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Kurzfassung

Reinforcement Learning (RL) ist zurzeit eines der aktivsten Forschungsfelder im Bereich
des maschinellen Lernens und hat bereits in zahlreiche Anwendungsgebiete, wie etwa in
die Steuerung von autonomen Fahrzeugen oder in die intelligente Produktempfehlung,
Einzug gehalten. Trotz der vielen Fortschritte der vergangenen Jahre, gibt es noch einige
Hürden die es zu überwinden gilt, bevor RL in industriellen Anwendungen eingesetzt
werden kann. Zu diesen Hürden zählt etwa die schier endlose Menge an Trainingsdaten,
die benötigt wird um Agenten (Teilnehmer eines Entscheidungsprozesses) mithilfe von
RL zu trainieren. Eine bestimmte Art von RL Algorithmen beschäftigt sich mit der Idee,
ein Modell anhand der Daten zu lernen, um damit neue Trainingsdaten zu generieren.
Diese Art von RL wird auch modellbasiertes RL genannt und man verspricht sich davon
die Menge der benötigten Trainingsdaten auf ein Maß zu reduzieren, das es erlaubt RL
Algorithmen in Umgebungen zu trainieren, in denen es schwierig ist, ausreichend Daten
zu generieren.
Das Ziel dieser Arbeit ist es, die Vorteile, die modellbasierte RL Algorithmen mit sich
bringen, zu untersuchen. Dazu adaptieren wir im Folgenden einen existierenden, modell-
basierten RL Algorithmus und vergleichen dessen Performance mit der von gängigen,
nicht modellbasierten RL Algorithmen, die den derzeitigen State-of-the-Art markieren.
Die Anwendungsdomäne in der wir die Experimente durchführen ist im Bereich des
autonomen Fahrens angesiedelt. Um genauer zu sein werden die Agenten darauf trai-
niert, Rundenzeiten in Zeitrennen zu minimieren. Die Experimente zielen darauf ab,
Algorithmen, die in der Simulation trainiert wurden, dahingehend zu beurteilen, wie
gut ihre Fähigkeit ist, auf unvorhergesehene Ereignisse in der echten Welt zu reagieren.
Außerdem vergleichen wir die Flexibilität der Algorithmen, auf anderen, ungesehenen
Strecken vergleichbare Ergebnisse zu liefern. Nicht zuletzt untersuchen wir auch das
Trainingsverhalten der unterschiedlichen Algorithmen. Die Experimente werden sowohl
in einer eigens für diese Arbeit implementierten Simulationsumgebung, als auch auf einer
Prototyping Plattform, die auf einem kleinen, ferngesteuerten Auto basiert, durchgeführt.
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Abstract

Reinforcement learning (RL) is currently one of the most active machine learning research
fields. RL algorithms have been successfully deployed ubiquitously in many real-world
application domains, such as autonomous vehicles, intelligent production sites, and
finance. Despite the many advances made in recent years, there are still fundamental
challenges that need to be addressed before RL can be reliably applied in industrial
applications. One of these problems is the sheer amount of training data that is needed
to train deep RL agents. Model-based RL is a branch of RL algorithms that learn a
model of the agent or its environment which is then leveraged to generate new training
data or to plan ahead. Model-based approaches are expected to reduce the required
amount of training data to be sampled from an environment, down to a level that allows
RL algorithms to be trained in environments where it is hard to generate sufficient data.
The goal of this work is to investigate the advantages that model-based RL algorithms
bring. To this end, we adapt an existing model-based RL algorithm and compare its
performance with that of common, model-free RL algorithms that mark the current
State-of-the-Art. The application domain in which we conduct the experiments is in
the field of autonomous racing. In our experiments, agents are trained to minimize
lap times in time-trial races. The experiments aim to evaluate algorithms, that were
trained in simulation, with respect to their ability to be deployed in the real world. We
also compare the flexibility of the algorithms to produce comparable results on other,
unseen race tracks. Last but not least, we also investigate the training behavior of the
different algorithms. The experiments are performed both in a simulation environment,
implemented specifically for this work, and on a prototyping platform based on a small
remote-controlled car.
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CHAPTER 1
Introduction

In the following sections, we introduce the topic of this work and motivate the problem we
address throughout the next chapters. First, in section 1.1, we set forth the importance
and relevance of this work and the area of research where this work is located in general.
Then, we formulate the problem and the questions we try to address and answer in
section 1.2. Finally, in section 1.3, we give a brief outline of how this work is structured
and how the content is organized.

1.1 Motivation
Building intelligent autonomous agents has been a major goal for computer science
researchers for several decades now. One important aspect of intelligent agents is
their capability of clever decision-making when interacting with their environment.
Reinforcement Learning (RL) is a branch of Machine Learning (ML) research, that
addresses decision-making strategies of such agents. Although being around for several
decades, RL research began to make significant progress just a few years ago by courtesy
of advances in other fields of ML, such as supervised or unsupervised learning. Now, the
field of RL was among the most active areas of research in recent years. Research projects
such as AlphaGo [SHM+16] or AlphaStar [VBC+19] gained a lot of media coverage when
they proved superhuman capabilities in games like Go and StarCraft and beat the world’s
elite. This success initiated an outstanding increase in publications and contributions in
the field of RL.

While the state of the art advances from year to year, significant, unsolved problems
remain. Its inherent data inefficiency and hard to reproduce results prevent RL to be
widely adopted by the industry yet. Furthermore, it is not yet clear how to teach agents
or even formulate which situations are undesirable without ever experiencing them. This
is especially true for the field of robotics and autonomous driving, where it is not feasible
to let robots or vehicles crash many million times until the agent learns to prevent such
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1. Introduction

situations. A common approach is to train agents in simulated environments before
deploying them to real-world platforms. However, even when high-fidelity simulations are
available, which is difficult to achieve in highly unpredictable domains (e.g urban traffic),
RL algorithms often face difficult challenges due to their susceptibility to distributional
shift between simulation and reality.

1.2 Problem Statement
In this work, we aim to evaluate algorithms of two different branches in RL with respect
to their capability to generalize behavior in simulation and then successfully transfer
this knowledge to real-world vehicles. In the course of experimental evaluations, we
compare state-of-the-art model-free RL algorithms with a recent, advanced model-based
RL algorithm in the context of autonomous racing. While model-free approaches tend to
outperform current model-based approaches in the limit, the latter ones might be better
suited to tackle unsolved challenges, such as high sample complexity and sensitivity to
distributional shift. To this end, we set out the following research questions, which we
try to answer throughout this work:

1. How do world-model RL algorithms compare to the state-of-the-art model-free RL
algorithms concerning sample efficiency and performance?

2. Are world models able to adapt to unknown situations at test time?

3. Do world models, that are learned in simulation, facilitate safe real-world navigation
for autonomous vehicles?

To answer these questions, we conduct a series of experiments in the domain of autonomous
racing, both in simulation and on our real-world miniature race car, which serves as
a testbed for autonomous driving scenarios. The goal is to develop a system, that is
capable of learning to navigate difficult racetracks just from observations in an end-to-end
manner. Our approach is based on Dreamer [HLBN20], an existing model-based RL
algorithm, which we adapted to the domain of autonomous racing. We compare our
approach to various model-free RL algorithms for continuous control RL. We compare
these algorithms to our approach with respect to their sample efficiency, generalization
capabilities, and performance. To summarize, the main contributions of this work are:

• We demonstrate the effectiveness of advanced model-based deep RL compared to
model-free agents in the real-world application of autonomous racing.

• We show the transferability of advanced model-based deep RL agents to real-world
applications where model-free agents fail.

• We empirically show that the learning performance and generalization ability of
Dreamer depend on the choice of the observation model and its ability to learn a
meaningful dynamics model.
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1.3. Outline

1.3 Outline
In chapter 2, we give a concise introduction to the fundamentals of Markov Decision
Processes (MDPs) and RL in general. We cover basic concepts and algorithms underlying
most of the more advanced approaches before moving on to introducing state-of-the-art
model-free algorithms, which serve as a performance baseline in our experiments.
Subsequently, in chapter 3, we discuss related work in RL for robot control in general
and the state of the art in autonomous racing. Furthermore, we present two existing
approaches of end-to-end RL in this domain.
Chapter 4 introduces the model-based algorithm we adapted to the domain of racing
before discussing the algorithmic contributions we made. These contributions are two
novel reconstruction models to train the algorithm and the formal description of the
reward signal we used during the training of the agents.
In chapter 5, we outline the infrastructure we built to train agents and conduct experi-
ments. Specifically, we present the simulation environment we designed, the hardware
platform used to evaluate the real-world performance and the race tracks on which we
train and evaluate agents. Furthermore, we outline the training and hyperparameter
tuning procedure, as well as the algorithm implementations and model architectures.
The experimental design and results are presented and discussed in chapter 6.
Chapter 7 concludes the contributions and results obtained throughout this thesis and
gives an outlook on our current and future research work in this field.
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CHAPTER 2
Background

The following sections provide an overview of important key concepts that are fundamental
to most of the approaches in the field of RL and robot learning. First, we introduce
MDPs, a powerful framework to model different kinds of sequential decision-making
problems. Subsequently, we provide insight into the field of RL, a branch of ML concerned
with finding optimal behaviors in decision-making problems, formulated as MDPs. The
last part of this chapter introduces and motivates the choice of the RL algorithms we use
in our experiments.

2.1 Markov Decision Processes

Modeling dynamical systems under uncertainty requires the availability of a stochastic
model which is capable of taking random events into account. The field of probability
theory provides a variety of stochastic models which can be used to predict the behavior
of dynamical systems under uncertainty. To formally define sequential decision-making
processes, a common approach is to formulate the underlying system as a MDP. Intuitively,
MDPs model the interaction of an agent with its environment. There exist different
types of MDPs, such as continuous-time, infinite, or constrained variants. In this work
we focus on discrete time MDPs and Partially Observable MDPs (POMDPs).
Figure 2.1 shows the schematics of MDPs: agents observe their environment and obtain
the current state st as well as a reward rt at some discrete time step t. Rewards can
be understood as an incentive to reach favorable states while avoiding undesirable ones.
Agents then decide which action at they should take in order to maximize their rewards.
After executing the action, the environment is potentially altered and agents observe a
new state and reward.
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2. Background

Figure 2.1: In a Markov Decision Processes, agents perceive states st and rewards rt at
time step t, and interact with their environment via actions at. [SB18]

2.1.1 Fully observable MDPs
MDPs can be formally defined as a 4-tuple �S, A, T, R�. The set S contains all states
that are reachable for an agent. The set of actions that an agent can execute is defined
by A. States and actions can be either discrete or continuous and can be of arbitrary
dimension. The dynamics model of the system is defined by the transition function T
which is defined as

T : S × A × S �→ [0, 1]. (2.1)

Thus, T is a stochastic function that expresses the probability of reaching some state
st+1, given the agent is in state st and executes action at. This relationship is usually
expressed as a conditional probability distribution:

T (st, at, st+1) = p(st+1|st, at). (2.2)

It is valid to assume that the next state st+1 only depends on the previous state st and
action at, because, like any Markov model, MDPs are assumed to satisfy the Markov
property. To satisfy the Markov property, the state of a system must be conditionally
independent from any other previous states except its immediate predecessor. Formally,
this can be written as

p(st+1|s0:t, a0:t) = p(st+1|st, at). (2.3)

Rewards are generated by a deterministic function R, which assigns a scalar reward value
to an action at taken in some state st. Thus, R is defined as

R : S × A �→ R. (2.4)

6



2.1. Markov Decision Processes

In this work, we defined the dynamics to be stochastic, while rewards are generated by a
deterministic function. Other works might define rewards to be also stochastic or the
dynamics to be deterministic. Sometimes, R also depends on the next state that follows
after taking action at. These assumptions are problem-dependent and in the following,
we will use the definitions above, although other interpretations might be also valid.

2.1.2 Partially Observable MDPs
Given the definitions above, many scenarios can be described as MDPs. In real-world
scenarios, however, agents are not able to observe the true state of a system directly.
Observations that are obtained by sensors, such as RGB cameras or Light Detection and
Ranging (LiDAR) systems, are subject to noise. Moreover, such measurements might
not be able to capture the full state of a system, and thus only partially observe the true
state. Figure 2.2 shows an example of a vehicle that obtains a LiDAR measurement of
its environment. In this visualization, it is clear that other vehicles probably occlude
other traffic participants. Furthermore, one can not deduct important components of
the vehicle state (e.g. pose, velocity) from a single observation. Thus, the state of the
environment is partially observable and the problem is formulated as a POMDP.

Figure 2.2: Traffic scene captured by a LiDAR sensor.1

POMDPs can be defined as a 6-tuple �S, A, T, R, Ω, O� [Ås65, KLC98]. The entities S,
A, T and R describe the underlying MDP. Additionally, POMDPs define the set of
observations Ω. The function O, which is defined as

O : Ω × S × A �→ [0, 1], (2.5)

maps an observation together with a state-action pair to a probability. Often, this
relationship is expressed as

O(ot, st, at) = p(ot|st, at). (2.6)

1Source: automotiveworld.com, accessed 2021-03-27
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2. Background

Intuitively, this expresses the likelihood of obtaining an observation ot in the true state
st while executing action at.
Often it is convenient to treat POMDPs as MDPs with belief states. Because states can
not be observed directly, a belief over the true state is estimated from observations. In
most cases, this belief is represented as a probability distribution. Maintaining this belief
over time is usually achieved by applying recursive Bayes filters:

bel(st+1) = η p(ot|st, at)
�

st

p(st+1|st, at) bel(st) dst. (2.7)

In eq. (2.7), the distributions correspond to the transition (eq. (2.2)) and observation
model (eq. (2.6)). The constant η denotes a normalization factor. There exist various
filtering methods, such as Kalman or Particle Filters, which are tractable approximations
to the recursive Bayes filter formulation in eq. (2.7) [TBF05].

2.2 Introduction to Reinforcement Learning
Continuing on the concepts introduced in the previous section, we now focus on methods
that enable agents to learn desired behavior in any environment. First, we introduce
the fundamentals of RL. Then, we introduce important RL algorithms which we used as
baselines to test our approach on a racing task. For this section, most of the definitions
and notation are based on the work presented in [SB18, Ser21, Ope21].

2.2.1 Fundamentals
When interacting with their environment, agents produce a trajectory of states and
actions. Such trajectories, often denoted as τ , are of the form s0, a0, s1, ..., sT . The goal
of RL is, to find a behavior generating function, a policy, that maximizes the collected
rewards over time. Formally, an agent aims to maximize the sum of rewards, denoted by
G(τ):

G(τ) =
T�

t=0
R(st, at) (2.8)

In eq. (2.8), the sum is taken over a horizon T , starting from time step t = 0. MDPs
can be considered over a finite horizon (episodic MDPs) or infinite horizon. For episodic
tasks, T is finite, while for infinite time-horizon tasks T = ∞. For infinite time-horizon
tasks, rewards are discounted by a factor γt ∈ [0, 1], that weighs the relative importance
of future rewards by transforming G(τ) in a geometric series that converges in the limit.
The rationale behind this is that rewards, that are to be collected far in the future, should
not influence current decisions as much as immediate rewards.

Policies. The function that produces actions is usually referred to as policy. Policies are
functions that map states to actions and can be either deterministic or stochastic. In this
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2.2. Introduction to Reinforcement Learning

work, we usually assume stochastic policies, as they are more general than deterministic
ones. Thus, a policy is defined as

π : A × S �→ [0, 1]. (2.9)

Policies can be interpreted as mappings from states st to the probability of taking action
at in time step t. This is usually expressed as a conditional probability distribution and
often denoted as π(at|st).

Value functions, Q-values, Advantages. To estimate how desirable it is to reach a
state st, value functions are computed. A value function, usually denoted as V π, gives an
estimate of the expected sum of returns when starting from some state s while following
a policy π. Formally, this can be written as:

V π(s) = Eτ∼p(·|π)
�

G(τ)
�� s0 = s

�
(2.10)

p(τ |π) = p(s0, a0, ..., sT |π) = p(s0)
T�

t=0
π(at|st) p(st+1|st, at) (2.11)

In eq. (2.10) we compute the expected sum of returns considering actions and states
following the distribution over trajectories. The trajectory distribution is defined in
eq. (2.11) and is governed by the initial state distribution p(s0), the policy π and the
transition model p, which we defined in eq. (2.2).
Analogous to value functions, we can compute state-action values, also often referred to
as Q-values:

Qπ(s, a) = R(s, a) + Es�∼p(·|s,a)
�
V π(s
)

�
. (2.12)

Qπ computes the expected sum of returns when taking action a in state s and then
following a policy π. By using Q-values and value functions, we can also compute the
advantage of taking an action a in state s instead of sampling an action from the policy
π. Formally, the advantage is defined as

Aπ(s, a) = Qπ(s, a) − V π(s). (2.13)

In MDPs with small, discrete state and action spaces, policies and value functions can
be computed with dynamic programming algorithms [Bel03]. These approaches are also
known as policy iteration algorithms. However, when dealing with high-dimensional or
continuous state and action spaces, tabular methods are not feasible and value functions
and policies have to be approximated [SB18, Ber07]. Current methods usually make
use of deep neural networks as general function approximators, hence they are often
referred to as deep RL algorithms. When using deep neural networks as policies or value
functions, we denote the parameters of the networks as θ or ψ, respectively. The notation
for policies or value functions is then πθ or Vψ, respectively.

9



2. Background

On-policy vs. Off-policy. In RL, one distinguishes between on-policy and off-policy
algorithms. On-policy algorithms perform updates on the same policy that is used to
interact with the environment. Off-policy algorithms can update a policy and estimate
value functions that are different from the policy that is used to generate sample data.
Thus, off-policy approaches are usually more sample efficient, as they can reuse data
sampled from older versions of the policy. Also, such algorithms can leverage data that is
produced by a modified policy. For instance, it is common to use more random policies for
data collection to improve the exploration behavior of agents. However, these advantages
often come at the price of algorithms that are less likely to converge [SB18].

RL Algorithms Overview. In recent years, a diverse landscape of RL algorithms
emerged. Figure 2.3 gives a brief, but incomplete overview of current RL algorithms.
Generally, RL algorithms are classified as model-free or model-based. Model-free algo-
rithms do not use any model of their environment, such as the transition model defined in
eq. (2.2). In contrast, model-based algorithms have such a model available, either given
or learned from data. Having a model of the decision process makes it possible to reason
about the consequences of actions more directly. However, the fidelity of predictions
depends heavily on the quality of such a model.

Model-Free RL

RL Algorithms

Model-Based RL

Policy Optimization Q-Learning

TRPO

Learn the Model Given the Model

I2A

World Models AlphaZero

MBMF

C51

QR-DQN

DQN

HER

PPO

A2C / A3C

Policy Gradient

SAC

TD3

DDPG

MBVEMPO

Figure 2.3: Landscape of RL algorithms. 2

Model-free RL algorithms can be further distinguished by the way they learn: Policy
Optimization algorithms directly optimize parameterized policies, Q-Learning refers

2source: spinningup.openai.com, accessed 2021-03-30, modified
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2.2. Introduction to Reinforcement Learning

to algorithms that learn value- or Q-functions to derive policies from them. Often,
approaches try to combine policy optimization with Q-Learning. Such methods are
commonly known as Actor-Critic methods. However, most algorithms can not be clearly
assigned to one category. Therefore, fig. 2.3 is just a coarse categorization and should
provide only a rough overview.
From the algorithms shown in fig. 2.3, PPO [SWD+17], DDPG [BMHB+18, LHP+15],
SAC [HZAL18] and MPO [AST+18] are of particular interest, as they serve as performance
baselines to our approach, which is a world-model algorithm.

2.2.2 Basic Algorithms
To understand the algorithms referenced in this work, we briefly present the underlying
concepts behind most advanced RL algorithms. In their cleanest form, two types of
RL algorithms are distinguished: policy gradient methods and Q-learning approaches.
Generally, all approaches aim to solve the same optimization problem:

π∗ = arg max
π

V π(s), ∀s ∈ S. (2.14)

Q-Learning. In its simplest form, Q-learning is a simple dynamic programming al-
gorithm and designed for environments with discrete, finite and small state and action
spaces.

Algorithm 2.1: Q-Learning [SB18]
1 Input: step size α ∈ (0, 1], exploration factor � ∈ [0, 1], discount factor γ ∈ (0, 1]
2 ∀s ∈ S, ∀a ∈ A: set Q(s, a) to arbitrary value.
3 ∀s ∈ Sterminal : Q(s, ·) = 0.
4 while not converged do
5 Sample random starting state s0.
6 Set t = 0.
7 while st is not terminal do
8 Select at from behavior policy π (e.g. �-greedy).
9 Observe st+1, rt by taking action at in state st.

10 Q(st, at) ← Q(st, at) + α

�
rt + γ maxa Q(st+1, a) − Q(st, at)

�
11 t ← t + 1.
12 end
13 end

Q-Learning is an off-policy algorithm, thus it can estimate Q-values for any policy π. In
algorithm 2.1, line 10 shows the update rule for the Q-values. Each update corrects the
estimation of the Q-values proportional to the quantity

rt + γ max
a

Q(st+1, a) − Q(st, at), (2.15)

11



2. Background

which is also known as Bellman error. For tabular state and action spaces and under the
assumption that every state has a non-zero probability to be visited under π, Q-Learning
is guaranteed to converge, thus eq. (2.15) approaches zero.

Vanilla Policy Gradient. In contrast to action-value methods, such as Q-learning,
policy optimization methods do not rely on learning state or state-action value functions.
Instead, they directly optimize a parameterized policy with respect to their parameters,
using any optimization algorithm. In the following, we will focus on policy gradient
algorithms, which use gradient ascent as a procedure to solve the optimization problem
defined in eq. (2.14). Other works also make use of gradient-free optimization tech-
niques [SHC+17].
The gradient ascent update for the policy parameters θ is of the form

θ ← θ + α∇θJ(θ), (2.16)

where θ are the policy parameters, α the learning rate and J(θ) is the objective function,
which is usually some variant of the expected sum of returns, as defined in eq. (2.10):

J(θ) = Eτ∼p(·|πθ)
�
G(τ)

�
(2.17)

Taking the gradient of eq. (2.17) with respect to θ yields:

∇θJ(θ) = Eτ∼p(·|πθ)

� T�
t=0

∇θ log πθ(at|st) G(τ)
�

(2.18)

There exist improvements for the objective defined in eq. (2.17), dealing with the typically
high variance of this formulation. A simple approach is to consider only future rewards
for computing G(τ). Another approach is to subtract a state-dependent baseline value
(such as V (st)) from G(τ). This can reduce the gradient variance significantly, but also
introduces some bias. The latter approach is also known as actor-critic method, where
the policy is the actor and the value function is referred to as critic, as it judges the
actions taken by the actor. Many policy gradient algorithms use the advantage function
Aπ as an objective, which naturally uses the baseline subtraction, shown in eq. (2.13).
Thus, the corresponding policy gradient has the following form:

∇θJ(θ) = Eτ∼p(·|πθ)

� T�
t=0

	
∇θ log πθ(at|st)

�
Aπθ (st, at)

�
. (2.19)

Algorithm 2.2 shows the basic policy gradient algorithm, using a state-dependent value
baseline with advantage estimation. For each update step k, a set of trajectories Dk is
sampled from the environment by executing policy πθk

. Then, the advantages of actions
in each time step are estimated from the learned value function and collected data. Next,
in line 5, the estimation of the policy gradient by averaging the gradients over the set
of trajectories is depicted. Having computed the gradients, the policy parameters θ are
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Algorithm 2.2: Vanilla Policy Gradient Algorithm [Ope21]
1 Input: initial policy parameters θ0, initial value function parameters φ0.
2 for k = 0, 1, 2, ... do
3 Collect set of trajectories Dk = {τi} by running policy πθk

in the environment.
4 Compute advantages At from Vφk

(using GAE [SML+16] or other methods).
5 Estimate policy gradient using Monte-Carlo approximation (see eq. (2.19)):

∇θk
J(θk) ≈ 1

|Dk|
�

τ∈Dk

T�
t=0

∇θk
log πθk

(at|st)At.

6 Update policy weights using stochastic gradient ascent (or other optimizers,
such as Adam [KB15]):

θk+1 = θk + α∇θk
J(θk).

7 Fit value function by regression on sum of future rewards:

φk+1 = arg min
φ

1
|Dk|T

�
τ∈Dk

T�
t=0

(Vφ(st) − G(τt:T ))2 .

8 end

updated, as shown in line 6. In the last step, the value function is fitted to the sum of
future rewards using the Mean Squared Error (MSE) loss over trajectories. Note that
in line 7, the sum of returns is computed only for τt:T , which is the trajectory starting
from time step t until the end of the trajectory at time step T . The term G(τt:T ) is also
known as rewards to go, as it computes the sum of rewards from the current time step.

2.3 Model-Free Baseline Algorithms

Based on the vanilla policy gradient and Q-learning algorithms, many more advanced
RL algorithms emerged in recent years and successively improved the state of the art
on common benchmarks. We chose four well established model-free RL algorithms to
provide a competitive baseline in end-to-end learned racing performance. In the following,
we briefly introduce the algorithms and their main advantages over other algorithms. In
addition to the corresponding papers, we often make use of the notation and excellent
explanations provided in [Ope21].
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2.3.1 Proximal Policy Optimization
Vanilla policy gradient algorithms use gradient ascent, a first-order optimization pro-
cedure, to update the parameters of policies. However, when using highly non-linear
functions, first-order approximations are often too inaccurate, leading to drastic perfor-
mance collapses when stepping too far from the current policy during updating. Thus,
approaches that use concepts from mathematical optimization, such as trust-region
optimization, emerged. A prominent example of such approaches is Trust-Region Policy
Optimization (TRPO), an algorithm that takes the largest possible update step within
a trust-region [SLA+15]. The trust-region is defined by the Kullback-Leibler (KL) di-
vergence between the current and the updated policy. However, the computation of
the trust-region can be computationally demanding, as it involves the computation of
Hessian matrices [EIS+20]. Schulman et al. proposed a new family of policy optimization
algorithms, Proximal Policy Optimization (PPO), that is able to constrain the size of the
update step efficently [SWD+17]. Furthermore, PPO is simpler than TRPO and thus
implementations are less error prone.

PPO modifies the objective of the vanilla policy gradient algorithm, depicted in algo-
rithm 2.2:

J(θ) = Eτ∼p(·|πθk
)

�
T�

t=0
min

	
rt(θ)At, clip(rt(θ), 1 − �, 1 + �)At

��
, (2.20)

rt(θ) = πθ(at|st)
πθk

(at|st)
, (2.21)

At = Aπθk (st, at). (2.22)

In eq. (2.20), πθk
denotes the current, fixed policy (after k update steps), while θ are the

current parameters to be evaluated. The quantity rt(θ) denotes the probability ratio of
taking action at in state st under the policies πθ and πθk

. For instance, if it was more
likely to take action at in state st under policy πθk

than under the new policy πθ, then
rt(θ) < 1. If At is positive, thus it is favorable to take action at, then PPO encourages
rt > 1, but only up to a value of 1 + e to avoid updates that are too large. Similarly,
PPO avoids updates that deviate too much from the old policy when At is negative.

The reason we chose this baseline algorithm is its simplicity and good performance
on continuous control tasks. Furthermore, we also aimed to have at least one on-
policy algorithm in our collection of benchmark algorithms. We are aware that there
exist newer on-policy algorithms, such as V-MPO [SAS+20], but we decided to use an
existing, well-tested implementation of PPO over self-implemented or proof-of-concept
implementations.

2.3.2 Deep Deterministic Policy Gradients
In contrast to PPO, Deep Deterministic Policy Gradient (DDPG) learns a deterministic
policy µ. Furthermore, DDPG is a Q-Learning-based, off-policy algorithm. Similar to the
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DQN-Algorithm (Deep Q-Network; [MKS+15]), DDPG approximates the Q-function by
a deep neural network, but for continuous action spaces. The learned Q-function Qφ is
then used to update the policy parameters θ by backpropagation through Qφ. Formally,
the corresponding gradient of the objective function for the policy parameters is given by

∇θJ(θ) = Eτ∼p(·|µθ)

� T�
t=0

∇θ Qφ



st, µθ(st)

 �
. (2.23)

In addition to the objective function depicted in eq. (2.23), DDPG applies several, well
established tricks, such as target networks and replay buffers [LHP+15].
In this work we use Distributed Distributional DDPG (D4PG), an algorithm which is a
distributional extension of DDPG [BMHB+18]. Instead of a deterministic Q-function,
D4PG learns the parameters of a distribution for a random variable Z for the Q-values.
The state action value is the expectation over Z:

Qπ(s, a) = E
�
Zπ(s, a)

�
(2.24)

Additionally, D4PG also allows multiple, distributed actors to run in parallel to collect
experience.

We chose D4PG as a baseline algorithm because it demonstrated good performance on a
variety of simulated control tasks, such as the Deepmind Control Suite, and also served
as a baseline algorithm for Dreamer [HLBN20].

2.3.3 Soft Actor-Critic
Soft Actor-Critic (SAC) is an off-policy actor-critic algorithm that makes use of stochastic
policy optimization but also incorporates core ideas from DDPG algorithms. Like the
Twin-Delayed DDPG algorithm [FvHM18], another extension of DDPG, SAC learns
two Q-functions, which are used to computed the optimization objective. SAC is
a maximum entropy RL algorithm that adds an entropy regularization term to the
objective, incentivizing as much explorative behavior while still maximizing rewards.
The implementation of SAC we use in this work learns two Q-functions concurrently,
instead of a Q-function and a value function [HZAL18, Ope21]. SAC slightly modifies
the Q-function definition by adding an entropy term to the step rewards:

Qπ(s, a) = Eτ∼p(·|π)

�
T�

t=0
R(st, at) + α

T�
t=1

H


π(·|st)

 ���� s0 = s, a0 = a

�
. (2.25)

SAC learns a stochastic policy πθ. To sample from πθ, SAC learns two deterministic
functions for the mean and standard deviation parameters and applies the reparameteri-
zation trick. Thus, sampling is done by scaling the standard deviation by random noise
and adding it to the mean:

aθ(s, ξ) = tanh(µθ(s) + σθ(s) � ξ). (2.26)
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In eq. (2.26), the sampled value is squashed by a hyperbolic tangens to constrain the
action values to the interval [−1, 1]. The resulting objective function for the policy is
defined by

J(θ) = E
s∼D, ξ∼N (0, I)

�
min
j=1,2

Qφj



s, ãθ(s, ξ)

 − α log πθ



ãθ(s, ξ)|s�

. (2.27)

In eq. (2.27), states are sampled from some collection of previous transitions (e.g. replay
buffers) and ξ is sampled from a standard normal distribution. The objective is, similar
to DDPG, to choose actions that maximize the Q-values. Note that we take the minimum
of the evaluations of the two learned Q-functions. This is often referred to as Clipped
Double-Q Learning. [FvHM18]. The next term is the entropy regularization term. Note
that instead of adding the entropy, we now subtract the log-likelihood of taking the
sampled action in state s. This is simply a reformulation which makes use of the definition
of entropy: H(P ) = Ex∼P [− log P (x)].

Our decision to include SAC as a baseline was based on the insensitivity with respect to
hyperparameters. Moreover, SAC was successfully deployed and trained on real-world
robots [HZH+19].

2.3.4 Maximum a Posteriori Policy Optimization
Maximum a Posteriori Policy Optimization (MPO) is an off-policy RL algorithm that
puts the problem of finding optimal actions in the context of probabilistic inference and
was proposed in [AST+18]. The idea is to formulate the problem as an Expectation
Maximization (EM) problem, for which powerful approaches from probabilistic estimation
are known. Intuitively, instead of asking which actions should be taken in order to
maximize future rewards, this approach asks which actions were most likely taken,
assuming optimality in the future.
The corresponding likelihood function, depicted in eq. (2.28), models how likely it is to
act optimally when taking specific actions and is assumed to be proportional to the sum
of rewards. The parameter α is a temperature, scaling the individual contributions of
each reward.

p(O = 1|τ) ∝ exp
T�

t=0

R(st, at)
α

(2.28)

pπ(O = 1) = log
�

τ
p(τ |π) p(O = 1|τ) dτ (2.29)

By applying the rule of marginal probability, we can obtain the likelihood of optimality,
when following a policy π, shown in eq. (2.29). Since the integral is not tractable, it is
approximated by the evidence lower bound (ELBO). The resulting lower bound J , which
is to be maximized, is given by:

J(q, θ) = Eτ∼p(·|q)

� ∞�
t=0

γt
	
R(st, at) − αDKL(q(·|st) || πθ(·|st))

��
+ log p(θ) (2.30)
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In eq. (2.30), p(·|q) is an auxiliary distribution over trajectories and approximates the
true trajectory distribution induced by π (eq. (2.11)). The lower bound is the objective
that is optimized with the EM algorithm, proposed in [AST+18]. The E-step optimizes
J with respect to q, while the M-step updates the parameterized policy π by regression
on the trajectories generated in the E-step.

MPO is a stable and efficient off-policy algorithm that achieves state-of-the-art per-
formance. Moreover, it poses an interesting alternative to common RL approaches by
casting control as inference. This motivated the decision to include this algorithm as a
baseline.
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CHAPTER 3
Related Work

In recent years, deep RL gained a lot of attention in the field of intelligent robot systems
and has been applied in many subdomains, such as perception, navigation, and control.
In this chapter, we discuss important research progress that has been in the past. We
organize this chapter into three sections. First, we discuss the current state of the art in
general end-to-end robot control using model-free and model-based RL algorithms. Then
we focus this discussion on the state of the art in autonomous racing and traditional
approaches to this domain. Finally, we investigate recent advances in RL for autonomous
racing.

3.1 Reinforcement Learning for Robot Control
Traditionally, many approaches in robot control have their roots in classical control theory
and optimal control. However, robot control has been an active area of research for RL
ever since. Many approaches from RL are closely connected to well-known planning
algorithms and learning-based control. These types of algorithms are mostly known as
model-based RL approaches, but also model-free methods found their way into robot
control and deliver state-of-the-art performance. In the following, we outline important
literature in the field of RL in the context of robotics and its connections to learning-based
control.

Model-free RL for Robotics. Continuous action and state spaces are natural for
robot systems. Early approaches of RL for robot control had to apply techniques to
reduce the search space for such agents [KBP13]. Common techniques were action- or
state-space discretization [MM02, vH12] or function approximation for dynamic program-
ming [Gor95, TR96]. Before the advent of deep learning, function approximation mostly
relied on hand-crafted features, not reaching the representational capacity of current
deep learning models.
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Modern deep RL algorithms usually employ deep neural networks as function approxima-
tors. Starting from standard policy gradient algorithms, numerous improved model-free
actor-critic algorithms emerged and consequently pushed the state-of-art, especially in
simulated robot environments, such as the DeepMind Control Suite [TDM+18]. Algo-
rithms, such as TRPO [SLA+15], PPO [SWD+17] and ACKTR [WML+17] improved
the learning stability for robot control and, under certain assumptions, even promise
monotonic improvement guarantees. Off-policy algorithms, such as DDPG [LHP+15]
and its successors [BMHB+18, FvHM18], improved the sample efficiency of RL, which is
a crucial aspect for real-world robot systems. However, often model-free algorithms are
extremely sensitive to hyperparameters, especially on real-world hardware [MKV+18].
Algorithms such as MPO [AST+18] and SAC [HZAL18] provide relative robustness to
hyperparameter configurations.

Model-based RL for Robotics. In contrast to model-free approaches, model-based
RL algorithms can leverage a given or learned dynamics model to improve performance.
Model-based RL is an umbrella term for approaches that have access to a model of the
robot or its environment. Within this family of algorithms, different approaches exist,
such as Dyna-style approaches [Sut91], which learn a model to generate synthetic data to
train policies, or approaches that use a learned model to plan into the future [HWMZ20].
Early model-based RL algorithms use Gaussian Processes to obtain low dimensional
dynamics models from data [RK03, KKFH07]. PILCO is a prominent representative of
models that use Gaussian processes to generate training data for policy search [DR11].
Other approaches use locally fitted models, which are simpler but do not provide global
information [TL05, LA14]. The approaches mentioned so far use state-space repre-
sentations that are low-dimensional, such as joint positions and velocities. However,
some approaches are able to learn dynamics models for planning or policy search from
high-dimensional observations, such as images [WSBR15, LFDA16]. A recent branch
of work on model-based RL addresses world-model algorithms [HS18]. Such models
learn an abstract state-space representation instead of a known state-space formulation
from observations only. These latent states are then used to learn a latent dynamics
model. This abstract model of the world can be used to do planning [HLF+19] or train
a model-free agent in latent space [ZVS+19, HLBN20]. Furthermore, having a latent
world model allows algorithms to backpropagate through the model, which allows more
informative and less noisy parameter updates [WBC+19, HLBN20].

Deploying RL to Real Robots. Many algorithms demonstrated superior perfor-
mance in simulation. However, when deploying such agents to real-world robots, many
challenges remain. Off-policy algorithms, such as SAC, improved the sample efficiency to
a degree where learning directly on the robot can be feasible [HPZ+18, HZH+19]. Also,
model-based algorithms can leverage data generated from real hardware [DR11, LFDA16].
However, when it is too expensive to obtain training data from hardware, simulated robot
models are required to generate sufficient amounts of data. Deploying agents that are
trained in simulation to real-world robots poses several challenges, due to the divergence of
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simulation and reality [AOS+16, ZQW20]. Domain randomization is a simple approach to
overcome the gap between simulated and real robots by randomizing properties of either
the robot dynamics [RGLR16, PAZA18] or the simulated environment [TFR+17, SL17]
during training.

3.2 Autonomous Racing
Compared to urban driving, racing is a much more constrained and predictable task for
autonomous agents. However, this reduced complexity allows concentrating research on
autonomously driving cars in extreme conditions. Autonomous racing challenges, such as
the Formula Student Driverless1 or the F1TENTH Competitions2 gave rise to research
on autonomously racing vehicles.

State of the Art. Currently, racing competitions are dominated by teams that have
highly complex and carefully designed computation pipelines. Autonomous racing systems,
such as the AMZ Driverless, typically have dedicated modules for perception, planning,
motion control and state estimation [KVR+20, DDVG19, VBL+20]. Depending on the
competition, vehicles have access to a variety of sensors and use state estimation and
mapping techniques to obtain a map, if not given [VHR+18]. Racing line planning and
optimization is an important step towards fast lap times. Often, racing line planning is
framed as an optimization problem, with constraints based on vehicle dynamics [LB14]
and road conditions [CWHL19]. To follow a precomputed racing trajectory, feedback
control is often the tool at hand. For instance, Model Predictive Control (MPC) combined
with sophisticated motion models allow accurate predictions and efficient online optimiza-
tion [VBL+20] and can be combined with online learning methods [KHLZ19, RB20].

RL for Autonomous Racing. While there exists a large body of research in the field
of autonomous racing, there does not exist much work applying RL to learn racing tasks
end-to-end. In [FSK+21], the authors apply SAC to learn racing behavior in a video
game. Similar to our approach, they use LiDAR measurements as inputs to the algorithm.
Additionally, they also provide state variables, such as vehicle acceleration and velocity.
Furthermore, they also propose a progress-based reward but penalize crashes with high
kinetic energy. An approach that is capable of learning to race from images only is
proposed in [JdT+18]. The authors applied Asynchronous Advantage Actor-Critic (A3C)
combined with Convolutional Neural Networks (CNNs) to extract features from images.
The proposed reward function rewards agents that stay close to the centerline of the
track.

1https://www.formulastudent.de/teams/fsd/
2https://f1tenth.org/race.html
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CHAPTER 4
Approach

Based on a novel world-model algorithm, Dreamer [HLBN20], we designed an algorithm
that is capable of learning to race on difficult tracks. The perception and control pipeline
of our approach does not rely on any engineered modules and is learned purely from raw
data. In the following, we will briefly introduce the original algorithm and subsequently
describe the contributions to adapt it to the domain of racing. Lastly, the reward
formulation is presented.

4.1 Introduction

As a world-model algorithm, Dreamer learns a compact description of the MDP in which
the agent is embedded. This description is used to generate imaginary roll-outs to train
a policy without having to collect tremendous amounts of observations, compared to
model-free algorithms. At a high level, Dreamer alternates between phases of training its
dynamics model, optimizing a policy acting in the abstract state-space and collecting
data from its environment.

4.1.1 Dynamics Model

The world model in Dreamer is represented by an Recurrent State Space Model (RSSM),
originally introduced in [HLF+19]. The RSSM consists of two components: A represen-
tation model pθ and a generative model qθ. States in RSSMs have a stochastic part,
sampled from pθ and qθ respectively, and a deterministic part, which is computed by
an Long Short-Term Memory (LSTM) network [HS97]. Formally, the RSSM consists of
probabilistic models to encode observations into latent states and to predict the latent
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transition dynamics:

Representation model: pθ(st|st−1, at−1, ot) (4.1)
Observation model: qθ(ot|st) (4.2)

Reward model: qθ(rt|st) (4.3)
Transition model: qθ(st|st−1, at−1) (4.4)

The representation model encodes observations and previous states and actions into
successor states, as shown in eq. (4.1). To predict latent states and rewards, Dreamer
learns a generative model qθ from data. This generative model predicts states and rewards
just from latent states, depicted in eqs. (4.3) and (4.4). The observation model defined
in eq. (4.2) is just used to provide a learning signal and not used during inference.

Jrec(B) = 1
|B|

|B|�
i=0

H�
t=0

JO
i,t + JR

i,t + JD
i,t (4.5)

JO
i,t = log qθ(oi,t|si,t) (4.6)

JR
i,t = log qθ(ri,t|si,t) (4.7)

JD
i,t = −β DKL(pθ(si,t|si,t−1, ai,t−1, oi,t) || qθ(si,t|si,t−1, ai,t−1)) (4.8)

The architecture of the RSSM is based on a Variational Autoencoder [KW14]. The
information bottleneck, through which observations are passed, represents the latent
state-space. Thus, the RSSM is trained by maximizing the ELBO. The ELBO consists
of the terms denoted in eqs. (4.6), (4.7) and (4.8). The observation and reward log-
likelihoods are represented by JO

i,t and JR
i,t, respectively. The joint formulation of eqs. (4.6)

and (4.7) provides a Maximum Likelihood estimate while eq. (4.8) serves as a regularizer
and aims to minimize the information gain of using observations rather than just the
latent transition model.

4.1.2 Latent Policy Optimization

Leveraging the compact state representation, Dreamer trains a policy in its latent state-
space. The algorithm makes use of the action model qφ, which produces an action
distribution for a given state and a value function qψ:

Action model: qφ(at|st) (4.9)
Value model: qψ(vt|st) (4.10)

To predict the value of a state, dreamer uses an exponentially weighted average of different
bootstrap estimates, denoted as V τ

λ . Note that we explicitly express the dependence of
V τ

λ on τ , since the value estimate needs access to the whole trajectory. In [HLBN20], this
notation is omitted for brevity. For more details, please refer to [HLBN20] and [SB18].
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The training objectives for the action and value model are formulated as:

J(φ) = Eτ∼qψ ,qφ

�
s∈τ

V τ
λ (s) (4.11)

J(ψ) = Eτ∼qψ ,qφ

�
s∈τ

1
2 	vψ(s) − V τ

λ (s)	2 (4.12)

When Equation (4.11) is maximized with respect to parameters φ, Dreamer increases the
likelihood of trajectories τ that result in high value estimates. Note that this formulation
is different from the basic policy gradient formulation, since Dreamer directly optimizes
the values with respect to the policy parameters. In model-free algorithms, this is not
possible due to the absence of a differentiable transition model. This aspect of Dreamer
is also one of its main strengths. The gradient flow through the dynamics model allows
more informed parameter updates, because the effect of actions on latent trajectories
is directly observable and thus less noisy than typical policy gradient or actor-critic
methods. The value model is fitted to the exponentially weighted average of values and
returns, as shown in eq. (4.12).

4.1.3 Algorithm

Algorithm 4.1 depicts the training process of Dreamer. In lines 1 and 2, the parameters
of the neural networks are initialized and dataset D is prefilled with random trajectories.
Then the training loop runs alternating update- and data-collection steps. In lines 5
and 6, the algorithm samples a batch B of sequences of fixed length and optimizes the
reconstruction loss defined in eq. (4.5). Starting from the states computed from B,
Dreamer does a policy rollout over a fixed horizon in imagination using its world model in
line 7. The resulting trajectories τ are then used to improve the action and value model,
as depicted in lines 8 and 9. In the data-collection phase (line 11), Dreamer interacts
with its environment by running an exploration policy. This policy adds exploration
noise to the actions sampled from the action model. The resulting episodes are then
added to the dataset.

4.2 Racing Dreamer

In order to apply Dreamer to racing tasks, we changed parts of its architecture and
optimization procedure. First, since the observations are LiDAR scans, we replaced the
CNN in the original Dreamer implementation with an Multi-Layer Perceptron (MLP). We
did some experiments with 1D-CNNs, but results showed that MLPs are more suitable
for this task. Most importantly, we introduced two reconstruction loss formulations to
train the dynamics model. Additionally, we formulated several reward functions, tailored
to the racing task.
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Algorithm 4.1: Original Dreamer Algorithm [HLBN20]
1 Initialize parameters: θ (dynamics), φ (action model), ψ (value model)
2 Initialize dataset with S random episodes.
3 while not converged do
4 for C update steps do
5 Sample random sequences B from dataset.
6 Fit dynamics model: θ ← θ + α∇θJ(B) (see eq. (4.5)).
7 Compute and collect imaginary trajectories using the dynamics model and

the latent policy.
8 Update action model: φ ← φ + α∇φJ(φ) (see eq. (4.11)).
9 Update value model: ψ ← ψ − α∇ψJ(ψ) (see eq. (4.12)).

10 end
11 for T episodes do
12 Run exploration policy πφ in environment, using action model.
13 Add episodes to dataset.
14 end
15 end

4.2.1 Reconstruction Losses
Instead of image reconstruction, we experimented with two different reconstruction
losses. First, we adopted the observation reconstruction to LiDAR scans, which we call
Distance Reconstruction. Second, we reconstruct local patches of the occupancy grid map
from the latent state representation (Occupancy Reconstruction). Visualizations of the
resulting reconstructions are depicted in fig. 4.1. In the following, we denote Dreamer
using distance reconstruction as Dreamer-Distance and Dreamer using occupancy map
reconstruction as Dreamer-Occupancy.

Distance Reconstruction. Analogous to the original implementation, we obtain a
reconstruction loss by reconstructing the distance measurements obtained by LiDAR scans.
The reconstruction is sampled from a normal distribution, whose parameters are obtained
by an MLP, that maps latent states to the mean and variance of the reconstructed
measurement. The distribution is an independent normal distribution and has the same
number of dimensions as the LiDAR scan, hence has a scalar normal-distribution for
each ray.

Occupancy Reconstruction. While plain observation reconstruction is a very generic
approach and works well on unseen environments, we also believe that LiDAR scans do
not contain rich amounts of information about the vehicle’s environment. Therefore, we
developed another reconstruction loss, based on reconstructing local maps in the vicinity
of the agent. Dreamer still processes LiDAR observations, but instead of reconstructing
the scan, the observation model outputs a bitmap representing an occupancy grid
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Figure 4.1: Reconstructions of LiDAR scans and occupancy maps over 50 time steps.
Observations are in agent coordinates. Row 1: bird-view of the race car in simulation,
Row 2: LiDAR scan in race car coordinates, Row 3: reconstructed LiDAR scan, Row
4: reconstructed local occupancy map

map centered around the agent. The latent state is processed by multiple layers of
deconvolutional layers which output the mean of a Bernoulli distribution for each pixel
in the grid map. The bitmap is then sampled from this distribution and the loss is
computed by comparing the output with a patch of the true map.
Figure 4.1 shows an example of the map reconstruction output. The bottom row depicts
the reconstructed grid map centered around the agent. Note that the map is rotated by
90 degrees, due to coordinate system differences. One can see, that the agent learned to
accurately reconstruct the map of its environment. Thus, we expect that this approach
results in better performance because the reconstruction loss might be more informative
due to the association of LiDAR scans and the map. Indeed, this approach yields better
results, but also has some drawbacks, such as overfitting to the training environment.
For more detailed results we refer to chapter 4.

4.2.2 Reward Formulation

While standard benchmarks, such as MuJoCo 1, have well-designed reward functions,
we had to create a suitable training signal for the racing task. Our goal was to find a
well-defined reward function that steers the agent to learn to race while encoding as little
bias as possible into it. The reward functions proposed in this section have access to
the true state of the simulation. This includes ground truth pose, velocity, collisions,

1https://gym.openai.com/envs/#mujoco
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and other important environmental information. We experimented with a number of
different approaches before agreeing on a progress-based formulation. In the following,
we will present discarded approaches and explain the progress-based reward in detail.
Please note that, when we refer to a state st in this subsection, we mean the state of the
simulation and not the latent state representation of Dreamer.

Discarded Reward Functions. We designed multiple reward functions before we
arrived at the progress-based formulation. Our first approach was to just penalize the
time it takes the agent to complete a lap:

R(st, at) =
�

−t, if t is terminal
0, otherwise

(4.13)

However, using this reward definition, the agent was not able to learn to complete a
lap. We believe, that this reward formulation is too sparse in our domain, as the agent
needs to complete a whole lap before receiving any feedback. We tried variations of this
approach by discretizing the track into sections and minimizing the time it took the
agent to complete sections of the track. However, this also did not lead to successful
learning. We suspect that the number of time steps between rewards is still too large,
since the simulation step frequency of 100 Hz results in hundreds of time steps between
two sections. An alternative formulation of the reward function defined in eq. (4.13) is to
penalize the agent for each time step by a small constant c, until it reaches the finish line:

R(st, at) = −c. (4.14)

However, this did not resolve the problem of reward sparsity and did not yield good
results. Another reward function we designed, aimed to maximize velocity and penalizing
crashes:

R(st, at) =
�

−1, if agent is in collision
st,v − |at,φ − at−1,φ|, otherwise

(4.15)

In addition to maximizing the velocity, eq. (4.15) also minimizes the magnitude of the
change of the steering control φ between two consecutive time steps.

Progress-based Rewards. Based on the grid maps of the tracks, we computed
additional semantic maps. One such map, which we name progress map, shows the
normalized distance from the starting line for each position on the track. Thus, we
have an accurate estimate of the progress an agent made in one lap. Figure 4.2 shows
a visualization of the progress maps used during training. The progress is gradually
increasing, visualized as a color gradient from lighter to darker grayscales.
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4.2. Racing Dreamer

Figure 4.2: Progress maps of Austria, Columbia, Treitlstrasse and Barcelona.

Based on the progress maps, we designed a reward function that measures the difference
of the progress values at distinct time steps. We refer to this reward as progress-based
reward. The basic idea is to maximize the covered progress within a small amount of
time:

R(st, at) =
�

−C, if in collision
|st,p − st−c,p|, otherwise

(4.16)

In eq. (4.16), st,p denotes the progress value at time t and c is a hyperparameter, scaling
the time window to compute the difference. In our experiments, we set c = 1. If the agent
is involved in a collision with the wall or any other agent, the agent receives a penalty
C and the episode is terminated. The idea behind this formulation is that, if an agent
manages to maximize the progress within a given time window on small, localized parts
of a track, it will lead to a globally optimal behavior. Furthermore, this reward definition
provides a dense learning signal, as it gives feedback at any time during training.
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CHAPTER 5
Methodology

This chapter introduces the setup and training modalities we defined to train and
evaluate agents. First, we present the simulation environment we developed to train
agents. Subsequently, we introduce the robot platform which serves as a real-world
scenario to test the trained models. Then we focus on the racing tracks we designed to
challenge autonomous racing agents. Lastly, we lay out the training regime for the racing
agents and the algorithm implementations.

5.1 Simulation Environment
We make use of a simulated environment to train and test agents. In the following, we
motivate and explain the simulation platform. Furthermore, we discuss the advantages and
challenges that come hand in hand when training RL agents in simulated environments.

5.1.1 Motivation
In contrast to supervised learning, the distribution from which training data for RL
algorithms is drawn is usually not stationary over time. Therefore, training RL agents
often requires immense amounts of training data [BRW+19]. Generating this amount
of experience on the real robot is often not feasible. For instance, training autonomous
race cars would require manual resets of the cars which results in an extreme increase in
training time. Simulations can drastically decrease the time required to generate samples
because they allow to run models faster than real-time. Furthermore, it is possible to
scale simulations horizontally by distributing the workload over many servers. For these
reasons, RL agents are usually trained in simulated environments.
Besides throughput considerations, safety is another aspect that has to be considered
during training. In contrast to established solutions which often have access to predictive
models and prior knowledge, such as safety constraints, RL algorithms learn by exploring
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5. Methodology

the state-space. In safety-critical domains, such as autonomous driving, or in domains
where uninformed controls lead to high costs or even damage, it is not possible to learn a
policy directly on the hardware. Instead, policies are learned in more or less accurate
simulations, where failures do not have severe consequences. One illustrative example
is an autonomous driving agent that aims to learn an optimal policy that allows safe
navigation in urban traffic. To learn that crashing into other traffic participants is highly
discouraged, it would have to experience such situations at least once, but in most cases,
many times.

5.1.2 Challenges
Training RL agents in simulation does not come without challenges. The distribution
from which simulated sensor data is generated might be different to the distribution of the
real-world sensor data. This phenomenon is also known as distribution shift. Typically,
RL algorithms tend to be sensitive to this type of divergence between simulation and
reality [AOS+16]. There are approaches, such as domain randomization, to make RL
algorithms less sensitive to distribution shift [RGLR16, TFR+17, PAZA18]. However, it
remains a key challenge to be solved. Another issue that occurs when training agents in
simulated environments is reward hacking [AOS+16]. This type of problem occurs because
RL agents tend to exploit inaccuracies in simulators or reward function definitions, if they
can maximize the reward signal by doing so. Often, the policy obtained by reward hacking
exhibits undesirable properties and does not reflect the true intent of the objective.

5.1.3 Racecar Gym
We developed a custom race car simulation platform to train our agents. Figure 5.1 shows
an example of a rendered scene with multiple agents. The simulation environment is
based on OpenAI Gym [BCP+16], a library that defines a simple interface specification to
model MDP’s, and PyBullet [CB19], a python interface to the Bullet simulation engine.
In the following, we will describe the design goals we had in mind when developing the
simulation envrionment and which features are available. The software is open-source
and can be found on GitHub1.

Multi-Agent Racing Scenarios. Although we focus on single-agent racing tasks in
this work, we designed the simulation environment to support multi-agent scenarios
to enable further research work in this direction. Thus, agents are identified by IDs
and can be configured to either solve cooperative tasks or compete against each other.
Furthermore, it is possible to create scenarios in which teams of agents solve contrasting
tasks.

Configurability. An important aspect of our simulation environment is its ease of
configuration. It is possible to customize various aspects of scenarios, such as the track,

1https://github.com/axelbr/racecar_gym.git
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5.1. Simulation Environment

Figure 5.1: Rendered scene of a scenario simulated in Racecar Gym.

race car model, available sensors, and tasks assigned to the agents. Listing 1 shows an
example of a configuration file for a multi-agent scenario. One can choose from multiple
tracks of varying difficulty (see section 5.3). Agents are characterized by the vehicle
they control and the task that is assigned to them. In multi-agent scenarios, agents
are identified by an ID. Vehicles can be configured by changing their underlying robot
model and by attaching various sensors to them. Examples can be found in listing 1.
Furthermore, agents are tasked with configurable, parametrizable objectives.

Extendability. We aimed to implement an environment, that is easy to extend in
various ways. In order to easily switch reward functions, it is possible to create and
register custom tasks and configure them in scenario specifications. Furthermore, one
can design new tracks and vehicle models and plug them into a scenario specification.
The models of the tracks can be created with any 3D modeling software. Furthermore,
we also provide a prototype to automatically generate track models just from occupancy
grid maps that are provided in the map-server format2.

Realistic Physics. To accurately simulate the dynamics of the robot platform, we
chose the physics simulation software Bullet [CB19]. The car model is a rigid body
system based on the URDF model proposed in [BB20]. URDF is a declarative modeling
language for robot systems and is based on XML. The vehicle model we use allows the
configuration of geometric properties, transmission reduction proportions, and friction
coefficients. The model is actuated by applying force to the steering and acceleration

2http://wiki.ros.org/map_server
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1 world:
2 name: austria
3 agents:
4 - id: A
5 vehicle:
6 name: racecar
7 sensors: [lidar, pose, velocity, acceleration]
8 color: blue
9 task:

10 task_name: maximize_progress
11 params: {laps: 1, time_limit: 120.0}
12 - id: B
13 vehicle:
14 name: racecar
15 sensors: [rgb_camera, pose]
16 color: red
17 task:
18 task_name: maximize_progress
19 params: {laps: 1, time_limit: 120.0}

Listing 1: Example scenario specification.

joints. Bullet can simulate a broad set of sensory inputs, such as LiDAR sensors and
RGB cameras.

5.2 Robot Platform
In our experiments, we examine the performance of agents on small-scaled race cars after
they have been trained in simulation. This section outlines the hardware setup of the
robot and gives an overview of the software architecture we use to conduct experiments
on the hardware. The evaluation platform is based on the F1TENTH race car series
[OSA+19].

5.2.1 Hardware Setup
The autonomous race car is based on an off-the-shelf 1/10 scaled model race car chassis,
with a Traxxas Velineon 3351R brushless DC electric motor. The motor is controlled
by an electronic speed controller (ESC). We use a VESC 6 MkIV ESC for this purpose.
For onboard computational tasks, such as inference, we use an NVIDIA Jetson TX2
embedded computing board. It has 6 ARM-CPU cores, an integrated GPU with 256
cores for fast processing tasks and 8GB of memory. Furthermore, we use an Orbitty
Carrier Board to enhance the IO capabilities of the NVIDIA Jetson TX2. Sensory
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inputs are obtained by a laser range sensor and an intertia measurement unit (IMU).
The range sensor is a Hokuyo UST-10LX 2D LiDAR sensor. It generates 1081 range
measurements over an angle of 270° per scan, providing an angular resolution of 0.25°.
Range measurements have a maximum detection range of 30 meters with a high accuracy
range of 10 meters [Hok20]. Figure 5.2b shows an illustration of a LiDAR scan on a race
track. The IMU is a 9DoF Razor IMU M0. It provides a 3-axis accelerometer, gyroscope
and compass [TDK17]. Figure 5.2a shows an image of the car with annoted components.

(a) Hardware components of the race car. (b) Illustrated LiDAR scan.

Figure 5.2: Race car platform used for evaluation.

5.2.2 Software architecture
The software system that controls the race car is based on Robot Operating System (ROS),
a message-oriented middleware designed for robotics applications [QCG+09]. ROS-based
applications run in a distributed fashion, organized into nodes that are communicating
via messaging APIs. The architecture of our system is shown in fig. 5.3. ROS-nodes are
marked in green, hardware components in yellow and the trained RL agent is a python
program, marked in purple.
The embedded computing board, an NVIDIA Jetson TX2, runs the core infrastructure
which is necessary to communicate with sensors and the motor controllers. It is connected
to the LiDAR sensor via an ethernet interface and to the VESC motor controller via a
USB interface. Additionally, we attached a wireless gamepad for manual control and
emergency stops. To receive sensor data and send commands to the motor controller,
we run two ROS nodes that connect the hardware to our system. The URG node reads
LiDAR scans from the ethernet interface and wraps the data in the appropriate message
format. The VESC node receives motor commands from the agent and applies a low-pass
filter to protect the hardware before sending it to the Electronic Speed Control (ESC).
For the deployment of trained agents, we use Docker containers. These containers
communicate with the native ROS system via TCP/UDP and are independent of the
ROS version. For instance, to deploy trained RL agents, we use a newer version of ROS
in the docker container than it is available on the base system.
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Gamepad
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Figure 5.3: Software architecture diagram of the race car.

5.3 Race Tracks

For training and evaluating the racing performance of the agents, we use a selection of
race tracks of varying difficulty. Figure 5.4 shows the layout of the tracks. All of the
tracks are available as simulated environment models and can be downloaded from the
repository. The simulated tracks are 3D models which can be loaded into the physics
engine. We created the tracks by extruding vector graphics of the track layouts using
Blender3. However, any other CAD software could be used potentially. For Columbia,
Austria, and Barcelona we use existing track layouts that are available online4. For
Treitlstrasse, which is our real-world evaluation track, we computed an occupancy grid
map from data that we collected by manually driving the car on the track. From this
data, we could compute a map with existing Self-Localization and Mapping (SLAM)
packages5 available for mobile robots using ROS.

3https://www.blender.org/
4https://github.com/CPS-TUWien/racing_dreamer/tree/main/docs/maps
5https://google-cartographer.readthedocs.io/en/latest/
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Figure 5.4: Race tracks with marked start line and numbered turns.

Characteristics

To compare the results of racing agents across different tracks, we computed characteristics
for each track. Table 5.1 shows the mean track width and its standard deviation, track
length, and minimal curve radius for each map (as proposed in [BCMS08] and [LL01]).
The mean and standard deviation of the width is computed by extracting the center-line
for a map and measuring the width at each position along this line. Table 5.1 shows,
that the tracks Austria, Columbia and Barcelona all have a comparatively uniform width
in contrast to Treitlstrasse. The widest track is Columbia, with a mean track width
of 3.44 meters, the longest track is by far Barcelona, with a length of more than 200
meters. Additionally, we computed the curve radius by finding the largest circle that fits
the outside of a curve, for each curve. This metric gives an estimate of the difficulty of
curves, assuming tighter curves are harder to navigate.
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Table 5.1: Track characteristics.

Track Width (mean/std.) Length Min. Radius
Austria 1.83/0.04 m 79.45 m 2.78 m
Columbia 3.44/0.09 m 61.20 m 7.68 m
Treitlstrasse 1.36/0.25 m 51.65 m 3.55 m
Barcelona 1.82/0.10 m 201.00 m 2.98 m

Track Difficulty

Given the metrics in table 5.1, we claim that Columbia is the easiest track for racing,
because of its large, uniform width and wide curves. This claim is also supported by the
results we obtain in chapter 6. Based on this observation, we tested all our approaches
first on Columbia before moving on to harder tracks, such as Austria. However, it is
not as clear which track is the hardest to accomplish. The varying track width, narrow
passages, and tight curves of Treitlstrasse are good indicators of its difficulty. However,
we observed that all agents had also big troubles on Austria, because of its tight turns,
especially the second turn. Therefore, we can name the easiest track, but we can not
nominate the most difficult track without doubt. These considerations are important to
interpret and relate the racing results across different tracks.

5.4 Implementation Details
In this section, we introduce the details of the training regime and discuss the implementa-
tion and configuration details we used to conduct experiments. Furthermore, we describe
the hyperparameter optimization procedure which we conducted and subsequently the
results. We open-sourced all implementations and configuration files on GitHub. The
repository is located at https://github.com/CPS-TUWien/racing_dreamer.

5.4.1 Policy Optimization Procedure
Agents are trained in simulation on different tracks. Observations and actions are
normalized to the intervals [0, 1] and [−1, 1], respectively. The model-free baseline
algorithms are trained for 8 million environment steps in total. Dreamer agents are
trained until they collected 2 million environment steps. The training loop alternates
between training phases and evaluation runs in fixed intervals.

Training. We set the time horizon for a training episode to 20 seconds. Given a
simulation time step of 0.01 seconds, one episode has a length of 2000 time steps. At
the beginning of each episode, we place the agent on a random pose on the track,
instead of starting from a fixed position to prevent overfitting to certain regions of the
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tracks. The pose consists of a uniformly sampled position from the map and a random
heading direction. The heading is sampled from a distribution that is biased towards
the intended racing direction. Figure 5.5 shows a visualization of 50 sampled starting
poses on Austria. The objective function that is optimized is the progress-based reward
proposed in chapter 4.
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Figure 5.5: Randomly sampled starting poses.

Testing. We monitor the racing performance of agents during training at regular
intervals. In contrast to training runs, we place the agents on fixed starting positions
for each track so that we can compare the performance between multiple test runs. In
order to compare the performance of agents that are trained with different objectives or
parameters of the same objective (which would result in different amounts of rewards)
we introduce a metric called Maximum Absolute Progress (MAP). MAP is defined as the
maximum progress achieved on a map within a given time window. For our experiments,
we choose a time window of 40 seconds and average the MAP over 5 consecutive trials.
Furthermore, this metric allows us to compare trained agents with traditional approaches
such as Follow-the-Gap (FTG; [SG12]), which does not optimize a reward function.

5.4.2 Model Architectures and Algorithm Implementations
In the following, we describe the model architectures and software implementations of
the algorithms and approaches explained in chapters 2 and 4. We describe models that
are realized as neural networks by the type and dimension of their layers and present
their architecture in tables. For more details, such as reshaping and activation functions,
please refer to the code repository.
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Dreamer

The algorithmic contributions we described in chapter 4 (distance and map reconstruction)
are implemented on top of the existing implementation of Dreamer [Haf19]. This
implementation is written in the Python programming language and makes use of the
hardware-accelerated tensor math library Tensorflow6.
The transition and representation model are combined into the Recurrent State Space
Model (RSSM), which is used as a latent forward model but also incorporates observations
using the representation model, if available. As shown in table 5.2, the transition model
consists of a fully connected layer with 200 neurons, followed by a GRU-Cell (Gated
Recurrent Unit; [CvMG+14]) and another MLP. The outputs of the transition model are
the mean µ ∈ R30 and standard deviation σ ∈ R30 of a multivariate normal distribution
from which the stochastic part of the next state is sampled. The GRU-cell outputs the
deterministic part of the consecutive state. The total state dimension is thus 230. The
representation model combines observations with state predictions using an MLP with a
single layer.

Module Layers Dimensions

Transition Model
Dense Layer 200
GRU-Cell hidden state dim.: 200

MLP, 1 hidden Layer 200/60
Representation Model MLP, 1 hidden layer 200/60

Table 5.2: Architecture of the RSSM.

The architecture of the two reconstruction models presented in chapter 4 is shown in
table 5.3. The distance reconstruction model is implemented as a two-layered MLP. The
input is the latent state representation, a 230-dimensional vector, which is mapped to
vectors µ, σ ∈ R1080, the parameters of an independent multivariate normal distribution.
This distribution represents the observation model qθ(ot|st).
The reconstruction of the occupancy grid map is realized by transforming the latent state
to the parameter p ∈ R64×64 of a Bernoulli distribution, predicting the probability of
a color (white for free, black for occupied) for each pixel. The mapping from a state
s ∈ R230 to the output is achieved by transposed 2D convolutions, as shown in table 5.3.
To learn and predict rewards in latent space, we use two fully connected layers. The
output is the mean of a scalar normal distribution with fixed standard deviation σ = 1,
modeling the reward signal.

The action and the value model are implemented as fully connected MLPs, as shown in
table 5.4. The action model has 4 hidden layers, each of dimension 400. The outputs of the
action model are the parameters µ, σ ∈ R2 of a two-dimensional Gaussian, representing

6https://www.tensorflow.org
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Module Layers Dimensions
Distance Reconstruction MLP, 2 hidden layers 256/512/2160

Occupancy Reconstruction

Dense Layer 64
ConvTransposed2D channels: 32, width: 5, stride: 2
ConvTransposed2D channels: 16, width: 5, stride: 2
ConvTransposed2D channels: 8, width: 6, stride: 2
ConvTransposed2D channels: 1, width: 6, stride: 2

Reward Model MLP, 2 hidden layers 400/400/1

Table 5.3: Architecture of reconstruction models.

the action distribution. The value model is a fully-connected MLP with 3 hidden layers
that output the mean of a normal distribution with a fixed standard deviation σ = 1.

Module Layers Dimensions
Action Model MLP, 4 hidden layers 4×400/4
Value Model MLP, 3 hidden layers 3×400/1

Table 5.4: Architecture of the action and value module.

Baseline Algorithms

To compare the performance of Dreamer to other RL algorithms, we use open-source
implementations of the model-free algorithms presented in chapter 2. For the MPO and
D4PG agent, we used the implementations of the ACME framework [HSA+20], for SAC
and PPO we chose the Stable Baselines 3 library [HRE+18, RHE+19].
We kept the architectures and layer dimensions for policies and value functions close to
the action and value model of Dreamer, as shown in table 5.4. The number of layers and
the dimension of the policy networks for MPO, D4PG, PPO, and SAC are depicted in
table 5.5. All policies consist of 4 hidden layers with 400 neurons each. The output is the
action vector of dimension 2. Note that for MPO, SAC, and PPO, there is an additional
linear layer to compute the mean and standard deviation of the action distribution. The
value model is an MLP with 3 hidden layers of the same width.

Module Layers Dimensions
Policy Network MLP, 4 hidden layers 4×400/2
Critic Network MLP, 3 hidden layers 3×400/1

Table 5.5: Policy and critic network architectures for MPO, D4PG, PPO and SAC.
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Table 5.6 shows the architecture of the LSTM-based PPO agent. The policy and the
value network share a common recurrent observation network. The observation network
consists of an MLP with a single hidden layer and an LSTM network with 256 cells.
Thus, the policy and the critic network are reduced by one layer, to accommodate for
the additional observation network.

Module Layers Dimensions

Shared Observation Network MLP, 1 hidden layer 200/200
LSTM, 256 cells hidden state dim.: 200

Policy Network MLP, 3 hidden layers 3×400/2
Critic Network MLP, 2 hidden layers 2×400/1

Table 5.6: PPO-LSTM Architecture

5.4.3 Hyperparameter Tuning
We conducted a hyperparameter study to find better hyperparameters than the default
parameters provided by the frameworks. As an optimization library, we used the Optuna
hyperparameter optimization framework [ASY+19]. We defined the objective function
of the search procedure to be the averaged MAP over 5 consecutive evaluation runs
for 4000 time steps, reached after training for 1 × 106 time steps on Austria. For each
agent, we evaluated 100 hyperparameter samples. The sampling process is governed by
the Tree-Structured Parzen Estimator [BBBK11, BYC13] combined with Hyperband
pruning [LJD+18]. The pruning algorithm allowed to prune unpromising hyperparameters
early during training, which resulted in a significant reduction of training time.
The results showed that some configurations were able to match the results we obtained
using the default parameters but did not exceed their performance. This led us to the
conclusion, that the default parameter settings were already well suited for our task. We
outline the selection of parameters that were tuned and the exact search spaces as well
as the final values for the parameters in the Appendix.
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CHAPTER 6
Results

In this chapter, we present the experiments we conducted and the results which we
could obtain. If not stated otherwise, all experiments were conducted using the same
training curriculum that we introduced in chapter 5. In our experiments, we compared
the performance of Dreamer to state-of-the-art model-free algorithms, introduced in
chapter 2. Thus, the baseline algorithms we choose to test against are D4PG, MPO,
PPO (with and without LSTM) and SAC. Additionally, we also compared the racing
performance to an agent using Follow the Gap (FTG), which is tuned per track.

We conducted three different experiments to assess the capabilities of Dreamer in the
context of racing:

1. Comparison of the training performance and sample efficiency.

2. Evaluation of the generalization ability across multiple tracks.

3. Evaluation of the performance on our real-world test track.

6.1 Learning Performance Evaluation
We compared the learning curves and sample efficiency for all agents across multiple
tracks. Figure 6.1 shows the learning curves for all agents on all tracks. We trained the
baseline algorithms for 8 million time steps, Dreamer for 2 million time steps. The top
row in fig. 6.1 shows the evolution of the average MAP metric over 5 runs during training
for all model-free agents. To compare it with Dreamer, we show the best MAP reported
during the training of Dreamer, visualized as a blue dashed horizontal bar. In the bottom
row, we show the performance of Dreamer using the two reconstruction models proposed
in chapter 4. The horizontal bars indicate the best MAP reported for every model-free
algorithm.
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Figure 6.1: Learning curves for all agents averaged over 5 runs. Shadowed regions are
standard deviations. Top: model-free learning curves over 8 × 106 steps, dashed line:
best reported MAP of Dreamer. Bottom: Dreamer learning curves over 2 × 106 steps,
dashed lines: best reported MAP of all model-free agents.

6.1.1 Performance Comparison

On Columbia, all algorithms were able to achieve a MAP of approximately 2 or more,
which corresponds to driving two laps within 40 seconds. This performance is on par
with agents trained with Dreamer. The plots show that the performance of agents
using PPO and the LSTM version of PPO tend to collapse after achieving good results
early in the training. From our results, we can observe that MPO achieves the most
stable learning performance, while also maintaining high performance values. D4PG
also achieved good results, exhibiting a high but stable variance in performance during
training. The performance of agents trained with Dreamer is approximately the same
and also did not collapse throughout the training process.
On more difficult tracks, such as Austria and Treitlstrasse, model-free algorithms had
difficulties completing a single lap. Figure 6.1 shows, that no agent, that was trained
with any of the baseline algorithms, achieved a MAP of 1 or more. The best performing
algorithms, MPO and D4PG, achieved MAP values around 0.4 and 0.8 on Austria and
Treitlstrasse, respectively. The plots indicate that on these two tracks, model-free agents
get stuck in distinct parts of the tracks. After further investigation, we observed that
the performance limits correspond to difficult parts of the tracks. Figure 6.2 shows the
regions, where model-free agents were not able to drive without crashing or exceeding the
time limit. On Austria, no baseline agent mastered the second turn (shown in fig. 6.2a),
which is a less than 90 degree right turn. Even after biasing the sampling distribution of

44



6.1. Learning Performance Evaluation

the starting positions to regions just before this turn to increase the experience density
in this region, no model-free agent was able to reliably get around this corner.
According to the results, the most difficult parts of Treitlstrasse are the two turns circled
in red, shown in fig. 6.2b. We believe, the narrow passage and the sharp right turn in
combination contribute the most to the difficulty of this part of the track. Although
agents trained with Dreamer also have difficulties in these parts of the track, they can
often overcome the passages after enough training. On average, agents trained with
Dreamer on Treitlstrasse using distance reconstruction, perform as well as the best
reported model-free results. However, if Dreamer is trained with map reconstruction loss,
performance significantly increases and overcomes all other approaches. We believe, that
this performance gain is achieved by overfitting to the map. This observation is also
supported by the results reported in section 6.2.

(a) Austria (b) Treitlstrasse

Figure 6.2: Difficult regions of the tracks.

6.1.2 Sample Efficiency and Computational Costs

In general, model-based RL algorithms are often more sample efficient than model-free
RL algorithms. This general claim is supported by the results we obtained. Figure 6.3
compares the learning performance of Dreamer with the model-free baseline agents on
Austria. Dreamer surpasses the performance of all other agents at a fraction of training
samples, although all agents use roughly the same amount of parameters for their policy
networks. This shows, that utilizing a learned environment model to generate latent
experience does improve sample efficiency significantly. However, this advantage comes
at a cost. The computational cost of Dreamer exceeds the computation requirements of
the model-free agents by a significant portion. We observed that a full training run of
Dreamer, which is 2 million time steps, takes approximately 48 hours. Training the model-
free algorithms takes 8 to 12 hours for 8 million time steps, depending on the algorithm.
While implementation details might also contribute to an increase in training time, it is
not surprising given the architecture of Dreamer: before each environment interaction
phase, Dreamer does many parameter optimization steps using already collected data.
Thus, while being sample efficient, Dreamer needs much more CPU time compared to
other approaches.
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Figure 6.3: MAP for all agents on Austria during training, evaluated every 2 × 104

timesteps.

6.1.3 Reconstruction Loss Comparison

We trained two versions of Dreamer using different reconstruction losses, as described
in chapter 4. Figures 6.1 and 6.3 already showed that reconstructing a local grid map
from the latent state can improve the performance. As we discuss in section 6.2, we also
observed that using the map reconstruction loss might lead to overfitting to the training
track. Additionally, we also experimented with varying training horizons in imagination
and compared the performance of Dreamer using these two reconstruction losses.
Figure 6.5 shows the comparison of different training horizons for the grid map recon-
struction loss and the distance reconstruction loss on Austria. We trained Dreamer with
different imagination horizons and observed, that using the grid map reconstruction loss
scales better with increasing horizons than distance reconstruction. One explanation for
this seems to be the global knowledge about a map that is encoded into the dynamics
model. Predictions of a dynamics model, that is trained to reconstruct LiDAR scans,
are accurate for a short period into the future because the model does not know what
comes behind a corner, for example. This is visualized in fig. 6.4a, where the LiDAR
scan covers the area just before a corner. Because the observation might look the same
in many spots on the track, the model is not able to make accurate predictions about
states far in the future. Dynamics models trained on maps, however, might be able to
remember tracks better and are more accurate when predicting long horizons. In the
example scene shown in fig. 6.4a, a model having knowledge about the map can predict
around the corner, as shown in fig. 6.4b.
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(a) Top view on race car with visualized
LiDAR scan.

(b) Grid map reconstruction.

Figure 6.4: Map reconstruction.
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Figure 6.5: Peformance of Dreamer on Austria using a range of different training horizons.
The green line shows the average performance over 5 runs of Dreamer using grid map
reconstruction loss, the blue line the performance using LiDAR observation reconstruction
loss. The vertical bars show the variance in performance.

In our experiments, we focused on the sensitivity of Dreamer to variations of the pa-
rameters Imagination Horizon and Action Repeat. We carried out our experiments by
fixing one configuration and systematically evaluate variations of the other parame-
ters. Interestingly, the performance of Dreamer using distance reconstruction drops for
horizons greater than 2 and starts increasing again for horizons ranging from 20 to 50.
Unfortunately, we can not explain this initial drop in performance yet and refer to future
work where we want to better explore the training dynamics of Dreamer in the latent
state space.
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6.2 Generalization to Holdout Tracks
In this experiment, we aim to evaluate the ability of RL algorithms to generalize learned
driving skills. In order to investigate if agents overfit to training tracks, we let them drive
on tracks that are different from the track on which they were trained on. We compared
Dreamer with two different reconstruction models to MPO and FTG, a vehicle control
algorithm that is often used in racing competitions [SG12]. The choice of MPO was
motivated by the observation, that this algorithm was the most competitive model-free
algorithm compared to other baselines. Additionally, we included the results of FTG, as
agents trained with MPO often fail to complete a whole lap and FTG is a competitive
baseline for racing1.
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Figure 6.6: Top: Average MAP over 10 episodes for agents trained on Austria and
Treitlstrasse, respectively. Whiskers show the minimum and maximum values. Bottom:
Average lap time for agents that completed a full lap on a given track.

In fig. 6.6, we show the MAP reached within the evaluation time window as well as the
lap time if an algorithm was able to complete a full lap. For this experiment, we trained
Dreamer and MPO on Austria and Treitlstrasse, respectively, and subsequently evaluated
them on all tracks. The top row in fig. 6.6 shows the average MAP over 10 episodes
visualized as bar-charts with whiskers from minimum to maximum MAP. Similarly, the
bottom row shows the average lap time of the agents which were able to complete a lap,
with minimum and maximum values indicated by whiskers.

1Experiences and thoughts from the 3rd F1/10th competition
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6.3. Real-World Performance Evaluation

The results show, that MPO could not complete a full lap on Austria, Treitlstrasse, and
Barcelona, regardless of the training track. Therefore, there are no lap times reported
for these tracks for MPO. However, MPO showed competitive performance and lap
times on Columbia when being trained on Austria or Treitlstrasse. This is interesting
because it was not able to complete a full lap on these tracks. Confirming the results
of previous experiments, both versions of Dreamer were able to complete a full lap on
any track they were trained on. After training Dreamer-Distance on Austria, this agent
was able to complete at least one lap on all other tracks with lap-times comparable to
agents using FTG. We observed, that Dreamer-Occupancy was able to complete all tracks
except Treitlstrasse, after being trained on Austria. Furthermore, this agent showed
slightly better results on the time-trial task than Dreamer-Distance and FTG. On the
contrary, after being trained on Treitlstrasse, both agents did perform worse on the
holdout tracks compared to agents being trained on Austria. Noteworthy, no Dreamer
agent was able to complete a full lap on Austria when being trained on Treitlstrasse, and
Dreamer-Occupancy only completed full laps on the training track and Columbia.
From the observations of this experiment, we conclude that Dreamer agents that are
using LiDAR reconstruction are more robust to variations of the tracks than agents
which are trained using occupancy map reconstruction. This indicates, that Dreamer-
Occupancy might overfit the maps that it is trained on and therefore does not generalize
its driving behavior to tracks that are significantly different. This explanation is also
supported by the observation, that Dreamer-Occupancy drives more aggressively than
Dreamer-Distance and thus achieves better lap times on training tracks or tracks that
are sufficiently similar to them (e.g. Austria and Barcelona), but fails to complete a full
lap on other tracks. Another observation is, that if the training track contains enough
variability, such as curves of variable difficulty, agents are able to learn more general
driving behavior. Presumably, this also explains the performance difference of agents
that are trained on Austria and agents that are trained on Treitlstrasse, as Austria has
more variability of curves than Treitlstrasse.

6.3 Real-World Performance Evaluation
Training agents in simulation before deploying them to real robots is the default workflow
when applying RL in robotics. While this yields many advantages and, in most cases,
is inevitable, the transition from simulation to the real platform is often problematic,
because of the divergence of simulators and real-world robots. To evaluate the driving
behavior of Dreamer on real-world cars, we deployed an agent, that was trained in a
simulated version of Treitlstrasse to our hardware platform and set up three scenarios
on our test track. These experiments were conducted on our real-world test track in a
lecture hall at the University of Technology in Vienna. A video of all three real-world
experiments is available on the YouTube-Channel of the Cyber-Physical-Systems research
group2. Figure 6.7 shows footage from the experiments on the test track. The two images

2https://www.youtube.com/watch?v=IlN3vJxC30w
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6. Results

Figure 6.7: Footage of the real-world test setup in Treitlstrasse. From top left, clockwise:
camera in turn 5, camera in turn 1 and 2, on-board camera, LiDAR scan.

in the top row are captured by webcams located on both ends of the track (turns 5 and
1, see fig. 5.4a). The bottom row shows onboard camera footage and LiDAR observations
of the car while driving through turn 5. For each experiment outlined below, we recorded
approximate lap times, presented in table 6.1.

Table 6.1: Lap times of real-world experiments.

Experiment Lap Time
Driving a Full Lap ∼ 28s
Driving in Reverse Direction ∼ 31s
Unexpected Obstacles ∼ 32s

Driving a full lap. The first experiment was to evaluate if an agent, that is able to
complete a full lap in simulation, can transfer the learned behavior successfully to the real
car. For this experiment, we tested both types of agents trained with Dreamer, Dreamer-
Distance, and Dreamer-Occupancy. While Dreamer-Distance was able to complete a
full lap without collisions, we observed that Dreamer-Occupancy learned an aggressive
driving behavior, leading to frequent crashes throughout the course. We believe, that
this could be partially caused by small differences between the simulated tracks and the
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real-world track, as Dreamer-Occupancy trains its dynamics model by reconstructing
parts of the track. The differences are introduced by moving the track-boundaries when
crashing into them during testing or by frequent reassembly of the track.

Driving in reverse direction. After confirming that agents, that were trained in
simulation, are able to drive safely on the real-world version of the training track, we
investigated the behavior of Dreamer-Distance when driving in the reversed direction on
the same track. By driving in the opposite direction, we aim to provide a new real-world
track, as we did not have the space to build another track. The agent was also able to
complete a full lap in this experiment. However, we observed that the agent swerves from
left to right more heavily compared to the previous experiment. Furthermore, the lap
time was around 3 seconds higher, compared to the agent driving in the default direction,
as shown in table 6.1.

Unexpected Obstacles. In a final experiment, we tested the behavior of the agent
when unexpected obstacles appear on the track. Although such a scenario was never
covered in the training data, the agent was able to navigate around the obstacles safely.
Figure 6.8 shows the obstacles from the agent’s point of view, while the car navigates
around them.

Figure 6.8: Obstacles captured by LiDAR and camera on the vehicle.
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CHAPTER 7
Conclusion

In this chapter, we summarize the core findings of this thesis and discuss the experimental
results. Section 7.1 gives answers to the research questions we formulated in the beginning
and links them to the results we obtained in the course of the experiments. Furthermore,
in section 7.2, we give a brief outlook on our future research plans.

7.1 Research Questions
In the following we relate the results and insights that we obtained throughout this work
to the research questions defined in chapter 1.

How do world model RL algorithms compare to the state of the art model-
free RL algorithms with respect to sample efficiency and performance?

We conducted extensive experiments to compare the performance of Dreamer, a world
model algorithm, to various, state-of-the-art model-free RL algorithms. The metric we
designed to compare the results of different algorithms was the MAP that was reached
over a fixed time window of 40 seconds. According to the learning results that we
observed, Dreamer achieves superior performance, while being much more sample efficient
than the baseline algorithms. Furthermore, we observed that Dreamer was also able to
achieve lap times comparable to an FTG agent, a vehicle control algorithm that was
used by several winning teams of the F1TENTH competitions. It is noteworthy, that the
model-free algorithms did not achieve to complete a full lap on most of the tracks.
We expected that Dreamer was more sample efficient than model-free approaches because
its latent dynamics model allows training a policy in imagination instead of using sampled
experience. Also, the performance values reported in the original paper suggest that
world model algorithms do exceed the performance of model-free baselines, at least given
this amount of training data. However, we acknowledge that the difference in performance
could be, at least in parts, due to other reasons than algorithmic superiority. For instance,

53



7. Conclusion

it might require more hyperparameter tuning or better model architectures. However,
we utilized our computational resources to their limits to provide fair results. Thus, we
can state that world model algorithms show better performance, given this amount of
training data and that more computational resources would allow testing this hypothesis
in higher sample regimes.

Are world models able to adapt to unknown situations at test time?

The results of the track generalization experiments suggest that agents that were trained
with Dreamer on one track can adapt well to different tracks at test time. We observed that
the performance of cross-track generalization depends on the choice of the reconstruction
model. While the map reconstruction approach led to better performance on the training
track, the observation reconstruction model allowed the agent to better adapt to other
tracks. Another form of adaption to unknown situations could be observed during
real-world experiments. Dreamer was able to complete several laps on the real vehicle,
even though the agent was trained in simulation without any domain randomization
techniques. Furthermore, our real-world experiments showed that Dreamer was also able
to navigate the track in the opposite direction and even after we placed obstacles on it,
which were not present during training.
The experiments suggest that Dreamer is at least able to adapt to changes of the tracks,
such as course layout modifications and much higher slippage compared to simulation.
However, more adaption experiments, such as changing properties of the vehicle (e.g.
weight), would provide insight into the adaption capabilities of Dreamer to changes in
the vehicle dynamics.

Do world models, that are learned in simulation, facilitate safe real-world
navigation for autonomous vehicles?

Our experiments on the real-world track showed that Dreamer agents, that were trained
in simulation, were able to navigate several laps on the real-world track without crashing
into the track boundaries. We observed, that the choice of reconstruction model also
influences the safety behavior of the agent. The real-world experiments showed that
agents that were trained with the map reconstruction model had a more aggressive
driving style compared to the observation reconstruction approach, which occasionally
led to crashes. We believe that this is related to overfitting to the track and, as a
consequence, exaggerated confidence about the future states. In future experiments, we
aim to investigate how well world model algorithms can avoid crashes when dynamic
obstacles, such as other vehicles, are present.

7.2 Outlook and Future Work
Throughout this work, we identified several future research directions which we want to
explore in more detail. We are planning to work on some problems that we observed
with our current approach, in the near future. For instance, while the agent was able
to drive without crashes, we observed that the controls showed heavy oscillations. This
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could potentially damage actuators and is in general not desired. Our current work focus
is to resolve this issue by implementing approaches we found in the continuous control
literature.
After optimizing our current approach, we aim to explore and transfer our knowledge
to the field of competitive multi-agent RL in the context of autonomous racing. The
following list gives a brief overview of the questions that we want to answer:

• How can we trace back the contribution of a single-agent decision to the cumulative
success of its team?

• How can we learn a predictive model of the opponent’s behavior from just a few
seconds of interaction, to estimate their future actions and action responses?

• How can we formulate team-based multi-agent racing competitions as hierarchical
RL problems?

• How can we combine deep RL with game-theoretic approaches to obtain better
strategies for autonomous racing scenarios?

By answering these questions, we hope to contribute to the state of the art of RL and
multi-agent systems in general.
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APPENDIX A
Appendix

A.1 Hyperparameters

Parameter Value Search Space
Initial Dataset Size 5000 steps -

Update Steps 100 -
Batch Size 50 -

Sequence Length 50 -
Action Repeat 8 4, 8

Imagination Horizon 15 2, 20, 50, 100
Learning Rate θ 6e-4 -
Learning Rate ψ 8e-5 -
Learning Rate φ 8e-5 -

Discount 0.99 -
λ 0.95 -

Table A.1: Hyperparameters for Dreamer.
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Parameter Value Search Space Study Result
Policy Learning Rate 10−4 [10−5, 10−3] 0.000672035
Critic Learning Rate 10−4 [10−5, 10−3] 0.000903657

Batch Size 256 - -
Epsilon 0.1 - -

Epsilon Mean 10−3 [5 × 10−4, 10−3] 0.000654296
Epsilon Stddev. 10−6 [5 × 10−7, 10−5] 8 × 10−7

Replay Buffer Size 5 × 105 - -

Table A.2: Hyperparameters and study results for MPO.

Parameter Value Search Space Study Result
Policy Learning Rate 10−4 [10−5, 10−3] 0.00071
Critic Learning Rate 10−4 [10−5, 10−3] 0.00001

Batch Size 256 - -
Sigma 0.3 - -
Atoms 51 - -

Discount 0.99 - -
Replay Buffer Size 5 × 105 - -

Table A.3: Hyperparameters and study results for D4PG.

Parameter Value Search Space Study Result
Learning Rate 3 × 10−4 [10−5, 3 × 10−3] 0.00131

Batch Size 64 - -
Discount 0.99 - -
GAE-λ 0.95 - -

Clip Range 0.2 [0.1, 0.3] 0.3
Entropy Coef. 0.0 [0.0, 0.01] 0.001

Value Function Coef. 0.5 [0.5, 1.0] 0.8

Table A.4: Hyperparameters and study results for PPO.

Parameter Value Search Space Study Result
Learning Rate 3 × 10−4 - -

Batch Size 256 - -
Tau 0.005 - -

Discount 0.99 - -
Replay Buffer Size 5 × 105 - -

Table A.5: Hyperparameters and study results for SAC.
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