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Summary 

 

The European Union's Earth Observation program, Copernicus, aims to create vast 
amounts of global data from satellites and ground-based, airborne and seaborne 
measurement systems with the goal of providing information to help service providers, 
public authorities, and other international organizations improve European citizens' 
quality of life. With the aim of reaching this goal, a new family of missions called 
Sentinels has been developed by the European Spatial Agency, ESA, specifically for 
the operational needs of the program. These missions carry a range of cutting-edge 
technologies, such as radars and multi-spectral imaging instruments, for land, ocean 
and atmospheric monitoring. Multiple kinds of high-resolution data are now available 
to the scientific community, which is working to adapt and develop the existing models 
and algorithms to the new information. 

With this objective, two of the most important variables that contribute to the water 
cycle, rainfall and river discharge, were selected in this thesis to be estimated by the 
use of the information obtained from Sentinel-1 and Sentinel-2 sensors. The monitoring 
of these two variables is fundamental in many hydrological applications, like flood and 
landslide forecasting and water resources management, and their impact is clearly 
visible from space. In-situ measurements are the traditional data source of them, but 
the worldwide declining number of stations, their low spatial density and the data 
access problem limit their use. Satellite sensors have been therefore adopted to support 
and, in some cases, substitute the existing gauge network in estimating river discharge 
and rainfall, thanks to the strong growth in technologies and applications. Two valuable 
examples of this are SM2RAIN algorithm, which allows to estimate rainfall from Soil 
Moisture (SM) observations by exploiting the inversion of the soil water balance 
equation, and the CM approach, a non-linear regression model capable of linking the 
ground measurements of river discharge to the near-infrared (NIR) reflectance ratio 
between a dry and a wet pixel chosen around the border of a river. Notwithstanding 
their usefulness, until now several limitations affected these two methodologies. The 
main issue with satellite derived rainfall data was their low spatial resolution which 
could not overcome 10 km, a quantity insufficient to obtain accurate information over 
many areas and posing important constraint on their use for many applications and 
fields, which require more and more detailed information. Similarly, the resolution of 
the available NIR data was not suitable to provide information for narrow rivers (< 250 
m wide), nor to study river features and patterns that were here averaged within a single 
pixel. The recently available high-resolution data from Sentinel Missions of the 
Copernicus program offer an opportunity to overcome these issues. 
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The data from Sentinel-1 mission can be used to obtain a high spatial resolution SM 
product, named S1-RT1, which is adopted in this thesis to derive 1 km spatial 
resolution (500 m spacing) rainfall data over the Po River basin from it, through the 
algorithm SM2RAIN. The rainfall derived from the 25 km ASCAT SM product (12.5 
km spacing), resampled to the same grid of S1-RT1, is compared to the latter to 
evaluate the potential benefits of such product. SM2RAIN algorithm needs to be 
calibrated against a benchmark, which poses important limitations on the applicability 
of the analysis in data scarce regions. In order to overcome this issue, a parameterized 
version of SM2RAIN algorithm is previously developed relying on globally distributed 
data, to be used along with the standard approach in the high-resolution rainfall 
estimation. The performances of each obtained product are then compared, to assess 
both the parameterized SM2RAIN capabilities in estimating rainfall and the benefits 
deriving from Sentinel-1 high spatial resolution.  

For the river discharge estimation, the use of Sentinel-2 NIR reflectances within the 
CM approach is investigated to support the hypothesis that a higher satellite product’s 
spatial resolution, i.e., 10 m (vs. a medium-resolution, i.e., 250 m), is able to better 
identify the periodically flooded pixels, more related to the river dynamics, with 
obvious advantages for river discharge estimation. Moreover, the improved resolution 
allows both a finer distinction between vegetation, soil and water and the 
characterization of water turbidity in the river area, which is important to correctly 
estimate the river discharge using this approach. A new formulation enriched by the 
sediment component is proposed along with a procedure to localize the periodically 
flooded pixels without the intake of calibration data, which is a first step towards a 
completely uncalibrated procedure for the river discharge estimation, fundamental for 
ungauged rivers. 

The obtained results show that the high-resolution information from Copernicus 
actually increase the accuracy of the satellite derived products. Good estimates of 
rainfall are obtainable from Sentinel-1 when considering aggregation time steps greater 
than 1 day, since to the low temporal resolution of this sensor (from 1.5 to 4 days over 
Europe) prevents its application to infer daily rainfall. In particular, the rainfall 
estimates obtained from Sentinel-1 sensors outperform those from ASCAT in specific 
areas, like in valleys inside mountain regions and most of the plains, confirming the 
added value of the high spatial resolution information in obtaining spatially detailed 
rainfall. The use of a parameterized version of SM2RAIN produces performances 
similar to those obtained with SM2RAIN calibration, attesting the reliability of the 
parameterized algorithm for rainfall estimation in this area and fostering the possibility 
to apply SM2RAIN worldwide even without the availability of a rainfall benchmark 
product. Similarly, the river discharge estimation from Sentinel-2 reflectances from 
selected stations along two Italian rivers, the Po and the Tiber, confirms that reliable 
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performance can be obtained from high-resolution imagery. Specifically, over both the 
stations the new formulation improves the river discharge accuracy and over the Po 
River the best performances are obtained by the uncalibrated procedure. Google Earth 
Engine (GEE) platform has been employed for the data analysis, allowing to avoid the 
download of big amounts of data, fostering the reproducibility of the analysis in 
different locations. 
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"Man must rise above Earth to the top of the atmosphere and beyond,  
for only then will he fully understand the world in which he lives" 

 
 Socrates (469-399 BC) 
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________________________________________ 

1. INTRODUCTION 

________________________________________ 

 

In this chapter, a brief introduction related to the current state of the water cycle monitoring 
strategies, and their relevance for hydrological applications, is reported. Particular attention is 
devoted to exploit remote sensing data as support tools to the ground monitoring that has still the 
main role in the observation of the principal variables of the water cycles. On this respect, the 
Copernicus program of the European Union offers a plethora of products useful for the Earth 
Observation and specifically in the evaluation of the water cycle variables at high-resolution. In this 
thesis, two important quantities are selected due to their importance in many aspects of the water 
cycle, the human lives and the climate change: rainfall and river discharge. By exploiting the satellite 
data extracted by the Copernicus program new approaches are here developed and adapted to the 
new data source with the final purpose to generate satellite-based products for rainfall and river 
discharge.  

________________________________________ 
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1.1 State of the art 

Floods, drought and landslides are the water related natural hazards that cause the most serious 

damage to the environment, people and properties. The occurrence of these events is related to 

climate: wet soil moisture (SM) conditions and intense rainfall are often the drivers of flood and 

landslide events (CIABATTA ET AL., 2016), whereas precipitation absence and low soil moisture are 

clear indicators of an ongoing drought. According to International Panel on Climate Change (IPCC) 

5th report, climate change is expected to aggravate the occurrence of these phenomena since extreme 

weather and climate events will step up (IPCC, 2013), increasing both the risks of floods and 

landslides and the period of drought in many regions worldwide. The current climatic crisis is also 

expected to increase the water scarcity: water consumption has already been steadily increased in the 

last century (KUMMU ET AL., 2016), and the climate change could cause a reduction of water 

availability together with an increasing of irrigation demand, further exacerbating the situation. Many 

areas will experience water scarcity due to this phenomenon, as it is already happening (ROCKSTRÖM 

ET AL., 2012). 

In this framework, the presence of an adequate monitoring network capable of providing accurate and 

spatially detailed information related to the water cycle is fundamental for multiple fields and users. 

High-resolution data are particular important for: 

• stakeholders and companies involved in water management, to increase their intervention 

capacities and reduce wastage; 

• researchers, to improve hydrological models performances and capabilities, whose need of 

high quality input data with sufficient resolution characteristic is increasing along with the 

models complexity (SILBERSTEIN, 2006; RAGETTLI ET AL., 2013). High spatial resolution 

data have also already proven useful to increase the hydroclimatic hazard prediction models 

capabilities (CENCI ET AL., 2017), since their forecasting ability is dependant from the 
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knowledge of their triggering conditions (HANNAH ET AL., 2011; PONZIANI ET AL., 2012), 

and the most important effects of floods, landslides and droughts occur at small scale; 

• insurance companies, which are gradually demanding high spatial resolution data, even at 

monthly temporal scale, with the purpose of developing index-based insurance for small-

scale agricultures (ENENKEL ET AL., 2019; BLACK ET AL., 2016). 

Space-based Earth Observation (EO) data are a highly strategic asset that can be exploited to obtain 

the desired information. EO technology can provide a global understanding of many of the essential 

variables governing the water cycle and monitor their evolution from global to basin scales. In the 

past few decades, a significant development of EO system was observed, with the launch of many 

EO missions that provide an unprecedented capacity to quantify several variables on a routine basis. 

Also the European Union has recognized the crucial role Space can play in tackling the climate change 

and it has developed its own program for monitoring the Earth: Copernicus. Copernicus, previously 

known as GMES (Global Monitoring for Environment and Security), is coordinated and managed by 

the European Commission. It is implemented in partnership with the Member States, the European 

Space Agency (ESA), the European Organization for the Exploitation of Meteorological Satellites 

(EUMETSAT), the European Centre for Medium-Range Weather Forecasts (ECMWF), EU Agencies 

and Mercator Océan. Copernicus scope is to collect and process data from multiple sources, such as 

earth observation satellites and in-situ sensors, and to provide users with reliable and up-to-date 

information through a set of services related to environmental and security issues. The services 

address six thematic areas: land, marine, atmosphere, climate change, emergency management and 

security.  

In order to fulfil Copernicus scopes, ESA is building the largest earth observation satellite system in 

the world — six families of Sentinels have been defined, developed and put into orbit. Each Sentinel 

is composed using some of the most advanced technologies currently available. The vast majority of 

data and information delivered by the Copernicus Space infrastructure and the Copernicus services 
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are available and accessible to any citizen and any organization around the world on a free, full and 

open access basis. Data availability at this scale, frequency, and quality constitute a fundamental 

paradigm change in earth observation, particularly considering the open access strategy decided by 

the European Union. At the current state, three complete two-satellite constellations are in orbit 

(Sentinel-1, Sentinel-2 and Sentinel-3) plus an additional single satellite, Sentinel-5P, and the first of 

the two satellites composing Sentinel-6 mission. These sensors are producing around 15 Terabytes of 

data every day, which are constantly downloaded and processed by scientists and users all over the 

world. 

However, this growing observational capacity is also increasing the need for dedicated research 

efforts aimed at exploring the potential offered by the synergies among different and complementary 

EO data records. With this purpose, this thesis proposes an analysis of the improvements that the use 

of the high quality data provided by Sentinel Missions can provide for the estimation of information 

related to the water cycle. Specifically, two of the most important variables of the water cycle are 

here selected to be estimated: precipitation, and more specifically its liquid fraction, the rainfall, and 

river discharge. These variables are indicated by the Global Observing Systems Information Center 

(GCOS) among the Essential Climate Variables (ECV), i.e., variables whose knowledge is necessary 

to understand the evolution of the climate, to assess the related risks and to develop mitigation and 

adaptation strategies. They have been selected for this study due to their crucial role in influencing 

human lives and their large impact on the territory, which allow to study these variables by using 

satellite data. Indeed, rainfall and river discharge are strictly linked to each other and to human 

activities, and their changes could have effects not only on local communities but also at global scale, 

e.g., causing variation on ocean salinity and thermohaline circulation (TRENBERTH K. E., 2011; 

NOHARA ET AL., 2006; PIECUCH ET AL., 2018; AHMED ET AL., 2020).  

Currently, in situ measurements are the most cost-effective and reliable options for both river 

discharge and rainfall monitoring at local scale (FEKETE ET AL., 2015; LA BARBERA ET AL., 2002). 
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Accurate measurements of rainfall are generally obtained through devices such as rain gauges, 

disdrometers and weather radars. There exist different types of rain gauges, each with its own strength 

and weakness: accumulation gauges, tipping-bucket gauges, weighing gauges and optical gauges 

(STRANGEWAYS, 2006; TAPIADOR ET AL., 2012). According to the sensor type, it is possible to 

infer reliable precipitation or rainfall point measurements from each of them. Notwithstanding this, 

they all suffer from various source or errors, such as wind, evaporation, instrument error, spatio-

temporal variation of the drop-size, percentage of frozen/liquid precipitation or splashing 

(MICHELSON, 2004; PETERSON ET AL., 1998). The more technologically sophisticated 

disdrometers and weather radars are instead able to detect the size of individual rain drops, increasing 

our understanding of the precipitation processes and our capacity to estimate and model it (SUN ET 

AL., 2017). Specifically, weather radars are able to survey large areas and to capture the spatial 

variability of rainfall fields, even if they are less precise than the punctual measurements obtained by 

rain gauge and disdrometers, due to errors sources as the variability of the drop size distribution, the 

reflections from non-weather targets and the beam lifting range effect, which can cause misdetection 

of precipitation (KIDD AND HUFFMAN, 2011). Moreover, their high cost is an obstacle for the 

development of a global radar network (HABIB ET AL., 2012; SAUVAGEOT, 1994). However, the 

rainfall spatial variability makes the current rain gauge network (Figure 1-1) inappropriate to describe 

in detail its distribution over the full globe, since the number of gauges is too scarce with respect to 

Earth surface and they are unequally distributed, being the majority of them located in the most 

developed countries (KIDD ET AL., 2017; VÖRÖSMARTY ET AL., 2001; DINKU, 2019).  

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0110
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0117
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0076
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0082
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Figure 1-1: Global Rain Gauge Network distribution (yellow dots). Produced by the Comet ® program. 

 

Similar discrepancies can be found also for the river discharge gauge network (Figure 1-2). River 

discharge is not directly measurable, being determined by the relationship between stream velocity 

and channel area. The most common way to measure it is the velocity-area method, which requires 

knowledge of water depth, channel width and flow velocity at each section of interest (HERSCHY, 

1995). These data can be derived through a measurement campaign, by obtaining the flow velocity 

at single/multiple depths over multiple vertical cross-sections (PELLETIER, 1988). River discharge 

is then calculated through the product between the stream velocity distribution and the channel cross-

sectional area (GRAVELLE, 2015). The river discharge measured through these campaigns can be 

then associated to measurement of flow velocity (by current-meter or Acoustic Doppler Current 

Profiler, ADCP) or river stage through the use of rating curves. These mathematical formulas or 

calibrated relationships are derived by considering simultaneous measurements of river discharge and 

water velocity or level. Once the rating curve is calibrated, it is possible to monitor river discharge 

knowing only the water level or velocity. The effectiveness of the rating curves method is reduced 

for extreme river discharge and for channels in which the sediment transportation or deposition can 

alter the section area. Indeed, discharge is often not measured during flood events, thus limiting the 

effectiveness of the obtained relationships for estimate the relative flow and any change of the cross-
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section area would introduce an error in the estimated river discharge. Notwithstanding this, the rating 

curves are used worldwide to estimate river discharge on gauging structures.  

Nevertheless, number of working stations is declining worldwide (Figure 1-2) (CROCHEMORE ET 

AL., 2020; VÖRÖSMARTY ET AL., 2001). This is worsened by the fact that discharge estimates either 

do not exist or are not promptly available over many rivers, sometimes due to political reasons or 

economic evaluations (FEKETE AND VÖRÖSMARTY, 2007).  

 
Figure 1-2: Global Runoff Data Centre (GRDC) stations distribution over the last century.  

 

While in-situ networks are worldwide declining, technological progress in remote sensing sensors 

enables us to obtain data on the global scale, remarkably expanding humanity’s understanding of its 

own living environment from spatial and temporal perspectives. The information of the ground-based 

networks can therefore be supported, integrated and in some cases substituted by EO data, which have 

proven to be a valuable source of information variables such as rainfall and river discharge (BARRET 

AND BEAUMONT, 1994; KIDD AND LEVIZZANI, 2011).  

In the following sections, a brief review of the current state of the art of satellite rainfall (section 1.2) 

and river discharge (section 1.3) estimation methodologies will be given, together with the major 

limitations of the described approaches. 
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1.2 Remote sensing of rainfall 

The classical remote sensing-based technique to estimate rainfall is the “top-down” approach 

(BROCCA ET AL., 2014A), where the upwelling radiation or backscatter from clouds measured by 

satellite sensors are used to estimate the surface instantaneous rainfall rate. To date, many satellite 

sensors for observing the atmosphere are available, which can be classified into three categories 

according to the spectral sensitivity: VISible/InfraRed (VIS/IR), Passive MicroWave (PMW) and 

Active MicroWave (AMW) sensors. Different methods to derive precipitation have been developed 

for each type of sensor and also by considering their merging. VIS/IR based techniques are 

established on the principle that cold cloud tops are related to greater rainfall events, hence allowing 

to link IR cloud top temperature to rainfall rate through different algorithms, such as the Griffith-

Woodley algorithm (GRIFFITH ET AL., 1978), the Convective/Stratiform technique (ADLER AND 

NEGRI, 1988), and also through neural networks, as for the Precipitation Estimation from Remotely 

Sensed Information using Artificial Neural Networks (PERSIANN) product (NGUYEN ET AL., 2019). 

Still, the relation between precipitation and IR cloud temperature is indirect and the quality of the 

obtained precipitation data is erratic. Conversely, PMW radiometers proved to be a more direct 

method to infer precipitation from space, since this radiation is able to sense the size of the 

precipitation through clouds. The first PMW-based techniques to retrieve rainfall measurements were 

based on simple regression function applied between observed rainfall rates and sensed brightness 

temperature. In recent years, many different methods exploiting probabilistic physical and iterative 

algorithms have been developed to improve the quality of the estimated rainfall (BAUER ET AL., 

2001; CASELLA ET AL., 2015; WENTZ AND SPENCER, 1998). Notwithstanding this, the temporal 

frequency of PMW sensors is usually low (>3 hours), limiting the reliability of the total rainfall 

measurements. Conversely, VIS/IR observations are far more frequent (30 minutes or less), being 

most of the VIS/IR sensors onboard of geostationary satellites. Therefore, VIS/IR and PMW rainfall 

estimates are often merged together to increase accuracy, coverage and spatial and temporal 

resolution of the estimated precipitation. A well-known example of such methodologies is the Climate 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0031
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0002
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0011
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0127
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Prediction Center morphing method (CMORPH), which derive motion vectors from IR data and use 

them to improve the precipitation estimates generated by PMW retrievals (JOYCE ET AL., 2004). 

Finally, the launch of the Tropical Rainfall Measuring Mission (TRMM) mission in 1997 introduced 

the first AMW observations from satellites: a single-frequency radar operating at 13.8 GHz capable 

of measuring the 3D rainfall distribution over both land and water. This led to the generation of the 

first precipitation product obtained from VIS/IR, PMW and AMW information (KUMMEROW ET 

AL., 2000). TRMM was followed by the Global Precipitation Measurement (GPM) mission, based 

on a constellation of satellites mounting different type of sensors. Their data were combined to 

develop the Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation product. The 

combined use of data from multiple polar and geostationary satellites, along with a new Dual-

frequency Precipitation Radar (DPR) and an accurate radiometer (GMI) (HOU ET AL., 2014), allows 

to provide precipitation estimates characterized by high spatial and temporal resolutions (0.1 degree 

and 30 minutes, respectively) and global coverage. Despite the good level of accuracy achieved, the 

difficulties in obtaining and inter-calibrating near-real time observations from multiple agencies and 

the overall high cost for operation and maintenance of the whole satellite constellation are obstacles 

still to be overcome in order to guarantee the data continuity. Moreover, additional rainfall datasets 

are still needed to understand residual uncertainties and errors (MASSARI ET AL, 2017; CHEN ET 

AL., 2020) like, e.g., seasonal and local bias (MAGGIONI AND MASSARI, 2018). The integration of 

IMERG with alternative rainfall products can be also carried out to reduce uncertainties, as in 

MASSARI ET AL. (2020).  

The recently introduced “bottom-up” approach points toward addressing these problems by inferring 

or correcting rainfall estimation over land using SM observations from satellite or gauges. This 

method provides accumulated rainfall estimates (CROW ET AL., 2009; BROCCA ET AL., 2013; 

PELLARIN ET AL., 2013) instead than the instantaneous rate, as for the “top-down” products. Many 

methods based on this approach share the same limitations, linked to the limits of measuring SM from 

space: rainfall estimated only over land, low accuracy in presence of dense vegetation or complex 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0052
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017RG000574#rog20155-bib-0066
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topography and difficulties in estimating rainfall in case of soil saturation. Among the algorithms 

based on this approach, SM2RAIN (BROCCA ET AL., 2014A) has distinguished itself for its 

versatility and simplicity. By inverting the soil water balance equation, this algorithm allows the 

estimation of the rainfall occurring between two SM measurements. It has already been applied 

worldwide to both regional (CIABATTA ET AL., 2015; TARPANELLI ET AL., 2017) and global 

(CIABATTA ET AL., 2018; BROCCA ET AL., 2019) satellite SM products, obtaining satisfactory 

results, in particular over regions characterized by scarce rain gauge density (MASSARI ET AL., 

2020). Different studies have shown the usefulness of SM2RAIN derived products for hydrological 

application such as flood and landslide prediction (BRUNETTI ET AL., 2018; CAMICI ET AL., 2018; 

BROCCA ET AL., 2020). 

Nevertheless, the major limitation of satellite observations, regardless of the adopted approach, is the 

inherent “technological” compromise between temporal and spatial coverage: SM and rainfall 

satellite products are usually characterized by a frequent revisit time (<1 day) and a coarse spatial 

resolution (~10-50 km). The multiple geographical features that appear inside each pixel’s area 

(Figure 1-3a) affect the information obtained from the remote sensing sensor. Taking as example the 

SM estimation, when these features are characterized by different SM values from their surrounding 

(e.g., irrigated fields), low quality of SM estimation (e.g., mountainous area or cities) or even no SM 

value at all (e.g., water bodies), the overall quality of the obtained SM estimates decreases. By moving 

at higher spatial resolution (Figure 1-3b), the quality of the remote sensing SM product should 

increase, due to the possibility to better distinguish each geographical feature. 
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a)                                                                       b) 

 

 

 

 

 

 

 

 

Figure 1-3: Example of one pixel at coarse resolution (25 km spatial resolution) covering the city of Innsbruck, Austria, 
(panel a) and the correspondence 1km spatial resolution pixels (panel b) 

 

Therefore, it is of primary importance to obtain data with high temporal and spatial resolution, in 

order to enhance the prediction capability of hydrological models requiring high-resolution input data 

(MERLIN ET AL., 2008) and the spatial accuracy of the information related to water resources. The 

first attempt to accomplish the objective of high spatial resolution was the use of downscaling 

procedures. Many different approaches, from geostatistical analysis to data fusion, have been 

developed in the last years in order to obtain sub-pixel information from coarse resolution products 

(PENG ET AL., 2017) to be used in different applications (e.g., DARI ET AL., 2020). However, their 

results were often unsatisfactory, because of the limitations of the auxiliary data (e.g., cloud cover for 

optical data and model errors when using model data) and the uncertainties of downscaling algorithms 

(PENG ET AL., 2017). 

Recently, the new launched Sentinel Missions of the Copernicus program, has opened new 

possibilities to overcome these issues. Specifically, Sentinel-1 (S1) mission is composed of two 

satellites that share the same orbit 180° apart and follow a strict acquisition scenario with a 12-days 

repeat cycle (6-days by considering both satellites), each carrying an identical C-band Synthetic-

Aperture Radar (SAR) sensor capable of sensing high-resolution microwave backscatter (down to 5 

meters). This setup leads to a revisit frequency of 1.5-4 days over Europe, thanks to the overlap of 
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the orbits. The condition of high spatial and medium temporal resolution is, for the first time, met by 

the two S1 satellites currently in orbit. SM measurements with 1 km spatial resolution can be obtained 

from this mission (BAUER-MARSCHALLINGER ET AL., 2018).  

The application of SM2RAIN to such data could therefore allow to obtain high-resolution (1 km) 

rainfall estimates over land. This approach, however, is limited by the need to calibrate SM2RAIN 

algorithm against a rainfall product with spatio-temporal characteristics similar to those of the input 

SM. Datasets with such spatio-temporal characteristics are rarely available, due to the already 

mentioned scarce density of ground-based networks, thus limiting the calibration and validation of 

high-resolution rainfall from SM2RAIN only over a few selected areas.  

1.3 Remote sensing of river discharge  

 
Many EO satellite-based techniques for estimating river flow have been developed in the last years. 

These techniques can be divided in those who need to be calibrated and those which instead does not 

need calibration and can be applied also in ungauged basins (GLEASON ET AL., 2020). Most of the 

latter are based on a simple evaluation of the excess of the water balance equation from hydrologic 

models (PARR ET AL., 2015; LOPEZ ET AL., 2018) or on the applying of hydraulic models without 

the use of any in-situ data (SCHUMANN ET AL., 2007; DI BALDASSARRE ET AL., 2009; DE FRASSON 

ET AL., 2019). Sometimes these models are coupled with other satellite-based variables such as river 

width, water surface, river stage or slope measurements (SUN ET AL., 2015; ANDREADIS ET AL., 

2007; DURAND ET AL., 2008). Even though these methods are characterized by low accuracy, they 

are able to improve the poor information available on the ungauged rivers. The calibrated models are 

instead more reliable, being adjusted using in-situ data or a calibrated hydrologic model. They are 

useful to extend the river discharge knowledge in space and time. The majority of the EO satellite-

based techniques to retrieve river discharge belong to this category. Hydrologic models can be used 

to improve the information of river discharge, also by using remote sensing information as input of 

the water balance equation, as, e.g., in DZIUBANSKI ET AL. (2016), where a hydrologic model with 
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a remote sensing-based snow routine is used to improve the estimated river discharge of seven 

watersheds in the Upper Mississippi River basin. This is just one example of a rich literature in which 

one or more satellite-based signals are used in calibration/assimilation to retrieve river discharge 

information at regional (JODAR ET AL., 2018; SYED ET AL., 2005; WANG ET AL., 2015) but also at 

global scale (CHANDANPURKER ET AL., 2017; LIN ET AL., 2019; ZHANG ET AL., 2016). Another 

group of techniques relies on the use of remotely sensed hydraulic variables and in-situ data to derive 

river discharge information using hydraulic models to infer river discharge from functions of river 

width, depth and/or slope (e.g., BJERKLIE ET AL., 2003; 2005; 2007), sometimes coupled with 

hydrological models (e.g., NEAL ET AL., 2009). Finally, many methodologies are based on the 

concept of the space rating curves, where satellite-based measurements of river level, river width or 

other empirical fluvial geomorphic phenomena are coupled to the observed river discharge to obtain 

a relationship that can be used to estimate the latter. In this framework, river stage measurements 

from altimetric data are widely used because of the direct relation between them and river discharge 

(ABDALLA ET AL., 2021; BELLONI ET AL., 2021; PARIS ET AL., 2016; TOURIAN ET AL., 2013; 

ZAKHAROVA ET AL., 2020), but the spatial-temporal sampling of the altimetry missions is currently 

a limitation, leading to the need of applying different strategies to densify the data (TOURIAN ET AL., 

2016; 2017; BOERGENS ET AL., 2017; SCHWATKE ET AL., 2015). The combination of altimetry 

and other satellite information can also be exploited to improve the river flow estimations quality (see 

TARPANELLI ET AL., 2021 for a review). In this respect, satellite optical sensors play an important 

role along with radar altimetry for improving the river monitoring. A widespread methodology to 

infer river discharge from optical data is the extrapolation of river width measurements from satellite 

imagery. This is possible thanks to the different behavior of water and soil in the optical bands, which 

make these features quite clearly distinguishable (YANG ET AL., 2020). River discharge 

measurements can be then obtained from the estimated river width by using empiric formulas, rating 

curves or models (ELMI ET AL., 2021; FENG ET AL., 2019; PAVELSKY ET AL., 2014), also in 

combination with altimetric data (SICHANGI ET AL., 2016). Notwithstanding this, river width 
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measurement is possible only in free clouds days (reducing the temporal availability of the obtained 

datum) and there are often misclassifications of water pixels due to cloud shadows or in areas 

characterized by steep terrain or dense urban environments (MUELLER ET AL., 2016). Focusing on 

daily measurements of river discharge, TARPANELLI ET AL. (2013; 2017; 2020) used passive remote 

sensing data from MODIS, an optical sensor characterized by spatial resolution up to 250 m, to 

develop a linear regression approach first introduced by BRACKENRIDGE ET AL. (2007), which is 

effectively used to monitor high and low flow in medium sized basins (<100’000 km2). The approach 

(hereafter named 𝐶𝑀) is based on the different behavior in the Near-InfraRed (NIR) region between 

a Calibration (𝐶) and a Measurement (𝑀) pixels chosen over land and water, respectively. Their ratio 

can be correlated with the in-situ measurements of river discharge. Indeed, in a bare soil or urban area 

the 𝐶 pixel has a reflectance behavior quite stable in time, sensitive mainly to atmospheric noises and 

factors like the bidirectional reflectance effects. Differently, a pixel around the bank of a river (𝑀 

pixel), often inundated, has generally lower reflectance values due to the presence of water. The ratio 

between the two pixels can be therefore related to river discharge (TARPANELLI ET AL., 2013; 2017).  

Both pixels are affected by noises due to different sources, such as the atmosphere or the acquiring 

process, but the calculation of their ratio allows to account for them and therefore it is well correlated 

with the in-situ measurements of river discharge. Notwithstanding this, the presence of sediments in 

the river induces an increase in the water reflectance (MALINOWSKI ET AL., 2015), which 

corresponds to an underestimation of the river discharge assessed through 𝐶𝑀 approach. The analysis 

of this phenomenon for medium-narrow rivers (100 - 300 m) can be facilitated by the use of high-

resolution multispectral sensors to better represent the dynamic of such rivers. With respect to the 

medium resolution images used in the scientific literature(i.e. MODIS, MERIS and OLCI), data with 

higher spatial resolution coming from the new launched Sentinel-2 (S2) Mission of the Copernicus 

program (10, 20 and 60 m spatial resolution), have opened new possibilities to investigate small 

targets, as can be easily deduced by comparing two images in Red-Green-Blue (RGB) obtained by 
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MODIS (Figure 1-4a) and S2 (Figure 1-4b) at the Pontelagoscuro station, over the Po river in Italy 

during January 2019. 

 a)                                              b)  

 

 

 

 

 

 

Figure 1-4: RGB image of Pontelagoscuro, Po River, Italy, from MODIS (panel a) and S2 (panel b) sensors captured the 
29-01-2019 

 

1.4 Purposes of the thesis 

The aim of this thesis is to take advantage of the cutting-edge information available from the Sentinel 

missions of the European Union's EO program, Copernicus, to improve the capacities of the existing 

models and algorithms in observing the Earth, and, more specifically, the water cycle, with the final 

goal to support service providers, public authorities, and other international organizations involved 

in natural hazard mitigation and water resources management. With this objective, the data of S1 and 

S2 were selected to be used for the estimation of rainfall and river discharge, two variables 

fundamentals to understand and predict the evolution of climate, to develop mitigation strategies and 

to study adaptation measures. The analysis can be therefore conceptually divided in two branches: 

the use of SM2RAIN algorithm for rainfall estimation from a high spatial resolution SM product 

derived from S1 and the use of 𝐶𝑀 approach for river discharge estimation from S2 data.  

As mentioned above (Section 1.2), one limitation of SM2RAIN is the need of a benchmark dataset 

with spatio-temporal characteristics similar to those of the selected SM product to calibrate the 

algorithm, which allows to estimate rainfall only over areas where a rainfall product is already 

available. The first target of this work was therefore to develop a methodology to estimate the 
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SM2RAIN parameters values independently from a reference, i.e., a self-calibrated SM2RAIN 

product. Several datasets globally available of climatic and land descriptors were then collected to be 

used as potential predictors for the development of parametric relationships capable of retrieving 

SM2RAIN parameters values, to be applied to data from the Advanced SCATterometer (ASCAT), a 

medium resolution SM product (25 km spatial resolution). The descriptors were then analyzed on a 

subset of points selected over areas where high quality rainfall observations were available, and, once 

the relationships were developed, they were validated worldwide through comparison with different 

global rainfall products: GPM IMERG Final Run, GPM IMERG Late Run and the Global 

Precipitation Climatology Centre, (GPCC). The performances of the parameterized SM2RAIN 

product were hence compared with those resulting from the calibration of SM2RAIN in the same 

period, with the aim of assessing whether the two products performances were in line with each other.  

Once the reliability of the parametric relationships was assessed, both the parameterized and 

calibrated versions of SM2RAIN algorithm were applied to a high-resolution (1 km) SM product 

derived from S1 over the Po River basin in northern Italy, with the final scope of evaluating their 

capabilities in reproducing rainfall at such spatial resolution. This SM product, from here on named 

S1-RT1, was obtained by using a retrieval algorithm based on the first order solution of Radiative 

Transfer equation (RT1, QUAST ET AL., 2019) on S1 data, and is characterized by 500 m spatial 

sampling and 1.5-4 days temporal resolution. Po River basin area was selected as study area because 

of the availability of a ground-based rainfall dataset with very high spatial and temporal resolution 

and because it comprehends many geographical features, such as mountains, hills, lakes, rivers and 

plains, which make it a good test area for this analysis. Both SM2RAIN versions were applied also 

to ASCAT-derived SM, after it was regridded to S1-RT1 coordinates, in order to assess the benefits 

derived from the use of high-resolution SM by comparing the resulting rainfall products 

performances.  
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The second target of this thesis is to understand the benefits of high-resolution imagery for river 

discharge estimation, by extending the procedure to small targets and by testing its limits. In 

particular, three main targets were identified:  

• estimate river discharge over medium/narrow rivers, specifically at Pontelagoscuro gauged 

station over the Po River in Northern Italy, characterized by a dense record of hydraulic 

variables, and at Montemolino gauged station over the Tiber River in Central Italy, selected 

for its size of about 50-60 m width; 

• modify the 𝐶𝑀 approach to take into account the impact of the solid transport, exploiting the 

high-resolution of S2, so as to improve the estimation of river discharge; 

• investigate the characteristics of those pixels that are more sensitive to river discharge 

variations, making a first step toward an uncalibrated procedure to select 𝑀.  

In order to foster the analysis to larger time scales and in other areas, the code was implemented in 

the Google Earth Engine, GEE, platform (GORELICK ET AL., 2017), reducing by far the 

computational time and capacity required to apply the methodology. 

The present work is a collection of papers published in or submitted to peer-reviewed journal, 

showing the results and the insights found during the Doctorate research period. The thesis is 

structured as follows. 

Chapter 2 contains the methods explanation: the original SM2RAIN algorithm and the methodology 

for the parametric relationships’ development are descripted in section 2.1, section 2.2 illustrates the 

original 𝐶𝑀 approach for river discharge estimation and the proposed modifications, and the 

performance metrics and analysis used for the validation of the products of rainfall and river discharge 

are presented in section 2.3. 

The SM2RAIN relationships development analysis is reported in chapter 3. First, all the data 

employed or tested in the procedure are descripted in section 3.1, then the descriptors’ selection 
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procedure is explained (section 3.2) and the obtained parametric relationships are shown and 

commented in sections from 3.3 to 3.5. Finally, the results of the parameterized SM2RAIN procedure 

and the comparison between the parameterized and calibrated SM2RAIN products are illustrated for 

the local (section 3.6) and global (3.7) analysis. 

Chapter 4 illustrates the rainfall estimation from high-resolution SM from S1 through the 

parameterized SM2RAIN. Specifically, section 4.1 describes the Po River basin characteristic, 

section 4.2 presents the datasets employed in the analysis, section 4.3 shows the results of the rainfall 

estimation and, finally, the evaluation of the benefits from the high-resolution information is 

descripted in section 4.4. 

The river discharge analysis is explained in chapter 5. The two study areas and the satellite and ground 

datasets are introduced in section 5.1 and section 5.2 respectively, followed by the cloud platform 

GEE description in section 5.3. The results of the proposed model application for Pontelagoscuro 

station are shown in section 5.4, while the ones obtained at Montemolino station are presented in 

section 5.5. 

Chapter 6 presents the main conclusions of the work and an outline for future research and 

applications. 

Finally, chapter 7 contains the Appendix to chapter 3 and 4, briefly deepening the TC analysis of the 

parameterized SM2RAIN algorithm applied to ASCAT (section 7.1), the causes of low rainfall 

accuracy over the Po River basin (section 7.2) and the time accumulation strategy for the analysis of 

the different high-resolution rainfall products (section 7.3). 
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________________________________________ 

2. METHODS FOR RAINFALL AND RIVER DISCHARGE ESTIMATION  

________________________________________ 

 

In this chapter, the methods adopted for the estimation of the rainfall and the river discharge are 
descripted, together with the indexes used to estimate their performances. More in details, section 
2.1 describes SM2RAIN algorithm for rainfall estimation, the procedure derived to obtain the 
parametric relationships and the experiment designed for their validation; section 2.2 presents the 
original CM approach for river discharge estimation, the applied modifications and its new 
formulation; and section 2.3 illustrates both the classical scores adopted to estimate the 
performances of the estimated products and the triple collocation methodology.  

________________________________________ 
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2.1 Rainfall estimation from Soil Moisture: SM2RAIN algorithm 

________________________________________________________________________________ 

This section will present the algorithm adopted for rainfall estimation, SM2RAIN. After describing 
the concept behind the technique, the procedure to derive the parametric relationships over selected 
pixels will be explained, followed by the experiment designed for their validation worldwide. The 
section is based on the following publication, published by Journal of Hydrology: 

 

Filippucci, P., Brocca, L., Massari, C., Saltalippi, C., Wagner, W., and Tarpanelli, A.: Toward a self-
calibrated and independent SM2RAIN rainfall product, Journal of Hydrology, 603(A), 126837, doi: 
10.1016/j.jhydrol.2021.126837, 2021. 

________________________________________________________________________________ 
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Original SM2RAIN algorithm 

SM2RAIN is an algorithm developed by BROCCA ET AL. (2013; 2014A) to estimate the accumulated 

rainfall precipitated between two SM measurements. This result can be achieved by inverting the soil 

water balance equation. It was successfully applied to different satellite and in situ SM dataset 

(CIABATTA ET AL., 2018; BROCCA ET AL., 2019; FILIPPUCCI ET AL., 2020) offering good results, 

especially in poorly gauged regions (MASSARI ET AL, 2020). 

Considering a layer characterized by a soil depth 𝑍 [mm] and a soil porosity 𝑛 [m3/m3], the soil water 

balance equation can be written as: 

 𝑍𝑛 𝑑𝑆𝑀(𝑡) 𝑑𝑡⁄ = 𝑝(𝑡) − 𝑟(𝑡) − 𝑒(𝑡) − 𝑔(𝑡) (1) 

where 𝑆𝑀(𝑡) is the relative SM [-], i.e., the soil moisture saturation fraction, 𝑝(𝑡) is the rainfall rate 

[mm/d], 𝑟(𝑡) is the surface runoff rate [mm/d], 𝑒(𝑡) the evaporation rate [mm/d] and 𝑔(𝑡) the 

drainage rate [mm/d]. During rainfall events and unsaturated conditions, evaporation and surface 

runoff rates can be considered negligible (BROCCA ET AL., 2015). Equation (1) can therefore be 

rewritten, by using FAMIGLIETTI AND WOOD (1994) relationship to express the drainage rate, as: 

 𝑝(𝑡) = 𝑍∗ 𝑑𝑆𝑀(𝑡) 𝑑𝑡⁄  +  𝑎 𝑆𝑀(𝑡)𝑏 (2) 

with 𝑍∗ = 𝑍𝑛, 𝑎 [mm/d] is the saturated hydraulic conductivity and 𝑏 [-] is the exponent of the 

Famiglietti and Wood equation. Remotely sensed SM tends to be noisy and it is sensitive to a thin 

topsoil layer (few centimetres). Therefore, the exponential filter approach (WAGNER ET AL., 1999; 

ALBERGEL ET AL., 2008) is applied to satellite SM observations before their use in equation (2). The 

estimation of rainfall is therefore obtained by the knowledge of two consecutive SM measurements 

together with 4 parameters: 𝑍∗, 𝑎, 𝑏 and 𝑇, the time constant of the exponential filter. In its standard 

application, the parameter values are estimated by calibrating SM2RAIN against reference rainfall 

data with similar spatial and temporal resolution, with the objective of minimizing the Root Mean 

Square Error (RMSE). BROCCA ET AL. (2019) introduced also a modified version of the exponential 
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filter, in which the characteristic time length, 𝑇 is decreasing with increasing SM according to a 2-

parameter power law (Brocca et al., 2019). This version allows to slightly improve the obtained 

rainfall performances but increase the number of required parameters. It was therefore discarded for 

the estimation of the parametric relationships, while it was adopted for comparison in chapter 5, in 

order to assess the parameterized SM2RAIN results against the best version of the calibrated 

SM2RAIN. 

Procedure for the parametric relationships 

The methodology used to obtain the four parametric relationships is described here. As a first step, 

1009 points uniformly distributed over the areas covered by rain gauges in Australia, India, Italy and 

US were selected (see Figure 2-1 and BROCCA ET AL., 2019). Each point is representative of an area 

of 25 x 25 km2, and the spacing between the points is around 1 degree. 

 
Figure 2-1: 1009 points grid for the local analysis, uniformly distributed over the areas covered by rain gauges in 

Australia, India, Italy and USA. 
 

Secondly, the climatic and land descriptors selected for this study, describing climatic (rainfall and 

evapotranspiration) and land (soil texture and soil type, SM, soil temperature, topography and 

vegetation cover) characteristics (see chapter 3), were spatially interpolated to the 1009 points. For 
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the time-varying quantities (e.g., rainfall and soil moisture), different statistics were computed for 

each point to obtain the descriptors. Specifically, the daily annual average and the average number of 

rainy days per year was calculated for rainfall, therefore obtaining information about the climatology 

of each point. To obtain them, first the percentage of rainy days (rainfall > 0) and the average rainfall 

were calculated for each day of the year (DOY) using the available years, then the average values 

were calculated to obtain the annual average values. For SM, SM noise, soil temperature and 

evapotranspiration, the mean, median, maximum, minimum, standard deviation and coefficient of 

variation were computed in each point of the selected area. The temporal difference of consecutive 

SM and SM noise measurements was also considered, since the variation of SM is exploited in 

SM2RAIN to obtain rainfall. The mean, median, maximum, minimum, standard deviation and 

coefficient of variation were therefore calculated also over these differences, considering both the 

actual and the absolute values, and just the positive and negative variations, since these should be 

related to different mechanisms of wetting and drying of the soil (e.g., the average value of the 

positive variation of SM, or the maximum of the absolute variation of SM noise). For the elevation, 

the mean and the standard deviation within each pixel was computed; particularly the standard 

deviation of elevation is an indicator of topographic complexity. The latter decreases the accuracy of 

soil moisture retrievals, due to shadowing effects and layover (a distortion that occurs in radar 

imaging when the signal reflected from the top of a tall feature is received by the emitter before the 

one of the base, ULABY ET AL., 1981). 

Thirdly, the potential relationship between the descriptors and each SM2RAIN parameter values was 

analyzed through the Spearman’s correlation index. Spearman’s correlation index was calculated 

between each parameter and each descriptor. In order to obtain the parametric relationships, only the 

descriptors who showed a high absolute value of Spearman’s correlation (greater than 0.6) with the 

related parameter were considered. 
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SM2RAIN parametric relationships were finally obtained through a stepwise non-linear backward 

approach: all the possible additive and multiplicative combinations between the selected descriptors 

were initially used in a multilinear regression algorithm to obtain a first estimation of the relationship. 

An exemplary formula for the combination of n descriptors is here reported: 

 𝑝𝑎𝑟 = 𝛼0 + ∑ 𝛽𝑖𝑑𝑖𝑛𝑖=1 + ∑ ∑ 𝛾𝑖𝑑𝑖𝑑𝑗 + ⋯+ 𝜔 ∏ 𝑑𝑖𝑛𝑖=1𝑛−{𝑖}𝑗=1𝑛𝑖=1  (3) 

where 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 i, and 𝜔 are the coefficients to be estimated and 𝑑i is a descriptor. The procedure was 

repeated iteratively by eliminating, at each step, the less significant factor, until an optimal 

combination of limited number of coefficients (minor or equal to 3) and good performance (drops in 

Spearman’s correlation in comparison with the previous step < 0.015) was reached. It was also 

verified that the Spearman’s correlations between each factor used in the relationship were below 0.2, 

in order to avoid the cross-correlation between the factors used in the parametric relationships. 

Procedure for the parametric relationships validation 

Once obtained the parametric relationships, those were validated by applying them worldwide using 

ASCAT SM data, a satellite derived SM product available from 2007 onward (see chapter 3 for the 

data description). In order to assess the goodness of the obtained results, the parameterized SM2RAIN 

rainfall product was compared with the SM2RAIN-ASCAT rainfall product obtained by calibrating 

SM2RAIN with the standard approach using ERA5 rainfall as reference (see chapter 3 for the data 

description). SM2RAIN-ASCAT was calibrated in the full available period 2013-2019, in order to 

compare the parameterized product with the best possible SM2RAIN version. It has to be noted that 

the standard calibration results presented in this chapter are different from those obtained in BROCCA 

ET AL. (2019) who applied a different filtering approach and the climatology correction based on 

ERA5 (not considered here). Both the SM2RAIN derived rainfall products were compared with a 

benchmark dataset and by using TC (section 2.3). All the products involved in the validation were re-

gridded to ASCAT grid (12.5km spacing), using the weighted average of the overlapping areas for 

datasets with a spatial resolution finer than 25 km and the weighted average of the four nearest pixels 
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for the remaining datasets. SM2RAIN method is applicable everywhere, but the reliability of the 

estimated rainfall depends on the reliability of the estimated SM. This excludes all the areas with high 

vegetation regime, where C-band microwave measurements cannot reach the soil, coastal areas, 

wetlands, topographically complex areas, region characterized by subsurface scattering (MORRISON 

ET AL., 2019), and frozen or snow cover terrains (HAHN ET AL., 2018). It was therefore defined a 

committed area with high confidence in the successful retrieval of surface soil moisture from ASCAT 

by excluding the aforementioned categories. The committed area is obtained from the EUMETSAT 

H SAF product validation report (HAHN ET AL., 2018).  
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2.2 River discharge estimation from Near-InfraRed data: CM approach 

________________________________________________________________________________ 

This section describes the method to obtain river discharge from NIR data, the CM approach. 
Following the original method explanation, the concepts behind the approach development will be 
illustrated, and finally the new formulation will be given. This section is based on a preprint of the 
following publication, submitted to Remote Sensing of Environment: 

 

Filippucci, P., Brocca, L., Bonafoni, S., Saltalippi, C., Wagner, W., and Tarpanelli, A.: Sentinel-2 
high-resolution data for river discharge monitoring, submitted to Remote Sensing of Environment, 
2021. 

________________________________________________________________________________ 
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Original CM approach adapter to S2 data 

TARPANELLI ET AL. (2013) developed an approach applied to estimate river discharge from 

reflectance data based on the different response of water and soil to radiation in the NIR band. In this 

region of the electromagnetic spectrum, the reflectance of soil and vegetation is much greater than 

that of pure water. Therefore, the reflectance of a “wet” pixel, located near the boundaries of the river, 

changes with the river discharge variation and, specifically, it decreases when river discharge 

increases and the pixel is flooded. Changes in reflectances are not caused only by changes in river 

discharge, but could be also related to other sources, such as vegetation, atmosphere composition, 

soil moisture variations and bidirectional reflectance effects, not negligible over water bodies 

(KREMEZI AND KARATHANASSI, 2019). A “dry” pixel not affected by river discharge variation is 

then selected to correct the measure, assuming to be affected by the same sources of noise, as 

mentioned above. By defining the “dry” pixel as Calibration (𝐶) pixel and the “wet” pixel as 

Measurement (𝑀) pixel, it is possible to obtain a proxy of river discharge by calculating the NIR 

reflectance ratio 𝐶/𝑀. The ratio is then filtered with an exponential filter (WAGNER ET AL., 1999) 

to reduce the effect of residual noises. The locations of 𝐶 and 𝑀 are generally calibrated by calculating 

all the possible combinations of the reflectance ratio 𝐶/𝑀 on a certain area in the vicinity of the 

gauged stations and comparing each single combination with the in-situ measurements of river 

discharge. The reflectance ratio providing the highest correlation defines the best location for 𝑀 and 𝐶 (see TARPANELLI ET AL., 2013 for details).  

The passage from medium to high spatial resolution images requires several adjustments. The first is 

related to the sensitivity to cloud of the NIR band. The solution adopted by TARPANELLI ET AL. 

(2013) for the medium resolution product consisted in eliminating all the images affected by clouds. 

In this work, instead, the S2 cloud probability product is used to mask each image’s pixels with a 

probability greater than 50% of being cloudy in each S2 image. The threshold of 50% was chosen by 

noting that in the selected areas the cloud detection algorithm may occasionally confuse river pixels 

with clouds and assign them a high cloud probability value. A visual inspection of each NIR images 
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was carried out to verify the chosen threshold and to discard those in which the river is not clearly 

visible, i.e., in case of failure of the cloud detection algorithm or in case of too few valid pixels in the 

image.  

The cloud masking has the side effect to replace clouds with “holes” of no-data in each image. The 

selection of a single pixel for 𝐶, as in the original formulation, should be therefore avoided in order 

to prevent the loss of data in case a cloud appears over the selected “dry” pixel. Following 

TARPANELLI ET AL. (2017A), the 𝐶 timeseries is defined as the average reflectance value of the 

pixels that have a low temporal coefficient of variation (specifically lower than 5th percentile) with 

respect to all the pixels of the selected area.  

Regarding the 𝑀 pixel, as previously noticed, it should be selected over the river boundaries, since 

this area is the interface between water and soil and it is particularly sensitive to river discharge 

variations. The selection is constrained to an extended water mask that includes the river and a buffer 

around it. The European Commission's Joint Research Centre (JRC) Global Surface Water map 

(PEKEL ET AL., 2016) was used to identify the extended area and a buffer of 3 pixels is used to 

enlarge the area. To assess the best location for 𝑀, each pixel within this extended water mask was 

selected to calculate the ratio 𝐶/𝑀 (except the pixel already selected for the calculation of 𝐶 if any 

are included in the water mask). Then, the exponential filter was applied, using a value of the filter 𝑇 

parameter equal to 5, which is the median number of days between two consecutive acquisitions of 

S2 images. The Spearman’s correlation between the observed river discharge and the obtained filtered 𝐶/𝑀 series was then calculated, as shown in Figure 2-2b for Pontelagoscuro station. By comparing 

Figure 2-2a with Figure 2-2b, it is evident that the highest correlations for the 𝑀 pixel coincide with 

the sediment deposit not vegetated near the river bank.  
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Figure 2-2: Po River at Pontelagoscuro station. Panel a) represents the location of the area from Google Earth Copyright 

©2021, CNES / Airbus, European Space Imaging, Landsat / Copernicus, Maxar Technologies). Panel b) shows 
Spearman’s correlation between filtered C/M and the ground observed river discharge, obtained varying the 

location of pixel M and fixing C as the average of the pixels with coefficient of variation lower than 5th percentile 
calculated between January 2018 - September 2019. 

 

Modifications of CM approach  

The expected benefits of the use of satellite imagery at high spatial resolution consist in the possibility 

to observe and account for aspects of river discharge estimation that are not clearly observable from 

lower resolution products. In this analysis, two main factors were considered to improve the 𝐶𝑀 

approach: the presence of sediments in the water and the selection of multiple pixels for 𝑀. In order 

to better observe these phenomena, the analysis was carried out in a smaller area of the Po River 

(Figure 2-3a), within the coordinates [11.588 °E, 11.605 °E, 44.887 °N, 44.9 °N], in the period 

January 2018-September 2019. 

The reflectance of clear water in the NIR band is very close to zero, but the reflectance of the river 

generally appears to be different from zero, although it remains low compared to soil or vegetation. 
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During high flows, rainfall events mobilize large amounts of fine sediment into river systems 

(KEESSTRA ET AL., 2019), which contribute to the suspended sediment loads in the river and thus to 

increase the reflectance (AHN AND PARK., 2020). In these cases, the expected decrease in 𝑀 pixel 

reflectance due to inundation is hindered by the reflectance increase caused by the change in 

suspended sediments in the river. As a consequence, the ratio 𝐶/𝑀 fails in high flow estimation, when 

the measure is most useful. This phenomenon is clearly visible in Figure 2-4a, where the hydrograph 

of the river discharge at Pontelagoscuro during the flood event of October-November 2018 is shown 

along with the ratio 𝐶/𝑀 calculated by selecting 𝑀 as a single pixel, for which the Spearman’s 

correlation with the observed discharge is the highest (see the location of 𝑀 in Figure 2-3b). By the 

observation of two images acquired before and in concomitance with the flood event (Figures 2-4b, 

2-4c), the river becomes larger and strongly turbid, increasing its reflectance up to values very close 

to the surrounding soils (see Figure 2-4c). During and after the flood event, the suspended sediments 

decrease due to the catchment sediment dynamic (KEESSTRA ET AL., 2019; GENTILE ET AL., 2010) 

that is different from the river discharge dynamic. Consequently, 𝑀 decreases and the ratio 𝐶/𝑀 increases (see Figure 2-4a), leading therefore to the late detecting of the inundation. In order to 

correct the problem, particularly important during the hydrograph rising limb, a correction should be 

introduced in the formulation taking into account the role of the suspended sediments. 

Another important aspect is strongly related to the pixel dimension of S2. Due to the high frequency 

of the NIR electromagnetic waves and to the water absorption properties in this band, the penetration 

depth of the NIR radiation into water is in the order of a few centimetres. A completely flooded pixel 

would therefore lose its sensitivity to the water level increasing and thus, to the river discharge 

variation. A single pixel of S2 is too small to account for the variation of the river discharge over the 

study area because the width of the river during a flood event is much larger than the dimension of a 

single S2 pixel (compare Figure 2-4b and 2-4c for the Po River width variation). Indeed, by looking 

at Figure 2-4a, the 𝐶/𝑀 ratio obtained from the maximum correlated pixel shows a limited variability 
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during the low flow from July to October 2018, being the chosen 𝑀 pixel located over completely 

dry soil. In the high-resolution product analysis, the single pixel can be affected by both long period 

of dry condition (with reflectance very similar to the soil) alternated with period of saturated 

conditions (with reflectance very similar to the water inside the river). The flow variation signal, in 

such case, appears only when the chosen pixel rapidly changes its condition from dry to wet and 

cannot be used to properly represent the comprehensive river discharge variation.  

 
Figure 2-3: Po River at Pontelagoscuro station. Panel a) represents the area from Google Earth (Copyright ©2021 

Immagini ©2021, CNES / Airbus, Maxar Technologies). Panels b), c) and d) show Spearman’s correlation 
between filtered C/M and the ground observed total discharge (b), discharge below the 50th percentile (c), high 

discharge above the 50th percentile (d). The red circles in panels b, c, d represent the position of the M pixel where 
the Spearman’s correlation with the ground-based observations is highest. 

 

This is confirmed by the location of the pixel that is maximum correlated with the ground observed 

river discharge: if we consider the ground observed river discharges below the threshold of 50th 

percentile (around 1000 m3/s in the selected period), the highest Spearman’s correlations are obtained 

more internally into the river, as shown in Figure 2-3c. If we consider instead high flows, above the 

threshold of 50th percentile, the Spearman’s correlations are higher in the external area (Figure 2-

3d). Based on these considerations, the choice of a single pixel for all the river conditions is not 
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advisable: 𝑀 should be based on multiple pixels, chosen so as to take into account nearly all the river 

regimes.  

 
Figure 2-4: Po River at Pontelagoscuro station. Panel a) shows the hydrograph of the river discharge and the C/M ratio 

calculated for the analyzed area. The circles on the temporal series represent the days when the satellite 
overpasses. Panel b) and c) show the S2 reflectance images before and during the October-November 2018 flood 

event, respectively. The red squares in the panels b and c represent the position of the M pixel, where the 
Spearman’s correlation with the ground-based observation is the highest. 

 

A new formulation for the CM approach 

Following the considerations described in the previous paragraph, two main modifications of the 𝐶𝑀 

approach are required: the management of suspended sediments effect and the use of multiple pixels 

for 𝑀 selection. 

The role of suspended sediments is important for a correct evaluation of the reflectance of the 𝑀 pixel. 

As already specified, the reflectance of 𝑀 during high flows should decrease, therefore its value has 

to be corrected by the presence of suspended sediments that make the water turbid and increase its 

reflectance. The reflectance of the turbid water can be obtained by averaging multiple water pixels, 𝑊, located over a region of the river constantly wet (inner part of the river, with water always present, 
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also during low flows). Assuming 𝑊 reflectance as a proxy of the presence of suspended sediments, 𝑀 should vary between 𝐶 for low flows (dry conditions) and 𝑊 for high flows (wet conditions).  

 The original 𝐶𝑀 approach for the estimation of the river discharge, Q, assumed as: 

 𝑄 ∝  𝐶𝑀 =  𝐶𝑀 (4) 

can be then reformulated as: 

 𝑄 ∝ 𝐶𝑀𝑊 = 𝑪𝑴−𝑾+𝒛  (5) 

where 𝑧 is a numerical coefficient: in condition of high flow, 𝑀 an𝑑 𝑊 are in fact very close each 

other and any noise within their measurements can cause their difference being lower than 0. 

Furthermore, in case the selected 𝑀 pixel become completely flooded, the condition of 𝑀 = 𝑊 would 

be verified and the 𝐶𝑀𝑊 ratio tends to infinity. For both these reasons, we introduced 𝑧 as  

 𝑧 =  max  (𝑊 −  𝑀) + min (𝑀)  (6) 

𝑊 pixels have to be selected within the river. This condition can be ensured by considering only the 

pixels included within a water mask, and by calculating, for each pixel, the product between the 

temporal mean of the reflectance (the lower, the more probable presence of water) and its temporal 

standard deviation (the lower, the less variation occurs in the pixel), in order to identify the pixels 

where water is always present. The 𝑊 reflectance of Eq. (5) was then calculated by averaging the 

NIR reflectance of the pixels, for which the product above defined was below the 5th percentile. 

The timeseries of 𝑀 should be obtained by averaging reflectances from multiple pixels located in an 

area within the water mask that is particularly sensitive to variation in river discharge. In this analysis, 

we investigated several configurations to analyze the best strategy: 1) single pixel; 2) 3x3 pixels; 3) 

9x9 pixels; 4) multiple pixels. In particular, configuration 1) was investigated to be compared to the 

original formulation. Configurations 2) and 3) were investigated to identify possible improvements 

in the evaluation of multiple pixels. Finally, configuration 4) was included for the purpose of not 
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calibrating the location of the M pixels with the ground observed discharge timeseries, but to approach 

an automated procedure to select an area or a set of pixels that is particularly suitable for describing 

the river discharge range variation. This area was identified following the concept that the NIR 

reflectance of pixels part of it should be uncorrelated with 𝑊 or/and 𝐶 reflectance timeseries. 

Specifically, pixels sensitive to low flow should be poorly correlated with 𝐶 (because they are 

inundated most of the time), while those sensitive to high flow should be poorly correlated with 𝑊 

(because they are dry most of the time). Therefore, the condition that a pixel has to meet for being 

selected as one of the optimal 𝑀 pixels is a very low Spearman’s correlation in reflectance with the 

pixels of 𝑊 or 𝐶 (lower than the 10th percentile). In addition, to avoid selecting permanently flooded 

pixels (because they are poorly correlated with 𝐶), the Spearman’s correlation with 𝑊 must be less 

than 0.7.  

Summing up, the new procedure to estimate river discharge from high-resolution NIR reflectance 

data consists into the following steps (see also Figure 2-5): 

1. The water mask is delineated through the “max extent” from JRC Global Surface Water map by 

considering a buffer of 3 pixels around each pixel of the water map; 

2. each image where the field “percentage of cloudy pixels” of the S2 product indicates a percentage 

of cloudy pixels greater than 70% is directly discarded and each image’s pixels in which the cloud 

probability is greater than 50% is masked out. Furthermore, the images with less than the 20% 

(empiric threshold) of valid pixels over the extended water mask are also discarded;  

3. the 𝐶 timeseries is calculated by averaging the reflectance of those pixels showing a temporal 

coefficient of variation lower than the 5th percentile; 

4. the 𝑊 timeseries is calculated by averaging the reflectance of those pixels, included in the water 

mask (step 3), whose product between temporal mean and temporal standard deviation of reflectance 

values is below the 5th percentile; 
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Figure 2-5: Flowchart of the CMW approach 

 

5. the 𝑀 timeseries is obtained by considering the four configurations mentioned above. In the first three 

configurations, each pixel within the water mask (step 3) is used to calculate the ratio 𝐶𝑀𝑊 according to 

Eq. 5: in the case of configuration 1, the analyzed timeseries coincide with those of S2 data, whereas for 

configuration 2 and 3 each pixel value is resampled with a moving average spatial window of 3x3 pixels and 

9x9 pixels, respectively. The pixel where the Spearman’s correlation between 𝐶𝑀𝑊 and the ground 
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observed discharge is maximized, is selected as 𝑀 pixel. Alternatively, for configuration 4, multiple pixels 

in the water mask having Spearman’s correlation with 𝑊 or 𝐶 below the 10th percentile and with 𝑊 below 

the value of 0.7 are selected and averaged.  

6. 𝐶, 𝑊 and 𝑀 are used to calculate 𝐶𝑀𝑊 index, which is then filtered through the exponential smoothing 

function with 𝑇 equal to 5 days.  

In order to compare the improvements of the new 𝐶𝑀𝑊 approach, the 𝐶𝑀 approach was also tested, 

following the same steps except for the 4th, because the 𝑊 is not needed in the 𝐶𝑀 approach, and 

replacing 𝐶𝑀𝑊 index by 𝐶/𝑀 ratio in the step 5. 

Finally, the estimation of the river discharge from 𝐶𝑀𝑊 or 𝐶𝑀 was performed by a fitting function 

(cubic function) described for 𝐶𝑀𝑊 as: 

 𝑄𝑒 = 𝑎 + 𝑏 ∙ 𝐶𝑀𝑊 + 𝑐 ∙ (𝐶𝑀𝑊 + 𝑑)3  (7) 

where 𝑄𝑒 is the estimated river discharge, a, b, c and d are parameters, with b and c being positive so 

as to ensure the monotonicity of the function. 
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2.3 Performance evaluation 

________________________________________________________________________________ 

This section illustrates the technique adopted to assess the performance of the estimated products of 
rainfall and river discharge. Specifically, the classical performance indices used to assess both rainfall 
and river discharge are initially discussed, following by the categorical indices and triple collocation 
method used to evaluate the rainfall performances and the fitting function and Nash-Sutcliffe index 
applied for the estimated river discharge assessment. The section is based on the following 
publication, published by Journal of Hydrology: 

 

Filippucci, P., Brocca, L., Massari, C., Saltalippi, C., Wagner, W., and Tarpanelli, A.: Toward a self-
calibrated and independent SM2RAIN rainfall product, Journal of Hydrology, 603(A), 126837, doi: 
10.1016/j.jhydrol.2021.126837, 2021. 

 

and on a preprint of the following publication, submitted to Remote Sensing of Environment: 

 

Filippucci, P., Brocca, L., Bonafoni, S., Saltalippi, C., Wagner, W., and Tarpanelli, A.: Sentinel-2 
high-resolution data for river discharge monitoring, submitted to Remote Sensing of Environment, 
2021. 

________________________________________________________________________________ 
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Classical Performance scores 

Continuous metrics were applied to compare the estimated variables of rainfall and river discharge to 

the with the dataset taken as the 'standard' or to the observed data. In particular: 

Linear Pearson’s correlation (R): Pearson’s correlation is the most common way to characterize 

statistical dependency between two datasets. It can be obtained from the ratio between the 

covariance of two dataset and the product of their standard deviation. It varies between -1 and +1, 

where -1 means negative linear relationship, +1 means positive linear relationship and 0 means no 

statistical dependency. 

Spearman's correlation (S): Spearman’s correlation is another common way to characterize 

statistical dependency between two datasets. While Pearson’s correlation assesses linear 

relationships, Spearman’s correlation assesses monotonic relationships. It can be obtained from 

the ratio between the rank covariance of two dataset and the product of their standard deviation. It 

also varies between -1 and +1, where -1 means negative monotonic relationship, +1 means positive 

monotonic relationship and 0 means no statistical dependency. 

Relative BIAS (BIASr): Relative BIAS index can be calculated as the mean difference between 

two datasets, divided by the mean value of the reference dataset. It describes whether there is a 

systematic over or under-estimation with respect to the reference data. In this thesis the difference 

is performed between the estimated and the observed variable. Therefore, negative BIAS values 

mean that the product underestimates the analyzed quantity, while positive BIAS values indicate 

overestimation. 

Root Mean Square Error (RMSE) and Relative Root Mean Square Error (RMSEr): Root mean 

square error (RMSE) can be calculated as the average deviation between single measurements of 

two datasets. It comprehends three sources of error: decorrelation, BIAS and random error. It 

should be noted that, since there is no “true” measure of a quantity, RMSE reliability strongly 
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depends from the reference dataset accuracy. Relative RMSE (RMSEr) is obtained dividing RMSE 

by the mean value of the reference dataset. 

Rainfall performances 

In order to estimate the performance of rainfall, two methods were applied: the categorical indices 

analysis and the TC method.  

Categorical indices were computed to measure the performances in detecting rainfall for different 

rainfall classes. Five classes were selected, dividing the rainfall events in those greater than the 10th, 

the 30th, the 50th, the 70th and the 90th percentile for each point of the grid. The categorical indices 

were calculated for each of those classes. Naming 𝐻 the number of successfully predicted events, 𝐹 

the number of falsely detected events and 𝑀 the number of missed events, we can define: 

False Alarm Ratio (FAR) refers to the fraction of erroneously detected events for each class. The 

optimum value is 0.  

𝐹𝐴𝑅 = 𝐹 (𝐻 + 𝐹)⁄  (8) 

Probability Of Detection (POD) refers to the fraction of correctly predicted events for each class. 

The optimum value is 1. 

𝑃𝑂𝐷 = 𝐻 (𝐻 + 𝑀)⁄  (9) 

Threat Score (TS) is an integrated measure of the overall performances, giving the fraction of 

successfully detected events over the total missed and detected events for each class. The optimum 

value is 1. 

𝑇𝑆 = 𝐻 (𝐻 + 𝐹 + 𝑀)⁄  (10) 

The classical methods described above permit to assess the similarities between the analyzed dataset 

and a reference one. Therefore, the performances reliability is dependent on the accuracy of the 
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reference, but since no dataset has zero-error measurement (VILLARINI ET AL., 2008), not even 

gauges (PETERSON ET AL., 1998; KIDD ET AL., 2017) the obtained performances are subjected to 

error. TC method, instead, permits the assessment of uncertainties of three different products against 

an unknown true reference. Here a brief explanation of the theory behind the method is presented. 

For further information, the reader is referred to MASSARI ET AL. (2017) and STOFFELEN (1998). 

Each measure related to a quantity is characterized by both a random and a systematic error: 

𝑋 = 𝛼𝑋 + 𝛽𝑋𝜃 + 𝜀𝑋  (11) 

where 𝑋 is the measure, 𝜃 is the unknown truth, 𝜀𝑋 the random error and 𝛼𝑋 and 𝛽𝑋 are respectively 

the additive and multiplicative component of the systematic error. Taking into consideration three 

different datasets whose errors are uncorrelated, the random error of each dataset can be considered 

Gaussian distributed with zero mean. The error variance of each dataset can therefore be written as 

(MCCOLL ET AL., 2014): 

𝜎𝜀 =
[  
   
 √𝑉11 − 𝑉12𝑉13 𝑉23⁄  √𝑉22 − 𝑉12𝑉23 𝑉13⁄  √𝑉33 − 𝑉13𝑉23 𝑉12⁄  ]  

   
 
  (12) 

where 𝑉𝑖𝑗 is the covariance between the dataset 𝑖 and 𝑗. McColl underlined that, although gaussianity 

ensures that the RMSE is well descripted and assists in the interpretation, Gaussian data are not 

required for the TC, as it is often applied to non-Gaussian data such as SM. By using the definitions 

of correlation and covariance, it can be derived: 

𝑅𝑇𝐶 =
[  
   
 √𝑉12𝑉13 𝑉11𝑉23⁄  √𝑉12𝑉23 𝑉22𝑉13⁄  √𝑉13𝑉23 𝑉33𝑉12⁄  ]  

   
 
 (13) 
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𝑅𝑇𝐶 is the TC correlation against the unknown truth. This measure should not be taken as an absolute 

measure but as a relative measure between the three datasets.  

River discharge performances 

Regarding the river discharge performance scores, the coefficients of correlation of Spearman, S, and 

Pearson, R, were calculated between the 𝐶𝑀𝑊 or 𝐶𝑀 timeseries and the ground observations of river 

discharge. Three performance scores were instead computed to quantify the error in the final 

estimation of the river discharge: i) the Root Mean Square Error (RMSE), ii) the relative RMSE 

(rRMSE) and iii) the Nash-Sutcliffe efficiency, NS. 

Nash Sutcliffe (NS): the Nash–Sutcliffe model efficiency coefficient is an index designed 

specifically for hydrological model assessment (NASH AND SUTCLIFFE, 1970). It can be 

calculated by the following equation 

 𝑁𝑆 = 1 − ∑ (𝑄𝑡−𝑄𝑒𝑡)2𝑇𝑡=1∑ (𝑄𝑡−�̅�)2𝑇𝑡=1   (14) 

Where 𝑄𝑡 is the observed river discharge at time t, �̅� is its average and 𝑄𝑒𝑡 the estimated river 

discharge at time t. In case of perfect model without estimation errors, the NS is equal to 0.  
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________________________________________ 

3. DEVELOPMENT OF THE PARAMETERIZED SM2RAIN 

________________________________________ 

 

In order to use SM2RAIN algorithm for rainfall estimation, four parameters need to be calibrated. 
This chapter propose a methodology to avoid this step, by developing four parametric relationships 
that link each SM2RAIN parameter to some descriptors of the pixel. Specifically, several datasets of 
land and climatic were downloaded, resulting in considering more than 50 potential descriptors in 
this analysis. A two-phases methodology was adopted to identify the best relationships: first the 
descriptors better related to each SM2RAIN parameter were identified, by the use of the Spearman’s 
correlation index. Then a stepwise non-linear backward approach was applied to obtain the desired 
relationships. The four parametric equations were then applied worldwide in order to validate them. 
The resulting rainfall product was then compared with the one obtained by calibrating SM2RAIN 
and with another satellite derived rainfall product GPM-FR, through the use of classical performance 
scores such as Pearson and Spearman’s correlation, RMSE and the categorical indexes, FAR, POD 
and TS. Finally, Triple Collocation was applied to assess the capability in rainfall estimation of the 
parameterized SM2RAIN product against an unknown true reference.  

________________________________________ 

________________________________________________________________________________ 

This chapter is based on the following publication, published by Journal of Hydrology: 

 

Filippucci, P., Brocca, L., Massari, C., Saltalippi, C., Wagner, W., and Tarpanelli, A.: Toward a self-
calibrated and independent SM2RAIN rainfall product, Journal of Hydrology, 603(A), 126837, doi: 
10.1016/j.jhydrol.2021.126837, 2021 

________________________________________________________________________________ 
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3.1 Data  

Multiple descriptors are considered for the estimation of SM2RAIN algorithm parameters values 

through a regression-based regionalization approach (JAKEMAN ET AL., 1992; POST AND 

JAKEMAN, 1999; SEFTON AND HOWARTH, 1998; SEIBERT, 1999; WAGENER ET AL., 2004): 

several datasets are selected describing climatic (rainfall and evapotranspiration) and land (soil 

texture and soil type, SM, soil temperature, topography and vegetation cover) characteristics. The 

datasets were chosen for different reasons, including their relation with soil state and their availability 

worldwide. In the following, the datasets description is provided (see Table 3-1). 

Climatic data 

Regional rainfall datasets 

Regional gauge-derived rainfall datasets were collected for the 1009 points uniformly distributed 

(0.25-degree resolution) over the areas covered by rain gauges in Australia, Italy, US and India 

(Figure 2-1). The regional rainfall datasets are used as reference for SM2RAIN calibration at the 

points for which the parametric relationships are developed. For each region of the study area, the 

data are collected for the period 2013-2017. In particular: 

• The Australian Water Availability Project (AWAP) rainfall product was downloaded for the 

Australia region. This gridded dataset is obtained from the interpolation of daily 

measurements of the Australian Bureau of Meteorology rain gauge network, performed by 

using an optimized Barnes successive correction technique. Its spatial resolution is about 5 

km (0.05-degree) with a daily temporal resolution.  

• The rainfall dataset of the Italian Civil Protection Department (ITA - DPC) is an interpolation 

of more than 3000 rain gauges distributed over the Italian territory. The interpolation is carried 

out using the Random Generator of Space Interpolations from Uncertain Observations  
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Table 3-1: description of the dataset downloaded and processed but not selected for the derivation of SM2RAIN 
parametric relationships 

VARIABLE SOURCE TEMPORAL 
RESOLUTION 

SPATIAL 
SAMPLING ADDITIONAL INFORMATION 

Soil Temperature 
(0-7 cm) ERA5 Land 1 h 0.1° https://www.ecmwf.int/en/era5-land 

Evapotranspiration ERA5 1 h 0.25° https://www.ecmwf.int/en/era5 

Rainfall ERA5 1 h 0.25° https://www.ecmwf.int/en/era5 

Rainfall IMERG Late 
Run 0.5 h 0.1° https://gpm.nasa.gov/data/directory 

Rainfall IMERG 
Final Run 0.5 h 0.1° https://gpm.nasa.gov/data/directory 

Rainfall GPCC 1 d 1° Schamm et al. (2014) 

Rainfall AWAP 1 d 0.05° http://www.bom.gov.au/jsp/awap/rain/ 
index.jsp 

Rainfall IMD 1 d 0.25° http://www.imd.gov.in/pages/service_ 
hydromet.php 

Rainfall CPC 1 d 0.25° https://psl.noaa.gov/data/gridded/data. 
unified.daily.conus.html 

Rainfall ITA-DPC 1 d 0.1° Ciabatta et al. (2017) 

Soil Composition 
Data HWSD / ~0.008° http://www.fao.org/land-water/databases-

and-software/hwsd/en/ 

Soil Moisture ASCAT ~12 h ~0.125° Wagner et al. (2013) 

Soil Moisture  
(0-7 cm) ERA5 Land 1 h 0.1° https://www.ecmwf.int/en/era5-land 

Topography ETOPO5 / ~0.08° https://www.ngdc.noaa.gov/mgg/global/et
opo5.HTML 

Vegetation 
Continuous Fields VCF5KYR / 0.05° https://lpdaac.usgs.gov/products/vcf5kyrv

001/ 
 

 (GRISO, PIGNONE ET AL., 2010) algorithm to spatially interpolate the measurements on a 

grid with about 10 km (0.1-degree) spatial resolution and aggregating the hourly data to the 

daily time step. 

• For the US region, the National Oceanic and Atmospheric Administration Climate Prediction 

Center (NOAA CPC) Daily US UNIFIED Precipitation was downloaded. This rainfall 

product is characterized by an improved quality obtained by combining all information 

sources available at CPC and by taking advantage of the optimal interpolation (OI) objective 

analysis technique (XIE ET AL., 2007). Its spatial resolution is about 25 km (0.25-degree) 

with a daily temporal resolution. 
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• India region daily rainfall was obtained by downloading the India Meteorological Department 

(IMD) gridded dataset. This product combines daily rainfall data from 6955 gauges, using the 

Shepard method (PAI ET AL., 2014) to interpolate them, and it is characterized by a spatial 

resolution of about 25 km (0.25-degree). 

The mentioned datasets were all temporally interpolated from their local time to 00:00 UTC, 

accepting the resulting uncertainty to obtain regular time spacing, in order to simplify the 

intercomparison with satellite-derived products (available at 00:00 UTC). 

Global Rainfall datasets 

Different global rainfall datasets were downloaded to obtain and validate the new SM2RAIN-ASCAT 

parameterized rainfall product, for the period 2013-2019: 

• GPCC rainfall product (First Guess) is obtained from ~7000 quality-controlled stations all 

over the world (SCHAMM ET AL., 2014). Its spatial resolution is 1 degree, with a daily 

temporal resolution. Since it is based on ground observation, the accuracy of the dataset is 

greater over region with high gauge density, i.e., Europe and US. 

• The IMERG algorithm estimates precipitation over the majority of Earth's surface by inter-

calibrating the available Passive Microwave satellite precipitation estimates to the Combined 

Radar-Radiometer precipitation estimates from the GPM mission Core Observatory (GPM-

CO) and then by merging and interpolating together these estimates with other precipitation 

estimates from infrared geostationary sensors (HUFFMAN ET AL., 2020). Morphing and 

Kalman filtering interpolation are used to provide the precipitation estimate if no valid 

microwave data are available. The resulting product spatial resolution is 0.1-degrees, and the 

temporal resolution is 30 minutes. Three Runs of IMERG are available to the users, based on 

increasing latency and accuracy: Early Run (IMERG-ER; latency of 4–6 h after observation), 

Late Run (IMERG-LR; latency 12–18 h) and Final Run (IMERG-FR; latency of about 3 
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months). Final Run V06 product, with a monthly adjustment based on GPCC, and Late Run 

V06 product, are used here. In this study, the 30 minutes rainfall data were accumulated to 

obtain daily precipitation estimates. 

• ECMWF Reanalysis 5th Generation (ERA5) provide hourly data of various global 

atmosphere, land surface and sea-state variables, combining models with observations. It was 

developed within the Copernicus program Climate Change Service (C3S) and it replaces the 

previous ERA-interim reanalysis product. Its spatial resolution is around 36 km, resampled 

on a regular 0.25-degree grid, and the temporal resolution is 1-hour (HERSBACH ET AL., 

2020). The hourly rainfall was calculated by subtracting the snowfall fraction to the total 

precipitation and accumulated to daily scale in this study. 

Evapotranspiration 

Hourly evapotranspiration data from ERA5 were obtained for each point of the study area. The hourly 

data were accumulated on windows of 12 hours centred at 00:00 UTC and 12:00 UTC, to obtain a 

temporal resolution aligned with the SM datasets (12 hours spacing). 

Land data 

Satellite Soil Moisture and Soil Moisture Noise 

Advanced SCATterometer (ASCAT) is an active microwave sensor onboard of MetOp-A (launched 

19/10/2006), MetOp-B (launched 17/09/2012) and MetOp-C (launched 07/11/2018) satellites. It uses 

two sets of three vertically polarized antennae, one on each side of the satellite ground track, and it 

senses backscatter radiation at 5.255 GHz (C-band). The sensor was originally developed to sense 

wind speed over oceans, but it turned out to be also sensitive to the amount of water in the soil, leading 

to the development of one of the longest satellite SM products available nowadays (from 2007 

onward). ASCAT retrievals have a spatial resolution of 25 km, sampled at 12.5 km (~0.125°). 

Relative SM estimates and their related noise were downloaded from the EUMETSAT Satellite 
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Application Facility on Support to Operational Hydrology and Water Management (H SAF) H115 

and H116 products for the period 2013-2019. In these years, the contemporary availability of the 

satellites MetOp-A and B permitted a sub-daily temporal resolution over most of the Earth (WAGNER 

ET AL., 2013). When the surface state was indicated as frozen, SM estimates were discarded. ASCAT 

measurements were linearly interpolated every 12 hours, to obtain regular time spacing. If no data 

were found within 5 days, each datum in the interval was set to Not a Number (NaN). 

Modelled Soil Moisture 

Hourly SM in the first soil layer (0 - 7 cm) of the ECMWF Integrated Forecasting System data from 

ERA5-Land were downloaded for the analysis period. ERA5-Land was produced by regridding the 

land component of the ECMWF ERA5 climate reanalysis with a finer spatial resolution (0.1-degree). 

SM was subsampled every 12 hours to obtain the same temporal resolution of ASCAT data. 

Topographic data 

Elevation data from Earth topography 5 arc minute (ETOPO5) were downloaded. Although this 

Digital Elevation Model (DEM) is available on a regular grid of 5 -minutes (~0.08°), the resolution 

of the source data base varies from 5-minute for the ocean floors, USA, Europe, Japan and Australia 

to 1 degree in data-deficient parts of Asia, South America, northern Canada and Africa. 

Soil Temperature  

Soil Temperature data in the first soil layer (0 - 7 cm) of the ECMWF Integrated Forecasting System 

data from ERA5-Land were downloaded for the analysis period. The hourly data were subsampled 

every 12 hours to match the temporal resolution of ASCAT data. 

Soil Composition Data 

The Harmonized World Soil Database v1.2 (WIEDER ET AL., 2014) contains worldwide soil 

composition information derived from regional and national data. Several soil parameters were 

downloaded for this analysis for the nominal year of 2000, including soil depth, sand-silt-clay 
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fraction, reference soil depth, carbon content and bulk density, at a spatial resolution of 5 arcminutes 

(~0.08°). 

Vegetation Continuous field 

Global fractional vegetation cover data VCF5KYRv001 was downloaded from NASA Making Earth 

System Data Records for Use in Research Environments (MEaSUREs). The dataset relative to the 

nominal year of 2015 was downloaded, containing information of tree cover vegetation, bare ground 

and non-tree cover vegetation area percentage, with a spatial resolution of 0.05°. 

All the data were resampled to ASCAT grid in order to allow their intercomparison. The chosen 

interpolation method consists in the nearest neighbour technique for evapotranspiration data, 

weighted average of the overlapping areas for datasets with a spatial resolution finer than 25 km and 

weighted average of the four nearest pixels for the remaining datasets. 

3.2 Descriptors selection 

The objective of this chapter is to find and validate four parametric relationships to estimate the 

SM2RAIN algorithm parameters values from climatic and land descriptors readily available 

worldwide. Through these relationships, SM2RAIN can be easily applied without the need of a 

reference rainfall dataset. By using the 1009 points, a local analysis was performed to find the 

parametric relationships formulation. 

The number of potential descriptors obtained from soil data, vegetation continuous field, topography 

data and the statistic of time-varying quantities, exceed 50. Spearman’s correlation values between 

each of them and SM2RAIN parameters were therefore calculated, in order to reduce the number of 

descriptors, by selecting for each parameter the quantities that are better related to it. An example of 

the procedure can be found in Figure 3-1, where three scatter density plots between the parameter 𝑍∗ 

and three representative descriptors are shown. In the example, it can be seen how the soil water 

storage capacity values, obtained from the Harmonized World Soil Database, does not show 
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significant correlation with the 𝑍∗ parameter (Figure 3-1c), contrary to the expectation. Greater 

absolute values of Spearman’s correlation were obtained from the annual average daily rainfall 

(Figure 3-1a) and the standard deviation of the soil temperature (Figure 3-1b), with the latter showing 

an inverse relationship with the analyzed parameter. 

 
Figure 3-1: Example of the descriptors selection procedure. In the three panels is shown a scatter density plot of Z* 

parameter distribution with respect to the annual average daily rainfall (a), the standard deviation of the soil 
temperature (b) and the s 

These two descriptors were therefore selected to be used in the multilinear regression algorithm, while 

the soil water storage capacity was discarded (note that the standard deviation of soil temperature was 

discarded in the successive step). For the sake of brevity, neither the details of the descriptors 

selection, nor every iteration of the stepwise non-linear backward regression is described here, but 

the final relationships are directly shown. At the end of the procedure, most of the analyzed 

descriptors were discarded: the descriptors who resulted more significant for SM2RAIN parameters 

estimation were only those related to SM, SM noise, rainfall and topography. 
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3.3 T parameter 

The first obtained relationship was the one relative to the exponential filter parameter 𝑇. This 

parameter was the first to be calculated in order to obtain reduced-noise SM from satellite estimates 

to be used in the following steps. The reference values for 𝑇 parameter were obtained by applying the 

exponential filter to ASCAT SM data maximizing R between the filtered SM and the modelled SM 

from ERA5 (first soil layer 0-7cm). Afterward, the points with R values greater than a fixed threshold 

of 0.6 were retained and used as reference T-values to be compared with the climatic and land 

descriptors (see paragraph 3.2). The selection of the points with correlation greater than 0.6 was done 

to avoid fitting the parametric relationship to not representative data. Visual inspection and 

Spearman’s correlation were used to identify which descriptors were better correlated with the 

reference T-values. A non-linear regression model was then iteratively applied to the selected 

descriptors in order to find the best parametric relationship. The optimal relationship can be written 

as: 

𝑇 = 0.8788 + 1.7020 𝑆𝑀𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑠𝑡𝑑(|𝑆𝑀𝑑|) + 0.3555 𝑠𝑡𝑑(|𝑆𝑀𝑑|) �̅�⁄  𝑡𝑜𝑝𝐶 (15) 

where 𝑆𝑀𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the temporal mean value of the SM noise relative to ASCAT estimates, 𝑠𝑡𝑑(|𝑆𝑀𝑑|) is the temporal standard deviation of the absolute values of ASCAT SM temporal 

variations, �̅� is the annual average of daily rainfall, and 𝑡𝑜𝑝𝐶 is the topographic complexity (spatial 

standard deviation of elevation values within each pixel boundaries). The reduced-noise SM estimates 

obtained from the exponential filter application were used in equation (2) and in the calculation of 

the SM descriptors for the successive SM2RAIN parameters relationships. 

3.4 b parameter 

According to Famiglietti and Wood (1994), 𝑏 can be considered equal to: 

𝑏 = 3 + 2 𝜆⁄  (16) 
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where 𝜆 is the pore size distribution index. A parametric relationship to estimate 𝜆 as a function of 𝑎 

parameter was proposed by BROCCA ET AL. (2014B): 

𝜆 = 0.085  log 𝑎 + 0.1574 (17) 

The same relationship was adopted in this study, but the two coefficients were recalibrated using the 

following procedure. 𝑇-values from equation (15) were used to obtain filtered ASCAT SM series to 

which apply SM2RAIN. The three parameters of the balance equation were then calibrated against 

reference regional rainfall observations (1009 points). The points with R between the observed and 

estimated rainfall greater than the fixed threshold of 0.6 and with 𝑇-value less than a threshold fixed 

to 6, were then selected (as before to avoid fitting the parametric relationship to not representative 

data) and the two coefficients of equation (17) were calculated by fitting the relationship between the 

calibrated 𝑎 and 𝑏 parameter values, thus obtaining: 

𝑏 = 3 + 2 ( 0.5928 ∗ log 𝑎 + 0.3022 )⁄  (18) 

3.5 Z* and a parameters 

By using equations (15) and (18), the SM2RAIN algorithm was re-applied to ASCAT SM estimates 

at 1009 points by only calibrating 𝑍∗ and 𝑎 parameters. Again, the points with R between estimated 

and observed rainfall greater than the fixed threshold of 0.6, and with 𝑇-value less than 6, were 

selected to be compared with the climatic and land descriptors. Visual inspection and Spearman’s 

correlation were used to identify which quantities were better related with 𝑍∗ parameter, then a linear 

regression model was applied to them in order to find the 𝑍∗ parametric relationship: 

𝑍∗ = 10.3124 + 0.5186 �̅� |𝑆𝑀𝑑|̅̅ ̅̅ ̅̅ ̅̅⁄  (19) 

The same procedure was adopted to find 𝑎 parametric relationship after recalibrating the SM2RAIN 

algorithm for only the 𝑎 parameter and fixing the others through equations (15), (18), and (19). The 

obtained equations for a was: 
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𝑎 = −1.5748 + 13.0324 𝑍∗ |𝑆𝑀𝑑|̅̅ ̅̅ ̅̅ ̅̅  (20) 

where �̅� is the annual average of daily rainfall and |𝑆𝑀𝑑|̅̅ ̅̅ ̅̅ ̅̅  is the temporal mean of the absolute values 

of ASCAT SM temporal variations. 

3.6 Test of parametric relationships 

By using equations (15), (18), (19) and (20), the four SM2RAIN parameters can be obtained from 

knowing the ASCAT SM timeseries and its noise, the topographic complexity and the mean annual 

rainfall. To avoid non-physical values for the parameters, the boundaries reported in Table 3-2 were 

applied, fixing all the parameters that exceed limits to the boundary itself. 

Table 3-2: Upper and Lower boundaries for SM2RAIN parameters 

Boundaries 𝒁∗ [mm] 𝒂 [mm/d] 𝒃 [-] 𝑻 [d] 

Lower 20 0.1 1 0 

Upper 800 200 50 8 

 

We note that the parametric relationships, obtained through a statistical regression-based approach, 

show physical reasoning in the expected correlation between SM2RAIN algorithm parameters and 

climatic and land descriptors. Indeed, equation (15) indicates that the exponential filter 𝑇 parameter 

is directly proportional to the mean value of SM noise, to standard deviation of absolute SM variation, 

to the ratio between the latter and the annual average daily rainfall and to the topographic complexity. 

All these descriptors increase with either SM measurement error (i.e., SM noise and topographic 

complexity) or temporal SM variability (i.e., 𝑠𝑡𝑑(|𝑆𝑀𝑑|) and 1/�̅�); in both cases higher 𝑇-values are 

expected, since a higher value of 𝑇 increases the filtering capacities. Equations (19) and (20) link the 

estimation of 𝑍∗ and 𝑎 to the value of |𝑆𝑀𝑑|̅̅ ̅̅ ̅̅ ̅̅  and �̅�. Indeed 𝑍∗ increases with the ratio between �̅� and |𝑆𝑀𝑑|̅̅ ̅̅ ̅̅ ̅̅  because it is a measure of the amount of water stored in the soil, while 𝑎 is directly correlated 

with �̅�. 
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As mentioned above, to obtain the parametric relationships, SM2RAIN was applied to ASCAT SM 

for the 1009 points for 5 times, after and before the definition of each parameter relationship, by using 

the available equations and by calibrating the remaining parameters with the standard approach (i.e., 

minimization of RMSE). The performances of the obtained rainfall, in terms of R and RMSE are 

shown in Table 3-3. 

A few insights can be deduced from these results. The overall drop in performances is limited, thus 

demonstrating that the obtained parametric relationships are well suited to estimate the SM2RAIN 

parameter values. The major drop in correlation can be ascribed to the parameter 𝑇. This can be easily 

explained as the parameter 𝑇 is the only one related to rainfall occurrence, to which the correlation is 

highly sensitive, while the others parameters are more related to rainfall amount and, hence, to RMSE. 

A possible reason for the correlation deterioration could be due to error in modelled SM from ERA5. 

However, different tests with the other soil layers of ERA5 and other modelling approaches were 

carried out and worse results were obtained (not shown for the sake of brevity). The parametric 

relationship for 𝑎 is the one that caused the greatest increase in RMSE (see Table 3-3).  

Table 3-3: Mean value and variation of Pearson’s Correlation (R) and Root Mean Square Error (RMSE) for local 
analysis points, calculated after and before the establishment of each parametric relationship 

 Mean R 
[-] 

ΔR  
[-] 

Mean RMSE 
[mm/d] 

ΔRMSE 
[mm/d] 

Calibrated SM2RAIN 0.5951  4.4126  

T fixed 0.5757 -0.0194 4.4909 0.0783 

T, b fixed 0.5712 -0.0045 4.5226 0.0317 

T, b, Z* fixed 0.5631 -0.0081 4.6142 0.0916 

Parameterized SM2RAIN 0.5567 -0.0064 4.7915 0.1773 

 

Finally, we underline that soil and vegetation descriptors were found not fundamental for obtaining 

the parametric relationships likely due to the limited accuracy of these datasets at the considered 
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spatial resolution, particularly for soil information, and the limited influence of vegetation on the 

analyzed parameters, confirming the findings of SEHGAL ET AL. (2020). 

3.7 Global analysis 

The good results obtained at 1009 points led to the application of the parametric relationships on a 

global scale. The parameters maps obtained using the parametric relationships on a quasi-global scale 

(60° S – 60° N) are shown in Figure 3-2. As expected, exponential filter 𝑇 parameter is greater over 

desert, forest and mountainous areas (Figure 3-2d), where SM quality is lower, while the distributions 

of 𝑍∗ and 𝑎 (Figures 3-2a and 3-2b) reflect the known areas where the average rainfall rate is high 

(equatorial region). ERA5 rainfall was used to obtain the annual average daily rainfall for the 

parametric relationships and also to calibrate SM2RAIN ASCAT with the standard methodology to 

verify that the uncalibrated product performances are in line with those of the calibrated SM2RAIN. 

The performance of the two rainfall datasets were then assessed against the GPM-FR precipitation 

product, in terms of the categorical indices False Alarm Ratio (FAR), Probability of Detection (POD) 

and Threat Score (TS), and the continuous indices R, BIASr and RMSEr. It should be noticed that 

the GPM product contains both the solid and liquid fraction of the precipitation, while SM2RAIN is 

able to estimate only the liquid fraction. The masking of frozen condition for SM ASCAT product 

should be able to remove the days of solid precipitation from the comparison, but in case of failure 

of frozen condition detection, this issue could be a source of error, in particular over high elevation 

and high latitude regions. Starting from IMERG V05B, full coverage is provided for the latitudes of 

60°N-60°S, while the remaining upper and lower latitudes extending to 90° are considered "partial 

coverage". The current analysis was restrained to the full coverage area (60°N-60°S) to increase the 

accuracy of the results. From now on, the product obtained from the use of the parametric 

relationships will be labelled as “parameterized”, while the one obtained using the standard 

calibration method will be named as “calibrated”. 
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Figure 3-2: Global Map of SM2RAIN parameter values as obtained from the parametric relationships. Each panel shows: 

a) parameter Z*, b) parameter a, c) parameter b, d) parameter T. 
 

The distribution of the obtained categorical indices is shown in Figure 3-3 as boxplots. The indices 

were calculated for five rainfall classes, respectively the 10th, the 30th, the 50th, the 70th and the 90th 

percentile of the rainfall calculated for each point. Regarding the FAR, the two products show similar 

performances for the first two classes, while the parameterized product has a higher percentage of 

false alarms for the last three classes. Different observations can be done for the POD index: the 

calibrated product performs slightly better than the parameterized for the first three classes, while it 

is true the opposite for the others two. From this information, it can be inferred that the parameterized 

product has greater capability in estimating the major rainfall events. However, the performances of 

the parameterized product are slightly worse than those of the calibration product for lower 

percentiles (<50th), due to a greater number of false alarms and to a lower detection ability. These 

results are confirmed by the TS scores, which indicates a slightly better performance of the calibrated 

product for the first four classes, while for the fifth class the parameterized product performs better. 
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Figure 3-3: Distribution of False Alarm Ratio, FAR, Probability of Detection, POD and Threat Score, TS categorical 
indices of the parameterized and calibrated SM2RAIN rainfall products, respectively in dark and light blue, 

against the benchmark dataset GPM - Final Run, related to the committed area. The indices are calculated for 
five rainfall classes, according to the intensity of the observed rainfall events being greater than the 10th, the 30th, 

the 50th, the 70th and the 90th percentiles. 
 

The differences in the performance are due to the different parameter values adopted by the two 

products. Figure 3-4a shows the 𝑇 parameter distribution for the whole area: there are clear 

differences between the calibrated and parameterized values, in both the median and the range of 

values. This is probably a consequence of the strategy used to estimate 𝑇, comparing the satellite SM 

with a modelled SM, instead of calibrating the 𝑇-values with respect to reference rainfall. The 

parameterized product tends therefore to filter the SM data less than the calibrated product (i.e., lower 𝑇-values), thus increasing the average SM variation, which in turn increase the overall estimated 

rainfall. This is the cause of the increase of both the FAR and POD indices. 𝑍∗ and 𝑎 (Figures 3-4b 

and 3-4c) show instead similar behavior between the two products. The values for the parameterized 

product are slightly greater than the calibrated product that is the reason of the overestimation 
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tendency noted above. Finally, Figure 3-4d shows the distributions of 𝑏 parameter, which has similar 

median value but a very different variability range, due to the relationship, equation (18), used for 

relating 𝑎 and 𝑏 parameters. 

 
Figure 3-4: Distribution of SM2RAIN parameters T, Z^*, a and b over the whole area for the parameterized, dark blue, 

and the calibrated, light blue, SM2RAIN rainfall products. 
 

R, BIASr and RMSEr were also calculated for the global analysis. The distribution boxplots of these 

performance indices are shown in Figure 3-5. The obtained results confirm the outcomes of the 

categorical indices analysis: in terms of R, the calibrated product is slightly better than the 

parameterized (0.4866 vs 0.4777 in the committed area), but both average value and range of R are 

overall comparable (Figure 3-5a). BIASr for the parameterized product is around 0.2, confirming the 

tendency to overestimate rainfall, whereas the calibrated product has a tendency to underestimation 

(Figure 3-5b). RMSEr values (Figure 3-5c) are very similar between the parameterized and the 

calibrated product, with differences lower than 5%. 

 
Figure 3-5: Distribution of Pearson‘s Correlation, relative BIAS (BIASr) and relative Root Mean Square Error (RMSEr) 

indices of the parameterized and calibrated SM2RAIN rainfall products, respectively in dark and light blue, against 
the benchmark dataset GPM - Final Run. In each panel, the results related to the committed area are on the left 

and those related to the global area are on the right.  
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The global map of R and RMSEr difference between parameterized and calibrated products are shown 

in Figures 3-6 and 3-7, respectively. In the figures, red colour indicates that the parameterized product 

is better than the calibrated one, while the blue colour indicates the opposite. An overall increase in 

Pearson’s correlation is noticeable in the tropical area, while many mountainous areas show a 

decrement in R values. The relative error increase in forest, desert and mountainous areas, likely due 

to the lower filtering of SM values in the parameterized product. One possible cause of the 

performance deterioration in topographically complex zones could be related to the low spatial 

resolution of the selected DEM, ETOPO5. For this reason, a different product characterized by higher 

spatial resolution has been used for the high-resolution rainfall estimation over the Po River basin, 

descripted in chapter 4.  

The mean R values shown in Figure 3-7a are around 0.5 for the committed area and 0.4 globally. 

These correlation values are likely due to the differences between the dataset used to calibrate 

SM2RAIN and to obtain the climatology for the parametric relationships, i.e., ERA5, and the product 

considered as benchmark, i.e., GPM-FR. ERA5 and GPM-FR are indeed not highly correlated by 

each other; the mean value of R between them equals to 0.5604 in the committed area (0.5412 

globally). 
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Figure 3-6: Global map of differences between the parameterized and calibrated SM2RAIN rainfall products for the 

Pearson’s correlation score calculated against GPM – Final Run product. Red areas mean that the parameterized 
product outperforms the calibrated one, the opposite for blue areas. The parameterized product shows an increase 

of correlation over dense forest and frozen areas. 
 
 
 

Figure 3-7: Global map of differences between the parameterized and calibrated SM2RAIN rainfall products for the 
relative Root Mean Square Error score calculated against GPM – Final Run product. Red areas mean that the 

parameterized product outperforms the calibrated one, the opposite for blue areas. 
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Due to the difficulty to have a reliable rainfall benchmark on a global scale, a TC analysis was 

performed to assess the capability of SM2RAIN products in rainfall estimation against an unknown 

true reference. Since TC requires three different products whose errors are uncorrelated, two other 

global rainfall datasets were selected to be compared with the parameterized and the calibrated 

products, separately: GPCC and GPM-LR, chosen over GPM-FR as the latter is corrected using 

GPCC monthly rainfall, and therefore it does not satisfy the condition of uncorrelated error with 

GPCC. Since GPCC has a low spatial resolution (1-degree), it was interpolated over ASCAT grid 

using a weighted average, where the weights are the relative inverse of the distance between each 

ASCAT pixel and the four nearest GPCC points. Figure 3-8 shows the boxplot of the obtained 𝑅𝑇𝐶.  

 
Figure 3-8: Distribution of the Triple Collocation correlation obtained from the rainfall products triplets composed from 

SM2RAIN, GPM – Late Run and GPCC, over the committed area. The results of the parameterized products are 
shown in dark blue, while those of the calibrated product are in light blue. 

 

SM2RAIN rainfall products have mean correlation values comparable with those of the other 

products for the committed area, with a slight deterioration when the parametric relationships are 

used instead of the standard calibration. Moreover, the areas where the parameterized product 

performs better than the other two is large (red areas in Figure 3-9): GPCC is the best performing 

product over most of Europe and Asia, half of North America and half of Australia, where there is a 

high density of gauge stations. GPM-LR performs better over forest and desert areas, where ASCAT 

SM has large errors (green areas in Figure 3-9). In most of the remaining zones (red areas in Figure 

3-9), SM2RAIN ASCAT derived from the parametric relationships performs better than the other 

products, confirming the capacity of SM2RAIN in estimating rainfall over Africa and South America 
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(BROCCA ET AL., 2020; MASSARI ET AL., 2020) also when the parameterized product is considered. 

For further information about the mutual correlation between the products, the individual maps of TC 

correlation have been added in the appendix (section 7.1). As mentioned above, the TC correlation 

values should not be taken as absolute measures of accuracy but rather as relative measures between 

the three datasets. 

 

 
Figure 3-9: Map of best performing products based on the results of Triple Collocation of the rainfall products triplet 

SM2RAIN parameterized (red), GPM – Late Run (green) and GPCC (blue). The parameterized SM2RAIN-ASCAT 
product outperforms the others in those areas characterized by low density of gauge and good quality of the SM 

retrievals. 
 

The obtained results confirm the possibility to obtain an estimation of SM2RAIN parameters without 

calibrate the algorithm by the knowledge of the average SM noise, the topographic complexity and 

the average rainfall of each analyzed pixel, at the cost of a slight reduction of the performances. The 

four relationships were therefore applied to estimate SM2RAIN parameters over the Po River basin 

for its application to high-resolution SM data from S1, as descripted in chapter 4.
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________________________________________ 

4. APPLICATION OF SM2RAIN TO HIGH-RESOLUTION SOIL 

MOISTURE DATA 

________________________________________ 

 

In this chapter, the SM2RAIN parametric relationships are applied to high-resolution SM data from 
Sentinel-1 over the Po River Valley, in Italy. The constants of the four relationships are recalculated 
to take into consideration the change of the Digital Elevation Model product. The parameterized and 
calibrated SM2RAIN are then applied to Soil Moisture data from Sentinel-1. The obtained rainfall 
products are then compared to an observed rainfall dataset obtained from the fusion of gauge and 
weather radar data. Finally, the advantages of the high spatial resolution are evaluated through a 
spatial analysis of the obtained product performances. 

________________________________________ 

________________________________________________________________________________ 

This chapter is based on a preprint of the following publication, submitted to Hydrology and Earth 
System Sciences: 

 

Filippucci, P., Brocca, L., Quast, R., Ciabatta, L., Saltalippi, C., Wagner, W., and Tarpanelli, A.: 
High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River 
Basin as case study, submitted to Hydrology and Earth System Sciences, doi: 10.5194/hess-2021-
563, 2021. 

________________________________________________________________________________ 
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4.1 Study area 

The analysis was conducted over the Po River Basin, located in Northern Italy (Figure 4-1). The basin 

extends from the Western Alps to the Adriatic Sea, including Italian and Swiss territories. The region 

covers an area of around 71000 km2: the Alps outline the boundaries of the basin to the North and 

West, with altitudes up to 4809 m, while the Apennines mark the South borders. The Po Plain extends 

to the central part of the basin, broadly divided into a northern and a southern section: the former is 

generally unsuitable for agriculture, while the latter is more fertile and well irrigated. The average 

annual rainfall ranges from ~700 to ~1500 mm/year in the analyzed period, 2016-2019, equally 

distributed during the year, with maximums occurring during autumn and spring seasons. The Po 

basin area is classified as Cfa (Temperate climate, without dry season and with hot summer) by the 

Köppen-Geiger climate classification (PEEL ET AL., 2007). In this study, the fraction of the Po River 

basin external from the Italian boundaries (black line in Figure 4-1) was excluded from the analysis 

due to the unavailability of rain gauge data.  

 
Figure 4-1: Po River Basin elevation map from ASTGPM. The black line indicates the Italian boundaries, while the red 

shapes the Po River basin boundaries. 
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4.2 Data 

Several datasets were collected in this study to analyze the feasibility of high-resolution rainfall 

estimations from SM2RAIN. Specifically, satellite SM products from ASCAT and S1 sensors were 

analyzed, alongside the selected benchmark rainfall dataset, obtained by the fusion of rain gauges and 

weather radar measurements through the Modified Conditional Merging (MCM) algorithm (BRUNO 

AT AL., 2021), and the data needed for the parameter estimation within the parameterized SM2RAIN 

algorithm, i.e., SM noise from ASCAT, topography and rainfall climatology. 

SM measurements 

SM data at 25 km spatial resolution (12.5 km spacing) were obtained from ASCAT (see section 3.1 

description), while the high-resolution 1 km estimates (500 m spacing) were derived from the 

application of S1-RT1 algorithm to S1 data (QUAST ET AL., 2019). The spatial sampling was fixed 

at one-half of the spatial resolution, according to the Nyquist-Shannon sampling theorem, to 

maximize the details of each SM dataset (Wagner et al., 2013). 

S1 mission is composed by a constellation of two polar-orbiting satellites, Sentinel-1A (launched 

03/04/2014) and Sentinel-1B (launched 25/04/2016), sharing the same orbital plane 180° apart, each 

carrying a single C-band Synthetic Aperture Radar (SAR) instrument operating at a center frequency 

of 5.405 GHz. S1 sensors can operate in four exclusive imaging modes with different spatial 

resolution (down to 5 m) and swath width (up to 400 km). Particularly, the Interferometric Wide (IW) 

swath mode, the main sensing mode over land, offers a 20 m x 22 m spatial resolution with a 250-km 

swath. The revisit time of a single satellite is 12 days, which reduces down to 6 days when considering 

both sensors. However, since the acquisition strategy prioritizes European landmasses over other 

regions, the effective temporal resolution over Europe is between 1.5 and 4 days by taking advantage 

of the overlapping ascending and descending orbits. 

SM retrievals at 1 km spatial resolution were obtained by applying a first-order radiative transfer 

model (RT1) (QUAST ET AL., 2019) to a 1 km S1 backscatter (σ0) dataset sampled at 500 m pixel 
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spacing (BAUER-MARSCHALLINGER ET AL., 2019). RT1 is based on a parametric (first-order) 

solution to the radiative transfer equation (QUAST AND WAGNER, 2016) in conjunction with a 

timeseries-based non-linear least squares regression to optimize the difference between (incidence-

angle dependent) measured and modelled σ0. The scattering characteristics of soil- and vegetation are 

modelled via parametric distribution functions, and the relative SM content (scaled between 0 and 1) 

is found to be proportional to the nadir hemispherical reflectance (N) of the bidirectional reflectance 

distribution function used to describe bare-soil scattering characteristics. 

To correct for effects induced by seasonal vegetation dynamics, scaled Leaf Area Index (LAI) 

timeseries provided by ECMWFs ERA5-Land reanalysis dataset have been used to mimic the 

temporal variability of the vegetation optical depth, accounting for the attenuation of the radiation 

during propagation through the vegetation layer. Remaining spatial variabilities in soil and vegetation 

characteristics are accounted for by the model-parameters “single scattering albedo” (ω) and soil-

scattering directionality (ts). Within the retrieval-procedure, a unique value for N is obtained for each 

timestamp, alongside a temporally constant estimate for ts and an orbit-specific estimate for ω for 

each pixel individually. A comparison of the obtained RT1 soil-moisture retrievals to ERA5-Land 

top-layer volumetric water content (swvl1) for a set of ~138 000 pixels over a 4-year time-period 

from 2016 to 2019 achieves an overall (median) Pearson correlation of 0.55 for areas classified as 

croplands and 0.65 for areas primarily covered by natural vegetation. A detailed description and 

performance-analysis of the used soil-moisture dataset will be given in QUAST ET AL., IN 

PREPARATION.  

Due to the presence of systematic differences between S1 acquisitions from different orbits, the 

obtained soil-moisture timeseries exhibits a periodic disturbance, attributable to unaccounted 

differences in soil- and vegetation characteristics with respect to the different viewing-geometries. 

To correct these systematic effects, the timeseries were split with respect to the S1 orbit ID and 

normalized individually to a range of (0, 1) prior to the incorporation into the SM2RAIN algorithm. 
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In order to obtain data with the same time spacing, SM data were linearly interpolated at midday and 

midnight for both datasets. If no data were found within 5 days, each datum in the interval was set to 

Not a Number (NaN). ASCAT data were resampled on S1-RT1 grid using a weighted average of the 

four nearest pixels, to allow the inter-comparison of the data. Finally, all the SM products were 

masked for frozen soil and snow cover conditions, by downloading the Soil Temperature (Tsoil) of 

the first soil layer (0-7 cm) and Snow Depth data from ERA5-Land (see description below), and 

excluding the SM estimates obtained over pixels showing a Tsoil < 2 °C or a snow depth > 0.01 m. 

Rainfall measurements 

Two rainfall datasets were considered, to be used as benchmark for the performance assessment and 

as input for the parameterized version of SM2RAIN, respectively. The first one is a product derived 

from the integration of ground radar and rain gauge measurements over the Italian territory through 

the MCM algorithm (BRUNO ET AL., 2021). A dense network of rain gauges and weather radars is 

available over the Italian territory, making it possible to obtain hourly rainfall measurements in real-

time. While rain gauges allow a good estimation of punctual rainfall, radar measurements give a good 

estimation of the general covariance structure of rainfall. MCM uses radar data to condition the 

spatially limited information of rain gauges, generating a rainfall field with a realistic spatial structure 

constrained by rain gauge values. The resulting rainfall product is characterized by high spatial (1 

km) and temporal (1 h) resolution. These attributes make it a suitable choice for the purpose of 

comparison with SM2RAIN estimates from high-resolution SM. In this work, the MCM hourly 

information was resampled to S1 data coordinates. MCM data were temporally cumulated at 12 hours, 

obtaining two accumulated rainfall measurements per day, respectively at midday and midnight. 

Rainfall measurements greater than a threshold of 800 mm/day were considered not valid and 

discarded from the analysis. Even if MCM data were available for the full Po River basin, the 

territories outside the Italian boundaries were excluded from the analysis due to the absence of rain 

gauges data. 
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In order to apply the parameterized version of SM2RAIN, the mean daily rainfall of each pixel in the 

study area is needed. It was obtained by downloading Total Precipitation and Snowfall daily 

measurements from the ERA5-Land for the period 1981-2021 (see product description in section 3.1). 

Daily rainfall data were obtained by subtracting the Snowfall component from ERA5-Land Total 

Precipitation. The obtained rainfall data were then regridded on S1 grid using a weighted average of 

the four nearest pixels, as done with ASCAT SM data. The 30-year averaged mean daily rainfall was 

then calculated for each pixel. 

Topography measurements 

Elevation data from Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) global DEM Version 3 (ASTGTM) were downloaded. The product provides altitude land 

data at a spatial resolution of 1 arc second (~30 meters resolution at equator). In order to obtain the 

topographic complexity of each S1 pixel, the standard deviation of the DEM values within each 500m 

pixel was calculated. 

Data interpolation and regridding are expected to introduce small-scale noise in the datasets. 

Notwithstanding this, the interpolation is unavoidable in order to analyze all the products with the 

same spatial and temporal sampling. 

4.3 Rainfall validation 

In chapter 3, four parametric relationships were obtained to allow to estimation of the SM2RAIN 

algorithm parameters along with the 𝑇 parameter of the original exponential filter, without calibration. 

It is therefore possible to deduce 𝑇, 𝑍∗, 𝑎 and 𝑏 from the knowledge of SM timeseries and its noise, 

the topographic complexity and the mean daily rainfall of the standard year (obtained by averaging 

the rainfall in the same DOY). Notwithstanding the good performance obtained, the low resolution 

(5 arc minutes) of the DEM used in the relationships development, ETOPO5, forbid their use for the 

1 km application. For this reason, the procedure descripted in chapter 3 was reapplied in the 1009 
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points by substituting ETOPO5 with ASTGTM product to recalculate the constant of the parametric 

relationships. In particular, the recalculated relationships are: 

 𝑇 = 0.8351 + 1.2585 𝑆𝑀𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑠𝑡𝑑(|𝑆𝑀𝑑|) + 0.2777 𝑠𝑡𝑑(|𝑆𝑀𝑑|) �̅�⁄  𝑡𝑜𝑝𝐶   (21) 

𝑍∗ = 10.0678 + 0.5350 �̅� |𝑆𝑀𝑓𝑑|̅̅ ̅̅ ̅̅ ̅̅ ̅⁄          (22) 

𝑎 = −1.3177 + 13.3579 𝑍∗ |𝑆𝑀𝑓𝑑|̅̅ ̅̅ ̅̅ ̅̅ ̅        (23) 

 𝑏 = 3 + 2 0.4118 +  0.324 ∗ log 𝑎⁄         (24) 

where 𝑆𝑀𝑛𝑜𝑖𝑠𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the average SM noise in the considered pixel, (|𝑆𝑀𝑑|) is the standard deviation of 

the absolute values of the SM temporal variations, �̅� is the pixel mean daily rainfall, 𝑡𝑜𝑝𝐶 is the 

topographic complexity and |𝑆𝑀𝑓𝑑| is the average of the absolute values of the filtered SM temporal 

variations  

In order to obtain rainfall measurements from the SM datasets, SM2RAIN algorithm was applied to 

both ASCAT and S1-RT1 SM products by using both the calibrated and parameterized versions. In 

the calibrated SM2RAIN, the algorithm parameters were estimated by minimizing the RMSE 

between SM2RAIN rainfall estimations and MCM rainfall product at daily time scale for both 

ASCAT and S1-RT1 SM. For the parameterized SM2RAIN version, the algorithm parameters were 

obtained through the parametric relationships mentioned above. Since no information regarding S1-

RT1 SM noise was available, ASCAT SM noise characteristics were used to calculate S1-RT1 

SM2RAIN parameters, assuming that since both ASCAT and S1 sensors operate in C-band, the noises 

affecting the two SM products are similar. Indeed, the noise level of S1-RT1 is expected to be higher 

than ASCAT one. This sub-optimal configuration can be therefore considered as a first step to test 

the data: better results should be obtained when more accurate noise information will be available. 

The obtained rainfall can then be accumulated at the desired time step. In order to consider the 

different temporal resolution of the selected SM products (sub-daily for ASCAT and from 1.5 to 4 
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days for S1), three accumulation time steps were chosen: 1 day, 10 days and 30 days. The daily 

rainfall was calculated only for ASCAT product, since the low temporal resolution of S1 prevents to 

obtain significant results at daily intervals. 

Figure 4-2 shows the average 30 days rainfall obtained by the application of the parameterized 

SM2RAIN to ASCAT and S1-RT1 SM products. By comparing the two figures, the improved 

resolution of the rainfall obtained from S1-RT1 SM with respect to ASCAT SM is evident: the higher 

spatial resolution of S1-RT1 allows the generation of detailed features, even if with a granular effect 

likely due to the uncertainties of the measurements, and with patterns related to the spatial variation 

of S1 temporal resolution (compare with Figure 4-4e).  

 
Figure 4-2: Estimated average 30 days rainfall from the parameterized SM2RAIN applied to ASCAT (Panel a) and S1-

RT1 (Panel b) SM product for the period 2016-2019. Map copyright ©2021 GeoBasis-De/BKG (©2009), Google, 
Inst. Geogr. Nacional Immagini ©2021 TerraMetrics 

 

The results of R, RMSE and BIAS with respect to the selected time-steps are shown in Figure 4-3. In 

order to maximize the reliability of the obtained performances, the rainfall accumulation was carried 
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out by summing up only timestamps available in both the SM2RAIN estimations and the benchmark, 

for each SM2RAIN product separately. In this way S1-RT1 performances can be better assessed, 

since a direct accumulation would penalize this product due to the long period of no-data caused by 

S1 low temporal resolution.  

 
Figure 4-3: Violin plots of Pearson’s Correlation (R, panel a), Root Mean Square Error (RMSE, panel b) and BIAS (panel 

c) between the rainfall from MCM and from SM2RAIN applied to ASCAT and S1-RT1. ASCAT-derived rainfall 
was accumulated at 1, 10 and 30 days, while the rainfall from S1-RT1 was accumulated at 10 and 30 days. Each 

violin shape is obtained by rotating a smoothed kernel density estimator. The green violins are obtained by 
calibrating SM2RAIN against MCM, while the red violins derived from the parameterized SM2RAIN procedure. 

 

The SM2RAIN product obtained from ASCAT allows to well reproduce the rainfall of the Po River 

basin at daily time scale thanks to the high temporal resolution of ASCAT (sub-daily frequency), with 

a median R of 0.61 for the parameterized product and 0.64 for the calibrated product, confirming the 

good quality of the data and the importance of its temporal resolution. At higher aggregation time 

steps, the median R of the parameterized (calibrated) ASCAT-derived rainfall products improve to 

0.71 (0.75) for the 10 days accumulation period and to 0.74 (0.77) when 30 days accumulation is 

considered. Good results are also obtained from the application of SM2RAIN to S1-RT1, with a 

median R of 0.61 (0.65) and 0.73 (0.75) at 10 and 30 days accumulation time, respectively. Albeit 
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ASCAT-derived rainfall performs better than the one from S1-RT1 at 10 days, they are equally good 

for the 30 days accumulated rainfall. The results also confirm the good capabilities of the 

parameterized SM2RAIN algorithm in rainfall estimation, considering the small differences between 

the performances obtained by the two algorithm versions. The only exception is the BIAS index, 

which, as expected, is significantly larger in the parameterized products compared to the calibrated 

ones. The increased BIAS is due to the ERA5-Land data used to obtain the climatology of the area 

since its spatial resolution is much lower than the one adopted for this study (i.e., 1 km) and the 

average spatial pattern of rainfall is quite different from the one measured by MCM. 

4.4 Spatial validation of rainfall products 

Even if the ASCAT product (with lower spatial resolution) is on average the best performing, the 

spatial comparison of the performances is important to understand the added value of high-resolution 

SM. In order to better evaluate the differences between the rainfall estimated from ASCAT and S1-

RT1, the Pearson’s correlation of the 30 days accumulated rainfall derived from the two SM products 

are analyzed in this section. This temporal step was selected since it is suited for a quality comparison 

of the two products, being less influenced by the different temporal resolution of the sensors, and 

because it is optimal for agricultural application. 

Generally good performances are obtained from both rainfall products, as shown in Figures 4-4a and 

4-4b. Some areas with low R values are shared by both ASCAT and S1-RT1 derived rainfall products. 

Over mountain areas the errors are mostly related to the lower accuracy of C-band SM data, due to 

shadowing effects and layover (ULABY ET AL., 1981). The presence of water bodies at the river outlet 

and over the paddy fields in the western part of the Po basin is also affecting SM, and hence rainfall 

retrieval accuracy. Finally, the yellow “holes” in the correlation maps resemble the errors caused by 

low quality gauge data, which affect the rainfall estimation surrounding the gauge sensor. It should 

also be noticed that many low performing areas are located close to urban centers, which may affect 

both the SM retrieval quality and the rain gauge measurements (see also appendix, section 7.2). 
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Notwithstanding this, it is impossible to remove the alleged “bad” gauge stations from the benchmark 

product, as MCM is an operative product and the clear identification of these stations is often 

challenging. 

 
Figure 4-4: Spatial Pearson’s correlation (R) between the 30 days accumulated rainfall derived from MCM and the 

application of the parameterized SM2RAIN to ASCAT (panel a) and to S1-RT1 (panel b) SM products. Panel c 
shows the difference between ASCAT and S1-RT1 correlation maps, while panel d) and e) show the percentage of 

not valid images per pixel respectively for ASCAT and S1-RT1. 
 

The spatial comparison between the performances of the ASCAT and S1-RT1 derived rainfall is 

shown on Figure 4-4c, displaying the difference between the correlation values of the two products. 

Red area means that the S1-RT1 product is performing better, whereas blue areas highlight where 

ASCAT is providing more accurate rainfall estimates. First of all, it should be noted that while 

ASCAT derived rainfall product shows average correlation values over the mountainous region in 

the North and West of the map (see Figure 4-1 for comparison with the DEM map), S1-RT1 

correlation are either extremely low or extremely high. This important difference is caused by the 

high spatial resolution of S1-RT1 product: the improved resolution permits to clearly distinguish the 

“good” signal originating from the valleys and the “bad” signal coming from the mountain slopes, 

affected by the noise generated from the aforementioned shadowing and layover effects. This 

distinction results in areas with respectively very good (valleys) and very bad (mountains) rainfall 
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estimations. The spatial resolution of ASCAT on the other hand does not permit to distinguish the 

signals of the two geographical features, causing lower performances over the valleys and higher 

performances over the slopes in comparison with S1-RT1. The low performances of the pixels located 

over the mountain slopes are also responsible for the long violin plot tails of S1-RT1 performances 

that can be noticed in Figure 4-3. S1-RT1 results are particularly lower than those from ASCAT due 

to the fact that S1-RT1 product calibration was carried out without considering any snow masking, 

thus reducing the quality of the solution in the pixels affected by snow cover. 

A smaller difference in performance can be noticed over the plain, in particular in the north-eastern 

section, where S1-RT1 rainfall performs overall better than ASCAT. Conversely, in the southern 

section and specifically over the areas surrounding the Po River and its tributaries, ASCAT derived 

rainfall is better than S1. An explanation of this behavior can be found in the intensive irrigation 

practice over this area. Irrigation events cause an increase of the fields SM (FILIPPUCCI ET AL., 

2020) that should be sensed by satellites sensors. However, the area surrounding the Po River is 

composed by many small fields (few hectares each) managed by different farmers, where the 

irrigation timing is not concurrent. The ASCAT sensor is not able to distinguish the resulting 

irrigation signal (BROCCA ET AL., 2018) because of its low spatial resolution (25 km) that cause the 

signals of each field to overlap and average with each other. S1, instead, is more sensitive to the 

irrigation signal, thanks to its higher spatial resolution. 

Considering that the rainfall benchmark product does not contain irrigation information, the drop in 

Pearson’s correlation of the S1-RT1 derived rainfall with respect to ASCAT could be related to the 

sensitiveness of the former to the aforementioned irrigation events, and not to the SM signal quality. 

It could be an additional information of great scientific interest but, unfortunately, the absence of 

detailed irrigation data for the Po Valley makes difficult to verify this hypothesis.  

Finally, it should also be noted that this analysis could be biased in the areas characterized by a high 

presence of missing values (NaN) for one product with respect to the other, which hampers the 



4. Application of SM2RAIN to high-resolution SM data 
 

86 
 

statistical significance of the performance indices. Notwithstanding this, the absence of patterns in 

the maps that resemble the NaN distribution percentage shown in Figure 4-4d and 4-4e, fosters the 

validity of the analysis. 

The performance comparison with respect to RMSE and BIAS and a comparison of the calibrated 

SM2RAIN products is omitted for the sake of brevity, because no relevant additional information can 

be obtained from it.  

In Figures 4-5 and 4-6, rainfall and SM timeseries of two pixels selected in the north-west of the Po 

basin are shown, as an example of the increased capacity of S1-RT1 for rainfall retrieval in the 

mountainous area. Since these pixels are selected in a topographic complex area, they should not be 

considered representatives of the overall performance and availability of the satellite rainfall products, 

rather an example of the improved performance derived from the use of S1-RT1 high-resolution SM 

with respect to ASCAT. Winter and early-spring measurements are masked in both pixels, due to 

frozen condition or snow cover, according to ERA5-Land information. The pixel in Figure 4-5 is 

selected over one of the mountain valleys of the Italian territory (7.152°E, 45.710°N), inside the 

Italian region Valle d’Aosta, in order to show how S1 spatial resolution increases the capabilities in 

rainfall estimation over such a region. By observing the rainfall timeseries in Figure 4-5a and the 

standard month distribution in Figure 4-5b, it can be noted how S1-RT1 derived rainfall is in better 

accordance with the observed one, in particular during autumn months. During late spring and 

summer, S1-RT1 and ASCAT estimates are more similar, while S1-RT1 often underestimates the 

observed rainfall, also with respect to ASCAT. In Figure 4-5d, the same behavior can be noted on the 

averaged SM trends, with the SM sensed by S1-RT1 being on average less than the one from ASCAT 

during late spring-summer and greater during the autumn season, probably due to the additional 

vegetation correction operated within S1-RT1.  

Figure 4-6 shows the timeseries of a pixel selected over the mountain slopes, in the vicinity of the 

previous one (7.410°E, 45.824°N). While ASCAT SM estimates (Figure 4-6c and 4-6d) show patterns 
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that are similar to those in Figure 4-5, S1-RT1 signal is completely different. The SM saturates in the 

summer period and goes down in autumn, with a strong seasonality that is poorly affected by the 

rainfall events. This is most probably an issue of the vegetation-correction, since it adds a strong 

seasonality to pixels that realistically exhibit little vegetation coverage, also due to the low spatial 

resolution (with respect to S1-RT1) of the LAI product used for correcting the vegetation-

seasonalities. This erroneous vegetation seasonality is then counteracted by an erroneous SM 

seasonality. As expected, the poor quality of SM estimations, greatly affects SM2RAIN capabilities 

in calculating rainfall in these areas, resulting in very high rainfall rate perceived during summer and 

very low one during winter, in contrast with the observed data.  

Finally, Figure 4-7 shows the timeseries of a pixel selected over the plain (10.684°E, 44.805°N). As 

can be noted, the period of unavailability of the rainfall datum is greatly reduced in comparison with 

Figure 4-5 and Figure 4-6, since this area is characterized by higher temperature during the winter 

and by minor snow cover probability. Overall, S1-RT1 SM shows a greater variability during the 

summer season with respect to ASCAT (Figure 4-7c, 4-7d), thanks to both the vegetation correction 

and the higher spatial resolution. This leads to a greater accuracy in the peak rainfall detection of 

summer 2018 and 2019 (Figure 4-7a) is found. On the other hand, an overestimation of 2017 summer 

rainfall (potentially due to an error in SM estimation or to an irrigation event) and an underestimation 

of winter 2019 (probably due to SM saturation). Overall, the rainfall estimate from S1-RT1 is in good 

accordance with the observed one (Figure 4-7b), proving both the validity of the derived rainfall 

product and its usefulness for hydrologic modelling. 
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Figure 4-5: Example of SM and rainfall timeseries over a pixel (7.152°E, 45.710°N) situated within valley inside the 

mountainous region. In panel a, the timeseries of the observed (blue) and estimated (red SM2RAIN-ASCAT, green 
SM2RAIN-S1-RT1) 10-days accumulated rainfall products are shown, while panel c displays SM timeseries 

averaged with a 3 days window. Finally, panel b and d contain the standard month average of the rainfall and SM 
products, respectively. The periods masked for frozen soil condition or snow cover are highlighted in grey. 

 

 
Figure 4-6: Example of SM and rainfall timeseries over a pixel (7.410°E, 45.824°N) situated over the ridges of the 

mountainous region. In panel a, the timeseries of the observed (blue) and estimated (red SM2RAIN-ASCAT, green 
SM2RAIN-S1-RT1) 10-days accumulated rainfall products are shown, while panel c displays SM timeseries 

averaged with a 3 days window. Finally, panel b and d contain the standard month average of the rainfall and SM 
products, respectively. The periods masked for frozen soil condition or snow cover are highlighted in grey. 
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Figure 4-7: Example of SM and rainfall timeseries over a pixel (10.684°E, 44.805°N) situated over the Po River Plain. In 

panel a, the timeseries of the observed (blue) and estimated (red SM2RAIN-ASCAT, green SM2RAIN-S1-RT1) 10-
days accumulated rainfall products are shown, while panel c displays SM timeseries averaged with a 3 days 

window. Finally, panel b and d contain the standard month average of the rainfall and SM products, respectively. 
The periods masked for frozen soil condition or snow cover are highlighted in grey. 
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________________________________________ 

5. RIVER DISCHARGE MONITORING 

________________________________________ 

In this chapter, the river discharge estimation over the Po and Tiber rivers is descripted. Following 
the data illustration, both the original CM method and the modified approach, CMW, are applied to 
the two study areas. Four configurations are tested for the selection M: the first three are calibrated 
over the pixel(s) of maximum Spearman’s correlation between the observed data and the analyzed 
index, averaging a gradually increasing number of pixels to take into consideration the saturation of 
the information: 1 pixel, 3x3 pixels and 9x9 pixels respectively. The last configuration is not 
calibrated, rather it is obtained by selecting those pixels that are lowly correlated with C and W.  
The performances of each index is then evaluated for both the study areas, and the timeseries are 
analyzed to identify strength and weakness of the method. 

________________________________________ 

________________________________________________________________________________ 

This chapter is based on a preprint of the following publication, submitted to Remote Sensing of 
Environment: 

 

Filippucci, P., Brocca, L., Bonafoni, S., Saltalippi, C., Wagner, W., and Tarpanelli, A.: Sentinel-2 
high-resolution data for river discharge monitoring, submitted to Remote Sensing of Environment, 
2021. 

________________________________________________________________________________ 
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5.1 Study area 

The analysis is focused on two sites located in Italy: the first one along the Po River at the 

Pontelagoscuro station (44.89 °N, 11.60 °E) and the second one along the Tiber River at the 

Montemolino station (42.80 °N, 12.40 °E). These study areas were selected on the basis of: 1) the 

availability of in-situ flow measurements during the analyzed periods (2015-2020); 2) the different 

regime of flow and 3) the width of the river that is medium-small. 

The Po River is located in Northern Italy and it has a drainage area of 74’000 km2: it is the longest 

Italian river and the fifth European river for river discharge. During the analyzed period the average 

discharge value at Pontelagoscuro station was equal to 1215 m3/s, with the minimum and the 

maximum values being equal to 406 and 5905 m3/s, respectively. The maximum cross-section width 

is around 350 m, during the seasonal peaks in spring (May-June) and autumns (November). The river 

discharge data are available online from the website of the Regional Agency for Environmental 

Protection (www.arpae.it/documenti.asp).  

The Tiber River in central Italy has a drainage area of 17’375 km2 and its average river discharge at 

Montemolino station is much smaller than the one of the Po River: during the analyzed period it is 

around 30 m3/s, with the minimum and maximum extremes being equal to 1.6 and 804 m3/s, 

respectively. The river width is about 50 meters, surrounded by riparian vegetation. The data of 

Montemolino are provided by the Department of Environment, Planning and Infrastructure of the 

Umbria Region, which is in charge for the collection of hydro meteorological data in the Umbria 

Region.  

5.2 S2 data in Near-InfraRed band 

The S2 mission is composed of two satellites, Sentinel-2A (launched on the 23 June 2015) and 

Sentinel-2B (launched on 7 March 2017). The satellites are placed in the same sun-synchronous orbit, 

phased 180° to each other. This strategy permits to increase the revisit time of S2 from 10 days (using 

one satellite) to 5 days (using both of them), with higher revisit frequency in the areas where adjacent 
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orbits overlap. Each satellite carries a MultiSpectral Instrument (MSI) sensor, capable of sensing 

electromagnetic radiations in 13 spectral bands, from visible to short-wave infrared. In this analysis, 

data from band 8 (central wavelength ~833 nm, bandwidth=106 nm) are selected, characterized by a 

spatial resolution of 10 meters. Two products are available: the Level-1C product with orthorectified 

TOA (Top-Of-Atmosphere) reflectance and the Level-2A product with surface reflectance. 

Generally, the atmospheric correction applied to obtain the Level-2 product over land is different 

from the one applied over ocean/sea. The river is a fairly complex and mixed environment to be 

managed. In the absence of detailed studies on this, and because the effects of the atmosphere in clear-

sky conditions can be assumed negligible when computing the ratio of neighboring pixels in the same 

area (as used in this study, see section 2.2), we selected Level-1C product to be used in this analysis.  

The dimension of each image (~600 MB) and the number of images to be downloaded for a temporal 

analysis, make the process of collecting and reading the data not easy and computationally 

challenging. In order to show the method and illustrate the new algorithm, we referred to the S2 data 

Level-1C for bands 8 dataset, provided by the Meteorological Environmental Earth Observation 

(MEEO – www.meeo.it) company, together with the relative cloud mask probability product. This 

collection includes a subset of Pontelagoscuro area in the period January 2018 – September 2019 and 

it was used to generate the figures shown in the section 2.2. However, Google Earth Engine platform 

was used for the analysis relative to the period 2015-2020 over both Pontelagoscuro and Montemolino 

stations, in order to lighten the computational load: the results and conclusions at chapters 5 and 6 are 

referring to the cloud data. 

5.3 Google Earth Engine cloud platform 

Following the algorithm definition, the analysis at the study sites was carried out through Google 

Earth Engine, GEE (GORELICK ET AL., 2017), a cloud computing platform for processing satellite 

imagery and many kinds of geospatial and observation data. GEE comprehends a catalogue of satellite 

imagery and geospatial datasets of over twenty petabytes at planetary scale, together with the analysis 
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capabilities needed to process them. The data are freely available for scientist, researcher and 

developers, who can access and process them through the Earth Engine API both using Javascript or 

Python. The development of Web-Application is also possible from the code editor interface. For this 

study, we developed a code to read, extract and analyze S2 data for the period 2015-2020 at both the 

considered gauge stations, Pontelagoscuro and Montemolino. 

5.4 Po river: Pontelagoscuro analysis 

A total of 238 images of S2 Level 1C band 8 were available on GEE (accessed on 17/06/2021) for 

the Pontelagoscuro area over the Po River during the period January 2015 – December 2020. After 

the cloud masking procedure, 168 cloud free images were retained and analyzed through the CM and 

the CMW procedure. The timeseries for the four configurations are shown in Figure 5-1, together 

with the hydrograph of the observed river discharge at the Pontelagoscuro station. All the 

configurations were successful in detecting the river dynamic. 𝐶𝑀𝑊 approach shows a general better 

agreement with the observed discharge, in particular at the beginning of the flood events in March 

2016, May and November 2018, and November 2019, when the high river discharge triggered a high 

level of sediment transportation. This can also be noticed by observing the scatter plots on the right 

of Figure 5: the green dots in the top-left angles obtained through the 𝐶𝑀 approach, characterized by 

low reflectance ratios and high discharge values due to the high sediment transportation condition, 

are avoided with 𝐶𝑀𝑊 approach.  

The results of the different configurations show that by increasing the number of pixels for the 

calculation of 𝑀 (from the first to the fourth configuration, respectively on the top and the bottom of 

the Figure 5-1) 𝐶𝑀 approach gradually agrees with 𝐶𝑀𝑊 approach, with the exception of the flood 

events above mentioned. This can be attributed to the fact that by selecting multiple pixels, the 

reflectance ratio is more sensitive to river discharge variation and less sensitive to residual sources of 

error, e.g., residual clouds and cloud shadows, and therefore the detection capacities of both 

approaches increase. Even if the new formulation is in good agreement with the observed river 
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discharge and improve the previous methodology, the peak floods experienced in November 2018 

and November 2019 are still underestimated for all the configurations. This is probably due to the 

limited river width variation for very high flow. The pixels sensitive to the variation for very high 

flow are extremely few, due to the river embankments, and none of them was selected by the 𝑀 

configurations. Such a discharge peak is in fact encountered just two-times during the study period 

and therefore it has too low importance in terms of Spearman’s correlation to be selected by the 

calibrated approaches and too low statistical significance to be selected by the uncalibrated approach. 

Finally, there are also a few peaks that are still not detected, due to the low temporal resolution of S2 

(e.g., see the flood event in December 2016). Notwithstanding this, the reproduction of the river 

discharge follows quite well the high and low flows. 

 
Figure 5-1: Po River at the Pontelagoscuro station: comparison in terms of temporal series (a, c, e, g) and scatter plots (b, 

d, f, h) between the ground observed discharge and the 𝐶𝑀 (green) or 𝐶𝑀𝑊 (red) timeseries for the configuration 
at single pixel (a and b), at 3x3 averaged pixel (c and d), at 9x9 averaged pixel (e and f) and for multiple 

uncalibrated pixels (g and h). 
 

The obtained improvement in river discharge estimation was confirmed by the correlations S and R 

shown in Table 5-1. In terms of Pearson’s correlation, an improvement of the 𝐶𝑀𝑊 approach with 

respect to the 𝐶𝑀 approach can be noticed for all the configurations, with increment that goes from 
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+0.06 to +0.18. Similarly, it can be observed an improvement by the use of multiple pixels rather than 

a single one that goes from +0.03 to +0.25 for the two approaches, again in terms of R. Spearman’s 

correlation also improved, but the variations were slighter. In terms of river discharge estimated by 

applying the cubic law of Eq. 7, the performance scores of Table 5-1 underline similar results, with a 

globally decrease of rRMSE up to 16% and an increase of NS up to 0.32, considering both the multiple 

pixels and the different methodology.  

Table 5-1: Performance scores for the different configurations (1 for single pixel, 2 for 3x3 pixels, 3 for 9x9 pixels and 4 
for multiple pixels) for the period 2015-2020 at Pontelagoscuro station. Spearman’s (S) and Pearson’s (R) 

correlations are calculated between the 𝐶𝑀𝑊 or 𝐶𝑀 timeseries and the ground observed river discharge. Root 
Mean Square Error (RMSE), relative Root Mean Square Error (rRMSE) and Nash-Sutcliffe efficiency, NS, refer to 

the simulated discharge calculated according Eq. 7 and the ground observed discharges. 

Configuration 

𝑪𝑴 𝑪𝑴𝑾 

S 

[-] 
R 

[-] 
RMSE 

[m3/s] 
rRMSE 

[-] 
NS 

[-] 
S 

[-] 
R 

[-] 
RMSE 

[m3/s] 
rRMSE 

[-] 
NS 

[-] 

1 0.82 0.55 515 0.45 0.38 0.88 0.73 444 0.39 0.54 

2 0.84 0.58 544 0.48 0.30 0.88 0.72 436 0.39 0.53 

3 0.86 0.68 475 0.42 0.44 0.89 0.77 406 0.36 0.59 

4 0.86 0.80 444 0.38 0.56 0.84 0.87 366 0.32 0.70 

 

By moving from the single to aggregated pixels, the performance increased, reaching the best values 

for configuration 4. This is justified by the S2’s pixel dimensions, which are too small with respect 

to the Po River width: it is convenient to aggregate multiple pixels for a proper representation of the 

river discharge. Details on the pixels selected from each mask are provided in this section (Figure 5-

2), along with the correlation maps used for their selection. In particular, Figure 5-2a shows the pixels 

of the box with lower (less than 5th percentile) temporal coefficient of variation, selected to obtain 

the 𝐶 timeseries. As expected, they were mostly concentrated over roads and bare soil areas, due to 

the temporal stability of the reflectances measured in these areas. Figure 5-2b shows the pixels within 

the water mask selected for the 𝑊 timeseries. They represent the lower (less than 5th percentile) 
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product between the average reflectance and its standard deviation, represented in Figure 5-2d. Figure 

5-2c represents the selected 𝑀 pixels: the red area shows the pixels averaged for the 9x9 pixels 

calibration (configuration 3); the blue area represent the pixels selected by the 3x3 calibration 

(configuration 2); the green dot shows the single pixel showing the highest Spearman’s correlation 

with the observed discharge (configuration 1); and, finally, the light grey area shows the 𝑀 pixels 

selected by the configuration 4 (without using any ground observation for calibration) and coming 

from the evaluation of the S between the reflectance timeseries of each pixel included in the water 

mask (except those pixels already used for 𝑊 and 𝐶) and the timeseries already calculated for 𝐶 (or 𝑊) represented in Figure 5-2e (or 5-2f). Specifically, the blue pixels in Figure 5-2e are lowly 

correlated with 𝐶, and coincide with those showing greater correlation with low flow (compare with 

Figure 2-3c) and to those always inside the water. Conversely, the pixels in yellow in Figure 5-2f are 

highly correlated with 𝑊 timeseries (stable water pixels) and therefore identify the inner river, while 

the blue pixels coincide with those showing greater correlation the high flow (compare with Figure 

2-3d). Permanently flooded pixels (highly correlated with 𝑊) are also poorly correlated with 𝐶 

(Figure 5-2e), therefore the condition of S with 𝑊 < 0.7 was needed to avoid their selection for the 𝑀 mask in configuration 4. This condition helps reaching a tradeoff between the optimal number of 

pixels selected for 𝑀 and the sensitiveness of the procedure to the high river discharge, by limiting 

the pixels selected because the low correlation with 𝐶, sensitive to low flow condition. In fact, the 

pixels sensitive to high flow condition are expected to be less than those sensitive to low flow 

condition due to the nature of the phenomenon: therefore, by limiting the selection of the pixels 

sensitive to low flow, the sensitiveness to different water regimes should be obtained. 
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Figure 5-2: Po River at Pontelagoscuro: in light gray the pixels used for calculating C (panel a), W (panel b). Panel c 

shows the location of the pixel M obtained from configuration 1 (1 pixel, greed dot), configuration 2 (3x3 pixels, 
blue square), configuration 3 (9x9 pixels, red square) and configuration 4 (multiple uncalibrated pixels, light gray). 

Panel d) shows the product between the average and standard deviation of the NIR reflectance for each pixel 
within the water mask; panel e) and f) represent the Spearman’s correlation map between the reflectance 

timeseries of each pixel in the water mask and the average reflectance calculated for the C (panel e) and W 
timeseries (panel f), respectively. Background Copyright ©2021 Immagini ©2021, CNES / Airbus, Maxar 

Technologies. 
 

In order to better asses the source of errors, the S2 images of the days when estimated river discharge 

were very different from the observed one were analyzed and two main causes of error were detected. 

The first one is related to the clouds: even if the S2 cloud probability mask allows to remove the 

majority of the them, some residual clouds were undetected and unmasked, whereas in some cases 

the mask fails in correctly identifying the clouds and filter out valid pixels. An example of these issues 

is shown in Figures 5-3a, 5-3c and 5-3b, 5-3d. The first couple of panels show the S2 1c band 8 image 

collected on 24/05/2018 over Pontelagoscuro area, before and after the application of the cloud 

probability mask at 50%. Residual clouds can be clearly distinguished over the river. Furthermore, 

cloud shadows were not considered in the masking process, and the pixels affected by those were not 

removed. Clouds are very bright in the NIR, therefore their presence cause river discharge 
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overestimation when they overlap with 𝐶 or 𝑊 and underestimation when they coincide with 𝑀 

pixels. In contrast, cloud shadows reduce the reflectance of the affected pixels, causing 

underestimation when they coincide with 𝐶 or 𝑊 and overestimation when they coincide with 𝑀. 

Figures 5-3b-5-3d, instead, show the image collected on 10/06/2017: few clouds were present on the 

west area of the river, but the algorithm masked out a large number of pixels that were confused with 

clouds, hampering the river discharge estimation. The second issue is related to the reflectance values 

of 𝐶. It was noticed that in some days the reflectance values of the terrain pixels were significantly 

lower/higher than in other days, potentially due to e.g., the effect of soil moisture variations or 

bidirectional reflectance effects. These conditions led to a lower/higher 𝐶 value, which cause the 

under/overestimation of 𝐶𝑀𝑊 and consequently of the flow peaks, worsening the effect of the pixels’ 

saturation.  

 
Figure 5-3: Po River at Pontelagoscuro: S2 1c Band 8 images acquired on 24/05/2018 (Panel a and c) and on 

06/10/2017 (Panel b-d), prior (a and b) and after (c and d) the application of the cloud mask equal or above 50% 
of cloud probability. 
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5.5 Tiber river: Montemolino analysis 

With the purpose to investigate the limit (or the benefits) of the procedure when applied to narrow 

rivers, the same analysis was implemented at Montemolino station, along the Tiber River. The total 

number of available images for the period 2015-2020 was 529, obtained in 446 different days. After 

the cloud masking, 374 images with valid data were analyzed (based on the access on 17/06/2021). 

Figure 5-4 shows the results for the uncalibrated procedure (configuration 4). The pixels selected for 𝐶 (Figure 5-4a) coincided also in this case with roads and parking. The river bed was again 

successfully identified by the product of the average reflectance and its standard deviation (Figure 5-

4d). The holes within the river course were caused by river zones that are not detected from the JRC 

Global Surface water map. In Figure 5-4b the pixels selected for 𝑊 are shown. It can be noticed that 

they do not fall within the center of the river but prevalently on its southern borders. A possible cause 

of this phenomena is the shadow created by the riparian vegetation, which decreases the average 

reflectance of the pixels affected by it and facilitates their selection. Figures 5-4e and 5-4f show the 

S between the reflectance timeseries of each pixel in the water mask and the 𝐶 and 𝑊 timeseries, 

respectively. Figure 5-4e is particularly interesting because it shows many pixels lowly correlated 

with 𝐶, over the northern river boundaries, which are then selected to obtain 𝑀 timeseries by the 

uncalibrated configuration, as shown in Figure 5-4c. In contrast with the results obtained at 

Pontelagoscuro, by comparing Figure 5-4e with Figure 5-4f, it can be noticed that many pixels show 

also a low correlation with both 𝑊, while for the Po River the pixels lowly correlated with 𝐶 were 

better correlated with 𝑊 and vice versa. By further analyzing the selected area, a failure of the image 

co-registration procedure was detected: the coordinates of each image often not correspond to the real 

coordinates of the area, but there was often a misregistration of a few pixels.  
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Figure 5-4: Tiber River at Montemolino: in light gray the pixels used for calculating C (panel a), W (panel b). Panel c 

shows the location of the pixel M obtained from configuration 1 (1 pixel, greed dot), configuration 2 (3x3 pixels, 
blue square), configuration 3 (9x9 pixels, red square) and configuration 4 (multiple uncalibrated pixels, light gray). 

Panel d) shows the product between the average and standard deviation of the NIR reflectance for each pixel 
within the water mask; panel e) and f) represent the Spearman’s correlation map between the reflectance 

timeseries of each pixel in the water mask and the average reflectance calculated for the C (panel e) and W 
timeseries (panel f), respectively. Background Copyright ©2021 Immagini ©2021, CNES / Airbus, European 

Space Imaging, Maxar Technologies. 
 

An example of this issue is shown in Figure 5-5, where the S2 1c band 8 image acquired on 

22/08/2017 is shown (panel a) along with a clipping of the image acquired on 27/08/2017 (panel b): 

a miss-registration of ~1-2 pixels can be noticed by comparing the two images. This apparent 

movement of the full river section caused many pixels vary “artificially” between soil and water that 

were in turn selected for 𝑀, even being insensitive to river discharge. The error was also found in 

Pontelagoscuro images, but it was less impacting for river discharge estimation due to the different 

extent of the river, even if it could be responsible of the missing information for the greater river 

discharge peaks, since as above mentioned those affect very few pixels. To correct the issue, several 

attempts were done using GEE “register” function without satisfying results, mainly because of the 

presence of geometric distortions between the analyzed S2 images. The correction of this effect 
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should be therefore entrusted to the data provider, in order to increase the multi-temporal consistency 

of S2 dataset. 

 
Figure 5-5: Tiber River at Montemolino: detail of S2 1c Band 8 image acquired on 22/08/2017 (Panel a and b) and on 

27/08/2017 (central patch Panel b), showing a miss-registration between the two images of about 1-2 pixels. 
 

The 𝑀 pixels chosen over the fields, in the north of the Figure 5-4c, highlight two additional 

limitations of the automatic procedure. First, the vegetated pixels, which are lowly correlated with 

both 𝐶 and 𝑊, are not taken into account by the current approach, and could be potentially wrongly 

selected for 𝑀 with configuration 4, as it happens in the example. Second, the use of the percentile 

thresholds to obtain 𝑀 pixels can lead to select too many of them, especially for small river, where 

the sensitive area could be narrow.  

The 𝑀 pixels selected by the calibrated procedures (configurations 1-3: green dot, blue area and red 

area, respectively, in Figure 5-4c) fall in the same area inside the river that is periodically submerged 

(it is shown in light blue color in Figure 5-4d: in some periods it dries, therefore the average 

reflectance and the standard deviation are higher with respect to the rest of the river area) and it is 

therefore sensitive to river discharge variation. 
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Once again, the obtained 𝐶 and 𝑊 timeseries were used to estimate the river discharge with the 𝐶𝑀𝑊 

and the 𝐶𝑀 approaches, using both the uncalibrated and calibrated 𝑀 timeseries. The performances 

of the obtained approaches for the river discharge estimation are shown in Table 5-2.  

Table 5-2: Performance scores for the different configurations (1 for single pixel, 2 for 3x3 pixels, 3 for 9x9 pixels and 4 
for multiple pixels) for the period 2015-2020 at Montemolino station. Spearman’s (S) and Pearson’s (R) 

correlations are calculated between the CMW or CM timeseries and the ground observed river discharge. Root 
Mean Square Error (RMSE), relative Root Mean Square Error (rRMSE) and Nash-Sutcliffe efficiency, NS, refer to 

the simulated discharge calculated according Eq. 7 and the ground observed discharges 

Configuration 

𝑪𝑴 𝑪𝑴𝑾 

S 

[-] 
R 

[-] 
RMSE 

[m3/s] 
rRMSE 

[-] 
NS 

[-] 
S 

[-] 
R 

[-] 
RMSE 

[m3/s] 
rRMSE 

[-] 
NS 

[-] 

1 0.88 0.46 26 1.57 0.18 0.91 0.63 24 1.44 0.30 

2 0.86 0.42 27 1.61 0.13 0.91 0.62 23 1.39 0.36 

3 0.77 0.40 26 1.55 0.21 0.84 0.46 26 1.52 0.23 

4 0.42 0.26 30 1.72 0.05 0.55 0.33 29 1.66 0.12 

 

The misregistration issue affects particularly the uncalibrated procedure, which shows the lowest 

performance in terms of S, R, RMSE and NS. The calibrated methods are also affected, with score 

values worse than those obtained at Pontelagoscuro. Nevertheless, the relevance of considering 

sediment transport is again confirmed by the stable improvement in performances comparing the 𝐶𝑀𝑊 and the 𝐶𝑀 results. Among the calibrated results for , the first two configurations, where the 

average spatial window was not applied or applied for a limited area (3x3), show the best 

performance,. This is probably due to both the moderate dimensions of the river, which reduce the 

number of pixels sensitive to river discharge variation, and the image misregistration issue. 

Figure 5-6 shows the timeseries of the ground observed discharge and those derived by 𝐶𝑀𝑊 and 𝐶𝑀 approaches at Montemolino station for all the configurations. The quality of the uncalibrated 

procedure (Figure 5-6g-h) is relatively poor: even if flood periods were correctly detected, the surplus 

of 𝑀 pixels deteriorates the information. The calibrated procedure shows instead better results, even 
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if all the river discharge peaks were underestimated, probably due to saturation issues. Low flow 

conditions were better represented here, but the chosen fitting function is not well suited for this 

location. A possible cause could be the different river section shape, which can greatly shift the 

relationship between river discharge and 𝐶𝑀𝑊 timeseries.  

 
Figure 5-6: Tiber River at the Montemolino station: comparison in terms of temporal series (a, c, e, g) and scatter plots (b, 

d, f, h) between the ground observed discharge and the 𝐶𝑀 (green) or 𝐶𝑀𝑊 (red) timeseries for the configuration 
at single pixel (a and b), at 3x3 averaged pixel (c and d), at 9x9 averaged pixel (e and f) and for multiple 

uncalibrated pixels (g and h).
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________________________________________ 

6. CONCLUSIONS 

________________________________________ 

  

This work of thesis investigated the use of high spatial resolution data from the Sentinel Missions of 
the European Union Copernicus Earth Observation program for the estimation of water cycle 
variables, in order to assess whether high quality data can improve our ability to observe this 
important natural system from space. Specifically, the estimation of rainfall and river discharge from 
Sentinel-1 and Sentinel-2, respectively, was considered, due to their great impact in influencing 
human activities. As expected, these data can improve the accuracy of estimates in many areas where 
coarser resolution data are not accurate enough to provide useful information. In particular, the 
higher resolution products give the opportunity to observe features that would otherwise be averaged 
with surrounding pixels. Notwithstanding this, the low temporal resolution and some issues in 
georeferencing the data are still major problems that cause many events of both rainfall and river 
discharge to be missed. 

________________________________________ 
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6.1 Final remarks 

The number of natural disasters is expected to increase in the next decades due to the ongoing climate 

change, worsening the living conditions of the affected areas inhabitants. High-resolution data are 

fundamental to assist the authorities to prevent or mitigate these events, therefore it is of primary 

importance to increase their accuracy, availability and use, together with our understanding of the 

physic behind the phenomena we observe. For this reason, European Union developed Copernicus, 

its own Earth observation program. It aims at achieving a global, continuous, autonomous, high 

quality, wide range Earth observation capacity. This can be obtained by exploiting Sentinel Missions, 

a family of innovative satellites characterized by the most advanced technologies that ESA is 

developing and launching to fulfil Copernicus objectives. These sensors are capable of providing 

accurate, timely and open access information to any interested user, with the final objective, among 

other things, to improve the management of the environment, to understand and mitigate the effects 

of climate change, and to ensure civil security. Sentinel missions produce everyday more than 15 

Terabytes of data, available to users and scientist worldwide. This enormous amount of information 

makes necessary dedicated research efforts to develop new approaches for observing Earth system 

from space and/or adapt the existing methodologies to the new high-resolution data. 

With this scope, the information obtained from S1 and S2 missions from the Copernicus program 

have been used in this thesis to develop two methodologies aimed at the estimation of rainfall and 

river discharge, two variables that critically contribute to the characterization of Earth’s climate. 

These variables were chosen among the others that contribute to the water cycle due to their clear 

impact on Earth, which allows to observe them from space, and their important impact on human 

lives. Existing algorithms for the estimation of rainfall and river discharge were developed and 

adapted to be applied to Copernicus data. Specifically, in order to demonstrate the usefulness of 

Sentinel data, this thesis has a twofold objective: 
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1) adapt and developing SM2RAIN algorithm for the rainfall estimation to high-resolution data 

from S1, by also considering the absence of high-resolution calibration data; 

2) adapt and developing CM approach for the river discharge assessment to S2 data, exploiting 

the possibility to investigate new detailed feature such as the sediment transportation.  

Improvement in the estimation of the variables were obtained with both the developed methodologies, 

thanks to the additional information contained in the high-resolution data from Copernicus missions. 

The main results of the analysis are summed up in the following paragraphs. 

6.2 Parameterized SM2RAIN validation 

The first objective of this thesis was to develop four parametric relationships capable of estimating 

SM2RAIN parameters values from climatic and land descriptors, in order to allow SM2RAIN 

application at high spatial resolution (1 km) and in areas where there is no availability of a benchmark 

rainfall product to be used for calibration. A local analysis was performed over 1009 points 

characterized by a spatial resolution of 25 km and uniformly distributed over areas covered by rain 

gauges in Australia, India, Italy and US, for which high quality observed rainfall data were available. 

Several climatic and land descriptor datasets were analyzed to obtain an inclusive description of each 

point and to find the descriptors better related to the four SM2RAIN parameters. The four parametric 

relationships were developed, obtaining the parameters estimation from the knowledge of the SM 

timeseries and their noise, the topographic complexity and the mean annual rainfall. The major drops 

in correlation due to the use of the parametric relationships are caused by the estimation of the 𝑇 

parameter, responsible of the SM data filtering, while the major increase in RMSE is caused by the 𝑎 

parameter, related to the drainage rate estimation. 

To validate the obtained results, a global application of SM2RAIN on ASCAT SM was performed 

using the parametric relationships (called parameterized SM2RAIN-ASCAT) and the standard 

calibration methodology (called calibrated SM2RAIN-ASCAT). ERA5 rainfall was used to assess 

mean annual rainfall and as calibration dataset, while GPM-FR rainfall was used as benchmark to 
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calculate performance indices. From the analysis of the categorical and continuous scores, an overall 

similar capacity in rainfall estimation between the calibrated and parameterized product is found. In 

particular, even if the calibrated product has slightly better performances both in terms of correlation 

and RMSE, the parameterized product resulted more capable in the detection of larger rainfall events. 

Finally, the triple collocation method was performed by using GPM-LR, GPCC and the two 

SM2RAIN-ASCAT products. The analysis revealed that, even if the parameterized version of 

SM2RAIN-ASCAT has a slightly lower average correlations than the others, there are several regions 

(e.g., in Africa and South America) in which its performance is better than both GPM-LR and GPCC, 

suggesting the utility of this product for rainfall estimation.  

It is worth noticing that the parametric relationships have been linked to the mean annual rainfall and 

average SM variation, even though they are physically based on soil characteristics. This was not 

found probably due to the coarse spatial resolution of the SM product selected for this analysis and 

the low accuracy of the soil composition dataset. This point may cause a lack of robustness in the 

parameters estimation, since they are related to statistical quantities that are subjected to fluctuation 

due to, e.g., climatic variation (climatic change for rainfall) or anthropic effects (like the effect of 

irrigation on the average SM variation). Nevertheless, the results are still satisfactory and represent a 

step forward with respect to the simple calibration of SM2RAIN, particularly with respect to the high-

resolution rainfall application. Indeed, the quality of SM2RAIN products is limited in specific 

regions, such as desert, densely vegetated and mountainous areas, but their capabilities in estimating 

accumulated rainfall (rather than an instantaneous rainfall rate measured by the majority of the 

satellite-based products), make them a precious source of information to study rainfall process and 

variability worldwide, also in conjunction with other precipitation products derived from EO as noted 

by MASSARI ET AL. (2020). 
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6.3 High-resolution rainfall for Po River basin 

Once the parametric relationships were obtained, the high-resolution rainfall estimation analysis was 

conducted. Specifically, the SM2RAIN algorithm was applied to a 1 km spatial resolution SM product 

from S1, obtained through an algorithm based on a first order solution of the Radiative Transfer 

equation, RT1, over the Italian fraction of the Po River Basin, to retrieve a 1 km high-resolution 

rainfall product from satellite remote sensing. This region was selected due to the availability of a 

benchmark dataset from radar and rain gauge data and the presence of many geographical features, 

such as mountains, hills, lakes, rivers and plains, which make it a good test area for this analysis. Two 

versions of SM2RAIN were applied in this analysis to compare the resulting performances: one 

uncalibrated, to foster the high-resolution rainfall estimation in other regions where benchmarks data 

are unavailable, and one calibrated against the observed data. In order to assess the improvements 

related to the high spatial resolution of S1, SM2RAIN was also applied to ASCAT SM (25 km spatial 

resolution), resampled to S1-RT1 grid for comparison. The analysis was carried out at different 

temporal accumulation steps (1 day, 10 days and 30 days) to take the different temporal resolution of 

the two SM products, 1.5 to 4 days for S1-RT1 and sub-daily for ASCAT, into account.  

The results show that it is indeed possible to obtain high-resolution rainfall data from S1, even if the 

low temporal resolution of the data does not allow to calculate daily rainfall. It is instead possible to 

calculate it with ASCAT data due to the higher temporal resolution, with good results (median R, of 

0.61 and 0.64 for the parameterized and calibrated SM2RAIN). When 10 days accumulated rainfall 

is considered, S1-RT1 derived rainfall from the parameterized (calibrated) SM2RAIN performs quite 

well, with a median R of 0.61 (0.65), but ASCAT performances are higher, with a median R of 0.71 

(0.75). At higher accumulation steps, the performance differences reduce, until ASCAT and S1-RT1 

derived rainfall reach almost equal R for the 30 days accumulated rainfall (around 0.75). Similar 

conclusion can be deduced by analyzing RMSE values, while for the BIAS index the differences 
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between the calibrated and the parameterized SM2RAIN results are larger, probably due to the low 

spatial resolution of the product used to obtain the Po River Basin climatology (ERA5-Land).  

Even if on average the rainfall from ASCAT seems to be slightly better performing than the one from 

S1, the analysis of the spatial distribution of R shows instead the true benefits of the high-resolution 

SM. In the complex mountain regions, S1 obtains extremely good performance over the valleys and 

bad performance over the ridges, unsuited for SM remote sensing, whereas ASCAT’s R always 

represents an average of the two features signals due to the lower spatial resolution. S1 derived rainfall 

is generally better performing than the one from ASCAT also in the northern section of the Po Valley 

plain, while the latter is better in the southern section, where irrigation is widely practiced. The 

fragmentary nature of the irrigation in this area could be the cause of this phenomena: S1-RT1 should 

be more sensitive than ASCAT to the signal generated by various small fields, where irrigation in not 

concurrent, thanks to its higher spatial resolution, but since irrigation is not considered in the 

benchmark product, the resulting R is reduced.  

Summing up, high-resolution rainfall from satellite remote sensing is possible and it is able to observe 

features that are averaged in products with lower spatial resolution, like the rainfall within mountain 

valleys and potentially the fields’ irrigation. Notwithstanding this, the low temporal resolution is 

currently a limitation for its application in many fields, even if high spatial resolution rainfall at 

monthly temporal resolution is still useful for agriculture, water resource management and index-

based insurances. Nevertheless, the estimation of SM at 1 km spatial resolution is still a brand-new 

field and several improvements are expected in the next years, which will allow to further improve 

also the performance of the derived high-resolution rainfall. Moreover, such high-resolution rainfall 

products are rarely available to the users, and most of them are just based on spatial interpolation or 

other downscaling techniques, with many limitations, as mentioned in chapter 1. SM2RAIN allows 

instead to derive rainfall directly from SM variations, exploiting a physical relationship. This allows 

to obtain reliable rainfall estimates, particularly over the areas where the SM quality is high. 
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6.4 River discharge estimation over Po and Tiber rivers 

The second target of this thesis was to take advantage of the high-resolution of S2 data and their 

availability on Google Earth Engine platform to increase the capabilities and the accuracy of the 𝐶𝑀 

approach in estimating river discharge from NIR data over medium/narrow rivers. The method was 

enriched with the additional concept of exploiting a water (𝑊) area to take into account the variation 

of sediment load in the river, responsible of a water reflectance increase that caused river discharge 

underestimations. The averaging of multiple pixels to obtain 𝑀 timeseries was also proposed, to 

increase the methodology sensitiveness to river discharge by avoiding as much as possible the 

condition of completely flooded or dry 𝑀. Four different configurations were applied for the selection 

of 𝑀 pixels to test this concept: three calibrated (1 pixel, 3x3 pixels and 9x9 pixels) against the 

observed river discharge, and one uncalibrated, based on selecting for 𝑀 the pixels with low 

Spearman’s correlation with 𝑊 or 𝐶.  

To test its efficacy with different water regime, the methodology was applied over two study areas in 

Italy: at Pontelagoscuro along the Po River, and at Montemolino along the Tiber River, for the period 

2015-2020, exploiting Google Earth Engine cloud platform. Results indicated a stable performance 

improvement of the 𝐶𝑀𝑊 approach with respect to the 𝐶𝑀 approach for almost all the areas and 

configurations, proving the relevance of taking into consideration the sediments to correctly estimate 

the river discharge. The uncalibrated configuration has proved the most effective at Pontelagoscuro 

station with respect to the calibrated ones. Over the Tiber River, instead, the uncalibrated 

configuration failed to detect the pixels sensitive to the variation of river discharge due to the presence 

of heavily vegetated pixels and the misregistration issues of the S2 images that introduces 

uncertainties in the identification of 𝐶, 𝑀 and 𝑊 pixels. The issue was present also at Pontelagoscuro 

station, but with a less severe impact due to the greater river width. Finally, two additional sources of 

error were identified: the presence of cloud shadows and residual clouds, not masked by the cloud 
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masking procedure, and the variability of the value of 𝐶, due e.g., to the effect of soil moisture 

variations or bidirectional reflectance effects. 

This work represents a new step toward a non-calibrated methodology capable of obtaining a river 

discharge proxy over ungauged river, an extremely important information, especially due to the 

fostered water scarcity related to the climate change. The sediment contribution proved to be 

necessary to obtain reliable river discharge estimation. Despite this, the methodology is still 

unsuitable for ungauged rivers: indeed, the proposed approach is able to obtain a good proxy of water 

flow without using any gauge data, but river discharge observations are still needed for calibration 

purposes. Moreover, the methodology needs to be tested in different environments to evaluate its 

skills. Finally, well registered and more frequent NIR high-resolution data are also fundamental to 

increase the accuracy of the retrievals and to avoid the missing of river discharge peaks. Indeed, the 

CMW approach still has different source of noises that can potentially impact the estimated index 

value. The use of optical sensors, anyhow, ensures higher temporal resolution with respect to 

altimetry data and it is less sensitive to cloud coverage than the approaches based on the river width 

estimation. Moreover, the river width evaluation is limited by the use of a binary state water/not-

water to retrieve the length of the flooded river section, which may reduce its precision. Indeed, the 

proposed methodology showed promising results, with potential to further improve the river 

discharge estimation also considering future integrations of the existing techniques. 

6.5 Further steps 

This thesis demonstrated how the high-resolution information from the Sentinel Missions of the 

Copernicus program can increase our capacity in observing the water cycle from space, and 

specifically to increase the quality of rainfall and river discharge estimations, two of the most 

important variables that contribute to the water cycle. The described analysis highlighted how the 

high-resolution of Sentinel data can be used to study features and objectives that are not observable 

though coarser resolution data, leading the way to new researches to further improve remote sensing 
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observation capabilities. Although the performance of the rainfall and river discharge estimations 

obtained in this thesis are satisfactory, a detailed analysis of errors and noises related to the high-

resolution products (e.g., the co-registration errors for S2 imagery or the SM calibration over 

mountain regions for S1-RT1) is required, to increase the methods accuracy and applicability, and to 

provide useful satellite data for many applications.  

Further research will be carried out by using the results obtained in this work of thesis as starting 

point. Specifically, regarding SM2RAIN application for rainfall estimation, the following research 

topics requires detailed analysis: 

1. Improve the automatic estimation of SM2RAIN parameters values by including additional 

descriptors (e.g., Radio Frequency Interference indicators, Land Cover, high-resolution 

topography), with the objective of reducing the BIAS error resulting from the application of 

the parameterized version of SM2RAIN; 

2. Test machine learning approaches for self-calibrated SM2RAIN in order to assess their 

capacity in estimating the desired SM2RAIN parameters; 

3. Evaluate the integration of multiple SM products (e.g., from ASCAT; S1; Global Navigation 

Satellite Systems, GNSS; Soil Moisture Active Passive, SMAP) and/or top-down products 

(e.g., GPM IMERG) to obtain high spatial and temporal resolution rainfall estimates, i.e., 1 

km and 1 hour, in order to increase the fields of applicability of the obtained rainfall datasets; 

4. Use S1-RT1 information for detection and quantification of irrigation, in order to provide to 

the policy makers information regarding this important anthropic alteration of the water cycle; 

5. Use the high spatial resolution products obtained in this thesis for hydrological applications 

such as flood forecasting, landslide prediction and water resource management, to assess 

whether the high-resolution input data effectively improves the models’ forecasting and 

estimation capabilities; 

6. Analyze the error propagation and uncertainties assessment of SM2RAIN-derived rainfall; 
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7. Improve SM2RAIN formulation by including additional processes (e.g., evaporation, runoff 

and interception) and by improving the description of drainage. 

Similarly, the research related to the river discharge estimation should be focused on the following 

topics:  

1. Test the developed CMW approach to different satellite products and study areas over 

multiple climates, in order to evaluate the replicability of the obtained results and the 

limitations of the selected approach; 

2. Investigate the role of vegetation, to understand its influence in the definition of the C pixels 

and correct its effect on the selected M reflectances; 

3. Improve the cloud masking algorithm, to reduce the number of unmasked clouds and to 

develop a procedure to mask clouds’ shadow; 

4. Analyze river clusters to find the most suitable relationship between the CMW index and the 

observed river discharge; 

5. Further develop the uncalibrated procedure, to foster its application on multiple environments 

where the ground reference is missing and the river discharge estimation through the 

traditional approaches is impossible due to the absence of calibration data. 
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________________________________________ 

7. APPENDIX 

________________________________________ 

 

In this section, additional material is reported. The global maps of Triple Collocation correlation for 
the parametrized SM2RAIN applied to ASCAT, GPM-LR and GPCC are firstly shown. Then, a more 
detailed analysis of the areas characterized by stable low accuracy of rainfall estimation through 
SM2RAIN over the Po River basin is reported. Lastly, the results of testing a different time 
accumulation concept for the high-resolution rainfall products obtained over the Po River basin are 
shown. 

_______________________________________ 
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7.1 Triple collocation results 

________________________________________________________________________________ 

This section shows the global maps of TC correlation for the parametrized SM2RAIN applied to 
ASCAT, GPM-LR and GPCC. It should be noted that TC correlation values should not be taken as 
absolute measures of accuracy but rather as relative measures between the three datasets. The section 
is based on the following publication, published by Journal of Hydrology: 

 

Filippucci, P., Brocca, L., Massari, C., Saltalippi, C., Wagner, W., and Tarpanelli, A.: Toward a self-
calibrated and independent SM2RAIN rainfall product, Journal of Hydrology, 603(A), 126837, doi: 
10.1016/j.jhydrol.2021.126837, 2021. 

________________________________________________________________________________ 
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Figure 7-1: Map of TC correlation of the parameterized SM2RAIN-ASCAT based on the results of Triple Collocation of 

the rainfall products triplet SM2RAIN parameterized, GPM – Late Run and GPCC. 
 

 
Figure 7-2: Map of TC correlation of the GPM – Late Run based on the results of Triple Collocation of the rainfall 

products triplet SM2RAIN parameterized, GPM – Late Run and GPCC. 
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Figure 7-3: Map of TC correlation of the GPCC based on the results of Triple Collocation of the rainfall products triplet 

SM2RAIN parameterized, GPM – Late Run and GPCC 
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7.2 Parameterized SM2RAIN over Po River basin: issues with rainfall estimation 

________________________________________________________________________________ 

This section will present an analysis of the areas characterized by stable low accuracy of rainfall 
estimation through SM2RAIN over the Po River basin. First the probable causes of the issue are 
identified by looking at the performance patterns, then three potential “bad performing” gauges are 
analyzed. The section is based on a preprint of the following publication, submitted to Hydrology and 
Earth System Sciences: 

 

Filippucci, P., Brocca, L., Quast, R., Ciabatta, L., Saltalippi, C., Wagner, W., and Tarpanelli, A.: 
High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River 
Basin as case study, submitted to Hydrology and Earth System Sciences, doi: 10.5194/hess-2021-
563, 2021. 

________________________________________________________________________________ 
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The obtained results show that the high-resolution information from S1 sensors allows to increase the 

accuracy of SM (and thus of rainfall) in areas where coarse resolution data are not able to obtain 

reliable estimates. Conversely, over some region the rainfall obtained from the application of 

SM2RAIN to S1-RT1 SM shows worse performance with respect to the one obtained when the 

algorithm is applied to ASCAT data, as it happens on many mountainous areas. Finally, there exist 

some areas in which the accuracy of the rainfall obtained from the application of both the calibrated 

and parameterized SM2RAIN to ASCAT or S1-RT1 SM products is stably low, as discussed in 

section 4.4. This issue can depend by multiple factors, as SM signal quality, failure of the models (for 

rainfall or SM estimation) or accuracy of the benchmark rainfall product. In this section, an attempt 

to identify those area is made, by highlighting the pixels in which the Pearson’s correlation between 

the 30 days accumulated rainfall from MCM and the four SM2RAIN (from ASCAT and from S1, 

calibrated or parameterized) derived products is always less than a threshold, fixed at 0.65, as shown 

in Figure 7-4. Multiple areas of stable low performances can be distinguished in the figure, 

highlighted in blue. Two main reasons of this behavior can be identified: issues with the SM sensing 

and issues with the benchmark product. In particular, the blue areas located in mountainous region in 

the North and the West of Figure 7-4 map, should be affected by both the source of error, since on 

topographically complex areas SM retrieval is difficult and weather radar accuracy drops. 

Notwithstanding this, ASCAT performance are still higher than those of S1-RT1 in these areas 

(compare with Fig. 4-4). This fact has a threefold explanation: first, S1-RT1 SM estimations are 

obtained without considering any snow masking, thus their accuracy over mountain region regularly 

affected by snow cover is limited; second the low quality of ASCAT SM retrieval over 

topographically complex area is mitigated by the presence in each ASCAT pixel of valleys and/or 

plateau in which SM accuracy is higher; third, SM2RAIN algorithm hypothesis could be not valid 

over these areas since the runoff rate should be not negligible. 

Instead, the areas within the light blue rectangles in Figure 7-4, are characterized by the presence of 

paddies and water bodies: here the low performance should be caused by low SM quality, due to the 
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impossibility of retrieve SM information over flooded areas with active microwave sensors. Finally, 

the remaining blue regions should be affected by low quality of the benchmark product. This can be 

related either to “bad” performing gauge stations, recognizable through the central position of a gauge 

with respect to the low performing area (e.g., the two regions in the Center-East black rectangles), or 

to issues with weather radar and rain gauges measurements, where the blue patterns are concentrated 

between two or more rain gauges (e.g., the region within the black rectangles on the South-West). 

 
Figure 7-4: Map of Po River basin. The blue pixels indicate the areas where Pearson’s correlation between the 30 days 

accumulated rainfall from MCM and the calibrated and parameterized SM2RAIN applied to ASCAT or S1-RT1 is 
stably less than a threshold of 0.65. The light blue rectangles surround the areas with paddy areas or abundant 

water bodies, while black rectangles outline areas with alleged “bad” performing gauge station. Finally, the white 
dots show the gauge stations location and the green dots the rain gauge selected to be further analyzed. Map 

copyright ©2021 GeoBasis-De/BKG (©2009), Google, Inst. Geogr. Nacional Immagini ©2021 TerraMetrics. 
 

In order to better analyze this aspect, three stations located in within the three black rectangles in 

Figure 7-4 were selected, together with the nearest neighbor stations. The MCM timeseries of the 

pixels that includes the stations were extracted, in order to compare them and assess the quality of the 

considered rain gauges. The qualitative comparison of the stations is displayed in Figure 7-5, where 

the scatter plots for each pair of rain gauges is shown together with their position in the map (Figure 
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7-5a). In particular, a clear issue with the rain gauge named A1 can be appreciated in Figure 7-5b, 

with this sensor measuring rainfall peaks up to 300 mm/day, absent from the nearest gauges. The 

issue can be confirmed by the low Pearson’s correlation between its timeseries and the one of the 

nearest rain gauge, equal to 0.53, which is significantly lower than the mean Pearson’s correlation 

calculated between each couple of nearest stations within the study area, equal to 0.87 (standard 

deviation equal to 0.1). Also Figure 7-5c shows strange patterns of rainfall: even if there are no large 

peaks, several rainfall events are sensed with different magnitude by the two stations named B1 and 

B2, as can be noticed by looking at the number of points that tends to the x and y axis of the figure 

which indicate severe over- or underestimation. Also in this case, the measured Pearson’s correlation 

is lower than the average, equal to 0.71. Finally, the station C1 measures several peaks of rainfall that 

are higher than those sensed by the nearest rain gauge, C2 (Figure 7-5d). Notwithstanding this, in this 

case the variation between the two sensors seems to be caused by the natural spatial variability of the 

rainfall, as demonstrated by the high Pearson’s correlation between the two timeseries, equal to 0.88. 

This was expected since the low performing region is not located around one of the stations, but in 

between them, over a hilly area that could affect the weather radar measurements. 

 
Figure 7-5: Panel a shows the boundary of the Po River basin, together with the position of three couple of stations (A1-

A2, B1-B2 and C1-C2) with alleged “bad” MCM performance. The scatter plots of the daily rainfall measured by 
each couple of stations is then shown in Panel b, c and d. 
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Errors in the selected benchmark product are a known limitation of the direct validation of rainfall 

datasets. Notwithstanding this, this fact is also the proof of the need of further researches in the rainfall 

measurement fields, since the merging of different rainfall products, each with its limitation, often 

complementary, can be beneficial to obtain a measurement as close as possible to reality. 
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7.3 Parameterized SM2RAIN over Po River basin: time accumulation 

________________________________________________________________________________ 

A different time accumulation concept for the high-resolution rainfall products obtained over the Po 
River basin is tested in this section. The performances of the SM2RAIN derived rainfall products are 
recalculated to confirm the results obtained in chapter 4. The section is based on a preprint of the 
following publication, submitted to Hydrology and Earth System Sciences: 

 

Filippucci, P., Brocca, L., Quast, R., Ciabatta, L., Saltalippi, C., Wagner, W., and Tarpanelli, A.: 
High-resolution (1 km) satellite rainfall estimation from SM2RAIN applied to Sentinel-1: Po River 
Basin as case study, submitted to Hydrology and Earth System Sciences, doi: 10.5194/hess-2021-
563, 2021. 

________________________________________________________________________________ 
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The performance indexes of the high-resolution rainfall products of chapter 4 were calculated at three 

different temporal steps: 1 day, 10 days and 30 days. In order to obtain them, the timeseries of each 

estimated product and of the observed one were accumulated according to the selected period by 

considering only the intervals in which the data was available in both the datasets (estimated and 

benchmark). This choice was made to obtain the best accurate assessment of each product, by 

calculating its potential in estimating rainfall against a concurrent dataset. Notwithstanding this, the 

comparison of ASCAT and S1-RT1 based on such performances could be biased, because in this way 

the analyzed indexes are calculated against two different benchmark datasets, each resulting by the 

selected product’s valid data periods. In this section, we decided therefore to calculate again the 

performance indexes by accumulating the rainfall of the observed and estimated datasets only over 

the periods in which the three datasets (i.e., MCM, ASCAT and S1-RT1) are available together, and 

to insert in this appendix the corresponding of Figures 4-3 (Figure 7-6) and 4-4 (Figure 7-7) with the 

newly calculated indexes. To further increase the comparison quality and to avoid the period in which 

just one S1 sensor was in orbit and thus the associated drop in performance, only the data subsequent 

to 01/10/2016 were considered for the new indexes calculation. 

In comparison with chapter 4 results, here ASCAT performances slightly increase (Figure 7-6), due 

evidently to the removal of some low performing data. This is confirmed by the appearance of some 

patterns within the ASCAT correlation map in Figure 7-7a that resemble the invalid pixel percentage 

distributions map of Figure 7-7d. Notwithstanding this, the areas in which S1-RT1 outperforms 

ASCAT are almost confirmed (Figure 7-7c), although shrinked in the plain, confirming the obtained 

results. 
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Figure 7-6 Violin plots of Pearson’s Correlation (R, panel a), Root Mean Square Error (RMSE, panel b) and BIAS (panel 

c) between the rainfall from MCM and from SM2RAIN applied to ASCAT and S1-RT1. ASCAT-derived rainfall 
was accumulated at 1, 10 and 30 days, while the rainfall from S1-RT1 was accumulated at 10 and 30 days. Only 

the periods in which all three products are available are considered in the accumulation. Each violin shape is 
obtained by rotating a smoothed kernel density estimator. The green violins are obtained by calibrating SM2RAIN 

against MCM, while the red violins derived from the parameterized SM2RAIN procedure. 
 

 
Figure 7-7: Spatial Pearson’s correlation (R) between the 30 days accumulated rainfall derived from MCM and the 

application of the parameterized SM2RAIN to ASCAT (panel a) and to S1-RT1 (panel b) SM products, considering 
only for the periods in which all three products are available. Panel c shows the difference between ASCAT and 

S1-RT1 correlation maps, while panel d shows the percentage of not valid images per pixel.
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