
Development of a graphical user interface for
programming ROS-based robots

MASTER THESIS

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Ao.Univ.-Prof. Dipl.-Ing. Dr. techn. Markus Vincze

submitted at the

TU Wien
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Alexander Semeliker, BSc

Vienna, July 2019

Vision for Robotics Group
A-1040 Wien, Gusshausstr. 27, Internet: http://www.acin.tuwien.ac.at

Acknowledgement
I dedicate this work to my parents, who sadly passed away during writing this
thesis. I am eternally grateful for all they have done for me and every moment
I could spent with them.

Vienna, July 2019

I

Abstract
Teaching robot programming methods and abstracting the complex implemen-
tation to a level, where very little technical expertise is required are two key
points of the field of robotics. This work presents the design, implementation
and evaluation of Rockly, a web-based graphical user interface for programming
ROS-based robots. Robot Operating System (ROS) is a robotics middleware
and is considered as the de-facto standard framework for robot software devel-
opment. The second fundamental framework used for development is Blockly -
an open-source JavaScript library made by Google, which provides a visual code
editor and a code generation interface for web applications. Programming then
is done by simply connecting blocks. Uniting these frameworks is the one of
the key features of Rockly, hence it enables users to easily deploy and run their
applications on many different platforms and robots. Rockly - a portmanteau
of ROS and Blockly - provides three key components: an interface to manage
code blocks, an interface to create demos, and an interface to manage demos.
The interface was implemented and tested on the HOBBIT PT2 robot platform
as well as evaluated by moderate experienced robot developers. With respect
to the results of it, it can be concluded, that Rockly enabled all partcipants to
work more continuously to find a tool supported solution significantly faster
than by coding, which in most cases was executable and correct.

II

Kurzzusammenfassung
Das Lernen von Roboterprogrammiermethoden und das Abstrahieren der di-
rekten, mittlerweile sehr komplexen Implementierung auf ein Level, das sehr
wenig technische Expertise voraussetzt sind zwei aktuelle Diskussions- und
Forschungspunkte im Robotikbereich. Im Rahmen dieser Diplomarbeit wurde
eine web-basierte grafische Benutzeroberfläche - genannt Rockly - entwickelt,
implemtiert und evaluiert, die Lösungsansätze dafür bieten soll und mit Hil-
fe derer ROS-basierte Roboter programmiert werden können. ROS ist eine
Middleware und de facto das Standard-Framework in der Entwicklung von
Robotik-Software. Das zweite Framework, das dem entwickeltem Tool zugrun-
de liegt, ist Blockly - eine von Google entwickelte Open-source JavaScript
Bibliothek für Web-Applikationen, die eine grafische Programmieroberfläche
sowie eine Schnittstelle bereitstellt, mit der aus ebenjener grafischen Oberfläche
ein ausführbarer Code generiert werden kann. Ein Programm besteht damit
lediglich aus Blöcken, die zusammengefügt werden. Durch die Verwendung
dieser beiden Frameworks ist es möglich, dass Rockly, dessen Name sich aus
den beiden Frameworks ableitet, auf vielen unterschiedlichen Plattformen ein-
gesetzt werden. Es stellt drei Dienste bereit: eine Oberfläche zum Verwalten
der Programmierblöcke, eine Oberfläche zum Erstellen von Programmen und
eine Oberfläche zum Verwalten von erstellten Programmen. Die entwickelte
Oberfläche wurde auf der HOBBIT PT2 Roboterplattform implemtiert und
im Rahmen einer Evaluierungsstudie von angemessen erfahrenen Robotik Ent-
wicklern bewertet. Auf Grundlage der Ergebnisse lässt sich zusammenfassen,
dass Rockly es allen Teilnehmern ermöglichte kontinuierlicher und signifikant
schnellereine Lösungen zu finden, verglichen zum herkömmlichen Programmiern,
die in den meisten Fällen ausfÃ¼hrbar und korrekt waren.

III

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Proposed Solution . 3
1.4 Chapter Organization . 5

2 Related Work 6
2.1 Visual Programming Languages 6
2.2 Graphical Robot Programming Environments 9
2.3 Environments for ROS-based robots 11
2.4 Comparison of visual programming tools 12

3 Architecture 16
3.1 Requirements . 16
3.2 Options . 18
3.3 Design . 29
3.4 Supporting frameworks & dependencies 30

4 Implementation 35
4.1 Back end & Front end Communication 35
4.2 Demo Management . 35
4.3 Block Configuration . 36
4.4 Code Generation . 38
4.5 Code Editor . 42
4.6 Python Module . 42
4.7 Storage Management . 46
4.8 Code Execution . 47

5 Evaluation 48
5.1 Experiment Setup . 48
5.2 Results . 58
5.3 Discussion . 67

6 Conclusion and Future Work 70
6.1 Conclusion . 70

IV

Contents V

6.2 Future Work . 71

Appendices 73

A List of Abbreviations 74

B Block configuration manual 75

C HOBBIT block set overview 82

D Results of Demographical Questions 84

E Experiment materials 85

List of Figures
1.1 HOBBIT - The Mutual Care Robot 3
1.2 Architecture Overview and essential components 3
1.3 Workflow: Graphical programming to code execution 4

2.1 Scratch user interface . 8
2.2 S7-GRAPH interface of STEP 7 9
2.3 User interface of Simulink to use simulation models 10

3.1 Exemplary design of an API for Python 20
3.2 State machine generated via Listing 3.2 23
3.3 A short Blockly demo showing it’s structure and use 24
3.4 Front end and back end architecture 31

4.1 Demo Management Page . 36
4.2 Basic visual designs: execution block (left) and input block (right) 37
4.3 Design of the block configuration interface 37
4.4 User interface for demo and code generation 39
4.5 Example block to be created . 39

5.1 Flowchart of first use case . 51
5.2 Flowchart of second use case . 53
5.3 Distribution of pauses clustered into 5s intervals 61
5.4 Distribution of pauses clustered into 20s intervals 61
5.5 Workflow diagrams for participants’ tool supported solutions . . 62
5.6 Workflow diagrams for participants’ coding solutions 62
5.7 Results of the experience questions 64
5.8 Results of the feedback questions 65
5.9 Results of the workload questions 66
5.10 Experience to feedback correlation 67

VI

List of Tables
2.1 Comparison of visual programming platforms 15

3.1 Common commands used by HOBBIT 17
3.2 Scales used for evaluation scores 28
3.3 Evaluation of possible approaches 30

4.1 API endpoints for managing demos and custom blocks 35

5.1 ROS patterns used for implementing first use case 50
5.2 ROS patterns used for implementing first second case 52
5.3 Outcomes of participants solutions for first use case 59
5.4 Outcomes of participants solutions for second use case 60
5.5 Experience scale to numeric value mapping 63
5.6 Mean and variance per experience question 63
5.7 Feedback scale to numeric value mapping 64
5.8 Mean and variance per feedback question 65
5.9 Workload scale to numeric value mapping 66
5.10 Mean and variance per workload question 66

VII

Listings

3.1 Example Python code using the API shown in Figure 3.1 20
3.2 Using SMACH to generate a state machine 22
3.3 Block initialization using a JavaScript function 25
3.4 Defintion of a code generator in Blockly for Python 26
3.5 Minimal example of adding two blocks to a Blockly toolbox . . . 27
3.6 "Hello World" program implemented using Node.js and Express 34

4.1 Full block initialization for moving HOBBIT forward and backward 40
4.2 Full code initialization for moving HOBBIT forward and backward 41
4.3 Embedding Ace, setting preferences and displaying generated code 43
4.4 Implementation of a generic method to publish to a ROS topic . 44
4.5 Implementation of a generic method to call a ROS service . . . 45
4.6 Implementation of a generic method to use the actionlib 46

VIII

1 Introduction
The significance of discussions about autonomous systems and robotics have
been rising constantly within recent years. There are lots of supporters and lots
of skeptics about it. People get exicted about the technical progress, approaches
and possible application fields as well as feeling concerned about the future
labour market. Independently from their point of view, most of them are
interested in hands-on experience with robots and get in touch with them.
Fairs are one of the most common meeting places for people in order to see
robots in action and get in touch. From the developer’s and presenter’s sides
of view this requires to prepare different use cases to demonstrate a robots’
capabilities to the interested parties. Creating different behaviours periodically
requires time not every company or team could effort. Another big contact
point between society and robotics can be found in education, where students
often make their first steps in programming using proper robots and interfaces.

1.1 Motivation
As the field of interest is getting bigger and bigger it is necessary to provide
an accessible form of interacting with robots and programming them. The
de-facto standard framework for robot developing is ROS1, which provides
different communication patterns and standardized interfaces. The mightiness
of it faces the fact that not only programming skills are necessary to bring
robots to life, but also a detailed knowledge of the robot’s architecture itself
is required. For minimizing the necessary knowledge transfer in the above
mentioned academic institution case a more abstract interface to prepare robots
for fairs would be advantageous. Also students would benefit from such a tool
since commonly used robots (e.g. Nao2 or Pepper3) come up with specific
programming softwares, which provide different handlings and often are limited
to very few different platforms.

1http://wiki.ros.org/
2https://www.softbankrobotics.com/emea/en/nao
3https://www.softbankrobotics.com/emea/en/pepper

1

1 Introduction 1.2 Problem Statement 2

The main problem of a properly fitting interface is to maintain the powerful
capabilities of ROS while providing it in a accessible way. The first solution,
which maybe comes into most people’s mind - especially when thinking of
educational robotics - may be a graphical User Interface (UI). Such an approach
would result in a very high abstraction level, which requires a clever design.
On the other hand, a more abstract Application Programming Interface (API)
based on ROS communication patterns could be an option. This would enable
users to create more complex applications and demos, but perhaps limit the
accessibility for non-technicians and robot newbies. Additionally, designing
such a customized API would require a higher implementation effort since
it must prevent the code from crashing if it is used wrongly and should be
provided for Python and C++ as these are the common ROS programming
languages. Independently from the solution’s design it should also provide
user friendly maintainability and the option to further improve it without the
necessity to understand each development step and line of code.

1.2 Problem Statement
Scope of this work is to design an interface in order to abstract the implemen-
tation process of ROS-based robots, thereby minimizing the familiarization
period when first working with a robot, such as gathering knowledge about
communication interfaces and patterns. Additionally, the proposed design
should be implmented on the HOBBIT PT2 platform (see Figure 1.1) with at
least the following tasks should be available:

• Move HOBBIT in straight directions

• Turn HOBBIT a given angle

• Move HOBBIT’s head

• Control HOBBIT’s eyes

• User interaction via HOBBIT’s tablet

• Control HOBBIT’s arm

• Navigate HOBBIT to a given location

The interface should be designed such as it can be used remotely and can be
transferred to any other ROS-based robot in a user-friendly way. This means,
that the required knowledge about the architecture of the interface itself - such
as underlying frameworks - should be minimized. Finally, the interface should
be evaluated with a proper method.

1 Introduction 1.3 Proposed Solution 3

Figure 1.1: HOBBIT - The Mutual Care Robot

1.3 Proposed Solution
To tackle the above mentioned problems, this thesis presents the design, imple-
mentation and evaluation of Rockly, a graphical UI. The proposed architecture
is shown in Figure 1.2.

Figure 1.2: Architecture Overview and essential components

In order to not require the user to install any additional software a web-based
application is proposed, meaning the source code is deployed at the robot. It
operates as a server delivering all the front end functionality to the remote
programming devices as well as taking responsibility of code execution and

1 Introduction 1.3 Proposed Solution 4

communication tasks. On the client side the user is able to create programs
using a graphical editor, which is built upon Blockly4 - a library that adds a
visual code editor to web applications. Programming then is done by simply
connecting blocks. The block configurator enables the user to create new blocks,
for example when using a new robot. Finally, a demo management provides a
handy way to manage existing programs, such as directly running or deleting
them. On the back end side the most integral part is the ROS bridge module,
which should ensure ROS connectivity in order to directly run the code from
the client side and provide functionality for each ROS communication pattern.
This module is also responsible for enabling the tool to be transferred to any
other ROS-based robot. The server and client communication is done via
Representational State Transfer (REST)[1].

Blockly provides code generation for Python, meaning it is not necessary to
create blocks for basic programming functionality (e.g loops, variables, functions
and conditional statements). The implementation of generic connectivity is
within the scope of this thesis. For convenient usage and scalability reasons this
functionality is wrapped into a Python module, which can be exported and used
in any other suitable way. In order to enable HOBBIT to the above mentioned
tasks, blocks for each of them are implmented. An exemplary workflow is
shown in Figure 1.3. First, the program is created via connecting blocks using
the graphical editor. Using Blockly the Python code is generated and send to
the robot. Using the ROS bridge functionality the code is then executed.

Figure 1.3: Workflow: Graphical programming to code execution

The evaluation of the UI is achieved by conducting a study with people, who
have at least moderate experience with ROS and the required programming
languages (C++/Python). It should provide answers to the questions, whether
such a UI is seen as an improvement compared to the traditional coding
approach (in terms of time efficeiness, flexibility and scalability), the workflow
is more streamlined and the designed UI is intuitive.

4https://developers.google.com/blockly/

1 Introduction 1.4 Chapter Organization 5

1.4 Chapter Organization
This thesis is structured into the following six chapters. After this chapter, in
Chapter 2 related work regarding the present problem is discussed. A brief
overiew of the milestones and types of Visual Programming Languages (VPLs)
is presented as well as some common frameworks and Integrated Development
Environments (IDEs). Then the contribution of the tool development during
this thesis is analysed. Chapter 3 explains different approaches and the archi-
tectural decision. Then the implementation is presented in Chapter 4, covering
each component separately. The evaluation process is explained in Chapter 5
and presents the design of the conducted experiment. Then its results are
presented and discussed. Finally, in Chapter 6 summarizes the thesis and gives
directions for future work.

2 Related Work
This chapter examines the related work of fields this work is linked to. It starts
with a brief summary of the fundamental development of VPLs, then presents
a classification of them and provides some representative examples. In the
next section UIs for programming robots are summarized. Then an overview of
already existing graphical environments for ROS-based robots is given. Finally,
a comparison between matured interfaces with the one presented in this work
is presented.

2.1 Visual Programming Languages
There were basically two milestones in the development of a VPL as we know
it nowadays. The first milestone was Sketchpad, presented by Ivan Sutherland
([2]). It was designed in 1963 on the TX-2 computer at MIT (Massachusetts
Institute of Technology) and has been called the first computer graphics ap-
plication. The system allowed users to work with a lightpen to create 2D
graphics by creating simple primitives, like lines and circles, and then applying
operations, such as copy, and constraints on the geometry of the shapes. Its
graphical interface and support for user-specifiable constraints stand out as
Sketchpad’s most important contributions to visual programming languages.
By defining appropriate constraints, users could develop structures such as
complicated mechanical linkages and then move them about in real time.[3]
David Canfield Smith achieved the next major, groundbreaking step in the
history of VPLs. In his PhD dissertation [4] he introduced both the use of small
pictorial objects, called icons, and the notion of programming by demonstration.

The field of VPLs has grown rapidly in recent years and therefore more and
more interest has been focused on creating a robust, standardized classification
for work in this area. A lot of frameworks and environments are established in
different fields of use, including education, multimedia, video games, simulation
and automation processes. Since there are different focus points across these
fields, the usage and design varies in a broad spectrum and it is reasonable to
classify them. As [3] outlines it is possible to cluster them according to the way
users interact with them - e.g. differing purely visual languages and hybrid text

6

2 Related Work 2.1 Visual Programming Languages 7

and visual systems. Another appropiate classification scheme is the following,
which focuses more on data- and input processing:

• Block-based languages

• Flowcharts

• Dataflow programming languages

2.1.1 Block-based languages
Block-based VPLs are especially used in tools for reducing barriers for non-
programmers or for teaching children programming. The core of these languages
is a set of blocks, which can be connected with each other to form an executable
program. Each block represents a specific paradigm of the proper programming
language. A typical editor consists of a toolbox which contains the code blocks
and a workspace, where the blocks can be placed - usually via a drag-and-drop,
which is a key feature and make these VPLs considered most intuitive and
user-friendly.

The field of application of block-based VPLs covers a wide range: Ardublock1

is a graphical programming add-on to the default Arduino IDE - an open-
source electronics platform based on easy-to-use hardware and software, which
has a broad community. The MIT App Inventor is a drag-and-drop visual
programming tool for designing and building fully functional mobile apps for
Android.[5] In the fields of education, Scratch2, developed in 2007, plays an
important role, since it is designed to be highly interactive. The name highlights
the idea of tinkering, as it comes from the scratching technique used by hip-hop
disc jockeys. In Scratch programming, the activity is similar, mixing graphics,
animations, photos, music, and sound. The scripting area in the Scratch
interface is intended to be used like a physical desktop (see Figure 2.1)[6].

2.1.2 Flowcharts
These VPLs are able to translate an algorithm’s logic given as flowchart into
executable machine instructions. According to [7] a flowchart is the graphical
representation of a process or the step-by-step solution of a problem, using
suitably annotated geometric figures connected by flowlines for the purpose of
designing or documenting a process or program. Flowcharts are typically used
in the fields of automation. Grafcet ([8]) is a tool, drawing its inspiration from

1http://blog.ardublock.com/
2https://scratch.mit.edu/

2 Related Work 2.1 Visual Programming Languages 8

Figure 2.1: Scratch user interface (Source:[6])

Petri nets (a general purpose mathematical tool allowing various discrete-event
systems to be described), whose aim is the specification of Programmable Logic
Controllers (PLCs). It is the basis of the Sequential Function Chart (SFC), an
International Standard in 1987. An implementation of the Grafcet norm can
be found in S7-GRAPH, developed by Siemens AG and part of their STEP 7
software for programming PLCs (see Figure 2.2).

Another application using a flowchart VPL is KTechLab3, which is an IDE
for microcontrollers and electronics. It supports circuit simulation, program
development for microcontrollers and simulating the programmed microcon-
troller together with its application circuit.

RoboFlow is a flow-based VPL which allows programming of generalizable
mobile manipulation tasks [9]. The authors applied a technique called texitPro-
gramming by Demonstration from the field of End-User Programming (EUP)
to robot programming. They also presented an implementation on the PR24

robot platform using ROS communication.

3https://sourceforge.net/projects/ktechlab/
4http://www.willowgarage.com/pages/pr2/overview

2 Related Work 2.2 Graphical Robot Programming Environments 9

Figure 2.2: S7-GRAPH interface of STEP 7 (Source 5)

2.1.3 Dataflow programming languages
Similar to flowcharts dataflow programming is used for professional applications
primarily, aimed at designers rather than end users or coding newbies. Dataflow
programming is a programming paradigm whose execution model can be
represented by a directed graph, representing the flow of data between nodes,
similarly to a dataflow diagram. Considering this comparison, each node is an
executable block that has data inputs, performs transformations over it and
then forwards it to the next block. A dataflow application is then a composition
of processing blocks, with one or more initial source blocks and one or more
ending blocks, linked by a directed edge.[10] National Instruments LabVIEW
[11] and Simulink (Figure 2.3) can be mentioned as the representatives of this
big group.

2.2 Graphical Robot Programming Environments
The driving force of VPLs in terms of graphical programming of robots is edu-
cation. Teachers rely on simple educational robots and intuitive programming
environments. Therefore, graphical programming environments have become
a frequent starting point for young students. The used environments mostly

5https://w3.siemens.com/mcms/simatic-controller-software/en/step7/simatic-s7-
graph/pages/default.aspx

2 Related Work 2.2 Graphical Robot Programming Environments 10

Figure 2.3: User interface of Simulink to use simulation models (Source6)

depends on the robot the corresponding class is programming and therefore
there are many offerings.
A famous environment is the Lego Mindstorms system7 - a hardware and

software platform for the development of programmable robots based on Lego
building bricks. It comes up with an IDE that is available on Windows PC or
Mac. Its programming software is based on LabVIEW and provides the ability
to downloading programs to the programmable brick, which can be connected
to different sensors and actuators. Besides of the default editor the platform
also supports the use of third-party environments as outlined in [12].

Dataflow oriented VPLs, like used in the mentioned Lego Mindstorms system,
may be not suitable for absolute beginners, as described in [13]. The author
mentioned, that the procedural approach where a program is firstly considered
as a sequence of statements is much easier to learn than the data flow or
functional approach. Therefore a new graphical programming environment,
called Grape, was developed. With its help a flowchart can be built and the
meaning of the individual elements of the flowchart are defined. It comes up
with a list of predefined classes for robot programming and provides the feature
to extend the list by own classes using a simple Extensible Markup Language
(XML) syntax. The code generation itself also uses XML representation: first
the graphical structure of the program is converted into a XML tree, which
then is translated into C++ code via a mapping schema.

One of the most powerful graphical robot programming environment is the

6https://www.mathworks.com/products/simulink.html
7https://www.lego.com/en-us/mindstorms

2 Related Work 2.3 Environments for ROS-based robots 11

Open Roberta platform [14]. The connection to the user is called Open Roberta
Lab, a cloud-based application, which enables children and adolescents to visu-
ally program real robot hardware directly from the web browser or by using
a build in online robot simulator. It also provides platform features like user
login, program saving/sharing and easy hardware pairing over Wi-Fi as well as
USB and Bluetooth connection.[15] Its programming language is called NEPO
and is built up on Google’s Blockly, which also plays a fundamental part in
this work (see Section 3.2.3 and Section 4.4).

When it comes to humanoid robots, by now, there are three major repre-
sentatives: Nao[16], Pepper8 and Romeo9. All are developed by SoftBank
Robotics and come up with a powerful Software Development Kit (SDK) called
NaoQi. Besides of SDKs for Python, C++, Java, JavaScript and ROS, the
framework also provides a graphical programming tool: Choregraphe[17]. Ac-
tually, Choregraphe is a specific module of NaoQi and more or less just a
graphical representation of NaoQi’s functions. The Choregraphe module pro-
duces an XML file describing the program (i.e. the application, the boxes, the
connections between them, the included scripts etc.). For execution, the file is
interpreted by the XML module of NaoQi. Since the architecture of humanoid
robots is very complex, even experienced programmers, at least partly, rely on
interfaces like Choregraphe and therefore it is not exclusively used for education.

Another hybrid robot programming environment is provided by Aseba Stu-
dio10 IDE of the Thymio II, a small and low-priced educational robot. It
provides pure visual programming, two block based VPLs (Scratch, Blockly)
as well as an editor and an API for text programming. It is also possible
to connect the robot and directly run and debug the program via the user
interface.

2.3 Environments for ROS-based robots
As stated in the beginning, ROS is considered as the de-facto standard frame-
work for robot software development. Nonetheless the environments explained
in Section 2.2, as well as other frameworks too, do not provide ROS connectivity
out-of-the-box. This might be reasonable, considering purchasing a robot is
not cheap. If a user needs to control just one robot, there is no necessity to
search for a generic tool - especially because such a tool most likley would not

8https://www.softbankrobotics.com/emea/en/pepper
9https://projetromeo.com/

10https://www.thymio.org/en:asebastudio

2 Related Work 2.4 Comparison of visual programming tools 12

provide as powerful capabilities as the default programming interface would
do. Assuming the case of a lab, where several people might work with different
robots or just quick showcases are desired, it is reasonable to design such an
interface. Right now, there a only a few frameworks available for such purposes.

Erle Robotics developed a web-based visualization and block programming
tool, called robot_blockly, which supports their own robots and drones [18]. It
comes pre-installed with their Linux-based artificial robotic brain Erle-Brain11

and also provides a rudimentary interface for all other robots. It uses the
standard block creation process of Blockly (Section 3.2.3). Therefore the user
needs to update different files of the source code, must follow some naming
rules, recompile Blockly and the package and also needs - apart from ROS -
basic JavaScript knowledge. The ROS connectivity and all execution routines
can be implemented in a Python file, which is read from a specific directory
and then included into the Blockly source code.

Another Blockly-based tool for controlling ROS-based robots is the ev-
ablockly_ros package, developed by Inovasyon Muhendislik[19]. The provided
blocks are mainly created specifically for operations that can be performed by
using evarobot, a mobile robot platform built by the author. Apart from them
the package also provides the following basic ROS connectivity features:

• set up server connection

• create a publisher to send data

• send data via created publisher

• create a subscriber to receive data

• perform operations when data is received from determined subscriber

2.4 Comparison of visual programming tools
This section provides a comparison of this work with some visual programming
tools presented in the previous sections in respect of their features. The fol-
lowing systems were considered: robot_blockly[20], Choregraphe[17], Open
Roberta Lab[15], Grape[13] and EV3[21]. The specified features target two im-
portant fields of the tool decision process - platform independency and usablity.
Those two main features are broken down to several minor criteria, as Table 2.1

11http://docs.erlerobotics.com/brains/erle-brain-3

2 Related Work 2.4 Comparison of visual programming tools 13

shows. All of the mentioned tools come with an IDE for multiple computer
platforms and operation systems.

Most of the tools provide a block-based programming interface, which tends
to be the simplest VPL type in terms of usablity. Conclusively, the two most
popular educational programming platforms, EV3 - the newest generation of
the Lego Mindstorms system - Open Roberta Lab, are included. Since EV3 also
provides the ability to use third-party environments, all VPLs are supported as
well as pure coding itself. When looking at the provided programming options
of Choregraphe, it is highlighted that it is possible to create complex programs
with it, but getting there requires more technical expertise. The tool presented
in this work, Rockly, trys to reach both audiences (i.e. novice and experienced
users).

Open Roberta Lab supports seven different robot platforms out of the box,
which is significantly more than the other tools. Besides its own programming
brick, EV3 supports its preceding robot system NXT partially at the moment,
but allows the integration of third-party sensors and motors. Choregraphe
Suite supports platforms providing the NaoQi SDK, which are currently three
physical robots. All other tools, including Rockly, only provide out-of-the-box
connectivity of one robot, though, but are able to be upgraded via different
interfaces. Only Rockly comes up with a graphical assistant, which guides the
user through the upgrade process, and does not require any rebuild process.
The other tools require the user to touch or recompile the source code in order
to connect further robots.

Besides the number of robots, which can be connected to a system, platform
independency also means, that different operating systems are supported. Web-
based applications are the most independent ones, since users are not required
to install software on their computers. Running the infrastructure on a server
allows users to connect to the robot remotely and use it on mobile devices too.
EV3 currently supports mobile devices with the following minimum versions:
Android 4.2, iOS 8.0. Of the evaluated tools Rockly, robot_blockly and Open
Roberta Lab are fully web-based. All of them are based on Google’s Blockly
framework.

Development support interfaces such as a robot simulator and a debugging
tool are only provided by three tools. When comparing this to the programming
types, a pattern could be obtained. One of the advantages using a block-based
VPL - such as Rockly - is that the translated code is always syntactically
correct, so a major reason using such support during development, is obsolete.

2 Related Work 2.4 Comparison of visual programming tools 14

When it comes to ROS connectivity the classification outlined in Section 2.2
and Section 2.3 can be applied. It is possible to create ROS nodes with each tool
- except EV3. It is worth a remark that Choregraphe’s NaoQi SDK provides
ROS connectivity only via code represention, i.e. it is not possible to use
ROS communication within the graphical programming interface. Of the tools
enabling updates for both ROS connectivity and robot platforms, all provide
a manual, but only the workflow of Rockly is tool assisted. This means that
upgrading is more of a configuration than programming process - depending
on how complex the desired block should be. Therefore less programming
knowledge is required - especially in terms of the communication patterns of
ROS. Not touching the source code also means no recompiling, which therefore
leads to the fact, that - once deployed - Rockly runs autonomously without
any internet connection required.

2 Related Work 2.4 Comparison of visual programming tools 15

Feature R
oc
kl
y

ro
bo

t_
bl
oc
kl
y

C
ho

re
gr
ap

he

O
pe

n
R
ob

er
ta

La
b

G
ra
pe

EV
3

Programming

block-based X X X X
flowchart X X
dataflow X X
code X X X

Robot platforms out-of-the-box 1 1 1 7 1 2a

upgradeable X X X X

User interface

upgrade assistant X
web-based X X X
simulator X X
debugging X X

ROS connectivity out-of-the-box X X
upgradeable (X)b X X

Upgrade workflow

tool assisted X - -
manual X X - X X -
programming languages 1 2 - 2 2 -
recompiling X - X -

Table 2.1: Comparison of visual programming platforms
athird-party sensors and motors are supported
bnot for visual programming environment

3 Architecture
This chapter describes the architectural design of Rockly (portmanteau of ROS
and Blockly). First the requirements are presented, then the purpose and need
of the tool are explained. Based on these constraints the options implemtenting
the tool are presented as well as an explanation of the final design. Then
an overview of the architecture is given, followed by a short description of
all supporting frameworks and dependencies, which are: the robot operating
system ROS with its concepts and some JavaScript frameworks, which eased
the implementation effort.

3.1 Requirements
In the field of software engineering constraints are the basic design parameters.
Therefore, it is necessary to provide them as detailed as possible. In the
given case the basic constraints are given by the purpose of the tool and the
architecture of the robot.

3.1.1 HOBBIT - The Mutual Care Robot
The HOBBIT PT2 (prototype 2) platform was developed within the EU project
of the same name. The robot was developed to enable independent living for
older adults in their own homes instead of a care facility. The main focus is on
fall prevention and detection. PT2 is based on a mobile platform provided by
Metralabs. It has an arm to enable picking up objects and learning objects.
The head, developed by Blue Danube Robotics, combines the sensor set-up
for detecting objects, gestures, and obstacles during navigation. Moreover, the
head serves as emotional display and attention center for the user. Human-robot
interaction with Hobbit can be done via three input modalities: Speech, gesture
and a touchscreen. [22][23][24]

In terms of technology HOBBIT is based on the robot operating system
ROS (Section 3.4.1), which allows easy communication between all components.
The system is set up to be used on Ubuntu 16.04 together with the ROS
distribution Kinetic. All ROS nodes are implemented in either Python or C++.

16

3 Architecture 3.1 Requirements 17

Name Type Message type Description
/cmd_vel Topic geometry_msgs/Twist move HOBBIT
/head/move Topic std_msgs/String move HOBBIT’s head
/head/emo Topic std_msgs/String control HOBBIT’s eyes
/MMUI Service hobbit_msgs/Request control UI interface
hobbit_arm Action hobbit_msgs/ArmServer control HOBBIT’s arm
move_base_simple Action geometry_msgs/PoseStamped navigate HOBBIT

Table 3.1: Common commands used by HOBBIT

In order to provide a fast and simple way to implement new behaviours several
commands should be pre-implemented. These commands are performed either
by publishing messages to topics or services, or executing callbacks defined in
the corresponding action’s client. The common commands and their description
are listed in Table 3.1. A detailed list of possible messages for each command
is presented in Appendix E.

3.1.2 Purpose of the tool
The primary purpose of Rockly is to simplify the development of demonstrations
for the HOBBIT robot platform. It became very popular since the above
mentioned EU project and demos of it’s behaviours have been presented at
a large number of fairs. Currently, there are several application use cases
implemented on the robot, including the following[24]:

• Call HOBBIT: summon the robot to a position linked to battery-less call
buttons.

• Emergency: call relatives or an ambulance service.

• Safety check: guide the user through a list of common risk sources and
provide information on how to reduce them.

• Pick up objects: objects lying on the floor are picked up by the robot.

• Learn and bring objects: visual learning of user’s objects to enable the
robot to search and fnd them

• Reminders: deliver reminders for drinking water and appointments di-
rectly to the user

3 Architecture 3.2 Options 18

• Transport objects: placing objects on to the robot and letting it transport
them to a commanded location

• Go recharging: autonomously, or by a user command, move to the
charging station for recharging

• Break: put the robot on break when the user leaves the fat or when the
user takes a nap

• Fitness: guided exercises that increase the overall ftness of the user

All of the demos can be started via the user interface running on HOBBIT’s
tablet, but re-writing new demos would assume a detailed knowledge of the
robot’s setup. In order to implement new behaviours and demos more easily it
is necessary to provide a programming interface, which provides a powerful,
generic base to cover a wide range of HOBBIT’s features as well as an intuitive
handling.

Furthermore the Automation and Control Institute of the TU Wien was part
of the Educational Robotics for STEM (ER4STEM) project, which aimed to
turn curious young children into young adults passionate about science and
technology with hands-on workshops on robotics. The ER4STEM framework
coherently offered students aged 7 to 18 as well as their educators different
perspectives and approaches to find their interests and strengths in robotics to
pursue STEM careers through robotics and semi-autonomous smart devices.
[25] Providing an intuitive programming tool would allow the integration of
HOBBIT into such projects, which would be an extra input evaluation parame-
ter.

Finally, the framework should be implemented to be re-used for other ROS
based robots. This means that it should not only provide an interface to the
mentioned commands for HOBBIT, but an open, adpatable framework. It
should be able to allow a flexible configuration and assembly of the provided
functions.

3.2 Options
There are several approaches to fulfill the mentioned requirements. In the
following subsections three different options are presented by a simple example:
the implementation of picking up an object from the floor and putting it on the
table. This should give a rough overview in terms of complexity of the usability

3 Architecture 3.2 Options 19

as well as the implementation of the corresponding approach. For reasons of
simplicity tasks like searching and detecting the object or gripper positioning
are excluded.

3.2.1 Custom API
The most obvious way to fulfill the requirements is to provide an API for the
desired programming languages (Python, C++). An API is a set of commands,
functions, protocols and objects that programmers can use to create software
or interact with an external system. It provides developers with standard
commands for performing common operations so they do not have to write
the code from scratch. In the present case such an API could consist of the
following components:

• Initialization: setting up communication and intial states - e.g. creating
ROS nodes, starting the arm referencing or undocking from charger

• Topic management: managing the messages published to ROS topics and
creating subscriber nodes if applicable

• Service management: managing the ROS services of HOBBIT - e.g. the
tablet user interface

• Action management: creating ROS action clients for e.g. navigation or
arm movement

• Common commands: providing common commands (see Table 3.1)

It should be noted that the components do not re-implement ROS functional-
ity, but extend it and prvovide a simpler use of it. Depending on how generically
the API is implemented it is possible that the user can control the robot without
any detailed knowledge of the technical setup. Nevertheless, this approach
would assume the user to have knowledge of the programming language the
API is desigend for. Refering to the required commands in Table 3.1 an API
for Python could be designed as shown in Figure 3.1. The highest usability
would be reached, if all input parameters are from common variable types such
as interger and string. Indeed, this would increase the implementation effort,
especially in terms of error handling, as well as the extent of the documentation,
which are huge disadvantages of writing an API.

Assuming the API would be implemented as explained before and the Python
module would be named HobbitRosModule, Listing 3.1 shows a sample code for

3 Architecture 3.2 Options 20

Figure 3.1: Exemplary design of an API for Python

1 import HobbitRosModule # Import of API module
2
3 node = HobbitRosModule .node(’demo ’) # Create ROS node
4 node. gripper (’open ’) # Open gripper
5 node. move_arm (’floor ’) # Move arm to floor pick up

position
6 node. gripper (’close ’) # Close gripper = pick object
7 node. move_arm (’table ’) # Move to table position
8 node. gripper (’open ’) # Open gripper = drop object

Listing 3.1: Example Python code using the API shown in Figure 3.1

the mentioned use case to pick up an object. Note that the code is very short
and easy to read, which - on the other hand - means that the implementation
of the API must cover a broad technical range, such as error handling for
unsupported inputs and communication errors.

3 Architecture 3.2 Options 21

3.2.2 SMACH
SMACH is a task-level architecture for rapidly creating complex robot be-
haviour. At its core, SMACH is a ROS-independent Python library to build
hierarchical state machines. [26]. Therefore, this approach would also end up
in providing an API for the user, but allows to create more complex demos
with less effort than the one described in Section 3.2.1. SMACH also provides a
powerful graphical viewer to visualize and introspect state machines as well as
an integration with ROS, of course. Since the aforementioned example is a very
simple one and does not require a lot of the provided SMACH functionality, this
section only covers the needed ones to fulfill the requirements. For a detailed
description on how to use SMACH refer to [26].

The arm of HOBBIT is controlled via the hobbit_arm action. SMACH
supports calling ROS action interfaces with it’s so called SimpleActionState, a
state class that acts as a proxy to an actionlib (see Section 3.4.1) action. The
instantiation of the state takes a topic name, action type, and some policy for
generating a goal. When a state finishes, it returns a so called outcome - a
string that describes how the state finishes. The transition to the next state
will be specified based on the outcome of the previous state. Listing 3.2 shows
a possible implementation of picking up a object an placing it on the table.
After the imports of the necessary modules (lines 1 to 4), the state machine is
instanced (line 7), to which the required states are added (lines 17-22). The
parameters passed to SimpleActionState are

• the name of the action as it will be broadcasted over ROS (e.g. hob-
bit_arm)

• the type of action to which the client will connect (e.g. ArmServerAction)
and

• the goal message.

For reasons of readability the goals are declared at a seperate code block
(lines 11 to 14). The equivalent visualization of the state machine is shown in
Figure 3.2.

Providing just the SMACH interface has some disadvantages and would
not be practicable. First, the user would need an advanced knowledge of
Python. Depending on the design of the self-implemented API (Section 3.2.1)
the knowledge has to be at least at the same level. Next the user would have
to understand the API and needs to find a design to fit for the corresponding

3 Architecture 3.2 Options 22

1 from smach import StateMachine
2 from smach_ros import SimpleActionState
3 from hobbit_msgs .msg import ArmServerGoal ,

ArmServerAction
4 from rospy import loginfo
5
6 # Instance of SMACH state machine
7 sm = StateMachine ([’finished ’,’aborted ’,’preempted ’])
8
9 with sm:
10 # Definition of action goals
11 goal_floor = ArmServerGoal (data=’

MoveToPreGraspFloor ’, velocity =0.0 , joints =[])
12 goal_table = ArmServerGoal (data=’

MoveToPreGraspTable ’, velocity =0.0 , joints =[])
13 goal_OpGrip = ArmServerGoal (data=’OpenGripper ’,

velocity =0.0 , joints =[])
14 goal_ClGrip = ArmServerGoal (data=’CloseGripper ’,

velocity =0.0 , joints =[])
15
16 # Assambly of the full state machine
17 StateMachine .add(’INITIAL_POS ’, SimpleActionState (’

hobbit_arm ’,ArmServerAction ,goal= goal_OpGrip),
transitions ={’succeeded ’:’FLOOR_POS ’,’aborted ’:’
LOG_ABORT ’, ’preempted ’:’LOG_ABORT ’})

18 StateMachine .add(’FLOOR_POS ’, SimpleActionState (’
hobbit_arm ’,ArmServerAction ,goal= goal_floor),
transitions ={’succeeded ’:’CLOSE_GRIPPER ’,’
aborted ’:’LOG_ABORT ’, ’preempted ’:’LOG_ABORT ’})

19 StateMachine .add(’GRIPPER_CLOSED ’,
SimpleActionState (’hobbit_arm ’,ArmServerAction ,
goal= goal_ClGrip),transitions ={’succeeded ’:’
TABLE_POS ’,’aborted ’:’LOG_ABORT ’, ’preempted ’:’
LOG_ABORT ’})

20 StateMachine .add(’TABLE_POS ’, SimpleActionState (’
hobbit_arm ’,ArmServerAction ,goal= goal_table),
transitions ={’succeeded ’:’OPEN_GRIPPER ’,’aborted
’:’LOG_ABORT ’, ’preempted ’:’LOG_ABORT ’})

21 StateMachine .add(’GRIPPER_OPEN ’, SimpleActionState (
’hobbit_arm ’,ArmServerAction ,goal= goal_OpGrip),
transitions ={’succeeded ’:’finished ’,’aborted ’:’
LOG_ABORT ’, ’preempted ’:’LOG_ABORT ’})

22 StateMachine .add(’LOG_ABORT ’, loginfo (’Demo aborted
!’), transitions ={’succeeded ’: ’aborted ’})

Listing 3.2: Using SMACH to generate a state machine

3 Architecture 3.2 Options 23

Figure 3.2: State machine generated via Listing 3.2

demo case. Furthermore, it requires the user also to exactly know the ROS
specification of the robot. So, if SMACH would be choosen as the underlying
framework, it would also be necessary to provide a more abstract API - basically
with the same interfaces as shown in Figure 3.1.

3.2.3 Blockly
Blockly is a library that adds a visual code editor to web and Android apps.
The Blockly editor uses interlocking, graphical blocks to represent code concepts
like variables logical expressions, loops, and more. It allows users to apply
programming principles without having to worry about syntax or the intimida-
tion of a blinking cursor on the command line. [27] So for the present case, in
contrast to the other approaches the user would not need to have any technical
knowledge of HOBBIT, its components and interfaces. Furthermore, such an
editor would not require the user to master any programming language. On
the other hand implementing this approach would require additional knowledge
of web applications (i.e. JavaScript, HTML and CSS).

Figure 3.3 shows an exemplary injection and use as well as the basic structure
of Blockly applications. It consists of a toolbox, from where the progamming
blocks can be dragged to the workspace where they are connected. The Blockly

3 Architecture 3.2 Options 24

Figure 3.3: A short Blockly demo showing it’s structure and use

API [28] provides a function to generate a code for all blocks in the workspace
to several languages: JavaScript, Python, PHP, Lua, Dart and XML. In the
shown example for each of them a tab is avaible to show the generated code.
The blocks dragged to the workspace in Figure 3.3 are already customized
blocks, with whom an object can be picked up and be placed on the table.
There are basically four steps requierd in order to create and use a custom
block, which are briefly described in the following paragraphs. A detailed
documentation is given in [29].

Defining the block

Blocks are defined in the /blocks/ directory of the source code by adding
either JSON objects or JavaScript functions to the Blockly.Blocks mapping.
It includes the specification of the shape, fields, tooltip and connection points.
An example definition using a JavaScript function of the gripper block is shown
in Listing 3.3. Attention should be payed to lines 6 to 21, where the input
fields are defined (line 8). Here a dropdown field with two options ("Open" and
"Close") is created. The name ("gripper_position") is used to refer to it later.

Providing the code

Similar to the definition of a block, the code, which is generated out of them, is
stored in a mapping variable inside the Blockly library. Since different languages
are supported, the code definition has to be in the right directory. Note that
it is not necessary to provide code for each language. The code generation is
handled in the /generator/ directory of the library. Each language has it’s own
helper functions file (e.g. python.js) and subdirectory, where the code for each

3 Architecture 3.2 Options 25

1 Blockly .Blocks[’hobbit_arm_gripper ’] = {
2 init: function () {
3 this. jsonInit ({
4 "type": " hobbit_arm_gripper ",
5 " message0 ": "%1 Gripper ",
6 "args0": [
7 {
8 "type": " field_dropdown ",
9 "name": " gripper_position ",
10 " options ": [
11 [
12 "Open",
13 "open"
14],
15 [
16 "Close",
17 "close"
18]
19]
20 }
21],
22 " previousStatement ": null ,
23 " nextStatement ": null ,
24 "colour": 360,
25 " tooltip ": " Control HOBBIT ’s gripper ",
26 " helpUrl ": ""
27 });
28 }
29 };

Listing 3.3: Block initialization using a JavaScript function

3 Architecture 3.2 Options 26

block is defined. There are several interfaces functions provided by Blockly to
manage interaction with a block - such as collecting arguments of the block. A
short example to control HOBBIT’s gripper is shown Listing 3.4. In line 2 the
block.getFieldValue() function is used to get the user’s selection of the drop-
down field. Note that the generator always returns a string variable including
the code in the desired language (line 4). So the shown example requires to
use a custom Python API (such as Figure 3.1), because node.gripper() is not
a built-in function of Python.

1 Blockly .Python[’hobbit_arm_gripper ’] = function(block)
{

2 var dropdown_movement = block. getFieldValue (’
gripper_position ’);

3
4 return ’node. gripper (\’’+ dropdown_movement +’\’)\n’;
5 };

Listing 3.4: Defintion of a code generator in Blockly for Python

Building

After the customized block and it’s code generator are defined, the whole
Blockly project has to be rebuilt by running python build.py. Building means
that the source code, which is usually spread to several files (in the given case
over a hundred), is converted into a stand-alone form, which can be easily
integrated. The Blockly build process uses Google’s online Closure Compile
and outputs compressed JavaScript files for core functionalites, blocks, block
generators for each progamming language and a folder including JavaScript
files for messages in several lingual languages. In our case the following four
files needs to be included:

• blockly_compressed.js: Blockly core functionalites

• blocks_compressed.js: Defintion of all blocks

• python_compressed.js: Code generators for all blocks

• /msg/js/en.js: English messages for e.g. tooltips

3 Architecture 3.2 Options 27

Add it to the toolbox

Once the building is completed and the necessary files are included to the web
application, the custom block needs to be included in the toolbox. The toolbox
is specified in XML and passed to Blockly when it is injected. Assuming the
blocks shown in Figure 3.3 are build as described in the previous paragraphs,
they can be add to the toolbox as shwon in Listing 3.5.

1 <xml id=" toolbox " style =" display : none">
2 <block type =" hobbit_arm_gripper "></block >
3 <block type =" hobbit_arm_movement "></block >
4 </xml >

Listing 3.5: Minimal example of adding two blocks to a Blockly toolbox

3.2.4 Decision
In order to select the best fitting solution the requirements explained in Sec-
tion 3.1 are summarized as follows:

• The user wants to build as complex demos as possible.

• The user wants an intuitive interface to create demos.

• The user should need as little knowledge of the robot as possible.

• The user should need as little technical knowledge as possible.

• The implementation of the tool should not exceed the usual effort of a
master thesis.

• The tool should be maintable, meaning it should have clear interfaces
and as less dependencies as possible.

• The tool should provide the ability to add new functionalites.

The selection is based on subjective rating each of the approaches in regards of
each mentioned requirement with a score ranging from 1 (lowest) to 5 (highest).
The approach with the highest overall score is considered as the best fitting
one and will be implemented. The scales used to rate each criteria are listed in
Table 3.2 and an explanation of the scores is prestend in the following.

3 Architecture 3.2 Options 28

Criteria 1 2 3 4 5
Complexity of demos v. low low neutral high v. high
User Interface not int. little int. neutral int. v. int.
Robot specific know-how v. high high moderate low v. low
Technical know-how v. high high moderate low v. low
Implementation effort v. high high moderate low v. low
Maintainability v. low low moderate high v. high
Scalability v. low low neutral high v. high

Table 3.2: Scales used for evaluation scores. Abbreviations: very (v); intuitive
(int)

Because of its high abstraction and encapsulation of the libary complex
demos are hardly possible to implement using a block-based VPL like Blockly.
It would require lots of blocks, which would make the workspace very confusing.
An additional factor hard to implement would be the usage of describer nodes
and callbacks, because Blockly is designed for procedural programming. Using
a custom API would allow more or less the same level of demo complexity
as using the standard ROS API, since there is little abstraction and additon.
However, the powerful state machine functionality of SMACH enables users
to create, debug and visualize programs and therefore apply it to complex
applications.
The graphical UI of Blockly can be considered as very intuitive, because it

has become the dominanting VPL framework used in a varity of applications
(see Section 2.2). On the oter hand, the usability of an API mostly depends on
its documentation and design since it does not provide a graphical interface.
Therefore, both programming interfaces are considered as little intuitive.

When evaluating the required robot specific and technical know-how Blockly
benefits from its high abstraction level. Once the blocks are set up, the user does
not need to take care about which message and communication pattern should
be used, and therefore needs very low technical and robot-specific expertise.
Using APIs particularly requires advanced programming knowledge in order
to use it correctly. As prestend by the example Section 3.2.2 additional robot
specific know-how is required when using SMACH in order to add states to the
state machine.

A big challenge when designing and implementing an open, customized API
is the error handling in case of invalid usage in order to prevent programs
from crashing. Therefore, the implementation effort for this apporach is
considered to be very high. In the case of choosing SMACH the implementation
effort decreases, because it already provides such features for its capabilites.

3 Architecture 3.3 Design 29

Implementing the Blockly approach also would require to create an API for
scalability reasons, but the mentioned disadvantage must not be taken in
account, because it would not be open for end users. However, the fact, that
Blockly is a JavaScript libary would increase the implementation, because
additional programming expertise is requierd.
The necessity to master a second programming language besides Python is

also the reason that the Blockly approach is considered to provide a very low
maintainability - especially, when taking into account, that the Blockly workflow
itself (Section 3.2.3) requires good web development skills. APIs, including
SMACH, does not need a lot of maintenance once fully set up. Assuming
to be familiar with the corresponding programming language, adding new
functionality can be done with moderate effort.
Evaluating possible scalability limits lead to similar conclusions as when

discussing the complexity of demos. The VPL of Blockly does not provide a
user friendly way to handle large programs, especially when thinking of running
multiple ROS nodes. SMACH provides a powerful state machine functionality,
but nothing beyond it, and overheads for large application use cases are possible.
Since using a simple API provides more flexibility, it can be considered that a
custom API would provide the highest scalability of the investigated approaches.

Table 3.3 shows the final result of the evaluation. Based on the assessment
Blockly convinced with its very intuitive interface, which requires the user to
have very little previous knowledge to build demos. Despite the fact that main-
tainability and scalability suffer from the high abstraction and encapsulation
of the libary, the effort in terms of implementation is not worth mentioning
compared to the other approaches. This results from the fact that each one
would require the design of a custom API. Instead of just abstracting the given
ROS functionality, Blockly adds a much more user friendly option to create
demos - in contrast to the others.

3.3 Design
Based on the mentioned framework decision a design for the tool was developed.
Figure 3.4 gives an overview of Rockly’s final architecture and it’s components.
The front end consists of the following five components:

• a Demo Management which allows the user to create, edit, delete and
run demos easily,

• a Code Editor to allow further editing of the generate code before
running it on the robot,

3 Architecture 3.4 Supporting frameworks & dependencies 30

Criteria Custom API SMACH Blockly
Complexity of demos 3 5 2
User Interface 2 2 5
Robot specific know-how 3 1 5
Technical know-how 1 1 5
Implementation effort 1 2 2
Maintainability 3 3 1
Scalability 4 3 2
Σ 17 17 22

Table 3.3: Evaluation of possible approaches. Scores range from 1 (lowest) to 5
(highest)

• the Code Generation with the help of Blockly - the heart of the tool,

• an interface for creating and managing custom blocks (Block Configu-
ration, which then can be used for code generation,

• sending and receiving data from the robot via the Back end Commu-
nication

and the back end is made up of the following four:

• sending and receiving data from the user interface via the Front end
Communication,

• a Storage Management, which provides the demos and custom blocks
to the user,

• a Python Module containing all necessary functionalites to provide an
ROS executable code,

• an interface to finally execute the generated code on the robot (Code
Execution).

3.4 Supporting frameworks & dependencies
As described the components can be clustered into front end and back end,
but they can be seen also in respect of their functional interfaces. On the one
hand there is a connection to the robots sensors and actuators, on the other

3 Architecture 3.4 Supporting frameworks & dependencies 31

Figure 3.4: Front end and back end architecture

hand there is an interface to the human using the tool. Both functionalites are
build up with the support of software frameworks, which are described in the
following sections.

3.4.1 ROS
ROS provides libraries and tools to help software developers create robot appli-
cations. It provides hardware abstraction, device drivers, libraries, visualizers,
message-passing, package management, and more. Since ROS is licensed under
an open source, BSD license it used for a wide range of robots, sensors and
motors. Covering all of its features would go beyond the scope of this thesis, so
just the concepts, which are needed to implement Rockly, are summarized.[30]

Packages

Software in ROS is organized in packages. A package might contain ROS nodes,
a ROS-independent library, a dataset, configuration files, a third-party piece of
software, or anything else that logically constitutes a useful module. The goal
of these packages is to provide this useful functionality in an easy-to-consume
manner so that software can be easily reused.

Nodes

A node is a process that performs computation and are written with the use of
a ROS client library, such as roscpp (for C++) or rospy (for Python). Nodes
are combined together into a graph and communicate with one another using
streaming topics, RPC (Remote Procedure Call) services, and the Parameter
Server. A robot control system will usually comprise many nodes. For example,

3 Architecture 3.4 Supporting frameworks & dependencies 32

one node controls a laser range-finder, one node controls the robot’s wheel
motors, one node performs localization, one node performs path planning, and
so on.

Topics

Topics are named buses over which nodes exchange messages. Topics have
anonymous publish/subscribe semantics, which decouples the production of
information from its consumption. In general, nodes are not aware of who they
are communicating with. Instead, nodes that are interested in data subscribe
to the relevant topic; nodes that generate data publish to the relevant topic.
There can be multiple publishers and subscribers to a topic. Each topic is
strongly typed by the ROS message type used to publish to it and nodes can
only receive messages with a matching type.

Messages

A message is a simple data structure, comprising typed fields. Standard
primitive types (integer, floating point, boolean, etc.) are supported, as are
arrays of primitive types. Messages can include arbitrarily nested structures
and arrays. Nodes can also exchange a request and response message as part of
a ROS service call. Message descriptions are stored in .msg files in the /msg/
subdirectory of a ROS package.

Services

The publish-subscribe model is a very flexible communication paradigm, but
its many-to-many one-way transport is not appropriate for RPC request-reply
interactions, which are often required in a distributed system. Request-reply in
ROS is done via a service, which is defined by a pair of messages: one for the
request and one for the reply. Services are defined using .srv files, which are
compiled into source code by a ROS client library.

Actions

In some cases, e.g. if a service takes a long time to execute, the user might
want the ability to cancel the request during execution or get periodic feedback
about how the request is progressing. The actionlib package provides tools to
create servers that execute long-running goals that can be preempted. It also
provides a client interface in order to send requests to the server. The action
client and action server communicate via the ROS Actionlib Protocol1, which

1http://wiki.ros.org/actionlib

3 Architecture 3.4 Supporting frameworks & dependencies 33

is built on top of ROS messages. The client and server then provide a simple
API for users to request goals (on the client side) or to execute goals (on the
server side) via function calls and callbacks.

3.4.2 JavaScript frameworks
Since Rockly is a web application all of the functionality blocks do touch
JavaScript in some way. And since there are a lot of JavaScript frameworks
supporting the development of web applications, it is necessary to get an
overview of the important ones - besides Blockly (see Section 3.2.3) - used to
implement Rockly before diving into the implementation itself.

Node.js

Node.js is an open source platform that allows you to build fast and scalable
network applications using JavaScript. Node.js is built on top of V8, a modern
JavaScript virtual machine that powers Google’s Chrome web browser. At its
core, one of the most powerful features of Node.js is that it is event-driven.
This means that almost all the code written in Node.js is going to be written in
a way that is either responding to an event or is itself firing an event (which in
turn will fire other code listening for that event). In an effort to make the code
as modular and reusable as possible, Node.JS uses a module system - called
"Node Package Manager" (NPM) - that allows to better organize the code and
makes it easy to use third-party open source modules.

Express

Express is a minimal and flexible Node.js web application framework, providing
a robust set of features for building single, multi-page, and hybrid web applica-
tions. In other words, it provides all the tools and basic building blocks one
need to get a web server up and running by writing very little code. Listing 3.6
shows a minimal example of using Node.js and Express to implement the
famous "Hello World" program. First the Express module is imported (Line
1) and an instance of the app is created (Line 2), which finally listens to the
configured port (Line 6). Line 3 to 5 describes the mentioned event-driven
behaviour: app.get(’/’,...) causes every request to trigger the given callback
function, which in this case is just sending the "Hello World" string.

Ace

Ace, whose name is derived from "Ajax.org Cloud9 Editor", is a standalone code
editor written in JavaScript. Ace is developed as the primary editor for Cloud9

3 Architecture 3.4 Supporting frameworks & dependencies 34

1 var express = require (’express ’);
2 var app = express ();
3 app.get(’/’, function(req , res){
4 res.send(’Hello World ’);
5 });
6 app.listen (3000);

Listing 3.6: "Hello World" program implemented using Node.js and Express

ide) - an online integrated development environment - and the successor of the
Mozilla Skywriter (formerly Bespin) Project. It supports syntax highlighting
and auto formatting of the code as well as customizable keyboard shortcuts.

jQuery

jQuery is a fast, small, and feature-rich JavaScript library. It makes things
like HTML document traversal and manipulation, event handling, animation
and ajax (Asynchronous JavaScript and XML) much simpler with an easy-to-
use API that works across a multitude of browsers. Rockly basically uses its
functionality to exchange data via RESTful (Representational State Transfer)
web services and manipulating HTML elements.

4 Implementation
This chapter gives detailed insights into the implementation of Rockly. Each
component presented in the architectural overview (Section 3.3) is explained
together with the essential code snippets.

4.1 Back end & Front end Communication
The communication between front end (client) and back end (server) is done
via a RESTful API. A RESTful API is based on representational state transfer
(REST) technology and uses HTTP (Hypertext Transfer Protocol) request
methods, which are defined in RFC 2616 [31], to exchange data between web
services. All implemented API endpoints, which are used to manage demos
and codes are listed in Table 4.1.

Type Path Description
GET /demo/list list all demos saved on the robot
GET /demo/load/{demoId} get the XML tree of a demo
POST /demo/save save a new demo on the robot
POST /demo/run/{demoId} run a demo
DELETE /demo/delete{demoId} delete a demo
GET /demo/toolbox load the toolbox of the Blockly interface
GET /block/list list all already configured custom blocks
POST /block/create create a new custom block
PUT /block/update/{blockId} update a custom block
DELETE /block/delete/{blockId} delete a custom block

Table 4.1: API endpoints for managing demos and custom blocks

4.2 Demo Management
The Demo Management (Figure 4.1) is one key feature of Rockly and the entry
point of it. It gives an overview of all avaible demos, meaning demos, which

35

4 Implementation 4.3 Block Configuration 36

are saved on the robot in a specific directory. It provides a graphical interface
and hence makes it a lot easier to manage and run demos - in contrast to the
other mentioned options (Section 3.2), where e.g. the user needs to explicity
locate the file and run it. Since usability and simplicity are main requirements
for this tool, such a feature is a main advantage of it. Furthermore the main
page provides the option to create new demos and a redirection to the block
configuration component (Section 4.3).

Figure 4.1: Demo Management Page

At the start of the tool the /demos/ directory inside the tools folder on the
robot is searched for saved demos. Since we talking about a web-based tool and
demos are saved on the robot, this requieres a call to the back end, which then
returns a list of all demos via the RESTful API. The structure of all demos are
stored in .xml files, which are interpreted by Blockly.

4.3 Block Configuration
There are a lot of reasons a user might want to create a custom block. The
pre-implemented blocks are designed for the ROS architecture of HOBBIT and
any other robot won’t show the desired behavior when receiving commands
sent from these blocks. Even for HOBBIT itself the provided block set does not
cover all of its functionalites. Using another robot means publishing different
data to other topics, calling other services and using other action clients. Of
course, the user can walk through the whole custom block creation process
described in Section 3.2.3 to create new blocks. This requieres knowledge
of progamming in JavaScript and the Blockly API. The user would then be
able to use all of Blockly’s broad range of features and advantages, especially
dynamically changing of block features.

4 Implementation 4.3 Block Configuration 37

On the other hand, for a lot of the tasks such features are not necessary
or a workaround with less effort can be found, respectively. For this reason
Rockly provides a block configuration interface, which allows the user to create
custom blocks with the two basic visual designs: an execution block and an
input block (Figure 4.2). With this interface the user can configure blocks for
publishing data to topics, calling services with parameters and creating simple
action clients.

Figure 4.2: Basic visual designs: execution block (left) and input block (right)

The design of the interface is shown in Figure 4.3. It is devided into three
sections:

I. An overview of already created custom blocks

II. A form to provide general information of the block

III. A form to provide detail information of the block (type-specific)

Figure 4.3: Design of the block configuration interface

The list of all already configured custom blocks is loaded via the GET request
endpoint /block/list of the tool’s internal RESTful API. The request delivers
an object with the Blockly-conform block and code definitions, the unique ID
and name of the respective block as well as the block’s meta data. The latter is
used to set the general and detailed forms in case the custom block is selected.

4 Implementation 4.4 Code Generation 38

Identification which custom block is selected is handeld via the query string
of the URL, which is set to the custom block’s ID if it is selected. The ID
of a block is an alphanumerical 12-character string, which is generated randomly.

The general information form is primarily used to set the visual design of the
block. The user can configure the title and tooltip of the block as well as the
number and names of the inputs, which then can be used in the detail section.
The detail section varies depending on which type of the ROS communicating
patterns is used. A topic must be specified by its name, the message type
and the message itself. If the user wants to create a custom block for calling
services, it is necessary to provide the name of the service, the message type
and a list of all message type specific fields with their values. Furthermore,
it is possible to choose whether the response of the service should be used as
output - which will lead to an input block - or not - then an execution block is
generated (Figure 4.2). The detail section for actions includes fields for setting
the execution timeout (which is defined as the time to wait for the goal to
complete), the server name, the message type and the goal. It is also possible
to provide the following callback functions:

• done_cb: callback that gets called on transitions to Done state.

• active_cb: callback that gets called on transitions to Active state.

• feedback_cb: callback that gets called whenever feedback for the goal is
received.

All detail sections also feature an input field for importing all Python packages
that are needed to execute the code correctly, e.g. messages types that are used
to generate the message. Some step-by-step examples for configuring custom
blocks are presented in Appendix B.

4.4 Code Generation
Demos are created via the user interface shown in Figure 4.4. It can be devided
into three sections:

I. the navigation header holds elements to directly manage the current
demo,

II. the toolbox contains code blocks organized in categories,

III. the workspace where the blocks can be dragged to from the toolbox and
be connected with each other.

4 Implementation 4.4 Code Generation 39

Figure 4.4: User interface for demo and code generation

Blocks which are dragged to and combined at the workspace are used to
generate an executable code. This is done with the help of Blockly (see Sec-
tion 3.2.3). Blockly came up with some predefined code blocks that allow some
basic programming procedures. On top of them Rockly provides further blocks,
which allows to connect to HOBBIT and perform several actions (Table 3.1).
A list and description of these blocks can be found in Appendix C. All of them
are using one of the mentioned ROS communicating pattern (topic, service,
action) to call the interface of the robot and have a similar structure thanks to
the design of a custom Python module (Section 4.6).

To get a clearer understanding of the general structure of these blocks and the
Blockly custom block creation (Section 3.2.3) an explicit example is presented.
The choosen example shows the block and code definition to create a block,
which allows to move HOBBIT for a given distance into a given direction
(Figure 4.5).

Figure 4.5: Example block to be created

The full block definition for the mentioned example is given in Listing 4.1.

4 Implementation 4.4 Code Generation 40

1 Blockly .Blocks[’hobbit_move ’] = {
2 init: function () {
3 this. jsonInit ({
4 "type": " hobbit_move ",
5 " message0 ": "move %1 metres %2",
6 "args0": [
7 {
8 "type": " input_value ",
9 "name": " distance ",
10 "check": "Number"
11 },
12 {
13 "type": " field_dropdown ",
14 "name": " direction ",
15 " options ": [
16 [
17 " forward ",
18 "+"
19],
20 [
21 " backward ",
22 "-"
23]
24]
25 }
26],
27 " previousStatement ": null ,
28 " nextStatement ": null ,
29 "colour": Blockly . Constants .hobbit.HUE ,
30 " tooltip ": "Move HOBBIT",
31 " helpUrl ": ""
32 });
33 }
34 };

Listing 4.1: Full block initialization for moving HOBBIT forward and backward

4 Implementation 4.4 Code Generation 41

Lines 2 and 3 indicates, that the block is initialized using a JavaScript function
(same as in Listing 3.3). In lines 1 and 4 the name and type of the block are set,
which is important to get the corresponding code object later on. The message0
key is used to set the message displayed on the block, whereas the placeholders
(%1,%2) are replaced by the arguments given by the objects passed to the
args0 key. In the presented case the first argument is an input field and must
be a number (lines 8,10) and the second one (lines 13 to 24) a dropdown field
with options "forward" and "backward" displayed. In order to get the passed
values for code generation a name for each paramter is set (lines 9,14). Lines
27 and 28 indicates that the block has connections on the top and bottom, but
there are no constraints for them. The last three lines are just used to set the
color, tooltip and an optional help URL.

1 Blockly .Python[’hobbit_move ’] = function(block) {
2 var value_distance = Blockly .Python. valueToCode (block

, ’distance ’, Blockly .Python. ORDER_ATOMIC);
3 var dropdown_direction = block. getFieldValue (’

direction ’);
4 Blockly .Python. InitROS ();
5
6 var code = Blockly .Python. NodeName +’.move(’+

dropdown_direction + value_distance +’)\n’;
7 return code;
8 };

Listing 4.2: Full code initialization for moving HOBBIT forward and backward

The corresponding code initialization is shown in Listing 4.2. Line 1 again
shows the internal design of Blockly, which is based on assigning functions and
objects to classes. Blockly supports code generation for several programming
languages, which all are implemented in seperate classes. Since the presented
tool should convert blocks into Python code, the Python class is used. Within
the code initialization the input values of the block are read through the
provided API first (line 2,3). Then some ROS specific initialization is done (line
4), which basically handles the import of the rospy package and the custom
Python module as well as creating a ROS node. The name of the node is
defined by the constant string Blockly.Python.NodeName and an instance of a
certain class of the Python module. Blockly.Python.InitROS() is a custom
command and must be included in the code initialization of each block. Finally,
the code string is assembled by just calling the corresponding control function
of the ROS node instance with the input parameters (line 6) and then returned

4 Implementation 4.5 Code Editor 42

(line 7).
The code initialization of each created block follows the mentioned steps,

which can be summarized as follows:
1. Getting the values of the inputs.

2. Initialization of the ROS interface

3. Assembly of the code string by simply calling the responding functions of
the Python module

This generic design is another decrease of the conditions - in terms of
JavaScript knowledge - for using the Blockly framework, because it outsources
the main and most complex task of assembling the executing code to an interface
more robot programmers are familiar with. Futhermore Google provides a
visual interface - using the Blockly framework itself - to easily create the block
configuration object.1

4.5 Code Editor
The generated code can be accessed by clicking on the Code tab on the user
interface (Figure 4.4). It provides the opportunity to add further functionality
to the code, which is not already covered by the tool, before executing the
demo or saving it. This could be very basic modification, e.g. just adding
comments to the code or inserting debugging messages, or more advanced ones,
e.g. adding the functionality to subscribe to a topic.

This makes Rockly not only to be a stand-alone solution for basic use cases,
but a supporting tool for more experienced users, who do not want to build
their code from scratch.

The implementation of the provided editor basically involve just embedding
Ace via its API (see Section 3.4.2). The basic embedding code is shown in
Listing 4.3. It also shows how connected blocks on the workspace are translated
into an executable Python code using the Blockly API (Line 2) and to display
the generated code (Line 10). The variable workspace is an instance of the
static class Blockly.Workspace2.

4.6 Python Module
As described above each block of the HOBBIT block set calls a corresponding
method of the ROS node class inside the custom Python module, which then

1https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
2https://developers.google.com/blockly/reference/js/Blockly

4 Implementation 4.6 Python Module 43

1 // Generate code from workspace
2 var code = Blockly .Python. workspaceToCode (workspace);
3 // Create Ace instance and set preferences
4 var editor = ace.edit("editor");
5 editor. setTheme ("ace/theme/chrome");
6 editor. getSession (). setMode ("ace/mode/python");
7 editor. getSession (). setUseWrapMode (true);
8 editor. setShowPrintMargin (false);
9 // Display code
10 editor. setValue (code);

Listing 4.3: Embedding Ace, setting preferences and displaying generated code

calls generic communication methods. This section describes how the module
is set up and the generic methods to initiate the ROS communication for each
communication pattern are implemented. It is desigend as shown in Figure 3.1
with a class containing the necessary properties and methods. For all listings
debugging messages are excluded.

Initialization

For any form of communication between the nodes, they have to register to
the so called ROS Master - the master node, which provides naming and
registration services to the rest of the nodes in the ROS system. It has to be
started as the first process, which in the case of HOBBIT is done during the
booting process. Therefore, the initialization process of the custom Python
module only needs to register a new client node. This is done by simply calling
the corresponding init_node method3 of the rospy package, which takes the
node’s name as parameter. Duplicate calls to init_node are forbidden, for
which reason the Blockly.Python.InitROS() method inside every block was
introduced as mentioned in Section 4.4. It ensures that init_node is called
from the main Python thread.

Publishing to a topic

For publishing to a topic the rospy.Publisher class4 of the rospy package is used.
It takes two mandatory initialization paramters: the resource name of topic as
a string and the message class. The publishing itself is executed by calling the
publish method of the class. It can either be called with the message instance

3http://docs.ros.org/jade/api/rospy/html/rospy-module.html#init_node
4http://docs.ros.org/melodic/api/rospy/html/rospy.topics.Publisher-class.html

4 Implementation 4.6 Python Module 44

to publish or with the constructor arguments for a new message instance. The
full implementation of the generic publishing method is shown in Listing 4.4.
There are a few important things to be considered. First, an instance of the
rospy.Rate class5 is created to ensure the publisher is instanced and the message
is published. Second, the exec Python built-in function is used, so that any
manipulation by the user should be prevented. This is ensured by encapsulating
the generic function as mentioned in the beginning of this section. Last, all
message classes for the implemented commands (Table 3.1) are imported at
the beginning in order to successfully execute the exec statement.

1 def publishTopic (self , topic , message_type , message):
2 rate = rospy.Rate (1)
3 exec(’pub = rospy. Publisher (\’’+topic+’\’, ’+

message_type +’, queue_size =10) ’)
4 rate.sleep ()
5 pub. publish (message)
6 rate.sleep ()

Listing 4.4: Implementation of a generic method to publish to a ROS topic

Calling a service

To call ROS services it is first necessary to create an instance of the rospy
.ServiceProxy class6 with the name and class of the desired service. Then
it is recommended to wait until the service is available - which is done by
calling the rospy.wait_for_service method - before finally calling the instance.
This basic steps are included in the generic service call method of the custom
Python module (Listing 4.5). It can be structured into three parts: the two
just mentioned - creating (lines 9 to 14) and calling the instance (lines 16 to
22) - and a parameter preparation part (lines 2 to 7).

The latter is introduced to create a simple and understandable execution
statement when calling the service. Service parameters, which are passed as
list to callService method, are splitted and assigned to temporary variables
par0,par1,...,parN, where N = k − 1 and k being the number of service
parameters. These temporary variables are then combined to a string, which
seperates the parameters with a comma. This string then is passed to the
execution statement. Additionally the basic error handling is outlined by
excepting typical ROS provided exceptions.

5http://docs.ros.org/jade/api/rospy/html/rospy.timer.Rate-class.html
6http://docs.ros.org/api/rospy/html/rospy.impl.tcpros_service.ServiceProxy-class.html

4 Implementation 4.6 Python Module 45

1 def callService (self ,ServiceName ,ServiceType ,args):
2 ParameterList = []
3 if args:
4 for i,arg in enumerate(args):
5 exec(’par ’+str(i)+’=arg ’)
6 ParameterList .append(’par ’+str(i))
7 parameters = ’,’.join(ParameterList)
8
9 try:
10 rospy. wait_for_service (ServiceName)
11 exec(’servicecall = rospy. ServiceProxy (\’’+

ServiceName +’\’,’ + ServiceType +’)’)
12
13 except rospy. ROSException :
14 return None
15
16 try:
17 exec(’req = ’+ ServiceType +’Request (’+ parameters

+’)’)
18 resp = servicecall (req)
19 return resp
20
21 except rospy. ServiceException :
22 return None

Listing 4.5: Implementation of a generic method to call a ROS service

Sending a goal to an action server

Although the ROS actionlib is a very powerful component, its usage is very
simple, as can be seen in Listing 4.6. The action client and server communicate
over a set of topics. The action name describes the namespace containing
these topics, and the action specification message describes what messages
should be passed along these topics. This infos are necessary to construct a
SimpleActionClient and open connections to an ActionServer7 (line 2). Before
sending the goal to the server it is requiered to wait until the connection to the
server is established. Afterwards an optional argument (timeout) decides how
long the client should wait for the result before continuing its code execution
and returning the result.

7http://docs.ros.org/jade/api/actionlib/html/classactionlib_1_1ActionServer.html

4 Implementation 4.7 Storage Management 46

1 def sendActionGoal (self , namespace , action_type , goal ,
timeout = rospy. Duration ()):

2 exec(’client = actionlib . SimpleActionClient (\’’+
namespace +’\’, ’+ action_type +’)’)

3 client. wait_for_server ()
4 client. send_goal (goal)
5 client. wait_for_result (timeout)
6 return client. get_result ()

Listing 4.6: Implementation of a generic method to use the actionlib

4.7 Storage Management
For reasons of simplicity all necessary data - such as demos, executable codes
or custom blocks - are stored in raw files on the robots. They are managed
by a own service within the back end. It uses the file system module (fs)8 of
Node.js. All of its file system operations have synchronous and asynchronous
forms. Both are used in the implementation. The following functionalites are
implemented using the storage management service:

• Listing all demos

• Saving, deleting, showing and running a specific demo

• Listing all custom blocks

• Creating, editing and deleting a custom block

• Providing the toolbox of Blockly’s workspace

Listing resources - i.e. demos and blocks - following a simple read-and-send
algorithm. The management of demos and blocks are slightly different, because
informations of blocks are stored in a single file, while informations of demos
are spread to multiple files and directories. A more detailed explanation of
the latter is given in Section 4.8. The toolbox is assembled in two steps. The
structure of the basic toolbox - including the HOBBIT block set and the
predefined code blocks of Blockly - is stored in an .xml file. This allows the
user to reorganize the toolbox to his preferences just following the description
mentioned in Section 3.2.3 and without any necessity to touch the code. After
reading the basic toolbox information, the storage management services checks
whether there are any custom blocks created already, and, if so, appends them
to the toolbox.

8https://nodejs.org/api/fs.html

4 Implementation 4.8 Code Execution 47

4.8 Code Execution
The code generated through the blockly framework (Section 4.4) and optionally
edited by the user (Section 4.5) is saved in a .py file seperatley from the demo
.xml file. Although this leads to slightly more effort in terms of maintaining
the tool, it also has an important advantage: it provides the ability to reuse the
code indepently from the raw block data and the tool itself, e.g. for building
more complex demos and ROS nodes, running it from the command line or
simply sharing it. In other words, it is not even necessary to run the tool on the
robot itself. Of course, there is also the option to run the code directly from
Rockly via the integrated Run button of the user interface (Figure 4.4). In this
case the corresponding request to the back end (/demo/run/, see Table 4.1) is
send, including the code inside the request body. The back end then executes
the code using the child_process module9 of Node.js.

9https://nodejs.org/api/child_process.html

5 Evaluation
The following chapter describes how the implemented tool was evaluated. A
user study was conducted in order to find out if the developed tool is seen as
an improvement compared to the traditional coding approach. The following
sections describe the study desgin, the data acquisition, the data analysis and
the findings.

5.1 Experiment Setup
The implemented tool was evaluated within the scope of the course "Selected
Topics - Robotics and Computer Vision" held by the V4R group of the automa-
tion and control insitute at the TU Wien. This section describes the goals and
design of the experiment as well as the questions the participants were asked.

5.1.1 Goals of the Experiment
The following goal questions (GQ) should be answerd by the experiment:

• GQ1 : Is the tool seen as an improvement compared to the traditional
coding approach?

• GQ2 : Do participants make less pauses when they use the tool compared
to coding?

• GQ3 : Does it take less time to find solutions when using the tool?

• GQ4 : Is the usage of the tool intuitive?

All of the presented goal have in common that they can be answered positively,
negatively and none of both. The third option means that furher research
must be done, e.g. conducting further studies to get an answer for this question.

The primary goals of this evaluation is to find out if the developed tool is seen
as an improvement compared to the traditional coding approach. This question
is described by GQ1 and should be answerd by analysing the feedback of par-
ticipants, who have experience in programming robotics - especially using ROS.

48

5 Evaluation 5.1 Experiment Setup 49

Also, the answers to workload questions can be taken in account. (Section 5.1.4)

GQ2 should give an answer to the question whether using the tool affects the
workflow of the participants. Do they make less pauses when using the tool? Do
they change the code more often when using the traditional approach? When
do they struggle? To quantify this the measurements presented Section 5.1.2
are analyzed as well as the answers to questions regarding the workload.

GQ3 simply should examine if using the tool saves time compared to the
coding approach. Saving time when creating programs means more time for
other work, which especially for users of the primary target group (see Sec-
tion 3.1.2) is important, because it may not is the major content of their work
or research.

Finally, GQ4 should provide insights into the usability of the tool. This
can be derived by asking feedback questions to the participants as well as by
analysing the workflow during the experiment (see Section 5.1.2).

5.1.2 Study Design and Procedure
A cross over design was used for the experiment splitting the participants
into two groups. Therefore, two different use cases were designed, which are
described in Section 5.1.3. For the first use case, one group worked with the
tool and the other group was asked to implement a code for the same use case.
For the second use case roles were switched and participants which had worked
with the tool had to write a code and vice versa.

For the coding task the group was supported by material covering explanation
of the necessary ROS concepts including examples. Furthermore a list of the
necessary ROS specifications (topics, services, actions, messages etc.) was
provided. The participants were asked to use a customized code editor, which
was able to perform basic measurements. They were free to choose whether
implementing in Python or C++. This instrumentation ensures that the results
and measurements of both tasks are compareable in terms of exploring the
impact of programming knowledge.

All materials, also including the task description of the use cases and the ques-
tionnaires used to collect data, were reviewed by a colleague not participating
in the experiment in advance to guarantee its understandability and soundness.
All the study materials can be found in Appendix E. At the beginning of
the experiment the tool was introduced using a short live demo showing all
concepts and how the tool and the code editor, respectivley, should be used.
The participants worked on each task for a total of 30 minutes.

5 Evaluation 5.1 Experiment Setup 50

5.1.3 Use Cases
This section presents the use cases the participants were asked to work on. It
starts with the description of each use case, then the required ROS specifications
are explained and finally flowcharts for better understanding are presented. The
use cases were designed to be compareable in terms of complexitivity, which in
this context is quantifed by the amount, type and distribution of different ROS
communication patterns as well as the total amount of ROS message calls.

Learning a new object

The first task the participants were asked to work on was a behaviour, which is
already implemented on HOBBIT: learning a new object. The use case can be
described as follows: First HOBBIT should grab the turntable from its storing
position. Then a message on its tablet should be shown to ask the user to
put an object on the table. After the user confirmed the placement, HOBBIT
should look at the object on the turntable and tell the user "I’m learning a new
object" via its tablet interface. The table should turn clockwise first, before the
user should be asked to place the the object upside down on the table. Again,
the robot should wait for confirmation, then telling "I’m learning a new object"
wihle rotating the table counterclockwise. After that, the user should be asked
to remove the object and confirm this. Then HOBBIT should look straight,
store the table and ask for the name of the object. Finally HOBBIT should
show a happy emotion and tell "Thank you, now I know what X is", where X
is the name of the object. The whole desired workflow is visualed in Figure 5.1.
Furhter, Table 5.1 breaks down the complexitivity of the first use case. It is
necessary to publish to two different topics, implementing one action client and
calling one service.

Action Type Specification Calls
Move head Topic /head/move 2
Show emotion Topic /head/emo 1
Move arm Action hobbit_arm 4
User interaction Service /MMUI 7

Table 5.1: ROS patterns used for implementing first use case

5 Evaluation 5.1 Experiment Setup 51

Start

Grab turntable

"Please put
an object on
the table"

Wait for user
confirmation

Look to table

"I am learning
a new object"

Turn table
clockwise

"Place the
object upside

down on
the table"

Wait for user
confirmation

"I am learning
a new object"

Turn table
clockwise

"Please remove
the object"

Wait for user
confirmation

Store table

Look straight

Ask for name
of object

Show happy
emotion

"Thank you,
now I know
what [XY] is"

Stop

Figure 5.1: Flowchart of first use case

5 Evaluation 5.1 Experiment Setup 52

Bringing objects from another person

The second task was to implement a programm to ask the user repetitively
if HOBBIT should bring an object from another person, which is located at
another place. First, the user should be asked which objects should be picked
up (e.g. "Which object do you want?"). The user then should use the robot’s
tablet to enter the name of the requested object. After that, HOBBIT should
navigate to the second person. The exact location, specified by the coordinates
and pose, was provided in advance to the participants. The second user then
should be asked to handover the desired object. If it is answerd positively, the
object should be placed on HOBBIT tray and the robot navigates back to its
previous location telling the user "Here you are" and placing the object on the
table. If the object has not been handed over, an appropriate message should
be displayed on the tablet (e.g. "I’m sorry, your partner couldn’t handover
the object") after navigating back. Afterwards the user should be asked, if
HOBBIT should bring another item. The whole procedure should be performed
as long as the user does not request another object. After the final decline
HOBBIT should show a happy emotion again. For a better understanding
Figure 5.2 provides the flowchart of this use case.

Table 5.2 breaks down the complexitivity of this use case. It is necessary to
publish to one topic, make calls from two different action clients and use one
service. So the number of different ROS communication types is equal to the
first use case. The total number of necessary calls differ slightly (14 in the first
use case, 13 in the second). This should be compensated by asking participants
to implementing just one action server for the first use case and publishing to
two topics (compared to two actions and one topic for the second use case),
since this actions are seen as the most difficult ROS pattern and topics the
most simple ones.

Action Type Specification Calls
Show emotion Topic /head/emo 1
Move arm Action hobbit_arm 4
Navigation Action move_base_simple 2
User interaction Service /MMUI 6

Table 5.2: ROS patterns used for implementing first second case

5 Evaluation 5.1 Experiment Setup 53

Start

"Which object
do you want?"

Navigate
to User B

"Would you
please give
me [XY]?"

Object
handed
over?

Navigate
to User A

"I am sorry,
[XY] wasn’t
handed over."

"Please place
object on tray"

Wait for user
confirmation

Navigate
to User A

Place object
on table

"Here you are"

"Should I
bring you

another object"

Object
re-

quested?

Show happy
emotion

Stop

no

yes

no

yes

Figure 5.2: Flowchart of second use case

5 Evaluation 5.1 Experiment Setup 54

5.1.4 Measurements
Two types of measurements were included into the evaluation process. First,
quantitative measurements were performed while the partcipants were working.
Then they were asked to answer a questionnaire after they completed both tasks.
The questions can be classified into four categories: demographic factors (DF),
experience questions (EQ), feedback questions (FQ) and workload questions
(WQ). Each of them are discussed in the following.

Quantitative Measurements

While working on the use cases two measurements are performed for each
participant: total time (the time to accomplish tasks) and pauses. A duration
is considered as pause if the programm does not change within two seconds. The
measurements are performed for both tasks, working with Rockly and coding.
For this purpose a routine using the Blockly API was implemented, which
listens to changes in the tool’s workspace - i.e. creating, updating or deleting
blocks. The provided editor was also customized with a feature, which recorded
the timestamps of changes. At the start of each task the participants had to
click on a Start button, which started the timer. It was stopped, when the
participant clicked the Stop button. The implemented function then submitted
the following information:

• Participant ID: a randomly generated alphanumeric ID to assign submis-
sions

• Total time taken to accomplish task

• Timestamps of pauses

• Type of submission (tool or code)

• Content of submission (e.g. full code)

Demographic Factors

Demographic questions are designed to help survey researchers determine
what factors may influence a respondent’s answers, interests, and opinions.
Participants of this experiment were asked the following questions:

• DF1 : What is your age?

• DF2 : What is your highest qualification?

5 Evaluation 5.1 Experiment Setup 55

• DF3 : What is your current employment status?

• DF4 : What is your current field of work/study?

DF1 was asked to roughly determine the participant’s knowledge and experience.
The possible answers ranged from under 18 to above 44. A more detailed
information regarding the general knowledge of the participant is delivered by
question DF2. The possible answers were: less than high school, high school
diploma or equivalent degree, bachelor’s degree, master’s degree, higher than
master’s degree, no degree. Questions DF3 and DF4 were asked to determine
whether a participant has experience in any related field and, if so, how much.
Additionally, the answers to the demographic questions are used to check
whether the participants have met the assumed requirements (Section 5.1.5).

Experience Questions

The main motivation for having experience questions is that they enable the
correlation between results of the experiment and the experience for each
participant. The following questions were asked to collect this information:

• EQ1 : How much experience do you have with ROS?

• EQ2 : How much experience do you have with programming in C++/Python?

• EQ3 : How much experience do you have with programming in general?

• EQ4 : How much experience do you have with block-based VPLs (e.g.
Blockly)?

A scale including the answers none, moderate and expert was used. The answers
can easily be mapped onto a numeric scale. The set of answers was also chosen
to be that limited to minimize the variability of the answers. The questions are
structured according to the level of abstraction. In particular EQ1 was chosen
since the implemented tool provides an environment which should support
people without detailed knowledge of ROS. Experience with ROS therefore
could influence the outcome of the experiment. Another influence could be the
programming experience in C++ and Python, which are the main languages
for programming ROS nodes (see EQ2). Especially when comparing the
results of the coding task, this could explain differences. General programming
experience may not influence the coding task, but could decrease the effort
when working with the tool - e.g. when looking at the participants’ pauses
(see EQ3). Participants with experience in block-based languages are expected
to find their way through the Rockly workspace more easily than novices (see
EQ4).

5 Evaluation 5.1 Experiment Setup 56

Feedback Questions

The motivation for asking feedback questions is to get subjective feedback
from each participant which should help, together with the analysis of the
other mentioned measurements, to answer all the goal questions presented in
Section 5.1.1. The following feedback questions were asked:

• FQ1 : Do you think such a tool saves time compared to your current
approach?

• FQ2 : Do you think such a tool allows more flexibility compared to your
current approach?

• FQ3 : Do you think such a tool provides scalable solutions for tasks you
are facing in your work?

• FQ4 : Do you think the usage of the tool is intuitive?

• FQ5 : Do you think the clustering of the blocks into categories is reason-
able?

• FQ6 : Do you think the the tool provides a pleasant way to maintain
programs?

The scale used for the questions included the following possbile answers: Strongly
disagree, Disagree, Neutral, Agree, Strongly agree. Again, the motivation for
choosing this set of answers was to minimize the variability of answers. Espe-
cially when looking on GQ1, the feedback questions play a crucial part in this
experiment.

FQ1 should find out if such a tool is seen as an assistance for topics the par-
ticipants are facing during their work. As mentioned, programming a robot is
not necessarily the main topic in research projects. Having a tool, which speeds
up subtasks, allows to spend more time on more crucial tasks. The subjective
answers to this question can also be compared to the result of the measurements.

FQ2 targets the flexibility of the tool, e.g. when thinking of creating different
demos. It basically gives insights on how much complexitivity can be put into
demos when implementing them with the tool.

Similar to that question, FQ3 would also affect the judgement if the tool is
seen as an improvement or not. If solutions can not be implemented flexible and

5 Evaluation 5.1 Experiment Setup 57

scalable enough, more research is required to further improve the presented tool.

Finally, FQ4, FQ5 and FQ6 should find out how intuitive the usage of the
tool is regarding a participant’s subjective feeling. Having an intuitive tool
and workflow helps a visual programming tool to be accepted by potential
users. Experienced users probably would tend to use it over self-implemented
code because it saves time and unexperienced users may faster understand
programming concepts.

Workload Questions

Besides getting direct feedback from participants another approach, judging how
useful and intuitive a tool is, can be measuring the workload a participant felt
during working with it. Because of that, another set of questions was included
in the evaluation process. It is based on the NASA Task Load Index (NASA-
TLX)[32], which consists of six subscales that represent somewhat independent
clusters of variables: mental demand, physical demand, temporal demand,
frustration, effort and performance. The assumption is that some combination
of these dimensions are likely to represent the workload experienced by most
people performing most tasks. The following four workload questions were
asked for both tasks, working with the tool and writing a code:

• WQ1 : How mentally demanding was the task?

• WQ2 : How much time pressure did you feel during the task?

• WQ3 : How hard did you have to work to accomplish your level of
performance?

• WQ4 : How insecure, discouraged, irritated, stressed and annoyed were
you?

The number of questions was limited to four, because two clusterd variables -
namely, physical demand and performance - are not seen to be required in the
scope of the chosen experiment setup. First, it can be expected that working
with a software tool is not considered to be physically demanding. Second,
the participants could not rate their performance properly because debugging
and testing is not supported by the experiment setup. Further adaption was
done in respect of the number of possible answers. In the official NASA-TLX
paper and pencil version1 increments of high, medium and low estimates for
each point result in 21 gradations on the scales. To minimize the variability of

1https://humansystems.arc.nasa.gov/groups/TLX/downloads/TLXScale.pdf

5 Evaluation 5.2 Results 58

answers only a scale with five gradations (Very low, Low, Medium, High, Very
high) was used.

5.1.5 Participants
Since the developed tool targets people with basic to moderate programming
skills, this was a major requirement to be included in the study in order to
get reasonable results. Furthermore, partcipants had to have at least basic
knowledge of ROS and its communication patterns in order to compare their
efforts when working on the different tasks. To fulfill this conditions the study
was conducted within the scope of the course "Selected Topics - Robotics and
Computer Vision" course held by the V4R group of the automation and control
institute at the TU Wien. Participants were all undergraduate students and
received course credits for their participation. Ten participants (all males)
completed the study. Eight of them were between 18 and 24 ages old, two were
between 25 and 34. The detailed results of the demographic factors are listed
in Appendix D.

5.2 Results
This section presents the results of the experiment. At first a quantitative
analysis is performed comparing the results of the Rockly tool against the
traditional coding approach. After that follows the examination of the ques-
tionnaire, including the experience, feedback and workload questions as well as
the textual feedback.

5.2.1 Quantitative Analysis
As described in Section 5.1.2 the participants were provided with a customized
editor for each task, which collected several data, including pauses, task execu-
tion time and the solution itself. This data is used to perform a quantitative
analysis on the results. First, the solutions are analyzed in order to evaluate
whether using the developed tool increases the sucess rate. And if so, if solu-
tions can be found even faster by using it. Then a deeper look is provided by
analysing the workflow of the participants. This is achieved by analysing the
pauses they made during working on the tasks.

Success rate

At the first step the overall success rate for each use case is examined. This
simply means that the submitted solution of each participant is checked for

5 Evaluation 5.2 Results 59

semantic correctness as well as for feasibility. Table 5.3 and Table 5.4 show the
outcomes of both use cases for each participant’s solutions with and without the
Rockly tool. 90% of the participants submitted at least an executable code when
using Rockly, which means all used blocks were connected syntactically correct
within the workspace of blocky. Furthermore, seven out of the ten participants
were able to produce a program which would lead to correct behaviour of the
robot. The success rate of participants using the manual approach - meaning
they have to manually implement the code - is 0. Moreover, nobody was
able to provide an executable solution, i.e. the codes of all partcipants were
syntactically wrong. Furthermore, none of the participants’ coding solutions
included all necessary ROS communication calls (as listed in Table 5.1 and
Table 5.2). The tables also show the time each participant needed to come up
with a solution along with the average task completion time for each task. If
only the successful cases (executable and correct behaviour) are considered, the
average task completion time for both use cases is 13:56 when using Rockly.

Participant Executable Correct Time
A 7 7 20:37
B 7 7 30:51
C 7 7 19:48
D 7 7 30:54
E 7 7 28:13

0% 0% 26:05
(a) Coding solutions

Participant Executable Correct Time
F X X 10:52
G X X 10:55
H X X 08:16
I X X 14:44
J X X 06:37

100% 100% 10:17
(b) Tool supported solutions

Table 5.3: Outcomes of participants solutions for first use case2

Pauses

As discribed in Section 5.1.2, both editors tracked changes during the partic-
ipants were working. Pauses are identified as such if there was no change of
the programm within at least two seconds. The distributions of the pauses,
clustered into 5-seconds-interval-bins, are shown in Figure 5.3. For both tasks
the majority of the pauses lasted for under 10 seconds - 68.7% when the partic-
ipants were manually coding and 72.3% when they were supported by Rockly.
But there is a big difference when considering longer pauses: 7 pauses with
a duration of more than 60 seconds were recorded when participants worked
with Rockly, which is equal to only 1%. This is significantly less than the

1Time format: MM:SS

5 Evaluation 5.2 Results 60

Participant Executable Correct Time
F 7 7 29:06
G 7 7 30:55
H 7 7 29:37
I 7 7 25:59
J 7 7 28:18

0% 0% 28:47
(a) Coding solutions

Participant Executable Correct Time
A X 7 22:18
B X 7 24:53
C 7 7 13:04
D X X 23:38
E X X 22:25

80% 40% 21:16
(b) Tool supported solutions

Table 5.4: Outcomes of participants solutions for second use case2

number (59) and share (7.4%) when looking at the pauses for the same interval
when participants were coding. To demonstrate this, optionally, a histogram
using bigger sized 20-seconds-interval-bins is shown in Figure 5.4. This could
be influenced by the fact, that the participants had to go through the ROS ref-
erence of the robot in order to figure out the required commands and messages.
Furthermore, it is reasonable to assume, that they also needed time to get
familiar with the implementation of the ROS communication patterns. Overall,
the longest recorded pause was 117.5 seconds when finding a tool supported
solution and 1093.1 when there was no support.

Finally, Figure 5.6 and Figure 5.5 present the workflow diagrams for both
tasks. The pauses are normalized for all partcipants along the x-axis and the
y-axis shows the corresponding cummulated share of the pauses’ durations. For
example, the workflow of User C (black line in Figure 5.6) indicates, that the
participant made few pauses, while the duration of one pause contributes nearly
a hundred percent to the total pause time. When comparing both graphs, it
can be observed that the workflow follows a very similar, linear pattern across
all participants. This implies that Rockly enabled the participants to work
more straight forward compared when they were coding.

5 Evaluation 5.2 Results 61

0 25 50 75 100 125 150 175 200
duration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

de
ns

ity
Pauses during task execution

code
blockly

Figure 5.3: Distribution of pauses clustered into 5s intervals cummulated for
both use cases (>200s not shown)

0 25 50 75 100 125 150 175 200
duration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

de
ns

ity

Pauses during task execution
code
blockly

Figure 5.4: Distribution of pauses clustered into 20s intervals cummulated for
both use cases (>200s not shown)

5 Evaluation 5.2 Results 62

0.0 0.2 0.4 0.6 0.8 1.0
normalized pauses

0.0

0.2

0.4

0.6

0.8

1.0
cu

m
ul
at
ed

 sh
ar
e
of
 p
au

se
 d
ur

at
io
ns

User A
User B
User C
User D
User E
User F
User G
User H
User I
User J

Figure 5.5: Workflow diagrams for participants’ tool supported solutions (both
use cases)

0.0 0.2 0.4 0.6 0.8 1.0
normalized pauses

0.0

0.2

0.4

0.6

0.8

1.0

cu
m
ul
at
ed

 sh
ar
e
of
 p
au

se
 d
ur

at
io
ns

User A
User B
User C
User D
User E
User F
User G
User H
User I
User J

Figure 5.6: Workflow diagrams for participants’ coding solutions (both use
cases)

5 Evaluation 5.2 Results 63

5.2.2 Self-report Questionnaire
After completing both tasks, the participants were asked to answer a question-
naire containing demographic, experience, feedback and and workload questions.
The following sections presents the results for the most important categories.
The results of the demographic factors are listed in Appendix D.

Experience

As described in Section 5.1.4 the experience levels of the participants are
mapped onto a numeric scale, which can be seen in Table 5.5. The results of
the questions are shown in Figure 5.7 and Table 5.6 lists the average experience
and variance among all participants for each question. Almost all participants
have moderate experience with ROS (EQ1) and everyone has a moderate
experience with the relevant programming languages (EQ2). The experience
level regarding programming in general (EQ3) is slightly higher, while only
three have had experience with any VPL before attending the experiment
(EQ4).

Experience Value
None 1

Moderate 2
Expert 3

Table 5.5: Experience scale to numeric value mapping

Question Average Variance
EQ1 1.90 0.09
EQ2 2.00 0.00
EQ3 2.20 0.16
EQ4 1.30 0.21

Table 5.6: Mean and variance per experience question

Feedback

For analysis of the feedback questions a numeric mapping of the feedback scale
defined in Section 5.1.4 was used and is listed in Table 5.7. Figure 5.8 shows
the results of the feedback questions and Table 5.8 shows the question-wise

5 Evaluation 5.2 Results 64

EQ1
ROS

EQ2
C++/Python

EQ3
General

EQ4
VPLs

None

Moderate

Expert Answers
Mean
Variance

Figure 5.7: Results of the experience questions defined in Section 5.1.4

summary. The participants agree that using the tool saves time compared to
their current approach (FQ1), think the usage of it is intuitive (FQ4) and the
clustering of the blocks is reasonable (FQ5). Most of the participant also agree
that the tool provides a pleasant way to maintain programs, but there is broad
variance (FQ6). An even broader variance is found when asking, if the tool
provides scalable solutions, so there is a neutral overall feedback for FQ3. The
participants tend to disagree that such a tool allows more flexibility compared
to their current approach (FQ2). The textual feedback goes along with this.
One participant noted, that lacking the option to create multiple nodes is a
big disadvantage.

Feedback Value
Strongly agree 5

Agree 4
Neutral 3
Disagree 2

Strongly disagree 1

Table 5.7: Feedback scale to numeric value mapping

5 Evaluation 5.2 Results 65

Question Average Variance
FQ1 3.9 0.49
FQ2 2.2 0.36
FQ3 2.9 0.89
FQ4 4.2 0.36
FQ5 4.0 0.2
FQ6 3.4 0.84

Table 5.8: Mean and variance per feedback question

FQ1
Time saving

FQ2
Flexibility

FQ3
Scalability

FQ4
Intuitiveness

FQ5
Categories

FQ6
Maintainability

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

Answers
Mean
Variance

Figure 5.8: Results of the feedback questions defined in Section 5.1.4

Workload

The participants were asked four different questions regarding their workload
(see Section 5.1.4) for each task they faced. The mapping for the possible
answers are listed in Table 5.9. Table 5.10 shows the calculated mean and
variance per question and Figure 5.9 a graphical summary for each participant’s
answers. It can be stated, that for each subscale chosen from the NASA-TLX
template, the workload tends to be low when finding a solution with the
developed tool and high without it.

5 Evaluation 5.2 Results 66

Workload Value
Very low 1

Low 2
Medium 3
High 4

Very high 5

Table 5.9: Workload scale to numeric value mapping

Code Tool supported
Question Average Variance Average Variance
WQ1 3.8 0.56 2.4 0.84
WQ2 4.0 1.0 2.1 1.09
WQ3 3.6 0.44 2.2 0.96
WQ4 3.7 0.81 1.9 0.89

Table 5.10: Mean and variance per workload question

WQ1
Mental

WQ2
Temporal

WQ3
Effort

WQ4
Frustration

Very low

Low

Medium

High

Very high

Answers Mean Variance Tool Code

Figure 5.9: Results of the workload questions defined in Section 5.1.4

5 Evaluation 5.3 Discussion 67

5.3 Discussion
In the following the goal questions of the experiment as stated in Section 5.1.1
are answerd and discussed. The primary goal of the evaluation was to find out
if the developed tool is seen as an improvement compared to the traditional
coding approach (GQ1). Then, the workflow should be analyzed, in order to
evaluate if participants make less pauses when using the tool (GQ2), as well as
a general comparison of the task completion times (GQ3). Finally, the usabil-
ity of Rockly should be evaluated by asking, if the usage of it is intuitive (GQ4).

GQ1 - The results suggest that the tool is seen as a more effective solution
(time-wise) compared the traditional coding approach

Analysing the answers of the feedback questions GQ1 can be answerd posi-
tively considering time effectiveness. The lack of flexibility (FQ2) may lead to
the conclusion that the tool is not suitable for complex applications. Moreover,
if considering FQ2 and FQ3 as representing questions for this case, there is
a negative correlation between experience and feedback (Figure 5.10). Be-
cause of the small sample size two data points occured multiple times. They
are marked as multiple votes in the diagram. However, this disadvantage was
already considered during the architectural design of the tool (see Section 3.2.4).

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2
Overall experience

1.0

1.5

2.0

2.5

3.0

3.5

Av
er
ag
e
fe
ed
ba
ck
 o
f F
Q2

 a
nd

 F
Q3

single votes
multiple votes

Figure 5.10: Experience to feedback correlation

5 Evaluation 5.3 Discussion 68

GQ2 - Participants made less pauses when they used the tool compared to
coding

When looking at the results of the quantitative analysis (Section 5.2.1) it
can be stated, that working with the tool ensures a more fluent workflow than
coding. This is supported by the results of the workload questions (Figure 5.9).
Therefore, GQ2 can be answerd positively.

GQ3 - It took partcipants significantly less time to find a solution when they
were supported by the tool

The question, if using the tool saves time compared to the coding approach
(GQ3), can be answerd by using the results of the total time measurements
Section 5.1.4 along with the sucess rate of the participants for both tasks
(Section 5.2.1). It took participants significantly less time to come up with a
tool supported solution than a code based solution. The average task completion
time cumulated for both use cases was 15:46 when using Rockly and 27:26
without it. Moreover, all of the tool supported solutions were executable while
100% (first use case) and 40% (second use case), respectively, are implement
correctly. In contrast, 0% of the submitted code solutions were executable and
correct. Therefore, GQ3 can be answerd positively.
The fact, that the use cases were not hundred-percent identical, must be

considered too. Although it was taken care of that during designing the study
(Section 5.1.2), the results implies that there may be a bias. Participants
working with the tool for the second use case needed more then twice the
time to come up with a solution than the ones working with it during the first
one. A possible reason for this is the task description, as this was claimed
by a participant via the textual feedback. Additionally, the low number of
partcipants (N=10) could have an influenced the results.

GQ4 - Partcipants consider the tool to be intuitive

GQ4 can also be answerd positively, based on the feedback questions FQ4,
FQ5 and FQ6. Most of the partcipants agreed that the tool is intuitive, the
clustering of the blocks into categories is reasonable and the tool provides a
pleasant way to maintain programs. The workflow analysis (Figure 5.5 and
Figure 5.6) also indicates, that the participants were abble to work more
streamlined compared when they were supported by Rockly.

Along with the other observations, it can be concluded, that Rockly enabled
all partcipants to work more continuously to find a tool supported solution
significantly faster than by coding, which in most cases was executable and

5 Evaluation 5.3 Discussion 69

correct.

6 Conclusion and Future Work
This chapter summarizes the design as well as the implementation of Rockly,
the tool presented by this work. Additionally, the most important results of
the evaluation study are mentioned along with possible further improvements
to enable more flexible and scalable applications.

6.1 Conclusion
This thesis presented the design, implementation and evaluation of a graphical
user interface for programming ROS-based robots - called Rockly. Based on
the requirements a suitable design and architecture was choosen according to
the following points: complexity and sclability of applications, required robot
and technical know-how, implementation affort, usability and maintainability.
The first option was to provide a customized API abstracting ROS commu-
nication patterns for Python and/or C++. This approach would have given
the opportunity to use it even for complex applications. A similar result was
found when considering to create an API on-top of the SMACH package. Since
the required technical skills are high for both of this approaches, developing a
graphical user interface, build on a block-based VPL framework (Blockly), was
then considerd to be the best fit.

A server-client architecture was chosen to provide remote control when pro-
gramming the robot. The front end on the client side was implemented as a
web-based application in order to not require the user to install any additional
software. The back end of the tool, running on the robot, coordinates the
communication and code execution. The user interface consits of a section for
managing demos, an graphical editor for creating demos and a block configura-
tor to manage and create customized blocks. Especially the last can be seen as
the major improvement compared to commonly used graphical programming
tools, since it enables the user to create blockls for any ROS-based robot
without requiring any knowledge about Blockly and re-building it.

A user study, including the implementations of two use cases, was performed
to evaluate the tool regarding its ability to support users while programming a
robot, namley HOBBIT. First, the participants had to implement a solution,

70

6 Conclusion and Future Work 6.2 Future Work 71

which let HOBBIT learn a new object. Half of the group worked with the tool,
the others had to find a solution by traditional coding. Then, the roles were
switched, and participants were asked to implement a behaviour to let HOBBIT
repeatedly ask a user to pick up an object. During the implementation the
timestamps of pauses (indicated as such if there was no change within the
workspace for at least two seconds) and the task completion time were measured.
After completing both tasks, self-report questionnaires were filled out by the
group.
Although the number of participants (N=10) may have been statistically

not significant, the results indicate, that a tool supported solution was found
much faster and with less errors than using the traditional coding approach.
The overall success rate when using Rockly was 60%, compared to 0 when
participants had to code. On average, when using the tool, participants were
nearly 16 minutes faster than coding for the first use case and about 7,5 minutes
faster for the second one. Moreover, it was observed that when using the tool
the workflow was more streamlined, indicated by the number, durations and
distribution of pauses they made during work.

Based on the evaluation it can be stated, that using Rockly basic demon-
stration programs - such as the presented use cases - can be implemented
faster compared to the classic coding approach. Using the tool requires less
programming knowledge as well as little robot specific expertise to build such
demos. Furhtermore, the results also implies, that Rockly is an intuitive tool
which could be used for educational purposes.

6.2 Future Work
All the presented functionalities and evaluation were implement on the HOBBIT
PT2 robot only. Therefore, the first step to generlize the capabilities of Rockly
for other robots, the source code must be transferred to them and tested there.
This was out of scope of this thesis. Second, the evaluation study setup only
included people with programming and ROS experience. In order to evaluate if
and how programming and robotics novices profit from Rockly, further studies
with proper setups are reasonable.

Using VPLs, especially block-based ones, allows users to become familiar
with programming easily. But hence of a higher abstraction level flexibilty
and scalablity may be restricted as well as the ability to use it for complex
applications. Right now it may be mainly used for basic robot programming
tasks, for example for educational purposes or quick demos. In order to enlarge

6 Conclusion and Future Work 6.2 Future Work 72

its field of application not only commands are necessary, meaning the tool
should also be able to create subscriber nodes for listening to ROS topics.
This, for example, can be achieved by extending the functionality of the block
configurator by introducing subscriber blocks.

Thinking of more complex applications it also would be benefitial if multiple
nodes can be created and managed by the tool. While maintaing the usability
of the tool a possible approach to implement this feature, an additional module
on top can be considerd instead of extend the functionalities of the existing
modules. So nodes can be still created with the tool as is was developed
during this thesis and only need to be run parallely. Also some asynchronous
functionality can be considerd in order to create even more complex systems
and establish VPLs also in more advanced fields of robotics.

Appendices

73

A List of Abbreviations
API Application Programming Interface

IDE Integrated Development Environment

NASA-TLX NASA Task Load Index

PLC Programmable Logic Controller

REST Representational State Transfer

ROS Robot Operating System

SDK Software Development Kit

SFC Sequential Function Chart

UI User Interface

VPL Visual Programming Language

XML Extensible Markup Language

74

B Block configuration manual
This appendix shows step-by-step examples for configuring custom blocks using
Rockly’s block configurator for each of the following ROS communication
patterns:

• Topic

• Service

• Action

Custom block publishing to a topic
This example creates a custom block, which sending a message to a ROS based
robot. The filled form is shown in Figure B.1, the final design is shown in
Figure B.2.

Figure B.1: Filled form to create a custom block publishing to a topic

75

B Block configuration manual B Block configuration manual 76

Figure B.2: Resulting custom block using the block configuration shown in
Figure B.1

1 #!/ usr/bin/env python
2 import HobbitLib
3 import rospy
4 from geometry_msgs .msg import Twist
5
6
7 if __name__ == ’__main__ ’:
8 try:
9 DemoNode = HobbitLib .node(’DemoNode ’)
10
11 message =Twist ()
12 message .linear.x=1
13 HobbitLib . importMsg (’geometry_msgs .msg ’,’Twist ’)
14 DemoNode . publishTopic (’/ cmd_vel ’, ’Twist ’, message)
15
16 except rospy. ROSInterruptException :
17 pass

Listing B.1: Examplary generated code using the block shown in Figure B.2

The given title and inputs of the block are can be observed, when looking at
the block. The tooltip only appears on mouseover events. All other information
is used to generate the code. The value of an input - which is passed by
connecting the corresponding input - can be used for the message creation by
putting a placeholder n (with n being the n-th input in the list - counting
top down) to it. It is possible to put any code to the message field, but it is
necessary that it includes an assignment of the message value. Assuming the
value 1 is passed to the input, the code shown in Listing B.1 will be generated.

Custom block calling a service
Within this section the creation of an example block, which calls a service, is
shown. The block can be used to ask a question to the the user and use the
response as output, so that the block can be connected as input to another
block. The configuration form for this block is shown in Figure B.3.

B Block configuration manual B Block configuration manual 77

Figure B.3: Filled form to create a custom block calling a service

Besides the choice to use Service as communication pattern and pass the
service’s response, there’s no noteworthy difference compared to Section B. In
the service-specific section first the service’s name (/MMUI) and message type
(hobbit_msgs/Request) are set, then the request message fields are configured.
There are two different ways of doing that:

• providing a key-value pair, or

• using a code block.

In the first case the key-value pair is just translated into a String containing
the given info. If the latter one is used, it is necessary that the code includes a
explicit assignment of the corresponding request message field. In the given

B Block configuration manual B Block configuration manual 78

example parr is set via a code block. Note that the name of the field is
identically the same as the variable’s name. By the way, the same effect could
be achieved using a key-value pair with the following value:

[Parameter(’type’,’D_YES_NO’),Parameter(’text’,1),Parameter(’speak’,
1)].

Again, using the values of the blocks connected to the inputs can be included
by putting the placeholder to the corresponding field, as explained in Section B.
A exemplary use of the just created custom block is presented in Figure B.4
with Listing B.2 showing the generated code.

Figure B.4: Exemplary us of the custom block created using the block configu-
ration shown in Figure B.3

Custom block using actionlib
Figure B.5 shows how a custom block can be defined, if it is desired that the
block should send a goal to an action server. In this case a block for sending a
command inputed by an another block, e.g. a text block, is created (Figure B.6).
The generated code is shwon in Listing B.3.

The head configuration including the block’s title, tooltip and definition
of inputs is the same as in the previous sections. By selecting Action as a
communication type the actionlib specific configuration fields appears including
the following parameters:

• Timeout: Maximum time to block before returning. A zero timeout is
interpreted as an infinite timeout

• Server: The node handle on top of which we want to namespace our
action

• Action name: Defines the namespace in which the action communicates

• Goal: The desired goal message to be sent to action server

• Callback functions: Functions that get triggerd by the action server
As for the other communication patterns, it is possible to put any code to the

Gaol field, but it is necessary that it includes an assignment of the goal value.
The callback functions can also include any desired code. The parameters are
passed and can be used as shown in Listing B.3.

B Block configuration manual B Block configuration manual 79

1 #!/ usr/bin/env python
2 import HobbitLib
3 import rospy
4 from hobbit_msgs .srv import Request
5 from hobbit_msgs .srv import RequestRequest
6 from hobbit_msgs .msg import Parameter
7 from std_msgs .msg import Header
8
9 def srv21zxtebqdd3i ():
10 header = Header ()
11 header.stamp = rospy.Time.now ()
12 sessionID =’0’
13 txt=’create ’
14 parr = []
15 p = Parameter (’type ’,’D_YES_NO ’)
16 parr.append(p)
17 p = Parameter (’text ’,’Are you happy?’)
18 parr.append(p)
19 p = Parameter (’speak ’,’Are you happy?’)
20 parr.append(p)
21 reqparams =(header ,sessionID ,txt ,parr)
22 return DemoNode . callService (’/MMUI ’, ’Request ’,

reqparams)
23
24 if __name__ == ’__main__ ’:
25 try:
26 DemoNode = HobbitLib .node(’DemoNode ’)
27 HobbitLib . importMsg (’hobbit_msgs .srv ’,’Request ’)
28
29 print(srv21zxtebqdd3i ())
30
31 except rospy. ROSInterruptException :
32 pass

Listing B.2: Generated code of the block connections shown in Figure B.4

B Block configuration manual B Block configuration manual 80

Figure B.5: Filled form to create a custom block using actionlib

Figure B.6: Exemplary us of the custom block created using the block configu-
ration shown in Figure B.5

B Block configuration manual B Block configuration manual 81

1 #!/ usr/bin/env python
2 import HobbitLib
3 import rospy
4 import actionlib
5 from hobbit_msgs .msg import ArmServerAction
6 from hobbit_msgs .msg import ArmServerGoal
7
8 def donecb_8epgqbnm9ho (status ,result):
9 print status
10 print result
11
12 def activecb_8epgqbnm9ho ():
13 print ’Goal just went active ’
14
15 def feedbackcb_8epgqbnm9ho (feedback):
16 print feedback
17
18
19 if __name__ == ’__main__ ’:
20 try:
21 DemoNode = HobbitLib .node(’DemoNode ’)
22
23 goal = ArmServerGoal ()
24 goal. command .data = ’MoveToHome ’
25 goal. velocity = 0.0
26 goal.joints = []
27 HobbitLib . importMsg (’hobbit_msgs .msg ’,’

ArmServerAction ’)
28 client = actionlib . SimpleActionClient (’hobbit_arm ’,

ArmServerAction)
29 client. wait_for_server ()
30 client. send_goal (goal , done_cb = donecb_8epgqbnm9ho ,

active_cb = activecb_8epgqbnm9ho , feedback_cb =
feedbackcb_8epgqbnm9ho)

31 client. wait_for_result (rospy. Duration . from_sec
(10.0))

32
33 except rospy. ROSInterruptException :
34 pass

Listing B.3: Generated code of the block connections shown in Figure B.6

C HOBBIT block set overview
The blocks of Rockly’ toolbox are divided in the following categories:

• Custom Blocks: all blocks which are created with the block configuraton
interface (Section 4.3)

• Move: blocks to move HOBBIT

• Arm Control: blocks, which allows to move HOBBIT’s arm

• Interaction: any form of blocks, which allows HOBBIT to communicate
with the user

• Logic: collection of Blockly’s predefined logic blocks

• Loop: collection of Blockly’s predefined looping blocks

• Math: collection of Blockly’s predefined math blocks

• Text: collection of Blockly’s predefined text blocks

• Lists: collection of Blockly’s predefined list blocks

• Variables: a category to create and use variables

• Functions: a category to create and use functions

This section contains an overview of all blocks created for HOBBIT’s interface,
a description of Blockly’s predefined blocks can be found in [33].

82

C HOBBIT block set overview C HOBBIT block set overview 83

Block Description

Undock HOBBIT from charger
Move HOBBIT in the given
direction

Navigate to given pose

Rotate HOBBIT in the given
direction
Move HOBBIT’s arm to the
given position
Perform the given action with
the turntable
Open or close the gripper
Show an info on HOBBIT’s
tablet
Show an info on HOBBIT’s
tablet and wait for
confirmation
Get user’s answer to a yes/no
question
Display the given question on
HOBBIT’s tablet and get
user’s answer
Move HOBBIT’s head to the
given position
Set HOBBIT’s eyes according
to the given emotion

D Results of Demographical
Questions

The answers and results of the demographical questions asked during the
experiment (Section 5.1.4) are shown in Table D.1.

User DF1 DF2 DF3 DF4

A 18-24 High school diploma
or equivalent degree

Part-time
employment

Electrical
engineering

B 18-24 Bachelor’s degree Student Software
engineering

C 25-34 High school diploma
or equivalent degree Student Electrical

engineering

D 18-24 High school diploma
or equivalent degree Student Electrical

engineering

E 18-24 High school diploma
or equivalent degree Student Electrical

engineering

F 25-34 High school diploma
or equivalent degree

Part-time
employment

Electrical
engineering

G 18-24 High school diploma
or equivalent degree Student Electrical

engineering

H 18-24 High school diploma
or equivalent degree Student Electrical

engineering

I 18-24 High school diploma
or equivalent degree Student Electrical

engineering

J 18-24 High school diploma
or equivalent degree Student Electrical

engineering

Table D.1: Results of demographical questions for all participants

84

E Experiment materials
This sections presents all the materials used for the experiment including task
descriptions, explanation of the necessary ROS concepts with examples and
the necessary ROS specifications. The last two were provided by a webpage.

Task descriptions
First use case: Learning a new object - Coding
The use case which should be implemented can be described as follows: First
Hobbit should grab the turntable from its storing position. Then a message on
its tablet should be shown to ask the user to put an object on the table. After
the user confirmed the placement, Hobbit should look at the object on the
turntable and tell the user "I’m learning a new object" via its tablet interface.
The table should turn clockwise first, before the user should be asked to place
the the object upside down on the table. Again, the robot should wait for
confirmation, then telling "I’m learning a new object" wihle rotating the table
counterclockwise. After that, the user should be asked to remove the object
and confirm the action. Then Hobbit should look straight, store the table and
ask for the name of the object. Finally Hobbit should show a happy emotion
and tell "Thank you, now I know what X is", where X is the name of the object.
The desired workflow is visualed in

Please implement a solution using the provided code editor, which lets Hobbit
show the desired behaviour, with respect to the following conditions:

• Do exclusively use the provided editor for implementing your solution

• Start working by clicking the "Start" button of the interface

• Do not close the graphical editor during your work

• Click the "Stop" button when you finished implementation

• Click "Submit" to submit your solution

85

E Experiment materials E Experiment materials 86

Start

Grab turntable

"Please put
an object on
the table"

Wait for user
confirmation

Look to table

"I am learning
a new object"

Turn table
clockwise

"Place the
object upside

down on
the table"

Wait for user
confirmation

"I am learning
a new object"

Turn table
clockwise

"Please remove
the object"

Wait for user
confirmation

Store table

Look straight

Ask for name
of object

Show happy
emotion

"Thank you,
now I know
what [XY] is"

Stop

Figure E.1: Flowchart of first use case

E Experiment materials E Experiment materials 87

First use case: Learning a new object - Tool supported
The use case which should be implemented can be described as follows: First
Hobbit should grab the turntable from its storing position. Then a message on
its tablet should be shown to ask the user to put an object on the table. After
the user confirmed the placement, Hobbit should look at the object on the
turntable and tell the user "I’m learning a new object" via its tablet interface.
The table should turn clockwise first, before the user should be asked to place
the the object upside down on the table. Again, the robot should wait for
confirmation, then telling "I’m learning a new object" wihle rotating the table
counterclockwise. After that, the user should be asked to remove the object
and confirm the action. Then Hobbit should look straight, store the table and
ask for the name of the object. Finally Hobbit should show a happy emotion
and tell "Thank you, now I know what X is", where X is the name of the object.
The desired workflow is visualed in Figure E.1.

Please implement a solution using the Blockly editor, which lets Hobbit show
the desired behaviour, with respect to the following conditions:

• Start working by clicking the "Start" button of the interface

• Do not close the graphical editor during your work

• Click the "Stop" button when you finished implementation

• Click "Submit" to submit your solution

• Each block provides a help page - it is accessible via right click → Help

Second use case: Bringing objects from another person -
Coding
The use case which should be implemented can be described as follows: Hobbit
should be repetitively asking User A if it should bring an object from User B,
which is located at another place. First the user should be asked which objects
should be picked up (e.g. "Which object do you want?"). User A then should
use the robot’s tablet to enter the name of the requested object. After that,
Hobbit should navigate to the User B. User B then should be asked to handover
the desired object. If it is answerd positively, the object should be placed on
Hobbit’s tray and the robot navigates back to its previous location telling User
A "Here you are" and placing the object on the table. If the object has not
been handed over, an appropriate message should be displayed on the tablet

E Experiment materials E Experiment materials 88

(e.g. "I’m sorry, your partner couldn’t handover the object") after navigating
back.
Afterwards User A should be asked, if Hobbit should bring another item.

The whole procedure should be performed as long as User A does not request
any other object. After the final decline Hobbit should show a happy emotion.
For a better understanding Figure E.2 provides the flowchart of this use case.
The locations of User A and B can be consired as the following poses:

• User A:
– position:{x:1.0,y:2.0,z:0.0}

– orientation:{x:0.0,y:0.0,z:0.0,w:1.0}

• User B:
– position:{x:14.0,y:-5.0,z:0.0}

– orientation:{x:0.0,y:0.0,z:0.0,w:0.6}

Please implement a solution using the provided code editor, which lets Hobbit
show the desired behaviour, with respect to the following conditions:

• Do exclusively use the provided editor for implementing your solution

• Start working by clicking the "Start" button of the interface

• Do not close the graphical editor during your work

• Click the "Stop" button when you finished implementation

• Click "Submit" to submit your solution

Second use case: Bringing objects from another person -
Tool supported
The use case which should be implemented can be described as follows: Hobbit
should be repetitively asking User A if it should bring an object from User B,
which is located at another place. First the user should be asked which objects
should be picked up (e.g. "Which object do you want?"). User A then should
use the robot’s tablet to enter the name of the requested object. After that,
Hobbit should navigate to the User B. User B then should be asked to handover
the desired object. If it is answerd positively, the object should be placed on
Hobbit’s tray and the robot navigates back to its previous location telling User
A "Here you are" and placing the object on the table. If the object has not

E Experiment materials E Experiment materials 89

Start

"Which object
do you want?"

Navigate
to User B

"Would you
please give
me [XY]?"

Object
handed
over?

Navigate
to User A

"I am sorry,
[XY] wasn’t
handed over."

"Please place
object on tray"

Wait for user
confirmation

Navigate
to User A

Place object
on table

"Here you are"

"Should I
bring you

another object"

Object
re-

quested?

Show happy
emotion

Stop

no

yes

no

yes

Figure E.2: Flowchart of second use case

E Experiment materials E Experiment materials 90

been handed over, an appropriate message should be displayed on the tablet
(e.g. "I’m sorry, your partner couldn’t handover the object") after navigating
back.
Afterwards User A should be asked, if Hobbit should bring another item.

The whole procedure should be performed as long as User A does not request
any other object. After the final decline Hobbit should show a happy emotion.
For a better understanding Figure E.2 provides the flowchart of this use case.
The locations of User A and B can be consired as the following poses:

• User A:
– position:{x:1.0,y:2.0,z:0.0}

– orientation:{x:0.0,y:0.0,z:0.0,w:1.0}

• User B:
– position:{x:14.0,y:-5.0,z:0.0}

– orientation:{x:0.0,y:0.0,z:0.0,w:0.6}

Please implement a solution using the Blockly editor, which lets Hobbit show
the desired behaviour, with respect to the following conditions:

• Start working by clicking the "Start" button of the interface

• Do not close the graphical editor during your work

• Click the "Stop" button when you finished implementation

• Click "Submit" to submit your solution

• Each block provides a help page - it is accessible via right click → Help

E Experiment materials E Experiment materials 91

Explanations and Examples

roscpp is a C++ implementation of ROS. It provides a client library that enables C++
programmers to quickly interface with ROS Topics, Services, and Parameters. roscpp is the most
widely used ROS client library and is designed to be the high-performance library for ROS.

#include "ros/ros.h"
#include "std_msgs/String.h"

#include <sstream>

/**
 * This tutorial demonstrates simple sending of messages over the ROS system.
 */
int main(int argc, char **argv)
{
 /**
 * The ros::init() function needs to see argc and argv so that it can perform
 * any ROS arguments and name remapping that were provided at the command line.
 * For programmatic remappings you can use a different version of init() which takes
 * remappings directly, but for most command-line programs, passing argc and argv is
 * the easiest way to do it. The third argument to init() is the name of the node.
 *
 * You must call one of the versions of ros::init() before using any other
 * part of the ROS system.
 */
 ros::init(argc, argv, "talker");

 /**
 * NodeHandle is the main access point to communications with the ROS system.
 * The first NodeHandle constructed will fully initialize this node, and the last
 * NodeHandle destructed will close down the node.
 */
 ros::NodeHandle n;

 /**
 * The advertise() function is how you tell ROS that you want to
 * publish on a given topic name. This invokes a call to the ROS
 * master node, which keeps a registry of who is publishing and who
 * is subscribing. After this advertise() call is made, the master
 * node will notify anyone who is trying to subscribe to this topic name,
 * and they will in turn negotiate a peer-to-peer connection with this
 * node. advertise() returns a Publisher object which allows you to
 * publish messages on that topic through a call to publish(). Once
 * all copies of the returned Publisher object are destroyed, the topic

* ill b t ti ll d ti d

Introduction

Writing a Publisher Node

E Experiment materials E Experiment materials 92

 * will be automatically unadvertised.
 *
 * The second parameter to advertise() is the size of the message queue
 * used for publishing messages. If messages are published more quickly
 * than we can send them, the number here specifies how many messages to
 * buffer up before throwing some away.
 */
 ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1000);

 ros::Rate loop_rate(10);

 /**
 * A count of how many messages we have sent. This is used to create
 * a unique string for each message.
 */
 int count = 0;
 while (ros::ok())
 {
 /**
 * This is a message object. You stuff it with data, and then publish it.
 */
 std_msgs::String msg;

 std::stringstream ss;
 ss << "hello world " << count;
 msg.data = ss.str();

 ROS_INFO("%s", msg.data.c_str());

 /**
 * The publish() function is how you send messages. The parameter
 * is the message object. The type of this object must agree with the type
 * given as a template parameter to the advertise<>() call, as was done
 * in the constructor above.
 */
 chatter_pub.publish(msg);

 ros::spinOnce();

 loop_rate.sleep();
 ++count;
 }

 return 0;
}

Now, let's break the code down.

The Code Explained

E Experiment materials E Experiment materials 93

#include "ros/ros.h"

ros/ros.h is a convenience include that includes all the headers necessary to use the most
common public pieces of the ROS system.

#include "std_msgs/String.h"

This includes the std_msgs/String message, which resides in the std_msgs package. This is a
header generated automatically from the String.msg file in that package. For more information on
message definitions, see the msg page.

 ros::init(argc, argv, "talker");

Initialize ROS. This allows ROS to do name remapping through the command line -- not
important for now. This is also where we specify the name of our node. Node names must be
unique in a running system.

The name used here must be a base name, ie. it cannot have a / in it.

 ros::NodeHandle n;

Create a handle to this process' node. The first NodeHandle created will actually do the
initialization of the node, and the last one destructed will cleanup any resources the node was
using.

 ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1000);

Tell the master that we are going to be publishing a message of type std_msgs/String on the
topic chatter. This lets the master tell any nodes listening on chatter that we are going to publish
data on that topic. The second argument is the size of our publishing queue. In this case if we
are publishing too quickly it will buffer up a maximum of 1000 messages before beginning to
throw away old ones.

NodeHandle::advertise() returns a ros::Publisher object, which serves two purposes: 1) it
contains a publish() method that lets you publish messages onto the topic it was created with,
and 2) when it goes out of scope, it will automatically unadvertise.

 ros::Rate loop_rate(10);

E Experiment materials E Experiment materials 94

A ros::Rate object allows you to specify a frequency that you would like to loop at. It will keep
track of how long it has been since the last call to Rate::sleep(), and sleep for the correct amount
of time.

In this case we tell it we want to run at 10Hz.

 int count = 0;
 while (ros::ok())
 {

By default roscpp will install a SIGINT handler which provides Ctrl-C handling which will cause
ros::ok() to return false if that happens.

ros::ok() will return false if:

a SIGINT is received (Ctrl-C)
we have been kicked off the network by another node with the same name
ros::shutdown() has been called by another part of the application.
all ros::NodeHandles have been destroyed

Once ros::ok() returns false, all ROS calls will fail.

 std_msgs::String msg;

 std::stringstream ss;
 ss << "hello world " << count;
 msg.data = ss.str();

We broadcast a message on ROS using a message-adapted class, generally generated from a
msg file. More complicated datatypes are possible, but for now we're going to use the standard
String message, which has one member: "data".

 chatter_pub.publish(msg);

Now we actually broadcast the message to anyone who is connected.

 ROS_INFO("%s", msg.data.c_str());

ROS_INFO and friends are our replacement for printf/cout. See the rosconsole documentation
for more information.

 ros::spinOnce();

E Experiment materials E Experiment materials 95

Calling ros::spinOnce() here is not necessary for this simple program, because we are not
receiving any callbacks. However, if you were to add a subscription into this application, and did
not have ros::spinOnce() here, your callbacks would never get called. So, add it for good
measure.

 loop_rate.sleep();

Now we use the ros::Rate object to sleep for the time remaining to let us hit our 10Hz publish
rate.

This tutorial covers how to write a service node in C++.

#include "ros/ros.h"
#include "beginner_tutorials/AddTwoInts.h"

bool add(beginner_tutorials::AddTwoInts::Request &req,
 beginner_tutorials::AddTwoInts::Response &res)
{
 res.sum = req.a + req.b;
 ROS_INFO("request: x=%ld, y=%ld", (long int)req.a, (long int)req.b);
 ROS_INFO("sending back response: [%ld]", (long int)res.sum);
 return true;
}

int main(int argc, char **argv)
{
 ros::init(argc, argv, "add_two_ints_server");

 ros::NodeHandle n;

 ros::ServiceServer service = n.advertiseService("add_two_ints", add);
 ROS_INFO("Ready to add two ints.");
 ros::spin();

 return 0;
}

Now, let's break the code down.

#include "ros/ros.h"
#include "beginner_tutorials/AddTwoInts.h"

Writing a Simple Service

E Experiment materials E Experiment materials 96

beginner_tutorials/AddTwoInts.h is the header file generated from the srv file that we created
earlier.

bool add(beginner_tutorials::AddTwoInts::Request &req,
 beginner_tutorials::AddTwoInts::Response &res)

This function provides the service for adding two ints, it takes in the request and response type
defined in the srv file and returns a boolean.

{
 res.sum = req.a + req.b;
 ROS_INFO("request: x=%ld, y=%ld", (long int)req.a, (long int)req.b);
 ROS_INFO("sending back response: [%ld]", (long int)res.sum);
 return true;
}

Here the two ints are added and stored in the response. Then some information about the
request and response are logged. Finally the service returns true when it is complete.

 ros::ServiceServer service = n.advertiseService("add_two_ints", add);

Here the service is created and advertised over ROS.

This tutorial covers how to write a service client node in C++.

#include "ros/ros.h"
#include "beginner_tutorials/AddTwoInts.h"
#include <cstdlib>

int main(int argc, char **argv)
{
 ros::init(argc, argv, "add_two_ints_client");
 if (argc != 3)
 {
 ROS_INFO("usage: add_two_ints_client X Y");
 return 1;
 }

 ros::NodeHandle n;
 ros::ServiceClient client = n.serviceClient<beginner_tutorials::AddTwoInts>("add_two_int
 beginner_tutorials::AddTwoInts srv;
 srv.request.a = atoll(argv[1]);
 srv.request.b = atoll(argv[2]);

Writing a Simple Service Client

E Experiment materials E Experiment materials 97

Now, let's break the code down.

This creates a client for the add_two_ints service. The ros::ServiceClient object is used to call
the service later on.

beginner_tutorials::AddTwoInts srv;
 srv.request.a = atoll(argv[1]);
 srv.request.b = atoll(argv[2]);

Here we instantiate an autogenerated service class, and assign values into its request member.
A service class contains two members, request and response. It also contains two class
definitions, Request and Response.

 if (client.call(srv))

This actually calls the service. Since service calls are blocking, it will return once the call is done.
If the service call succeeded, call() will return true and the value in srv.response will be valid. If
the call did not succeed, call() will return false and the value in srv.response will be invalid.

This tutorial covers using the simple_action_client library to create a Fibonacci action client. This
example program creates an action client and sends a goal to the action server.

 if (client.call(srv))
 {
 ROS_INFO("Sum: %ld", (long int)srv.response.sum);
 }
 else
 {
 ROS_ERROR("Failed to call service add_two_ints");
 return 1;
 }

 return 0;
}

 ros::ServiceClient client = n.serviceClient<beginner_tutorials::AddTwoInts>("add_two_int

The Code Explained

Writing a Simple Action Client

E Experiment materials E Experiment materials 98

Now, let's break down the code piece by piece.

#include <ros/ros.h>
#include <actionlib/client/simple_action_client.h>
#include <actionlib/client/terminal_state.h>

actionlib/client/simple_action_client.h is the action library used from implementing simple
action clients.

#include <ros/ros.h>
#include <actionlib/client/simple_action_client.h>
#include <actionlib/client/terminal_state.h>
#include <actionlib_tutorials/FibonacciAction.h>

int main (int argc, char **argv)
{
 ros::init(argc, argv, "test_fibonacci");

 // create the action client
 // true causes the client to spin its own thread
 actionlib::SimpleActionClient<actionlib_tutorials::FibonacciAction> ac("fibonacci", true

 ROS_INFO("Waiting for action server to start.");
 // wait for the action server to start
 ac.waitForServer(); //will wait for infinite time

 ROS_INFO("Action server started, sending goal.");
 // send a goal to the action
 actionlib_tutorials::FibonacciGoal goal;
 goal.order = 20;
 ac.sendGoal(goal);

 //wait for the action to return
 bool finished_before_timeout = ac.waitForResult(ros::Duration(30.0));

 if (finished_before_timeout)
 {
 actionlib::SimpleClientGoalState state = ac.getState();
 ROS_INFO("Action finished: %s",state.toString().c_str());
 }
 else
 ROS_INFO("Action did not finish before the time out.");

 //exit
 return 0;
}

The Code Explained

E Experiment materials E Experiment materials 99

actionlib/client/terminal_state.h defines the possible goal states.

#include <actionlib_tutorials/FibonacciAction.h>

This includes action message generated from the Fibonacci.action file shown above. This is a
header generated automatically from the FibonacciAction.msg file. For more information on
message definitions, see the msg page.

The action client is templated on the action definition, specifying what message types to
communicate to the action server with. The action client constructor also takes two arguments,
the server name to connect to and a boolean option to automatically spin a thread. If you prefer
not to use threads (and you want actionlib to do the 'thread magic' behind the scenes), this is a
good option for you. Here the action client is constructed with the server name and the auto spin
option set to true.

 ROS_INFO("Waiting for action server to start.");
 // wait for the action server to start
 ac.waitForServer(); //will wait for infinite time

Since the action server may not be up and running, the action client will wait for the action server
to start before continuing.

 ROS_INFO("Action server started, sending goal.");
 // send a goal to the action
 actionlib_tutorials::FibonacciGoal goal;
 goal.order = 20;
 ac.sendGoal(goal);

Here a goal message is created, the goal value is set and sent to the action server.

 //wait for the action to return
 bool finished_before_timeout = ac.waitForResult(ros::Duration(30.0));

int main (int argc, char **argv)
{
 ros::init(argc, argv, "test_fibonacci");

 // create the action client
 // true causes the client to spin its own thread
 actionlib::SimpleActionClient<actionlib_tutorials::FibonacciAction> ac("fibonacci", true

E Experiment materials E Experiment materials 100

The action client now waits for the goal to finish before continuing. The timeout on the wait is set
to 30 seconds, this means after 30 seconds the function will return with false if the goal has not
finished.

 if (finished_before_timeout)
 {
 actionlib::SimpleClientGoalState state = ac.getState();
 ROS_INFO("Action finished: %s",state.toString().c_str());
 }
 else
 ROS_INFO("Action did not finish before the time out.");

 //exit
 return 0;
}

If the goal finished before the time out the goal status is reported, else the user is notified that the
goal did not finish in the allotted time.

E Experiment materials E Experiment materials 101

rospy is a pure Python client library for ROS. The rospy client API enables Python programmers
to quickly interface with ROS Topics, Services, and Parameters.

This demo will walk you through creating a simple ROS node ("talker"), which will broadcast a
message on topic "chatter".

#!/usr/bin/env python
license removed for brevity
import rospy
from std_msgs.msg import String

def talker():
 pub = rospy.Publisher('chatter', String, queue_size=10)
 rospy.init_node('talker', anonymous=True)
 rate = rospy.Rate(10) # 10hz
 while not rospy.is_shutdown():
 hello_str = "hello world %s" % rospy.get_time()
 rospy.loginfo(hello_str)
 pub.publish(hello_str)
 rate.sleep()

if __name__ == '__main__':
 try:
 talker()
 except rospy.ROSInterruptException:
 pass

Now, let's break the code down.

#!/usr/bin/env python

Every Python ROS Node will have this declaration at the top. The first line makes sure your
script is executed as a Python script.

Introduction

Writing a Publisher Node

The Code Explained

E Experiment materials E Experiment materials 102

import rospy
from std_msgs.msg import String

You need to import rospy if you are writing a ROS Node. The std_msgs.msg import is so that we
can reuse the std_msgs/String message type (a simple string container) for publishing.

 pub = rospy.Publisher('chatter', String, queue_size=10)
 rospy.init_node('talker', anonymous=True)

This section of code defines the talker's interface to the rest of ROS. pub =
rospy.Publisher("chatter", String, queue_size=10) declares that your node is publishing to the
chatter topic using the message type String. String here is actually the class
 std_msgs.msg.String . The queue_size argument is New in ROS hydro and limits the amount of
queued messages if any subscriber is not receiving them fast enough. In older ROS distributions
just omit the argument.

The next line, rospy.init_node(NAME, ...) , is very important as it tells rospy the name of your
node -- until rospy has this information, it cannot start communicating with the ROS Master. In
this case, your node will take on the name talker. NOTE: the name must be a base name, i.e. it
cannot contain any slashes "/".

 anonymous = True ensures that your node has a unique name by adding random numbers to the
end of NAME. Refer to Initialization and Shutdown - Initializing your ROS Node in the rospy
documentation for more information about node initialization options.

 rate = rospy.Rate(10) # 10hz

This line creates a Rate object rate. With the help of its method sleep(), it offers a convenient
way for looping at the desired rate. With its argument of 10, we should expect to go through the
loop 10 times per second (as long as our processing time does not exceed 1/10th of a second!)

 while not rospy.is_shutdown():
 hello_str = "hello world %s" % rospy.get_time()
 rospy.loginfo(hello_str)
 pub.publish(hello_str)
 rate.sleep()

This loop is a fairly standard rospy construct: checking the rospy.is_shutdown() flag and then
doing work. You have to check is_shutdown() to check if your program should exit (e.g. if there is
a Ctrl-C or otherwise). In this case, the "work" is a call to pub.publish(hello_str) that publishes a
string to our chatter topic. The loop calls rate.sleep(), which sleeps just long enough to maintain
the desired rate through the loop.

E Experiment materials E Experiment materials 103

(You may also run across rospy.sleep() which is similar to time.sleep() except that it works with
simulated time as well (see Clock).)

This loop also calls rospy.loginfo(str), which performs triple-duty: the messages get printed to
screen, it gets written to the Node's log file, and it gets written to rosout. rosout is a handy for
debugging: you can pull up messages using rqt_console instead of having to find the console
window with your Node's output.

std_msgs.msg.String is a very simple message type, so you may be wondering what it looks like
to publish more complicated types. The general rule of thumb is that constructor args are in the
same order as in the .msg file. You can also pass in no arguments and initialize the fields directly,
e.g.

msg = String()
msg.data = str

or you can initialize some of the fields and leave the rest with default values:

String(data=str)

You may be wondering about the last little bit:

 try:
 talker()
 except rospy.ROSInterruptException:
 pass

In addition to the standard Python __main__ check, this catches a rospy.ROSInterruptException
exception, which can be thrown by rospy.sleep() and rospy.Rate.sleep() methods when Ctrl-C is
pressed or your Node is otherwise shutdown. The reason this exception is raised is so that you
don't accidentally continue executing code after the sleep().

Here we'll create the service ("add_two_ints_server") node which will receive two ints and return
the sum.

#!/usr/bin/env python

from beginner_tutorials.srv import *
import rospy

d f h dl dd i ()

Writing a Service Node

E Experiment materials E Experiment materials 104

def handle_add_two_ints(req):
 print "Returning [%s + %s = %s]"%(req.a, req.b, (req.a + req.b))
 return AddTwoIntsResponse(req.a + req.b)

def add_two_ints_server():
 rospy.init_node('add_two_ints_server')
 s = rospy.Service('add_two_ints', AddTwoInts, handle_add_two_ints)

 print "Ready to add two ints."
 rospy.spin()

if __name__ == "__main__":
 add_two_ints_server()

Now, let's break the code down.

There's very little to writing a service using rospy. We declare our node using init_node() and
then declare our service:

 s = rospy.Service('add_two_ints', AddTwoInts, handle_add_two_ints)

This declares a new service named add_two_ints with the AddTwoInts service type. All requests
are passed to handle_add_two_ints function. handle_add_two_ints is called with instances of
AddTwoIntsRequest and returns instances of AddTwoIntsResponse.

Just like with the subscriber example, rospy.spin() keeps your code from exiting until the service
is shutdown.

The following code calls the above created service.

#!/usr/bin/env python

import sys
import rospy
from beginner_tutorials.srv import *

def add_two_ints_client(x, y):
 rospy.wait_for_service('add_two_ints')
 try:
 add_two_ints = rospy.ServiceProxy('add_two_ints', AddTwoInts)
 resp1 = add_two_ints(x, y)
 return resp1.sum

The Code Explained

Writing a Service Client Node

E Experiment materials E Experiment materials 105

etu esp .su
 except rospy.ServiceException, e:
 print "Service call failed: %s"%e

def usage():
 return "%s [x y]"%sys.argv[0]

if __name__ == "__main__":
 if len(sys.argv) == 3:
 x = int(sys.argv[1])
 y = int(sys.argv[2])
 else:
 print usage()
 sys.exit(1)

 print "Requesting %s+%s"%(x, y)
 print "%s + %s = %s"%(x, y, add_two_ints_client(x, y))

Now, let's break the code down.

The client code for calling services is also simple. For clients you don't have to call init_node().
We first call:

 rospy.wait_for_service('add_two_ints')

This is a convenience method that blocks until the service named add_two_ints is available. Next
we create a handle for calling the service:

 add_two_ints = rospy.ServiceProxy('add_two_ints', AddTwoInts)

We can use this handle just like a normal function and call it:

 resp1 = add_two_ints(x, y)
 return resp1.sum

Because we've declared the type of the service to be AddTwoInts, it does the work of generating
the AddTwoIntsRequest object for you (you're free to pass in your own instead). The return value
is an AddTwoIntsResponse object. If the call fails, a rospy.ServiceException may be thrown, so
you should setup the appropriate try/except block.

The Code Explained

Writing a Simple Action Client

E Experiment materials E Experiment materials 106

This tutorial covers using the action_client library to create a Fibonacci simple action client in
Python.

import actionlib_tutorials.msg

#! /usr/bin/env python

import rospy
from __future__ import print_function

Brings in the SimpleActionClient
import actionlib

Brings in the messages used by the fibonacci action, including the
goal message and the result message.
import actionlib_tutorials.msg

def fibonacci_client():
 # Creates the SimpleActionClient, passing the type of the action
 # (FibonacciAction) to the constructor.
 client = actionlib.SimpleActionClient('fibonacci', actionlib_tutorials.msg.FibonacciAc

 # Waits until the action server has started up and started
 # listening for goals.
 client.wait_for_server()

 # Creates a goal to send to the action server.
 goal = actionlib_tutorials.msg.FibonacciGoal(order=20)

 # Sends the goal to the action server.
 client.send_goal(goal)

 # Waits for the server to finish performing the action.
 client.wait_for_result()

 # Prints out the result of executing the action
 return client.get_result() # A FibonacciResult

if __name__ == '__main__':
 try:
 # Initializes a rospy node so that the SimpleActionClient can
 # publish and subscribe over ROS.
 rospy.init_node('fibonacci_client_py')
 result = fibonacci_client()
 print("Result:", ', '.join([str(n) for n in result.sequence]))
 except rospy.ROSInterruptException:
 print("program interrupted before completion", file=sys.stderr)

The Code Explained

E Experiment materials E Experiment materials 107

The action specification generates several messages for sending goals, receiving feedback,
etc... This line imports the generated messages.

The action client and server communicate over a set of topics, described in the actionlib protocol.
The action name describes the namespace containing these topics, and the action specification
message describes what messages should be passed along these topics.

 client.wait_for_server()

Sending goals before the action server comes up would be useless. This line waits until we are
connected to the action server.

 # Creates a goal to send to the action server.
 goal = actionlib_tutorials.msg.FibonacciGoal(order=20)

 # Sends the goal to the action server.
 client.send_goal(goal)

Creates a goal and sends it to the action server.

 # Waits for the server to finish performing the action.
 client.wait_for_result()

 # Prints out the result of executing the action
 return client.get_result() # A FibonacciResult

The action server will process the goal and eventually terminate. We want the result from the
termination, but we wait until the server has finished with the goal.

 client = actionlib.SimpleActionClient('fibonacci', actionlib_tutorials.msg.FibonacciAc

E Experiment materials E Experiment materials 108

E Experiment materials E Experiment materials 109

ROS Reference for HOBBIT

This sections lists some topics which can be used to control HOBBIT.

Message Type: std_msgs/String

This topic is used to move HOBBIT's head.

Message Description

"center_center" look straight

"up_center" look up

"down_center" look down

"center_right" look right

"center_left" look left

"up_right" look to upper right corner

"up_left" look to upper left corner

"down_right" look to lower right corner

"down_left" look to lower left corner

"littledown_center" look little down

"to_grasp" look to grasp

"to_turntable" look to turntable

"search_table" look to table

Message Type: std_msgs/String

This topic is used to control HOBBIT's eyes/emotion

Message Description

Topics

/head/move

/head/emo

E Experiment materials E Experiment materials 110

Message Description

"HAPPY" look happy

"VHAPPY" look very happy

"LTIRED" look little tired

"VTIRED" look very tired

"CONCERNED" look concerned

"SAD" look sad

"WONDERING" wonder

"NEUTRAL" look neutral

"SLEEPING" sleep

Message type: geometry_msgs/Twist This topic is used to move HOBBIT a certain distance in
linear direction, i.e. it only uses the x coordinate of the linear part of the geometry_msgs/Twist
Message. For example, the following message moves HOBBIT 2 metres forward:

'{linear: {x: 2.0, y: 0.0, z: 0.0}, angular: {x: 0.0, y: 0.0, z: 0.0}}'

This sections lists some action server namespaces which can be accessed to control HOBBIT.

Action goal message type: hobbit_msgs/ArmServerGoal

Action message type: hobbit_msgs/ArmServerAction

HOBBIT's arm can be controlled in three different ways.

To move the arm along a trajectory the joint values has to be passed to the goal, e.g.

/cmd_vel

Actions

hobbit_arm

Move arm along trajectory

E Experiment materials E Experiment materials 111

command:
 data: 'MoveAlongTrajectory'
velocity: 0.0
joints: [
 joint_values: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
 joint_values: [0.1, 0.1, 0.0, 0.0, 0.0, 0.0],
 joint_values: [0.2, 0.2, 0.0, 0.0, 0.0, 0.0],
 joint_values: [0.3, 0.3, 0.0, 0.0, 0.0, 0.0],
 joint_values: [0.4, 0.4, 0.0, 0.0, 0.0, 0.0],
 joint_values: [0.5, 0.4, 0.0, 0.0, 0.0, 0.0],
 joint_values: [0.6, 0.4, 0.0, 0.0, 0.0, 0.0],
 joint_values: [0.7, 0.4, 0.0, 0.0, 0.0, 0.0],
 joint_values: [0.8, 0.4, 0.0, 0.0, 0.0, 0.0],
 joint_values: [0.9, 0.4, 0.0, 0.0, 0.0, 0.0],
 joint_values: [1.0, 0.4, 0.0, 0.0, 0.0, 0.0]
]

To move the arm to a specific position it is necessary to provide it via the values of the joints and
set the command.data property accordingly, e.g.

command:
 data: 'MoveToJointValues'
velocity: 0.0
joints: [
 joint_values: [1.0, 0.4, 0.0, 0.0, 0.0, 0.0]
]

It is also possible to move HOBBIT's arm to a couple of predefined position. The following
message, for example, lets the arm move to its home position:

command:
 data: 'MoveToHome'
velocity: 0.0
joints: []

For all predefined position please refer to the following table.

Command Description

"MoveToCandle" Move to candle position

"MoveToHome" Move to home position

Move to joint values

Move to predefined position

E Experiment materials E Experiment materials 112

Command Description

"MoveToPreGraspFloor" Prepare to grasp from floor

"MoveToPreGraspTable" Move to table position

"MoveToTray" Move arm to tray

"MoveToLearning" Grab turntable

"StoreTurntable" Store turntable

"TurnTurntableCW" Turn turntable clockwise

"TurnTurntableCCW" Turn turntable counterclockwise

"OpenGripper" Open gripper

"CloseGripper" Close gripper

Action goal message type: geometry_msgs/PoseStamped

Action message type: move_base_msgs/MoveBase

This namespace can be used to navigate HOBBIT to a specific point determinated by its
geometric pose, for example

header:
 seq: 0
 stamp: now
 frame_id: "map"
pose:
 position:
 x: 1.0
 y: 2.0
 z: 0.0
 orientation:
 x: 0.0
 y: 0.0
 z: 0.0
 w: 1.0

Note: Navigation is also possible by publishing a geometry_msgs/PoseStamped message to
topic /move_base_simple/goal .

move_base

E Experiment materials E Experiment materials 113

This sections lists some services which can be used to control HOBBIT.

Service class: hobbit_msgs/Request

This service can be used to interact with the user via HOBBIT's tablet. The information is passed
within the params Parameter array (type hobbit_msgs/Parameter) along some meta information.
The following example shows how to prompt input from the user.

header:
 seq: 0
 stamp: now
 frame_id: ""
sessionID: "0"
requestText: ""
params: [
 {name: "type", value: "D_NAME"},
 {name: "text", value: "How are you?"},
 {name: "Timeout", value: "30"}
]

Basically, the desired action is defined by the "type" parameter of the params array. Please refer
to the following table for some common functionality of the tablet UI.

params.type Description

D_NAME get user input from tablet keyboard*

D_PLAIN show info

D_OK show info and wait for confirmation

D_YES_NO ask a yes-no-question*

F_CALLSOS start SOS call

F_LOUDER Set volume 10% higher

F_QUIETER Set volume 10% lower

* Please consider the following structure for the response:

Services

/MMUI

E Experiment materials E Experiment materials 114

{
 params:[
 {
 ...
 value: <UserInput>
 ...
 },
 {
 ...
 }
 ...
],
 ...
}

For params.type='D_YES_NO' \<UserInput> is a string containing 'yes' or 'no' depending on
which button the user has clicked. For params.type='D_YES_NO' \<UserInput> is a string
containing the string the user enterd via the tablet interface.

For more detailed examples using rospy please refer to the this example.

string data

geometry_msgs/Vector3 linear
geometry_msgs/Vector3 angular

float64 x
float64 y
float64 z

Message Definitions

std_msgs/String

geometry_msgs/Twist

geometry_msgs/Vector3

E Experiment materials E Experiment materials 115

std_msgs/Header header
geometry_msgs/Pose pose

uint32 seq
time stamp
string frame_id

geometry_msgs/Point position
geometry_msgs/Quaternion orientation

float64 x
float64 y
float64 z

float64 x
float64 y
float64 z
float64 w

std_msgs/String command
float64 velocity
hobbit_msgs/arm_joints joints

geometry_msgs/PoseStamped

std_msgs/Header

geometry_msgs/Pose

geometry_msgs/Point

geometry_msgs/Quaternion

hobbit_msgs/ArmServerGoal

E Experiment materials E Experiment materials 116

float32[6] joint_values

string name
string value

#Request Service. used for requesting input from user/mmui by modules or vice-versa
Header header
string sessionID
string requestText # please enter a name for this place, etc.

Parameter[] params # Requestparams

Parameter[] params # Responseparams

hobbit_msgs/arm_joints

hobbit_msgs/Parameter

Service Classes

hobbit_msgs/Request

E Experiment materials E Experiment materials 117

Bibliography
[1] R. T. Fielding, „Architectural Styles and the Design of Network-based

Software Architectures,“ AAI9980887, PhD thesis, 2000, isbn: 0-599-
87118-0.

[2] I. E. Sutherland, „Sketchpad: A Man-machine Graphical Communication
System,“ in Proceedings of the May 21-23, 1963, Spring Joint Computer
Conference, ser. AFIPS ’63 (Spring), Detroit, Michigan: ACM, 1963,
pp. 329–346. [Online]. Available: http : / / doi . acm . org / 10 . 1145 /
1461551.1461591.

[3] M. Boshernitsan and M. S. Downes, „Visual Programming Languages:
a Survey,“ EECS Department, University of California, Berkeley, Tech.
Rep. UCB/CSD-04-1368, 2004. [Online]. Available: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2004/6201.html.

[4] D. C. Smith, „Pygmalion: A Creative Programming Environment.,“
AAI7525608, PhD thesis, Stanford, CA, USA, 1975.

[5] S. C. Pokress and J. J. D. Veiga, „MIT App Inventor: Enabling Per-
sonal Mobile Computing.,“ PRoMoTo 2013 Proceedings, 2013. [Online].
Available: http://arxiv.org/abs/1310.2830.

[6] M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. Eastmond,
and K. Brennan, „Scratch: Programming for all,“ Communications of
the ACM, vol. 52, no. 11, pp. 60–67, 2009. [Online]. Available: http:
//cacm.acm.org/magazines/2009/11/48421-scratch-programming-
for-all/pdf.

[7] „Information technology – Vocabulary,“ International Organization for
Standardization, Geneva, CH, Standard, May 2015.

[8] R. David, „Grafcet: a powerful tool for specification of logic controllers,“
IEEE Transactions on Control Systems Technology, vol. 3, no. 3, pp. 253–
268, 1995, issn: 1063-6536.

[9] S. Alexandrova, Z. Tatlock, and M. Cakmak, „RoboFlow: A flow-based
visual programming language for mobile manipulation tasks,“ in 2015
IEEE International Conference on Robotics and Automation (ICRA),
2015, pp. 5537–5544.

118

http://doi.acm.org/10.1145/1461551.1461591
http://doi.acm.org/10.1145/1461551.1461591
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2004/6201.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2004/6201.html
http://arxiv.org/abs/1310.2830
http://cacm.acm.org/magazines/2009/11/48421-scratch-programming-for-all/pdf
http://cacm.acm.org/magazines/2009/11/48421-scratch-programming-for-all/pdf
http://cacm.acm.org/magazines/2009/11/48421-scratch-programming-for-all/pdf

Bibliography Bibliography 119

[10] T. B. Sousa, „Dataflow Programming Concept , Languages and Applica-
tions,“ 2012.

[11] J. Travis and J. Kring, LabVIEW for Everyone: Graphical Programming
Made Easy and Fun, 3rd Edition. Prentice Hall Professional, 2007, isbn:
0131856723.

[12] A. J. Hirst, J. Johnson, M. Petre, B. A. Price, and M. Richards, „What is
the best programming environment/language for teaching robotics using
Lego Mindstorms?“ Artificial Life and Robotics, vol. 7, no. 3, pp. 124–131,
2003, issn: 1614-7456. [Online]. Available: https://doi.org/10.1007/
BF02481160.

[13] S. Enderle, „Grape – Graphical Robot Programming for Beginners,“ in
Research and Education in Robotics — EUROBOT 2008, A. Gottscheber,
S. Enderle, and D. Obdrzalek, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 180–192, isbn: 978-3-642-03558-6.

[14] B. Jost, M. Ketterl, R. Budde, and T. Leimbach, „Graphical Programming
Environments for Educational Robots: Open Roberta - Yet Another One?“
In 2014 IEEE International Symposium on Multimedia, 2014, pp. 381–
386.

[15] M. Ketterl, B. Jost, T. Leimbach, and R. Budde, „Tema 2: Open Roberta
- A Web Based Approach to Visually Program Real Educational Robots,“
Tidsskriftet LÃ¦ring og Medier (LOM), vol. 8, no. 14, 2015. [Online].
Available: https://tidsskrift.dk/lom/article/view/22183.

[16] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafour-
cade, B. Marnier, J. Serre, and B. Maisonnier, „Mechatronic design of
NAO humanoid,“ in 2009 IEEE International Conference on Robotics
and Automation, 2009, pp. 769–774.

[17] E. Pot, J. Monceaux, R. Gelin, and B. Maisonnier, „Choregraphe: a
graphical tool for humanoid robot programming,“ in RO-MAN 2009 -
The 18th IEEE International Symposium on Robot and Human Interactive
Communication, 2009, pp. 46–51.

[18] S. ERLE ROBOTICS, Robot_Blockly documentation. [Online]. Available:
http://docs.erlerobotics.com/robot_operating_system/ros/
blockly/intro (visited on 11/26/2018).

[19] I. Muhendislik, Introduction to evablockly_ros. [Online]. Available: http:
//wiki.ros.org/evablockly_ros/Tutorials/indigo/Introduction
(visited on 11/30/2018).

https://doi.org/10.1007/BF02481160
https://doi.org/10.1007/BF02481160
https://tidsskrift.dk/lom/article/view/22183
http://docs.erlerobotics.com/robot_operating_system/ros/blockly/intro
http://docs.erlerobotics.com/robot_operating_system/ros/blockly/intro
http://wiki.ros.org/evablockly_ros/Tutorials/indigo/Introduction
http://wiki.ros.org/evablockly_ros/Tutorials/indigo/Introduction

Bibliography Bibliography 120

[20] N. Gonzalez, A. H. Cordero, and V. M. Vilches, robot_blockly ROS
package documentation, 2018. [Online]. Available: http://wiki.ros.
org/robot_blockly (visited on 12/03/2018).

[21] T. L. Group, EV3 Programmer App. [Online]. Available: https://www.
lego.com/en-us/mindstorms/apps/ev3-programmer-app (visited on
12/03/2018).

[22] Automation and T. W. Control Institute, HOBBIT The Mutual Care
Robot. [Online]. Available: https://www.acin.tuwien.ac.at/vision-
for-robotics/roboter/hobbit/ (visited on 08/17/2018).

[23] D Fischinger, P. Einramhof, W. Wohlkinger, K. Papoutsakis, P. Mayer, P.
Panek, T. Koertner, S Hofmann, A. Argyros, M. Vincze, et al., „Hobbit-
The Mutual Care Robot,“ Jan. 2013.

[24] S. Frennert, M. Bajones, M. Vincze, A. Weiss, D. Wolf, T. Koertner,
M. Weninger, and H. Eftring, „Hobbit - Providing Fall Detection and
Prevention for the Elderly in the Real World,“ Journal of Robotics, Mar.
2018.

[25] Automation and T. W. Control Institute, ER4STEM Educational Robotics
for STEM. [Online]. Available: https://www.acin.tuwien.ac.at/
project/er4stem/ (visited on 08/17/2018).

[26] J. Bohren, smach - ROS Wiki: Package Summary. [Online]. Available:
http://wiki.ros.org/smach (visited on 09/10/2018).

[27] Introduction to Blockly. [Online]. Available: https://developers.google.
com/blockly/guides/overview (visited on 09/10/2018).

[28] API documentation for the JavaScript library used to create webpages
with Blockly. [Online]. Available: https://developers.google.com/
blockly/reference/overview#javascript_library_apis (visited on
09/13/2018).

[29] Custom Blocks. [Online]. Available: https : / / developers . google .
com/blockly/guides/create-custom-blocks/overview (visited on
09/13/2018).

[30] ROS Documentation. [Online]. Available: http://wiki.ros.org/ (vis-
ited on 09/28/2018).

[31] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1, 1999.
[Online]. Available: https://www.ietf.org/rfc/rfc2616.txt (visited
on 08/17/2018).

http://wiki.ros.org/robot_blockly
http://wiki.ros.org/robot_blockly
https://www.lego.com/en-us/mindstorms/apps/ev3-programmer-app
https://www.lego.com/en-us/mindstorms/apps/ev3-programmer-app
https://www.acin.tuwien.ac.at/vision-for-robotics/roboter/hobbit/
https://www.acin.tuwien.ac.at/vision-for-robotics/roboter/hobbit/
https://www.acin.tuwien.ac.at/project/er4stem/
https://www.acin.tuwien.ac.at/project/er4stem/
http://wiki.ros.org/smach
https://developers.google.com/blockly/guides/overview
https://developers.google.com/blockly/guides/overview
https://developers.google.com/blockly/reference/overview#javascript_library_apis
https://developers.google.com/blockly/reference/overview#javascript_library_apis
https://developers.google.com/blockly/guides/create-custom-blocks/overview
https://developers.google.com/blockly/guides/create-custom-blocks/overview
http://wiki.ros.org/
https://www.ietf.org/rfc/rfc2616.txt

Bibliography Bibliography 121

[32] S. G. Hart and L. E. Staveland, „Development of NASA-TLX (Task
Load Index): Results of Empirical and Theoretical Research,“ in Human
Mental Workload, ser. Advances in Psychology, P. A. Hancock and N.
Meshkati, Eds., vol. 52, North-Holland, 1988, pp. 139 –183. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0166411508623869.

[33] N. Fraser, Blockly Block Wiki. [Online]. Available: https://github.com/
google/blockly/wiki (visited on 11/07/2018).

http://www.sciencedirect.com/science/article/pii/S0166411508623869
http://www.sciencedirect.com/science/article/pii/S0166411508623869
https://github.com/google/blockly/wiki
https://github.com/google/blockly/wiki

Erklärung
Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde.
Die aus anderen Quellen oder indirekt übernommenen Daten und Konzepte
sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in
ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Wien, Juli 2019

Alexander Semeliker

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Proposed Solution
	1.4 Chapter Organization

	2 Related Work
	2.1 Visual Programming Languages
	2.2 Graphical Robot Programming Environments
	2.3 Environments for ROS-based robots
	2.4 Comparison of visual programming tools

	3 Architecture
	3.1 Requirements
	3.2 Options
	3.3 Design
	3.4 Supporting frameworks & dependencies

	4 Implementation
	4.1 Back end & Front end Communication
	4.2 Demo Management
	4.3 Block Configuration
	4.4 Code Generation
	4.5 Code Editor
	4.6 Python Module
	4.7 Storage Management
	4.8 Code Execution

	5 Evaluation
	5.1 Experiment Setup
	5.2 Results
	5.3 Discussion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Appendices
	A List of Abbreviations
	B Block configuration manual
	C HOBBIT block set overview
	D Results of Demographical Questions
	E Experiment materials

