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Abstract

In the present work, the field of a gravitational shockwave caused
by a massless point-like particle is calculated at the event horizon of
a Kerr-Newman black hole. Following the geometric setting given
in [10], using the geometric framework of generalized Kerr-Schild
deformations in combination with the spin-coefficient formalism of
Newman and Penrose, it is shown that the field equations of the
theory, at the event horizon of the black hole, can be reduced to a
single linear ordinary differential equation for the so-called profile
function of the geometry. This differential relation is solved exactly
and, based on the results obtained, a physical interpretation is given
for the found shockwave spacetime. In addition, it is clarified how
these results lead back to those of previous works on the subject
which deal with the simpler cases of gravitational shockwaves in
static black hole backgrounds.

Zusammenfassung

Die vorliegende Arbeit widmet sich der Berechnung des Feldes einer
gravitativen Schockwelle, die von einem masselosen punktartigen
Teilchen am Ereignishorizont eines Kerr-Newman schwarzen Loches
erzeugt wird. Unter Beriicksichtigung des in [10] erarbeiteten ge-
ometrischen Settings, d.h. unter Verwendung verallgemeinerter Kerr-
Schild Deformationen der zugehérigen Hintergrundmetrik und des
Spin-Koeffizienten Formalismus von Newman und Penrose, wird hi-
erbei zundchst gezeigt, dass sich die Einsteinschen Feldgleichungen
- speziell am Ereignishorizont des schwarzen Lochs - auf eine einzige
lineare gewohnliche Differentialgleichung zweiter Ordnung fiir die
Profilfunktion der Geometrie reduzieren lassen. Ferner wird eine
exakte Losung der besagten Differentialgleichung aufgezeigt und -
basiered auf den erhaltenen Resultaten - eine physikalische Inter-
pretation fiir die aufgefundene Schockwellengeometrie abgegeben.
Zudem wird klargestellt, wie sich die gefundenen Ergebnisse mit ver-
schiedenen einfacheren Spezialfillen von gravitativen Schockwellen
in jenen spharisch-symmetrischen Hintergriinden vergleichen lassen,
welche die Geometrien von statischen schwarzen Lochern beschreiben.



Conventions and Notation, Figures

Throughout the entire work, abstract index notation and other con-
ventions based on the books of Penrose/Rindler [50, 51| and Wald
[55] are frequently used. The only major difference is that in the
given work the signature is fixed to (—, +, +,+) and therefore will
not be changed, as for example in [55], for spinor based calculations.
Tensor indices are denoted by Latin letters a, b, c..., whereas spinor
indices are denoted by capital Latin letters A, B, C... . General light-
like directions are denoted in standard Newman-Penrose fashion by
(* and its associated lightlike co-directions by n®. Special lightlike
directions, as occurring in the Kerr-Schild context, are alternatively
denoted by [* and k®. For the sake of simplicity, natural units are
used, according to which h = G = ¢ = e = k = 1 applies by def-
inition. The conformal diagrams presented in Section 2.3 have all
been taken from the following sources: [33].

Introduction

As can be observed in the literature on the subject, there is, in many
respects, a continuing interest in the construction of gravitational
shockwave spacetimes in general relativistic models. This interest
is based on a number of reasons; one of which is certainly the fact
that the spacetimes mentioned could play a role in the description
of high-energy particle collision events in which the gravitational in-
teraction becomes dominant. This, in turn, is due to the fact that
such spacetimes typically characterize the gravitational fields of ex-
tremely short radiation pulses propagating at the speed of light,
thereby producing models that provide the perfect playground to
describe collisions of very high-energetic particles in general relativ-
ity. Furthermore, there is another important reason: the fact that
suitably constructed shockwave spacetimes could allow a physical
treatment of geometric backreaction effects caused by black hole
evaporation |36, 62|; effects that are expected to occur, as predicted
by Hawking in his famous work on particle creation by black holes
[31], because black holes constantly emit thermal radiation at a fixed
temperature (which is exactly proportional to their surface gravity)
until they are no longer stable and evaporate, and therefore may
even disappear in potentially very violent explosions.



And although the determination of the geometric structure of
shockwave spacetimes could prove interesting for many other rea-
sons as well, their construction is often difficult because their asso-
ciated geometries are usually generated by point-like gravitational
sources, whose fields cannot easily be described within the theoreti-
cal framework of general relativity because of their highly nontrivial
physical and mathematical properties.

This, in turn, is mainly due to the fact that the inclusion of the
exact concept of a point particle in the framework of general rel-
ativity (although often avoided in practice by the consideration of
idealized test particles) has proved to be tricky precisely because
of the highly localized nature of such particles, therefore requir-
ing the consideration of singular energy densities, which can only
be treated by the use of distributional techniques. The ’standard’
distributional techniques, however, are only defined in a linear con-
text, and are therefore incompatible with the nonlinear character
of Einstein’s equations and thus with the theory of Einstein-Hilbert
gravity as a whole. This is true even in the light of Colombeau’s
theory of generalized functions |9, 17, 18, 27|, which, though capable
of addressing a wide variety of problems associated with the treat-
ment of fields of point-like gravitational sources, nevertheless, does
not allow a rigorous treatment of the simultaneously singular and
nonlinear field equations that are associated with the existence of
point particles in general relativity.

This difficulty notwithstanding, there exist a number of approaches
that, based on a rather more physically motivated than mathemati-
cally exact reasoning, allow a description of the motion of point-like
‘corpuscles’ in a general relativistic setting. Paying special atten-
tion to the motion of particles moving close to the speed of light,
so-called ultrarelativistic gravitational sources, a fundamental work
in that direction has been presented by Aichelburg and Sexl [1], who
were the first to calculate the gravitational field of such a massless
point-like particle. They did this by performing a Lorentz boost of
the Schwarzschild geometry in isotropic coordinates and then ex-
ecuting the so-called ultrarelativistic limit, which is an operation
based on first boosting the line element of a given geometry, taking
into account terms proportional to the constant velocity v and the
mass m in the resulting expression and taking then the combined
limits v — 1 and m — 0. By means of this singular coordinate



transformation, the authors obtained the metric of a deformed sin-
gular gravitational field which contains a term (generally known as
the Brinkmann form) that is proportional to a delta distribution
and thus has compact support in a single lightlike hyperplane in
Minkowski space. The problem with this derivation, however, is
that there is an ambiguity in the subtraction of occurring singular
terms, which requires one to make an appropriate choice of a specific
reference frame. As a result, however, due the fact that performing
the said ultrarelativistic limit requires a particular choice of coor-
dinates, the author’s original derivation suffers from the problem
of being observer-dependent, which, in turn, appears to be in con-
tradiction to the coordinate independence generally expected from
solutions of Einstein’s field equations.

Fortunately, however, this observer dependency of Aichelburg’s
and Sexl’s original derivation does not represent a major issue for
various reasons; one particular reason being that the spacetime ge-
ometry discovered by the authors occurs as a special case of another
class of solutions of Einstein’s equations belonging to the so-called
Robinson-Trautmann class of spacetimes, that is, in particular, to
the class of so-called Kundt class of spacetimes (or even more pre-
cisely to the class of so-called impulsive pp-wave spacetimes), whose
derivation is completely observer-independent. The said Kundt class
is of great interest because it contains some more spacetimes whose
geometries are deformed by point-like particles. Of particular note
in this respect are the spacetimes of Dray and 't Hooft [20] and Sfet-
sos [58|, which provide the precise form of a gravitational shock wave
caused by a massless particle in static black hole and cosmological
backgrounds.

These solutions, which generalize Aichelburg’s and Sexl’s work
to curved Schwarzschild and Reissner-Nordstrom black hole back-
grounds, characterize the geometric structure of general relativistic
two-body systems consisting of a black hole and an additional point-
like source located at the associated black hole event horizons. In
both cases, the solutions mentioned were obtained as a byproduct of
a specific distributional method known as Penrose’s 'cut-and-paste’
procedure [47], which is a procedure based on the idea of performing
a specific coordinate shift in one of the components of the metric in
double null coordinates.

While the application of this method has the interesting effect of



giving rise to a confined particle-like source that generates a gravi-
tational shock wave that skims along the black hole event horizon,
there is the problem that the said method does not always pro-
duce mathematically well-defined quantities. This is due to the fact
that the resulting geometric expression for the gravitational shock
wave is proportional to a delta-shaped profile alias shift function
(which is actually a distribution), whose precise structure must be
obtained by explicitly solving the field equations of theory. As it
turns out, this requires the treatment of geometric backreaction ef-
fects caused by the singular field of the point-like particle, which
further requires performing nonlinear operations on distributions.
Those, however, are generally ill-defined, which manifests itself in
the fact that the nonlinear curvature fields associated with the de-
formed spacetime metric typically contain highly problematic, dis-
tributionally ill-defined terms (’squares’ of the delta distribution),
which cannot be properly treated and thus, as Dray and 't Hooft
stated, must be 'blithely ignored’ in practice.

As first stated by Alonso and Zamorano (but only in the context
of rather special geometric circumstances) [2|, this lack of mathemat-
ical rigour can elegantly be overcome by using a geometrically more
appealing approach, known as the generalized Kerr-Schild frame-
work. This framework, which makes it possible to rigorously deal
with quantities of low regularity, is based on performing a specific
null-geometric deformation of a given background spacetime, com-
monly referred to as a generalized Kerr-Schild deformation, which
usually leads to a geometrically completely different, so-called gen-
eralized Kerr-Schild spacetime.

Due to its linearity, the said geometric framework is tailor-made
for dealing with the low regularity of the components of the de-
formed field equations. More precisely, because of the fact that the
mixed deformed Einstein tensor of the geometry (and hence also the
mixed deformed Ricci) is always linear in the profile function, stan-
dard distribution theory can be used for solving the mixed Einstein
equations with respect to a given background; a definitely indispens-
able advantage in the treatment of distributionally defined, singular
gravitational fields in general relativity.

Using this particular geometric setting, to be discussed in chap-
ter four of this work, a general approach to the situation was pre-
sented in [10]. Based on the fact that this approach does not



require the consideration of a particular background geometry, it
was shown that the corresponding geometric framework allows one
to derive a generalized version of the Dray-'t Hooft relation for a
gravitational shock wave concentrated on a null hypersurface, from
which, given the particular choices of Schwarzschild and Reissner-
Nordstrom black hole backgrounds, both the geometries of Dray and
't Hooft and Sfetsos can be derived as a special case. In addition, it
was shown that the Aichelburg-Sexl geometry can be calculated as
another special case of this setting.

As a bonus, the results obtained pointed to the possibility of
extending the associated geometric setting to the much more com-
plicated case of a gravitational shockwave generated by a massless
particle-like source at the event horizon of a stationary, axisymmet-
ric Kerr-Newman black hole. Motivated by this preliminary work,
the present treatise is devoted to the construction of a corresponding
solution of Einstein’s field equations.

The basic strategy for putting the idea into action is to generalize
the said approach via applying the Newman-Penrose spin-coefficient
formalism to the generalized Kerr-Schild framework, or, more pre-
cisely, by formulating the gravitational field equations in terms of
spin-coefficients. Based on this strategy, which is discussed in sec-
tion four of this work, a system of five coupled second order partial
differential relations for the profile function of the geometry is de-
rived, which applies to any generalized Kerr-Schild geometry and is
therefore completely general. Moreover, in order to then connect to
the results of [10], it is shown that this system of equations is re-
ducible (under rather basic assumptions) to an ordinary differential
equation at the event horizon of the stationary black hole, which
shall be referred to as generalized Dray-"t Hooft relation from now
on. As will be shown, considering a specific null geodesic Kerr-Schild
frame, this equation turns out to be exactly the same (modulo some
differing formal conventions) as that obtained in [10].

Taking advantage of the freedom to perform null rescalings of the
corresponding Kerr-Schild vector field that do not alter its geodetic-
ity, but change the form of the profile function, the said generalized
Dray-'t Hooft relation is tamed and brought into a much simpler
form in section five of this work. It then turns out that the re-
maining relation belongs to the so-called Fuchsian class of second
order differential equations with coefficients with five regular singu-
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lar points, so that one immediately knows that it must have exactly
two linearly independent solutions that can be superimposed to a
single (distributionally defined) solution for the profile function of
the geometry. In this context, however, the problem arises that
within the theory of ordinary linear differential equations with vari-
able coefficients, equations having five singular points are much less
well studied and understood than the simpler cases of equations hav-
ing three or four singular points. Thus, it is not surprising that the
solution found in chapter five cannot be traced back to a previously
known solution, but must rather be specified on the level of infinite
power series, which, however, as it turns out, is completely suffi-
cient in order to obtain an exact distributionally defined solution of
Einstein’s equations given by a generalized Kerr-Schild ansatz.
This is of importance not least because a prior work on the sub-
ject presented by BenTov and Swearngrin [16], which, like this work,
is dedicated to the the construction of a Kerr-Schild shockwave in a
Kerr-Newman background, failed to give an exact expression for the
profile function of the geometry; despite its claim to have found an
exact solution to Einstein’s equations. However, as must be acknowl-
edged, it appears that the geometric setting considered in this work
is considerably different from that considered in [16]. As such, the
two approaches can hardly be reasonably compared to each other.
Ultimately, a brief overview of the structure of the present work
shall be given: In order to lay the formal foundations for both de-
riving and solving the generalized Dray-t Hooft relation, the first
chapter of this treatise deals with the causal structure of spacetimes
in order to prepare the physical framework necessary for the defi-
nition of a black hole. This definition is then given in the second
section, alongside a brief overview of the theory of gravitational
collapse and black hole physics. Following this, the third section
provides a detailed introduction to null geometry and the physics
of null geodesic congruences, with particular emphasis on the spin-
coefficient formalism of Newman and Penrose. It is only in section
four that metric deformations are treated and the aforementioned
system of coupled partial differential equations is derived from Ein-
stein’s equations, which specify the components of the deformed part
of the Einstein tensor of the generalized Kerr-Schild class. From this
system, the generalized Dray-"t Hooft equation is extracted, which is
finally solved in the fifth and final section of this work. A discussion
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of the results obtained forms the conclusion of this thesis.
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1 The Causal Structure of Spacetime

This incipient chapter intends to present a compendium of funda-
mental aspects and conceptions of the so-called theory of causality,
which, generically associated to Lorentzian manifolds, will provide
a formal basis for the definition of black hole spacetimes.

The addressed conceptions will, however, be covered merely in a
recapitulatory fashion in order to provide a brief collection of non-
redundant information needed subsequently. The comprised theo-
retical toolkit presented in this way will, however, heavily rely on
more detailed treatments of the subject, as, for example, given in
[33, 55].

1.1 Observers and Motion, Induced Submanifolds

In this section, a characterization of motions of observers associ-
ated with a given spacetime manifold (M, g) will be given. Inter-
mediately, a number of selected properties of causal curves will be
discussed, before finally the structure of submanifolds of spacetime,
particularly that of hypersurfaces (and ordinary surfaces), will be
reviewed.

Throughout this work, a spacetime (M, g) will be referred to as a
four-dimensional, Hausdorff, differentiable, orientable and time ori-
entable Lorentzian manifold M of signature (—, +,+,+,...), favor-
ably of dimension 4, but in principle of any dimension n, which is as-
sumed to be characterized by a fundamental field g,, = gap(), called
the metric. This metric or metrical field induces a non-degenerate
pseudo-scalar product structure on M, by which the different forms
of propagation or motion along trajectories between future and past
events can be distinguished. For an observer moving along such a
trajectory, usually referred to as a curve, being characterized by a
tangent vector field v* = v*(z), one can distinguish the following
possible ways of motion by means of the associated non-degenerate
bilinear form gqv®v°:

1.) Timelike motion : guv®v® < 0,
2.) Lightlike motion : guvv® =0,

3.) Spacelike motion : ggpv®v® > 0.

This characterization is of great importance due to the fact that
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the local causal structure of a given spacetime (M, g) is determined
by the behavior of events connected by smooth curves through-
out (M, g), representing the analoga of so-called worldlines of ob-
servers in flat spacetime. Taking into account that any tangent
vector field v® associated with a curve determines the same com-
pletely, one distinguishes accordingly timelike, spacelike and light-
like curves v : I — M, where [ is an interval of the real line. In
this context, the timelike or lightlike structures associated with a
respective curve v : I — M, induced by the tangent vector field
v®, completely determine the causal nature of events lying on such
a trajectory. Therefore the local causal structure is subject to the
expression guv*v” < 0, specifying all non-spacelike motions. The
according tangent field then can either be future directed or past
directed, depending on the signature of the temporal component of
ve.

The given characterization is sometimes referred to as Einstein
causality and represents, as already indicated, an inherent feature
of Lorentzian geometry. It describes the causal relations of different
events and observers in spacetime, or, more philosophically speak-
ing, it determines in which way events are related with each other
such that (under non-pathological circumstances) a given cause causes
a certain effect, not vice versa.

The set of all curves (with associated tangent vectors) leading
through a point p defines then the tangent space of the manifold M.
The dimension of this tangent space T,,M is the same as that of the
manifold M itself.

A timelike (resp. causal) curve v : I — M is said to be past (or
future) directed if each tangent vector 4 is past (or future) directed.
A point p € M is called the endpoint of a future directed causal
curve vy : I — M if for every open neighborhood O, of p there exists
a value ty such that v(t) € O for all t > t5. Accordingly a point
p € M is the endpoint of a past directed causal curve v : [ — M
if for every open neighborhood O, of p there exists a value ¢, such
that v(t) € O for all t; < t.

A curve v : I — M is called future inextendible if it has no
future endpoint. Accordingly, a curve v : I — M is called past
inextendible if it has no past endpoint.

A hypersurface (or surface for spacetimes of lower dimension) is
an induced submanifold of spacetime with dimension n — ¢, where

14



q=1,2,...,n applies, although favorably one has n = 4 and ¢ = 1 in
most applications of interest. To any given hypersurface there ex-
ists then a particular, strictly associated scalar field, which remains
constant along it.

Hypersurfaces possess a causal structure themselves, depending
on the causal structure of a system of vector fields orthogonal to
them. By default, a distinction is made here between spacelike hy-
persurfaces, whose orthogonal vectors are timelike, null hypersur-
faces, whose orthogonal vectors are lightlike and timelike hypersur-
faces, whose orthogonal vectors are spacelike. However, it has to be
emphasized that there are also hypersurfaces whose causal structure
varies locally in accordance with that of their associated orthogonal
vectors.

A collection of hypersurfaces which covers the entire Lorentzian
manifold is a so-called foliation. Depending on the causal structure
of these leaves or folia, the foliation can either be spacelike, timelike
or lightlike.

A given hypersurface X inherits generically geometrical struc-
tures from a given spacetime (M, g), which are usually subsumed
as intrinsic geometric structures of . These intrinsic geometric
properties have to be strictly distinguished from extrinsic geometric
properties, which describe geometric structures away from 3.

1.2 Future and Past Developments, Domain of Depen-
dence and Causality Conditions

At the beginning of this section, two different kinds of ordering
relations connecting spacetime points shall be introduced and their
main properties shall be analyzed thereupon. This will be necessary
in order to be able to properly formulate the concept of chronological
and causal pasts and futures of events, which, introduced in the
further course of this section, will play a relevant role for the main
definition of a black hole spacetime later on.

Considering two points p and ¢ in M, the relation p << ¢ de-
notes the fact that there exists a future directed, timelike curve
v : la,b] = M such that v(a) = p and v(b) = g. One says, then,
that p chronologically precedes q.

Accordingly, considering again two points p and ¢ in M, the
relation p = ¢ denotes the fact that there exists a future directed,
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causal curve v : [a,b] — M such that y(a) = p and v(b) = ¢. One
says, then, that p causally precedes q.

Note that both of these ordering relations, the chronological as
well as the causal relation, are determined by the expression g, v*v® <
0 evaluated in the points p and q if and only if v* is the tangent vec-
tor to the given curve 7. Completely independently of the causal
structure of spacetime, the said relations define a transitive, reflex-
ive and antisymmetric preordering relation, which means that there
holds p << ¢ <<1r =p <<7r, Vp,q,r € M and p << qg<<p =
p=gq, Vp,qg € Maswellasp < qg=<r =p=r VpqgreM
and p 2 q¢=<p =p=g¢q, Vp,g € M. By excluding the possibility
of closed timelike or causal curves, which is a natural restriction
on the causal structure of spacetime, which will be discussed in
more detail in the remainder of this section, the said relations be-
come irreflexive (strict) partial ordering relations in respect to which
pAADp, Vp € M orp A pVp e M applies.

The given formulation of the chronological ordering relation <=
allows for the definition of what is called the chronological past
I~ (p) and the chronological future I*(p) of this very point. Strictly
speaking, the chronological future I*(p) of p is defined as the set of
all points ¢ which chronologically precede p, i.e.

I*(p) ={q € Mlp << q},

while the chronological past I~ (p) of p is defined as the set of all
points ¢ € M for which p chronologically precedes ¢, i.e.

I (p) ={q € M|q << p}.

Analogously, the formulation of the causal ordering relation < allows
for the definition of the so-called causal past J~(p) and the causal
future J*(p) of an event p with regard to the set of all points ¢, for
which there holds

J(p) ={q€ Mlp = ¢}

and
J™(p) ={q € M|q = p}.

The sets I%(p) and J*(p) then collectively define the local causal
structure of an event p € M. Elements of this class additionally

16



determine the orientation and time orientation of the manifold M
with regard to a point p lying on a curve 7.

For an open subset O C M, representing a whole collection of
different events, one defines accordingly

*(0) = | JI* ()

pe@

and
70)= 7).
peO

A subset O C M is called achronal if it is not intersected more than
once by any future directed timelike curve, or, in other words, if
there is no pair of chronologically related points lying in O. Alter-
natively, it is often written here briefly and concisely IT(O)NO = 0.

Taking these definitions into account, the future and past do-
mains of dependence of a region O@ C M can be defined. These
definitions read

D*(0) = {p € Olevery past inextendible causal curve
v I — M trough p intersects O}

and

D~ (0) = {p € Olevery future inextendible causal curve
v I — M trough p intersects O}.

The total domain of dependence of a region O C M is then defined
by
D(O) = D" (O)uUD (0).

Using these definitions, a Cauchy hypersurface > is defined as a
closed achronal set for which D(X) = M. It is therefore a hypersur-
face whereupon through each of its points there runs one and only
one unique, orthogonal geodesic ~.

Using these definitions, a number of reasonable constraints on
the causal structure of a spacetime (M, g) can be made, in order to
provide realistic physical circumstances. An employment of these
constraints has become a standard procedure and is therefore ap-
proached customarily in the pertinent literature on the subject. It
has, for example, also served as the keystone for the establishment
of a so-called causal hierarchy of spacetimes, as presented in [42].
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In order to pose a minimal condition on the causal structure of
a spacetime (M, g), one may demand it to be a chronological space-
time, which is actually tantamount to requiring that it should not
contain any closed timelike curves, i.e. p ¢ IT™(p) for all p € M.
This condition can easily be extended via requiring that (M, g) ad-
ditionally should not contain closed causal curves, i.e. p ¢ J*(p)
for all p € M. Spacetimes that obey such a requirement are called
causal spacetimes. And although there are spacetimes that are nei-
ther chronological nor causal, these requirements are quite standard
as they allow to avoid paradoxical conclusions being inconsistent
with observation that can occur in the non-chronological, non-causal
framework, such as those inconsistent conclusions that can be drawn
from the infamous grandfather’s paradox®.

Furthermore, it seems to be convenient to require a given space-
time (M,g) to be future and past distinguishing, which may be
stated in the form [*(p) = I*(q) = p = ¢ with respect to two
fixed points p,q € M. The main characteristic of future- and past-
distinguishing spacetimes is that they allow a continuous choice of
forward (or backward) light cone structures of observers over the en-
tire spacetime. However, since the introduced concept of a spacetime
(M, g) has been that of a time orientable manifold, which means that
there should exist a consistent, continuous selection of future and
past directed, causal tangent vector fields to a given curve  through-
out (M, g), this request should automatically be fulfilled anyway.

Additionally, there are two further restrictions on the notion of a
causal spacetime, namely strong causality and stable causality. The
main requirement for strong causality is the existence of a causally
convex neighborhood V' to a point p € M, which guarantees that
any future-directed (and hence also any past-directed) causal curve
~v: I — M with endpoints at V' is entirely contained in a larger con-
vex normal neighborhood U with V' C U, so that the two endpoints
of the causal curve cannot get arbitrarily close together. Stable
causality, on the other hand, is guaranteed to hold if a given space-
time (M, g) permits the existence of a continuous differentiable gen-
eralized time function £ € R on M, which gives rise to a continuous,
non-vanishing, timelike vector field 7, = V,t with which the metric
can be perturbed, with the result that the causal structure of space-

IThis goes hand in hand with the famous chronology protection conjecture of Hawking [32],
which intends to generally rule out non-chronological spacetimes and the physical feasibility
of time travel associated with such spacetimes.
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time does not change. This requirement is so stringent that it also
implies the weaker requirement for the validity of strong causality.
Moreover, it is found in the given case that the manifold topology
agrees with the so-called Alexandrov topology. For further details
see [34, 39, 65].

Although the obtained class of spacetimes is already quite re-
strictive, one may furthermore demand that any causal diamond
Jt(p)NJ~(q), also called Alexandrov set, is compact for each p, ¢ €
M, where (M, g) of course should be time-orientable by definition.
This, however, is tantamount to the fact that (M, g) contains a
closed achronal subset > C M whose domain of dependence co-
incides with M itself, ergo a Cauchy hypersurface. As proven by
Geroch [22, 25], spacetimes which do obey such restrictions are so-
called globally hyperbolic spacetimes and do possess the topology
R x X. Global hyperbolicity is considered as a necessary condition
on the causal structure of spacetime, particularly in the initial value
formulation for Einstein’s equations, in that it guarantees, given any
initial data set, that there exists a single maximum global hyper-
bolic solution of the field equations. This is because it represents a
sufficient condition for the consideration of a differentiable function
t € R on M, which can be chosen in such a way that each ¢t = const.
hypersurface is a Cauchy hypersurface, illustrating therefore that
globally hyperbolic spacetimes can be foliated by Cauchy hypersur-
faces and therefore exhibit a spacelike foliation. The existence of
such spacetimes thus provides the formal basis for the formulation
of a well-defined Cauchy problem in general relativity.

For the present work, however, neither the demand for global
hyperbolicity nor the existence of a spacelike foliation of spacetime
is necessary, which is of importance not least because none of the
geometric models to be discussed below proves to be globally hyper-
bolic. Instead, as will be seen, the existence of a lightlike foliation of
spacetime will play a role later on. To make this clear, however, the
physics of black holes shall first be discussed in more detail, which
will be done in the following chapter of this work.
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2 Gravitational Collapse and Black Holes

The present chapter aims to provide a summary of the basic foun-
dations of the theory of black holes and black hole event horizons.
Relying on several ideas of the previous section as well as on more
detailed and profound reviews on black hole physics, as, for exam-
ple, given in [33, 53, 55|, the focus of the proposed summary will lie
on the development of an exact theoretical and phenomenological
characterization of black holes and the introduction of black hole
spacetimes.

While usually such a characterization is given in the literature
along a number of theorems and relevant characteristics associated
with black holes, such as, for example, the black hole uniqueness
theorems, the area theorem or the laws of black hole mechanics, the
focus of the present chapter will lie more on providing useful insights
on the geometric characteristics of the gravitational fields of black
hole spacetimes, i.e. of spacetimes that belong to the so-called Kerr-
Newman family of spacetimes. Since black holes generally appear as
a possible final configuration of the gravitational collapse of a com-
pact massive object, a proper treatment of the topic also appears
to require a brief overview of the phenomenology of these partic-
ular objects and the mechanisms leading to their collapse. Such
an overview will therefore be given right at the beginning of this
chapter.

2.1 Stellar Evolution, Gravitational Collapse and Black
Holes

From a phenomenological point of view, the formation of a black
hole is nothing more than an extreme consequence of the gravita-
tional collapse of a star. More precisely, the formation of a black hole
represents, or, rather is generally assumed to represent the final pe-
riod in the evolution of a star exhibiting a sufficient amount of mass,
during which an extreme, but stable stationary configuration of the
geometric structure of spacetime is reached with the effect that the
stellar matter is forced into an extreme physical state due to the
gravitational collapse of the compact massive object. The reached
geometric configuration is unique and independent of the retained
material structures and only depends, quite similar to the case of
elementary particles, on three independent parameters, namely the
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mass M, the angular momentum J and the charge e of the black
hole. This is subject of the famous no-hair theorem of black holes
[30, 37, 56|, whose validity is generally accepted and in full accor-
dance with the so-called black hole uniqueness theorems. These the-
orems state that in the absence of accreted matter any stationary
black hole spacetime approaches to be a Kerr-Newman spacetime,
which is entirely characterized by only these three independent pa-
rameters. Certainly the classical conclusion that no alternative 'de-
grees of freedom’ exist in stationary black hole spacetimes is quite
astonishing, taking into account the variety and complexity of the
processes taking place during different epochs of stellar evolution,
especially in the rotating case, for which no such exact, unique and
particularly simple description exists to this day.

Interestingly, however, the evolution of a star does not always
need to end with the formation of a black hole. There are in fact
several different scenarios demonstrating what can happen in the
final stage of the lifetime of a star, in which only three different
possible final mass configurations are assumed to be left behind.
The first of these scenarios naturally appears if the star has a total
mass beyond the famous Chandrasekhar mass limit M. (~ 1,4 My).
In this case, it occurs that the electron degeneracy pressure, which
contributes on a microscopic level to the macroscopic thermal and
radiation pressures that are pre-dominant in the star, is no longer
sufficient to support the star against gravity and no further nuclear
reactions occur to guarantee the stability of the star. As a direct
result, a part of the interior of the star will undergo gravitational
collapse and a white dwarf will form as a direct consequence. Such a
situation does not occur in the case of the second scenario, in which
the remaining mass configuration finally forms a neutron star due
to the collapse of the interior of the star. This addressed situation
naturally appears if the mass of the collapsing part of the star is
below the so-called cold matter upper mass limit (~ 2 M), so that
the neutron degeneracy pressure is sufficient to halt the according
collapse. Something different happens in the third possible scenario,
according to which it occurs that the mass of the star is above the
said cold matter upper mass limit, so that even the neutron de-
generacy pressure is excelled by gravity and the star will eventually
undergo complete gravitational collapse. This is assumed to happen
in such a way that the involved matter configurations reach a state
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of maximal compactness, due to the fact that all persisting material
forces are evanescent compared to the extraordinarily high opposing
forces of mass attraction. In this final scenario, the spacetime cur-
vature grows indefinitely near the remaining gravitational source,
which now has shrunk toward its own critical size. The according
region is what is called a black hole, or, more precisely, a black hole
region.

From a theoretical point of view, the processes associated with
the latter scenario lead to the formation of a so-called singular-
ity of spacetime, which, roughly speaking, represents a part of the
spacetime at which the curvature of the gravitational field grows un-
boundedly large. More precisely, it accords with a point or a whole
region where the Riemann curvature tensor or related quantities
like the Einstein tensor do neither appear to be suitably differen-
tiable, nor regular, nor to be well-defined at all in a usual smooth
spacetime continuum interpretation. To give an exact geometric
characterization of a singularity associated with the incompleteness
of causal geodesics can therefore prove to be a non-trivial problem
in the generic case. Consequently, it is often assumed that a singu-
lar spacetime, i.e. a spacetime that contains a singularity or even
a whole number of singularities, is the maximal manifold on which
the metric is suitably smooth, subject to the condition that the oc-
currence of singularities goes hand in hand with the existence of
incomplete geodesics that cannot be extended to infinite values of
the affine parameter. In this vein, a spacetime is called singular if it
is timelike or null geodesically incomplete, but cannot be embedded
in a larger spacetime.

From a purely pragmatic point of view, this definition is quite
meaningful - not least because a singularity is generally expected
not to be observable by an external observer anyway because it is
surrounded by a non-material, spherical boundary called the event
horizon. This basically alludes to the famous (and unproven) cosmic
censorship conjecture formulated first by Penrose [48, 49|, stating
that nature evades so-called naked singularities, which are singular-
ities occurring to be visible for external observers. Although the
Einstein equations permit solutions involving such singularities, the
presence of naked singularities generally causes severe problems in
the framework of the general theory of relativity, because by the ex-
istence of so-called Cauchy horizons they spoil the predictability of
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the theory. Hence, in order to cope with this significant obstacle, the
cosmic censorship conjecture has been introduced in the way above,
although there are in fact two different versions, the weak and the
strong one, both of which demand some technical background and
therefore will be approached merely in a superficial manner in the
relevant part of the given chapter. However, by imposing the aver-
aged null energy condition Cauchy horizons appear to be inherently
unstable anyway, so that the standard approach, in which the men-
tioned boundary surface of a black hole, the event horizon, prevents
the singularity from being observed from the outside, is justified by
stability arguments.

From a phenomenological point of view, this given characteriza-
tion of an event horizon, in the sense of being a hypersurface along
which any light ray emitted from the black region can no longer be
noticed by an outside observer, delivers striking consequences, as it
basically suggests that nothing, not even a massless photon, could
possibly resist the gravitational attraction exerted by a black hole
after it has passed the said horizon - at least in the standard classi-
cal interpretation. In this classical picture (which has been revised
several times due to incorporation of quantum effects), all particles
of the emitted light ray must necessarily encounter the singularity
instead of escaping to the external universe. Due to this property,
the act of crossing the event horizon is sometimes referred to as
reaching the so-called point of no return.

In conclusion, it is clear that black holes could never, under the
assumption that the cosmic censorship conjecture holds, be directly
observed in our universe. This, however, does not mean that black
holes cannot be observed in nature in an indirect fashion instead,
i.e. with regard to visible objects they attract. In fact, numerous
different instances of such indirect observations of potential black
hole candidates have accrued over the years, all of which are com-
patible with predictions from the theory. These observations sug-
gest that there do in fact exist several different classes or types of
black holes, which can be distinguished by the magnitude of their
masses. One distinguishes stellar black holes (~ 2 — 3 M), large
stellar black holes (~ 10 — 30 M), intermediate-mass black holes
(~ 100 — 1000 M) and supermassive black holes (~ 10% — 10° M,).
The strongest and earliest observational evidence speaking for the
existence of black holes stems from the discovery of candidates for
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so-called black hole binary systems, which are astrophysical config-
urations consisting of a visible star and a dark companion in close
orbit around each other. In the case of stellar black holes, the most
prominent of such binary systems appears to be Cygnus X-1, discov-
ered in the eponymous Cygnus constellation. Here, an evaluation
of the orbital parameters of the visible part of the binary allowed a
recursive determination of a lower mass limit of the dark compan-
ion, settled in the range (~ 14 — 15 My). Due to the notion that
the invisible attractive source of the binary appears to be too com-
pact to be a normal star, the suspicion substantiated that it could,
in accordance with theoretical predictions, be identified as a black
hole. Ever since then, and especially since the commissioning of the
famous Hubble space telescope, dozens of discoveries of comparable
stellar black hole candidates have been established in binary sys-
tems. Furthermore, ultraluminous compact X-ray sources affecting
mass concentrations in so-called star burst galaxies, i.e. in galax-
ies characterized by rapid star formation, have been observed. The
observed objects are deemed to correspond to black holes of inter-
mediate size, which in general tend to be strictly larger than stellar
black holes, but fairly less massive than supermassive ones. Multi-
ple times, similar dark objects have been observed in neighboring
galaxies as well as at the centers of globular clusters, which are dense
star systems that orbit a galactic core as a satellite. Gravitational
lensing effect measurements and gamma-ray burst detections have
additionally confirmed the view that the discovered objects can be
identified as galactic black holes in agreement with theoretical pre-
dictions. The aforementioned gamma-ray bursts have been subject
to intense study in the past decades, mainly due to the reason that
the longest detected flashes have to be associated to extremely ener-
getic, extraterrestrial explosions, representing in particular the most
highly intense electromagnetic radiative pulse detections known to
this day. The strongest of these gamma-ray bursts are thereby sup-
posed to result from exceptionally energetic supernovae, so-called
hypernovae, which are generally assumed to be linked to the forma-
tion of a black hole belonging to the largest part of the observed
mass range, a supermassive black hole. Together with observations
concerning the study of active galaxies and the investigation of the
central region of our galaxy, ultra-long gamma-ray bursts provide
the strongest evidence for the existence of dark objects lying in this

24



mass range. The observations suggest that the most likely oppor-
tunity for the formation of supermassive black holes measuring up
to such scales is provided at the center of galaxies. Therefore, it is
not a coincidence that a strong, compact radio source named Sagit-
tarius A* has been observed at the center of our own galaxy, which
may be identified as a supermassive galactic black hole configura-
tion. Moreover, further observations seem to indicate that according
black holes do in fact reside at the center of every galaxy in the uni-
verse. This, however, is far from being confirmed in an unassailable
fashion.

From a theoretical point of view, black holes with masses much
smaller than that of stellar black holes (<< M) may furthermore
be predicted to exist in nature, although evidence for these objects is
inconclusive so far. Such small black holes may have existed in form
of so-called primordial black holes in the early epochs of the universe
where ultra-high densities, required for the formation of such small
black holes, dominated the landscape of the universe at the time.
Additionally, so-called micro black holes, which are supposed to be
transient objects which could be formed in high-energy collisions
that achieve sufficient densities, may, in principle, exist in nature,
as there is no mechanism per se preventing a given massive object
from going below its own Schwarzschild radius. However, the ultra-
high densities required for such an act of formation go far beyond
those of known stellar objects and are not expected to be simulated
in any terrestrial laboratory any time soon.

All in all, from a theoretical and phenomenological point of view,
the deployment of black holes and black hole physics has not only
been proven to be consistent with observations, it has also initiated
some of the most remarkable developments in theoretical physics by
revealing basically unforeseen connections between otherwise dis-
tinct areas of physics, such as general relativity, quantum physics
and statistical mechanics. Black hole physics therefore seem to rep-
resent a building block needed for a proper understanding of the
theory of gravity, both at the classical and the quantum level. This
particular subject shall be depicted in more detail in upcoming sec-
tions, in which geometries that are strictly associated with black
hole spacetimes shall be explored in full detail.
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2.2 Local, global and asymptotic Structures of Spacetime

In order to be able to give a mathematically precise definition of
a black hole and a black hole event horizon, a few definitions and
pieces of rather technical background information play an essential
role. The given section therefore aims to provide relevant techni-
cal information by analyzing certain local, global and asymptotical
structures of a special class of spacetime manifolds suitable for the
said purpose.

The according special class of spacetimes, usually referred as the
class of asymptotically flat spacetimes, does in fact provide the ad-
dressed structures and thereby proves to be of great importance in
order to pursue black hole physics. The main reason for this is that
black holes are supposed to represent ideally isolated objects and
therefore should intuitively be characterized by the property that
the metric of a given black hole spacetime should become flat at
large distances from the attracting source. For this reason, the def-
inition of a black hole demands the introduction of spacetimes that
comply with according ideally isolated systems, being intimately
specified in general relativity by the addressed class of asymptoti-
cally flat spacetimes.

Here, however, there is a problem: In the literature, there is
not just a single, but rather several different definitions of asymp-
totic flatness and asymptotically flat spacetimes. Introduced first
by Penrose [45, 46] in the context of conformal compactifications of
spacetime, approached briefly during the further course of this sec-
tion, an alternative definition has been given separately by Geroch
[23, 24], which was based more on methods developed in the cele-
brated work of Arnowitt, Deser and Misner [3]. These two notions
were later combined into a single one by Ashtekar and Hansen [7].
It is largely this final combined notion which shall now be intro-
duced and then be used throughout the course of the given work.
The intuitive idea of this approach (and of the others as well) is
to map infinite distances to finite ones. This can be achieved in
practice by use of the mentioned technique of conformal compacti-
fication of spacetime, i.e. by trying to associate with a given space-
time (M, g) an 'unphysical’ spacetime (M, ) such that M C M via
considering a conformal isometry v : M — M with ¥*Ga = Q2ga,
where 2 € C*(¢[M], R, ) is some scalar function, in order to attach
suitable boundary structures representing points at future and past
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infinity. Due to the fact that the transformed metric g, is not sup-
posed to possess a decent physical behavior, the metrics related by
the conformal factor Q2 are called the physical and the unphysical
metric. Although the unphysical metric §,, may not possess direct
physical significance in general, the asymptotics of the physical met-
ric g become accessible if the alternative line element d3? = 2ds?
is analyzed on the compactified manifold. By this procedure the
boundary M of a given spacetime (M, g) can be divided (at least
in the ideal case) in the independent parts

i) Future timelike In finity i*
i1) Past timelike Infinity i~
ii1) Spacelike In finity i°

iv) Future null Infinity T

v) Past null Infinity Z~,

even though i* need not exist in general. These different parts of
the boundary are specified by the property that all infinite spacelike,
null or timelike curves which do not possess a certain endpoint lo-
cated in (M, g) reach a point lying on the corresponding part of the
boundary. In this respect, the image of the physical spacetime under
the introduced conformal isometry between the physical and the un-
physical spacetimes provides a precise notion of infinity. While the
regions i, i~ and i are 2-surfaces, the lightlike boundaries appear
to be three-dimensional submanifolds.

The geometric procedure of conformal compactification now has
the advantage that one is not forced to impose certain falloff condi-
tions on the spacetime metric in a particular coordinate system or
suchlike, due to the fact that this notion is manifestly coordinate
independent. Within the addressed framework it is also possible to
define conserved quantities associated with a spacetime itself, as for
example the total energy of the gravitational field of a given space-
time, in a rigorous manner. Furthermore, the associated techniques
enable one to represent an entire spacetime in a compact region in
such a way that the causal structure is identically preserved, which
is an inherent feature of any conformal isometry. Besides, the given
method of conformal compactification by no means demands the
validity of Einstein’s field equations and therefore is also accessi-
ble to certain alternative theories of gravity in which the Einstein
equations are not supposed to hold, although this work will focus
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on theories in which these fundamental equations of gravity are sup-
posed to hold anyway.

Turning now again to the definition of asymptotic properties,
a vacuum spacetime is called asymptotically flat at null or spatial
infinity if there exists a related spacetime (M, g) in addition to a
conformal isometry ¢ : M — M with a conformal factor € such
that 1¥*e = Q%g4 with pull-back * : T*(M) — T(M), where
Y*Gap € I'(T'(M)), which fulfills the following conditions:

1) There exists a 2 — sphere i € M such that J*+(i%) U J~(i0) =
WI\G{M). N

i1) There exists an open neighborhood O of OM in M
such that (9, g) is strongly causal. .

iii) The function § can be extended to a function on whole M which is smooth
and contivously dif ferentiable (except for i% where it has to be C?).

iv) The function Q must vanish on I and V,§ # 0 additionally therein.
Furthermore, on i°, it holds that Q(i°) = 0 and

MV, = 0, imV,Vy = 294 (")

v) The map of all null directions at i into the space of integral
curves n® := §gV,Q on I% is a dif feomorphism and, furthermore,
for any choice of a function w € C*°(M\{i"}) with w >0
on It UZ™ = {[M]U JE°)\{i°} and V. (w'n®) =0 on
% = 0J*(i%)\{i}, the vector field w™'n®is assumed to be complete.

While conditions i) and ii) disclose information about the causal
structure of the boundary of the physical spacetime (at infinity),
seen as an open subset of the unphysical one, condition #i7) im-
plies on the one hand that the conformal factor must be a well-
behaved function on the entire unphysical spacetime and on the
other hand that the Penrose compactification process is highly non-
unique because of the arbitrariness in fixing the conformal factor
of the unphysical metric. This can either be seen if one directly
changes the occurring conformal factor €2 or if one again associates
the unphysical spacetime (M, §) to another unphysical spacetime

(M, q) = (M, QQQ), according to which now Q should equally pos-

sess all desired properties of . By setting Q = QQ one clearly
re-obtains the same construction, but now with regard to a different
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conformal factor, which is sometimes referred to as gauge freedom of
the construction in the literature. Condition iv), in the meantime,
entails that the unphysical spacetime behaves in such a way that
the boundary of its associated Lorentzian manifold looks like that
of Minkowski space at infinity and, based on the listed completeness
assumption, condition v) entails the fact that the topology of the
boundary should be R x S5, since the flow generated by the cor-
responding null directions defines by assumption a one-parameter
group of diffeomorphisms.

A spacetime is called strongly asymptotically predictable if in
the unphysical spacetime there exists an open region O C M with
M N J=(Z*) C O such that (9O, g) is globally hyperbolic. This is
of interest because strongly asymptotically predictable spacetimes
are those which are usually assumed to contain a black hole. More
precisely, strongly asymptotically predictable spacetimes are space-
times on which it is possible to distinguish so-called inner and outer
trapped surfaces, whose presence usually indicates the existence of
a singularity. What is meant by trapped surface is a closed space-
like 2-surface A, whose future-pointing outgoing null geodesics have
negative expansion?. This actually means that there are two sys-
tems of null geodesics emerging orthogonally from A that in turn
locally converge there as well. Note that this definition is a purely
quasilocal one, since it involves only quantities defined on A. An
outer trapped surface A on the other hand is an orientable trapped
surface, i.e. a compact spacelike 2-surface A with a certain spa-
tial orientation, contained in the future development of a partial
Cauchy hypersurface X such that a system of outgoing null geodesics
emerging orthogonally from A locally converge at this surface. The
same holds true for an inner trapped surface A, but instead for null
geodesics emerging orthogonally from A that are now ingoing. A
partial Cauchy hypersurface in this context is a Cauchy hypersur-
face, which basically has to be asymptotically flat in addition, or,
more precisely, which has to be simply connected and strong fu-
ture asymptotically predictable as well. Note finally that a trapped

2In the language of proceeding sections this means actually that there is a pair of congru-
ences of null geodesics emanating from A for which the expansions of the associated lightlike
vector fields, say £¢ and n®, of the congruences are manifestly non-positive, i.e. © = Oy <0

and © = O(n) < 0. This of course implies ©0 > 0. If now one of the included subcases

© =0 =0o0r © =0 =0Iis fulfilled, A is referred to as a so-called marginally trapped
surface.
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region is simply a region containing trapped surfaces.

2.3 Black Holes and Black Hole Spacetimes

The given section will now focus on the elaboration of a mathe-
matically precise and physically comprehensible definition of black
holes and black hole spacetimes. For this purpose, an appropriate
stationary and asymptotically flat setting will be re-engaged, which,
in the spirit of the preceding section, complies with the requirement
of taking into account the only recently featured local, global and
asymptotical characteristics of ideally isolated systems. In this very
context, a number of the compiled aspects of causality theory will
prove to be a cornerstone in the definitions to be provided. The
according theory of black holes established therefrom will then be
delivered with regard to a selected number of black hole spacetimes,
all of which lie in the celebrated Kerr-Newman family of black hole
spacetimes.

To proceed as anticipated, a strongly asymptotically predictable,
physical spacetime (M, g) shall be considered, which is conformally
isometric to a related unphysical spacetime (M, §) containing a re-
gion O C M with MNJ=(Z¥) C O. Based on this geometric
setting, a black hole region B can be identified as the complement
of J=(Z1), i.e.

B:=M\J (IF).

This definition has been depicted from the idea that there is a gen-
eral impossibility for any observer to escape from a given region B to
future null infinity and that this appropriately describes the notion
of a black hole in such spacetimes. Note that a spacetime contain-
ing a black hole region has been denoted as black hole spacetime as
usual.

The event horizon H of a black hole is defined, in the given
context, as the boundary of the mentioned region J~(Z%)

H:=0J (T").

By this definition, a future event horizon H™" is defined as the bound-
ary of the causal past of future null infinity and a past event horizon
H~ as the boundary of the causal past of future null infinity. The
whole event horizon is, as already indicated, supposed to be subject
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to either the strong or the weak cosmic censorship conditions, stat-
ing that the parts Z= of the boundary are complete and that either
the whole manifold M is globally hyperbolic or at least the domain
of outer communication J~(ZT). It is therefore a smooth lightlike
hypersurface, according to which a singularity of spacetime always
appears to be ’invisible’ to any observer in {MNO} D {MNJ-(Z*)}
(subject to the condition that M NO can be assumed to be foliated
by a family of spacelike Cauchy hypersurfaces 3;). This allows one
to cope with causal deficits caused by the presence of Cauchy hori-
zons on such spacetimes; those which had already been ruled out
for the purposes of this work by the causality requirement for space-
times.

Black hole regions can be characterized by trapped surfaces, which
are spacelike surfaces of co-dimension 2 in a Lorentzian spacetime
with two independent forward-in-time pointing, lightlike, normal
null directions, on which both expansions of the said null directions
become negative. Following [41], these trapped surfaces can neither
be closed trapped surfaces nor marginally trapped surfaces with re-
gard to the proposed stationary setting in general. Nevertheless,
in the case of spherical symmetry in vacuo, which implies static-
ity by Birkhoff’s theorem, the event horizon H may be viewed as a
collection of outermost marginally outer trapped surfaces (MOTS)
of spherical topology. More generally, given the case that the event
horizon coincides with a so-called isolated horizon (to be discussed in
the next chapter of the present work), it may be thought of as a non-
expanding null hypersurface foliated by so-called apparent horizons,
which are compact, orientable 2-surfaces A (beyond which outgoing
light rays cannot expand outward) lying inside a spacelike Cauchy
hypersurface > such that A is a connected component of the outer
boundary of the trapped region of >.

Bearing this in mind, it may now be the time to discuss, case by
case, different black hole spacetimes, all of which lie in the famous
Kerr-Newman spacetime family. The addressed solutions are ex-
act and describe stationary axisymmetric or even static spherically
symmetric vacuum spacetimes, representing the exterior field of a
'maximally densitized” mass configuration. As will be illustrated at
a later point of this work, all of the discussed solutions belong to the
so-called Kerr-Schild class of spacetimes and can easily be described
within the geometric framework associated with this particular class
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of geometries, the so-called Kerr-Schild framework.

2.3.1 The Schwarzschild Black Hole

The Schwarzschild spacetime is a vacuum spacetime, describing the
empty exterior field of an extended spherically symmetric massive
body or the field of an eternal black hole for the whole spacetime.
While in the former case the exterior Schwarzschild solution can be
joined by an interior Schwarzschild solution describing the interior
of an idealized spherically symmetric star, in the latter case the
geometry of spacetime is completely determined by a single static
solution of Einstein’s equations. The focus of this subsection shall
lie on the latter case.

In spherical coordinates, the line element of Schwarzschild space-
time takes the form

2M dr?

dSZI—(l—T>dt2+ 1_w

+ r2dQ2. (1)

It can be seen that this spacetime is a static spacetime; neither
does its metric depend explicitly on ¢ nor does it contain any mixed
terms that could violate the invariance of the line element under
time reversal transformations. Therefore, it is invariant under tem-
poral translations and under time reversals as well. By the validity
of Birkhoft’s famous theorem, the staticity of Schwarzschild space-
time is implied by spherical symmetry and the in vacuo condition.
What is additionally proven by Birkhoft’s theorem is uniqueness:
the Schwarzschild spacetime is the only existing, spherically sym-
metric vacuum spacetime in general relativity®.

As the corresponding metrical field is invariant under time trans-
lations, there exists a timelike Killing vector field {* = 07, a solution
of Killing’s equation V(&) = 0, with b€ = gy = —(1 — QTﬂ),
that incorporates this symmetry. In addition, the given line element
is invariant under the group of isometries SO(3) operating on M,
whose orbits are spacelike 2-spheres. The introduced radial coordi-
nate r therefore is intrinsically related to the area of the according

3However, as shown in [12] using distributional methods, the mass parameter M can be
interpreted as one associated with a singular matter source that generates the gravitational
field, which, from a purely interpretive point of view, most likely has occurred in the past as
a result of the gravitational collapse of some mass accumulation to a black hole. In this sense,
it probably would be wrong to simply and naively interpret the Schwarzschild geometry as a
vacuum geometry.
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transitive 2-surfaces, which is encoded by the relation r = ﬁ,

whereas A is the area of a given 2-sphere.

The Schwarzschild spacetime is asymptotically flat in complete
agreement with all assumptions of the previous section. Its metric
can be brought into the form gu, = 744+ hap With |he| = O(r~!) and
|0chay] = O(r=2) for a,b fixed in the case of large r. In the given
black hole case the Schwarzschild spacetime can be considered a
vacuum geometry for all values of r. Looking at possible problematic
regions, one immediately finds that the given line element becomes
singular for r = 2M and r = 0. While an investigation of all
the scalar invariants of the Riemann tensor (such as in particular
so-called Kretschmann scalar RabcdR“de) shows that the r» = 2M-
region, located on the event horizon of the given black hole, appears
to be a coordinate singularity, which can easily be removed by a
transformation to less singular coordinates, the r = O-region turns
out to depict a real singularity of the given gravitational field.

In order to remove the occurring coordinate singularity one may
introduce the so-called advanced and retarded null coordinates v

and u given by v =t +r* and u =1t — r”*, Wherer*:fl_d—gﬂ:

r + 2MIn |55z — 1|. According to those new coordinates the line
element can be re-written in the form

2M
ds* = —(1 — Z=)dvdu + r*dQ?, (2)
r

where now r = r(u,v). Using further the conversions v = u + 2r*
and u = v — 2r* one can distinguish so-called ingoing and outgoing
Eddington-Finkelstein coordinates. According to those coordinates,
the Schwarzschild line element takes the form

2M
ds* = —(1 — T)olu2 — 2dudr + r*dQ? (3)

in the ingoing case and

2M
ds® = —(1— 7)dv2 + 2dvdr + r*dQ?

in the outgoing case. Although these ingoing and outgoing Eddington-
Finkelstein coordinates remain regular on the horizon, they do not
provide an analytic extension covering the whole manifold, but merely
one half of it. Nevertheless they will be of rather indirect impor-
tance for later purposes of the given work, as they are intimately
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related to so-called Kerr-Schild coordinates. These coordinates are
obtained by setting v = t + r, which yields the line element

oM,
ds® = —dt* + dr* + r?d? + =——(dt + dr)? (4)
T

for the ingoing case and

2M , _
ds® = —dt* + dr* + r*dQ* + T(dt —dr)? (5)

for the outgoing case, which occurs as a consequence of the fact
that the Lorentzian manifold M of Schwarzschild spacetime has an
atlas with two different charts, which taken together give the entire
manifold.

In this comparatively simple case, however, it even turns out
that a maximally analytic extension exists that covers the whole
manifold, as follows directly from the consideration of so-called

Kruskal-Szekeres coordinates. These are obtained from Eddington—

- v—u
Finkelstein coordinates by re-writing 1 — 24 = We—we o and

by introducing U = —4Me~ 7 and V = 4Meir such that the line
element

2M T
ds* = ———e UV + r2d§)? (6)

r
results; knowing that —oo < U,V < oco. Evidently, as can be read
off from the given form of the line element, Schwarzschild spacetime
is no longer stationary in these coordinates.

Next, by transforming further to coordinates U = arctan( Z)

and V = arctan(;s-), where one has —2 < Uv<zc 5, a conformal
compactification of Schwarzschild geometry can be reached unam-
biguously. Although an according conformal compactification can
of course be constructed for all black hole spacetimes of the Kerr-
Newman spacetime family, it is not possible to do so in general with
respect to one single coordinate chart. In this respect, Schwarzschild
definitely represents an exception from the general case. Surpress-
ing the angular coordinates (6, ¢), one can draw the Kruskal and
Penrose-Carter diagrams
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, whereas

only the latter diagram provides an illustration of cornformal infin-
ity as well as the two singularities of spacetime occuring in this

particular chart.

Considering the structure of the Weyl curvature tensor of the
Schwarzschild geometry, it is found that Schwarzschild belongs to
the class of Petrov-type D spacetimes. This is of great interest for
the later purposes of the present work, since it means in accordance

with the famous Goldberg-Sachs th
of the Weyl tensor can be set to
geodesic frame.
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2.3.2 The Reissner-Nordstrom Black Hole

The Reissner-Nordstrém spacetime is a solution of Einstein’s equa-
tions describing the electrovac exterior field of a collapsed, charged
material object producing a spherically symmetric gravitational field.
It is a unique solution of the Einstein-Maxwell equations for the
ansatz of an energy-momentum tensor of a spherically symmetric
electromagnetic field. In spherical coordinates, the line element of
this spacetime is given by

2M 62 d72
2 2 2 522 7

In these coordinates, one immediately sees that the Reissner-Nordstrém
geometry describes a charged black hole, since it looks like the
Schwarzschild solution with an additional static electromagnetic po-
tential term. Hence, by carefully taking the limit e — 0, one recovers
the geometry of a Schwarzschild black hole as a special case.

As a formal basis - similar to Schwarzschild spacetime - the sym-
metry requirement is that the metric field of the Reissner-Nordstrém
geometry should be invariant under time translations. As a result of
this requirement, one knows that there must exist a timelike Killing

vector field £* = 0f, once more a solution of Killing’s equation
Vs = 0, with gp&°€" = gy = —(1 — 2L + ?—;), incorporating

this symmetry. Additionally, it is required from the very beginning
- again similar to the Schwarzschild case - that the given line el-
ement is invariant under rotations. Therefore, the metric is again
required to be spherically symmetric, so that the introduced ra-
dial coordinate r can again be intrinsically related to the area of
A

4
where A is the area of a given 2-sphere. Of course, the metric of
Reissner-Nordstrom can be brought into the form g., = 14p+haep with
|hay| = O(r~1) and |0.hgy| = O(r~2) for a, b fixed in the case of large
r. Looking again at possible problematic regions, one immediately
finds that in the case M? < €? the metric remains non-singular ev-
erywhere except for the real, irremovable naked singularity at » = 0.
However, this case is physically uninteresting. The interesting and
physically feasible case is rather M? > e2. Here, the given line

element becomes singular for the values r4 = M £ v M? — 2. Ac-

transitive 2-surfaces, which is encoded by the relation r =
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cording to these values the above line element can be re-written in
the form

2 Tt "y ag? -
4" =~ == M+ oy

r

+7r2d0%. (8)

Using this expression for the line element, it can easily be seen that
the Reissner-Nordstrém geometry remains regular in the regions de-
fined by co > r > ry, ry >r > r_ and r_ > r > 0, whereas in
the case M? = €? the second region does not exist. In this case,
the black hole is called an extremal Reissner-Nordstréom black hole.
The event horizon is located at r = .

As in the Schwarzschild context, the coordinate singularities at
r,. and r_ may be removed by introducing suitable coordinates and
extending the manifold to obtain a maximally analytic extension.
In this context, it is possible to proceed along the same lines as pre-
sented in the previous subsection. Therefore, once again advanced
and retarded null coordinates v and w given by v = t 4+ r* and

u = t — r* shall be introduced; where now r* = [ —4dr__ oiving
’ 1_w+%
T s

the following values for r > r :

2

,
Injr—ry|————Inlr—r_| ife*< M?
ry —T- Ty —T-

2
r
rt=r+4 +

9)
2
= 2Mingr = M| - if & = M,
r —
—M

2
r*:r+M1n|r2—2Mr+eQ|—Q—arctan\z—! if > M.
es — €

M? _ M2

The third case can be ruled out, because it is unphysical to demand
e? > M? due to the fact that in this particular regime the radicand
in 4 can become imaginary such that no event horizon is supposed
to exist. In such a situation Reissner-Nordstrém would contain a
naked singularity, which, however, is forbidden by the weak and
strong cosmic censorship conjectures.

By transforming in the manner discussed above, the line element
of Reissner-Nordstrém spacetime takes the dual null form

2M 2
ds*> = —(1— —+ e—z)dvdu + r2dQ?. (10)
rooor
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Using further the conversions v = u + 2r* and v = v — 2r* one
can distinguish again similar to the Schwarzschild case ingoing and
outgoing null coordinates. This yields

oM ¢
ds* = —(1 — == + S)du? — 2dudr + r*dQ’ (11)
r r
in the ingoing case and
oM ¢
ds* = —(1 — == + S)dv? + 2dvdr + r*d9? (12)
r r

in the outgoing case. By setting v = ¢ + r, one obtains the line
element in Kerr-Schild coordinates, which gives

2M  e?
ds? = —dt? + dr? + r?dQ? + (— — %)(dt +dr)?  (13)
T T

for the ingoing case and

2M 2
ds* = —dP + dr® + %A + (T — S)(dE—dr)>  (14)
r r
for the outgoing case.
In order to try to obtain a maximal extension of Reissner-Nordstrom

spacetime, one may perform the transformation V' = arctan |exp(“==v)|

47‘_2,'_
and U’ = arctan | — exp(—"z=u)| so that
+
) 2M  e? r / Yo a2 3002
ds* = —(1——+4—=)-64———= csc |2V | csc |2U |dV dU +r=dQ°,
rooor? (ry —r_)?
(15)
where r is now implicitly given by
’ ’ ry —T_ 1 a
tan |V | tan |U | = —exp(( 572 yr)-(r—ry)2(r—r_)2  (16)
T
with a := (=) However, as can readily be seen, one has to use

different ’Kruskal charts’ to cover the whole manifold, which leads
to an infinite conformal diagram. Including the pathologocal case
of a naked singularity, while surpressing again the angular coordi-
nates (0, ¢), there are three possibilities of drawing a Penrose-Carter
diagram of maximally extended Reissner-Nordstréom spacetime
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depending on whether M? > 2, M? = €% or M? < €2,
The resulting metric is analytic everywhere except for r = r_,
where it is degenerate. This can be remedied by transforming to

. 7 —r_ 1"
new coordinates V' = arctan |exp(“>-v)| and U = arctan| —

exp(—5.zu)|, where n is some integer fulfilling n > 2(7£)%. In

these coordinates, the metric is analytic everywhere except for r =
r4, where it is again degenerate. However, in the obtained atlas
the metric is analytic everywhere, which is then the starting point
for a conformal compactification and the introduction of boundary
regions in the spirit of preceding sections. For further details, see
[33].

Considering finally the structure of the Weyl curvature tensor
of the Reissner-Nordstrém geometry, it is found that it belongs -
like Schwarzschild - to the class of Petrov-type D spacetimes, which
means that all but one component of the Weyl and Einstein-Maxwell
tensors, respectively, can be set to zero by the use of a suitable null
geodesic frame.
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2.3.3 The Kerr and the Kerr-Newman Black Holes

The Kerr and the Kerr-Newman spacetimes are geometries describ-
ing the empty exterior gravitational field produced by an either ro-
tating or rotating and charged black hole. The corresponding ge-
ometries are stationary, axisymmetric and - similar to the case of
elementary particle physics - determined by three real positive defi-
nite scalar parameters, i.e. their mass, their charge and their angular
momentum.

Both geometries, the geometry of Kerr and Kerr-Newman, are re-
lated in a way similar as the Schwarzschild and Reissner-Nordstrém
spacetimes, which means that they should not be treated on the
same footing. Nevertheless, this is exactly what will be done in the
further course of this subsection.

This is of course problematic in that both of these geometries do
describe physically distinct situations; one may view Kerr-Newman
as an extended version of the Kerr geometry that is not only a so-
lution to Einstein’s equations but rather to the Einstein-Maxwell
equations for the ansatz of an energy-momentum tensor of an ax-
isymmetric electromagnetic field in addition. Kerr spacetime, as al-
ready indicated, describes the gravitational field of a rotating black
hole; Kerr-Newman, on the other hand, that of a charged rotating
black hole. The metric of both spacetime geometries can be read off
from a line element of the form

2
ds? = —dt? +z(d£ +d6?) + (2 +a?) sin? 0d¢? + %(dt—a-snf fdo)?

(17)
in so-called Boyer-Lindquist coordinates. However, while for Kerr
one has A = A(r) =r? —2Mr +a® and x = x(r) = 2Mr, for Kerr-
Newman instead there holds A = A(r) = 7?2 — 2Mr + a® + e*and
X = x(r) = 2Mr — 2. In both cases, one has ¥ = X(r,0) =
r?2 + a’cos?§. Indeed, by carefully taking the limit e — 0, one
recovers the geometry of Kerr as a special case of the Kerr-Newman
geometry.

In the weak field limit one certainly finds that J = Ma can
be interpreted as the associated angular momentum of the black
hole. The quantity a therefore measures the angular momentum per
mass. Accordingly, by carefully taking the limit « — 0 in the Kerr-
Newman case one re-obtains the line element of Reissner-Nordstrém
spacetime and by taking the limits a — 0 and e — 0, one obtains

40



that of Schwarzschild spacetime. Both, the Kerr and Kerr-Newman
spacetime can be brought into the form gu, = Mgy + hap With |hg| =
O(r=1) and |9.ha| = O(r=2) for a,b fixed. Therefore, both of these
geometries reduce to Minkowski space in polar coordinates in the
limit » — oo. In the limit M — 0 the given line element in fact
rather reduces to Minkowski space in spheroidal coordinates; a case
which needs a little attention. As M goes to zero one ends up with
the line element

ds® = —dt* + dr® + (r* + a*) sin? 0dp*. (18)

r2 4 a?
By performing the transformations x = /r2 4+ a?sinflcos¢, y =
V1?2 4+ a?sinfsin ¢ and z = r cos 6, one then finds that the obtained
line element is equal to that of Minkowski space

ds® = —dt? + da* + dy* + d=*, (19)

as it ought to be. As a consequence of the executability of all these
limits, one may realize that the given line element encodes the geom-
etry of a whole family of spacetimes. This family is the previously
addressed Kerr-Newman family of spacetimes.

Looking for potentially problematic regions, one immediately finds
that the Kerr metric becomes singular for A = 0 and X = 0. As the
evaluation of Rgp.qR% then shows, there is the real geometric sin-
gularity ¥ = 0 and the coordinate singularity A = 0 similar to the
Schwarzschild and Reissner-Nordstrom cases. In closer range to the
black hole singularity, i.e. in the limit » — 0, one finds a disk-like
singularity located at r =0, 0 = 7.

As opposed to Schwarzschild, which possesses a point singularity,
it has the form of a ring and is therefore called a ring singularity.
There are once more two values ry = M £+ M2 — a? in the Kerr
case and r4 = M £ v/ M? — a® — €? in the Kerr-Newman case, ac-
cording to which the introduced coordinates become singular. These
are solutions of the equation A = 0, existing generically only in the
restricted regime a? < M?2. In the cases a®> > M? and e? +a? > M?,
respectively, the equation A = 0 has no real solution so that there is
no horizon hiding the singularity located at r = 0, 6 = 7 and neither
Kerr nor Kerr-Newman describe a black hole spacetime. Similarly to
Reissner-Nordstrom, the according situations appear to be unphysi-
cal ones and are additionally ruled out once more by the cosmic cen-
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sorship conjecture due to the fact that under the given assumptions
both spacetimes would contain a naked singularity. Hence it suffices
to look at the restricted values a? < M? and e? + a? < M?. In this
context one finds in both cases that A = A(r) = (r —ry)(r —r_),
whereas, once more analogous to the Reissner-Nordstrém situation,
the event horizon is located at r = r,. Any object crossing the
surface located at » = r, appears to be infinitely redshifted to an
observer whose worldline resides outside this surface and approaches
the future i*. In the cases a? = M? and a® + e? = M?, respectively,
both black hole solutions are referred to as extremal.

The given coordinate singularities can be removed by transform-
ing to more suitable coordinates that remain regular on the horizon.
This can be achieved by transiting to new coordinates v =t + T
and ¢ = ¢+ @, where T = T(r) = r + MIn|A| + QT]‘fQ_;eQ In |=—*|

and ® = ®(r) = —2—In|[;=*| are scalar functions such that

r4+—Tr—
dv = dt+9,T-dr = dt + "+ dr and dé = dp+8,® -dr = dp+ dr.
In these coordinates, the line element takes the form

2M € 2 + E +
Z 2 ( r—)dv _|_ Qd'vd’]" d& ( )
2 2 — A ‘Il 6 S.Il 2 ‘2 1 ¢
((T' + a )2 a S1 ) 1 dgb — 2a Si Hdrd

As it turns out, the resulting expression can be re-written in the
following much more compact fashion

ds® = —dv? + 2dvdr + Xd6* + (r? + a*) sin® 0d¢* — 2a sin® fdrdg+-
2Mr — e?

by
By introducing then the coordinate ¢ = v — r one can assess further

ds® = —dt* + dr* + Xdb? + (r* + a?) sin® 0d¢* — 2a sin® Odrdo+
2M7r — €2
b))

The introduced coordinates are referred to as Kerr-coordinates in
the literature.

Another set of coordinates that should be mentioned in this
context are Kerr-Schild coordinates (t,z,vy,z), which can be in-
troduced with regard to Boyer-Lindquist coordinates by means of

(dv — a - sin® 0d¢)*. (21)

(dt +dr — a - sin® §dg)>. (22)
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the coordinate transformations z = v/r? + a? sin@cos((g +p), y=
V1?4 a?sinfsin(¢ 4 ¢), z = rcos 6 with ¢ := arctan ¢. Here z,y,2
can be thought of as Euclidean coordinates fulfilling
2?2 +y* = (r* + a?)sin? 0, 2* = r*cos? 6 (23)
and hence ) ) )
r°+y z
—+ —=1. 24
(r2 4+ a?) + r2 (24)

Furthermore, the surfaces of constant radius r are then specified by

2.2 2
x —|—Qy z _ ( 25)
a?sin“0  a®cos?d

The line element is now of the form

ds® = —dt* + dz® + dy* + d2*+ (26)
2Mr3 (di + r(zdr + ydy)—a(xdy—ydz) N zdz)Q'
r4 + a2z r2 + a? r
Defining now
2Mr3
= —7 27
/ 4+ a?z? (27)
one sees using k,dz® = dt + T("Ed“ydfg;zgmdy*ydx) + 22 that the met-
rical field now possesses the structure
Gab = Nab + fkakby (28)

defining what is called the Kerr-Schild form. In this geometry the
r = const. surfaces become confocal ellipsoids with focus on the ring
p? =22 +9y* =a?% 2 =0. For r = 0 the ellipsoid degenerates into
a double cover of the disk p < a, z = 0. In the latter region, the
coordinates essentially reduce to polar coordinates (p, ¢) with radius
p=asinf.

Now that this has been made clear, it may be pointed out that
neither the Kerr nor the Kerr-Newman solution is spherically sym-
metric, so that one cannot draw a Penrose diagram for these solu-
tions. However, if one considers the submanifold of the spacetime
corresponding to the axis of symmetry (0 = 0 or § = 7) then,
since this submanifold is two-dimensional, one can actually draw a
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Penrose diagram for it. However, similar to the case of Reissner-
Nordstrom spacetime, the Lorentzian manifold of both these space-
times cannot be covered by a single ’Kruskal-like’ chart like Schwarzschild,
which leads once again to an infinite conformal diagram of the form:

As already indicated, the given spacetimes are stationary and
axisymmetric, which actually means that metric coefficients of this
spacetime depend neither on the time variable ¢ nor on the angular
variable ¢ and, moreover, its associated line element is invariant, if
they are combined, under time reflection transformations ¢ — —t
and under transformations ¢ — —¢ that change the orientation of
the axis of rotation. As a consequence, the given spacetimes possess
a two-parameter group of isometries. There are thus two associated
unique Killing vector fields (V¢* = 92 and (¥)¢* = 03, which can be
combined to one vector field £* via linear combination. This yields,
on the horizon, the well-known Killing vector

', = O + w0, (29)

representing a solution of Killing’s equation V(,§) = 0 with con-
stant angular velocity factor w, explicitly given by w, = %hzr L=
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?|T:T+ = Tri‘i% This constant factor w, may be viewed as a sort of
"angular velocity’ of the black hole as observed by a ’zamo’, i.e. a
special co-rotating zero angular momentum observer, at r = r.

Finally, considering the structure of the respective Weyl curva-
ture tensors, it is found that both the Kerr and the Kerr-Newman
geometries belong to the class of Petrov-type D spacetimes, which
means once again that all but one component of the Weyl tensor or
the Weyl and the Einstein-Maxwell tensors can be set to zero by the
use of a suitable null geodesic frame. Since these spacetimes serve as
background for geometric deformation in the further course of the
work, this will be explained in more detail later.
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3 Null Geometry

The main focus of this chapter is to give an overview of null geomet-
ric methods, in particular the spin-coefficient methods of Newman
and Penrose as well as that of Geroch, Held and Penrose, and to give
a brief introduction to the related theory of null geodesic congru-
ences in general relativity. In addition, in order to lay the foundation
for later arguments, the geometric framework of the lightlike folia-
tions of spacetime and the associated 24-2-formulation of general rel-
ativity will be discussed. In between, the physics of null frames and
embedded null hypersurfaces will be briefly outlined, which is deeply
related with the theory of null geodesic congruences, which in turn
will (retrospectively) permit a physical interpretation of the previ-
ously mentioned spin-coefficient formalisms. Finally, an overview of
the hierarchy of horizons in the general theory of relativity is given,
which on the one hand is important for later calculations and on the
other hand provides a definition of black hole horizons, which does
not presuppose knowledge of the entire past and future development
of the corresponding black hole spacetime.

3.1 Null Frames, Null Foliations and embedded Null Hy-
persurfaces of Spacetime

This section deals with the null tetrad formulation and the closely
related 2 + 2-formulation of general relativity, which will serve as
a geometric basis for subsequent sections of this chapter. These
formulations can be used as a starting point for the construction of
lightlike foliations of spacetime, which is an important point insofar
as in a later phase of this work it will become necessary to identify
the event horizon of a Kerr-Newman black hole as a non-expanding
null hypersurface, which is embedded in a corresponding lightlike
foliation of spacetime (as can be shown for any event horizon of
a stationary black hole). For this reason, both the basic idea of
a null foliation of spacetime and the definition of embedded null
hypersurfaces are discussed below.

As a starting point, consider the following fact: Given a space-
time (M, g), its associated metric g, and the corresponding inverse
g can be decomposed with respect to a pair of so-called tetrad and
co-tetrad fields £ and e, also called vierbein fields, according to
the rule
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Gab = T eye’y, 9 =" ESEY,. (30)

Of course, this also applies in the case that the null frame (¢*, n*, m®, m®)
and its associated co-frame (—n,, —{,, M., m,) are identified as the
respective null tetrad field £} and its co-tetrad e,. This naturally
leads to the 2 4 2-decompositions

Jab = —2€(anb) + 2m(amb), gab = —2€(anb) + 2m(“mb) (31)

of the metric and its inverse, which, as will be seen later, play an
important role not only for the given null geometric approach to
general relativity, but also for the spin-coefficient framework, which
will be introduced later in this chapter. It should be noted, however,
that the assumption that the corresponding basis is orthonormal,
which is the basis for the fact that

—Ln® =mem® =1 (32)

applies in the given context, is introduced at this point for simplic-
ity’s sake only, which is worth emphasizing, as such a choice usually
proves to be unnecessary, but nevertheless practical.

In this regard, also turns out to be a practical to suppress an
index of the associated vierbein fields and on this basis to consider
said fields as vector-valued (or co-vector-valued) one-forms, which
is the usual practice of the theory of differential forms on semi-
Riemannian manifolds. In this way, it is very easy to calculate the
concrete form of the exterior derivative of the said objects, which
results in

det = —wh Ae” (33)
and

dE# = Wl;L A Ew (34)
respectively, where, just for illustrative purposes, the former relation
can be written down in the form V[ae”b] = 8[,16”1)] = el’[awbﬁLV in index
notation; provided that the occurring coefficients w,,, called the
Ricci rotation coefficients, are subject to the relation

We, " = E" Vet = =V, B = —w/,. (35)

ap
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But what the elegant framework of differential forms is especially
well suited for is the calculation of the curvature tensor, which can
be achieved by considering the expression

I’E, =R, \NE,, (36)
which entails the definition
R, = dw’, + w5, Aw", = 0. (37)

As is commonly known, equations (34) and (37) are generally re-
ferred to as Cartan’s equations of structure.

By using the flat Minkowski metric 7,, = gabEapE%, one may
write down relation (37) in the form
Ropopw = BV oo — B4V awWppu— (38)

(e}

- B{Wpﬂuwaav — WopuWpar + WpsoWauy — WoppWapw } =
a a

=F paaw(,,w — E% Owppn—

af
-0 {wpﬁuwaau — WoBuWpar + WoBeWaury — Waﬂpwoqw}

in index notation.

However, the two equations of structure (34) and (37) are not
only useful for calculating curvature expressions. They can also be
used to define the basic equations of the spin-coefficient formalism,
whereas the main advantage of the latter approach is that it provides
a collection of complex scalar equations which, in special cases, can
often be studied separately. As will be shown later in the special
case of the generalized Kerr-Schild class, the said approach can also
be used to convert the tensorially defined Einstein equations into a
system of coupled scalar equations. However, before this is explained
in greater detail, a few restrictions on the null tetrad and co-tetrad
fields £} and e, shall first be made.

For instance, a quite natural restriction that can be made with
respect to any spacetime (M, g) is the restriction that the null tetrad
E7, and its co-tetrad e, should be null geodesic frames. This means
that either /* or n® should be null geodesic vector fields and should

therefore satisfy either
(V) =0 (39)

or
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(nV)n® = 0. (40)

For the sake of simplicity, only the former case shall be considered
from now on whenever the term geodesic null vector field is used.

The existence of a null geodesic vector field and an associated
null geodesic frame is always guaranteed if the spacetime (M, g) can
be decomposed into lightlike hypersurfaces and thus a so-called null
foliation of spacetime exists. Such a null foliation of spacetime is
by definition a collection of embedded null hypersurfaces H = H,,
also called level sets, which is defined as a collection of slices {H,}
which vary smoothly in ¢ such that

M = JH,.

Any given null hypersurface ‘H contained in (M, g) is therefore as-
sumed to be labelled by a smooth parameter function o, which has
to be constant along H. Therefore, it can be considered as a rep-
resentative of the set {H,}, which may be viewed as an ordering
prescription for all lightlike hypersurfaces of (M, g), ergo as a null
foliation of spacetime.

The null property of the hypersurface H encodes the fact that
the line bundle associated with surface co-cormal —do, = —V,0 is
lightlike, i.e.

g**do,doy, = 0. (41)

Due to the fact that this equation is identical to the Eikonal equa-
tion, one knows that a solution of this equation exists on any space-
time and that o coincides with a phase function, which is referred
to as a so-called optical function on occasion.

Setting (¢ := —V?, one therefore determines a non-vanishing,
smooth, lightlike vector field, which defines a closed form, meaning
that there holds V|,;Voy, = 0 in full agreement with the fact that
in Lorentzian geometry the torsion tensor is always identically zero.
This allows one to conclude

(al® =0, Vialy =0, (42)

which holds on any spacetime (M, g). A vector field ¢* € T,(H),
which fulfills exactly these two properties, is called a lightlike gen-
erator of a given null hypersurface, in the given case of H.
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The two listed relations entail furthermore the instance that ¢¢
is a hypersurface orthogonal null vector field, which then further
implies that it is automatically geodesic as well, which can easily be
concluded from the fact that

1
0=V by = OV by — (UN )y = =V (L") — ((V) L,
(o) b= (EV)la = 5Va(GL) — (V)
=0
The hypersurface orthogonality of ¢, imposes the requirement that
the integral curves generated by it have to be orthogonal to H,

which, in the given context, is tantamount to the fact that ¢, has to
fulfill the Frobenius theorem*

0aVily = 0. (43)

Since H is lightlike, this requires ¢* to be an affine geodesic vector
field.

However, that does not mean that ¢, is uniquely defined: One
may realize that the listed properties of a generator remain un-
changed after a multiplication with an arbitrary function xy = x(0),
by which, as a consequence, one may obtain another generator of
H by setting £, :== —dx, = —x(0)do,. Thus, there exists in fact a
whole equivalence class of generators of H, which shall be denoted
by [].

While in the given case of null foliations of spacetime each gener-
ator can be assumed to be normalized with respect to an associated
non-tangential null normal n* € T,(M) so that (32) applies, this
can no longer be assumed in the case of double null foliations, also
called dual null foliations. These foliations are defined by consider-
ing collections of slices {H, } and {#,}, which vary smoothly in the
optical parameters ¢ and & such that

M= JH,
and B
M - U?‘[{;.
Therefore, the existence of such a foliation requires the existence of
a smooth optical function ¢ and a closed 1-from —do, satisfying
g*°dG,da, =0 (44)

4This is in fact clear, as LoVl =0 <= *{V[ly }£* = 0.
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globally on (M,g). Setting now n, := —dd, in this context, this
means that there should exist next to the generator ¢, another non-
vanishing, smooth lightlike and hypersurface orthogonal co-vector
field, which is affinely parametrized and fulfills

nana = 0, V[anb} = O, (45)

along the three-dimensional lightlike co-hypersurface H, which im-
plies that also n, fulfills Frobenius’ theorem and thus

n[avbnc] = 0. (46)

Apart from one special case - that being the simplest case of the
flat Minkowski space - the existence of a further generator strongly
indicates that the corresponding pair of null normals can no longer
be normalized, which in turn implies that for double null foliations,
equation (32) is generally violated. Rather, there is an additional
(unknown) function e™ with m = m(z), which, as it will soon turn
out, must be considered as an analogue to the lapse function of the
34 l-approach to general relativity. This function is defined via the
relations

gdo,doy, = —e™, (47)

and

90505 = —e™™, (48)

from which it can be concluded that the corresponding generating
vector fields and associated co-vectors should be given by expressions
of the form

0 = em(92 — LY, £, = —do, (49)

and
n® =em(02 — N%), n, = —da, (50)

respectively. From this, in turn, it follows that

len® = ¢®lyny = gapl®n® = —e™ (51)

applies by definition, which together with the above relations depicts
that in the given dual null context can legitimately be viewed as shift
vector fields, sometimes referred to as equivariant vector fields.
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As a direct result, the following 2 + 2-decomposition of the line
element of the associated spacetime (M, g)

ds* = —2¢ "dods + qup(dz® + Ldo + N°da)(da® + LPdo + N°d&)
(52)
is obtained in the given dual null approach.
Since a simple rescaling of the form ¢, — x{q, Ne — X ‘14, where
X = x(o) shall be assumed to be valid, does not change anything
about the above form of the line element, but instead converts a
given double null foliation into a null foliation of spacetime, it be-
comes clear that null foliations yield, in general, the same type of
splitting of the line element and the corresponding metric. More-
over, it becomes clear that by considering different types of null
geodesic frames, different types of foliations are obtained. Note
here in particular that the construction of null Gaussian coordinates
[10, 21, 43| results in a particularly interesting type of null foliation
that is associated with a null Gaussian frame, which enables a much
simpler splitting of the line element and the metric of spacetime,
which is given by

ds* = —pdo? + 2dodp + 28yda’do + qp.da’da®, (53)

where ¢, 3, and g all are functions of (o, p, z%, z*). However, these
coordinates are generally defined only locally and their existence
therefore does not guarantee that spacetime is globally foliated by
lightlike hypersurfaces. Nonetheless, such coordinates allow a sim-
plified calculation of the curvature of spacetime, which undoubtedly
legitimates their consideration in many cases of interest.

At this point, however, it may be emphasized that it is generally
not necessary to construct a foliation of spacetime just to obtain a
null geodesic vector field. Of much greater interest for the present
work is, at any rate, the case of a null geodesic vector field, which is
orthogonal only with respect to a single lightlike null hypersurface
and thus fulfills

Ll =0, ((V)0 =0, Viglyly =0 (54)

in respect to some lightlike hypersurface V.

However, to prove the existence of a vector field exhibiting such
properties, one cannot argue purely intrinsically. Rather, it proves
necessary to identify N as a particular folium of a corresponding
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null foliation of spacetime, to ensure that certain scalar quantities,
i.e. certain spin-coefficients, are well-defined quantities that can
be obtained by applying the directional derivative n*V, of the non-
tangential vector field n® to the different components of (¢*, n% m®, m®).
In particular, since a black hole event horizon is always a lightlike
hypersurface (in the case that the black hole is stationary), its iden-
tification as a particular folium H = H, of a family of null hypersur-
faces {#H,} will allow one to convert non-intrinsically defined quan-
tities into intrinsically defined ones, which will be necessary later to
ensure the existence of a geodesic null vector field of the above form.
The fact that such an identification is actually possible is clarified in
a related work on the subject [11]|, which deals specifically with the
problem of constructing lightlike foliations of black hole spacetimes.
This will be very useful for the "Kerr-Schild program’ introduced
later in this work, which will serve as the starting point for the cal-
culation of the gravitational field of an ultrarelativistic particle at
the event horizon of a black hole.

3.2 Spin-Coefficients

In this section, different mathematical instrumentaria for the devel-
opment of the theory of null geodesic congruences are introduced.
These instrumentaria are on the one hand the well-known spin-
coefficient formalism of Newman and Penrose (NP formalism) and
on the other hand its extension, the formalism of Geroch, Held and
Penrose (GHP formalism), both of which expand the scope of the
standard null tetrad formalism discussed in the previous section.
After the introduction of these formalisms, fundamental aspects of
the theory of null congruences are discussed retrospectively, which
are then used for the physical interpretation of the above abstract
mathematical methods. As an adjunct, further aspects of the the-
ory of null congruences are presented, which will play a role in the
further course of this work.

3.2.1 The Newman-Penrose Spin-Coefficient Formalism

As already anticipated, the tetrad formalism introduced in the pre-
vious section is closely related to the spin-coefficient formalism to
be presented in this section. In fact, the spin-coefficient approach
can even be considered a natural foundation of the tetrad formalism
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in that it provides exactly the same results, but deals with complex-
valued so-called spinor fields (of which vector fields and tensor fields
are a special case), which are often easy to manipulate and handle
in practice. In this regard, the major plus of the spin-coefficient
method is that it not only has a naturally inherent geometric in-
terpretation, but, because it leads to the same scalar geometric in-
variants as the null tetrad formalism, it also allows the extraction
of systems of complex-valued scalar equations from often very com-
plicated relations between vector or tensor fields. In the end, this is
why it has been widely used in finding elegant solutions to difficult
technical and geometric problems in the dual null approach as well
as in other areas of the broad field of general relativity.

In any case, due to the variety and richness of the said formal-
ism, it shall be made clear from the outset that the present section
deals only with those aspects of spin-coefficient formalism that are
useful for the given work, despite being based on more detailed in-
troductions to both formalisms, as they are given for example in
[50, 51| and additionally in [25, 44]. In this respect, this section fo-
cuses primarily on the presentation of relevant characteristics of the
above-mentioned formalism and only briefly addresses some aspects
of this broad area of research in a nutshell.

Correspondingly, in order to introduce the relevant concepts and
ideas of the spin-coefficient formalism, now again a null tetrad field
(0, n* m*m®) shall be considered, so that

Gab = —Lany — naly + mamy + Mamy,. (55)

Then one of the main observations, which allows what may be called
a ’spinorial re-formulation’ of the given approach, is the observation
that any of the given vector fields can be re-written as a product of
certain associable spinor fields (04, :4; 0%, 14"), which form a basis
of an associated spinor bundle &. For the geometrical interpretation
of the corresponding spin-frame one may imagine, following [50, 51|,
each spinor to be visualized by a flag which possesses a flagpole and
lies in a certain flag plane.

Given this geometric input, the subject shall now be approached
by considering the so-called Infeld-van der Waerden symbols g4’
and ga4/*, which allow one re-express the null tetrad frame (£%, n® m®m®)
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. . . / / .
given above in terms of the spin-vectors (o, :4; 04", 14") in the form

A A A A A A A A
0" = g4 0707, m® = ghp07tt, mt =gt 0", Nt =gt
(56)
/ . o, . . .
where 0414 = 014 = 1 applies by definition. A consistent choice in

this regard, which seems natural in view of the convention (—, +, +, +),
is gaa® = 1044* and ng' = iUAA,a, where the specified objects
oax® and 024, can be defined in matrix language using the two-
dimensional unit matrix as zeroth component and the famous Pauli
matrices 0; == (044/)" = ;(0*) as remaining components, where
i=1,2,3.

By means of these Infeld-van der Waerden symbols g(’;‘A/ and
gaa®, the spinor based derivative operators V u = gaa®V, and
VAL = g2V can now be formed. With respect to these particu-
lar quantities, the four different derivative operators

D = OAOAIVAA/ = €“Va (57)
0= OALAIVAA/ = m“Va
(5/ = LAOAIVAA/ = m“Va

/. A A _ .a
D =" VAAI—’I”LVQ

can be defined. In addition, the object €45, which represents the
two-dimensional, spinorial counterpart of the metrical fundamen-
tal form g, of the four-dimensional spacetime setting, can then be
decomposed according to that choice as eqap = 04t — L40p.

Given this setting, it should however be emphasized that this par-
ticular choice for the Infeld-van der Waerden symbols is often viewed
as a rather unusual route toward the spinor formalism, in that it re-
quires one not to consider the set of objects Herm(6 ® T'(M)),
where & is the spinor bundle and T'(M) the tangent bundle associ-
ated with M, which is usually done for spacetimes with the signature
convention (4, —, —, —), but rather the set Antiherm(& & T'(M)),
which is reflected by the fact that the corresponding soldering form
defines an anti-Hermitian rather than a Hermitian algebraic struc-
ture, so that gaa® = —gaa® applies in the given context instead of
Jaa® = gan® as usual.

And although such a choice is of course always consistent, one
may take another route toward the subject by realizing that - based
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on an identification of T(M) with & ® & - tensor fields (and thus
of course vector fields as well) can always be regarded as specific
spinor fields, which can be constructed by considering products of
basis spinors. To be more specific, it is always possible re-express the
said null tetrad (€%, n% m®m®) by using abstract index notation [50],
according to which each individual tensor index is re-interpreted as
a corresponding pair of (capital) spinor indices, one unprimed and
the other primed (e.g. a = AA’), and therefore to give alternative
definitions to (56) via considering the expressions

’ r ’ ’
0% = oo™, m® = oM, m®* = 110N, nt = AN, (58)
. / . ’ .
whereas it may be assumed that (o) = it”, (14) = io? and thus
! ! . . .
oat™ = (oat?) = —140% = 041" = 1 applies in the given context.

Using the fact that there holds ¢! = o4 and e/ = 4, it is
possible to give an exact definition of spin-coefficients by considering
the expressions

B._ _ B D _ D B
Yaarc = i=€ep=Vawec~ = —€c  Vaaep =, (59)

where those indices that are fixed are identified by the use of the un-
derbar symbol. The corresponding spin-coefficients have the explicit
form

€ 1= 700,00 = LADOA = %(—nana -+ maDma)

K= —Y00' = 0*Doy = —m* D,

7= —7001° = =Dy = —m*Dn,

V=001 = =04 Dy = 5(—L*Dn, + m*Din,)
B =010 = 14004 = 5(—n"6l, +m*dim,)

0 = —Yo10 e~ 0A50A = _ma(%a

pli= =0’ = —140ea = —mon,

o = yo11 L = —0Abi, = %(—E“éna + m®om,)
o= 710,00 — LA5/OA — %(_naélga + m“é’ma)
p:=—moo' = 0t0os = —m*d'l,

0 = =1’ = =14 = —md'n,

B =m0t = =04 1a = 5(—0%0"ng + m*'m,)
v o= 711/00 — LAD,OA — %(_naDlga 4 maD/ma)
7= —qo ’ = 0" D'og = —m* DL,

K= —yn = =Dty = —m*D'ng,

€ =7 =—-0D1y = %(_EaDlna + m*D'mg).
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However, there is a simpler way to introduce the given set of
spin-coefficients, namely by simply considering the basic spinorial
relations

Doy = €oq — K, (60)
doq = Bos — 0Ly,

dos = aos — piy,

D'ojy =04 — Tia,

Diy =71y — 7oy,

dia =0ty —ploa,

(5/LA = ﬁILA — UIOA,

Diy=¢€1s—FKoq,

where the associated dual relations can be easily calculated by rais-
ing the occurring index by means of the skew-symmetric quantity
e4B = o4 B — 40P . Next, by looking at the decomposition relation
Voaa = —tata D — 0404 D + 14040 + 04140, it is straightforward
to write down the components of y44¢cZ in full agreement with
relation (59).

The physical relevance of the resulting scalar quantities shall be
illustrated below by considering the null tetrad approach and the
physics of null geodesic congruences to be presented in subsequent
sections of this work. However, their geometric and mathematical
relevance can easily be illustrated by emphasizing that the listed
spin-coefficients are nothing but linear combinations of certain com-
ponents of the Ricci rotation coefficients introduced at the beginning
of the previous section and therefore are null curvature expressions.

To see this explicitly, define € = —ng, el = —4,, €2 = m,,
e3 =m, and Ey = (*, E¢ = n% Ey = m", Ey = m" According to

these definitions, one finds

R = Wp20
€= %(wow — Wo23)
p = Wasl
Q= %(wgol - w323)
0 = W02
pi= %(w201 - wzgz)
T = W02
Y= %(WIOI - w123)
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KJ/ = W131
6// = %(wno - w132)
p = 0&1)302
o = §(w210 - w223)
o' = 010313
B = §(w310 - w323)
/.
= Wo13

~

= %(wow — Wo23).-

_—

The main advantage of the introduction of the complex valued
spin-coefficients over null Ricci rotation coefficients and Christoffel
symbols is that one only has to introduce twelve complex quantities
rather than twenty-four real quantities needed to define the tetrad
structure or the forty independent coefficients needed to define the
Christoffel symbols.

The operators D, 6, ¢, D' possess the following spin-coefficient
expansion when applied to the four null vector fields ¢, n®, m®, m®:

Di* = (e4€)0* — km®* — km®, Dn® = (v +7)n* — 7'm* — 7'm*
Dm® = (e+7)m?* —74* — kn?®, Dm® = (v +€)m* — 7'4* — kn®
D't = (y+ )¢ —Tm® —7m®, D'n® = (¢ +€)n® —k'm?* —'m*
D'm® = (y+€)m®— k" —Tn®* D'm®=(+7)m*—r"l*—Tn"
50" = (B + a)l* — pm® — om®, on® = (o + 5')n® — p'm* — g'im"
sm® = (B + B )m* — g't* — on®, om® = (o/ +a)m® — p'l® — pn°
30 = (a+ p)* —am® — pm®, 0'n® = (' +a')n* —o'm* — p'm*
S'mé = (oz+6/)m“ _ﬁ%a —pna, S'me = (6/+B)ma — g0 — ano.

In addition, commutator relations between arbitrary combina-

tions of the four differential operators D,D’, §, ' can be expressed
in terms of spin-coefficients, i.e.

DD'—D'D=(y+3D—-®+7)D"+ (v'=7)d — (1 = 7)&
D —Ds=(B+a+7)D+ kD' —cd—(e+7 +p)d

6D —D'§=FD+ (r+d +B)D =55 — (y+&+p)d

D' —D'o=(p—p)D—(p—p)D' + (! +a)d — (a+a')d".
A

Note that the requirement that o%v4 = o "tu = 1 reduces the num-
ber of independent spin-coefficients, since this implies that o = — ',

38



/

e = —' and accordingly that 8 = —d/, v = —€¢. It is cus-
tomary to employ the symbols 7w, A\, , v for the spin-coefficients
—7',—0',—p', —K' in this case.

Due to the two-dimensionality of the spin space, a general spinor
X P can always be decomposed in a purely symmetric part X ((CD ))
and a purely antisymmetric part X [[ =]
responding antisymmetric part is fully specified by contractions of
the skew-symmetric objects cap, ‘5 and 8. Accordingly, calcu-
lating the expressions

in such a way that the cor-

C C _ D
AABOC :XABD (6%

and
Aapa® =@, 5, "
with respect to some spinor a®, where A 5 := VA/(AVE?)’ = 5A/B/V[avb}
and
Xapp € = Wapp “ +Hoypp ©

are given by definition with respect to the symmetrizer o, ;8 =
elle+el ED and the Scalar field I = £, yields two relevant spinor
fields ® 4,55 ¢ and ¥, 5, ¢, whose individual components coincide
with those of the Weyl and the stress-energy tensors. More precisely,
using the definitions ¥y = ¥ pcpo?toPoCoP, ...., and by comparing

these components with those of the said tensors, it is found that

\Ifo = Cabcdﬁambﬁcmd \Ifl = C’abcdf“mbﬁcnd,

Uy = Copeal®mPmn?, Uy = Cupeal®nbmn,
WU, = Chpea® n’men? , Poo = §Rab€a€b
1 a, b 1 a, b
Dy = §Rab£ m’, Poy = éRabm m-,
1 1
Dy = §Rab€ambv Oy = §Rab€anb + 3II,
1 1
Dy = §Rabmanb7 Dy = §Rabmamba
dy = éRabn“mb, Dyy = §Rabn“nb.

As is well known, these components are subject to a set of coupled
first order differential relations built from different combinations of
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spin-coefficients and associated directional derivatives of these spin-
coefficients, which are generally referred to as the Newman-Penrose
spin-coefficient equations [50].

The next section will show that there are natural transformations
of spin-coefficients and that the act of choosing a certain basis nat-
urally leads to an extended version of the investigated formalism of
spin-coefficients, the formalism of Geroch, Held and Penrose, also
called GHP formalism for short.

3.2.2 The Geroch-Held-Penrose Spin-Coefficient Formalism

After fixing a spin basis, the components of spinors have a sim-
ple scaling behavior. As it then turns out, spin quantities (strictly
speaking: the spinors o and () can be transformed either by so-
called boost-weighting or by so-called spin-weighting transforma-
tions. This can be seen in the spin-coefficient formalism of Geroch,
Held and Penrose, which takes this exact fact into account.
Regarding once again the setting introduced in the previous sec-
tion, the most general change in the dyad fields preserving the or-

. .. /! .
thonormality condition 0oty = 041y =1 is

o Xo?, A AT (61)

By carrying out this transformation, the four-dimensional lightlike
vector fields entering the null tetrad E¢ rescale in the following way

0% = AN, m® = AT m® = AT n® e (AN et (62)
For some real R and some complex phase factor e, one can then
define w.lo.g. A := VvV Re?, which allows one to re-express (62) in
the form

(* — R(*, n®— R71n%, m®— em?, m®— e Ume. (63)
Any given weighted scalar spinorial quantity n = (o, ¢), obtained by
a certain combination of contractions of 04, 04" and .7, %" with some
the said multilinear form n ;_77(0, L) to an object 7 = 7(0,1) =
1n(6,1) with 64 := Xo?, 64" := Xo? and P = X715, P = AU P
according to the rule B

n— APAIp =: 1. (64)
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In this context, n is usually referred to as a spinor of type {p, ¢},

which possesses the spin-weight s := %(p — ¢) and the boost-weight

b= %(p + ¢). In this vein, o?, 0" and *, 1" may themselves be
viewed as spinors of type {1,0}, {0,1}, {—1,0} and {0,—1} and
[*, n® m* m* as vectors of type {1,1}, {—1,—1}, {1,—1} and
{—1, 1} respectively. Of course, not all spin-coefficients do retain
their structure under the given transformations. Rather, transform-
ing 0o?, o and 4, +*" divides the whole set of spin-coefficients
into two different classes: into one class of coefficients, consisting
of {e,a,B,v;€¢,¢/, 5,4}, which are not only weighted, but also
are shifted by derivatives of A and A~! respectively, and into an-
other class of coefficients, consisting of {k, p, o, 7; k', p’, o', 7'}, which
are just weighted, but are not shifted by according terms involv-
ing derivatives of A and A\~!. These coefficients have the weights
ko {3,1}, o {3,—-1}, p - {1,1}, 7 : {1,—-1}, & : {-3,—-1},
o {=3,1}, o {-1,—-1}, 7 {—1,1}.

As can easily be verified, the derivative operators D, D" and 4,0’
do not map weighted quantities to weighted quantities. A standard
approach within the given formalism is therefore the introduction of
the derivative operators 0 (eth) and b (thorn), whereas 9, @ and b,
b’ can be viewed as extensions of the four derivative operators D,
D’ and §,¢’. With regard to some spinorial quantity 7 of type {p, ¢}
there is the connection

bn = (D — pe — qé)n,
)

'n = (8' — pa — gB)n,
b'n= (D" —py—d¥n.

between the differential operators 0, @ and p, b’ and D, D’ and 4,4".
The weighting transformations then yield the transitions

bn = AN Dby,

On — AP\ 1ap,

'n — NPTINTTLE,

b'n = XTI,
Thus the occurring operators have the types b : {1,1},0 : {1, -1},
o :{-1,1},p" : {-1,-1}.
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The extra terms entering the definition of 9, & and p, pb" are cho-
sen in such a way that they cancel the occurring derivatives of A\ and
(4 in the definitions of the Weighted spin-coefficients {¢, a, B, v; €', o/, 5,7}

For the spinor fields 04, 04" and ¢4, 4" one has the differential rela-
tions
A A A ‘o po _ A A oA
po® = —kt”, bt = —71 pbo”® = -k, pt =—7
/ _ / / _ !
9o = —at, 3t =—p oA 9o = —pu, ,6LA = —go?,
Y ’ _ ’
Dot = —pi, 3 = —0'0?, do = —ULA Lot p’oA
’ ! !
b/OA — —TLA, b/LA — —/<L/OA, b/OA — ’ 7b, A /OA _

In addition, one may form the following commutators of the regarded
differential operators, which, when applied to a {p; ¢}-scalar 7, read

bp' = b'b=(F—7)0+ (r —7)0 — p(kr’ — 77" + Wy + Oy — II)—
— q(RE — 77 4 Uy + 01y —1I0),

pd —0p = p0 + 00’ — kb — kD — p(p'k — 7o + ¥;)—

—q(a'k — p' + Po1),

00’ =90 = (o — p)b+ (p — P)b" + plpp’ — 00" + Wy + @y — IT)—
—q(pp — 66" + Uy + Oyy —1II).

It is also possible to convert the covariant d’Alembertian [,

V? = V,V® by means of the defined differential operators 0, 6’ and
b, b'. Tt takes the form

O, = 2(bb' — 90 — b — pb' — 70 — 70) (65)

when applied to {0, 0}-scalars. This does not actually yield a simpler
expression, as a mixture of first and second derivatives of 9, & and
b, b’ are involved in the obtained differential operator.

3.3 Null Geodesic Congruences

Having discussed some important aspects of the null tetrad and the
standard and compacted spin-coefficient approaches, the mathemat-
ical techniques required for the description of null geodesic congru-
ences shall be presented next. For the sake of simplicity, the geo-
metric setting used as a starting point for this description is chosen
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in this regard to be essentially the same as that given to obtain a
null foliation of spacetime. In view of this, the best way to start the
discussion is probably to first define a null geodesic congruence in
relation to the said geometric setting, and then to draw similarities
to the spin-coefficient formalisms discussed in the previous sections.

In this respect, considering a spacetime (M, ¢g) and an open subset
O C M, a congruence is a family of non-intersecting spacetime
filling curves having a fixed causal structure (so that their associated
tangent fields are either spacelike, timelike or null), defined in such
a way that through O there passes precisely one curve of the given
family. Generated by a collection of non-intersecting, parametrized
integral curves associated with a non-vanishing continuous vector
field tangent to O, a line congruence (that is, a congruence of curves)
does possess a certain causal structure inherited by its tangent fibers.
Therefore, a congruence is called either timelike, spacelike or null if
and only if there is an appropriate family of continuous timelike,
spacelike or null curves generating it. Accordingly, a congruence is
called geodesic if its generating vector field is geodesic.

Focusing exclusively on null geodesic congruences that generate
freely propagating light rays, the simplest case of an an affinely
parametrized, lightlike, normalized hypersurface orthogonal vector
field ¢* fulfilling

bl =0, Vigly =0, (66)

shall thus be considered. The said vector field shall be completed to
a normalized null geodesic tetrad (£%,n% m® m®) for convenience.
This is the same as to demand ¢, = —df, = —f(0)do, and —{,n* =
m,m® = 1 to hold, which, regarding the results from preceding sec-
tions concerning null foliations, amounts to choosing the vector field
(" to be the generator of a foliation of null hypersurfaces {#H,}. In
this context, then, assuming that f = f(o) is chosen so that ¢* al-
ways points into the future and never vanishes, the tangent-space
elements of the considered congruence of null curves correspond ex-
actly to the null foliation of spacetime.

Again, a multiplication with a function x = x(f) does not in-
fluence the lightlikeness and hypersurface orthogonality of the gen-
erator, opening up the opportunity to pass over to the generating
fields ¢, = —x(f)df, without changing the essential structure, so
that there holds
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00" =0, Vil =0. (67)

The equivalence class [f] is then obtained directly as a result of the
given considerations.

A further possible assumption could now be that (¢*, n® m®, m®)
is chosen in such a way that the tetrad is kept constant along the
null congruence generated by /¢, meaning that it is actually paral-
lelly propagated along the flow of the vector field /¢, which in fact
would simplify some of the following calculations. However, this
choice, while justified in advance, is by no means necessary and, as
stated below, is only made in the present context in order to explain
relevant concepts of the approach.

Bearing this in mind, it may be noted that such a congruence
gives rise to a transversal (and possibly even orthogonal) deviation
vector field n°, defined and decomposable with regard to the given
normalized null frame (¢*, n* m®, m®), which measures the displace-
ment to a nearby geodesic, while itself generating by definition a
purely orthogonal flow. Accordingly, such a vector field necessarily
fulfills

Ln® =0 (68)

or equivalently
Dn®* = (V.n® =0V, (69)

which shows that V.¢* measures the failure of being parallelly trans-
ported. In this context, therefore, the following necessarily applies:
Lo Lm® = Li(nat*) = D(ny*) = 0, so that it can be concluded that
the inner product remains constant under the flow generated by (¢,
i.e. N l* = const.

The introduced deviation vector field n*, which is carried along
with the flow of /%, represents a solution to the geodesic deviation
equation, as can easily be verified by checking that

D277a — D((nv)ga) — Dncvcga 4 nchcga —
= (IV)EVL! + 0 VGV el =
= (V)(((V)L) = (V) Vel + 0LV 4V ol =
N——

=0

= 2V Vgl = R, 000"
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holds, which leads to the geodesic deviation equation
D*n* + R%, 000" = 0. (70)

This shows that the non-zero vector field n®, which measures the
"distance’ to a nearby reference geodesic with respect to the conju-
gate points p and ¢ °, is a solution of the geodesic deviation equation
if and only if L,n® = 0 is fulfilled. Meanwhile, n* can either be an
abreast vector field, meaning that it moves completely in the or-
thogonal direction to ¢* fulfilling n,¢* = 0, or a non-abreast vector
field, which is not solely moving in the orthogonal direction to (¢,
fulfilling rather n,¢* # 0, which, however, is related to the fact that
D(nt*) = 0, from which it can be concluded that the inner product
n.0* remains constant with respect to the flow of /. It is therefore
always possible to assume either the validity of the abreast case by
assuming that 7,0 = 0 or of the non-abreast case by assuming that
nal® # 0, where the former case of course occurs as a special case of
the latter.
Considering first the abreast case for reasons of simplicity, the
decomposition
n* = M*+ (m® + (m* (71)

can be made, which, after assuming that the frame (¢, n% m® m®)
is parallelly transported along ¢* such that D{* = Dm® = 0 and
therefore m = 0, straightforwardly yields the relations

D¢ = —pG — o, (72)
DX =7( +7¢,

where 7 = @ + 3, 7 = o + 3 has been used, which is possible, since
{, is a gradient field by assumption. Accordingly, given these results
one further finds - using the geodesic deviation equation (70) and
the decomposition relation R = Ccfib—i—%[[caRCz] — 62" R, where C%,
is the Weyl tensor, i.e. the trace-free part of the Riemann curvature
tensor - the scalar relations

D*¢ = —®go¢ — Vo, (73)
D2>\ = (\le + (I)lo)C + <\D1 + ®01)5

5Conjugate points are initial and final intersection points at which the deviation vector
field has to vanish, i.e. n®|, = n%|q = 0. Vice versa, two points p and ¢ are conjugate if there
is a Jacobi field connecting them.
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are found. Focusing first on the ¢ part, the important set of relations

Dp — p* — 06 — ®gy = 0, (74)
Do —2po — ¥y =0,

known as the famous Sachs equations, describing the dynamics of
the so-called optical scalars p and o, are found. Additionally, the
useful relation

Dr+pr+ 07+ VU, + Dy =0 (75)

is found in addition, from which it can be concluded that the scalar
equations (74) and (75) naturally result from calculating the Lie
bracket (68) and the geodesic deviation equation (70) with respect
to a given Jacobi vector field of the form (71).

In the non-abreast case, assuming that m® and m® are again
chosen in a 'smart’ way such that D¢* = Dm® = 0 and therefore
m = 7 = 0, which is in complete agreement with the standard
gauge freedom associated with the spin-coefficient formalism, the
decomposition

n® = M* + wn® + (m" 4 ¢m°, (76)

is now found in turn, yielding the extended relations

D¢ = —Tw — p¢ — o, (77)
DX = (v + ¥)w + 7¢ + 7€,
Dw =0,

where ¢ = —v and € = —% has been used in the present context.

Note that 7 = a + (3 has been used here similarly to the abreast
case.
As a bonus, one finds the further relations

D<’7+’_}/)_27—7_—_\112_@2_2(1)11"’_21_1:07 (78)

in addition to the remaining equations of the abreast case, from
which it can be concluded that solving the scalar equations (74),
(75) and (78) with respect to a Jacobi vector field of the form (76)
is equivalent to solving the tensorially defined geodesic deviation
equation (70) with respect to the same vector field. Consequently,
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a first point of contact of the physics of null geodesic congruences
and the spin-coefficient formalism becomes clear at this juncture.
From the spinor perspective, the results obtained are based on
specific restrictions on the spinor fields o4 and (4. To be exact,
the main requirements here are that the spin-frame is chosen such
that Do o o4, which implies that the vector field ¢* is affinely
parametrized, and so that the flag planes of the spin-frame are par-

allelly propagated (e = €), which can always be achieved by means
of an appropriate rotation (that is a rescaling of 0 — e¢%o? with
¢ € R within the spin-coefficient framework). In fact, the condi-
tion Do = 0 is a necessary and sufficient condition for relations
e = k = 0 to hold, which both guarantee that ¢ is a null geodesic
vector field, i.e. £,0* =0 and D¢* = 0. The given so-called extremal
case, according to which there holds € + € = 0, turns out to be espe-
cially interesting for the Kerr-Schild framework, since this case will
allow one to choose ¢* as a possible Kerr-Schild vector field at a later
point of this work. The additional condition D:* = 0 meanwhile
ensures that m = 0 and thus Dm® = 0 applies. However, to ensure
that the much stronger condition V,f; = 0 is also satisfied in the
given context, ¢ = k = p—p = a + f — 7 = 0 must necessarily
hold, which then implies that the null congruence is both geodetic
and twist-free, so that ¢, in fact is a gradient co-vector field. This in
turn means that the so-called volume expansion function © = p+ p
(called expansion for short), which in the present context coincides
with the gradient of the null vector field ¢* (so that © = V,£*) and
which can be derived from an associated tensor field O, (to be de-
fined below), has no imaginary part and the scalar twist function
w = Vwepw® = —i(p—p) (called twist for short) vanishes identically.

In view of these facts, it can thus be concluded that geomet-
ric constraints for spinor basis fields lead to geometric constraints
for null frames and their associated null geodesic congruences. An
important restriction in this context, which is often required in prac-
tice, is that the null geodesic congruence is also shear free, which
means that the trace-free part o, of O, the so-called shear tensor,
should be zero. However, this is exactly the case when o = 0, which
then implies that do4 oc 0 needs to be satisfied.

The other spin-coefficients have interesting physical interpreta-
tions as well. For instance, from the decomposition relations pre-
sented in section 3.2 it becomes clear that 2Re(e¢) = € + € can be
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interpreted as an acceleration parameter associated with /¢, which
can be eliminated by a rescaling of the form ¢* — A\¢*. Accordingly,
it can be concluded that the coefficient ¢ measures deflections of a
given curve parameter with respect to an affine parameter. The co-
efficients & — 3 and @ — 3, which can be used for the definition of &
and 0', in the meantime, determine the curvature of a submanifold
generated by m® and m®, while the spin coefficient 7 measures the
change of ¢* in the direction of n®. These further points of contact
between null geodesic congruences and the spin-coefficient method
shall thus be highlighted in more detail below.

To accomplish this, however, some further relations, which have
so far been only partially discussed, are now to be defined and phys-
ically interpreted by taking into account intrinsic and extrinsic geo-
metric quantities associated with H, which are obtained by defining
projections onto H or onto a two-surface A lying in H. In fact, this
can be achieved by considering the projectors

BT = g = 02 + Lan® + ngl® = mem® + mem® (79)

and

FOT1e = 1% = §9 4+ ny, = ¢% — (“ny, (80)
which map from 7,(M) either to T,(A) or directly to T,(H), while
annihilating transverse vector fields. This last statement is implied
by the relations ¢4n® = ¢4n, = 0, ¢4® = ¢3¢, = 0 and ¢¢m® = m*,
q%mg = my, as well as by (40° = (% 130, = 0, 19n® = 0, 1%n, =
ny and 4mb = m?, 14m, = my, respectively, which require the
existence of intersecting null hypersurfaces H and #H,so that A is the
associated apex and ¢, is the metric on A and ¢,. on the degenerate
metric on H; however, as can easily be verified, only the previously
mentioned fundamental tensor is manifestly non-degenerate, which
follows from the fact that a null hypersurface does not generally have
a unique Levi-Civita connection that is compatible with its metric.
Therefore, additional structures are needed to choose a preferred
connection on H, which can be determined by imposing additional
conditions on the geometric nature of the considered hypersurface
‘H. A way to establish such extra structures shall be discussed later
in the context of non-expanding null hypersurfaces, which are either
weakly isolated or isolated horizons.

In preparation for this, the derivative operator

y_a = LC?V[;, (81)
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which selects derivatives along H, shall be introduced. This allows
the expression

(V_aﬁb =150Vl = (qF — 1ol (qf — ngl’) VL = (82)
= (q;’ — ndfb)qacvcfd = qacqé’vcéd — q;D/écéb =
=0l —q¢D L =00 —1D' 1L

to be calculated, where the definition

1

Oup 1 = 5‘];61de£ch = (83)

1 C C
= 5% @ Legeq = ¢V ol =

= (654 Lan® + 0ol (0 4 lyn® + npt?)V oLy =
= (0 + £an® + nglo)(Vely + D0, - £,) =
= Valy +2D Uy - by + D'l - L,4,

has been used. Clearly, the presented relations hold globally on
(M, g), as V% = VU, applies by assumption.

As can be seen, the introduced field ©,, describes the symmetric
part of the projection of the gradient V., onto a cross-section of
‘H. It can be split in its trace and trace-free parts such that

1
Ouw = §GQab + Oabs (84)

where © = V_/* denotes the so-called scalar expansion, while the
trace-free part o, = Oy — %@%b defines the so-called shear tensor of
the congruence. While the expansion © can be interpreted as a mea-
sure for the average expansion of infinitesimally nearby geodesics,
the shear tensor o,, measures any tendency of the initial shape of
an extended object to become distorted, or, somewhat more model-
related, it measures changes in the cross-sectional area orthogonal
to the flow lines of the null congruence (which encloses a fixed num-
ber of geodesics) as one moves along these lines. In general, also the
antisymmetric part wgp, called the twist or vorticity tensor, which
usually measures any tendency of an object with initially fixed shape
to change its structure due to rotations, would play a role in these
considerations. However, it is zero as a consequence of the assump-
tion that V[agb] =0.
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Defining now the field w, = ¢V, n. = —n.V.{°, one may thus
_ - -
equally write
1
b_ Lo b b b
V' = 2®qa +o,) +w, -0, (85)

such that for the special case of vanishing scalar expansion and the
shear tensor there holds

&zb = w, - . (86)

This special case is of interest, as it allows the determination of a
suitable Levi-Civita connection on H.

The given definition opens up the possibility to re-express the
gradient of the null generator locally via using —2D/€(a Ly = Kl ly+

2w(aly) and D'lnt =Fk =€ + & = —vy — 7 such that

1
Vagb = 59%1) + Oap + 200((1 ’ gb) + k- gagba (87)

on the horizon. Note that the vector field wy, represents the adapted
so-called Hajicek 1-form |26, 28, 29|, which in terms of spin-coefficients
is given by wy, = gfw. = mpmw, + mymw, = Tmy, + 7M. By con-
sidering this particular 1-form, it can be seen that the corresponding
spin-coefficient 7 actually measures the change of /* in the direction
of n®.

Note, however, that in contrast to the standard literature on the
topic, the rotation 1-form w, in the present context is completely
contained in the tangent space of the section A of H, meaning that
there holds w,/* = 0 and w,n* = 0. Nevertheless, both w, ex-
pressions, i.e. the expression presented in this work and the one
addressed in the literature, coincide exactly under the given geo-
metric circumstances. From this perspective, it seems justified to
treat them on an equal footing.

By defining the vector field ¢, := w, + %fi -4, the obtained result
can be re-written in the form

1
vagb = QGQab + O + 2¢(a : Eb)? (88)

which on a non-expanding horizon H reduces to

Valy = 2¢(q - Uy). (89)
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In fact, the same results can easily be obtained using the spin-
coefficient approach, which can easily be verified by calculating

Oub = 24544V (ale) = (90)
= (mam® + mam®) (mym? + mym®)Val, =

= —0MygMy — TM My — 2pm(amb)
where p = p has been used, so that it follows that
Oap = —0MgMy — OGN, (91)

and
0 = —2p, (92)

for the given case of a vanishing twist. In addition, one finds
Valy = = (v +3)laly + 270 gmyy + 27L (g1 —
— 2pM(a M) — TGNy — TGy, (93)
for the gradient of the generating null normal, which reduces to
Vol = = (v + F)laly + 27y + 270 1) (94)

on a non-expanding null hypersurface H, i.e. in particular on the
horizon of a black hole. Accordingly, it is found that the introduced
vector field ¢* reads

¢" = =(y + P +Tm" + Tm" (95)

in its spin-coefficient representation.

However, there are more similarities between the spin-coefficient
method and the physics of null geodesic congruences, as one easily
learns by looking at the well-known identity

2V Ve = Repaal®. (96)

By contracting this relation with /¢, one obtains

DVl = 14(VyVely + Roaepl®) =
= Vb( ) — V¢ -V, + Radcbgdfc‘

Di,
=0
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Bringing now the terms from the right-hand side to the left one,
while using the decomposition V,f, = Oy, + 2¢(, - £, one finds out
that
DO, + 2D¢(a . gb) + @;@cb + 2€(a@b)c¢c+ (97)
+ ¢c¢c : gagb + Racdbgcgd = 0.
By recognizing that Lyp, = Doy + O + 0.0 - ¢, applies in this

context, the obtained result can alternatively be re-written in the
form

DO+ 2Lep(q - by + OO + Rocarlt” = 0. (98)

All dynamical quantities defined on H are now subject to contrac-
tions and projections of the given relation. To see this, one may at
first contract it with the inverse metric ¢?°, which immediately leads
to the result

DO + 0,4,0% + Ry t*" = 0. (99)

Using then once more the decomposition 6, = %@qab + O4p, this
scalar relation can be re-written in the form

1
DO + 5@2 + 00 + Rapl“4" = 0, (100)

which is just the nullgeometric version of the famous Raychaudhuri
equation, usually simply referred to as null Raychaudhuri equation.

Furthermore, a projection of this equation onto H by means of
objects (9 leads to

LeaLJ;D@cd + 00,4+ LZLJ;Recfdﬂcfd =

= 4} DO + OOy + ¢ Recyal®t® = 0.
By combining this with DO, = £,0,, — © /04 — 0,.09, it follows

£,0a, — 20,010 + 247, Recsal ™t = 0, (101)

where £, denotes the Lie-derivative along ¢* projected onto a section
A of H. Setting O, = %9%1) + 04 Once again, one finds initially

1 1
5 (£O + 5@2>qu + £00a + 0500 4 ¢S @y Recpall? = 0. (102)
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Utilizing then the splitting R = C% + 25[{25’}2] — $0% R next to

the identity 00w = 20040 - qu, One obtains

1 1
3 (£e@+§@2+0cd00d+Rcd£C€d) Gab+L£00 0 —0 a0 Qi+ 050y Cecpalt® = 0.

By realizing now that £,0 = DO, it becomes obvious that the first
part of the result is identical to the null Raychaudhuri equation and
therefore zero. Hence one is left with

£00ab — 0ca0qap + ¢5q),Crcpal®l® = 0, (103)
which alternatively can be re-written in the form
Doy + 200 p — 00 qup + qeaqjljcecfdgcgd = 0.
Setting once more O, = %@qab + 04, it can be concluded that
D0y + O0 0 + ¢5,q Cecrall? = 0. (104)

Now, by recalling that © = 2p, 04 = omemy + omgmy, P9 =
TR0, Wy = Ceepgm®lomI 04 and o = Coepgmlm’ (%, it becomes
obvious that the attained evolution equations directly reduce to the
Sachs equations deduced at the beginning of this section. As a
consequence, a decent geometrical interpretation for these equations
is found, as it is now clear that they describe the evolution of a
geodesic congruence null curves and therefore measure the rate of
change of contraction and distortion of these curves along the flow
of the generator ¢* of the hypersurface H.

The remaining dynamical equations then are easily obtained by
either projecting the 'main initial relation’ with (4 and n® or by
contracting it with n®n®. They take the form

£4wq + 15, Reapgln®0? = 0 (105)

and
L0 + W + Raepan™n®® = 0. (106)
As can be seen, if the decompositions w, = Tm,+7m, and Kk = —y—

4 are taken into account in the present context, the given relations
(105) and (106) reduce exactly to equations (75) and (78), while in
the case that once more the decomposition o,, = am,my+omgmy is
here taken into account in addition, equation (104) reduces exactly
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to the second Sachs relation in (74). Thus, in effect, it turns out
that the evolution equations (100), (103), (105) and (106), derived
from relation (96), all reduce to the scalar relations (74), (75) and
(78) if the spin-coefficient framework is taken into account, which is
not surprising inasmuch as one of the main advantages of the spin-
coefficient framework is that it allows to find scalar relations from
associated tensor relations; even in much more general cases, includ-
ing the case of less well-adapted null geodesic frames and associated
null geodesic congruences.

Since the spin-coefficient method works so well in deducing scalar
relations from vector or tensor relations, the question arises as to
whether or not similar scalar relations could be derived directly for
the more complicated case of Einstein’s equations. Unsurprisingly,
it turns out that, considering the manageable case of the so-called
generalized Kerr-Schild class, which consists of metrics that have
been deformed by a so-called generalized Kerr-Schild ansatz (for
which, incidentally, the consideration of a null geodesic congruence
is necessary), this question can be answered in the affirmative, which
turns out to be a major point in the construction of gravitational
fields of ultrarelativistic sources in the external field of a stationary
black hole. This will be shown in the next two chapters, whereas
the singular geometry of a corresponding ultrarelativistic source at
the event horizon of a charged rotating Kerr-Newman black hole
constructed only in the very last chapter of this work.

4 Metric Deformations and the generalized Kerr-
Schild Framework

After making it clear in the previous chapter that the spin-coefficient
formalism can be used to obtain scalar equations from vectorial or
tensorial equations in the theory of null congruences, it shall now
be shown that the same also works for the field equations of gen-
eral relativity in the case of the so-called generalized Kerr-Schild
framework. More precisely, it is shown that the deformed Einstein
tensor of the generalized Kerr-Schild class, which is usually obtained
by performing a Kerr-Schild transformation of a given background
metric, can be decomposed with respect to a basis that contains
a null geodesic Kerr-Schild vector field. Because of this fact, the
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corresponding formalism will serve as the basis for calculating the
geometric structure of the gravitational field of a massless particle
from Einstein’s field equations in the final chapter of this work.

4.1 Metric Deformations

This section provides an introduction to the theory of metric de-
formations, with particular reference to so-called generalized Kerr-
Schild deformations, which will later be used to calculate the dis-
tributionally valued metric of the gravitational field of an ultrarel-
ativistic particle at the event horizon of a stationary Kerr-Newman
black hole.

By a deformation, in this context, any backreaction is meant that
modifies the geometric properties of a given spacetime metric with
respect to a comparable background metric and an associated class
or group of deformation fields that propagate on that background
in a geometrically consistent manner.

To make this final statement precise, consider a metric field g
associated with the background spacetime (M, g). In addition, con-
sider the inverse metric g%, defined by the relation g,.g® = §7.
Given this geometric setting, the main idea of the theory of metric
deformations is to modify the structure of the metric g,, and its
inverse g® by considering deformation relations of the form

gab = Gab 1+ €ab (107)
and
gab — gab _|_ fab’ (108)

which are introduced in order to obtain a new spacetime (M, j)
with possibly completely different geometric characteristics. These
relations are well-defined if and only if the consistency relations

el+fhaeffb=0 (109)

are satisfied, which follow directly from the identity §,.g< = 2. If
this is the case, the given deformation leads to the existence of a
difference connection tensor of the form

1
‘éc = §(g“d + fad) (VbEdc + Ve — vdebc)v (110)
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which leads to modifications of the curvature tensor. Here, one finds

Cll)cd = Cll)cd + EZCd’ (111)
where Ef; = 2V C%, + 2C5,.Cg, applies by definition. By con-

tracting indices, one finds that the associated Ricci tensors are of
the form

Ryq = Ryg + Ea, (112)

where, of course, Eyq = ZV[QC‘;]IJ + QCg[ng]b. By repeating that
procedure, the associated Ricci scalars

R =R+ gdebd + fbded + fdebd (113)

can be obtained. However, as a direct consequence, Einstein’s equa-
tions

Gy = 87T (114)

read

Gab + Pab = 87rTab7 (115)

after being decomposed with respect to the local metric of (M, g);
at least by virtue of the fact that pg, = e, — %gab(deRcd+deEcd) —
%eab(R + deRcd + QCdEcd + deEcd) with wab = Eab - %gab(ngEcd)
holds in the given context. If the given equations reduce to the
restricted local Einstein equations G, = 871, on M, it becomes
clear that the remaining equations are

Pab = STTap, (116)

where 7., = Ty, — Top. These equations considerably simplify if an
important subclass of the given class of metric deformations can be
selected by requiring either

[ =—e (117)
or

e = [0 =e® =0. (118)

While metric deformations fulfilling the former conditions, contain-
ing the theory of metric perturbations as a special case, shall from
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now on be referred to as linear, deformations which globally fulfill
the latter conditions, on the other hand, from now on shall on be
referred to as trivial deformations.

In case of trivial deformations, obviously no change of the geo-
metric structure results. In case of linear deformations, on the other
hand, the introduced system of equations considerably simplifies, as,
for example, the metrical consistency condition reduces to

efel =0. (119)

Additionally, the form of any of the introduced fields considerably
simplifies due to the fact that now they can be built from a single
field on (M, g).

An important point here is that perturbatively defined metric de-
formations must be distinguished from well-defined ones. The most
common perturbatively defined deformations are linear perturba-
tions, such as for example those linear perturbations of Minkowski
space that Einstein once used to derive from Newtonian gravity
as a special case of general relativity and to show the existence of
gravitational waves. And even today, linear (and often nonlinear)
perturbations in general relativity are continuously considered, for
example to show the stability of solutions of the field equations
or to approximate the behavior of complex gravitational fields. In
contrast, exact metric deformations are considered much less often;
even though many well-known solutions of Einstein’s field equations
can be written (in appropriate coordinates) as deformations of flat
Minkowski spacetime. These are all exact solutions of the fully non-
linear field equations, which can be written in the form (107) and
whose associated inverse can be written in the form (108), but with
the general metric replaced by that of Minkowski space. The un-
doubtedly most important class of such deformations is the so-called
Kerr-Schild class, which includes, for instance, all solutions of the
Kerr-Newman family of spacetimes, as can easily be concluded by
recapitulating the results of section 2.3 of this work. This already
very important class of spacetimes can be extended to the so-called
generalized Kerr-Schild class, which is defined in terms of an a pri-
ori completely unspecified background geometry. As discussed in
the next section, this class deals with linear deformations that ex-
actly satisfy equations (114),(116) and (117), which is ultimately
made possible by considering a given null geodesic vector field, a
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so-called Kerr-Schild vector field, and an associated null geodesic
congruence of curves. It is this very class of metrics of Einstein’s
theory of general relativity which the spin-coefficient method pre-
sented in the previous chapter shall be applied to next: first with
respect to any background geometry; then, in the last chapter of this
work, specifically regarding the metric of a stationary axisymmetric
Kerr-Newman black hole. As it turns out, taking into account a few
mild geometric constraints, this then establishes the direct formal
basis for the calculation of the gravitational field of a massless par-
ticle at the event horizon of a rotating charged black hole, which is
done - as already anticipated several times - in the fifth and final
chapter of this work.

4.2 The generalized Kerr-Schild Framework

The consideration of the generalized Kerr-Schild framework usually
involves considering a background spacetime (M, g) with metric gy,
a scalar function f that represents the profile function of the geom-
etry and a co-vector field [,, whose index can be raised and lowered
with the background metric, so that in particular I, = gu.!° ap-
plies. In this context, the corresponding vector field is assumed
to be null geodetic, which means that it must satisfy the relations
gapl®® = 0 and DI* = 0, where D := [°V, applies by definition.
The background metric g, is often called the seed metric and [* the
Kerr-Schild vector field of the geometry.

By combining all these objects in a rather obvious way, the back-
ground metric g, can be deformed into a new metric g,;, which is
given by the expression

Gab = Gab + [lalp. (120)

Due to the fact that [ is lightlike, it is easily found that the inverse
metric is given by
gab — gab o flalb. (121)

Using both of these relations, the affine connection

b = SVB(I) + S V(1) — SVA(bl) + 3 fU D) (122

can be defined, which allows us to calculate the Riemann tensor
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N(ch = %cd + E(ll)cd (123)
where EY ., = 2V .05, + 205.Cg, holds in the present context.

Moreover, using the definition £ = 2(gad—fl“ld)(V[mCﬁb—i—QCgfanL]b),
the corresponding Ricci tensor is found to be of the form
pa a a 1 a jc 1 c7ja
R = b+Eb—§chllb—§belcl (124)
and the corresponding Ricci scalar reads
R=R+ E — fR%I,, (125)

where E = §° E4 holds again by deﬁnitign. Accordingly, the Ein-
stein tensor of the deformed spacetime (M, g)

~a
b

~ 1 ~
R, — 56"{,}_{ (126)
has the form

2= G4+ (127)

if it is decomposed with respect to the background metric g,,. This
conclusion is valid only if the corresponding expression is

1 1

oy = By — SR, — S fRYLL (128)
1
— 50%(E - fRYICl).
This can alternatively be brought into the form
a 1 a jc 1 cija 1 a d7j jC c d
P = —§chl Iy — ébelcl + 551;(chle — VaVe(fidl.))+
(129)
1
+ E(cha(flclb) + V(L") — V.V flly)).

What is remarkable about this result is that the given mixed de-

formed Einstein tensor is obviously linear in the profile function f;
an instance that holds neither with regard to the deformed Einstein
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tensor G with lowered indices nor with respect to its counterpart
G with raised indices.

Based on the fact that the considered Kerr-Schild vector field
[* can always be completed to a normalized null geodesic frame
(1% k*,m® m®) whose components satisfy —k,l* = m,m® = 1, the
spin-coefficient method of Newman and Penrose [50, 51| can be ap-
plied to the given problem. This allows one to introduce the decom-
position DI* = (e + €)l* — km® — km®, from which it can be inferred
that the condition DI* = 0 is tantamount to requiring e+€ = x = 0.
In turn, this can be used as a basis for setting up the decomposition
relations

Valy = —(v + 3)laly + Flamy + Tlamy + (o + B)maly+
+ (@ + B)Maly — amamy — oMMy, — Pgmy — Py, (130)
Vaky = (7 + F)laky — whamy, — oy, — vigmy — vlamy — (o + B)mgky—
— (@ + B)maky + Mmamy + Ngmy + pmamy + fgmegimy, (131)
Vamy = (§ — y)lamp — Dldy + Tloky + (€ — €)kgmy — Tholp+ (132)
+ (o = BYymamy + (8 — @)mgmy + fimaly, — pmaky + Mgly — omgks,
by means of which one finds, after a lengthy computation, that the
deformed part p9 of the mixed Einstein tensor G can be decom-
posed in the form
P = 1% + Sy(1%y + k1) + G3(1%my, + m®l,)+ (133)

+ B3(1%myp + M) + Sa(mmy + mmy) + Ssm my, + Ssmimny,
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where the exact expressions read

1

3D+ (7= 2+ B)AS + (7~ 2a+ B35S + o+ p)D'f -

F = (ut W)DS 07—~ B)f +8(r —a— f)f+

— (v
+(T—a=-B)r+B-a)f +(1—a—B)(T+B—a)f —4a+B|f+
+ 7@+ B)f+rla+B)f+ O+ e+ f+ (—p)p—p)f-

af}

(W + Ty — 4D, (134)
&, = ~5llp+ DS + Do+ p)f 20+ 7)), (135)

&y = %[D(Ser 2@+ pB) =7 —7)Df + (E—e+p—2p)d f+
+06f +2D(a+B)f ++6(p—p)f +2(a+B)(e—e)f+
+(p—p)a+B8—1)f—27mpf —2p(a+ L+ 7)f+

+20(a+B—7—7)f —20g f] (136)
&, = %[—DQf +(p+p)Df + (p—p)°f +2Poo f], (137)
&5 =—0Df—Dof+20(p+e—¢)f. (138)

Note that according to the usual conventions, the definitions II = 24
and D? = DD, = 6§’ + 00 + (B — a)d' + (B — @)d have been used
in this context.

The derived equations, which are valid with respect to any gen-
eralized Kerr-Schild metric, encode the geometric structure of the
deformed Einstein tensor of the generalized Kerr-Schild class in spin-
coefficient form. They are therefore too general and must be re-
stricted in the next chapter of this work in order to provide the
exact specifications that lead to the structure of the geometric field
of an ultrarelativistic point-like particle in a stationary black hole
background.
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5 Einstein’s Field Equations and the generalized
Dray-’t Hooft Relation

Finally, in this last chapter of the present work, the gravitational
field of a massless particle is calculated at the event horizon of a
stationary axisymmetric Kerr-Newman black hole. To this end, the
general setup given in |10] is followed, which means that the geomet-
ric framework of generalized Kerr-Schild deformations, in combina-
tion with the spin-coefficient formalism of Newman and Penrose, is
used to show that the deformed field equations derived in the previ-
ous section can be reduced - at the event horizon of the black hole - to
a single linear ordinary differential equation for the so-called profile
function of the geometry. As a basis for this approach, one exploits
the fact that the event horizon of the black hole is an isolated hori-
zon (which is actually a Killing horizon) [4, 5, 6, 8] and therefore
a non-expanding null hypersurface on which both convergence and
scalar shear of the associated generating vector field vanish, which
in turn implies the vanishing of certain null components of the Ricci
and Weyl tensors of the corresponding background geometry. With
some additional, but legitimate constraints on the geometric struc-
ture of the null geodesic frame of the generator, it then follows that
the deformed Einstein tensor presented in the previous section can
be fully described by a single differential relation at the event hori-
zon of the black hole. It is the main task of this chapter to derive
this equation and then to solve it step by step using methods of
the theory of differential equations with variable coefficients, briefly
discussed in the appendix of this work.

5.1 Einstein’s Field Equations I: Deriving the generalized
Dray-’t Hooft Relation

Taking into account the general considerations of the previous sec-
tion, the next step shall be the application of the corresponding
mathematical approach to the special case of a Kerr-Newman black
hole background. This background can be classified as a Petrov-type
D spacetime, which brings about a decisive simplification in that,
according to the Goldberg-Sachs theorem, it means that the coeffi-
cients Wy, Uy, W3, Uy and ¢, ¢ of the Weyl and Einstein-Maxwell
tensors can all be set to zero by the use of a suitable null geodesic
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frame.

Consequently, in order to be able to deal with a maximally sim-
plified geometric setting, it seems reasonable to consider the Kerr-
Newman metric g4, in Kerr coordinates. As is well-known, the indi-
vidual components of the Kerr-Newman metric in these coordinates
can be read off from the line element

2Mr — €2
ds? = —(1 — %)dvz + 2(dv — asin? 0de)dr + Sd9*+ (139)
I1 sin? 2(2Mr — e?
S;I ed(bQ - &a sin? Odvda,

where ¥ = r2 4+ a?cos?0, 11 = (r? + a?)? — Ad’sin®6 and A =
r? +a? — 2Mr + €%

There are two main reasons for the given choice of Kerr coordi-
nates: On the one hand, these coordinates are regular at the internal
and external event horizons located at r4o = M 4+ VM? — a? — 2.
On the other hand, they allow one to directly read off the only two
principal null directions of the geometry, which lead to associated
null congruences that are globally shear free.

In view of this comparatively simple geometric setting, it makes
sense to consider now once more the previously introduced decompo-
sition relation (120), which results in a new deformed metric belong-
ing to the generalized Kerr-Schild class of the given Kerr-Newman
black hole background. In this context, g is usually called the seed
or background metric and [* the Kerr-Schild vector field, which must
satisfy I, = gapl® and DI® = DI[® = 0.

An appropriate candidate for such a vector field is found by per-
forming a 2+2-decomposition of the given seed metric and its in-
verse, which leads to the expressions g, = —2l(oks) + 2m (M) and
g® = —20“kY + 2mlemb) . This gives a null tetrad (1%, k%, m®, m®)
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that is of the form

r? + a? a A
a _ a Y aa a 14
l > 8v+28¢+228r (140)
k= =0
a __ 1 a Z a 2 a
mt = (0f sin9(6¢+a8m 602))

V2T
2t — X ey U (g0 4 asin? 0
me = \/ﬁf(ag—i-sine(ad)—i-asm 602)),

where I' = 7 4+ iacos§ and I = r — ia cos 6.
In respect to this particular choice of a null frame, all the nonzero
spin-coefficients can be calculated. These coefficients are

r—M A cot @ tasin 6 (141)
€= - y = — =, T =
25 23T 2421 V2I?
tasin @ n cot 0 tasin @ A 1
= , T = — 5 = - 5 = T
Jar2 | 2yar N SR
e M e?
pr=—pr, Uy =~y +

V212 sy

As can be seen, € + € # 0 applies according to the given choice of
the null frame. Hence, to actually convert the given expression into
a null geodesic frame, a null rescaling of the form [* — Be™""[¢
and k* — B7'e"™k® needs to be applied, where B = B(r,0) =

T 2_.2
exp(Sh 42— [ LoM In|ri—r_|])
2_g2 . M " 2M(r2 +a2)
BoE exp(— 7~ gz [r+2M I r—r_{]) with By = :
+

ry—M
Ti-{—a?
that D(Be™ ") = 0 applies and, as can readily be seen, the resulting
expression remains regular at the outer event horizon, that is, for a
radial parameter value of r = r.

By performing this rescaling, the condition ¢ + € = 0 is now
exactly satisfied. As a consequence, the structure of the associated
spin-coefficients changes according to the rule ¢ — e+ %D In |Be™"|,
v = y+iD In|Be ™|, o = a+16 In|Be |, B — B+i51In|Be™"|,
p — Be ™ p, i — B~ e p; all other coefficients are zero or remain
unaltered.

Before explicitly calculating the deformed part of the total Ein-
stein tensor G, it shall first be noted that the geometric field of a

2 12 coal
ri+a?cos 0

and kK = . Here, the factors Be ™" are chosen in such a way
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null particle field at the horizon must satisfy é'“b]qﬁ o [*l,. How-
ever, since this obviously implies that R\H+ = (0 as a consequence
of R = 2411 = 0, there must further hold V,V¢(f1%,.) = 0 locally
at the event horizon of the black hole background. This is certainly
satisfied if the local condition

VE(fIU) | =0 (142)

is met by the profile "function’ f of the geometry.

To describe the distributional profile of a point-like null particle,
it is appropriate to consider an ansatz that contains a delta distri-
bution. More precisely, a generic choice for f = f(v,r, 0, ¢) that is
consistent with the above requirements should locally be of the form

flar = F(0,0,0)8(r — 1) = U(O)F(0, ¢ — wyv)e™d(r — 1), where
wi = i and U = U(0) and F (0, ¢ —w,v) are free functions that
+
are to be specified in the further course of this work.
Given the fact that the profile function has compact support on
the exterior event horizon H™, it suffices to calculate the local object

Y = [G4) = G4l — Gl (143)

in order to determine the geometric structure of the entire deformed
spacetime (M, g). However, this drastically simplifies the deformed
field equations, since it follows that the system (134) — (138) of
equations presented in the previous section can be reduced locally
to a simplified version of equation (134). This means de facto that
they are found to reduce to a single differential relation of the type

P = — R flh, (144)

which is given with respect to the definition

5= %D2+(2(a+5) _ )5+ (2a+ 8) —7)5’+%D’(p+ﬁ)f
+6(a+B-F)+8@a+pB—1)+(a+B—-F)(T+B—a)t
+(@+B—1) T+ ~a)+dla+ bl 7@+ p)-
—7(a+ B) + (Vy + Uy) f. (145)

Note that the relation 1[(p + p)D'f,-] = —3[D'(p+ p)f,-] was used

to determine the concrete form of this differential operator.
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Unfortunately, by looking at the result obtained, it immediately
becomes clear that the derived differential relation is too compli-
cated to be solved directly in its present form. Consequently, in
order to further simplify the geometric structure of the Kerr-Schild
deformed Einstein tensor, it proves beneficial to try to satisfy the
local conditions

V[alb]"H—O— =0, (146)

which can be satisfied by performing a null rotation [* — [*, k* —
k® + (m® + ¢m® + |C|I*, m® — m* + 1%, — m* — m° + (1%, where
C _ dwye"T'sind
. V2B . :
Given this specific transformation, the structure of the complex

valued null normals m® and m® changes in such a way that a +
B = 7 is satisfied on H* and thus also V[alb]’}fr = 0 as a further
consequence.

As a direct result, it is found that the deformed Einstein tensor
can be written exactly the same way as in equation (144), with the
only difference being that the scalar part of the said relation now
reads

1 1 -
Xf = §D2f+7'5’f+%5f+5D'(p+ﬁ)f+2|7|2f+\112f+\1'2f. (147)
This leads directly to the generalized Dray-"t Hooft equation
Xf = 2mbydn, (148)

which will be the main subject of the remainder of this thesis.

Remarkably, relation (147), which was previously found with re-
spect to other definitions and conventions in [10], is invariant under
null rotations that leave the form of [* invariant. Accordingly, the re-
sult obtained remains completely unchanged if a corresponding null
rotation is introduced in the present context, which, however, en-
sures that complex null normals m® and m® are hypersurface forming
and therefore satisfy L;m® oc m®, m® locally on H*. Consequently,
it seems justified to continue using the null reference frame consid-
ered so far.

To simplify the derived relation, it is convenient to make the
ansatz U = U(0) = ;' with £ = 3|,_,,, where U is a solution to
the equation 0 In|U|=7 — 7. From this it follows that the derived
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relation takes the form

1 1 1 1
Xf = em’2+5+(§D2F + §(w + 7)0F + é(ﬁ +7)8'F + 5D’(p +p)F—

+ %5@ _FF %5/(7? —7)F + |[7]’F + |7|’F + %(ﬁ —7)(B— )P+
n %(W —F)(B — a)F + UyF + U, F) (149)

where d := §(r—r,) applies by definition. Taking then into account
that w*D, = (a+ p)d + (& + B)0' = 70 + 70’ = —mwd — 7’ applies
locally at the event horizon of the black hole, where w® = (a +

B)m®+ (a+ B)m* is the one-form potential of the theory of isolated
horizons [4, 6], and that the spin-coefficient relations

Dp—8r+ P —7(B—a) +¥y=0 (150)

and -
6t — Du+ |n* +7(B—a) + Uy =0 (151)

and their respective complex conjugates can be used to convert the
derived differential equation, whereas it has to be noted that the
said equations hold in this form only locally at black hole event
horizon H. (and the inner Killing horizon H. ), it is found that the
geometric structure of the deformed Einstein tensor now takes the
significantly simpler form
e 0

=~ (DA F + D+ ) F)I, (152)
Using then the definition V' = D(u + f1), the resulting expression
can be re-written in the form

a BKU2+6+

Po=""9

Given this final result, it is found that Einstein’s equations reduce
in the given case to the single relation

(D*F +V - F)I%,. (153)

Y (D*F +V - F) = 27mbydy, (154)

which shall be referred to as reduced generalized Dray-"t Hooft equa-
tion from now on.
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By considering the limit a — 0, it is found that this relation
reduces to
(AS2 - C)F = 27Tb05N, (155)

where ¢ = 2kr, M which was first obtained by Sfetsos. In

addition, by considering the combined limits a,e — 0, it is found
that the derived differential equation takes the even simpler form

(A§2 — 1>F = 27'('[)0(3]\77 (156)

which was first found by Dray and 't Hooft. Therefore, since obvi-
ously both of these relations result as a special case from the given
model, it can be concluded that the generalized Dray-’t Hooft equa-
tion provides a viable extension of those fundamental equations,
which have been used in the past to determine the profile func-
tions corresponding to a gravitational shock wave in either Reissner-
Nordstrom or Schwarzschild black hole backgrounds.

5.2 Einstein’s Field Equations II: Solving the generalized
Dray-’t Hooft Relation

Next, to actually solve the deduced differential relation, the line
element associated with the induced two-metric of the Kerr-Newman
geometry

(r2 +a?)?sin’ 0
N
shall be considered. By introducing the coordinate transformation
& = cos @, this line element can be re-written in the form
d0_2 — E+ d§2 _I_ (T—z‘r _'_ a2>2(]‘ - 52)
1—¢2 My

do? =% ,do* + d¢? (157)

d¢?, (158)

which provides a spacelike dyad (m®,m®) that is locally of the form

_ 1 290 ZE"F a
_—\/§F+<‘/1 B~ =l 1)

»
\/_F+ (VI—&or+ o ;Q)hag), (160)
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according to which, of course, I'y = r, +ia¢ and thus ['y = r, —ia€.
Given this setting, the left hand side of the generalized Dray-t
Hooft equation can be written down in the form

1
2%
where V = X (D'(p + p) + 4|7|*> + 2¥5 + 2W,), which implies that
the resulting equation could (at least in principle) be solved by ex-
panding the profile function f in spherical harmonics. However, this
is not the approach of the present work.

As it turns out, the reduced generalized Dray-"t Hooft equation
can be re-written in these coordinates in the form

Mf =55 (As, + V)f (161)

1 — 2
SH(DF +V - F) = 2.0 o0 F+ (162)
+
it 2 2ry (ry — M)
P e
NGRS B

By considering in the following the special case of a profile function
f = f(&) as well as the reduced profile function F' = F(¢) which
both do not depend on the angular variable ¢ and assuming that
the symmetry axis of the system points through the 'north pole’,
i.e. through the point £, = 1 at which the particle shall be assumed
to be located, it is possible to re-write the generalized Dray-"t Hooft
relation in the form

d 2
d_g((l_f)

dF
dg

20°6(1 = &) dF 2ry(ry — M)
)_—E+ A F =27mby0(£—1).
(163)

Note that the same step was also taken in the previous works of
Dray and 't Hooft and Sfetsos, although, as one must admit, in the
spherical case (quite contrary to the given axisymmetric case) such
an approach does not result in any loss of generality.

Considering the homogeneous relation

d*F dF
— +b—+cF =0, 164
S + i +c (164)
in respect of which the coefficients b and c are given by b := —% —
22“—25 and ¢ = —w, it is found that the coefficients of this
+ +(1-¢2)
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linear differential relation give rise to the five singular points &1,
+“+ and oco. However, since one knows that lim ({—¢&;)b and lim ({—

(3 (3

&;)%c remain finite, these points are in fact regular singular points, so
that the derived differential equation belongs to the Fuchsian class
of linear differential equations of second order with regular singular
coefficients [19, 60|, which is discussed in more detail in the appendix
of this work.

As it turns out, the found equation belongs to the class of gen-
eralized Lamé differential equations, which will also be presented in
the appendix. Solutions of this class of equations are the generalized
Lamé functions, which represent the formal basis of the construction
of generalized ellipsoidal harmonics; much like Legendre functions
represent the basis of the construction of spherical harmonics. In
contrast to the much simpler spherical case, however, one finds here
that within the class of generalized Lamé equations polynomial solu-
tions could already exist, but also that the existence of such solutions
is subject to fixed restrictions, since they result from a three-term
recursion relation instead of a trivial one-term recursion relation.
This point is also dealt with in more detail in the later stages of this
work.

Anyway, from the theory of differential equations of the Fuchsian
class it can, in fact, be concluded that there exist two different
solutions to equation (164), which can be written as generalized
infinite power series. To determine the exact form of these solutions,
the given relation shall be re-written in the form

d*F dF

24 (169 g ~260+20%€ (1) G —2r (o= M)F = 0. (165)

By doing so, it is found that the two solutions are of the form F} =
S wpck and Fy, = A 4+ G, where G = Y w,F and A = C1(r2 +
k=0 k=0

a2)[% In |% — aw&] 4+ Cy, where, in this context, A is then defined

in precisely such a way that it forms a solution of ¥, (1 — 52)% —
263 + 2a%€(1 — €))% — 0.

Unfortunately, however, the derived differential relation (in its
present form) does not allow for any polynomial solutions so that
both F; = Fi(§) and Fy = F»(§) are in fact infinite power series.

While this does not imply that there could not in principle exist
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another variable more appropriate than &, which allows for the defi-
nition of polynomial solutions and could therefore be used as a basis
for the construction of generalized ellipsoidal harmonics, the finding
that there are no such solutions in the given variable £ nevertheless
shows that another pair of solutions is needed at this stage in order
to find a combined solution not only to the homogeneous, but also
the inhomogeneous equation.
The independent solutions Fi* = Fi¥(¢) and F;f = F;F(€), which
can be obtained straightforwardly by introducing a new set of vari-
o
ables ¢ — F& — 1, are of the form Fj* = > (—1)Fwf(1 £ ¢)* and
k=0
[e.e]
Ff = FFEA + G*, where G = > (—=1DFuf(1 £ &F. As it turns
out, the corresponding Coefﬁcientks 0must coincide exactly in that
w = w, and u;j = u, as long as the conditions wj = w, and
ug = ug are satisfied, which is simply due to the invariance of the
equation under ’parity transformations’ in £&. The coefficients w,f
have a rather complicated structure, as they have to be determined

from the three-term recurrence relation

w,irl = mkw,f + nkwki_l + okwki_Q, (166)
. . r2 k(k a2 k—3)k
according to which my = m(k) = _2(rijra2) (,gjl)lg R CE ((5k+1?’))2 -
RT a2 k—2)(k—1 a2 k—2)(k—3
(k’—i—ir)Q’ ng = n<k> = _Tf—&-aZ ( (k’j-(l)Q ) and O = O(k) = _ri+a2 ( (k‘j-(l)Q )

Using the fact that one may always choose wi and wi freely and
thus in such a way that wy = mjwi + njwy and wi = mewy,
the coefficients w,fﬂ can be written down explicitly by using the
notation w,irl =K m,n,o > wﬁ, where the occurring symbol

<KL m,n,o > is a multi-linear form of the type
< m,n, 03k = Waar 1 a0 X X057 X0, (167)

where each a; runs from zero to three. The corresponding objects
X}’ = X(j) have the components X = 6(j), X} = m(j), X; =
n(j) and X7 = o(j), where (j) := {(1) Z;i;g is the Heaviside step
function. In the meantime, the object Wy, 4, , a, is defined in such
a way that all its components are either zero or one. All i]fs NoN-Zero

components are exactly those for which on the one hand ) Ja; = k+1
=0
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applies and, moreover, all indices that take the value zero occur only
as successors of those that take a value of two, and all pairs of indices
that take the value zero combined occur only as successors of indices
with a value of three. This implies in particular that all Woy,, . 4,
and Wooa,_,..a, are zero by definition.

To prove that Fi© is actually a solution of (165), it shall first be
noted that the validity of relations (166) and (167) implies that

ap v Oak—1 ag __ ak—1 ag
Woransoan XX X8 = iy Wi, X X0+
Ap—2 a ap—3 al
Wy a0 X5 X 4 Wy a0 X250 X0. (168)

The first case to be considered is therefore k = 2. In this case, using
the definitions WalaonIXgo = WHXllXé +W20X12X8 = mimo+ny
and W,, X§° := W1 X} = mg, which are consistent with the choice
wy = miwy + nqwy and w; = mowy, the above relation reads

Wasasao X52 X X502 Wy X1 X504
Wiy X2 (169)

which is fully consistent with (166) due to the fact that oo = 0.
Considering the fact that the only non-zero components of W,4,4,
are Wii1, Wiag Wagr, Wiagg, the only non-zero components of W, 4,
are Wi, Wy and the only non-zero component of W, is Wy, one
obtains the result W 4,4, X35> X1 X(° = mamymg + namo + maeng +
09 = MW, 0o X1 X" + oW, X(°.

The next case to be considered is k£ = 3. In this case, one finds

Woagazaran X5° X52 XX = mgWoa,a0 X52 X XG0+
+ 13 Way a0 X1 X" + 03We X°, (170)

so that, in consideration of the fact that the only non-zero com-
ponents of Wy a0a100 are Witii, Wit Wizor, Waoi1, Waozo, Wisoo,
one obtains the result Wi,ay0100X5° X5 X7 XG0 = mgmamimg +
M3NoMy+M3Maon+Nn3M1Mo+13M1+1mM302+03mMg = m3Wa2a1a0X52Xf1XgO—|—
N3Wayao X1 X" + 03Wa X°.

Finally, the consistency of the induction step £ — k + 1 must be
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demonstrated, which can be achieved by considering the fact that

A1 ak ag __ 1 ag ao
WapiianaoXpq1 XimXo" = Wiagag X g1 X - Xo'+
ap—1 apn ap— 2 a
+W20ak 1. aOXk+1XkX . X +W300ak 2. aOXk—‘rleXk IX . X 0 =

_Wak af)‘Xk‘—l-l‘)(alC Xa0+Wak 1- GL()‘XVlc—i-l‘Xvalc h Xa0+
Wak 2- aoXk+1Xak 2' Xao (171)

applies whenever Wlak...ao - Wak...ao = W2Oak_1...aoX]8 - Wak_l...ao =
WgooaHmaoX,SX,S_l — Way_y..a0 = 0 is fulfilled. But since all non-
zero components of both W, . 4, ..qo and Wy, 4, have the same value
equal to one, assertion (171) defines a distributional relation which
is actually fulfilled for all possible combinations of indices ay...ao,
aj_1...a0 and ag_s...ap due to the fact that XJQ = X]Q_1 = 1 applies
for all fixed non-negative values j and 5 — 1. Therefore, it can be
concluded that relation (168) is valid and that Fi= really is a solution
of the differential equation (165).

Subsequently, taking into account the mathematical framework
of the Fuchsian class [60], one immediately comes to the conclusion
that ,}E{}o’wi—f\ = élng%\ < 1 must apply in the present
context.

The additional solution FQjE has a related, but even more compli-
cated structure. The said solution results from the inhomogeneous

differential equation

d?G* dG*

Dil-€) o — R 2 (- - (7
+
—2T+(T+ - M)G = —20122 dz

for G*, which results directly from inserting the second solution
Fy = F5(¢) into the homogeneous part of the reduced generalized
Dray-"t Hooft relation (165).

Using here G* = io(—l)k up; (1£€)F and 20,52 = ‘“’li = ]i(— YepE (1

k=
f) where ¢ := 2C’1( I a?)?wi, gzﬁl = 4Cl(r++a )w2 +8C1a? w1 :
o5 = 601(7‘+ + a®)?wy + 16C’1a wy + 4C)a? (r+ + 3a? )wl, ¢3 =
801(T+ + a?)?wi + 24C a*wy + 8C1a?(r? + 3a® )w2 +8C a*wi and
¢ = 201(r+ + a®)?(k + 1)wk+1 + 8C(r2 + a®)kwy + 4Cha® (T+ +
3a%)(k — Dw;: | +8C1a*(k — 2)wit , + 2C1a*(k — 3)wj_, shall apply
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by definition for £ > 4 | one finds the recurrence relation

Upry ) = MEUE + gy + opuy_y + OF, (173)
which contains the expression @If = W%, which can alter-
natively be written down in the form

N N .
¢ = Cl;aim L m,n,o >,_; Wy, (174)
provided that ag = 73 + @?, a1 = 4a®, @y = 2a*(1 + 2aw,),

a3 = 4a’w,, ay = a’w, applies in the given context.

Assuming now that all wlf are zero for k£ < 0 and therefore all

m—1 k
X ¥ are zero as well, and furthermore that > a; =m and ) a; =
j=0 j=m

k —m + 1 applies in the present context and that uf and uf are
suitably chosen, the corresponding coefficients can be written down
in the form

Up,y = <K myn,o |7 (175)

provided that

<<<H m,n, o0 ||3>F =< m,n, o>y uy+ (176)

+ZWQM o XX

7=0

which can be re-written in the form

& myn,o || =< m,n, 0>, us+ (177)
- 1 a a a a
+ (lezaz —og W o oa XXX X X ow

1 apap—1...aj
=0 7=0 ‘7 +

In order to see now that this expression really solves the inhomoge-
neous differential relation (172), it is advisable to write (176) in the
form

K| m,n,0 3> = < myn, o>, uF + O+ (178)

+ mk(bki_l + (mymg—1 + nk)@f_g + (mymy_1mi—s + npmi_o + Ok)q)f_g + ..,
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so that it can be concluded that (173) is solved if and only if
<L m,n,o > u(jf + @f + mkq)f_l + (mpmg_1 + nk)fbki_Q—i- (179)

+ (mkmk_lmk_g +ngmg_o + Ok)q)ki_3 + ... . me << m,n,0 > U(:)t‘i‘
+ mquf_l + mkmk,1®ki_2 F N KMy, 0 >p o uat + nkq)f_Q—i—
+ nkmk_l@ff?) 4o K Mmyn, 0 >3 uoi + okq)ff?) +...=
=m K mM,Nn,0 > ua—L +n <K m,n,o > o ua—L + o K< m,n,0 > 3 u(jﬁ—
k
a ag— +
+Z Wakak—lmankakill"'¢k7j
=0
is fulfilled. However, due to the validity of (168), it is not difficult
to see that this is indeed the case, from which it can be concluded
that (172) is actually solved by an ansatz of the form (176), which
proves to be completely equivalent to the expression given in (177).

Next, due to the fact that <<|| m,n, 0 [3>F ~ < m,n, 0> u
holds for large k, it is in fact not difficult to see that khm |“EL ] =
—00

uk
+

. XK ||m,n,o||> . .

lim |%| < 1 applies in the present context.

k—o0 <<<H'I7L,’I”L,OH>>>I€71

Hence, given the precise form of the coefficients w;- and ui", one
can now make the ansatz

F=0,Ft+0_F" (180)
for the reduced profile function F' of the geometry, where

F* =i Ff+ G Fy. (181)
Since it is required that the solution is regular at §, = —1, it is

known that the coefficient ¢, must be identically zero. Accordingly,
using the fact that one can always set w.l.o.g. ©, +©_ =1 and
define © := O, the solution can be expressed in the form

F=0(cF+cfF)+(1—0)c Fy. (182)

Note that the individual parts of this solution can be related w.l.o.g.
by means of a linear transformation of the type

Fl_ a1y ai19 F1+
~ | = , 183
(Fz) (@21 azz) (Fff (183)
which yields F, = a1 Fi™ + a1oFy .
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Inserting the ansatz (182) in the differential relation (163), the
conditions

cFFH(0) + ¢ F5f (0) = ¢ Fy(0), (184)
¢FFF(0) + ¢ F5(0) = ¢, F'(0) (185)

can be deduced. Using now the fact that F] = ay F)" + apFy"
applies in the present context, these conditions reduce to the much

simpler form
F 0L S0 ), m0) L S0
o —ang o2 ¢ —ang ’
(186)
Fy'(0) 1 F(0)

so that it can be concluded that F+/( = Fro)

Thus, assuming now that the condition ¢j — ajacy = 0 is met in
the present context, it follows that differential equation (148) can
exactly be solved in a distributional sense, which means that

[Xf, -] = [27bodn, ] (187)

is satisfied in relation to any test function with compact support;
at least provided that by = Cicjwg (r3 + a?)?. As a basis for the
validity of this equation, however, the consistency conditions

Fy(0) =0, F;'(0) =0, (188)

which follow directly from (186), both must be met simultaneously
as well. But this is not much of a problem, because the coefficients
Cy and Cy occurring in the definition of A = A(€) can be freely cho-
sen, so that one comes to the conclusion that f, which can be written
in the form f = f(v,r,£) := f(v,§)0(r —ry) =X, F(§)e™d(r —ry)
on the black hole horizon, actually represents a solution to differen-
tial relation (187). The fact that this conclusion is indeed justified
can be explained as follows: Using (161) in combination with the
standard identity [Xf, o] = hr% [ K few,, according to which B,
R2\ B,
represents a two-dimensional ball of radius e centered around the
singularity and w, is the standard volume form of R?, consideration
of Green’s identities leads after the substitution ¢ = 2z + 1 and a
careful treatment of all relevant terms, i. e. those that depend on
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€, to the result
[Xf, o] = QWClc;war(ri + a?)%p(0), (189)

from which it can be concluded that (187) is actually valid. Conse-
quently, it becomes immediately clear that the resulting expression
for the profile function solves both the differential equation (148) and
its reduced form (154) exactly and that the resulting Kerr-Schild de-
formation of the Kerr-Newman metric therefore represents an exact,
distributionally well-defined solution of Einstein’s field equations.

5.3 Geometric Limits, Uniqueness

As already mentioned, the generalized Dray-"t Hooft relation reduces
to Sfetsos’ relation in the limit ¢ — 0 and to the original Dray-’t
Hooft relation in the limit a,e — 0. In the more general case of the
limit @ — 0, one therefore obtains

d
— 52
-
This equation can be solved by considering first the homogeneous
equation

Py op = ambos(e — 1). (190)

d

dg(( — ¢ ) Tz
which obviously matches Legendre’s differential equation in case
that the constant ¢ can be written in the form ¢ = —{(l + 1). In
this comparatively simple case, the said equation admits two inde-
pendent solutions known as Legendre functions of first and second
kind, which result as a special case of Gaul’s differential equation

[60]. Accordingly, these functions may be expressed in the form
Fl(é) = F(l+1,-1,1;75%) = F(§) and F3(¢) = 3R(&) ]| -

y 9

) —cF =0, (191)

Z (21211 ?lk—i_ki_l)Pl,Qk+1(£), where L = %l applies in the case that [ is

even and L = $(I 4 1) applies in the case that [ is odd. Of course,
by making a transformation of the type & — —¢, different pairs
of solutions Fi* = F(¢) and F;f = Fj(€) are obtained. These
individual pairs of solutions can be glued together the same way
as previously shown in the more general axisymmetric case, which
yields the reduced profile function

F=0,F"+0_F", (192)
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where
F* = cfFE + cfFy (193)

Thus, using the same definitions as in the axisymmetric case, this
solution can be re-written in the form

F=0(cF+cF)+(1—0)c Fy. (194)
By inserting then in (191), this yields the conditions

GFFF(0) + & F5 (0) = ¢ Fy(0), (195)
GFFF(0) + & F5(0) = ¢ FT'(0) (196)

which, of course, can also be met in the given spherically symmet-
ric case. The reduced profile function F' therefore fulfills Sfetsos’
relation given above in the case that ¢ = —I(l + 1).

However, since it may not always be possible to assume the va-
lidity of ¢ = —I(l + 1), it may be necessary to proceed differently.
As was first demonstrated by Dray and 't Hooft, a particular way to
do so is to solve the inhomogeneous equation directly, which can be
achieved by expanding the reduced profile function on the left hand
side and the delta function on the right hand side simultaneously in
Legendre polynomials. Since it is known that 6(z) = Z(l +3)P(x),

1=0
one obtains the solution

F(§) = —bo;l(lfﬁﬂ(g) (197)

by solving the corresponding eigenvalue problem. An integral ex-
pression for this solution can be found by considering the generating
function of the Legendre polynomials

o0

[+1
—~I(I+1) +c

1
\/1 —2le 5 +e72%8

l(f)efsl =

in addition to the fact that

[e.o]

I+ 3
2 = /es(”é)cos(as)ds.
0

(l+1)+a2+1
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This yields

R [ 1
b [y 4S)ds. (198)

_E g vcoshs —¢&

While handling the whole subject this way obviously works well
enough, there is actually another way to proceed in this regard.
One may simply solve the corresponding differential equation di-
rectly without relying on the existence of polynomial solutions. This
can be seen as follows: Starting with an ansatz of the form F; =
Swp(€—1)% and Fy = F;A+ G, according to which G = > u, (€ —
k=0 k=0

1)* applies, one obtains two different solutions of Sfetsos’ differ-
ential relation under the condition that the corresponding coeffi-

F(§) =

k »
cients fulfill wy; = Homj ~wo with m; = m(j) = —% d
]:
k k
U1 = [[my- (uo+ %) and the logarithmic part of the Green
j=0 =0

function is given by A = %ln \%| + D5, where Dy, D, are arbi-
trary constants. By performing then once again a transformation
of the type ¢ — —¢, different pairs of solutions Fi* = F:*(¢) and
F5& = Fff (&) are obtained. These individual pairs of solutions can
be glued together the same way as previously shown. This yields

once again a reduced profile function of the form
F=0(F+GF )+ (1-0)qFr, (199)

which, apart from a slightly different form of the integration con-
stants, is exactly what is obtained by considering the limit a — 0
of the previously obtained solution of the generalized Dray-"t Hooft
equation. Therefore, it can be concluded that the solution of the
generalized Dray-"t Hooft relation reduces exactly to Sfetsos’ solu-
tion in the limit @ — 0 and to the original solution of Dray and ’t
Hooft in the limit a,e — 0.

Accordingly, since this expression and the one previously ob-
tained both solve the corresponding differential equations (155) and
(156), it becomes clear that they must be identical in the limit e — 0.
Therefore, it can be concluded that they are different expressions of
one and the same reduced profile function of the geometry.

In a specific sense, the obtained class of solutions is not unique;
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at least not from a purely physical point of view. This is because
by performing a null rescaling of the form [* — xI%, k* — y 1k%, as
long as the condition Dy = 0 is fulfilled in the present context, one
obtains another completely different Kerr-Schild geometry, whose
associated deformed metric has the form

éab = Gab T flalb = Gab + XQflalb‘ (200)

More precisely, using this metric, another local energy-momentum
distribution of a null particle located on the event horizon of a black
hole can be calculated, which does not match the original one de-
duced in this work. This provides an infinite set of solutions of
Einstein’s equations, which all yield the energy-momentum tensor
of a point-like null particle located at the event horizon of the Kerr-
Newman black hole background spacetime. Since the Einstein ten-
sor of this geometry is linear in the profile function, a finite series of
these solutions for the reduced profile function can in principle be
superimposed to a many-body solution.
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Discussion

In the present work, the geometric structure of the field of a gravita-
tional shockwave generated by a null particle at the outer event hori-
zon of a stationary Kerr-Newman black hole was determined. For
this purpose, the exact distributional form of the profile function
of the shockwave was calculated using the Kerr-Schild framework
and the Newman-Penrose spin-coefficient formalism. Based on this
result, it was shown that the resulting geometric model contains the
solutions of Dray and 't Hooft, Sfetsos, and of course Aichelburg and
Sexl as a special case, thus providing a whole family of generalized
Kerr-Schild spacetimes in four dimensions.

Ultimately, the said class of solutions must be physically inter-
preted appropriately. As mentioned at the end of the previous sec-
tion, the representatives of this class characterize the geometric field
of a relativistic two-body system consisting of a black hole singu-
larity and a singular null particle field on the black hole event hori-
zon, which may in principle be extended to a many-body system by
superimposing different expressions for the profile function of the
geometry. This has the effect that the black hole event horizon is
no longer a Killing horizon, but rather an extremal weakly isolated
horizon in the sense of Ashtekar et al. Moreover, it has the effect
that the geometry is no longer stationary and axisymmetric.

However, since the backreaction effects calculated in this work are
local in the sense that they do not change the overall geometrical
structure of the black hole spacetime but only the structure of the
horizon of the black hole background, the resulting geometry can
legitimately be interpreted as that of a dynamical classical black
hole, which may eventually allow one to find out a few things about
quasi-stationary black holes that emit Hawking radiation.

More specifically, given the literature on the simpler case of the
Dray-"t Hooft model [38|, one must seriously consider the possibil-
ity that the gravitational backreaction effects caused by a massless
particle could be exactly the same as those arising from the Hawk-
ing effect and the phenomenon of black hole evaporation. This is
not least because Hawking’s original approach gives no indication
of how geometric backreactions to the spacetime of an evaporating
black hole should actually be given; so that one could legitimately
conclude that the continuous emission of thermal radiation by a
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black hole is accompanied by the emission of gravitational shock-
waves that propagate along the black hole event horizon. In this
case, the deformed gravitational field of emitted shockwave pulses
would then be curved by high-energetic null particles which escape
along that horizon to future null infinity. Thus, if this considera-
tion proves to be meaningful, the results of the present work could
greatly contribute to a better understanding of the geometric struc-
ture of the gravitational field of an evaporating black hole, which
then could turn out to be crucial for a deeper understanding of the
quantum properties of these types of physical objects.

However, since the geometric backreaction effects caused by grav-
itational shockwaves in stationary black hole backgrounds are not
yet fully understood and there is no generally accepted approach
that relates the theory of gravitational shockwaves with that of
scalar fields on such geometric backgrounds, it is worthwhile to be
careful with such interpretation attempts.
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Appendix

A The Fuchsian Class of second Order linear dif-
ferential Equations with regular singular Co-
efficients

In the theory of ordinary homogeneous second-order linear differen-
tial equations with variable coefficients, which are known to be of
interest for theoretical physics and in particular for the present work,
it may happen that the corresponding coefficients are not globally
well-behaved analytic functions but instead have singularities. In
this rather common case, the behavior of solutions is usually stud-
ied in the immediate vicinity of those (typically isolated) singular
points, where at least one of the coefficients of the equation diverges
and it is therefore to be expected (based on the fact that the isolated
singular points of said solutions are known to lie amongst those of
their associated singular coefficients) that at least one of all the cor-
responding linearly independent solutions strives toward infinity as
well. The way this occurs in detail depends very much on the nature
of the singular point examined, that is, in particular, on whether the
point in question is a so-called regular or irregular singular point.
To explain the differences between these different types of points,
note that any ordinary homogeneous second-order linear differential
equation can be be written in the form

f"+of +qf =0, (201)

where the prime denotes differentiation with respect to the (typi-
cally) complex variable {. Assuming the validity of the initial con-
ditions fle—¢, = wo, [|e=¢, = w1, one may then concentrate on the
case in which the coefficients p = p(§) and ¢ = ¢(£) are complex-
valued functions with altogether k different isolated singularities &.
Given this setting, the necessary conditions for a point & to be a
regular singular point are that p(£) has a pole of at most first or-
der and ¢(§) one of at most second order, so that the differential
equation (201) may be re-written in the form

do
(€ — %)

f”+€ﬁoof’+ Sf=0, (202)

§
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where po(€) and qo(§) are power series and thus regular in &. A
prerequisite for this is that the coefficients p(§) and ¢(&) are holo-
morphic in an annulus K of radius r, i.e. in the local domain
0<|&—&l <.

A differential equation with exactly this kind of singular behavior
belongs to the so-called Fuchsian class of homogeneous second-order
ordinary linear differential equations with regular singular coeffi-
cients, which is the class of equations that can be written in the
form

k
P L) (203)
g=t> _1:[0(5 = &)

where the v; are constant coefficients and V' = V() is a power
series that reduces to the so-called Van Vleck polynomial, i.e. a
polynomial of degree at most & — 2, in the case that (203) has a
polynomial solution.

One of the main differences to differential equations with irregular
singular points, which show a stronger singular behavior, is that the
coefficients of a differential equation with regular singular points can
be expanded in the vicinity of a singular point &, in a Laurent series
with a finite instead of an infinite number of negative exponents.

In purely formal terms, this means that one of the two linearly
independent solutions must be of the form

AE) =D ur(§ = &)" = (€ = &) ™ (tem + usmir (€ — &) +..) =

k=—m

=) wp(§— &) (204)
k=0

in full accordance with Fuchs’ theorem [19, 59, 60]. Hence, it be-
comes clear that one of the solutions of (202) can be determined by
making an ansatz in the form of a generalized Frobenius series

F1©) =D wi(€ — &) (205)
k=0

In the case of the second solution, on the other hand, due to the
fact that (202) is a linear differential relation, the standard method
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of variation of parameters can be used to obtain another solution of

¢
¢ —f,p(ﬁ”)dﬁ”
the form fo = fif %e K d¢'. This again gives an expression
1

&o
of the form (205), but for a different critical exponent ps. However,
based on the fact that the integrant of this second solution can also
be expanded in a generalized Frobenius series, one may realize - in
the event that py = p; +m, where m is some positive integer - that
said solution is of the form

Azwks &) (€ — &) + Y un(€ — &) (206)
k=0

where A is an arbitrary constant and p; and py are the so-called
characteristic exponents of the given pair of solutions. Of course,
the corresponding power series have positive radii of convergence.
It may be noted that a rescaling of the solutions f;(§) and fo(§) of
(202) by a factor of ({ —&y)“, where « is some positive integer, yields
again an equation of type (202).

Anyhow, since the concrete form of the linearly independent so-
lutions in the vicinity of an isolated singular point is now known, the
next question is how the form of the solution looks at other singular
points of the equation. Here, one can take advantage of the following
fact: By analytic continuation along any path not passing through
the poles of p(§) and ¢(&), any set of linearly independent solutions,
which is valid around a singular point of the said differential equa-
tion (202), gives a new set of solutions. However, it typically occurs
in this context that the extended functions obtained from the an-
alytic continuation of a given set of solutions in the vicinity of a
given isolated singular point £ = &, are multivalued complex func-
tions, whose value at another point { = {; depends on the chosen
curve from &y to &. In particular, by choosing a path around one
of the singular points, it often happens that this point becomes a
branch point, which has the effect that a given pair f;(£) and f5(¢)
of solutions transitions into a new pair fi(¢) and fo(¢). However,
by taking advantage of the fact that pairs of solutions form a vector
space, it becomes clear that there should be a linear transformation

fl _ (a1 Q12 Ji
()= (i) (), 2o
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commonly referred to as monodromy transformation, which, after
a certain singularity has been circulated clockwise, turns one pair
of solutions into another. In this context, the components a;, of
the corresponding monodromy matrix are constants, which are re-
quired to meet the condition ajjas; — a12a2; # 0 in order to ensure
that the solutions fi(£) and f»(&) are linearly independent. The
monodromy matrices are the generators of the monodromy group,
which is prescribed by means of a finite-dimensional complex linear
representation of the so-called fundamental group, which is the first
and simplest homotopy group [52, 54].

The monodromy concept is important in this context not least
because its definition reveals an important property of analytical
continuations along curves between regular singular points. This
can be seen if one moves alongside special paths around an isolated
singularity, which all have the same start and endpoints and can
be continuously deformed into one another, because in this case
the analytic continuations along different curves will yield the same
results at their common endpoint, which is subject to the famous
monodromy theorem.

The eigenvalues \; and A\, of the matrix given above, which can
be determined as usual by solving the relation

=0, (208)

21 Az — A

aj; — A Q12 ‘

play an important role in the following. This is because these eigen-
values coincide, independent of the concrete choice of a basis, with
those numbers by which a solution of the differential equation has
to be multiplied in order to remain a solution. In order to get to
this insight, it is generally exploited that the eigenvectors resulting

from solving
fl ~f(ann— A 12 f
(ﬁ) B ( a Qg2 — )\) (fQ) ’ (209)

can be assembled into matrices, which can be used to diagonalize
the matrix in (207), so that one obtains

(2)- (5 2) (2) &
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In the event that both eigenvalues coincide, so that \; = Ay , how-
ever, one usually considers the alternative system

fi At 0 fi
(7)-(a %) (3) en)
in relation to which, of course, it is still possible that as; = 0.
Given these different settings, it is then found that for Ay # A\,
both solutions of (202) must be of the form (205) (but for different
characteristic exponents p; and ps), whereas for A\; = Ay one solution
must be of the form (205) and the other of the form (206). This is

because, as can be deduced from the fact that the quotients (5_);#
are unique and regular near a given regular singular point £ = &,
there is a connection between the said critical exponents and the
above-mentioned eigenvalues, i.e. \; = €™ for j = 1,2, which
is caused by the fact that the logarithm in (¢ — &) = erim(E=%0)
grows by a multiple of 2im by circumventing a singular point along
a closed path in positive direction. The equality of the eigenvalues
then requires ps = p; +m, where m is some positive integer, so that
one knows why in this particular case the solution must be of the
form (206).

Thus, in the case that an analytical continuation of a given pair
of solutions in the vicinity of a fixed regular singular point can be
defined, it is ensured that those pairs of solutions, which are valid
in the vicinity of all other regular singular points, can be converted
into the given one and into each other by simple linear transfor-
mations. The continuous analytical continuation of solutions along
curves, which ’connect’ in this way pairs of regular singular points
with each other, defines a so-called Riemann surface, i. e. a one-
dimensional complex manifold, which is a connected Hausdorff space
that is endowed with an atlas of charts to the open unit disk of the
complex plane (whereas the transition maps between two overlap-
ping charts are required to be holomorphic).

And even though this approach can be used in principle to solve
differential equation (203) around each singular point & = &; for
fixed 7, it turns out that it is much more advisable in practice to
bring the equation into the form

k k k

[T -+ - @)(Z%W +VE=0  (212)

=0 =0 j=1
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and to seek polynomial solutions of the resulting expression. These
solutions, if they exist, are then given by what are called Heine-Stieltjes
polynomials (sometimes also called Stieltjes polynomials) |35, 40, 61,
63], which form the basis for the construction of ellipsoidal harmon-
ics and their generalizations [64]. In the case that no such polyno-
mial solutions of (212) exist, the solution will be of the form (205).
In order to obtain the second possible solution with the aid of the
already determined one, one may then either use ansatz (206) or
possibly first seek another solution by applying the method of vari-
ation of parameters in a slightly different way, namely by trying to
find a solution A = A() of (212) for V = 0 and then make an
ansatz of the form

fo=hHA+G, (213)

where G = G(§) can be assumed to be a generalized power series

of the form G(&) = > ug(€ — &), Provided that the definition
k=0

U = A’ is used in the present context, A(&) is then obtained by
solving the first order relation

k
/ Vi o
U+ Zgzs =0, (214)
j=1 J

which follows directly from (212) for the special case V() = 0.
Both methods are equivalent in that they lead to exactly the same
results, from which it can be concluded that (206) and (213) repre-
sent one and the same solution of (203). The concrete choice of one
of these methods for solving Fuchsian differential equations is there-
fore purely a matter of taste. Obviously, however, it is the latter
method that is pursued in the present work.

As an application of the present investigation of Fuchs’ mathe-
matical framework for solving second-order linear differential equa-
tions with regular singular coefficients, special types of differential
equations belonging to this class shall be considered next, which play
an important role in mathematics and theoretical physics, since they
are of particular importance for the solution theory of linear partial
differential equations. Since, however, the mathematical literature
pays much attention to the discussion of these special differential
equations with a small number of regular singular points anyway,
the remaining part of this appendix will be content with giving
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some relevant examples without discussing them in full detail on
a case-by-case basis or listing the exact structure of the associated
solutions and all their relevant properties. For a more detailed treat-
ment of the subject, one should therefore rather consult the relevant
mathematical literature, such as for instance the books by Smirnov
or Slavyanov and Lay.

To begin, first the case of Fuchsian differential equations with
three regular singular points shall be discussed. The most promi-
nent representative of this class is indisputably the hypergeometric
differential equation of Gauf, which has the form

c a+b—c+1 ab

f”+[—+—}f,+mf:0~ (215)

3 -1
This equation, whose associated three singular points are 0, 1 and
00, obviously belongs to the Fuchsian class of differential equations
with three regular singular points. It is solved by the so-called hy-
pergeometric function

F(a,b,c¢) :Z %%, (216)

where (1), = T&tn) — Je@t)..(e+n=1)  n>1 g the so-called Pochham-
I(z) 1 n=0

mer symbol. As outlined above, this form of the solution results from
making a Frobenius ansatz of the form (205), which yields the indi-
cial equation p(p + ¢ — 1) = 0, from which it can be concluded that
there exist two independent solutions of (215) in terms of convergent
power series in the vicinity of £, = 0 if cis not an integer. These solu-
tions f1(€) = F(a,b,c;€) and fo(€) = £ F(a—c+1,b—c+1,2—¢;€)
can be superimposed to a single solution due to the fact that (215)
is linear. This also works in the case that c is a positive integer; a
case, in which the second solution instead takes the form fy(§) =
AfiIn&+€17¢G, where G = G(€) is again a convergent power series.
It also works in the event that c is a negative integer or zero, in which
case the solutions are fi(§) = 1 “Fla—c+1,b—c+1,2—¢;€) and
f2(§) = Bfiln& + H, where H = H(§) is once more a convergent
power series. The solutions found can then easily be converted by
linear transformation into those in the vicinity of the singular points
1 and oo, so that the equation (215) has a solution pair of the form
(205) and (206) in the vicinity of each regular singular point.

n=0
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The hypergeometric differential equation leads to some important
special cases, including the Legendre equation

(1= f" =26 +1(Il+1)f =0, (217)

the Jacobi equation

(1=Ef"+([B—a—(a+B+2)Ef +n(n+a+B+1)f =0, (218)

the Chebyshev equation

L= f"=&f +af=0 (219)

and the Gegenbauer equation

1= f" =2+ Df'+(v—w+p+1)f=0,  (220)

all of which possess polynomial solutions that belong to the superor-
dinate class of Heine-Stieltjes polynomials. In this context, it shall
be mentioned only briefly that by performing once again a linear
transformation, which allows one to introduce a limiting procedure
by means of which it can be achieved that a singularity lying at
a finite position is shifted into infinity and thus coincides with the
singularity already existing there, the said equation can be further
transformed into the confluent hypergeometric differential equation,
which leads to other important special cases such as the Bessel, Her-
mite and Laguerre equations. It thus becomes apparent that a large
number of the special functions relevant for mathematical physics
are solutions of the hypergeometric equation in one form or another.

The next step now shall be the discussion of Fuchsian differen-
tial equations with four regular singular points. The most promi-
nent representative of this class is most certainly Heun’s differential
equation

aff —q
§E€—-1)(—a)

whose associated coefficients must satisfy a+5—~v—0—e+1 = 0. Its
regular singular points lie at 0, 1, @ and oo and it admits no less than
192 solutions, usually called Heun functions. Assuming that there
is an infinite set of discrete values ¢,, for the accessory parameter
q, these solutions are often denoted by H f,,(a, gm; o, 8,7, 0;&) and

f//_i_(’y 5 € >f/+

g+§T1+§Ta /=0, (221)
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rarely written down explicitly, which is mainly due to the fact that
the coefficients have to be determined by solving a two-term recur-
sion relation. However, they are often written down as power series
expressions in Riemann’s P-symbols and thus in series of hyperge-
ometric functions, which are solutions of Riemann’s P-differential
equation. The most prominent among these solutions are certainly
the polynomial ones, generally known as Heun polynomials, which
are again special types of Heine-Stieltjes polynomials. The Heun
equation and its generalized version

1—,u0+1—u1 T — e Bo + Bi€ + 5262
3 -1 €—a € —1)(—a)

which is usually referred to as generalized Heun equation in the lit-
erature |15, 57|, are of interest in mathematics because they both
contain the Mathieu, Lamé¢, Whittaker-Hill and Ince equations as
a special case and are of relevance for solving the ellipsoidal wave
equation. However, they are also of great relevance for theoretical
physics, that is to say for both black holes perturbation theory and
quantum field theory on curved backgrounds, where these equations
have been shown to occur naturally in the process of solving the
Dirac equation for massive Fermions on a Kerr-Newman geomet-
ric background and giving a description of static perturbations of
non-extremal Reissner-Nordstrom black holes |13, 15]. Moreover, it
seems to play a role in finding solutions of the Teukolsky equation
of Petrov type D vacuum background spacetimes. It should also
be mentioned that the confluent special cases of the Heun equation
have proved significant for the characterization and solution of the
Regge-Wheeler equations, the Zerelli equations and the Teukolsky
equations.

The next case to be discussed is the case of Fuchsian differential
equations with five regular points. The most prominent represen-
tative of this class is the generalized Lamé equation (keep in mind
that several differential equations were named after Lamé)

1 ( 1 N 1 n 1 N
2°%¢+b £-b E+c E—c
p(b® +¢*) —m(m + 1)

Te—pe—a 70

with the singular points +b, +=c and oo. It is solved by so-called gen-

7 +( +a)f + f=0, (222)

"+ )+ (223)
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eralized Lamé functions, which form the basis for the construction
of generalized ellipsoidal harmonics. As in the case of Heun’s differ-
ential equation, these solutions are rarely written down explicitly,
which is because they are subject to a three-term recursion relation.
As stated, the process of solving the homogeneous generalized Dray-
't Hooft equation also leads to an ordinary differential equation that
belongs to this largely unexplored class.

In the case of equations with more than six regular singular
points, only a few examples are known. One is the so-called hyper-
generalized Heun equation, which occurs in the context of quantum
field theory on Kerr-Newman-de Sitter backgrounds, which has six
regular singular points [14]. There may be other examples, but not
too many that are well known.

What all the differential equations with more than three regular
singular points have in common is that their solutions, which have to
be of the form (205), are difficult to write down explicitly. However,
a great advantage of the methods developed in the present work is
that they allow generically, i. e. for any finite number of terms
of the associated recursion relation, to write down the form of the
corresponding generalized power series expression. For an n-term
recursion relation of the form

Wit1 = M)kWk + M@)Wh—1 + M@)kWk—2 + ... + M(n)rWi—n, (224)

this can be achieved by introducing the symbol < m 1y, m(g), ..M ) >,
which represents a multi-linear form of the type

L M1y, M), M) >k = Wakak,lmaoXZkXZE?--~X(()10, (225)

where each a; runs from zero to n — 1; at least provided that
one uses one’s freedom to choose w; := mwo, wa := Mmywy +
M2y Wo = (M)1M(1)0+M2)1)Wo, -y Wy 2= M1y Wh— 1+ M2 Wn—2+
M @B Wn—3 + ... + Myuwo. The solution then is of the form

W1 =< M1y, My2), M) Sk Wo (226)

The corresponding objects X;-lj = X% (j) have the components XJQ =
0(5), Xj = mu(j), X7 =mo(j), ... X} =mgu(j), where 6(j) =

J
{(1) z;jig is the Heaviside step function. In the meantime, the ob-
ject We,a, 1 ao 1s defined in such a way that all its components are
either zero or one. The non-zero components are exactly those for
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k
which on the one hand ) a; = k + 1 applies and, moreover, all in-
=0

dices that take the Valué zero occur only as successors of those that
take a value of two, all pairs of indices that take the value zero com-
bined occur only as successors of indices with a value of three, all
triples of indices that take the value zero occur only as successors of
indices with a value of four and so on and so forth. This implies in
particular that all Wo,, | a9, Wooar_o aos -~ Wo0..0a4_,..ap aL€ ZeTO.
It is also assumed that all coefficients with negative values are zero
by definition.

For the sake of illustration, consider the simplest non-trivial ex-
ample of a two-term recursion relation of the form

W41 = M(1)kWk + My(2)kWk—1, (227)

whose solution is of the form (225), at least provided that the cor-
responding objects X7 = X (j) have the components X = 6(j),
X} = m)(j) and X7 = my)(j). For k = 0, the said relation (225)
reads < mpy, m) >0 = W, X® = W1 X) = mqyo, which coin-
cides with what is obtained from (227). For k = 1, relation (225)
reads < my, M) >1 = W0 X1 X" = Wi X1 X§ + W X7X) =
M(1)1M(1)0 + My2)0, Which coincides once more with what is obtained
from (227). For k = 2, relation (225) reads < m),mp) >s =
Wa2a1aOX§2XilngO == W111X21X11X6+W120X21X12X8+W201X22X?X§ -
M(1)2M(1)1M10 + M(1)2M(2)0 + My2)2M(1)0, Which also coincides with
what is obtained from (227). By further iteration one finds then
that solutions of (227) can actually be written down on the basis of
the symbol represented in (225), so that it can be concluded that
all solutions of, for example, the Heun equation with characteristic
exponent p = 0 are therefore necessarily of exactly this form.

It must therefore be concluded that all non-trivial solutions of
homogeneous equations of the Fuchsian class with vanishing critical
exponent can be represented in exactly this way.
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