-
tions and the formation of hydrogen. Thus, hydrogen and oxygen are directly combined
in highly exothermic reactions generating hot spots. Carbon corrosion and catalyst
degradation determine permanent loss of electrochemically active area, higher charge,
and mass transfer resistances.
Moving air/hydrogen boundaries are established during start-up/shut-down cycles. In
particular, during starts, fuel cells experience the inevitable transition between air-
filled and hydrogen-filled anodes. The opposite transition occurs during a shutdown.
In air-filled areas, the anode potential decreases, causing a higher difference with the
cathode. Abnormal reactions corrode the cathode carbon support and produce protons,
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Table 2.3: Summary of the main fuel cell degradation phenomena.
Cause Effect

Temperature/humidity change dl−→ Mechanical degradation
Reactant starvation dl−→ Carbon corrosion
Potential cycling dl−→ Catalyst degradation

Air/hydrogen boundary ss−→ Carbon corrosion
Sub-zero temperatures ss−→ Mechanical degradation

Reactant crossover lp−→ Chemical degradation
High temperatures hp−→ Membrane degradation

Abbreviations: dynamic loading (dl); start/shutdown (ss); low power (lp); high power (hp).

which then move to the anode, generating the so-called reverse current. In freezing
environments, start-up/shut-down cycles cause severe structural damage within the
membrane electrode assembly due to frost-heave and water volume expansion during
freezing.
Low-power operations determine chemical degradation of the membrane due to inten-
sified reactant crossover and high potentials. Indeed, direct reactions cause hotspots in
the cathode and generate free radicals in the anode, which chemically attack the mem-
brane. Higher partial pressures due to limited reactions promote gas crossover. Low
water generation leads to membrane dehydration, opening pores for gas permeation.
Moreover, oxygen crossover is promoted by a lack of intense proton and water fluxes to
the cathode. Details about water transport phenomena and membrane nanostructure
can be found in [85].
High-power operations cause flooding in the cathode due to excessive water generation.
However, on the anode side, the membrane is dehydrated due to high proton currents,
which hinder water’s back-flow. Therefore, without proper water and thermal manage-
ment, the high-power operation can cause mechanical and chemical degradation of the
membrane due to dehydration and high temperatures.
Due to the complexity of the phenomena involved, physical modeling of fuel cell degra-
dation is challenging. However, Pei et al. [83] developed a simple empirical model that
evaluates the voltage degradation of fuel cells in automotive applications. This quick
evaluation method derives from accelerated aging tests and offers adequate precision
for a system-level analysis. For this reason, the method has been widely adopted in the
literature on energy management strategies. The fuel cell voltage degradation, ∆Vfcs,
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Table 2.4: Fuel cell degradation rates.
Parameter Symbol Value

Degradation rate due to start-up/shut-down cycles δss 0.00196 %/start
Degradation rate due to low-power operation δlp 0.00126 %/h
Degradation rate due to high-power operation δhp 0.00147 %/h
Degradation rate due to dynamic loading δdl 0.0000593 %/cycle

is calculated as:

∆Vfcs = ∆Vfcs,ss + ∆Vfcs,lp + ∆Vfcs,hp + ∆Vfcs,dl (2.22a)
∆Vfcs,ss = δss Nstarts (2.22b)
∆Vfcs,lp = δlp tlp (2.22c)
∆Vfcs,hp = δhp thp (2.22d)

∆Vfcs,dl = δdl

∫ |Ṗfcs|
2 Pfcs,nom

dt (2.22e)

considering start-up/shut-down cycles, dynamic loading, low-power and high-power op-
erations. Here, Nstarts is the number of start-up/shut-down cycles, tlp the time operating
at low-power, and thp the time operating at high-power. It is assumed that the fuel
cell system can idle at zero net power to avoid shut-down cycles (consequently, there
is only one start-up/shut-down cycle per driving cycle). Moreover, the thresholds for
low and high-power operations are 10% and 80% of the fuel cell nominal power. The
degradation rates are indicated in Table 2.4 from [83].
The fuel cell voltage degradation, ∆Vfcs, is expressed in percentage from the nominal
value. It is assumed that when the degradation is 10%, the fuel cell has reached EoL
conditions (i.e. ∆Vfcs,EoL = 10%). Therefore, it is convenient to define the state of fuel
cell degradation as:

SoDfcs = ∆Vfcs

∆Vfcs,EoL
. (2.23)

According to this definition, at BoL the state of degradation is 0, whereas at EoL is 1.

Battery degradation
The maximum energy that lithium-ion (Li-ion) batteries can store decreases as they
are used because of various irreversible degradation mechanisms affecting the different
cell components: electrodes, electrolyte, separator, and current collectors. Battery
degradation modeling is exceptionally challenging because of the different causes, rates,
and inter-dependencies of the degradation mechanisms [86, 87].
Proper battery management is essential to mitigate degradation through charge con-
trol, thermal management, and cell balancing. Indeed, the principal factors affecting
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degradation are battery temperature, C-rates, depth-of-discharge (DoD), and SoC. For
example, the cell temperature influences some of the leading battery degradation mech-
anisms, such as solid electrolyte interface growth, lithium plating, and active material
dissolution. In particular, higher temperatures determine faster (unwanted) chemical
reactions and, thus, accelerated degradation.
As a result of the degradation, the battery capacity fades. Consequently, the battery
can store less energy as it ages. In automotive applications, the battery is considered
at EoL conditions when the capacity reaches 80% of the nominal value [88]. Here, the
capacity fade is defined as the difference between the nominal and current maximum
capacity:

∆Qbat = Qbat,nom − Qbat,max , (2.24)
and the EoL condition is: ∆Qbat,EoL = 20%Qbat,nom. Therefore, the battery state of
degradation can be defined as:

SoDbat = ∆Qbat

∆Qbat,EoL
. (2.25)

Reiners et al. [86] shows that different degradation models respond very differently to
varying operating conditions. Moreover, the degradation mechanisms depend highly on
the cell chemistry, making battery degradation modeling hard to generalize.
Due to the high complexity of electrochemical degradation models, this thesis adopts
a simplified modeling approach, which is more suitable for a system-level study. In
particular, the model relies on experimental data that express the number of charg-
ing/discharging cycles CEoL until EoL at different depths of discharge, which highly
affect the degradation. On the other hand, it is assumed that the battery thermal
management system can maintain the temperature around the optimal operating value
for low degradation. Under this assumption, the impact of temperature on the capacity
fade is neglected.
Figure 2.8 compares experimental data reported in the literature [89]–[91]. The char-
acteristic curve of the number of cycles was acquired by repeatedly discharging the
battery to a specified DoD level and recharging it to the maximum capacity until the
capacity fade reached 20%. The works from 2016 and 2018 have similar degradation
rates, whereas the one from 2010 is significantly higher, probably due to technologi-
cal advancement. The figure also shows the results in terms of equivalent full cycles
EFCEoL until EoL, which are calculated as:

EFCEoL = DoD · CEoL , (2.26)

indicating that the maximum current throughput is achieved at a DoD of 0.3 for [90]
and 0.4 for [89].
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Figure 2.8: Comparison of experimental data for battery charging/discharging
cycles until EoL conditions.

Eventually, the state of battery degradation is calculated as:

SoDbat = EFC
EFCEoL

, (2.27)

where the equivalent full cycles are calculated as:

EFC =
∫ |Ibat| dt
2 Qbat,max

. (2.28)

Replacing (2.26) and (2.28) in (2.27), the state of battery degradation can be expressed
as:

SoDbat =
∫

δbat |Ibat| dt , (2.29)

with the battery degradation rate δbat defined as:

δbat = δbat(SoC) = 1
2 Qbat,max EFCEoL(SoC) . (2.30)

Considering the definition of depth-of-discharge: DoD = 1 − SoC, the battery degrada-
tion rate is represented as a function of the state of charge in Figure 2.9, adopting the
experimental data of [89], and Qbat,max = 86.4 Ah as in Table 2.2.

Figure 2.9: Battery degradation rate as a function of the SoC.
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Figure 2.10: Geographic distribution of GPS data against the elevation map of
Central Europe.

2.2 Real-world driving cycles
The control strategies developed in this thesis are validated in realistic driving scenarios
of heavy-duty vehicles for road freight transportation. In particular, the simulations
consider real-world driving cycles of long-haul trucks operating in Central Europe, a
challenging region due to many hills and mountains. The driving cycles derive from GPS
data collected by a fleet of conventional diesel trucks. Figure 2.10 shows the geographic
distribution of the GPS data, clearly indicating that most data were recorded on hilly
or mountain routes.
The real-world driving cycles are based on latitude, longitude, speed, and elevation
measurements with 1 s sampling time. The data was recorded with a resolution of 1
m for the elevation and 1 km/h for the speed. Moreover, there are frequent gaps in
the data because of signal losses, and low speeds (below 5 km/h) were not recorded.
Therefore, the measurements were processed to represent the driving cycles better. In
particular, the latitude and longitude were projected on an XY-plane using the map
projection ETRS89 Lambert Azimuthal Equal-Area (center: 52°N 10°E). After filling
the gaps by linear interpolation, the speed was calculated from the X and Y position
components. Lastly, to remove measurement noise and smooth the signals, a centered
moving average filter was used for the speed (with a 20 s time-span) and the elevation
(with a 100 m distance-span) profiles.
Figure 2.11 shows the recorded data for a driving cycle example. In particular, Fig-
ure 2.11a shows the latitude and longitude of the entire route and a zoomed section
during the initial 900 seconds of driving. Moreover, Figure 2.11b depicts the speed and
elevation signals for the same segment, showing the difference between the processed
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Figure 2.11: Recorded data of a real-world driving cycle.

signals and the measurements. Points A and B correspond to stops due to intersections,
whereas C refers to a stop before entering the motorway. Point D corresponds to the
start of the constant-speed motorway cruising.
The vehicle weight was not recorded as part of the driving cycle data. However, a
method was developed to estimate the maximum weight possible for the simulation of
each driving cycle. In particular, the maximum weight is such that the wheel power
profile exceeds the 400 kW threshold for 0.5% of the driving time.
Figure 2.12 shows three selected driving cycles frequently considered in this work to
demonstrate the benefits of predictive energy management strategies. These real-world
driving cycles correspond to flat, hilly, and mountain routes, as noticeable from the
elevation profiles.

• Figure 2.12a shows a driving cycle on a flat route. The vehicle is mostly driving on
a motorway at a constant speed. Moreover, the speed profile is smooth because
the driving cycle was recorded at night. The slowdowns are due to the road
curvature and traffic of slower vehicles. The maximum elevation change of the
route is 73 meters, which is small enough to consider it flat.

• Figure 2.12b shows a driving cycle on a hilly route. The speed profile indicates
that the cycle starts and ends in an urban area, but most of the drive is on a
motorway. At minute 125, the vehicle stops for refueling and then goes back to
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(a) Flat route.

(b) Hilly route.

(c) Mountain route.

Figure 2.12: Real-world driving cycles in different route topographies.
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the starting point. The route connects Graz and Vienna (in Austria) and the
maximum elevation change is 465 meters.

• Figure 2.12c shows a driving cycle on a mountain motorway route through the
Brenner Pass in the Italian and Austrian alps. The vehicle cruises at two different
speed levels: 80 km/h in the initial and final sections and 60 km/h in between. The
maximum elevation change is 1530 meters, making this driving cycle extremely
challenging for long-haul transportation.

The three real-world driving cycles described above are part of a larger pool (contain-
ing 300 in total) used in this work for the robust validation of the proposed energy
management strategies. Visualizing the speed and elevation profiles of all the driving
cycles would be too cumbersome. Nevertheless, Figure 2.13 shows some driving metrics
that help characterize the real-world driving cycles. The metrics are vehicle mass, trip
duration, distance, average speed, relative positive acceleration (RPA), total climb,
maximum elevation change, average electric load, and total electric load. Analyzing
these metrics reveals how diverse the driving cycle pool is.

• The vehicle mass is calculated as mentioned above and ranges between 22 and 42
tons. Each value corresponds to the maximum payload that the truck can carry
on the specific route following the recorded driving cycle.

• The trip duration, distance, and average speed have a straightforward meaning.

• High RPAs indicate that the cycle includes long sub-urban/urban roads, heavy
traffic, or frequent turns. On the other hand, low RPAs indicate a stable motorway
cruising with low or absent traffic.

• A high total climb distinguishes long steep roads or frequent ups and downs. The
maximum elevation change indicates flat, hilly, or mountain roads.

• The electric load is calculated as explained in Section 2.1.1. The average load
ranges between 80 kW and 160 kW, indicating how demanding the driving cycle
is. The total electric energy demanded during the driving cycle ranges between
200 kWh and 700 kWh.
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Figure 2.13: Speed and elevation metrics of the selected real-world driving cy-
cles.
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2.3 Optimal control theory
This section summarizes the most relevant methods from optimal control theory for
developing energy management strategies. Solving an optimal control problem generally
means finding the control law that minimizes an objective function while meeting a set
of constraints. For example, in energy management strategies, the goal could be to
find the optimal power-split law that minimizes the overall fuel mass and meets the
constraints related to the maximum, minimum, and final value of the battery state of
charge.

2.3.1 General formulation of optimal control problems
The following notation is adopted for the general formulation of the optimal control
problem: x for the state variables, u for the input variables, and z for the disturbance
variables. The optimization considers 0 as initial time and tfin as final time. Eventually,
the optimal control problem is formulated as in (2.31), and solving it means finding the
optimal control law u(t) that minimizes the objective function C.

min
u(t)

C =
∫ tfin

0
L(x(t), u(t), z(t)) dt (2.31a)

with:
ẋ = f(x(t), u(t), z(t)) (2.31b)

subject to:
x(0) = xin (2.31c)

x(tfin) = xfin (2.31d)
xmin(t) ≤ x(t) ≤ xmax(t) (2.31e)

u(0) = uin (2.31f)
u(tfin) = ufin (2.31g)

umin(t) ≤ u(t) ≤ umax(t) (2.31h)

Here, L(·) is the stage cost function, whereas f(·) expresses the state dynamics. The
constraints for the state and input variables are imposed on the initial, final, minimum,
and maximum values. The objective function can sometimes contain penalty functions
and terminal costs to implement soft constraints.
Three methods from the optimal control theory are investigated in this thesis. Dynamic
programming (DP) can find the optimal solution to any problem by adopting a com-
binatorial approach, given that all the disturbances are known and the computational
power is sufficient. Pontryagin’s minimum principle (PMP) is a set of necessary but
not sufficient conditions for optimality. Model predictive control (MPC) optimizes the
control law over a finite time horizon using a model of the system to predict its future
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Figure 2.14: Representation of dynamic programming principle.

outputs. Eventually, dynamic programming is the method selected for developing the
predictive energy management strategy at the core of this thesis because PMP and
MPC generally yield sub-optimal solutions to the optimal energy management prob-
lem. Therefore, dynamic programming is detailed below, whereas PMP and MPC are
detailed in the Appendix A.

2.3.2 Dynamic programming
Richard Bellman introduced dynamic programming in 1957 as a solution for multi-stage
decision problems in which time plays a significant role, and the order of operations
may be crucial [92]. Dynamic programming is one of the most common techniques to
solve optimal control problems because the solution is guaranteed to be globally optimal
and because of its capability to handle multiple complex constraints. The optimization
principle of dynamic programming is sketched in Figure 2.14. In particular, the opti-
mization considers all the possible trajectories to go from an initial state to a final one.
Eventually, the optimal trajectory is the one that minimizes the objective function over
the entire timespan.
The practical implementation of a DP algorithm requires discretization of the time,
state, and input variables. Therefore, the optimal control problem in (2.31) is rewritten
in discrete form as in (2.32). For simplicity, the notation refers to a system with single
state, single input, and single disturbance. Regarding the discretization, k ∈ {1, ... N}
indicates the k-th time stage.
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min
{u1,...uN }

C =
N∑

k=1
[L(xk, uk, zk) + ϕ(xk, uk, zk)] (2.32a)

with:
xk+1 = F (xk, uk, zk) (2.32b)

subject to:
x1 = xin (2.32c)
xN = xfin (2.32d)

xmin ≤ xk ≤ xmax (2.32e)
u1 = uin (2.32f)
uN = ufin (2.32g)

umin ≤ uk ≤ umax (2.32h)

Here, the penalty function ϕ(·) was introduced to include soft constraints on the state
and input variables. Moreover, the maximum and minimum constraint thresholds for
the state and input variables are assumed to be constant. The function F (·) expresses
the discrete dynamics of the system.
The implementation of dynamic programming relies on the so-called Bellman’s principle
of optimality [93]:

“An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decision.”

Based on this principle, the DP algorithm calculates the optimal control policy U∗ and
the optimal cost-to-go J at every stage k proceeding backward in time. A represen-
tation of the algorithm is shown in Figure 2.15. The following notation is adopted:
xi ∈ {xmin, ... xmax} is the i-th element of the discrete state variable space. Similarly,
uj ∈ {umin, ... umax} indicates j-th element of the discrete input variable space. In the
discretized time-state space, Jk(xi) denotes the optimal cost-to-go in the node at stage
k and state xi. Following the backward optimization procedure, the optimal cost-to-go
is:

Jk(xi) = min
uj

[
Jk+1(F (xi, uj, zk)) + L(xi, uj, zk) + ϕ(xi, uj, zk)

]
. (2.33)

For the same node, the optimal control policy U∗
k (xi) is calculated as:

U∗
k (xi) = arg min

uj

[
Jk+1(F (xi, uj, zk)) + L(xi, uj, zk) + ϕ(xi, uj, zk)

]
. (2.34)

The so-called grid mismatch is an implementation issue originating from the fact that
F (xi, uj, zk) is likely not included in the discrete grid of the state variable. This issue
is shown by the red points in Figure 2.15. Since these points are not part of the grid,
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Figure 2.15: Scheme for the DP algorithm, including the discretized time-state
space and input variable.

the corresponding cost-to-go is not known. In this thesis, a linear interpolation of the
cost-to-go is used to overcome the grid mismatch, as suggested in [94].
One of the main drawbacks of DP is that it requires the apriori knowledge of all dis-
turbances. However, future disturbances are usually unknown in most applications,
making dynamic programming unsuitable for real-time control. Due to its non-causal
nature, dynamic programming has been mostly used to create an optimal performance
benchmark for the design of causal real-time controllers.
The dynamic programming solution is optimal up to the error introduced by the dis-
cretization of the distance, state, and input variables. In general, the denser the dis-
cretization grids, the better the solution. However, another disadvantage of dynamic
programming is its significant complexity [28]. In general, the computational burden of
DP scales linearly with the number of stages N and exponentially with the number of
states n and input variables m:

O(N · pn · qm) , (2.35)

where p and q are the number of elements in the discrete state and input grids. The
exponential increase in computational time due to the higher number of state and input
variables is often referred to as the curse of dimensionality.



Chapter 3

Predictive energy management
strategy

This chapter first offers an overview of energy management strategies, analyzing the
benefits and drawbacks of typical methods from literature. Then, it focuses on the de-
sign of a predictive energy management strategy that can yield optimal results for fuel
consumption and SoC control even in high-demanding driving cycles.
This chapter incorporates the findings of the author’s publications [57, 58, 60, 61, 65].

3.1 Overview on energy management strategies
The energy management strategy distributes the load demand between the power
sources of hybrid vehicles. Since the EMS defines how the powertrain components
operate, this control function significantly impacts their efficiency and degradation.
The literature on energy management strategies for fuel cell electric vehicles is vast
[34]–[69]. Since a one-solution-fits-all energy management strategy does not exist, sev-
eral studies have been conducted considering different methods, targets, and powertrain
configurations. In Chapter 1, it has already been mentioned that there is a fundamen-
tal research gap in energy management strategies for long-haul fuel cell electric trucks.
Moreover, the strategies developed for light-duty vehicles cannot be directly transferred
to long-haul trucks because they are usually less effective due to the significant impact
of the vehicle weight on the electric load demands.
Energy management strategies are usually categorized as online if they can be employed
for on-board vehicle control. On the other hand, offline strategies are unsuitable for
on-board control because they require complete and apriori knowledge of the driving
cycle, which is impossible in road vehicles. Nevertheless, offline strategies can pro-
vide performance benchmarks for designing online strategies, which is why they have
been widely used in the literature. Dynamic programming and Pontryagin’s minimum
principle are by far the most used methods for offline energy management strategies.
Dynamic programming can find the global optimum solution to any control problem.
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However, its fundamental drawback is that it requires high computational time and
memory, and complete and apriori knowledge of the disturbances. For these reasons,
dynamic programming has been typically used as a benchmark to design online energy
management strategies.
Pontryagin’s minimum principle finds the extremal solutions of optimal control prob-
lems, which generally are sub-optimal. Nonetheless, the literature has shown that for
hybrid electric vehicles, PMP has similar performance to DP for fuel consumption op-
timization but has the advantage of being computationally faster [95]. However, PMP
has the fundamental limitation of being unable to deal with state constraints intrin-
sically. This issue can be critical for energy management strategies if the battery is
undersized compared with the electric load demands. Moreover, if the objective func-
tion of the optimization includes more targets than simply fuel consumption, it is not
valid anymore that the extremal solution found with PMP is close to the optimal one
found with DP.
Opposite to offline energy management strategies, the online ones can be implemented
for on-board vehicle control because they do not require apriori knowledge of the entire
driving cycle. In general, online strategies are either heuristic (designed using engi-
neering experience and relying on sets of rules) or optimal (based on the minimization
of an objective function). The most popular method for online energy management
is the equivalent consumption minimization strategy (ECMS), which can be seen as a
simplified implementation of Pontryagin’s minimum principle.
Further details on energy management strategies for fuel cell electric vehicles can be
found in the review works [30]–[32]. Moreover, the author has already addressed the
most relevant aspects of literature works in the publications [57, 58, 60], focusing on
the most relevant aspects of energy management of fuel cell electric trucks. One of the
outcomes of these publications is that using long-term elevation forecasts in predictive
energy management strategies is significantly beneficial for fuel consumption in chal-
lenging driving cycles. Moreover, predictive energy management strategies are the only
way to prevent the worst-case scenario in which the vehicle must slow down or even
stop because the battery is fully discharged and the fuel cell cannot sustain the load
demand on its own.
In the literature, health-conscious energy management strategies have been developed
for light-duty fuel cell vehicles in [40]–[44], but no study has focused on trucks yet. In
this chapter, the optimal energy management problem considers fuel consumption and
battery SoC control as targets. However, the strategy presented here is extended in the
following chapter to include fuel cell and battery degradation within the optimization
targets.
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In this thesis, the energy management strategy performs the power-split between the
fuel cell and battery systems based on the electric power request of the driver. In
this thesis, the EMS defines the power setpoints for the fuel cell system, P ∗

fcs, and for
the battery system, P ∗

bat. Eventually, the fuel cell and battery systems follow these
setpoints under the constraints described in (2.12) and Table 2.2. Assuming that the
driver demand must always be met, the EMS defines the battery setpoint as:

P ∗
bat = Pel,des − Pfcs ηdc,dc + Pfcs,cool , (3.1)

based on the current load demand and fuel cell power. Thus, the battery always operates
as a buffer between the fuel cell and the electric loads. This means that the EMS only
has one degree of freedom for the power-split: defining the fuel cell setpoint.
The objective function for optimal energy management is the fuel consumption over the
driving cycle. For a fair comparison of different strategies, this work always considers
the equivalent battery consumption to calculate the overall fuel consumption as:

C =
∫ tfin

0
ṁH2(t) dt + (SoCin − SoCfin) Ebat,max

η̃fcs LHVH2

, (3.2)

where η̃fcs is the average efficiency of the fuel cell system during the driving cycle, SoCin
is the initial state of charge, and SoCfin the final one. The second term in the equation
above is the equivalent battery consumption associated with the SoC change over the
driving cycle.
Controlling the state of charge is important to ensure that the battery always has
enough charge to sustain the driving requirements (e.g. fast accelerations or route
changes) but is never fully charged to perform regenerative braking consistently. More-
over, overcharging and fully discharging accelerate battery degradation (see Figure 2.9).
Therefore, the SoC is constrained between maximum and minimum values as follows:

SoCmin ≤ SoC(t) ≤ SoCmax . (3.3)

The results below are obtained considering the vehicle model described in Chapter 2
and a battery system with a nominal energy capacity of 70 kWh. Moreover, the fuel
cell and battery systems are always assumed in begin-of-life conditions since the ob-
jective function of the optimal energy management problem does not include fuel cell
and battery degradation. Lastly, the ambient temperature, which impacts the energy
consumption due to fuel cell cooling, is assumed at 20°C.
Preliminary findings and investigations on energy management strategies are described
in Appendix B as a supplement to this chapter. Appendix B.1 studies offline energy
management strategies based on dynamic programming and Pontryagin’s minimum
principle. The results show that the strategies are practically equivalent when the driv-
ing requirements are low. However, for more demanding driving cycles, PMP does not
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yield global optimality as DP and cannot deal with the SoC constraints. Appendix B.2
compares online energy management strategies that can be practically implemented for
on-board control. The first is based on simple heuristics, whereas the second is a model
predictive control strategy with short-term load forecasts. The simulation results indi-
cate that both strategies yield similar fuel consumption, even though their complexity
is entirely different. However, the comparison with dynamic programming shows that
both strategies are close to optimality for low-demanding driving cycles, but the results
are significantly worse for more challenging ones. These findings also indicate that pre-
dictive energy management strategies with short-term horizons cannot yield optimal
results.

3.2 Design of a dual-stage predictive energy
management strategy

This thesis proposes a predictive energy management strategy with the dual-stage con-
trol structure depicted in Figure 3.1. In the first stage, the energy management strategy
is optimized at the beginning of the driving cycle based on the speed and elevation
forecasts of the navigation system. The optimization results are stored as predictive
references for the entire route, which the on-board energy management strategy uses in
the second control stage.
The main advantage of using the dual-stage control structure is that it allows predictive
energy management with long horizons while fulfilling real-time computational require-
ments. Indeed, in the first stage, the fuel cell power profile is optimized in one shot
over the entire route: i.e. the predictive horizon corresponds to the full driving cycle
length.

Navigation system Vehicle model Predictive energy
management optimization

Predictive EMS
references

Forecast of route 
speed and elevation

Forecast of 
electric load

Load, SoC, ...

FCS and battery setpoints

42 tons On-board EMS

Figure 3.1: Dual-stage structure of the predictive energy management strategy.
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The one-shot optimization can be performed in a relatively low computational time at
the beginning of the driving cycle and does not have to be repeated (if the route does
not change). This approach results in a significantly lower computational complexity
than the receding horizon optimization approach at the base of MPC strategies.
Another advantage of the proposed structure is that it allows the implementation of
dynamic programming as an online energy management strategy with low computation
complexity even though, in the literature, it is usually only used for offline ones.
The author’s works [60] and [61] already described the dual-stage structure, where
the optimal control problem is formulated so that it can be solved using quadratic
programming. Then, in the recent work [65], the predictive energy management strategy
has been improved in two main aspects:

• The optimal control problem in the first stage is solved using dynamic program-
ming to obtain the optimal solution. This improvement is significant because,
with quadratic programming, the system needs to be represented with a simpli-
fied linear model, resulting in a sub-optimal solution.

• The second improvement regards the on-board energy management strategy: ini-
tially, it only used the predictive SoC reference. Then, also the predictive refer-
ence of the fuel cell power was included in the on-board strategy, resulting in a
significantly better SoC control.

3.2.1 Dynamic programming optimization in the first stage
In the first stage, the speed and elevation forecasts coming from the navigation system
are converted into the electric load forecast for the entire route, using the longitudinal
dynamics with a backward-facing modeling approach (see Section 2.1.1). The speed,
elevation, and electric load forecasts are assumed as position-based (or distance-based)
profiles because, in real applications, it is impossible to predict the vehicle speed before
the driving cycle starts with absolute precision. Therefore, it is unrealistic to express
the forecasts as time-based since time depends on speed. For example, at the beginning
of the driving cycle, one can say that the vehicle will be at the highest elevation after
a specific amount of kilometers. On the contrary, it is impossible to precisely say how
much time it will take to reach that point because it depends on the driver’s behavior,
traffic conditions, and several other factors.
The speed forecast can be realized with different levels of accuracy. For example,
it could derive from a sophisticated forecasting system considering current and usual
traffic speed, road curvature, and weather. However, the speed forecast can also be
simply obtained from the speed limits over the route or even assuming a constant speed
value.
In general, the implementation of dynamic programming requires discretization of the
time, state, and input variables (see Section 2.3.2). However, unlike other approaches
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in the literature, dynamic programming is implemented for an optimal control problem
formulated over the traveled distance s instead of time. The distance grid is created with
uniform spacing, ∆s. The time interval to travel the distance ∆s changes depending
on the vehicle speed. Thus, the time interval for the k-th element is calculated as:

∆tk = ∆s/vk . (3.4)

The optimal control problem in Section 2.3 is adapted below for the energy management
of fuel cell electric vehicles. In this case, there is one state variable (i.e. the battery
SoC), one input variable (i.e. the fuel cell power), and one disturbance variable (i.e.
the electric load). The objective function of the optimization is the fuel consumption
expressed in (3.2). The SoC control is guaranteed by imposing constraints on the initial,
final, minimum, and maximum values. Therefore, the optimal control problem (2.32)
is rewritten as:

min
{Pfcs,1,... Pfcs,N}

N∑
k=1

ṁH2(Pfcs,k) ∆tk + ϕk (3.5a)

subject to:
SoC1 = SoCin (3.5b)
SoCN = SoCfin (3.5c)

SoCmin ≤ SoCk ≤ SoCmax (3.5d)
0 ≤ Pfcs,k ≤ Pfcs,max (3.5e)

with the discrete system dynamics expressed as:

SoCk+1 = SoCk − ∆tk

Voc,k −
√

V 2
oc,k − 4 P ∗

bat,k Rint,k

2 Rint,k Qbat,max
. (3.6)

with the battery power expressed as in (3.1), depending on the fuel cell power and the
electric load. The open circuit voltage and internal resistance have the stage subscript k
because they change with the SoC. The additive penalty function ϕk allows to implement
soft constraints on the state of charge. The function is defined as:

ϕk =

{{{
ϕ∗ if SoCk > SoCmax,soft

ϕ∗ if SoCk < SoCmin,soft

0 otherwise
(3.7)

where ϕ∗ = 0.67, that is a constant value 100 times higher than the maximum hydro-
gen consumption from Figure 2.4. The values for the soft constraints, SoCmin,soft and
SoCmax,soft, are 0.20 and 0.95, unless otherwise indicated.
The solution to the optimal control problem found with dynamic programming is op-
timal up to the error introduced by the discretization of the distance, state, and input
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Figure 3.2: Impact of discretization grids on computational time and fuel con-
sumption.

variables. In general, more elements in the discretization grids result in more accurate
solutions but at the cost of higher computational time. After studying the impact of
the discretization grids on computational time and fuel consumption in Figure 3.2, it
is assumed that the distance grid spacing is 100 meters, the number of elements in the
SoC grid is 900, and 100 in the fuel cell power grid. Eventually, the computational
time required for the optimization is 25 ms/km, which is well within the real-time con-
trol requirements. Indeed, assuming that the vehicle travels at 80 km/h, it would take
45 seconds to drive 1 kilometer. Therefore, the real-time computing factor would be:
45/0.025 = 1800.
Figure 3.2 shows the results of the complexity analysis obtained by changing the dis-
cretization of one of the grids while keeping the others at the mentioned values (cor-
responding to the red markers). The computational time increases linearly with the
distance grid elements but quadratically with the SoC and fuel cell power elements. On
the other hand, the impact on fuel consumption is negligible, and even broader grids
can yield excellent results. Eventually, the real-time computing factor could be in-
creased with a negligible impact on the optimization results. The computational times
Figure 3.2 refer to simulations performed using MATLAB R2022a on a computer with
3.60 GHz of base CPU speed and 32 Gb of RAM.
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The results of the dynamic programming optimization are stored as position-based
predictive references for the battery state of charge and fuel cell power over the entire
route: SoCref and Pfcs,ref. These references are used in the second stage by the on-board
energy management strategy.

3.2.2 On-board rule-based strategy in the second stage
The second control stage of the predictive energy management strategy is essential to
compensate for the modeling and forecasting uncertainties that the predictive reference
optimization cannot consider. Several approaches with different complexity levels could
be adopted for on-board energy management, relying on the predictive references opti-
mized in the first stage. This thesis adopts a simple heuristic control approach that has
minimal computational time. In particular, the on-board energy management strategy
is rule-based and similar to the one described in Appendix B.2.1.
The fuel cell power setpoint is defined considering the deviation of the electric load and
SoC from the predictive references:

P ∗
fcs = Pfcs,ref + r1 (Pel,des − Pfcs,ref) + r2 (SoCref − SoC) . (3.8)

Additionally, the fuel cell power setpoint is subject to the following constraints:

|Ṗ ∗
fcs| ≤ r3 , (3.9a)

r4 ≤ P ∗
fcs ≤ Pfcs,max . (3.9b)

The parameter r3 is the rate of change limit for the fuel cell power setpoint, whereas r4
is the idle fuel cell power defined by the energy management strategy. In this chapter,
it is set to zero. However, to avoid fuel cell degradation due to low-power operation, it
can be set to 10% of the nominal power (see Section 2.1.4).
Another constraint ensures that the battery can absorb the available regenerative brak-
ing power entirely by reducing the fuel cell power:

P ∗
fcs ≥ Pel,des − Pbat,ch , active if: r5 = 1. (3.10)

The maximum battery charging power, Pbat,ch, derives from the C-rate and voltage limits
indicated in Table 2.2 and changes over time depending on the SoC. The constraint is
active only if the parameter r5 is 1. However, deactivating the constraint can result in
significant mitigation of the fuel cell degradation due to dynamic loading.
Here, the parameter r1 is set to zero, so the energy management strategy strictly follows
the predictive fuel cell power reference generated in the first stage. On the other hand,
r2 is set to 400 kW to ensure that the strategy compensates for the SoC deviations
caused by the forecasting and modeling uncertainties. Lastly, the parameter r3 is set
to 9 kW/s, r4 to 0, and r5 to 1.
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Figure 3.3: Simulation results of the dual-stage predictive energy management
strategy assuming accurate speed forecast.

3.2.3 Robust validation in realistic driving scenarios
Figure 3.3 shows the simulation results of the dual-stage predictive energy management
strategy for the driving cycle on the hilly route, assuming that the speed forecast is
highly accurate. However, the forecast does not correspond precisely to the actual speed
of the driving cycle due to the distance grid discretization. The deviation is particularly
noticeable at low speeds and during stops. Consequently, the electric load forecast also
does not precisely match the actual one, even though it is quite accurate. Thanks to
this accurate load forecast, the predictive references for the SoC and fuel cell power
are strictly followed, demonstrating the goodness of the optimization in the first stage.
Indeed, deviations from the predictive references are only visible during the low-speed
sections of the driving cycle, even if limited.
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Figure 3.4: Simulation results assuming an uncertain speed forecast.

Figure 3.4 shows the simulation results of the predictive strategy considering an un-
certain speed forecast derived from the speed limits. Nevertheless, the electric load
forecast retains good accuracy because the road slope has the dominant impact on it.
The predictive references are strictly followed during the motorway cruising sections of
the driving cycle. Slight deviations are evident during the urban sections of the driving
cycles. However, the on-board energy management strategies can compensate for the
deviations and swiftly return close to the references.
One of the main advantages of the predictive energy management strategy is that it
results in excellent SoC control while retaining optimal fuel consumption. For example,
the soft constraints in the penalty function (3.7) are set to 0.60 and 0.80 to demonstrate
the high degree of SoC control. Figure 3.5 shows the simulation results of the predictive
energy management strategy (P-EMS) with tight SoC constraints and uncertain speed
forecast. Remarkably, the P-EMS can keep the SoC bounded in such a narrow operating
range even if the driving cycle is challenging due to the elevation profile. The figure
also compares the results against the optimal dynamic programming solution. Notably,
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Figure 3.5: Simulation results considering tight SoC constraints in the predic-
tive reference optimization and comparison with dynamic program-
ming.

the SoC and fuel cell power profiles are similar, meaning that the predictive strategy
is still close to optimality even with an uncertain speed forecast. This is because the
route elevation is dominant in determining the electric load because of the heavy vehicle
mass.
Table 3.1 summarizes the simulation results in terms of fuel consumption and final,
minimum, and maximum SoC values. The fuel consumption comparison with DP is
fair because the final SoC is the same. The comparison in the first row shows that when
the P-EMS considers an accurate speed forecast, the results are practically optimal and
identical to DP. At the same time, when the speed forecast is uncertain, the results
are still relatively close to optimality since the deviation from the DP solution is 0.27%
and 0.43%. For the same driving cycle, the fuel consumption of the strategies described

Table 3.1: Performance comparison between the P-EMS and DP on the hilly
route driving cycle.

EMS Fuel consumption SoC
(kg/ 100 km) deviation (%) final min max

DP 9.666 - 0.74 0.24 0.92
P-EMS (accurate speed forecast) 9.672 0.06 0.74 0.23 0.92

DP 9.680 - 0.80 0.25 0.92
P-EMS (uncertain speed forecast) 9.706 0.27 0.80 0.31 0.93

DP 10.327 - 0.75 0.60 0.81
P-EMS (uncertain speed + tight SoC range) 10.371 0.43 0.75 0.59 0.80
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in Appendix B.2 are 4.59% and 4.82% worse than the dynamic programming results
(see Table B.2). Therefore, the predictive EMS significantly improves the performances
thanks to the long-term load forecasts that included in the optimization of the predictive
references.
Another important finding is that the fuel consumption increases by approximately 7%
to keep the battery SoC within the tight operating range. The main reason is that the
fuel cell needs to operate at maximum power between minutes 147 and 156, resulting
in significantly higher hydrogen consumption (see Figure 2.4). A generalization of this
finding is that restricting the operating range or reducing the battery size results in less
degree of freedom for the fuel consumption optimization.
Lastly, the predictive energy management strategy was validated on the 300 real-world
driving cycles described in Section 2.2 to confirm its robustness. The simulations con-
sidered the driving cycles in sequence, meaning that the final SoC at the end of a cycle
becomes the initial one for the next cycle. This approach enables a fair comparison of
the fuel consumption of different energy management strategies, regardless of the SoC
change in the individual cycles.
Eventually, the performance of the energy management strategy is evaluated over a
total distance of 80.000 km to demonstrate its goodness from a global point of view
rather than for specific driving cycles. For simplicity, it is assumed that the speed
forecast is highly accurate, i.e. the error is only due to the distance grid discretization.
Table 3.2 compares four energy management strategies. In particular, the predictive
energy management strategy is considered with normal and tight SoC constraints. The
third is the rule-based strategy described in Appendix B.2.1, whereas the last is a
version with a more aggressive tuning (r1 = 0.5 and r2 = 1500 kW). The average fuel
consumption is reported in tonne-kilometer (tkm): the product of vehicle mass and
traveled distance, which is a standard metric in road freight transportation [3].

Table 3.2: Performance comparison of energy management strategies over the
sequence of 300 real-world driving cycles.

Fuel consumption FCS FCS energy Battery ohmic
(kg) (kg/100 tkm) change (%) efficiency (MWh) losses (MWh)

P-EMS 7421 0.287 - 0.522 129.05 3.33
P-EMS (tight) 7457 0.288 0.35 0.519 128.93 3.17
RB 7489 0.290 1.05 0.515 128.61 2.71
RB (aggressive) 8005 0.309 7.67 0.482 128.74 1.38
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A standard measure of freight activity is the tonne-kilometer (tkm) [3]. The predictive
energy management strategy with normal SoC operating range has a fuel consumption
of 0.287 kg/100 tkm, whereas the one with the tight SoC range has 0.35% higher
consumption. This result differs significantly from the one in Table 3.1 because that
one refers to a driving cycle that is extremely challenging from an energy management
point of view. This outcome indicates that most driving cycles from the considered pool
can be performed while keeping the SoC in a tight operating range with a negligible
impact on fuel consumption. Interestingly, the ohmic losses of the battery system
represent 2.6% of the total energy produced by the fuel cell system.
In this context, the rule-based strategy is representative of non-predictive energy man-
agement strategies. The rule-based strategy performs surprisingly well on average,
as the fuel consumption is only 1.05% higher than the P-EMS. The reason is again
that most of the driving cycles are not as challenging as the one shown in Figure 3.3.
However, if the RB strategy is not properly tuned, the performance deteriorate quite
significantly. For example, the strategy with the more aggressive tuning has 7.67%
higher fuel consumption than the P-EMS. On the other hand, this tuning keeps the
SoC in a tighter operating range than the other strategy.

3.3 Summary
The strategies proposed by the author in this thesis represent pioneering investigations
on predictive energy management of fuel cell electric trucks. These works significantly
contribute to advancing the scarce literature on energy management strategies for fuel
cell electric trucks.
This section summarizes the main findings of this chapter:

• The predictive energy management strategy proposed in this thesis yields opti-
mal fuel consumption and SoC control even in driving cycles that are extremely
challenging from an energy management point of view. On the contrary, on-
line strategies that do not consider long-term load forecasts perform significantly
worse.

• The dual-stage control structure enables the implementation of an online energy
management strategy based on dynamic programming, resulting in a highly effi-
cient and novel approach for the literature.

• The computational complexity of the predictive EMS meets the requirements
for real-time control. Moreover, the real-time computing factor of the predictive
EMS could be improved (if necessary) without compromising the goodness of the
solution.
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• The speed forecast has a marginal impact on the performance of the predictive
energy management strategy because the elevation plays the dominant role in
forecasting the electric load of the vehicle.

• The predictive energy management strategy has excellent SoC control thanks to
long-term load forecasts. Remarkably, it is possible to keep the SoC in a very
narrow operating range, retaining optimal fuel consumption.

• The actual battery capacity significantly impacts the performance of fuel cell
electric trucks in challenging driving cycles. Indeed, restricting the SoC operating
range is highly detrimental to fuel consumption. On the contrary, larger battery
sizes result in more degree of freedom for optimizing the energy management
targets.

• The robust validation of the predictive energy management strategy considering
300 real-world driving cycles shows that the average fuel consumption is 0.287
kg/100 tkm. In comparison, the rule-based EMS, which is non-predictive, re-
sults in a 1.05% higher fuel consumption. This outcome indicates that the non-
predictive EMS can perform relatively well because, on average, the driving cycles
are not as challenging as the one on the hilly route.

This chapter designed a predictive energy management strategy with a dual-stage con-
trol structure based on dynamic programming. This energy management strategy yields
excellent fuel consumption and SoC control, assuming that the fuel cell and battery
state-of-health are known. In the next chapter, this strategy is extended to include fuel
cell and battery degradation in the optimal control problem. In this way, the energy
management strategy can adapt to the current state-of-health of the components and
mitigate their degradation.



Chapter 4

Health-conscious energy
management strategy

This chapter focuses on energy management strategies that consider fuel cell and battery
degradation as additional optimization targets to extend the vehicle lifetime. Initially, it
shows the energy management impact on degradation by calibrating the on-board strat-
egy, as investigated in the author’s publications [63, 65]. Then, it proposes a novel
health-conscious dynamic programming energy management for optimizing the predic-
tive references. Lastly, it analyzes the battery size impact on the control targets and the
performance deterioration due to progressive powertrain degradation.

4.1 Overview on health-conscious energy
management

The energy management strategy plays a critical role in ensuring that the powertrain
components meet the lifetime requirements of long-haul transportation. Therefore,
this chapter focuses on the design of a strategy that includes the fuel cell and battery
degradation as additional energy management targets.
However, these targets are contrasting. Thus, a suitable trade-off between them should
be found considering techno-economic criteria. Here, the energy management strategy
is designed to obtain a balanced degradation between the components, assuming that
the individual replacement of either component is unfavorable cost-wise. Therefore, the
overall state of degradation of the powertrain SoDpt corresponds to the one from the
more degraded component:

SoDpt = max( SoDfcs , SoDbat ) . (4.1)

The energy management strategy performances are analyzed considering the change in
SoD over the individual driving cycle, which practically indicates the average degra-
dation rate. In particular, following the definition of the fuel cell state of degradation
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(2.23), the change in SoDfcs is expressed as:

∆SoDfcs = ∆V dc
fcs/∆Vfcs,EoL , (4.2)

where ∆V dc
fcs is the voltage degradation over an individual driving cycle. Similarly, the

change in battery state of degradation (2.29) is expressed as:

∆SoDbat =
∫

dc
δbat |Ibat| dt . (4.3)

In order to obtain a robust energy management design, this chapter considers the
mountain-route driving cycle (see Figure 2.12c) for performance evaluation since it is
the most challenging one from an energy management point of view. The SoC control is
not always analyzed in detail, but all the results below have SoC within 0.25 and 0.90 to
avoid battery overcharging or critical discharges. For simplicity, it is assumed that fuel
cell and battery systems are always in begin-of-life conditions. Moreover, the vehicle
mass is set to 42 tons and the ambient temperature to 35°C to create a worst-case
scenario regarding the electric load request. Lastly, the battery system has a nominal
energy capacity of 100 kWh unless otherwise indicated.

4.2 Calibration of on-board energy management
strategy

The parameters of the on-board energy management strategy in (3.8), (3.9), and (3.10)
significantly impact fuel consumption, fuel cell degradation, and battery degradation.
Properly calibrating these parameters can greatly improve the energy management
strategy performances.
Using a design of experiment (DoE) strategy is a practical way to calibrate the control
parameters systematically. Here, the on-board strategy calibration results are analyzed
to study the energy management impact on degradation and its trade-off with fuel
consumption. This preliminary investigation considers predictive references for the
EMS optimized for fuel consumption, following the approach described in Section 3.2.1.
Latin hypercube sampling [96] is used to generate 2000 combinations of the four param-
eters: r1, r2, r4, and r5. The parameter r3 is kept constant because it has a negligible
influence. The variation ranges of the parameters are indicated in Table 4.1. The square
brackets indicate that the parameters variate continuously in the range, whereas the
curly ones indicate the set of possible values. For example, r5 can only be 0 or 1.



4.2 Calibration of on-board energy management strategy 49

Table 4.1: Variation range of the on-board strategy parameters for the Latin
hypercube sampling.

r1 r2 r4 r5

[0, 1] [100 kW, 2000 kW] {0, 31 kW} {0, 1}

Figure 4.1 shows the calibration results in terms of average degradation and fuel con-
sumption rates. The first tile indicates that fuel cell and battery degradation are in-
versely proportional: reducing one increases the other. In other words, simultaneously
minimizing the degradation of both components is impossible, and an appropriate trade-
off must be found to minimize the overall powertrain degradation. In particular, it is
essential to ensure balanced degradation of the fuel cell and battery systems. The figure
highlights the results corresponding to the minimum fuel consumption and powertrain
degradation, which lies close to the balanced degradation line.

Figure 4.1: Results of the on-board strategy calibration for the trade-off be-
tween fuel cell and battery degradation, and between fuel consump-
tion and overall powertrain degradation.
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Table 4.2: Results of the on-board strategy calibration.

SFC ∆SoDpt ∆SoDbat ∆SoDfcs
SoC EMS parameters

(kg/100 km) (10−6/km) final min max r1 r2 (kW) r4 (kW) r5

min SFC 9.95 1.30 1.30 1.08 0.69 0.26 0.89 0 600 0 1
min ∆SoDpt 10.09 1.16 1.16 1.15 0.70 0.28 0.90 0.14 549 31 1

non-predictive EMS 10.83 2.12 1.14 2.12 0.65 0.24 0.89 0.20 400 0 1

The second tile of Figure 4.1 shows the trade-off between fuel consumption and pow-
ertrain degradation rate. Here, the meaningful region is the Pareto front between the
minimum fuel consumption and ∆SoDpt points. Eventually, the degradation rate can
be reduced by 11% with a fuel consumption increase of only 1.4%. The extreme case
of low battery degradation (dark red markers) can only be achieved with a signifi-
cant increase in hydrogen consumption and fuel cell degradation. The minimum fuel
cell degradation (dark blue markers) results in relatively low consumption but higher
battery degradation compared to the minimum ∆SoDpt point.
Lastly, the non-predictive EMS considered in Chapter 3 is also reported in Figure 4.1,
showing a significantly higher fuel cell degradation than the predictive one. Moreover,
the fuel consumption is 8.8% higher than the minimum value, whereas the powertrain
degradation rate is 83% higher. The much higher fuel consumption was expected be-
cause, as mentioned, the driving cycle under investigation is the most challenging one.
Table 4.2 reports the fuel consumption, indicated with SFC, and degradation rates of
the most relevant cases from Figure 4.1, along with the final, minimum, and maximum
SoC values and the corresponding EMS parameters.

4.3 Health-conscious dynamic programming
optimization

The previous section has shown that the energy management strategy significantly
impacts the trade-off between fuel consumption and degradation rates. However, a fun-
damental limitation was that the predictive references were optimized only considering
the fuel consumption. This section overcomes the mentioned limitation and proposes
an innovative formulation for the multi-objective optimization of fuel consumption and
degradation using dynamic programming.
The difference compared to the dynamic programming formulation detailed in Sec-
tion 3.2.1 is the objective function of the optimization, which is now expressed as:

min
{Pfcs,1,... Pfcs,N}

N∑
k=1

Lk + ϕk . (4.4)
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The stage cost of the objective function consists of three terms: fuel consumption,
fuel cell, and battery degradation rates. Since simultaneously minimizing all terms is
impossible, the stage cost is expressed as the weighted sum:

Lk = (1 − α) Lfuel, k + α [βLbat, k + (1 − β)Lfcs, k] w , (4.5)

where α and β are the weighting parameters that can shift the optimization towards the
individual targets. For example, setting α = 0 results in fuel consumption optimization.
When α = 1, the optimization target is the battery degradation rate if β = 1, or the
fuel cell degradation rate if β = 0. The parameter w is a scaling factor equal to 105.
The fuel consumption term is expressed as in (3.5), considering the hydrogen consump-
tion rate as a function of the fuel cell power:

Lfuel, k = ṁH2(Pfcs,k) ∆tk . (4.6)

The battery degradation term is expressed as the argument of the integral in (2.29):

Lbat, k = δbat,k |Ibat,k| ∆tk , (4.7)

where δbat,k is the battery degradation rate and depends on the SoC as in (2.30). The
current is expressed as a function of the battery power (3.1):

Ibat,k =
Voc,k −

√
V 2

oc,k − 4 P ∗
bat,k Rint,k

2 Rint,k
. (4.8)

The fuel cell degradation term includes the four causes mentioned in (2.22): start-
up/shut-down cycles, dynamic loading, low-power and high-power operations. Eventu-
ally, it is expressed as:

Lfcs, k = δss

N
+ δlp ∆tlp

k + δhp ∆thp
k + δdl

|∆Pfcs, k|
2 Pfcs,nom

. (4.9)

Since there is always one start-up/shut-down cycle, the first degradation term is dis-
tributed along the entire driving cycle by diving by the number of stages, N . The
low-power degradation is present when the fuel cell operated below 10% of the nominal
power. Therefore, the operating time at low-power is expressed as:

∆tlp
k =

{{{ ∆tk if Pfcs, k < 10% of Pfcs,nom ,

0 otherwise.
(4.10)

Similarly, the operating time at high-power is expressed as:

∆thp
k =

{{{ ∆tk if Pfcs, k > 80% of Pfcs,nom ,

0 otherwise.
(4.11)
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The change in fuel cell power is expressed as:

∆Pfcs, k = Pfcs, k+1 − Pfcs, k (4.12)

It should be noted that, when in the stage k, the optimal control policy U∗ at k + 1
is already defined over the entire SoC grid (see Figure 2.15). Therefore, remembering
that SoCk+1 is as in (3.6), the fuel cell power in the next stage is expressed as:

Pfcs, k+1 = U∗
k+1(SoCk+1) . (4.13)

It should be mentioned that including the degradation terms in the objective function
of dynamic programming increases the computational time for the optimization. In
particular, keeping the same discretization grids selected in Section 3.2.1, the compu-
tational time is now 40 ms/km, i.e. 60% higher than without degradation. The main
reason for this increase is the interpolation required to overcome the grid mismatch
occurring in the implementation of (4.13) (see Figure 2.15).
Changing the weights α and β allows exploring different trade-offs between the three
targets: fuel consumption, fuel cell, and battery degradation. The parameters of the
on-board strategy are kept constant as: r1 = 0, r2 = 600 kW, r3 = 9 kW/s, and
r4 = 0 kW. On the other hand, the parameter r5 is always considered in both of its
possible values. This parameter defines whether or not the constraint (3.10) is active,
significantly impacting the fuel cell degradation due to dynamic loading. Indeed, if the
constraint is not active (i.e. r5 = 0), the EMS will not lower the fuel cell power during
regenerative braking. Consequently, the fuel cell will be less fluctuating, but the fuel
consumption will be higher because part of the regenerative braking energy will not be
absorbed.
The initial performance analysis of the health-conscious energy management considers
the extreme cases for optimizing the predictive references. Figure 4.2 shows the simula-
tion results corresponding to minimum fuel cell degradation for the driving cycle on the
mountain route. First, it should be noted that there is an extremely close tracking of
the predictive references. The SoC is kept within 0.25 and 0.90 thanks to the additive
penalty function (3.7) implementing the soft constraints. The fuel cell does not operate
at low or high power to avoid the corresponding degradation. Moreover, the fuel cell
operation is remarkably stationary and almost looks like four different power levels.
Eventually, the major contribution to the fuel cell voltage degradation is due to the
inevitable start-up/shut-down cycle, which causes 93% of the total degradation.
Figure 4.3 shows the simulation results corresponding to minimum fuel consumption
for the same driving cycle. The SoC profile is similar to the previous case, whereas
the fuel cell power profile is quite different, as it is not as stationary as before. Here,
the fuel consumption is improved not because of higher FCS efficiency but because
the battery absorbs more regenerative braking energy. On the contrary, the fuel cell
degradation is higher due to the low-power and transient operation, which cause 19%
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Figure 4.2: Simulation results of the health-conscious EMS with predictive ref-
erences optimized for minimum fuel cell degradation (α = 1, β = 0,
and r5 = 0).

and 34% of the total degradation, respectively. The remaining degradation is due to
the start-up/shut-down cycle since the fuel cell never operates at high power.
Lastly, Figure 4.4 shows the simulation results corresponding to minimum battery
degradation. In this case, the SoC is kept in a narrower operating range to avoid
accelerated degradation rates (see Figure 2.9). The SoC profile is flat in many sections
because the battery is not operating, whereas the fuel cell is working in power-following
mode. From the FCS power profile, a much higher fuel consumption is expected com-
pared to the previous cases due to the frequent operation at maximum power, where
the efficiency is low.
Table 4.3 compares the fuel consumption and component degradation for the three cases
analyzed above. There is a huge difference in fuel consumption between the minimum
degradation cases: for the fuel cell, the consumption is 3.8% higher than the minimum,
whereas 31.5% higher for the battery. On the other hand, the fuel cell degradation
is almost two times higher for the minimum consumption case and almost five times
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Figure 4.3: Simulation results with predictive references optimized for mini-
mum fuel consumption (α = 0 and r5 = 1).

Figure 4.4: Simulation results with predictive references optimized for mini-
mum battery degradation (α = 1, β = 1, and r5 = 1).

Table 4.3: Performance comparison between the extreme optimization cases of
the health-conscious energy management strategy.

α β r5
SFC ∆SoDfcs ∆SoDbat SoC

(kg/100 km) (10−6/km) (10−6/km) final min max

1 0 0 10.33 0.55 1.41 0.69 0.26 0.89
0 - 1 9.95 1.08 1.30 0.69 0.26 0.89
1 1 1 13.08 2.49 0.63 0.70 0.39 0.84
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higher for the other case. Lastly, the battery degradation is similar for the first two
cases and more than two times higher than the minimum.
Since the problem under investigation is the multi-objective optimization of conflict-
ing targets, no individual solution exists that simultaneously optimizes each objective
individually. When improving an individual objective is impossible without degrading
at least one of the other objectives, the problem is also called Pareto optimality. In
particular, a solution is called nondominated or Pareto optimal if there is no other
solution that is equally good or better than it with respect to all the objectives. The
set of nondominated solutions is called the Pareto front [97, 98].
The weighting choice to analyze the extreme optimization cases is straightforward, as it
is shown in Table 4.3. However, finding the weights that yield an appropriate trade-off
between all the targets is not as simple. For this reason, Latin hypercube sampling
was used again to create 600 combinations of α and β and systematically explore the
trade-offs between fuel consumption and component degradation. The results of this
study are reported in Figure 4.5.

Figure 4.5: Pareto fronts between battery and fuel cell degradation rates, and
between fuel consumption and powertrain degradation rate.
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Figure 4.6: Comparison of Pareto fronts between fuel consumption and power-
train degradation (SFC vs SoDpt), and fuel cell and battery degra-
dation (SoDfcs vs SoDbat).

For better visualization, the figure highlights the results along two Pareto fronts: the
first between battery and fuel cell degradation; and the second between fuel consump-
tion and powertrain degradation. First, the figure shows the Pareto front between
battery and fuel cell degradation. The flat edges of this front suggest that the health-
conscious energy management strategy can find solutions that optimize the individual
degradation rates. Moreover, it is evident that battery degradation has a higher impact
on fuel consumption and overall powertrain degradation (4.1) because reducing it has a
highly detrimental impact on fuel cell degradation. The second Pareto front is between
fuel consumption and powertrain degradation. Almost all solutions are on the left side
of the balanced degradation line, meaning that optimizing the fuel cell degradation
has a lower impact on fuel consumption. The figure also shows the weights α and β
corresponding to each Pareto optimal solution.
The fact that both Pareto fronts are intensely populated along their extension clearly
indicates that the health-conscious dynamic programming has a high degree of flexibility
in shifting the trade-off between the optimization targets. The goodness of the proposed
optimization approach is demonstrated by comparing the Pareto fronts against the
results of the on-board strategy calibration shown in Section 4.2. Figure 4.6 shows
that the novel optimization is considerably superior to the other solution. First, the
overall powertrain degradation rate can be reduced by 35% compared to the minimum
fuel consumption results, whereas only by 11% with the other case. Moreover, the
health-conscious dynamic programming yields lower fuel consumption for the same
powertrain degradation. Therefore, it can be concluded that simply calibrating the on-
board strategy results in dominated solutions, whereas the health-conscious dynamic
programming finds Pareto optimal solutions. This difference is even more evident in
the trade-offs between battery and fuel cell degradation.
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4.4 Impact of battery sizing on fuel consumption
and degradation

Powertrain component sizing problem is a compelling topic in the research related to
fuel cell electric vehicles. In the literature, it is widely acknowledged that component
sizing must be coupled with optimal EMS design because the power-split criteria change
depending on the powertrain configuration [99, 100]. Jain et al. [101] use a genetic algo-
rithm to optimize the parameters related to component sizing and load-follower charge
sustaining EMS. Tazelaar et al. [102] use different energy management strategies for the
optimal powertrain design showing that the minimum component size requirements are
highly affected by the control strategy choice. Hu et al. [103] use convex programming
for the combined optimization of energy management and component sizing, examining
the influence of driving cycles on the optimization results. Xu et al. [100] investigate the
optimal component sizing problem to find the best trade-off between consumption and
degradation indicators, adopting an EMS based on dynamic programming. As follow-
up work, Hu et al. [104] derive simplified EMSs from DP, showing that the hydrogen
consumption is near-optimal if the battery capacity is large enough. Wu et al. [105] use
convex programming for the combined optimization of energy management and compo-
nent sizing of a plug-in fuel cell city bus, showing how the economic assumptions on the
hydrogen price affect the energy management strategy. Fletcher et al. [106] use stochas-
tic dynamic programming as EMS within their component sizing investigation, showing
the impact of fuel cell size on the individual causes of fuel cell voltage degradation. Feng
et al. [107] define an optimal component sizing problem to minimize the lifecycle cost of
a fuel cell mining truck, using simplified degradation models to estimate the component
lifetime and, based on that, the total cost of ownership. Xu et al. [54, 55] investigate the
joint component sizing and energy management for fuel cell electric trucks proposing
to decompose the problem into two sub-problems that are solved by sequential convex
programming. Fewer works investigate the component sizing problem through techno-
economic assessments, neglecting the role of energy management strategies [108]–[110].
This section studies the vehicle performance with different battery capacities to examine
the impact of battery sizing on fuel consumption and component degradation. The
health-conscious energy management strategy described in Section 4.3 is used to find
the optimal trade-off between these targets. The battery pack size can be easily changed
in the model through the overall number of cells (see Section 2.1.3). On the contrary,
the fuel cell system model is not changed.
The first aspect to consider for a proper investigation is that a larger battery size results
in higher vehicle weight. Therefore, in this section, the vehicle weight is expressed as:

mv = mv0 + µbat Ebat,nom , (4.14)

assuming the base vehicle weight mv0 as 42 tons, and the specific battery weight µbat
as 6.35 kg/kWh [111, 112].
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A larger battery generally means a higher degree of freedom for the power-split opti-
mization, and the health-conscious dynamic programming can take full advantage of
this. However, the weights of the multi-objective optimization function can significantly
change because the optimal power-split criteria can differ depending on the battery size.
For this reason, the DoE approach described to obtain the results in Figure 4.5 was
adopted again to explore the Pareto optimal solutions systematically. The results of
this study are shown in Figure 4.7 for battery sizes ranging from 60 kWh to 250 kWh.
Smaller batteries are not considered because the SoC cannot be kept within the desired
operating range, i.e. 0.25–0.90.

Figure 4.7: Impact of battery sizing on fuel consumption and powertrain degra-
dation rate using the health-conscious EMS.

The first tile of the figure shows the fuel consumption for the weights that yield its
minimum value, but also for those that yield the minimum powertrain degradation
rate. Moreover, the right-side y-axis shows the relative change between the extreme
values for each battery size. The first interesting finding is that the minimum fuel
cell consumption with the smallest battery size is 26.4% higher than the one with
the largest battery (11.84 vs. 9.37 kg/100 km). However, most of the improvement
is already obtained with a battery size of 150 kWh. Another interesting finding is
that the relative change between the solutions with minimum fuel consumption and
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minimum powertrain degradation decreases significantly with the battery size due to
the higher degree of freedom for the optimization. In particular, if the battery size is
250 kWh, the powertrain degradation rate can be minimized with only a 1.2% higher
fuel consumption than the minimum.
The second tile of Figure 4.7 shows the powertrain degradation rate. Here, it is re-
markable that, for the smallest battery, the minimum powertrain degradation rate is
2.36 times higher than for the largest battery. What is also surprising is that the
relative change between the solutions with minimum fuel consumption and minimum
powertrain degradation is significant even for large batteries.
Figure 4.7 demonstrates that larger batteries result in lower fuel consumption and
powertrain degradation. However, it does not provide information on the goodness of
the health-conscious EMS compared with other strategies. Indeed, with larger batteries,
it is generally easier to perform the power-split task. To investigate this aspect, the
performances of the health-conscious predictive EMS are compared with those of the
rule-based strategy described in Appendix B.2.1, which is non-predictive and based
on simple heuristics (i.e. not optimal). The parameters of the rule-based strategy
were varied as detailed in Section 4.2 to explore the trade-off between the optimization
targets.
For this comparison, an additional performance indicator is considered to define the
best trade-off between fuel consumption and powertrain degradation. This indicator is
the total cost of ownership of the fuel cell electric powertrain. Generally, the total cost
of ownership (TCO) assesses the long-term value of assets, considering the fixed and
operating costs over their lifespan. For commercial vehicles, a detailed TCO analysis
includes direct and indirect costs of purchase, fuel, maintenance, insurance, downtime,
repairs, fees, and taxes. However, this study only considers the purchase cost of the fuel
cell and battery systems and the hydrogen cost, assuming that the impact of energy
management and components sizing on the other costs is negligible.
Here, total cost of ownership of the powertrain, TCOpt, is expressed as:

TCOpt = cH2 SFC + (cbat Ebat,nom + cfcs Pfcs,nom) ∆SoDpt , (4.15)

where cH2 is the hydrogen price, cbat the battery system price, and cfcs the fuel cell
system price. It is assumed that the current market prices are 6 $/kg for hydrogen
[113], 40 $/kW for fuel cell systems [114], and 160 $/kWh for battery systems [115]. The
minimum TCO solution will always lie on the Pareto front between fuel consumption
and powertrain degradation, and the market prices determine where the best trade-off
solution is located along the front. From the formulation, it should be clear that it is
a simple estimate of the actual TCO because the fuel consumption and degradation
rates are projected, assuming that the vehicle always repeats the same driving cycle.
Moreover, the effect of the degradation itself on the fuel consumption and degradation
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rates is not considered because they are calculated when the vehicle is in begin-of-life
conditions and then projected to estimate the TCO as in (4.15).

Figure 4.8: Performance comparison between the health-conscious predictive
EMS and the non-predictive rule-based EMS.

Figure 4.8 shows the performance comparison between the health-conscious predictive
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EMS and the non-predictive rule-based EMS, showing the minimum TCO obtained
during the calibration of each strategy. Eventually, the powertrain TCO is consider-
ably lower with the proposed health-conscious EMS, especially for configurations with
small batteries. For example, if the nominal battery capacity is 100 kWh, the expected
TCO is 15% higher for the rule-based EMS. Moreover, using the rule-based EMS, the
minimum battery capacity required to keep the SoC in the desired operating range
is higher than the other strategy and equal to 80 kWh. The figure also shows the
minimum and maximum values obtained with each strategy for fuel consumption and
powertrain degradation. Interestingly, the solution that yields the minimum TCO re-
sults in fuel consumption that is extremely close to its minimum value, meaning that
fuel consumption has a dominant role over the TCO under assumptions made for the
market prices.

4.5 Performance deterioration due to progressive
component degradation

A limiting assumption of the investigations conducted in the previous sections is that the
fuel cell and battery systems are always assumed in begin-of-life conditions. However,
this section overcomes this limitation, offering a detailed analysis of how the progressive
component degradation deteriorates the performances of fuel cell electric trucks.
The degradation models are described in Section 2.1.4. For the fuel cell system, the state
of degradation (SoD) affects its hydrogen consumption, heat generation, and maximum
power (see Figure 2.4). On the other hand, the battery degradation affects its maximum
capacity as indicated in (2.24). For example, if at begin-of-life the maximum battery
capacity is 100 kWh, at end-of-life, it is 80 kWh.
Table 4.4 shows the effect of the battery and fuel cell SoDs on fuel consumption, battery
degradation rate, and fuel cell degradation rate. The simulation results refer to the
health-conscious EMS (with α = 0) and the driving cycle on the mountain route for
two different ambient temperatures. Four extreme degradation cases are considered in
the table, i.e. with the components in begin-of-life or end-of-life conditions.
The performance deterioration from BoL to EoL conditions is significant. In particular,
the fuel consumption increases by 24%, the battery degradation rate by 15%, and
the fuel cell degradation rate by 29%. Remarkably, the performance deterioration
due to EoL conditions is much higher at an ambient temperature of 35°C than at
10°C. On the contrary, the performances are comparable at BoL conditions. This
difference is expected because heat generation at EoL conditions is significantly higher,
and the energy consumption of the fuel cell cooling system can reach up to 50 kW (see
Figure 2.6).
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Table 4.4: Effect of SoD and ambient temperature on performance indicators.

SoDbat SoDfcs Tambient
SFC ∆SoDbat ∆SoDfcs

(°C) (kg/100 km) change (10−6/km) change (10−6/km) change

0 0 35 9.95 - 1.30 - 1.08 -
1 0 35 10.40 +5% 1.52 +17% 1.21 +12%
0 1 35 11.28 +13% 1.30 - 1.12 +4%
1 1 35 12.30 +24% 1.50 +15% 1.39 +29%

0 0 10 9.88 - 1.27 - 1.10 -
1 0 10 10.26 +4% 1.46 +15% 1.22 +11%
0 1 10 10.99 +11% 1.29 +2% 1.12 +2%
1 1 10 11.48 +16% 1.47 +16% 1.23 +12%

The results reported in Table 4.4 consider the extreme degradation cases for the bat-
tery and fuel cell systems. However, they do not consider how the actual degradation
progresses during the vehicle lifetime. Of course, the energy management strategy sig-
nificantly impacts the overall performance. Therefore, four Pareto optimal solutions
were selected from the investigation conducted in Figure 4.5 to study the performance
deterioration due to the progressive component degradation. Table 4.5 lists the selected
solutions with the fuel consumption and degradation rates at begin-of-life conditions.
The first solution has the minimum SFC; the second has a much lower fuel cell degra-
dation rate with a negligible impact on fuel consumption; the third has the minimum
powertrain degradation rate; whereas, the fourth has the minimum expected powertrain
total cost of ownership.
First, the performance deterioration due to the progressive component degradation is
analyzed, assuming that the vehicle always drives the cycle on the mountain route. It
is important to note that the predictive energy management references are optimized

Table 4.5: Selected solutions of the health-conscious EMS to study the perfor-
mance deterioration due to progressive component degradation.

α β r5
SFC ∆SoDpt/bat ∆SoDfcs TCOpt

(kg/100 km) (10−6/km) (10−6/km) ($/km)

0 - 1 9.95 1.30 1.07 0.634
0.01 0.66 0 9.97 1.29 0.78 0.635
0.43 0.91 0 10.59 0.85 0.81 0.660
0.04 0.96 1 9.98 1.14 1.10 0.631
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Table 4.6: Performance comparison considering progressive component degra-
dation for the driving cycle on the mountain route.

α β
Mileage SoDbat SoDfcs

SFC∗ ∆SoD∗
bat ∆SoD∗

fcs TCO∗
pt

(106 km) (kg/100 km) (10−6/km) (10−6/km) ($/km)

0 - 0.71 1.00 0.83 10.75 1.41 1.17 0.685
0.01 0.66 0.72 1.00 0.62 10.60 1.39 0.86 0.676
0.43 0.91 1.02 1.00 0.96 11.52 0.98 0.94 0.719
0.04 0.96 0.80 1.00 0.95 10.88 1.25 1.19 0.688

in each driving cycle considering the current state of degradation for the fuel cell and
battery systems. Consequently, this study requires quite a significant computational
time, i.e. approximately 15 hours to simulate one million kilometers. For this reason,
only a few selected energy management strategies are considered for the analysis.
The results of this study are reported in Table 4.6 and Figure 4.9. The table indicates
the total vehicle mileage, the final battery and fuel cell states of degradation. More-
over, the table reports the average fuel consumption, degradation rates, and the final
powertrain TCO. On the other hand, the figure shows how the performance indicators
deteriorate as the vehicle mileage and degradation increase.
Comparing the results from Tables 4.5 and 4.6, it is evident that, due to the performance
deterioration, the fuel consumption, degradation rates, and TCO are underestimated if
the components are always considered at BoL conditions. The first remarkable finding
comes from the comparison of the first two solutions. Indeed, the average fuel consump-
tion is 1.4% higher when α = 0, which might be counter-intuitive because the objective
function weighting corresponds to the minimum fuel consumption over the individual
driving cycle. However, this outcome is reasonable because the fuel cell degrades faster
for the first solution, resulting in lower fuel cell efficiency for the following driving cy-
cles. Indeed, Figure 4.9 shows that SFC is initially lower for the first solution, but it
rapidly becomes higher as the fuel cell degradation progresses.
The third and fourth solutions have a much more balanced degradation between the
powertrain components, resulting in a longer life than the other solutions. The third
one results in the longest vehicle life, as expected. However, the average degradation
rates are approximately 16% higher than expected from the results at the begin-of-life
conditions. On the other hand, the fourth solution does not result in the minimum
TCO but in a 1.8% higher value than the second solution. This outcome indicates
that using the simulation results at BoL conditions to calculate the TCO in (4.15) is
insufficient to obtain an accurate estimation.
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Figure 4.9: Performance deterioration due to the progressive component degra-
dation for the driving cycle on the mountain route.
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Table 4.7: Performance comparison considering progressive component degra-
dation for the random sequence of driving cycles.

α β
Mileage SoDbat SoDfcs

SFC∗ ∆SoD∗
bat ∆SoD∗

fcs TCO∗
pt

(106 km) (kg/100 km) (10−6/km) (10−6/km) ($/km)

0 - 0.89 0.77 1 9.59 0.87 1.12 0.607
0.01 0.50 1.09 0.99 1 9.63 0.91 0.92 0.604
0.50 0.85 1.17 0.96 1 9.84 0.82 0.85 0.615

Table 4.8: Performance comparison with focus on degradation metrics.

Mileage Cycle length SoDbat EFC SoDfcs
fuel cell voltage degradation (%)

(106 km) (km) total ss dl lp hp

0.71 385 1 5240 0.83 8.33 3.63 2.95 1.68 0.07
mountain 0.72 385 1 5300 0.62 6.19 3.66 1.18 1.33 0.01

route 1.02 385 1 6190 0.96 9.61 5.19 2.45 1.74 0.22
0.80 385 1 5630 0.95 9.46 4.08 3.14 2.13 0.11

mixed 0.89 264 0.77 5010 1 10 6.62 3.23 0.14 0

cycles 1.09 265 0.99 6340 1 10 8.07 1.79 0.14 0
1.17 265 0.96 6590 1 10 8.64 1.29 0.07 0

The performance deterioration due to the progressive component degradation is also
studied considering a random sequence of the 300 real-world driving cycles detailed in
Section 2.2. Moreover, the ambient temperature fluctuates between 5°C and 35°C with
a sinusoidal shape and a period of 500 driving cycles to emulate a seasonal behavior.
The results of this study are listed in Tables 4.7. The first solution considers α = 0 to
obtain the minimum fuel consumption on each cycle. The main difference compared
with the results for the mountain route is that the fuel cell degradation rate is higher
than the battery one. On the other hand, the final powertrain TCO is lower because the
driving cycles are, on average, less demanding. The second solution results in balanced
component degradation, yielding a 22.5% longer mileage with only a 0.4% increase in
fuel consumption. This trade-off leads to a more profitable TCO. The third solution
yields an even longer mileage but much higher fuel consumption.
Lastly, Table 4.8 analyzes all the simulation results with more focus on the degradation
metrics. The equivalent cycles until the end-of-life of the battery system are generally
lower for the driving cycle on the mountain route because the battery operates in a
wider SoC range. The leading cause of fuel cell voltage degradation is the start-up/shut-
down cycles. For the mixed driving cycles, the degradation due to start-up/shut-down
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cycles is particularly dominant for two reasons: first, the average driving cycle length
is shorter. Second, there is more freedom to optimize the power-split to reduce the
degradation due to dynamic loading, low-power, and high-power operation because the
driving cycles are, on average, less demanding.

4.6 Summary
This chapter focused on health-conscious energy management strategies, considering
fuel cell and battery degradation rates as additional optimization targets. The study
considered the most challenging driving cycle from an energy management point of
view, with the worst-case scenario for the route topography, truckload, and ambient
temperature.
At first, the powertrain lifetime was improved by calibrating the on-board strategy
parameters, with a slight increase in fuel consumption. This result demonstrated that
energy management strategies significantly impact fuel cell and battery degradation.
Then, the dual-stage predictive energy management strategy was improved to include
the degradation rates directly in the optimal control targets. In particular, a health-
conscious energy management strategy using dynamic programming is proposed for the
multi-objective optimization of the predictive energy management references, consider-
ing fuel consumption, fuel cell degradation, and battery degradation.
The optimal power-split results corresponding to the optimization of the individual
targets are analyzed in detail to demonstrate the goodness and flexibility of the health-
conscious energy management strategy. In particular, the fuel cell and battery degra-
dation rates can individually reach up to half the values obtained with the solution for
minimum fuel consumption. However, since the energy management targets conflict
with each other, no solution exists that simultaneously optimizes all the objectives.
A detailed analysis is presented for the Pareto fronts between battery and fuel cell
degradation rates, and between fuel consumption and powertrain degradation. Com-
paring the results with those of the on-board strategy calibration demonstrates the
absolute superiority of the proposed health-conscious EMS.
Under the assumption that the fuel cell and battery systems cannot be individually
replaced, the optimization results show that it is essential to ensure a balanced degra-
dation between them to maximize the powertrain lifetime. Remarkably, the health-
conscious energy management strategy can reduce the overall powertrain degradation
rate by up to 35% compared with the minimum fuel consumption results.
The component sizing study demonstrates that the battery size significantly impacts
fuel consumption and degradation rates and that the health-conscious energy manage-
ment strategy can take full advantage of the higher degree of freedom for the power-split
optimization due to larger battery sizes. In particular, the minimum fuel consumption
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can be reduced by 26% if the battery size goes from 60 kWh to 250 kWh, whereas the
powertrain degradation rate by 58%.
The study shows how the total cost of ownership of the powertrain can be used to
define the best trade-off among the Pareto optimal solutions for fuel consumption and
powertrain degradation rate. Moreover, the comparison with a non-predictive and
non-optimal energy management strategy demonstrates the absolute superiority of the
proposed health-conscious EMS, especially for modest battery sizes. For example, if
the nominal battery capacity is 100 kWh, the expected TCO is 15% higher for the non-
predictive EMS, clearly indicating its inadequacy in finding a good trade-off between
the energy management targets.
Lastly, this chapter establishes that the progressive component degradation consider-
ably deteriorates the performances of fuel cell electric vehicles. Indeed, considering the
powertrain components in begin-of-life conditions leads to severe underestimations of
fuel consumption and degradation rates. A significant finding is that the energy man-
agement strategy should not be optimized for fuel consumption in each driving cycle if
the goal is to minimize the consumption over the entire vehicle lifetime. On the other
hand, the EMS should find a suitable trade-off between fuel consumption and fuel cell
voltage degradation in each driving cycle.
Remarkably, for the simulation results considering the vast pool of driving cycles, the
health-conscious energy management strategy leads to 22.5% longer mileage with only
a 0.4% increase in fuel consumption. The results also show that the leading cause of
fuel cell voltage degradation is the start-up/shut-down cycles, since all the other causes
are mitigated by the health-conscious energy management strategy.



Chapter 5

Energy management strategies for
holistic vehicle control

This chapter investigates the synergies between the energy management strategy and
other control functions from a holistic standpoint. The chapter is divided into three
sections:

• The first one focuses on developing an adaptive energy management strategy that
includes battery thermal management targets to mitigate its degradation, as pub-
lished in the author’s work [62].

• The second section describes a health-conscious activation strategy for vehicles
with multi-module fuel cell systems to reduce the number of start-up/shut-down
cycles to mitigate fuel cell degradation.

• The third one studies optimal eco-driving strategies for fuel cell electric trucks in
mountain motorway routes. In particular, it proposes a speed planning and energy
management co-optimization method based on dynamic programming, continuing
the author’s work [64].

5.1 Adaptive energy management strategy for
improved battery thermal management

Proper thermal management is essential to mitigate degradation and guarantee a suffi-
cient lifetime for battery systems in electric vehicles. It is particularly crucial to main-
tain the battery temperature within a safe operating range, mainly focusing on avoiding
temperature peaks that accelerate degradation or even cause thermal runaways.
The degradation mechanisms occurring in batteries vary depending on the cell chem-
istry. However, it is well known that the most relevant degradation mechanisms are
accelerated by high temperatures, which determine faster unwanted chemical reactions.
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In Lithium-ion batteries, for example, the cell temperature affects lithium plating, ac-
tive material dissolution, and SEI growth [86]. Experimental tests from several works
indicate that the battery capacity fade is significantly higher for temperatures between
40°C and 60°C [116]–[119].
Due to the considerable complexity of electrochemical mechanisms and the diversity
of cells for automotive applications, it is especially challenging to generalize degra-
dation models, especially those with a higher level of complexity. Therefore, simple
empirical models are usually adopted in health-conscious energy management strate-
gies [88]. However, most energy management strategies for fuel cell electric vehicles
neglect the role of battery temperature on degradation [120]. Only a few works inves-
tigated the interaction between energy and thermal management in fuel cell electric
vehicles [121, 122].
This section describes an energy management strategy to limit the battery usage in
critical conditions and avoid temperature peaks, as published in the the author’s work
[62]. The strategy is adaptive because its parameters are adjusted depending on the
battery temperature to modify the power-split criterion.
This section considers a battery system with a nominal capacity of 100 kWh, which is
twice as large as the one in [62]. Therefore, the battery thermal management system
(BTMS) is also slightly different. However, this aspect shows that the general concept
of adaptive EMS is also valid for a different system and can be used to improve battery
thermal management and avoid accelerated degradation even if the cooling system is
not sufficiently powerful. In particular, it is assumed that the threshold for accelerated
degradation is 40°C, whereas the desired operating temperature is 35°C.
The model adopted for the battery thermal management system is simple. Assuming
that the battery temperature is uniform over the entire pack, the thermal dynamics are
expressed as:

mbat cp,bat Ṫbat = Q̇bat,heat − Q̇bat,cool , (5.1)
where mbat is the battery pack mass, cp,bat the specific heat capacity, and Tbat the
temperature. The heat generation in the battery pack, Q̇bat,heat, corresponds to the
ohmic losses calculated as in (2.19). The battery mass is 635 kg, considering the same
specific weight as in (4.14). Since the characteristics in Figure 2.7b refer to a nickel
manganese cobalt battery cell, the specific heat capacity can be assumed as 1000 J/kg/K
[123], which is also in line with the values reported in [124].
A detailed cooling system model considers several variables to define the maximum
available cooling power, such as the (battery, coolant, ambient) temperatures, and the
(coolant and air) mass flows. However, this work assumes for simplicity that the cooling
system can always absorb up to 6 kW of heat from the battery pack. This assumption
is sufficient for a system-level analysis. The cooling power absorbed from the battery is
indicated with Q̇bat,cool, and its setpoint is defined with a hysteresis control logic to keep
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the battery temperature around 35°C. In particular, the cooling system turns on (at
maximum power) when the temperature reaches 36°C and off at 34°C. It is important to
note that this cooling system (on its own) is inadequate to keep the battery temperature
below 40°C, which is why the adaptive EMS was developed to compensate for that.
The electric energy consumption due to the components of the cooling system is calcu-
lated as:

Pbat,cool = Q̇bat,cool

COP , (5.2)

assuming for simplicity that the coefficient of performance (COP) is constant and equal
to 2. This battery cooling power consumption is an additional electric load in (2.2).
The adaptive EMS is implemented by defining the main parameters of the on-board
strategy as a function of the battery temperature. In particular, the parameters that
most affect the power-split and the battery usage are r1 and r2 in (3.8). Therefore, they
are expressed as:

r1 = r1(Tbat) , (5.3a)
r2 = r2(Tbat) . (5.3b)

The parameter r1 is the most influencing on the power-split. Indeed, if it is 0, the
on-board strategy follows the predictive references generated by the health-conscious
dynamic programming optimization. On the other hand, if r1 is 1, the EMS operates
the fuel cell in power-following mode. In this case, the battery operates only to provide
the loads exceeding the fuel cell power limit, to regenerate braking energy, and to follow
the predictive SoC reference (based on the value of r2).
Following these considerations, the control parameter characteristics were designed as
depicted in Figure 5.1 to limit the battery usage at critical temperatures. In particular,
below 37°C, the on-board strategy is the same adopted in Section 4.3, which follows
the optimal power-split defined by the predictive references. On the contrary, above
the assumed accelerated degradation threshold of 40°C, the fuel cell operates in power-
following mode to ensure minimal battery usage. This way, the heat generation is

Figure 5.1: Characteristics of the adaptive parameters in the on-board energy
management strategy as function of the battery temperature.
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significantly reduced to enable a faster cooldown of the battery pack. The parameter
r2 is reduced to half its value to loosen the SoC reference following, decreasing the
battery usage. Between 37°C and 40°C, there is a gradual transition between the two
power-split criteria.
The transition from optimal power-split to minimal battery usage depicted in Figure
5 should not start at lower temperatures to avoid hindering the overall performance.
Indeed, the power-following energy management strategies are significantly worse in
fuel consumption and fuel cell degradation. However, the EMS must adapt quickly
enough to prevent temperature peaks. Therefore, it is essential to suitably define the
transition to find a proper trade-off between maximum battery temperature and the
other targets.
The adaptive EMS is validated considering the driving cycle on the mountain route,
which was already amply analyzed in Chapter 4. The predictive references are generated
using the health-conscious energy management strategy, with α = 0.01 and β = 0.66
in the multi-objective optimization function. In this case, the predictive references
result in low fuel cell degradation with negligible impact on fuel consumption (see
Table 4.5). Moreover, an uncertain speed forecast with lower accuracy is considered
for the predictive references optimization to again demonstrate the robustness of the
dual-stage predictive EMS to the forecasting uncertainties.
Figure 5.2 compares the simulation results of the adaptive EMS with the non-adaptive
one, which is equivalent to the one in Section 4.3. Looking at the fuel cell power and
SoC profiles, it is evident that the power-split is essentially the same, except between
minutes 125 and 163. The difference is evident from the profile of parameter r1. The
battery temperature is the most relevant signal to analyze because it immediately shows
the benefit of the adaptive EMS compared to the non-adaptive solution. Indeed, the
first strategy keeps the battery temperature below 40°C, whereas the other one results in
a maximum battery temperature of 47.5°C, so well above the accelerated degradation
threshold. Remarkably, the adaptive EMS can significantly reduce the battery heat
generation between minutes 136 and 150 by temporarily deviating from the optimal
power-split.
Table 5.1 offers a performance comparison between the adaptive and non-adaptive en-
ergy management strategies. It is necessary to clarify that the actual effect of avoiding
temperature peaks is not quantified by the battery degradation model considered in
this work. However, the performance comparison is useful to evaluate the detrimental
impact of deviating from the optimal power-split for fuel consumption and fuel cell
voltage degradation. Eventually, the adaptive EMS results in a 0.6% higher fuel con-
sumption, 4.1% lower battery degradation rate, and 12.5% higher fuel cell degradation
rate. Here, the decrease in battery degradation is only due to the lower battery usage.
As mentioned, the actual benefit of the adaptive EMS on battery degradation is not
directly quantified. However, the maximum battery temperature is 39.8°C (below the
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Figure 5.2: Comparison between the adaptive and non-adaptive strategies with
focus on the battery thermal management results.
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Table 5.1: Performance comparison between the adaptive and non-adaptive
strategies.

EMS SFC ∆SoDbat ∆SoDfcs maximum Tbat t+40°C

(kg/100 km) (10−6/km) (10−6/km) (°C) (min)

non-adaptive 10.20 1.22 0.80 47.5 33
adaptive 10.26 1.17 0.90 39.8 0

accelerated degradation threshold) against the 47.5°C reached with the non-adaptive
EMS. Moreover, the time operating above the accelerated degradation threshold (indi-
cated with t+40°C in the table) is 33 minutes, which is 10% of the total driving cycle
duration. Therefore, the adaptive EMS is expected to mitigate battery degradation
significantly.
Comparing the results with those reported in Table 4.5 also demonstrates that the
less accurate speed forecast has a minimal impact on the component degradation rates.
Note that the fuel consumption is 2.3% higher due to the additional loads of the battery
cooling system reported in (5.2).
In summary, this section proposed an adaptive energy management strategy that is
conscious of the battery thermal management targets. The underlying idea is to exploit
the interaction between energy and thermal management by limiting the battery usage
in critical situations to decrease the heat generation in the system. In particular, the
adaptive EMS can keep the temperature between an assigned accelerated degradation
threshold by suitably designing the control parameter characteristics as a function of
the battery temperature. Eventually, it is expected that the improvement in battery
degradation is considerable enough to justify the higher fuel consumption and fuel cell
degradation.
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5.2 Predictive strategy for health-conscious
activation of multi-module fuel cell systems

The results reported in Section 4.5 have shown that fuel cell degradation is severely
affected by start-up/shut-down cycles, even under the assumption that only one occurs
per driving cycle. Moreover, the driving scenarios studied so far always considered
motorway routes, meaning that long distances are covered per cycle. However, in urban
or rural driving cycles, it is expected that the degradation due to start-up/shut-down
cycles is even more dominant because the driving cycles are usually shorter.
Therefore, this section proposes an innovative strategy to reduce fuel cell degradation
caused by start-up/shut-down cycles. The base for this investigation is that the overall
fuel cell system comprises several modules that can be operated independently, i.e. each
module has its own BoP components and power converter. Such a system is called a
multi-module fuel cell system. In practice, most fuel cell manufacturers have adopted a
modular production philosophy that allows them to use the same modules for different
applications. Therefore, truck manufacturers use multi-module systems in their heavy-
duty commercial vehicles. In this section, the fuel cell system comprises two modules
with nominal power of 155 kW, as implemented in project FC4HD [26].
The low-level control strategies on the individual fuel cell modules significantly impact
the degradation caused by start-up/shut-down cycles. Suitable strategies can reduce
the degradation due to each start-up/shut-down event. However, this study aims to
reduce the degradation by entirely avoiding start-up/shut-down cycles in short and low-
demanding driving scenarios. This way, there will be fewer start-up/shut-down cycles
over the average life span of trucks.
Several studies were published recently on energy management strategies for multi-
module or multi-stack fuel cell systems [125]–[135]. Some works focus on hybrid lo-
comotives [125]–[127], and some focus on the power distribution between the fuel cell
modules to improve the overall system efficiency [128, 129]. The activation strategies
proposed in the literature for road vehicle applications are either rule-based [130]–[132]
or optimization-based [133]–[135]. However, due to its high complexity, no work in the
literature formulated the optimal control problem for multi-module energy management
considering the number of active modules as a state variable, which would enable the
optimization of the number of start-up/shut-down cycles. Moreover, dynamic program-
ming was never adopted to find the global optimal solution to the energy management
problem.
This thesis proposes a predictive strategy for the health-conscious activation of multi-
module fuel cell systems. The underlying idea is to avoid activating one or both fuel cell
modules in short and low-demanding driving cycles to reduce the overall degradation
due to start-up/shut-down cycles. Moreover, if the average load demand is low, using
only one fuel cell module can also improve fuel consumption. However, battery degra-
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dation is neglected for simplicity. Thus, the optimization targets are fuel consumption
and fuel cell degradation rate.
The dual-stage structure of the predictive energy management strategy is the same
as in the previous chapters. However, a main difference concerns the optimization of
the predictive EMS references in the first control stage. Regardless, the optimal control
problem has a similar formulation to the one described in Section 4.3 because the overall
targets and constraints are the same. Nevertheless, the formulation must be adapted
to the multi-module fuel cell system so that the energy management strategy not only
defines the power setpoints for the two fuel cell modules (FCMs) but also whether they
are active or not.
An essential consideration for formulating the new optimal control problem is that if the
FCMs have the same efficiency characteristics, equally distributing the power between
them is the most efficient power-split, when they are both active. In particular, if the
modules are in the same degradation state (or close to it), it is reasonable to consider
that they have the same efficiency characteristics. Therefore, assuming an equal power-
split between the FCMs, the overall fuel cell system power can be conveniently expressed
as in (5.4), where Pfcm is the power of the individual module, and Nfcm the number of
active modules.

Pfcs = Pfcm Nfcm (5.4)

The optimal control problem can be formulated considering two state variables, i.e.
SoC and Nfcm, and two input variables, i.e. Pfcm and ∆Nfcm. The latter indicates the
change in active modules, which can assume the following integer values:

Nfcm ∈ {0, 1, 2} . (5.5)

Therefore, the optimal control problem can be classified as a mixed integer program
because it involves continuous and integer variables. Conveniently, dynamic program-
ming is the ideal candidate to solve such an optimization problem because of the grid
discretization for the state and input variables. Figure 5.3 offers a representation of the
dynamic programming principle to solve the health-conscious activation problem for
multi-module fuel cell systems. The principle would be equivalent to the one depicted
in Figure 2.14 if the only possible state of Nfcm was 2 (i.e. both fuel cell modules were
always active).
Eventually, the optimal control problem is expressed as follows:

min
{

[
Pfcm,1

∆Nfcm, 1

]
, ... ,

[
Pfcm,N

∆Nfcm, N

]
}

N∑
k=1

Lk + ϕk (5.6)

where Lk is the stage cost and ϕk the penalty function for the implementation of SoC
soft constraints as in (3.7). The discrete battery dynamics are expressed as in (3.6),
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Figure 5.3: Representation of dynamic programming principle for optimal ac-
tivation of multi-module fuel cell systems.

whereas the number of active modules changes as follows:

Nfcm, k+1 = Nfcm, k + ∆Nfcm, k . (5.7)

The following constraints are imposed on the admissible values of the number of active
modules:

Nfcm, k ∈ {0, 1, 2} , (5.8a)
∆Nfcm, k ∈ {−1, 0, 1} . (5.8b)

Moreover, it is enforced that the fuel cell modules are not active at the beginning and
end of the driving cycle:

Nfcm, 1 = Nfcm, N = 0 . (5.9)
The constraints on the initial, minimum, and maximum SoC values are defined as in
(3.5). However, in this case, the final SoC is not subject to a hard constraint, so the
optimization can favor the one-module or battery-only operations when possible. Here,
a soft constraint on the final SoC is implemented considering the equivalent battery
consumption in the final stage of the penalty function:

ϕN = α
(SoC∗ − SoCfin) Ebat,max

η∗
fcs LHVH2

, (5.10)

where η∗
fcs is the maximum fuel cell system efficiency and SoC∗ is a reference value,

set as 0.70. The equivalent battery consumption is multiplied by α, which expresses
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the weighting between fuel consumption and degradation. Indeed, the multi-objective
function of the optimization consists of only two terms: fuel consumption and fuel cell
degradation rate. Thus, the stage cost is expressed as:

Lk = (1 − α) Lfuel, k + α
Lfcm, k

2 w , (5.11)

where α is the weighting parameter that can shift the optimization towards the individ-
ual targets, and w is a scaling factor equal to 105. The fuel consumption at the stage
k is calculated similarly to (4.6) and expressed as:

Lfuel, k = Nfcm, k ṁfcm
H2 (Pfcm,k) ∆tk , (5.12)

depending on the current number of active modules, Nfcm, k, and the module hydrogen
consumption ṁfcm

H2 (Pfcm,k). In this case, if no module is active, the fuel consumption is
zero. On the contrary, under the assumption that the modules were always active in
the previous chapters, there still was fuel consumption even if the net fuel cell system
power was zero (see Figure 2.4).
The term Lfcm, k expresses the sum of the degradation in both fuel cell modules. For
this reason, it is divided by two in (5.11) to express the average degradation of the
overall fuel cell system. In particular, the degradation stage cost is calculated similarly
to (4.9), considering start-up/shut-down cycles, dynamic loading, low-power and high-
power operations. Eventually, it is expressed as:

Lfcm, k = δss ∆N+
fcm, k + Nfcm, k (δlp ∆tfcm,lp

k + δhp ∆tfcm,hp
k + δdl

|∆Pfcm, k|
2Pfcm,nom

) , (5.13)

where ∆N+
fcm, k indicates positive increments in the number of active modules. Even-

tually, the sum of all these increments represents the total number of start-up cycles.
The operating time at low-power is expressed as in (5.14), and the operating time at
high-power as in (5.15).

∆tfcm,lp
k =

{{{ ∆tk if Pfcm, k < 10% of Pfcm,nom ,

0 otherwise.
(5.14)

∆tfcm,hp
k =

{{{ ∆tk if Pfcm, k > 80% of Pfcm,nom ,

0 otherwise.
(5.15)

Here, Pfcm,nom is the nominal power of each fuel cell module (i.e. half of Pfcs,nom).
The models of the fuel cell modules derive from the one described in Section 2.1.2 for
the overall system. In particular, the characteristic curves are scaled assuming that each
module equally contributes to the heat generation and fuel consumption of the fuel cell
system. Therefore, Pfcm,heat is half of Pfcs,heat and ṁfcm

H2 is half of ṁH2 (see Figure 2.4).
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Moreover, assuming that the cooling system is common between the modules, the overall
energy consumption due to fuel cell cooling is expressed as:

Pfcs,cool = Pfcs,cool( v , Tamb , Nfcm Pfcm,heat ) , (5.16)

considering the same performance as in Figure 2.6. Lastly, it is assumed that each fuel
cell module has its own converter, which has the same efficiency characteristic curve
depicted in Figure 2.5. Eventually, the battery power setpoint is calculated as follows:

P ∗
bat = Pel,des − Nfcm (Pfcm ηfcm

dc,dc) + Pfcs,cool , (5.17)

where ηfcm
dc,dc indicates the converter efficiency of each module.

The predictive activation strategy for the multi-module fuel cell system proposed in this
section is expected to be highly beneficial in short and low-demanding driving cycles.
Indeed, if sufficiently charged, the battery system can sustain urban driving on its own
for short periods (e.g. 30 minutes). Therefore, short driving cycles could be completed
without fuel cells, entirely avoiding degradation.
However, it is not trivial to heuristically define how long the battery can sustain the
driving cycle on its own because it depends on the truckload, initial SoC, route elevation,
and external conditions. On the contrary, the proposed dynamic programming can
consider all these factors and optimize the activation strategy depending on the desired
trade-off between fuel consumption and fuel cell degradation.
The optimization results are analyzed below to demonstrate the benefits of the proposed
strategy for mitigating fuel cell degradation. Here, the trivial results where the fuel
cell modules are not active in very short driving cycles are not analyzed, although they
significantly contribute to mitigating the degradation due to start-up/shut-down cycles.
Figure 5.4 shows the simulation results for a 54 minutes-long real-world driving cycle
recorded on a rural-urban-rural route, considering a total vehicle mass of 20 tons. In
this case, α is set to a low value so that fuel consumption has priority over fuel cell
degradation in the optimization. On the right side, the figure shows the overall fuel cell
system power, the individual module power and hydrogen consumption. The fuel cell
system power depends on the number of active modules, as defined in (5.4). Here, the
sections with both modules active are highlighted in blue, and those with one module
in green. The figure shows that one module is active most of the driving cycle and
operating close to the maximum efficiency point. However, it shuts down to reduce
fuel consumption and maximize regeneration during urban driving (between minutes
14 and 22) and the downhill section (between minutes 40 and 43). On the other hand,
the second fuel cell module activates twice during the first rural section due to higher
loads, improving the overall system efficiency.
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Figure 5.4: Simulation results for a short driving cycle on urban and rural roads
showing the multi-module operation of the fuel cell system.

The weighting parameter α in the multi-objective function can move the optimization
towards fuel consumption or fuel cell degradation. Figure 5.5 compares four different
cases of multi-module fuel cell system operation on the same driving cycle as before.

• The results in Figure 5.5a are obtained with the method of Section 4.3 with
α = 0.5 and β = 0. Both modules are always active in this case, and the fuel
cell system operates for a significant amount of time at low power, causing high
degradation.

• The results in Figure 5.5b are obtained with α = 0 in the predictive activation
strategy. Here, the modules frequently start and shut down to minimize fuel
consumption regardless of degradation.

• Figure 5.5c shows the one-module operation, obtained with a relatively low α, i.e.
0.05. In this case, the fuel cell module operates much more stationary around the
maximum efficiency operating point.
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(a) Two-module operation. (b) Optimal fuel consumption.

(c) One-module operation. (d) Battery-only operation.

Figure 5.5: Comparison of different cases for the multi-module operation of the
fuel cell system.

• Lastly, Figure 5.5d shows the battery-only operation. Here, the fuel cell modules
are not activated at all to completely avoid degradation. It is interesting to note
that the SoC drops from 70% to 40% to sustain the driving cycle in the battery-
only operation.

Table 5.2 compares the performances of the different cases presented above in terms of
fuel consumption and degradation rate.

• The minimum fuel consumption is obtained with the solutions in Figure 5.4 and
Figure 5.5b, showing that the same result can be obtained without frequently
shutting down the modules (which causes extremely high degradation). Moreover,
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Table 5.2: Performance comparison of different cases for the multi-module op-
eration of the fuel cell system.

SFC final SoC ∆SoDfcs (10−6/km) No. of starts

(kg/100 km) average FCM 1 FCM 2 FCM 1 FCM 2

5.49 0.70 15.6 18.8 12.4 3 2
5.91 0.70 8.9 8.9 8.9 1 1
5.49 0.70 101.9 92.7 111.0 15 18
5.57 0.70 3.1 6.2 0 1 0

0 0.40 0 0 0 0 0

the fuel consumption is 8% higher for the two-module operation and only 1%
higher for the one-module operation.

• Excluding the battery-only case, the one-module operation leads to the lowest
fuel cell degradation. It is interesting to compare the results with the two-module
operation, where the average degradation is almost three times higher. Therefore,
in the one-module operation, not only the fuel cell degradation is reduced because
of one less start-up/shut-down cycle, but also because low-power operation is
avoided. Nevertheless, even if only one module is used, the degradation rate is
significantly higher than the ones reported in Section 4.3, because the driving
cycle is significantly shorter (i.e. 32 kilometers).

Additional simulation results are reported in Figure 2.12 to demonstrate that the one-
module operation is also possible for the flat-route and mountain-route driving cycles.
In this case, the simulations consider a total vehicle mass of 20 tons to create low-
demanding driving scenarios. Figure 5.6 shows the results of the one-module operation
for both driving cycles. From the SoC and fuel cell power profiles, it is evident that one
module is sufficient to sustain a low-demanding driving cycle also for long distances.
Table 5.3 compares the performances between one-module and two-module operations
of the fuel cell system for the flat-route and mountain-route driving cycles. In both
cases, adopting the one-module operation, the fuel degradation is 50% lower than the
two-module one. On the other hand, the fuel consumption is 14% and 8% higher because
the individual fuel cell module works at lower efficiency in the high-power operating
region.
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(a) Flat-route driving cycle (b) Mountain-route driving cycle.

Figure 5.6: Simulation results for motorway driving cycles showing the one-
module operation of the fuel cell system.

Table 5.3: Performance comparison between one-module and two-module op-
erations of the fuel cell system for motorway driving cycles.

Driving SFC final SoC ∆SoDfcs (10−6/km) No. of starts

cycle (kg/100 km) average FCM 1 FCM 2 FCM 1 FCM 2

flat 6.96 0.68 1.25 1.25 1.25 1 1
route/20t 7.98 0.68 0.64 1.28 0 1 0

mountain 5.98 0.68 0.55 0.55 0.55 1 1
route/20t 6.45 0.68 0.28 0.56 0 1 0
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In conclusion, this section proposed a predictive strategy based on dynamic program-
ming for the health-conscious activation of multi-module fuel cell systems. The signif-
icant benefits for the mitigation of fuel cell degradation have been demonstrated for
short and low-demanding driving cycles and motorway ones. The next logical research
direction is to address the robustness to speed forecast uncertainties to fully demon-
strate the benefits in realistic driving scenarios and promote the implementation of the
strategy in vehicles.
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5.3 Speed planning and energy management
co-optimization for eco-driving of fuel cell
electric trucks

An increasingly popular idea to reduce the carbon footprint of the transport sector
is eco-driving: i.e. adopting an energy-aware driving style that improves the vehicle
performance. In conventional vehicles, eco-driving aims at saving fuel and reducing
emissions. Similarly, in electric vehicles, eco-driving can significantly improve the overall
powertrain efficiency and, thus, extend the driving range, fastening their advancement
and commercialization.

Background and state of the art
A simple eco-driving application is truck driver training to follow heuristic guidelines,
such as avoiding braking, anticipating traffic flow, and maintaining a constant speed
[136]. However, the sophistication of advanced driver assistance systems (ADAS) has
reached a maturity level that allows implementing eco-driving as online advice systems
or intelligent cruise controllers in autonomous vehicles [137]. Therefore, studying eco-
driving as an optimal control problem has become an appealing research topic with the
goal, for example, of developing new methods to optimize the vehicle speed plan for
a given route elevation profile. This topic is especially interesting for long-haul trucks
driving in motorway driving scenarios, where the energy demand is high, and traffic is
typically negligible (meaning that the optimal speed plan can be closely followed).
In hybrid vehicles, there is a strong interaction between the speed planning and energy
management tasks. For example, driving too fast on an uphill road might determine
a complete battery discharge. Therefore, the co-optimization of speed planning and
energy management can significantly benefit fuel consumption and SoC control. How-
ever, the co-optimization problem has a much higher complexity than the hierarchical
optimization of the individual problems [137].
Literature reviews on optimal eco-driving studies are proposed in [137, 138]. The first
work also includes a rigorous formulation of the optimal control problem for the eco-
driving of conventional, hybrid, and electric vehicles. The eco-driving of trucks has been
studied for conventional vehicles in [139]–[141], always including the route elevation in
the optimal control problem due to the heavy loads. The literature on eco-driving of pas-
senger cars is more extensive, and some relevant works are [142]–[144] for hybrid electric
vehicles, and [145]–[147] for fuel cell electric vehicles. In general, the energy manage-
ment strategy is always included in the optimal control problem for the eco-driving of
hybrid vehicles. Moreover, most works adopt dynamic programming or Pontryagin’s
minimum principle to solve the optimal control problem.
The author’s work [64] focuses on the eco-driving of fuel cell electric trucks, optimizing
the speed plan based on the route elevation and studying the trade-off between driving
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time and range. In particular, the optimization method is inspired by [142] and relies on
a combination of dynamic programming and Pontryagin’s minimum principle to reduce
the complexity of the problem. Typically, the co-optimization problem of speed plan-
ning and energy management involves two state variables (i.e. speed and battery SoC)
and two input variables (e.g. acceleration and fuel cell power). Dynamic programming
can be implemented to solve such a problem but with a high computational cost, mak-
ing a real-time application of the method impractical. On the other hand, the approach
proposed in [64] decouples the speed planning and energy management tasks by using
PMP to derive the optimal power-split policy. This way, the optimal control problem
is reduced to speed planning only (with one state variable and one input variable) and
can be solved with DP in a reasonable computational time for real-time applications.
The main limitation of this approach is that it does not include SoC constraints in the
optimization.
To the author’s knowledge, the work [145] represents the only study in the litera-
ture that uses dynamic programming to co-optimize the speed planning and energy
management tasks. However, the main limitation is that PMP is adopted to reduce
the number of decision variables in the dynamic programming implementation, which
does not ensure global optimality and is only a valid approach under several simplify-
ing assumptions. Still, the dynamic programming co-optimization required 50-55.000
ms/km for computational time, proving that the curse of dimensionality makes the
method not well suited for real-time control. Nevertheless, the work demonstrates that
the co-optimization approach can significantly benefit fuel consumption on hilly routes
compared with a hierarchical/decoupled optimization approach, which first optimizes
the speed plan and then the energy management strategy.

Contribution and formulation
This section proposes a novel formulation for the co-optimization of speed planning
and energy management for eco-driving of fuel cell electric trucks. Ultimately, the goal
of this co-optimization approach is to extend drastically reduce fuel consumption and,
thus, to extend driving range.
The optimal control problem investigated in this section considers driving time, fuel
consumption, and driving comfort as the main optimization targets. At the same time,
it also includes constraints on speed, acceleration, SoC, and fuel cell power. Unlike other
works, this study adopts dynamic programming to solve the co-optimization problem
and ensures global optimality.
In general, there are several ways to formulate the optimal control problem for speed
planning. However, the main distinction is between time-based and position-based
problems. The first class has higher complexity because the position is a system state,
and it is usually adopted to study urban driving scenarios, for example, when the
vehicle needs to stop at a red light. On the other hand, if the vehicle never stops, there
is bijective relation between time and position. For this reason, distance-based optimal
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Figure 5.7: Representation of dynamic programming principle for speed plan-
ning and energy management co-optimization.

control problems are perfect for motorway driving scenarios. This work considers a
distance-based optimal control problem because it focuses on a motorway route, the
typical driving scenario for long-haul transportation. In this sense, motorway routes
are the best application for eco-driving because of the significant energy demand and
because traffic is typically negligible (meaning that the optimal speed plan can be closely
followed).
Figure 5.7 offers a visual representation of the dynamic programming principle for the
speed planning and energy management co-optimization, showing the higher complexity
due to more state and input variables (compared with Figure 2.14).
In general, the individual problem for speed planning can be formulated by adopting the
speed v as the state variable and the acceleration v̇ as the input one. In this case, the
power at wheels is calculated inverting (2.5). Moreover, considering (2.6), the electric
motor power can be expressed as a function of speed, acceleration, and road slope as:

Pm = f(v, v̇, θ) . (5.18)

Since the problem is distance-based and the speed is a state variable, the time must be
calculated with adequate accuracy. For this reason, the time interval ∆tk to drive the
segment ∆s is calculated using Heun’s integration method as:

∆t∗ = ∆s/vk (5.19a)
v∗ = vk + v̇k ∆t∗ (5.19b)

v∗∗ = (vk + v∗)/2 (5.19c)
∆tk = ∆s/v∗∗ (5.19d)



5.3 Speed planning and energy management co-optimization for
eco-driving of fuel cell electric trucks 87

where v̇k is the acceleration at the stage k. In the optimal control problem for energy
management, the battery SoC was adopted as the state variable and Pfcs as the input
one (see Section 3.2.1).
Eventually, the speed planning and energy management co-optimization problem is
formulated considering two state variables (i.e. v and SoC) and two input variables
(i.e. v̇ and Pfcs). The multi-objective function for the co-optimization consists of three
terms: driving time, fuel consumption, and driving comfort. Therefore, the optimal
control problem is written as follows:

min
{

[
v̇1

Pfcs,1

]
, ... ,

[
v̇N

Pfcs,N

]
}

N∑
k=1

wt ∆tk + wf ṁH2(Pfcs,k) ∆tk + wc |v̇k| + ϕk (5.20)

where wt is the weighting parameter for driving time, wf for fuel consumption, and wc

for driving comfort. Dynamic programming must find the optimal sequence of accel-
eration and fuel cell power that minimizes the multi-objective function. The following
constraints on the initial and final values are imposed for the speed and SoC:

v1 = vin (5.21a)
SoC1 = SoCin (5.21b)

vN = vfin (5.21c)
SoCN = SoCfin (5.21d)

where vin is the initial speed, and vfin the final one. The maximum and minimum values
of speed, acceleration, SoC, and fuel cell power are constrained as:

vmin ≤ vk ≤ vmax (5.22a)
v̇min ≤ v̇k ≤ v̇max (5.22b)

SoCmin ≤ SoCk ≤ SoCmax (5.22c)
0 ≤ Pfcs,k ≤ Pfcs,max (5.22d)

where v̇min is the minimum acceleration, and v̇max the maximum one. The discrete
battery dynamics are expressed as in (3.6), whereas the speed dynamics as:

vk+1 = vk + ∆tk v̇k . (5.23)

The additive penalty function ψk allows to implement soft constraints on speed, SoC,
and electric motor power. The function is defined as:

ψk =

{{{
ψ∗ if SoCk < SoCmin,soft or SoCk > SoCmax,soft

ψ∗ if vk < vmin,soft or vk > vmax,soft

ψ∗ if Pm,k > Pm,max

0 otherwise

(5.24)
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Table 5.4: Parameters of co-optimization problem.
Parameter Symbol Value

Distance grid spacing ∆s 50 m
Time weighting wt variable
Consumption weighting wf 1
Comfort weighting wc 0.001
Initial speed vin 70 km/h
Final speed vfin 70 km/h
Initial SoC SoCin 0.70
Final SoC SoCfin 0.70
Max motor power Pm,max 500 kW
Max FCS power Pfcs,max 310 kW

Parameter Symbol Value

Min speed vmin 25 km/h
Min speed (soft) vmin,soft 30 km/h
Max speed (soft) vmax,soft 90 km/h
Max speed vmax 95 km/h
Min SoC SoCmin 0.20
Min SoC (soft) SoCmin,soft 0.25
Max SoC (soft) SoCmax,soft 0.90
Max SoC SoCmax 0.95
Min acceleration v̇min -0.20 m/s2

Max acceleration v̇max 0.20 m/s2

where ψ∗ = 100. The values of all the parameters in the co-optimization problem are
listed in Table 5.4. Changing the weight wt allows exploring different trade-offs between
the driving time and fuel consumption. On the other hand, the weight on the driving
comfort is constant to ensure that the speed profile is always sufficiently smooth and
with limited jerk.
As already discussed in the previous sections, dynamic programming finds a solution
to the control problem that is optimal up to the error introduced by the discretization
of the distance, state, and input variables. The results presented below refer to a DP
implementation with 150 elements in the speed grid, 40 for the acceleration, 61 for the
SoC, and 16 for the fuel cell power. Notice that for the energy management variables,
the number of elements is significantly lower than the one adopted in Section 3.2.1 to
mitigate the curse of dimensionality. Even so, the computational time required for the
co-optimization is 7500 ms/km, which is a hundredfold higher than the one for the
energy management optimization.

Optimization results
The optimal speed planning is studied for a segment of the route shown in Figure 2.12c
to investigate the most convenient way to overcome a mountain. The results in this
section refer to a vehicle at full truckload (i.e. 42 tons) and with a 100 kWh battery
system. The fuel cell and battery systems are assumed at 50% of state of degradation,
and the ambient temperature is set at 35°C.
The proposed approach for the speed planning and energy management co-optimization
is compared with three different methods to demonstrate its benefits. To ensure a fair
performance comparison, the different methods are only used to obtain the speed plan
for the defined route. Afterward, the energy management strategy is optimized for fuel
consumption as described in Section 4.3. For clarity, the co-optimization approach is
denoted with co-optimization DP. Below, the other approaches are listed and briefly
described.
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• DP+PMP denotes the optimization method adapted from [64], which uses Pon-
tryagin’s minimum principle to derive the optimal power-split policy and decouple
the speed planning and energy management tasks. This way, the computational
complexity is significantly reduced, but the main limitation of this approach is
that it does not include SoC constraints in the optimization.

• Decoupled DP denotes the approach that does not include energy management
at all in the optimization. In this case, dynamic programming is used to minimize
the energy consumption of the electric motor. In particular, the motor power
(5.18) replaces the hydrogen consumption in (5.20). Since the energy management
strategy is optimized after the speed plan is created, this approach is equivalent
to the sequential optimization procedure described in [145].

• Cruising DP denotes a dynamic programming optimization that aims at main-
taining a constant speed for motorway cruising. In particular, the stage cost of
the objective function in (5.20) is rewritten as: wv(vk − vref)2 + wc|v̇k|, where wv

is a weighting parameter and vref is the cruising speed. Comparing eco-driving
with constant speed cruising will demonstrate its general benefits against a con-
ventional driving habit.

As initial analysis, Figure 5.8 shows the comparison between the co-optimization and
decoupled approaches in terms of speed, motor power, fuel cell power, and SoC. In
both cases, the driving time is 93 minutes. However, the signals are plotted versus
the distance to demonstrate the effect of the different speed plans on fuel cell power
and SoC in the same spots along the route. With the co-optimization approach, the
vehicle drives essentially at maximum speed (i.e. 90 km/h) until kilometer 34 and after
kilometer 71. On the contrary, using the decoupled approach, the vehicle drives slower
in those sections and faster between them (i.e. during the uphill section of the route).
The different speed plans have an enormous impact on energy management, as evident
from the fuel cell and SoC profiles. In particular, using the decoupled approach, the
SoC cannot be kept within the desired operating range (i.e. 0.25-0.90) even though
the fuel cell power is at its maximum for the entire uphill section of the route. On the
contrary, with the proposed co-optimization approach, the SoC stays within the desired
range without requiring maximum fuel cell power operation, significantly improving fuel
consumption.
The driving time significantly impacts the overall vehicle performance. Naturally, slow
driving determines lower loads and fuel consumption. Therefore, when comparing dif-
ferent approaches for speed planning, it is essential to ensure that the driving time
is the same for a fair comparison. Figure 5.9 shows the effect of driving time on
the key performance indicators, comparing the different optimization approaches. The
figure demonstrates that the proposed co-optimization approach results in significant
fuel consumption improvements compared with the other approaches. Moreover, co-
optimization is the only method that maintains the SoC within the desired range in
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Figure 5.8: Comparison between two methods for optimal speed planning.

fast driving conditions. Interestingly, the motor energy is always higher with the co-
optimization DP because of the lower regenerative braking energy. This aspect is also
evident from the speed plans in Figure 5.8, where the decoupled DP slows down during
the final descent to maximize the regenerative braking energy. On the contrary, the
co-optimization DP essentially results in cruising at maximum speed.
The decoupled DP yields the minimum motor energy as it is expected due to its objective
function formulation. On the other hand, its fuel consumption is generally higher
than the other approaches because it completely neglects the energy management task.
In this sense, the DP+PMP approach yields better fuel consumption because it also
considers the energy management strategy within the optimization. However, this is
only for driving times higher than 103 minutes, whereas for lower values, the decoupled
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Figure 5.9: Effect of driving time on the key performance indicators for the
different optimization approaches.

DP performs better. The reason is that DP+PMP does not consider the SoC constraints
on the battery system. Indeed, the fuel consumption performance worsens for fast
driving cycles when the SoC operating range cannot be kept within the desired operating
range.
Table 5.5 compares the fuel consumption resulting from each optimization approach
against the one obtained with the co-optimization DP for different driving time scenar-
ios. The relative increase compared with the co-optimization is indicated with ∆SFC.
In particular, the DP+PMP method has 5-33% higher fuel consumption than the co-
optimization approach, the decoupled DP 10-32%, and the cruising DP 18-40%. These
numbers demonstrate that the co-optimization of speed planning and energy manage-
ment holds considerable potential for improving the fuel consumption of the vehicle
and, consequently, its driving range. The benefits are generally higher at low driving
times, i.e. for fast driving cycles, due to the higher electric load demand.
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Table 5.5: Fuel consumption comparison between the investigated methods for
at different driving times.

Driving time co-optimization DP DP+PMP decoupled DP cruising DP

(min ) SFC (kg/100 km) ∆SFC (%) ∆SFC (%) ∆SFC (%)

95 11.48 25 23 24
100 10.60 33 30 31
105 10.05 26 32 37
110 9.67 14 27 40
115 9.37 9 21 38
120 9.16 7 15 31
125 8.96 6 13 25
130 8.85 5 10 18

Figure 5.10: Comparison of driving range between the co-optimization DP and
cruising DP.

Figure 5.10 reveals two compelling findings:

• First, it shows how the co-optimization DP increases the driving range if longer
driving times are accepted. For example, going from 90 to 95 minutes (i.e. 5.6%
longer driving time), the driving range is extended by 23%, which is an excel-
lent improvement. The improvement is 60% for a driving time of 130 minutes.
Therefore, considering that the hydrogen refueling infrastructure is currently un-
developed, the speed plan optimization holds considerable potential for the ad-
vancement of fuel cell electric trucks because it might make the difference between
reaching the next closest refueling station or not.

• The second finding evident from Figure 5.10 is the enormous driving range im-
provement of the co-optimization approach compared with the constant-speed
driving style. In particular, when the driving time is 110 minutes, the driving
range is 40% higher for the co-optimization approach. It is particularly striking
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that the cruising DP has a minimum improvement in driving range until the driv-
ing time reaches 112 minutes. This aspect demonstrates the enormous benefits of
eco-driving for fuel cell electric trucks compared with the constant-speed driving
style.

In conclusion, this section proposed a co-optimization approach for speed planning and
energy management for fuel cell electric trucks on motorways routes. The significant
benefits of the novel co-optimization compared with other approaches in the literature
have been demonstrated. The next logical research direction is to include the fuel cell
and battery degradation in the multi-objective function to exploit the advantages of
the co-optimization approach even more. Additionally, the robustness against traffic
conditions must be addressed to enable the real-world implementation of optimal eco-
driving speed plans.



Chapter 6

Conclusion and Outlook

This thesis collects the most relevant methods and findings on predictive energy man-
agement of fuel cell electric trucks developed by the author during his doctoral studies.
Even though the literature on energy management strategies for fuel cell electric vehicles
is vast, the author conducted state-of-the-art investigations to address the significant
research gap in studies focused on long-haul fuel cell trucks.
The results presented here confirm the enormous impact of energy management on fuel
consumption and component degradation. Therefore, the thesis proposes innovative
strategies that can foster the market penetration of fuel cell electric trucks by achieving
better performance and lower ownership costs. The proposed strategies rely on dynamic
programming, the only method that can ensure global optimal solutions to energy
management problems.
The vehicle model described in Chapter 2 represents the basis for the optimal energy
management strategies developed in this thesis. The component models derive from
measurements available in literature or performed within the projects HyTruck and
FC4HD, in which the author has been directly involved. Moreover, the real-world
driving cycles described in this chapter enable a robust energy management design by
representing realistic and diverse scenarios for performance validation.
Chapter 3 proposed a predictive energy management strategy based on dynamic pro-
gramming, with the dual-stage control structure described in the author’s works [60] and
[65]. The methods and results presented in the works [57] and [58] are also included
here as a basis for the robust design of the predictive energy management strategy.
Eventually, the proposed strategy yields optimal performance even in challenging route
topographies by considering the entire elevation profile for energy management opti-
mization. Moreover, it favors the implementation of dynamic programming for real-time
control, overcoming the well-known barriers of non-causality and high computational
complexity.
Chapter 4 introduces a novel health-conscious energy management strategy that con-
siders fuel cell and battery degradation as additional optimization targets. The results
demonstrate that energy management can enormously reduce component degradation,
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which is why the proposed strategy holds considerable potential for fostering the ad-
vancement of fuel cell electric trucks. The recent findings presented in this section will
be collected in a future research article. Moreover, the high flexibility of the health-
conscious energy management strategy in shifting between the optimization targets
opens research directions on how to manage the degradation of the powertrain compo-
nents to minimize the total cost of ownership of the vehicle.
Chapter 5 presents three innovative concepts to fully exploit the benefits of predic-
tive energy management by establishing synergies with other control functions. These
concepts aim at three major issues that are limiting the advancement of fuel cell elec-
tric trucks: low battery life due to poor thermal management, low fuel cell life due to
start-up/shut-down cycles, and limited driving range due to high fuel consumption.
In particular, Section 5.1 described an energy management strategy that adapts to the
battery temperature to improve its thermal management, adding considerable benefits
in avoiding temperature peaks that accelerate degradation. The concept was already
presented in the author’s work [62] for a different battery thermal management sys-
tem. Future research will be focused on predictive energy and thermal management
co-optimization, continuing the work started here and in [72].
Section 5.2 presented a novel predictive strategy for the health-conscious activation of
multi-module fuel cell systems, demonstrating significant benefits for mitigating fuel cell
degradation in short, low-demanding, and even motorway driving cycles. This strategy
can play a critical role in developing intelligent fuel cell electric trucks that optimally
decide between battery-only, one-module, or two-module operation, depending on the
expected driving scenarios. The findings presented in this section will be collected in a
research article, also addressing the robustness against speed forecast uncertainties.
Section 5.3 described a novel method for speed planning and energy management co-
optimization in fuel cell electric trucks. This new approach significantly improves the
eco-driving strategy proposed in the author’s work [64], where the optimization problem
was simplified to reduce complexity. Here, the optimization results demonstrate that the
eco-driving strategy can extend the driving range enormously compared with a standard
constant-speed motorway cruising, which might be a solution to foster the advancement
of fuel cell electric trucks. The findings presented in this section will be collected in
a research article, including component degradation within the co-optimization targets
and addressing the robustness against traffic conditions.
The main limitation of this thesis is that the proposed strategies were validated only in a
simulation environment, meaning that the robustness to modeling uncertainties was not
assessed. This limitation is dictated by the fact that significant financial investments
and costs are required to test energy management strategies in fuel cell electric trucks.
This issue is challenging to overcome because only a few companies have surpassed
the prototype stages and are now on the market, meaning there are few opportunities
for testing in actual vehicles. However, some of the predictive strategies presented in
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this doctoral thesis will be validated on the fuel cell electric truck prototype under
development in project FC4HD, finally overcoming the mentioned limitation.
Eventually, this thesis demonstrated that predictive and health-conscious energy man-
agement strategies could significantly contribute to the development of intelligent fuel
cell electric trucks, holding considerable potential for performance improvements and
cost reductions. The author proposed several innovative solutions to fully exploit the
potential of energy management strategies, but there are still vast research prospects
to further contribute to the advancement of fuel cell electric trucks and, thus, to the
decarbonization of the long-haul transport sector.



Appendix A

Additional methods from the
optimal control theory

This appendix is a supplement to Section 2.3. It continues the overview of optimal con-
trol theory, describing two methods widely used in the literature on energy management
strategies: i.e. Pontryagin’s minimum principle and model predictive control.

A.1 Pontryagin’s minimum principle
Pontryagin’s minimum principle is a set of necessary (but not sufficient) conditions for
optimality. A control policy that meets these conditions is called extremal. Even though
all optimal solutions are also extremal, the opposite is generally not true. Therefore,
contrary to DP, PMP does not ensure the global optimality of the control law, which
is why it is usually considered a sub-optimal solution. However, if the Hamiltonian is
convex, there is a unique extremal solution, which is then also optimal [95].
The Hamiltonian of the optimal control problem (2.31) is defined as:

H(x(t), u(t), z(t), λ(t)) = L(x(t), u(t), z(t)) + λ(t) · f(x(t), u(t), z(t)) , (A.1)

where λ is usually referred to as co-state or adjoint state variable, and f(·) expresses
the state dynamics. Pontryagin’s minimum principle states that the control law u∗(t)
is extremal if it minimizes the Hamiltonian at each instant. Therefore:

u∗(t) = arg min
u(t)

H(x(t), u(t), z(t), λ(t)) , ∀t ∈ [0, tfin] . (A.2)

Moreover, the state dynamics must satisfy the condition:

ẋ(t) = ∂H

∂λ

||||||
u∗

= f(x(t), u∗(t), z(t)) , (A.3)
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and the co-state dynamics:

λ̇(t) = −∂H

∂x

||||||
u∗

= −∂L

∂x
− λ

∂f

∂x
. (A.4)

From a practical point of view, PMP can be used to design optimal controllers by
minimizing the Hamiltonian to generate extremal controls as in (A.2).
The state variable follows the dynamics of (A.3) and must satisfy the boundary condi-
tions included in (2.31) on the initial and final values. However, one of the main issues
with implementing PMP is that the initial condition of the co-state variable, λ(0), is
unknown. This value significantly impacts the optimization results and, in particular,
the final value of the state variable. A common approach in the literature [95] is to use
a shooting method to solve the boundary value problem by iteratively changing λ(0)
until x(tfin) = xfin is satisfied.

A.2 Model predictive control
In general, model predictive control refers to control strategies that optimize the control
policy over a finite time horizon using a model of the system to predict its future outputs.
For example, in Figure A.1, the inputs are manipulated before the output reference step
to improve the system response. However, only the first element of the optimal control
sequence is implemented. In the next timestep, the predictive horizon moves forward,
and the optimization repeats. For this reason, MPC is also known as receding horizon
control.
A standard MPC formulation considers a discrete linear state-space model, a quadratic
cost function, and linear constraints. Such formulation has proven suitable to overcome
the main drawback of MPC for real-time control applications: the high computational
requirements to solve the optimization problem at each step. This thesis adopts the
formulation from [148]. The discrete linear state-space model is:

xk+1 = Axk + B∆uk + E∆zk , (A.5a)
yk = Cxk , (A.5b)

where A, B, C, and E are the system matrices. The predictive outputs over the horizon
can be expressed as a function of the control and disturbance increments, ∆U and ∆Z,
as:

Y = Fxk + Φu∆U + Φu∆Z , (A.6)
where the matrices F , Φu, and Φz are defined as in [148]. Eventually, the quadratic
cost function can be expressed as a function of ∆U :

Jh = (Yref − Y )T Q(Yref − Y ) + ∆UT R ∆U, (A.7)
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Figure A.1: Representation of the model predictive control principle.

where Yref are the output references over the horizon, Q and R are semi-positive defined
weighting matrices. The optimization problem resulting can be solved using quadratic
programming to minimize the horizon cost Jh:

∆Uopt = arg min
∆U

Jh , s.t. M∆U ≤ γ . (A.8)

where ∆Uopt defines the optimal control sequence, and M and γ express the linear
constraints on outputs and inputs.
An important conclusion is that predictive energy management strategies with short-
term horizons cannot yield optimal results. On the other hand, increasing the predictive
horizon exceeds the real-time computational requirements for on-board vehicle control.



Appendix B

Additional results of offline and
online strategies

This section describes supplementary energy management strategies to Chapter 3 for
optimal fuel consumption and SoC control. First, it describes offline strategies based on
dynamic programming and Pontryagin’s minimum principle. Then, it describes online
strategies based on simple heuristics and model predictive control.

B.1 Offline strategies for performance benchmark
The most used methods for offline energy management strategies are dynamic program-
ming and Pontryagin’s minimum principle. The literature has shown that for hybrid
electric vehicles, PMP has similar performance to DP for fuel consumption optimization
but has the advantage of being computationally faster [95].
This section shows that for optimal fuel consumption and SoC control of the fuel cell
electric truck under investigation, the strategies are equivalent when the driving re-
quirements are low. However, for high requirements (e.g. due to heavy loads on hilly
routes), PMP does not yield global optimality as DP and cannot intrinsically deal with
the SoC constraints.

B.1.1 Dynamic programming for energy management
Implementing dynamic programming for the energy management strategy requires com-
plete and apriori knowledge of the driving cycle. Indeed, the electric load required to
drive a specific driving cycle (deriving from the speed and elevation profiles) repre-
sents a disturbance in the optimal control problem for energy management and can be
calculated following a backward-facing modeling approach.
In the energy management problem for fuel cell electric vehicles, there is only one state
variable: the battery SoC. Moreover, assuming (3.1), the fuel cell system power is the
only input variable. Therefore, to minimize the fuel consumption expressed in (3.2),
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the optimal control problem (2.32) is rewritten as:

min
{Pfcs,1,... Pfcs,N}

N∑
k=1

ṁH2(Pfcs,k) ∆t (B.1)

with the same constraints as in (3.5), but with discrete system dynamics expressed as:

SoCk+1 = SoCk − ∆t
Voc,k −

√
V 2

oc,k − 4 P ∗
bat,k Rint,k

2 Rint,k Qbat,max
. (B.2)

The main difference compared to the optimization problem (3.5) is that the time interval
and electric load in each stage are exactly known. Here, ∆t is the spacing of the time grid
of dynamic programming and is set to 0.2 seconds. The battery power in (B.2) depends
on the fuel cell power (input variable) and the electric load (disturbance variable) as
in (3.1). The open circuit voltage and internal resistance have the time subscript k
because they depend on the SoC.

B.1.2 Pontryagin’s minimum principle for energy management
Pontryagin’s minimum principle is used to find the extremal controls that minimize
the Hamiltonian. Following the theory described in Appendix A.1, the Hamiltonian of
objective function (3.2) is expressed as:

H = ṁH2 + λ · ˙SoC . (B.3)

At each time step, the fuel cell power setpoint is the one that minimizes the Hamiltonian:

P ∗
fcs = arg min

Pfcs

H . (B.4)

This method can consider the minimum and maximum limits on the fuel cell power
during the minimization of the Hamiltonian (B.4). On the other hand, PMP can-
not intrinsically deal with the SoC constraints but only artificially by augmenting the
Hamiltonian with an additive penalty function [95, 149]. However, this thesis does not
implement the penalty because it significantly hinders the fuel consumption optimiza-
tion.
From a physical standpoint, the Hamiltonian can be interpreted as the sum of hydro-
gen consumption and the equivalent battery consumption, with the co-state variable
representing an equivalence factor. The co-state variable dynamics are expressed as:

λ̇ = − ∂H

∂SoC

||||||
P ∗

fcs

. (B.5)
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Note that the SoC rate of change in the Hamiltonian (B.3) depends on the SoC because
of the open circuit voltage and the internal resistance (2.18), which have the charac-
teristics depicted Figure 2.7b. The initial value of the co-state variable influences the
final SoC. Usually, the initial co-state is iteratively changed until the SoC reaches the
desired value at the end of the cycle. To do that, PMP requires complete and apriori
knowledge of the driving cycle, which is why it is categorized as an offline strategy.
The energy management strategies based on Pontryagin’s minimum principle and dy-
namic programming are compared considering two driving cycles. The first one has
lower performance requirements because it is on a flat route and with a vehicle mass
of 30 tons. In contrast, the second cycle is significantly more demanding because it is
on a hilly route and with a vehicle mass of 35 tons. The simulation results are summa-
rized in Table B.1 in terms of fuel consumption, average fuel cell efficiency, and final,
minimum and maximum SoC values. It is important to note that the fuel consumption
comparison is fair because PMP and DP yield the same final SoC. Moreover, the SoC
and fuel cell power profiles are compared in Figures B.1 and B.2.
The strategies yield equivalent fuel consumption, SoC, and fuel cell power profiles for
the flat route driving cycle. In this case, the SoC battery operating range is narrow
because the route is flat. On the other hand, for the driving cycle on the hilly route,
PMP results in 0.46% higher fuel consumption than DP. Thus, it does not correspond to
the optimal solution. Moreover, the SoC operating range is significantly wider because
of the hilly elevation profile. The higher fuel consumption is due to the battery operation
at a lower SoC on average, where its efficiency is low.
It is important to note that the final SoC is 0.94 for the strategy based on PMP because
of its incapability to deal with the SoC constraints. Indeed, using a different initial co-
state value to obtain a lower final SoC leads to the complete discharge of the battery
(SoC = 0), which is unfeasible. On the contrary, DP could be used to reach any
final SoC because it can deal with the maximum and minimum constraints intrinsically
within the optimization (as shown later).

Table B.1: Performance comparison between DP and PMP.

Driving cycle EMS Fuel consumption Fuel cell SoC

(kg/100 km) deviation (%) efficiency final min max

flat route/30t DP 8.73 - 0.530 0.76 0.58 0.76
PMP 8.73 0.02 0.530 0.76 0.57 0.76

hilly route/35t DP 9.73 - 0.524 0.94 0.30 0.94
PMP 9.77 0.46 0.523 0.94 0.10 0.94
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Figure B.1: Comparison of the energy management results between PMP and
DP on the flat route driving cycle with vehicle mass of 30 tons.

Figure B.2: Comparison of the energy management results between PMP and
DP on the hilly route driving cycle with vehicle mass of 35 tons.
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Eventually, dynamic programming is adopted in this thesis as the offline strategy for
the performance benchmarks because it ensures optimal results for fuel consumption
and SoC control.

B.2 Strategies for on-board control
This section describes and compares online two strategies with opposite characteristics:
the first is a rule-based strategy based on simple heuristics, whereas the second is
a model predictive control strategy deriving from the optimal control theory. The
simulation results indicate that both strategies yield similar fuel consumption, even
though their complexity is entirely different. Moreover, the comparison with DP shows
that both strategies are close to optimality for the low-demanding driving cycle, but
the results are significantly worse for the more challenging one.

B.2.1 Rule-based strategy
The principle adopted for designing the heuristic control strategy is to operate the
fuel cell as close as possible to the maximum efficiency point, which corresponds to
the power: Pfcs,η = 74 kW (see Figure 2.4). However, if the fuel cell system always
operates at that operating point, the battery would be completely depleted because the
average load of heavy-duty vehicles is significantly higher. To cope with this issue, the
rule-based energy management strategy defines the fuel cell power setpoint as:

P ∗
fcs = Pfcs,η + r1 (Pel,des − Pfcs,η) + r2 (SoCdes − SoC) . (B.6)

The second term on the right-hand side considers the deviation between the desired load
and the maximum efficiency power. The third term considers the deviation between
the SoC and its desired value. In this way, if the battery charge is too low, the fuel cell
increases its power to recharge it. Additionally, the fuel cell power setpoint is subject
to the following constraints:

|Ṗ ∗
fcs| ≤ r3 , (B.7a)

0 ≤ P ∗
fcs ≤ Pfcs,max . (B.7b)

The parameters r1, r2, and r3 largely influence the performance of the RB strategy.
For example, if r1 = 1, the fuel cell operates in power-following mode, which generally
results in high fuel consumption. On the other hand, if r1 = 0 and the electric loads
are high, there is a higher risk of complete battery charge depletion. For high values
of r2, the EMS will try to keep the battery charge as close as possible to the desired
value, generally resulting in high fuel consumption. However, if r2 is too low, there
is a higher risk that the battery overcharges or completely depletes. The parameter
r3 serves as a filter for the high-frequency loads, which are generally detrimental to
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fuel cell degradation and efficiency. Here, it is assumed that SoCdes = 0.70, r1 = 0.2,
r2 = 400 kW, and r3 = 9 kW/s.

B.2.2 Model predictive control strategy with short-term
forecasts

Over the last decades, several model predictive control applications have been imple-
mented in the industry achieving substantial performance improvement, especially in
process engineering. The standard MPC formulation considers a discrete linear state-
space model, a quadratic cost function, and linear constraints, as described in Ap-
pendix A.2. This section formulates an MPC for optimal energy management, similar
to the author’s previous works in [57] and [58].
Since the MPC relies on receding horizon optimizations, ensuring a suitably low com-
plexity for real-time control is usually challenging. For this reason, the strategy pro-
posed here considers short-term electric load forecasts. In particular, it is assumed
that the sampling time of the system is 1 second and that the predictive horizon is
10 seconds. Under these assumptions, there is an optimization instance every second,
requiring a computational time of 10 ms to be solved. On the other, if the predictive
horizon was 300 seconds, each optimization instance would require 10 seconds, which
would violate real-time control requirements. For simplicity, it is assumed that the
electric load forecast is certain.
The objective function of the MPC is expressed considering quadratic terms as follows:

Jmpc =
10∑

k=1
m1 (SoCdes − SoCk+1)2 + m2 (Pfcs,η − Pfcs, k)2 + m3 ∆P 2

fcs, k , (B.8)

where the first term aims at being close to the desired SoC reference, the second at
maximizing fuel cell efficiency, and the third at limiting the fuel cell transients. Here,
m1, m2, and m3 are weighting parameters set as 102, 10−11, and 10−11, respectively.
The discrete linear state-space model is expressed as:[||SoCk+1
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(B.9)

considering the SoC, fuel cell power, and battery power as state variables. In this case,
the discrete SoC dynamics shown in (B.2) are expressed in linear form by defining:
θ = (Voc,k Qbat,max)−1. Moreover, linear constraints on the maximum and minimum
values are applied for all the states.
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Figure B.3: Comparison between RB and DP on the hilly route driving cycle.

Figure B.4: Comparison between MPC and DP on the hilly route driving cycle.

The RB and MPC energy management strategies are analyzed considering the hilly-
route driving cycle with a vehicle mass of 35 tons. Each strategy is compared against
the dynamic programming solution that yields the same final SoC. The SoC and fuel cell
power profiles are compared in Figures B.3 and B.4. Contrary to dynamic programming,
both strategies operate the FCS at maximum power after minute 150 to restore the
desired SoC after the uphill section of the route, greatly hindering fuel cell efficiency.
The main difference between the RB and MPC strategies is that the latter has a much
smoother fuel cell power profile due to the last term in the objective function (B.8).
The simulation results are summarized in Table B.2 in terms of fuel consumption, av-
erage fuel cell efficiency, and final, minimum and maximum SoC values. The table
also includes the simulation results for the flat-route driving cycle. The table indicates
that both strategies yield similar fuel consumption, even though their complexity is en-
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Table B.2: Performance comparison between RB and MPC strategies.

Driving cycle EMS Fuel consumption Fuel cell SoC

(kg/100 km) deviation (%) efficiency final min max

flat route/30t

DP 8.67 - 0.532 0.65 0.51 0.72
MPC 8.72 0.58 0.531 0.65 0.49 0.71

DP 8.68 - 0.532 0.68 0.52 0.72
RB 8.71 0.34 0.529 0.68 0.55 0.71

hilly route/35t

DP 9.69 - 0.525 0.80 0.26 0.92
MPC 10.13 4.59 0.507 0.80 0.14 0.81

DP 9.68 - 0.525 0.79 0.25 0.92
RB 10.15 4.82 0.501 0.79 0.25 0.79

tirely different. Moreover, the comparison with dynamic programming shows that both
strategies yield close-to-optimal results on the flat route because it is a low-demanding
driving cycle. On the other hand, the results are significantly worse for the more chal-
lenging driving cycle on the hilly route.
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