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Abstract
Human physiological response to stress, designed to protect the body in face of danger,
presents a serious health threat in today’s society as stressors persist over longer periods
of time, preventing the human body from recovering properly. Thereafter, identifying
biosignals associated with the early detection of stress response, and designing stress
measurement tools, has been in the focus of many research papers in recent years.
However, only a small group of researchers concerned themselves with real-time stress
measurements or low-cost biomedical sensors in this context.
This thesis examined the usability of low-cost biomedical sensors for the detection of
human stress response in a real-time feedback implementation called REALSTRESS. Pre-
vious research in this field showed mostly self-fabricated, non-customizable or expensive
systems in their work. Therefore, this work aims to present results with a system that is
easily reproducible with a lower budget.

For the first part of this thesis, a selection of biomedical sensors were tested on five
participants in a protocol based on the trier social stress test. Thereafter, the live-feedback
stress detection REALSTRESS was implemented and reviewed within a laboratory setting
based on the results of the thesis’s first part. Statistical analysis of the data showed that
two out of the five low-cost sensors could be used for stress detection within a laboratory
setting (p-value < 0.05). The two sensors in question, photoplethysmography (PPG)
and electrodermal activity, were then implemented using a sliding window approach to
realize the real-time feedback sensing. The final implementation of REALSTRESS was
successful in differentiating between the phases of the stress test protocol within the
control group. The averaged stress score showed a difference of 30% between resting and
stress phase for an arithmetic exercise. Between the two sensors, PPG provided a higher
score divergence (50%).

The presented tool, REALSTRESS, has the potential to be used for simple stress
detection in educational and research fields. The next step for this system would be the
design of an appropriate visualization of the stress scale.
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Kurzfassung
Die physiologische Stressreaktion des Menschen, die den Körper vor Gefahren schützt,
stellt in der heutigen Gesellschaft eine ernsthafte Bedrohung für die menschliche Ge-
sundheit dar, da Stressoren über längere Zeiträume hinweg bestehen bleiben und den
menschlichen Körper daran hindern, sich wieder zu erholen. Die Identifizierung von
Biosignalen, die mit der frühzeitigen Erkennung von Stressreaktionen in Zusammenhang
stehen, und die Entwicklung von Instrumenten zur Stressmessung, standen in den letzten
Jahren im Mittelpunkt zahlreicher Forschungsarbeiten. Allerdings hat sich nur eine kleine
Gruppe von Forschern mit Echtzeit-Stressmessungen oder kostengünstigen biomedizinis-
chen Sensoren in diesem Zusammenhang beschäftigt.
In dieser Arbeit wurde die Verwendbarkeit kostengünstiger biomedizinischer Sensoren
für die Erkennung menschlicher Stressreaktionen in einer Labor- und Live-Feedback-
Implementierung untersucht. Frühere Forschungsarbeiten aus diesem Gebiet haben
vorwiegend eigen-hergestellte, nicht selbst konfigurierbare oder teure Systeme vorgestellt.
Diese Arbeit zielt darauf ab, Ergebnisse eines Systems zu präsentieren, welches auch mit
einem geringeren Budget leicht reproduzierbar ist.

Im ersten Teil dieser Arbeit wurden ausgesuchte biomedizinische Sensoren an fünf
Teilnehmern in einem Protokoll getestet, das auf dem Trier Social Stress Test basiert.
AnschlieSSend wurde die Live-Feedback-Stresserkennung, REALSTRESS, implementiert
und in einer Laborumgebung auf der Grundlage der Ergebnisse des ersten Teils der
Arbeit überprüft. Die statistische Analyse der Daten zeigte, dass zwei der fünf Low-Cost-
Sensoren für die Stresserkennung in einer Laborumgebung verwendet werden konnten,
indem die Nullhypothese gleicher Mittelwerte durch einen p-Wert unter 0,05 im Welch’s
t-Test verworfen wurde. Die beiden betreffenden Sensoren, Photoplethysmographie (PPG)
und elektrodermale Aktivität, wurden anschlieSSend mit einem Sliding-Window-Ansatz
implementiert, um die Echtzeit-Feedback-Erfassung zu realisieren. Die endgültige Im-
plementierung von REALSTRESS war erfolgreich bei der Differenzierung zwischen den
Phasen des Stresstestprotokolls innerhalb der Kontrollgruppe. Der durchschnittliche
Stress-Score unterschied sich um 30% zwischen der Restphase und der Stressphase bei
der arithmetischen Übung. Das PPG zeigte dabei den gröSSten Score-Unterschied von
fast 50%.
Das vorgestellte Tool, REALSTRESS, hat das Potenzial, für die einfache Stresserkennung
in Bildungs- und Forschungsbereichen eingesetzt zu werden. Der nächste Schritt für
dieses System wäre die Entwicklung einer geeigneten Visualisierung der Stressskala.
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1. Introduction
The human body responds to both psychological and physiological stress in a specific way
known as the human stress response. This mechanism is designed to protect the body
and should release the body back into its initial state of rest once the stressor is dealt
with. However, today the humans face many stressors that are more prominent, which
leads to longer states of stress response in our bodies. Given that this inner system of
self-protection is not designed for long-exposure, this causes a serious health concern.[30]
Psychological stress management and stress related illnesses have become a more dis-
cussed issue in recent scientific research. Their role in human health and wellness is more
important than ever, and the early detection of stress related markers draws interests
from many corners. In the last 10 years, many stress-related papers have been published,
with the intend to find the optimal stress signal analysis [5] [52] [86] [61], produce the
most efficient biosensor for stress measurements [39] [66] [95] , or design the least-biased
procedure for stress-inducing experiments [1] [60].
Prominent biosensor producers in human stress research provide an overall solution, which
includes read-to-use sensors and signal-processing software. Those kits are often expens-
ive, and therefore not easily available for the general public or less-funded research-groups.
Other scientists design their own sensors, which makes it even more difficult to gain access
to them for related research. Most many sensor-tools presents are not customizable,
which limits the possible use-cases for stress measurements. Therefore, many of their
experiments are not easily-reproducible for the general scientific community. Secondly,
almost all research done in terms of stress measurements focus more on in-depth signal
extraction, therefore performing data-analysis after the experimental part is conducted.
However, giving the user a live response to their stress level, for example in form of a
stress level scale, could prove useful in educating the public about stress management
techniques.
Producing a real-time stress feedback system with lower-cost sensors, which would make
the finished product easily available for other research groups, has several challenges.
Firstly, not all inexpensive sensors are able to present measurements of high-enough
quality for live signal-processing. Secondly, designing a software environment for simul-
taneous signal-processing is challenging, because the different biosignal tools will interfere
with each other.
This thesis ties in with the previous work done by aiming to produce a live-feedback
mechanism for stress measurements with low-budget sensors named REALSTRESS. To
implement this, a stress-inducing experiment based on the Trier Social Stress Test (TSST)
will be performed using inexpensive biomedical sensors. This should provide insight in
the usability of non-commercial, low-end sensors for human stress response detection.
Based on the results of the first part, the aim is to implement a live-feedback stress
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1. Introduction

detector using a selection of the best performing low-cost sensors. This system should
deliver information in form of a stress-meter with an appropriate accuracy for this type of
educational material. REALSTRESS will be evaluated through several rounds of testing
on a reference candidate, by adjusting the parameters of a sliding-window-based live
signal-processing tool.
The signal processing steps for REALSTRESS are illustrated in figure 1.1, and include
signal extraction, sliding window function and scoring functions. For the system to work
properly, all of these steps have to be adapted to each other so that the interference
between functions does not impair the final product.
The experimental results proved that two out of the five tested low-cost sensors could

be used in classic stress detection tests. This was attested through the Welch’s t-test,
when comparing the signal means between different phases of the experimental stress
test protocol. Furthermore, REALSTRESS could be implemented successfully, as was
presented through the difference in mean stress scale between moments of stress and
resting phases. For an arithmetic exercise, the control group showed a stress scale increase
of 31% between rest and event. Considering only the heart rate stress scale, the increase
was in order of 50%. This proves that the method of real-time stress feedback is realizable
with low-cost sensors.

Following this introductory chapter, an overview of the most important theoretical
background and related literature is given in chapter 2. The main contributions of this
work are described in chapter 3, which includes the methods of sensor testing and the
techniques for implementation of REALSTRESS. Chapter 4 presents the most important
results of the testing described in chapter 3. The findings are further discussed in chapter
5. Finally, a conclusion over the work presented in this thesis is provided in chapter 6.
Additional figures and material are presented in the appendix.
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Figure 1.1.: Schematic description of signal processing steps for the implementation of
REALSTRESS.
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2. Theoretical Background and Literature
Review

This chapter outlines the most important theoretical background for this thesis and
introduces similar research done in the same field in recent years.

2.1. The Definition of Stress

In 1927, Hans Selye gave "they syndrome of just being sick" the name stress, in reference
to the term stress in classical physics. Selye described stress as a response or physiological
reaction, which is independent of its source. Furthermore, he named the stress trigger
stressor. [30]
Stressors can be psychosocial or biogenic. Psychosocial stressors depend on the cognitive
interpretation of a situation. What may cause some people psychosocial stress, may not
be a stress trigger for others. Examples would be a traffic jam, grief or guilt. On the
other hand, biogenic stressors are inherently triggers of stress and do not need cognitive
appraisal, because they possess a sympathomimetic (Sympathetic Nervous System (SNS)
activating) characteristic. Examples of biogenic stressors are coffee, cocaine, extreme
heat and cold, and physical exercise. In general, psychosocial stressors are more common
than biogenic stressors in affected patients.[30]
Stress is often viewed negatively, but can be beneficial to humans, as Selye described:
Eustress, a quality of life improving positive stress arousal can be differentiated from
distress, which has mostly negative consequences. When an individual is exposed to a
stressor, first eustress is experienced. With increasing stress level, health and performance
increase until they reach a maximum. When this peak is surpassed, a decline in both
effects happens and eustress becomes distress. The optimal stress level, at which health
and performance are at their maximal potential, is different for every individual and may
depend on inherent and acquired properties.[30]
There is an distinction between stress response and target-organ effects. The psycho-
physiological arousal of the individual is the stress response, while the effect of this
arousal are pathologies or target-organ effects.[30]

2.2. Biosignals

Biosignals are the basis of the stress measurement research presented in this thesis. In
this section, biosignals with the implications for this thesis are discussed.

5



2. Theoretical Background and Literature Review

2.2.1. Definition and Types of Biosignals
In context of biomedical research, physiological phenomena can be described by biosignals,
which can be categorized into different classes: depending on their existence (induced or
permanent), behavior (static or dynamic), origin (electrical, magnetic, mechanic, optic,
acoustic, chemical, thermal, ...), among others.[48] In this subsection, a short overview
about the most important types of biosignals for this thesis is given.

• Biosignals according to their existence:
– Permanent biosignals have a signal source within the body, and do not

depend on external excitation. One examples would be the Electrocardio-
gram/Electrocardiography (ECG) signal.

– In contrast, when the signal has to be triggered artificially, it is an induced
biosignals, whose duration is approximately the length of excitation. Optical
oximetry (photoplethysmogram/photoplethysmography (PPG)), where light
is used as a external signal source to determine local pulsatile blood volume,
would be an example of induced biosignals.

• Biosignals classified by their dynamic behavior :
– (Quasi) Static biosignals experience only little change over time and transfer

information in a stationary state. While the core body temperature does
change within its circadian rhythm, it does so in a slow manner over 24 hours,
and is therefore considered a (quasi) static biosignal.

– On the other side of the spectrum, Heart Rate (HR) changes with each beat
and is an example of a dynamic biosignal. It is categorized by a high level of
time domain changes.

• Finally, biosignals can be grouped by their origin. This label includes many different
groups, therefore, this list will only describe those most relevant for this thesis. For
further information about origins of biosignals, please refer to other literature (e.g.,
Biomedical Signals and Sensors I, E. Kaniusas, Springer 2012 [48]).

– When the signal occurs due to electrical activity of muscles or neurons in
the brain, they are called electrical biosignals. An example of this type would
a Electromyogram/Electromyography (EMG) or ECG signal.

– Optical biosignals are related to light phenomena such as absorption or
scattering, such as the signal received in PPG.

– The core body temperature changes (slowly) because the body losses or absorbs
heat. This is an example of a thermal biosignal.

2.2.2. Heart rate and Electrodermal Activity
HR and EDA are prominently used terms within this thesis and are described in more
detail in this section.

6



2.2. Biosignals

The amount of which the heart beats within a time-unit is defined as the HR. It is
not constant and varies naturally, and this change in HR is defined as the Heart Rate
Variability (HRV).[75] HRV happens due to the quick reaction to physiological state
changes of the autonomic nervous system’s regulatory mechanisms, which includes exer-
cise and emotional activity.[49]
EDA refers to electrical potential changes of the skin. Furthermore, if no external current
is applied during recordings of EDA, it is sometimes referred to as endosomatic EDA.
Thereafter, the EDA signal can be parted into a tonic (Skin Conductance Level (SCL)
and a phasic component (Skin Conductance Response (SCR) or Galvanic Skin Response
(GSR)[27]).[21] While SCL shows only small variation, SCR is fast-changing and has
been associated with Autonomic Nervous System (ANS) activity in particular of the SNS.
High sympathetic activity leads to a decreased SCL signal as the skin’s conductivity
increases.[77] SCR is characterized by a quick rise towards the peak, followed by a
creeping decrease of amplitude towards the baseline.[8]

2.2.3. The human stress response and related biosignals
This section gives an overview over the stress response of the human body and the related
biosignals.
To begin with, the phenomena of homeostasis in the context of medicine has to be
defined. It describes the regulating tendencies of an organism to preserve the internal
environment’s vital variables against non-equilibrium states. This is often achieved with
negative feedback loops, where the start of one regulator system is sensed by another
internal system, which works against it (usually with some delay).[6]
When a stressor is detected by the body, the system is no longer in homeostasis (or equilib-
rium), and the human stress response is induced with the goal to restore homeostasis.[69]
In case of a psychological stressor, it must first be interpreted in order to develop from
a simple stimuli to a stressor, which is called cognitive appraisal. This is followed by
the neurological triggering mechanism, which initiates the multiaxial stress response.
Finally, the actual stress response happens, which can be divided into the neural axes,
the neuroendocrine axis and the endocrine axes.[29] More prominent is the division into
the neuroendocrine axis (and here particularity the sympathoadrenal medullary (SAM)
axis) and the Hypothalamicpituitaryadrenal Axis (HPA axis).[69] The neural axes are
activated first, because their pure neural pathways are the quickest. Neurotransmitters,
such as norepinephrine released by SNS pathways, are responsible for the change in
organ-behavior.[29]
While the neural axes is the first to display a stress response, it does not lead to chronic
stress arousal. Instead, the neuroendocrine axis is able to provide a stress response for
a long period of time (chronic). The neuroendocrine axis is better known by the term
Fight-or-Flight Response. The adrenal medulla is the main stress response organ in the
neuroendocrine axis, which is a neural (through the autonomous nervous system) and
endocrine axis. Upon neural activation, the adrenal medulla releases two hormones,
the adrenal medullary catecholamines: norepinephrine (noradrenaline) and epinephrine
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2. Theoretical Background and Literature Review

(adrenaline), which are the endocrine parts of the neuroendocrine axis. Out of the entire
human medullary catecholamine activity, approximately 80% is due to epinephrine. The
medullary catecholamines lead to effects functionally identical to those experienced after
activation of the SNS stress response. However, the neuroendocrine stress response is
delayed by 20-30 s. Some effects of the stimulation of the adrenal medullary axis are
increased arterial blood pressure, increased HR and cardiac output, increased skeletal
muscle stimulation, and decreased blood flow to skin. [29]
The endocrine axes need a more intense stimulation to trigger their response, but their
somatic response is the most chronic and prolonged. Here, the adrenal cortical axis (also
know as HPA axis) is of great prominence.[29] With the brain increasingly producing
corticotropin-releasing hormone (CRH) and arginine vaseopressin (AVP), the pituitary
glads are activated and start to secret adrenocorticotropic hormone (ACTH). The ACTH
triggers the adrenal cortex to release corticosteroid hormones, which influence the beha-
vior of almost every part of the human body.[89]
Table 2.1 presents a selection of biosignals that change their behavior due to the human
stress response.[29]

Biosignal Change in behavior Origin
Arterial blood pressure increase adrenal medullary axis
HR and cardiac output increase adrenal medullary axis
Blood flow to peripheral organs decrease adrenal medullary axis
Blood flow to gastrointestinal system decrease adrenal medullary axis
Skeletal muscle stimulation increase adrenal medullary axis

Table 2.1.: Biosignal behavioral change due to human stress response.

2.2.4. Methods of measuring and processing biosignals
In this subsection, different methods used to measure and process biosignals are described.
Since there is a wide variety of options, only those relevant for this thesis will be mentioned.

To measure EDA, two electrodes are placed on the hand (usually on the palm or
on two fingers of the non-prominent hand) between which a weak electrical current is
applied. Due to sympathetic arousal [78] the resistance through which the current must
go, varies. This resistance can be measured indirectly using Ohm’s Law by measuring
the electrical potential difference between the two electrodes.[4]
The first step in processing raw EDA data, is extracting the phasic SCR and tonic
SCL components of the signal.[20] This can be done with deconvolution techniques, for
example using the non-negative deconvolution algorithm proposed in [9] or a standard
deconvolution algorithm presented in [8]. The phasic signal is analyzed using latency,
amplitude, rise time, and recovery time and has a typical form: A steep elevation followed
by the peak and slow deterioration to the resting level. However, when several SCR
peaks are following each other, the signals will overlap. For stress related research, SCR
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activity is assessed through SCR amplitude and peak count detection. For analyses, it is
important to discriminate between cases where the EDA is allowed to fully recover and
cases where two or more SCR are superimposed. In case of the latter, signal processing
has to be adjusted accordingly.[20] On way to achieved superimposed signal processing is
proposed in [37], who was able to present an analysis technique, which was comparable
to manual scoring methods. Tonic signal components are often not considered in stress
related analyzes.[20]

HR can be determined using different measurement techniques, but the most com-
mon are ECG and PPG.[36] ECG measures the electrical excitation that origins from
the sinoatrial node in the heart. When those electrical impulses travel through the
heart to induce a heart beat, the changes in electrical signal can be measured using
surface electrodes. The ECG records these biosignals at different parts of the body
simultaneously.[34] The potential difference between two ECG electrodes is refereed to as
one ECG lead, which displays the hearts electrical activity for one differential electrical
axis. In general, more than one lead are used to improve the signal quality (better
signal-to-noise ratio). There are different placement strategies for a various amount of
leads used. For this project, whenever an ECG was placed, they were placed in accordance
with the Triangle of Einthoven. The HR can be calculated using consecutive R-peaks in
the electrocardiograph.[70]
The ECG signal processing consists of noise filtering, QRS detection, wave delineation,
and data compression. Further processing steps might include feature extraction, cluster-
ing algorithms, and rhythm analysis among others.[83]

PPG is an optical biosensor that measures the change in microvascular tissue’s blood
volume. The system consists of two main components: a light emitting sensor source
and a photodetector. The light source emits light in the range of red or near infrared.[3]
As the light signal travels through the tissue it is attenuated differently depending on
the blood volume at this tissue. With each pulse, the blood flow varies, which is visible
in PPG as the AC component of the signal. The photodetector is used to measure the
strength of signal in relation to the original signal emitted by the light source. Depending
on the instrument, the signal is either detected as a reflection or transmission signal.[71]
PPG is mainly used to detect the pulse rate and pulse rate variability (PRV).[58] Depend-
ing on where the PPG sensor is placed, the resulting signal will appear differently. The
main features of the signal include a pulse peak and the dicrotic notch[47] and are usually
present in all signals. Signal processing can be difficult, because movement artifacts re-
main a big issue in PPG data acquisition.[3] Signal processing usually consists of filtering,
motion artifact removal, and pulse wave analysis. For real-time signal processing, FIR
filters (e.g., Moving Average (MA) filter) are a suitable choice.[57]

The electrical excitation of muscles can be measured using a EMG, where the elec-
trical potential difference between two electrodes is measured. Muscle activity can be
determined through the amplitude peaks of the EMG signal.[48] Some recommended
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EMG surface electrode placements can be looked up through the SENIAM (Surface
ElectroMyoGraphy for the Non-Invasive Assessment of Muscles) project, which is a part
of the EU program BIOMED II.[81]
The most important feature of the surface EMG signal is the amplitude since it indicates
muscle force. Signal processing consists of noise reduction (whitening filter), signal
filtering (forth order butter-worth filter), feature extraction through amplitude and power
spectral analysis of the EMG signal can be used for feature extraction.[82]

Depending on where the sensor is applied, body temperature can be considered closer to
core or shell temperature (Skin Temperature (ST)). While temperature readings near
the axilla are closer to the core temperature, measurement on lower extremities, such
as fingers or toes, are ST related. Furthermore, the body temperature depends on the
environmental temperature due to the bodies heat regulation. The most common instru-
ments to asses body temperature are infrared thermometer, thermistor, and thermocouple
sensors.[25] Since body temperature is a quasi static biosignal [48], the sensors accuracy
needs to be smaller than 1 °C. A thermistor sensor can be used to measure temperature
due to its temperature-depending resistance change. Current calibrating methods allow
for such precision to be reached using thermistors.[62][50] ST measurements can be
processed using spectral analysis tools, if the data resolution allows it.[79] Usually, not
more processing is done for this biosignal.[63]

Mechanical respiration signal acquired using a mechanorespirogram, provides a peri-
odic wave as output signal. The signal can be analyzed considering its amplitude and
shape.[47]

2.3. Stress test designs
Research in the field of stress measurements relies on certain testing strategies to produce
reproducible results. This second provides an overview over the most common stress test
designs used in research.

2.3.1. Trier Social Stress Test
In 1993, Kirschbaum et al. introduced one of the most popular experimental tool for
psychobiological stress research: The TSST. It aims to induce a moderate amount of
acute stress by exposing participants to psychosocial stressors. Although the exact testing
protocol was altered in numerous ways throughout years of research, the test has three
fundamental parts:

1. An anticipation period without an active stressor, which is needed to find the
participants stress baseline. The usual duration is 15 minutes.

2. A public speaking task, most commonly a mock job interview, in front of a live
audience. This part is sometimes filmed, to increase the pressure on the participant.
This part is timed at 5 minutes.
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3. An arithmetic task, which can be any moderately difficult mathematical exercise
(e.g. counting downwards in steps of 13). It is participants are usually not aware
that where will be an arithmetic task following the mock job interview. The time
limit for this part of the test is 5 minutes.

Throughout all trials, participant will not receive any form of feedback from the research
conductors.[2] After the arithmetic task, there is often an additional resting period.[53]
The TSST will prominently be supported by the State-Trait Anxiety Inventory or similar
psychological self-estimation forms, which are filled out by the participant itself before
and after the TSST experimental task.[61]
It has been shown in various research that the HPA axis is activated as a result of the
TSST. This is achieved through the combination of two main stressors: social-evaluative
threat (interview and arithmetic task in front of audience, video and audio recording, no
social feedback whatsoever) and loss of control (short preparation time, unannounced
arithmetic task).[2]
The most common stress response biomarkers observed when performing TSST are
cortisol and adrenocorticotropic hormone (ACTH), which are associated with the HPA
axis. Other biomarkers that have been shown to be activated are HR, which peaks when
stressors are introduced, and HRV. The use of the latter is still being debated in context
of TSST. Similarly unclear is the role of blood pressure during the TSST. An increase in
galvanic skin response has also been observed during the TSST [42].[1]

2.3.2. Cold pressor test
To test for hypertension in their patience, M.D. Hines and M.D. Brown came up with
the Cold Pressure Test (CPT) in 1932. The test aimed to produce a universal stimuli to
induce a consistent change in blood pressure. They figured out that patients experienced
vasopressor effects (increase in blood pressure) after extremities were immersed in ice
water. This thermosensory stimulus lead to the expected outcome for 99 % of their
patients. The test starts with a period of rest (20 to 60 minutes) during which regular
blood pressure readings are performed to find the signal’s basal value. In the second
phase, the subjects are asked to place an extremity into ice water (approximately 4 °C
cold). Blood pressure is taken 30 and 60 seconds after the initial exposure to the stressor .
When the extremity is no longer emerged into ice water, blood pressure is taken in regular
intervals until it recovers back to basal value. They found that subjects with hypertension
needed a longer period of time to return to basal blood pressure than subjects, who
did not suffer from hypertension.[38] Furthermore, the CPT is frequently used in stress
research [72], suggesting that a universal sympathetic response (in form of SCR can be
provoked, while HPA axis responses (e.g., cortisol response) are not uniform.[22] Therefore,
CPT is suggested to not be suitable for research with the aim to activate the HPA axis.[72]

T. Smeets and his research group combined the TSST and CPT with the aim to induces
a response from both the sympathetic axes and HPA axis. They published their findings
in a paper in 2012, in which they described their testing schema named Maastricht Acute
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Stress Test (MAST). They found that the MAST outperformed the CPT when it comes
to salivary cortisol response, but showed a similar response to the TSST. Their final
conclusion highlights the MAST’s ability to provoke a strong subjective, autonomic, and
glucocorticoid stress response.[80]

2.3.3. Perceived Stress Scale

As described before, stressors are perceived differently between individuals. Therefore, it
is not always clear which objective stressors will actually lead to stress-related illnesses.
Furthermore, it is not possible to predict how individuals will react to stressors, because
secondary factors, such as social support, may play an important role in stress coping
mechanism. The Perceived Stress Scale (PST), as suggested by the team of S. Cohen in
their paper of 1983 [26], was presented as a tool to measure a subjective stress level in
relation to objective stressors, coping mechanism, and an subject’s personality among
others. The test is designed to ask the user simple questions which should be answered
on a scale of zero to four depending on how stressful a situations was perceived by the
individual. S. Cohen and team found the PST to be a reliable tool to measure perceived
stress, especially compared to similar instruments used at that time. The research team
suggested the PST to be used in research with aim to find connection between disease
risk and stressors, and for measurements of experienced stress levels.

2.4. Electronic background

Due to their simplicity and affordability, micro controllers of the kind Arduino Uno are a
popular choice for smaller electrical engineering projects. The company "Arduino" was
founded by Massimo Banzi and David Cuartielles in 2005, and stands for affordable
and easy to understand micro controller boards. The "Arduino Uno" was the original
design, today, however, many more options of micro controllers are available.[51] The
programming language used to write on the micro controllers was created by David Mellis
[87] and is based on the already existing programming languages C and C++ [51].
The connections of sensors or actuators to the Arduino boards are established via pins.
The Arduino Uno board uses an ATmega328 chip, and hosts 13 digital as well as 12 analog
connection. All digital pins can be used for both input and output, while the analog pins
are separated into pins which are exclusively used for either input or output. In this
context, input refers to data that was collected by sensors and should be send forward,
while output represents information send from the micro controller to an actuator to
perform some form of action.[7]
The digital pins only recognize two states (HIGH or LOW), while the analog input pins
will measure analogue input by its voltage level with a maximal resolution of 1024 states.
Similar, the analog output pins will provide voltage output on 1024 different levels.[7]
The board is powered either via USB port or AC adapter. Additionally, the USB port
allows to establish a connection between the board and a computer.[7]
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2.5. Literature Review

In recent years there has been a lot of development in the field of human stress meas-
urement with the use of biomedical sensors. Recent studies showed a combination of
different sensors to achieve more accurate results.
Peripheral skin temperature is assumed to be a measure of physiological stress as it
varies due to vascular system changes (vasodilatation and constriction), which in turn is
correlated to sympathetic activity because it is controlled by the ANS) [31]. Therefore it
has been part of recent research in terms of stress measurement, where skin temperature
sensors have been used in combination with other biosensors [52] [67] [95] [88]. Skin
conductance or galvanic skin response (GSR) is another popular biomarker for the human
stress response and is often included in scientific research [43] [95] [60] [52] [5] [61] [67]
[88]. HR and HR variability detected using the signal of ECG [60] [43] or PPG [95] [52]
[5] [86] [61] [67] [88] sensors is used in modern stress research frequently. Other, less
common sensors include EMG of the trapezius muscle [43], EEG [5], respiration rate
sensors [67], sociometric sensors [61], IMU sensors [52] [43] [60], pulse oximeter [67] and
blood pressure sensors [88].

In 2016 S. Yoon et al. [95] published a paper in which they introduced a wearable
stress monitor in form of a small patch. The custom design allowed to measure skin
temperature, skin conductance and pulswaves simultaneously with greater wearers com-
fort due to its small size and durability (life time estimated at 9 days). The patch was
worn on the skin and consisted of several layers including a more flexible piezoelectric
pulswave sensor compared to similar designs. A singular vector machine algorithm was
used to identify four human emotions based on the physiological data.
In [60] a chest-worn Polar H7 HR monitor was used to observe participants stress levels
in both a lab setting and a free-living field study. The sensor captured HR and R-R
interval values, an additional wrist-worn sensor tracked activity data and ecological
momentary assessment (EMA) prompts. The measurements were processed through
feature computation. Both support vector machine (SVM) and random forest (RM)
algorithms were able to detect windows of stress with a 87% accuracy in the lab setting.
Furthermore, when they added a custom made GSR sensor to the lab setting, the accuracy
reached 94%.
The researchers in [43] published a proof-of-concept stress monitoring equipment suitable
for surgeons to wear in the operating room while performing procedures. The device
recorded ECG, EMG, EDA and IMU sensor data and was positioned on the upper torso.
This allowed for simultaneous monitoring of HRV and HR through the ECG, trapezius
muscle contractions through the EMG, SCR through the EDA and respiration rate
(RR). The device was tested in a lab setting and the recorded data was processed using
MATLAB. The goal of the study, which was to record and store physiological data of
several sensors simultaneously, was achieved.
K. Kyriakou et al. [52] published a rule-based algorithm which used GSR and ST to
identify moments of stress (MOS) in participants. They used a wrist-worn commercially
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available sensor (Empatica E4) to record the needed physiological data both in a lab
setting and real-world field study. The rule-based algorithm was first developed using
the lab setting recordings and afterwards used to classify the real-world data, where it
achieved an average accuracy of 84%.
In [5] the human stress response was recorded during public speaking task with the use
of commercially available electroencephalography (EEG), GSR and PPG sensors. Apart
from frequency domain EEG features and time-domain GSR features, HR and HRV
features were extracted from the PPG signal. The features were classified with machine
learning algorithms, such as SVM and RF, to differentiate between situations of different
stress level. With 96.25 %, the best accuracy was achieved by including features from all
three sensors and feeding the feature vectors to an SVM classifier.
In a 2021 paper by A. Tazarv et al. [86] the authors measured HR and HRV using a
commercially available Sportwatch equipped with a PPG sensor over a period of one
to three months in a real-world study. The stress monitoring data was accompanied by
self-report questionnaires and later processed using various machine learning approaches
(e.g., SVM, k-Nearest Neighbors (kNN), random forest (RN)). The highest accuracy of
76 % was reached using a random forest algorithm.
M. Mozos et al. [61] combined physiological and sociometric sensors to measure stress
during a lab setting experiment. The hand-and-wrist-worn physiological sensor collected
EDA, HRV and PPG signal, while the sociometric sensor, which was worn as a conference
badge was a IMU sensor with integrated speack recording function. The data was
classified into stressful and non-stressful periods using the machine learning approaches
SVM, AdaBoost and kNN. Using a combination of both sensor systems and classifying
the data with Adaboost, the accuracy and precision rates of 0.94 were reached for this
study.
In [67] measured physiological signals with an Arduino Uno board and related shield,
designed by COOKING HACKS to detect biosignals. The research team selected four
sensors for their study: ST sensor, GSR sensor, pulse oximeter, and breath-rate sensor.
They classified the data using different classifiers and found that kNN provided the
highest accuracy (95.98 %) with features of all four sensors were included.

In conclusion, there have been many research studies dedicated to measuring hu-
man stress response in laboratory or real-world scenarios. Most researchers focus on
detecting relevant stress biomarkers using expensive sensor kits [52] [86] [5], some not
widely available out of academic circles [61], or costume made sensor devices, which are
not easily reproducible [95]. While some studies did use inexpensive, micro-controller
compatible sensors [43] [67], some systems are no longer available for purchase [67].
Almost all stress research projects from recent years processed their data after the
stressor experiment setting. There are almost no stress research projects that focus on
direct-feedback loops in terms of stress detection. To achieve this effect, test subjects
must see how their biosignals change due to stressful events or relaxation tasks.
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Figure 2.1.: Sensor systems used for stress response measurements in related papers. (A)
GSR and oximeter sensor tested by J. Rodríguez-Arce et al. in [67]. (B)
Stress sensing patch designed by S. Yoon et al. in [95], consisting of ST,
GSR and pulsewave sensor. (C) Sensing devices used by V. Mishra et al. in
[60] for continuous stress measurements. Image sources: (A) [67], (B) [95],
(C) [60].
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3. Experimental Testing of Low-Cost
Sensors And Implementation of
REALSTRESS

In this master’s thesis two main research questions are aimed to be answered. Firstly,
the question is raised whether inexpensive, broadly available biosensors are able to
produce comparable results to related work in terms of stress detection. Following the
first objective, the second research question asks, if it is possible to use such sensors for
live-feedback sensor measurements in the form of stress detection. Both questions were
explored through in-person experimental trials in which participant’s biological signals
were measured using several biomedical sensor devices during phases of varying subjective
stress levels. This chapter provides an overview over the methodology utilized in this
thesis.

3.1. Experimental Testing of Low-Cost Sensors

In the first section of this chapter, the methodology for answering the initial research
question is presented. This includes the design of the experimental protocol, the sensor
selection process, which signal processing steps were taken, and which statistical tools
were used for data analysis.

3.1.1. Methods of Data Collection

To answer the first research question, several stress inducing tasks were performed on
three days (20.07., 23.07., 24.07.) in July of 2022. Five young adult participants were
recruited internally on voluntary basis to be part of the experiment. All participants
were informed about the experimental procedure and agreed in written form that their
data was to be analyzed and presented anonymously in form of this thesis. There was no
discrimination regarding gender, age or medical history. The measurements took place
over several days due to the participants schedule, but each participant performed the
protocol alone (without other participants present) within an hour. The experiments
took place in a laboratory setting, where the participants knew about the aim of the
experiments. Biomedical data was collected during active tasks in which the participants
had to perform some form of stressful exercise, as well as during resting phases before
and after the tasks.

17



3. Experimental Testing of Low-Cost Sensors And Implementation of REALSTRESS

Experimental Protocol

The experimental protocol to answer the first research question was based of existing
literacy in the field of human stress response. Based of the popular TSST, the main idea
was to alternative between resting phases and moments of stress (MOS) while collecting
biological data. Given that public speaking and arithmetic tasks were very commonly
used in stress experiment protocols, they were included in the protocol for this part of the
thesis. Public speaking was often realized in form of a presentation in front of viewers or
a camera. However, to keep the task length short, the participants were simply asked to
read a text out load. To increase the stress reaction, the text was not presented in their
native language, but in a secondary language that they were still familiar with (English).
The arithmetic task was taken strictly after universal formula using a subtraction task.
Participants were asked to start again, if they made a mistake during the subtractions.
This was done in accordance with comparable research papers.
For the final two tasks, new technology in form of a gaming console (Nintendo Switch
Console) was introduced. The first task consisted of several rounds of find the error
within three almost-identical images. This task could have been performed with pen and
paper. However, by introducing the technology during the first new technology task,
the participant were able to make themselves familiar with the system in a less rushed
manner before presenting the second video game task. In addition, a more stimulating
auditory and visual experience was presented. A visible countdown was shown during
the entire task to introduce an additional element of stress for the user.
The final task of the protocol was performed with the same gaming console as the previous
task. Participant was asked to reach the end of a platforming video game level, which
challenged them with different obstacles. The level was beatable in five minutes for a
trained player.
A visual overview over the protocol can be seen in figure 3.1.

Sensor Selection

Sensor selection for this part of the thesis was performed with regards to previous
papers on the same topic. The selected sensors had to be affordable, well-adjustable
for measurements, and quick and easy to apply and remove. However, the sensors were
chosen due to their signals promising results in preceding research papers. The original
sensor selection only included Arduino-compatible inexpensive sensors, but was extended
by BITalino-based sensors, which were borrowed from the "Institut für Biomedizinische
Elektronik" at Technical University of Vienna. Finally, a low-budget fitness tracker
was included for blood pressure measurements. The Arduino-based sensors as well as
the fitness tracker were provided by the Technical University of Vienna through the
Automation and Control Institute (ACIN).
The first section describes the sensors that operated with an Arduino Uno R3 board. The
sensors were used in accordance to their data sheet and through additional information
given on the manufactures website. The sensor output was recorded using the software
CoolTerm (Copyright (c) 2007-2021 Roger Meier).
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Figure 3.1.: Test procedure to answer the first research question.
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1. One skin resistance sensor (EDA-sensor) by "SEEED" with grove male universal 4
pin connector and a LM324 operational amplifier. This sensor could be connected
directly to an Arduino Uno board if equipped with a female grove 4 pin connector.
Optionally, a grove shield could be purchased to connect the sensor to the micro
controller board. The sensors are available in most online electronic stores for under
ten euros. The grove shield was be purchased for five euros.[74]
The sensor itself came with a data sheet of the operational amplifier and general
instructions. Additionally, there was an online tutorial available on the sensor’s
company website.[74]
The EDA sensor module consists of two nickle electrodes, which can be placed
on fingers using included glove-like mounts. The electrodes measure electrical
resistance between them. This signal is amplified using the op amp LM324, which
is an operational amplifier for low input offset voltage (typical 3 mV) [40].
The online guide on seeed studios website offers a tutorial on how to use the EDA
sensor. It was recommended to calibrate the sensor to mid-range analog output
voltage (512) before use and to average over ten data points each. Additionally,
the tutorial provided an equation to translate the voltage output signal to human
resistance.[74] Using this equation, the output signal for skin resistance measure-
ments was in range of a few kΩ, which is consistent with similar measurements in
literature. [33] [84] [44]

2. One HR sensor (HR-sensor) manufactured by the company "Frei" for less than
three Euro per piece. The sensor did not come with a data sheet, but the retailer
provided some basic information. According to their specifications, the HR-sensor
could be used with an Arduino Uno board. The amplification factor was specified at
330, and the LED wavelength of the sensors was 609 nm.[10] By researching similar
sensors, it can be assumed that this electrical component worked as a reflection PPG
sensor. [59] [28] There were several Arduino libraries available for signal analysis
and real-time HR calculation. One example of such a library was "PulseSensor
Playground" by Joel Murphy, Yury Gitman, and Brad Needham, which was able to
track live heart beats or calculate BPM, pulse transit time, among others. [92]

3. For measurements of ST the decision fell on "LM35 Precision Centigrade Temper-
ature Sensor" produced by Texas Instruments. This sensor was chosen, because
it is very inexpensive (under 5e per piece), already calibrated, compatible with
Arduino boards, and had a good accuracy (0.5 °C accuracy at room temperature)
compared to sensors of similar price range. [41] Another advantage of this sensor
was the possibility of placing it directly on the skin due to its compact size.

4. Another sensor by seeed studio was the grove EMG detector, compatible with
Arduino boards, which was available for approximately 30e [64]. Seeed studio
provided a tutorial sheet with basic information, user guide, and example Arduino
IDE code. The sensor data was provided via analog pins, with a maximum output
voltage of 3.3 V. It used two OPA333 for zero drift amplification and one difference
amplifier (INA331IDGKT). The product had three electrode connectors and came
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with six single-use adhesive surface electrodes. The tutorial recommended for the
output signal to be averaged over 32 data points each. [73]

The next section describes the sensors that were borrowed from the "Institut für Bio-
medizinische Elektronik" at Technical University of Vienna. These sensors were generally
more expensive and were not compatible with original Arduino boards straight of the box,
but can be connected to an Arduino device with special equipment.[55] Generally, they
used their own environment "BITalino", and were designed for laboratory and general
educational purposes.[16] To record the BITalino sensor output, a software created during
a student project at TU Wien by Andreas Mayer and Klaus Zeiner was used. Optionally,
BITalino provided their own software solution under the name "OpenSignals". [17] The
following sensors from the BITalino environment were used:

1. The BITalino ECG sensor could be purchased as a bundle (HeartBIT) in combination
with the PulseSensor UC-E6 (PPG) for around 240e. [18] The bundle provided a
data sheet for the entire bundle as well as for each sensor individually. [12] The
ECG sensor used three electrode connectors, and was suitable for chest or hand
palm positioning with pregelled or dry electrodes. [13]

2. The BITalino Pulse Sensor, which was included in the HeartBIT bundle, came with
both a velcro fastening strap for finger positioning and an ear lobe clip. The sensor
operated as a reflective PPG device with a light signal at 520 nm wavelength. [14]

3. Lastly, the BITalino Piezo-Electric Respiration Sensor which could be placed at
thorax- or abdomen-height to measure respiration through expansion of chest/abdomen-
circumference. [15] It was available for purchase at 144e per piece, and came with
instructions and a data sheet. [19]

Lastly, for the non-continuous measurement of blood pressure, a fitness tracker (XD
P330.741) was purchased for approximately 30e. This device was chosen due to its
inexpensiveness and availability. The sensor was able to measure blood pressure as well
as many other health related signals, including HR, SPO2, and caloric intake. The
fitness tracker was compatible with most smartphones, however, it required a smartphone
application. [65] A manual was included with purchase, which provided a user guide
in several languages. It was not disclosed by the manual, how the blood pressure is
measured by the sensor. [94] However, as the wrist-band of the fitness tracker gets tighter,
when the blood pressure function is activated, it is likely that the tracker used some form
of miniature inflatable cuff.
The final sensor selection includes eight sensors from which seven were used for measure-
ments simultaneously at a time. The sensors were placed in accordance with figure 3.2.
Gima 33371 Universal Electrode Ekg/Diameter 48 x 50 mm were used for both ECG
and EMG. The electronic architecture of the experimental setup can seen in figure 3.4.

3.1.2. Signal Processing
The raw signal data is often not conclusive, whereby signal processing has to be performed
after signal acquisition. This post processing differs between the various biosignals and is
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Figure 3.2.: Schematic placement for all used sensors for the experimental protocol of
the first research question.
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Figure 3.3.: Part of the biomedical sensors placed on upper extremities during the exper-
iment.

Figure 3.4.: Schematic placement for all used sensors for the experimental protocol of
the first research question. Dotted lines present wireless connections.

23



3. Experimental Testing of Low-Cost Sensors And Implementation of REALSTRESS

described in this section.
Before the data was further processed, recording artifacts were removed, and the data
was split by sensor type. The measurements were labeled in their time-axis to assign the
corresponding protocol phases to the data. The labeled and grouped data was processed
using several signal acquisition tools to extract biomedical signals.

The main computational libraries used that provide tools for bio-signal processing
are BioSPPY [24] and Neuorki2 [56]. Both provide signal processing tools for different
biomedical sensors, including EDA, ECG, PPG, and EMG. Due to their similarities (some
Neurokit2 features are based on BioSPPy), both libraries were used for signal processing
in this thesis. The results of both tools were than compared, and data extracted by the
better suited library was further statistically analyzed.
When signal extraction through BioSPPy and Neurokit2 was not possible, the sensor data
was processed using the methods described in 2.2.4. For EMG this included pre-processing
through a fourth order butterworth filter and by-hand peak amplitude marking.
For signals were a count or change of signal feature was of interest, a sliding window
approach was performed either on the raw data or on top of the already processed data
through BioSPPy or Neurokit2.
After signals were extracted, the processed data was normalized and outliers were removed.
Both operations were performed in accordance with data processing described in [60],
where outliers trimming and z-score normalization on the data presented the best final
results. Finally, the processed data of all participants was sampled and added to a big
data frame for statistical analysis.
All processing steps were performed using python and various python libraries. Sampling
was performed randomly, but each participant added the same number of data points to
the final data frame.

3.1.3. Methods of Analysis
The processed and sampled data was statistically analyzed using the Welch’s t-test in
accordance with [60] and [5]. This t-test was preferred over Wilcoxon-Mann-Whitney
test, because the former is recommended for larger sample sizes and is still robust for
heavily skewed data [32]. Pair plots and feature importance extraction using extra tree
classifier were used as additional statistical tools to analyze the data. The methods were
performed with python and python libraries such as scipy.stats, pandas and seaborn.

3.1.4. Summary and retrospective evaluation of method
The protocol was designed to be a mixture of established stress inducing exercises and
alternative tasks using new technology. Additionally, the latter two tasks were designed to
be mostly non-verbal, because they required less active communication by the participant.
This presented an opportunity to compare biosignals which would normally be effected
by changes in breathing patterns, such as talking. The most prominent example for such
a sensor is the respiration belt. Given that video games are very present in the modern
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society, but to my knowledge are still not included in stress assessment studies, this first
approach could provide more insight into possible future stress test designs. However, by
keeping the well-established design of TSST for half of the experimental protocol, it was
ensured that the results were comparable to previous work. One obvious downside of
the video game tasks was the use of a hand-held controller to perform them. Given that
many sensors were placed on the participants hands, these two tasks were more prone to
movement artifacts. Nonetheless, since the fingers used to press the required buttons on
the controller were sensor-free, the artifacts should not be deal-breaking.
Another popular stress inducing task, the cold pressure test, was not considered for this
protocol, because the time of felt comfort, which in turn produces a measurable human
stress response, may vary between participants. This would make the results between
participants less comparable.
The sensor selection showed a good variety in methods and biomedical signal. With the
PPG sensors, it was even possible to compare two sensors of the same type in different
price ranges directly. The only sensor that did not meet expectations was the fitness
tracker for blood pressure measurements. Since it was not possible to perform continuous
measurements, and because the technical information presented with the tracker was
sparse, the sensor proved to not be a good fit for such an experiment. But even with
exclusion of the fitness tracker, it was possible to use seven sensors (six simultaneously)
to measure biomedical signals during stress sensing, which was high compared to related
work, where the focus was often set on fewer selected sensor types. This allowed for a
new insight in multi-modal sensor measurements using micro controller based sensors.
In the development phase of the experimental protocol, the decision was made to not
measure ECG and EMG simultaneously, because the electrode positioning of both sensors
was in close range. Therefore, to not introduce any interference between the two signals,
the ECG was measured during the first three tasks, while the EMG was only active for
the last task and the final recovery phase. In retrospect, this step was unnecessary, and
should not be repeated in future protocol designs. This decision reduced time of data
collection for EMG considerably, making it less intuitive to compare the results.
In contrast to much of the related work, the processed data was not processed to create
an algorithm for stress detection using machine-learning. Instead, the data was compared
statistically, to find which sensors produced signals of well-enough quality to show a
significant differences between the phases fo the experiment.

3.2. Implementation of REALSTRESS

The second section of this chapter describes the workflow that was performed to answer
the second research question. It starts by describing how the experimental sessions were
conducted and how sensor selection was finalized based on the results of the first part.
Afterwards, signal processing and data analysis methods are presented.
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3.2.1. Methods of Data Collection

The second research question required more fine-tuning of coding resources and paramet-
ers to be answered. Therefore, the method differed from the first question by having to
perform many small experimental tests compared to one extensive procedure. The testing
for the system design for this research question took place over three months. Most of the
testing was performed on one reference candidate, because many tests had to be repeated
several times under the same conditions. After the implementation of the research
solution was finished, and tuned to the best of the sensors ability, a final experimental
testing round was performed on seven participants. These last measurements took place
on the 10.03.2023 in a laboratory environment. The participants were chosen internally
beforehand, without discrimination due to age, gender or medical history. Before the
experimental part, all participants were informed about the experimental tasks expected
from them and signed a form of consent so that the measured data could be processed
and presented anonymously as part of this thesis.

Experimental Protocol

During the implementation of the live feedback system, testing was performed on the
same candidate for all rounds of experiments. To make the tests reproducible, the
method of stress induction was chosen to be different breathing patterns. In more detail,
the protocol consisted of a sequence of relaxed breathing and breath-holding. It has
been suggested that breath holding produces an autonomic response [85] [11], which is
comparable to the stress response induced by stressors. This method of testing should
insure an autonomic response on the same candidate even after several rounds of testing,
which was needed for this protocol.
In the final testing round of the implementation, a cold pressure test was performed in
several rounds on the same candidate to test the system on a proven stress inducing task.
For the testing with participants after the implementation was finished, two tasks
were considered. First, the same type of breathing pattern test performed during
implementation was tested on all participants. The second test was the same arithmetic
task performed in the protocol of the experimental part of the first research question.
Before and after each task, a resting or recovery phase was included. Both tasks were
done back-on-back, with a short recovery phase between them. Each task was performed
in four minutes, which adds the total measuring time for each participant up to 10
minutes including sensor placing, removing, and verbal information.

Sensor Selection

A few things had to be adjusted when working with the biosensors for a live-feedback
system. Firstly, the sensor selection was cut down, since it needed to meet certain pre-
requisites. These include wear-ability, availability, and how promising the sensor-results
were. This left only two sensors: the PPG Arduino sensor and the EDA sensor.
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Even though most sensors performed well enough to be considered for the project,
not all sensors are practical for use. This included two factors: First, is the sensor easy
and fast to apply and remove from the participant= Secondly, is the post-processing
possible in real-time feedback loop measurements?
The first condition was not met by the ECG and EMG sensors tested, since they relied on
single-use electrodes. Therefore, it would not have been feasible to use these sensors in the
environment of project. All the other sensors were easy to apply, and could be disinfected
between use, without having to buy a new piece of equipment for each participant.
The post-processing is a bit more difficult. For once, some sensor did not output their
data directly to the main secondary device used for processing, which disqualified them
from the project. This was the case for the fitness tracker. Other sensors did not have
data of good enough quality to post-process them automatically, which included the
EMG sensor.
Keeping the two conditions in mind, the remaining sensors were the two PPG sensors, the
respiration belt, the temperature sensor, and the EDA sensor. One of the PPG sensors
and the respiration belt were both produced by Bitalino and disqualify due to their price
and availability. The temperature sensor measured a slow-changing biosignal (ST), which
was not suitable for a live feedback system. Therefore, the temperature sensor was not
considered.
Finally, this left the two sensors: the EDA sensor and the PPG Arduino sensor. They
were chosen due to their promising results, availability, inexpensiveness, practicality, and
post-processing possibilities. For the given constraints, these sensors were expected to
provide the wanted results, and were very customizable due to their compatibility with
the Arduino system which itself allows for high customizability.

3.2.2. Signal Processing
The software and code to work with the sensors had to be adjusted from the version
created for the first research question, since the testing in July was based on recording
the data separately from processing it. A live processing is needed for the interactive
wall, therefore, several Arduino libraries were considered. In more detail, the following
libraries and code-resources were tested for their abilities:

• PulseSensorPlayground.h [93]: This library offered a collection of code projects
by World Famous Electronics Ilc. for pulse sensors (PPG sensor) in the Arduino
environment. The first version of the library was launched in 2018 and is still
updated as of now (February 2023). The library came with many build-in example
programs, which allowed for quick and easy work with pulse sensors. The threshold
for the peak detection of the pulse signal was customizable, and there were example
projects to find the ideal threshold for the sensor used. Furthermore, beside the
option to calculate BPM (beats per minute), the library had many other features
such as providing projects to calculate the PTT (pulse transit time) or connecting
two pulse sensors at once.
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• BioData [35]: Erin Gee owns the copyright to this Arduino library which was first
released in 2018. It allowed for the interpretation of sensor data which includes
pulse signal, respiration signal, and GSR. In contrast to PulseSensorPlayground.h,
the code for the pulse sensor did not provide an easy way to change the threshold
for the peak detection. However, the sampling rate of the sensor was adjustable by
the user. The same was true for the provided EDA code. The library was more
limited concerning the project examples compared to PulseSensorPlayground.h,
even though it presents options for various sensor types. The library was last
updated in September of 2022 (as of February 2023).

• engineersgarage.com [23]: In this article about stress level measurements using
EDA, U. Butt uses the same Arduino based EDA sensor as this project. The article
provides their example code which detects changes in signal using a self-adjusting
threshold function. The strength of change qualifying for an alert can be adjusted.
There is no information about when the article was published.

Each selected library and code resource was tested in a simple Arduino IDE environment
for stability and reliability during resting phase and with breathing patterns. This allowed
to filter out the appropriate material for further implementation.
After the initial testing, the system had to be implemented in a coding environment
for later use. The system was first created by students of TU Wien during an outreach
project at ACIN the group participated in for a educational material named interactive
wall. The system is based on i2c connections between several Arduino Uno boards. Both
sensor were placed on one microcontroller board for simultaneous sensor measurements
to save equipment and simplify the project.
After integration of the sensors in the new environment, their output was compared
between single measurements (sensor alone on one device Arduino) and dual measurements
(both biosensors on one device Arduino). This procedure was chosen, because the PPG
best performing processing library (PulseSensor Playground) used an interrupt pin, which
was subjected to be interfering with other coding libraries when used simultaneously
with them. Furthermore, both biomedical sensors were connected via analog pins on
the Arduino board, and analog inputs were known to influence each other. To avoid the
latter issue, for each sensor the analog input was measured twice, and the first input was
neglected.
To avoid the issue of the interrupt function interfering with other libraries, two solutions
were considered: Either using two different device Arduinos so that the sensors analog
input cannot influence each other and the interrupt function can be used for the HR
calculations. The second possibility was to use the HR function without interrupt, but
have both sensors on just one device Arduino. The second solution was chosen to be
further executed, to limit the amount of needed hardware for this project.
To allow for continuous signal processing with live feedback, a sliding window function
was implemented for both sensors. Given that the final implementation should not rely
on a designated resting phase to be recorded first for comparison, the windowed data
needed to speak for itself. To achieve this, both signals needed to present a change
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in signal rather than an absolute value. BioData’s SCR function was able to present
fast-changing EDA signal during live measurements. Using the sliding window approach
and the SCR function, the amount of SCR changes per window could be presented in
real time. Different window sizes were compared on several rounds of breathing pattern
tests to find initial parameters for the sliding window and SCR functions.
Next, PulseSensorPlayground’s non-interrupt HR function was implemented with a sliding
window approach. Analog to the EDA sensor, the HR change per window was presented
instead of the sole HR. The parameter selection was done through dual measurements
of both HR and SCR. The testing was performed using breathing pattern tests with
different window sizes for the HR change function.
After the testing for the two chosen sensor functions, a scoring function was implemented
on grounds of the results of the previous tests. The general idea was for both sensors to
provide a stress scale value from one to ten, which would be averaged for the final stress
scale value. Given that the SCR changes per window size did almost never exceed ten,
the only adjustment for the scoring function of the EDA signal that had to be done was
a cap of ten.
The HR change testing results showed step drops after breath holding, which could be
specific to that event. Therefore, a (stressful) event could be detected with decrease in
HR. For the breathing pattern exercise, this detection was trigger after the event has
already occurred, which made the response delayed. Nevertheless, it still provided the
possibility to give direct feedback to the user in terms of receiving a response to a change
in breathing within the testing session. The decrease in HR change was mapped on
a scale from one to ten by comparing with the results presented during the rounds of
testing.
To find the best combination of window sizes for both sensors, numerous parameters
were tested in pairs during breathing patterns. The best combined results were chosen
for the final implementation.

3.2.3. Methods of Analysis
After implementation, the system was tested on the candidate that was used for testing
throughout all previous implementation exercises performed using breathing patterns
and a cold-pressure test. For each test, several repetitions were performed. To check for
over-fitting, the implementation was tested on different participants both for breathing
patterns and an arithmetic task.
The tests done during the implementation process were assessed visual to see if there
was a noticeable difference in stress score between resting and event phases. For the
final implementation tests, the collected data was split into signals and phases, and
measurement artifacts were removed. The data was sampled and summarized in one big
data frame, which was used for statistical analysis.
Each phase was analyzed using the samples mean, variance and median. The stress score
needs to show a visible difference for the user using the function. Therefore, no further
statistical tests were performed, because a statistical significant difference presented
through tests such as the Welsh test are not always visible by looking at the data directly.

29



3. Experimental Testing of Low-Cost Sensors And Implementation of REALSTRESS

Mean, median and variance provide a more intuitive answer to the research question as
they more closely present the result that a user would see.
All analysis steps were formed in python using the libraries scipy.stats, numpy and
pandas.

3.2.4. Summary and retrospective evaluation of method
The methods for the second research question differed significantly from those presented
for the first. This had to do with the workflow needed for both questions, which was in
a way opposite. While the first question needed a lot of data to test and analyze the
sensors for their potential, this job was already done for the second question. The sensors
were ready to be used and had already proven themselves in the first experimental part
of this thesis. The second research question required way more fine-tuning to answer.
This was done through repetitions of the same tests with slightly changed parameters.
Both sensors now needed to present their signals simultaneously in a way which was
intuitive for a future user. Only doing one round of tine-tuning with one larger sized
experimental session would have been more of a guessing game. By improving the code
step-by-step, with many repetitions, the component of randomness was reduced.
The way the workflow was created, by testing only one candidate for most of the testing
rounds, the risk of over-fitting the data was high. In future implementations of this kind,
it would be practical to have a small number of participants that can be used for several
testing rounds. However, this is not always feasible. The biggest issue of over-fitting was
with the HR function presented through PulseSensorPlayground.h, because the function
required to set a threshold value manual, which varies naturally between individuals.
However, the problem of the HR threshold could be avoided when choosing an appropriate
PPG processing library with autonomous threshold finding algorithm. Such a library
was not found while working on the implementation for this thesis.
Additionally, testing with one candidate numerous times in short time frames meant that
many classic stress test designs were not suitable as they would fail to produce the same
response after a few repeated session. The breathing pattern test provided the possibility
achieve reproducibility with minimal effort.
This method provides a new perspective in human stress response. Because the window-
wise data is processed immediately, the method allowed for live feedback in a way that
was not presented to my knowledge. Even though some biomedical sensor manufacturer
provide some form of live processing using their software, those solutions are most often
hidden behind a larger pay-wall. This method provided a system that is simple and
inexpensive to recreate, and which can be extended easily in future research.
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This chapter presents the most important results found during the testing phases to
answer both research questions of this thesis. The first section concerns itself with the
results of the stress test performed in July of 2022 using low-cost sensors. The findings
of the testing done when using REALSTRESS, the real-time stress scale, are presented
in the second part of this chapter.

4.1. Experimental Testing of Low-Cost Sensors

During the experimental test, the participants were asked to rate their the subjective
stress level (similar to PST) after each task. The self-assessment of personal stress level
during the four stress tasks made by the participants from 1 to 10, where 1 is Not stressed
and 10 is Very stressed is also visible in table 4.1. When compared to the two traditional
stress test tasks (task 1 and 2), the tasks using new technology (task 3 and 4) were
overall received on the same level of stressful as the traditional versions.
The data collected during the experimental protocol in July of 2022, was analyzed using

the Welch’s t-test for statistically difference between the different phases of protocol,
with the hypothesis that the mean of distribution of both compared phases is equal. The
null hypothesis is rejected for a p-value smaller than 0.05, concluding that there was a
significant difference between the means with 95% confidence. The statistical test should
answer the research question, if inexpensive sensors are usable for stress detection tasks,
by providing insight in what sensors were able to record data of well enough quality
to be discriminate in protocol phases. Therefore, the biomedical signals recorded with
given sensors were the predictor variables, whereas the different phases were the outcome
variables.
The Welch test was performed with and without discrimination between the different
tasks. For both analysis the task data was compared against the data of the initial

Table 4.1.: Personal stress level evaluation.
Personal stress level during each task

P1 P2 P3 P4 P5
Task 1 4 5 2 1 7
Task 2 6 6 8 4 5
Task 3 5 6 5 2 3
Task 4 5 6 10 3 6
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resting phase in the beginning of the protocol. Given that some sensors were not active
through the entire protocol (ECG, EMG), those signals are excluded from statistical
results presented for all tasks as one.
Considering only the difference between summed stress inducing task phase and resting
phase, a significant difference between the outcome variables could be found with all
predictors but ST. The t-statistic showed that the signals extracted from the EDA
sensor (SCL an SCR) decreased in task phases compared to the resting state, while
cardiovascular and respiration signals increased with increasing stress induction. These
results are summarized in table 4.2. The results of the Welch test for each task individual

Table 4.2.: Significant Differences between Resting and Testing Phases for Selected Fea-
tures (Welch statistical t-test). The window size for the SCR was 5 seconds,
and for the HR change was 40 seconds.

Features t-Stat p-Value

SCL -27.020 <0.001

SCR -2.201 0.0287

PPG (Bit) HR 5.256 <0.001

PPG (Ard) HR Change 4.909 <0.001

PPG (Ard) HR 4.909 <0.001

Respiration rate 2.150 0.033

Temperature 0.031 0.975

compared to the resting phase are shown in table 4.3. The first two tasks, representing
the classic stress testing design, could be statistically distinguished from the resting
phase in all but one instance, in which SCR failed to divide between the phases for the
public speaking task. The behavior of the data during the established tasks showed
an increase in signal value for cardiovascular, respiration and ST signals during stress
phases, but an decrease for the EDA features. The two video game tasks resulted in
a different cardiovascular signal behavior compared to the established tasks, while still
being distinguishable from the resting phase. Most prominent, heart rates extracted from
the two PPG sensors showed a negative t-static for one of the two technology tasks each.
Furthermore, for the Arduino-based PPG sensor, the extracted heart rate had a twice as
high t-static for the final task compared to the first two tasks. Similarly but different,
the BITalino based PPG sensor showed a decline in heart rate compared to the resting
phase during the last task.
Considering all four tasks, SCL decreased in value over time, which can be seen in the
decrease of t-statistic with each task. The respiration rate increased slightly with each
task performed. ST showed good distinguishability with low p-values and relatively high
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t-statistic for the first three tasks, but failed for the final task. Heart rates extracted from
both BITalino systems (ECG and PPG) showed similar t-statistics and low p-values, while
the Arduino-based PPG sensor provided a HR signal which varied heavily in t-statistic
from the previous two.
The pair plot 4.1 shows the strength of feature combinations clustering the phases in task
phase and resting phase. The pair plot for separated tasks can be found in the appendix
in figure A.3. Both figures support the results presented using the Welch’s t-test. The
best clustering could be achieved for feature pairs that included SCL or SCR as a feature.
Other feature combinations performed worst in clustering the data into two phases. The
success of SCL in behavior is visible in the extra tree classifier results in figure 4.2 as well,
which presents the most important features for clustering the data in the labeled phases.
The classifier determined SCL and HR change as the best features for clustering this data
set, with SCL showing importance of almost 50% within all features. Both HR change
and SCR needed a sliding window approach to be determined for the data set. Different
window sizes for both signals were compared in their ability to produce results that can
be used to distinguish between the experimental phases. The results of the corresponding
Welch’s t-test for each window size can be seen in table 4.4. The subsequent signal for
all window sizes tested for the HR change showed significant differences between the
phases with the exception of the first video game task. Opposite results were seen for
the SCR window sizes, that all failed to distinguish between the the resting phase and
the first and last task respectively. The first video gaming task could be differentiated
from the resting phase for all SCR window sizes. The arithmetic tasks was able to pro-
duce a SCR signal that could be distinguished for almost all window sizes for both signals.

The comparison of normalized heart rate produced through data of three different
sensors (ECG, PPG (Arduino) and PPG (BITalino) for four participants during resting
phase and task 1 can be seen in table 4.5. For participant 1 the mean normalized heart
rate for both phases showed agreement between ECG and PPG (Arduino), but differed
noticeably from PPG (BITalino). For the other participants, the HR measures of all
three sensor types was comparable, apart from some divergence during the task phase of
participant 3.

Neurokit2 vs. BioSPPy

Signal processing was done using both neurokit2 and bioSPPy. This allowed for a direct
comparison of the two signal processing tools, since they were given the exact same data.
Several observations could be made about the two tools:

• The processed output data size was lower compared to the original data size for
BioSPPy, while neurokit2 outputed data in size of the input. For example, the data
output for the HR extracted from ECG for the first task period counted 445 entries
for BioSPPy and 280000 entries for neurokit2, which is the size of the unprocessed
input data.

• The first couple hundred entries of the output data of neurokit2 are identical.
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Figure 4.1.: Pair-Plot of Selected Features for all Task Phases together in comparison to
the initial Resting Phase. The window size for the SCR is 10 seconds, and
for the HR change is 40 seconds.
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Figure 4.2.: Most important features of feature selection determined through extra-trees
classifier for all Task Phases together in comparison to the initial Resting
Phase. The window size for the SCR is 10 seconds, and for the HR change
is 40 seconds.

Overall, repetitions in signal are more common for neurokit2 processed data, while
BioSPPy mostly provides data output that varies within entries.

• BioSPPy tools performed tasks faster than neurokit2. For example for ECG
processing, BioSPPy finished processing all four datasets (Rest 1, Task 1 - 3) in
1.27 seconds, while neurokit2 needed 22.8 seconds for the same task.

• Both tools delivered similar results concerning the extracted data of most sensors
(one exception is peak finding of EDA signal).

• The peak finding algorithm of Neurokit2 is more accurate in its results compared
to BioSPPy. An example of the difference in peak finding between the two python
tools can be seen in figure A.1.

Additional remarks to the results presented above:

• All portrait results that include data that was processed with biomedical sensor
tools used Neurokit2 as the main signal processing tool. In the context of sample
size for data processed with either Neurokit2 or BioSPPy, it is reasonable to assume
that Neurokit2 would show better results in statistical tests. For larger sample sizes
statistical tests provide a higher precision because the power of a test increases
with increasing sample size [68] (p. 235). Therefore, the results of statistical tests
that used Neurokit2 data can be interpreted as more precise.

• As mentioned in the methodical chapter of this thesis, the EDA sensor used measures
skin resistance instead of skin conductance. Therefore, the results of SCL have to
be seen in reverse: When the results describe a low SCL value, the sensor measures
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a low resistance between the electrodes, or in other words, a high conductance and
so on.

• Both python EMG processing tools (BioSPPy and Neurokit2) were not able to
work with the data due to the low data sampling frequency of approximately 70 Hz.
Therefore, the signal was analyzed manually by comparing the number of events
(spikes in amplitude). The result can be seen in figure A.4. It can be concluded
that for participant two, three and four, there were significantly more EMG events
during the task part of the experiment than in the resting period. Participant one
and five did not show clear differences between the two phases.

• The temperature sensor (LM 35 DZ) used for this test had an ensured accuracy
of 0.5 °C at room temperature. When testing for its fluctuations in temperature
readings with no skin contact for approximately 170 seconds, the sensor signal
varied by 0.03 °C over the total measurement period. After approximately 100
seconds, the sensors temperature value rose by around 0.4 °C within 30 seconds
and stayed at this new value for the final 40 seconds. Jumps in temperature in the
experimental datasets were usually in order of 0.5 °C.

• The Arduino PPG sensor was misplaced for some time for participant 4, therefore
the data for task 2 and 3 were not used in any calculations.

• Participant 4 was an EDA non-responder and therefore excluded from sampled
statistical tests from all participants regarding EDA extracted signals.

• Blood pressure measurements taken had a very low sampling rate of two to three
measurements per phase. Therefore, the data was not usable for statistical analysis
and was not included in the results or discussion.
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4. Results

4.2. Implementation of REALSTRESS

For implementation of the scoring function for SCR and HR change, different libraries and
code-resources were tested for their signal acquisition and processing skills by recording
breathing pattern test and visually checking how the signal changes during the test
phases. Each library and sensor type was tested separately.
The results forHR calculations with the PPG (Arduino) sensor showed that Pulse-
SensorPlayground.h performed best when using the implemented interrupt function. In
particular, the resulting signal was stable, but changed with breath holding events, and
produced a heart rate value which was in expected range of human heart rate. The
alternative function provided by the library authors, which avoids the interrupt function,
performed comparably well in terms of the signal changing in time of event phases.
However, in contrast to the first version, the amplitude of signal changes was unrealist-
ically high. Additionally, the portrait heart rate value was generally a little bit higher
compared to the previous calculations. The results for PulseSensorPlayground.h can be
seen in figure A.5. Heart.h, the library by BioData for heart rate calculations, produced
a signal that showed strong fluctuations even during resting phase, with high amplitudes
of change (see figure A.2. Consequently, the Heart.h performed worst compared to both
PulseSensorPlayground.h’s functions.
Next, the EDA sensor processing was tested with BioData’s EDA library SkinConduct-
ance.h. The calculated SCR and SCL signals both showed signal changes throughout
in-between phases of the breathing pattern test, but stayed relatively stable within
single phases. Results of the initial breathing pattern test for this library can be seen
in figure A.6. Furthermore, SCR produced results consistent with the first tests for
repeated trails of breathing pattern tests. In contrast, the code resource provided by
engineersgarage.com, which was designed to find changes in raw EDA signal, performed
unsatisfying, triggering constantly. Between the two reviewed assets, SkinConductance.h
proved to be a stable option for SCR signal detection.

The two biosensors were tested simultaneously and separately after integration into
the Interactive Wall coding environment. The results for the implementation using the
interrupt function for the HR measurements can be seen in figure 4.3 (B) and show
HR and raw EDA signal during a 90 second resting period. It can be seen that the
heart rate measured separately from the EDA sensor stabilizes itself, after an initial 20
seconds of adjusting period, to a reasonably value. In contrast, the heart rate measured
simultaneously with the EDA signal, inhibits strong fluctuation and never really stabilizes.
The two raw EDA signals shows a familiar data pattern, with smaller local changes and
bigger global drops and peaks. However, there is a difference in their baseline value.
The testing was repeated for the no-interrupt version of the heart rate measurement and
the results can be seen in figure 4.3 (A). For this version of the code, there is still a
difference in amplitude of the heart rate baseline, but the dual measurement heart rate
signal is much more stable than its interrupt heart rate counter part in 4.3 (B). Note
that the single measurement heart rate signal in 4.3 (A) shows a signal artifact in the
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4.2. Implementation of REALSTRESS

first 10 seconds of measurement.
The EDA raw data inhibits a lower amplitude for the single measurement than for the
dual measurement for both tests.

Any further results were produced using the SCR function provided by BioData

Figure 4.3.: PulseSensor Playground’s heart rate calculation (green) and raw EDA data
(blue) measured either simultaneously (dotted) or separated (solid). The
measurements were performed using PulseSensor Playground’s library either
with (B) or without (A) interrupt function. The raw EDA signal was averaged
over 50 data points each.

in SkinConductance.h and the non-interrupt heart rate calculator by PulseSensorPlay-
ground.h.
Different binning sizes for the sliding window implementations for both signals were tested
through single and dual measurements of both sensors. The testing protocol followed a
breathing pattern change with time, during which the signals were recorded and later
compared against the protocol phases. Through several rounds of pre-testing the scoring
function for the HR measurements was determined to show an averaged negative change
in signal as response to events. This method proved most stable within trials. The SCR
scoring represented the number of detected events within a given window size. Given
this implementation of the scoring function, a summary of different binning sizes for dual
measurements of both signals is portrait in figure 4.4. The window size combination that
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4. Results

showed the best results is framed green, which was a binning size of 30 seconds for HR
and 10 seconds for SCR. That the HR score increased only after the event had passed for
most measurements, which was implemented this way. Smaller HR binning sizes showed
more random changes throughout the protocol, with no strong response to events (breath
holding). Within the bigger binning sizes (20, 30, 40 seconds), the difference between the
trials was small, making all three sizes good contenders for the implementation.
The SCR score performed worst compared to the HR score in all versions of SCR binning
sizes. Within the signal, larger binning windows provided a better score within events of
the protocol. However, the SCR score spikes much more random compared to the heart
rate score.
On base of the results presented in figure 4.4, a final round of testing was performed

on the reference candidate that was repeatably tested throughout the implementation,
and external participants. Both groups performed the breathing pattern test that had
been used to create the functions to be tested. Additionally, the external participants
completed the arithmetic task from the stress test in July of 2022, while the reference
candidate participated in several rounds of the cold pressure test. The test was performed
to check if there was a difference in mean score within the phases.
During all tests both implemented functions were tested with the sliding window binning
size parameters chosen beforehand (HR: 30 seconds, SCR: 10 seconds). For each test,
mean, variance and median of SCR Score, HR score, HR change and total score (combin-
ation of SCR and HR score) were calculated over the average within the participants or
trails (reference candidate). They can be found in table 4.6 for both breathing pattern
tests and in table 4.7 for the arithmetic and cold pressure test.
When comparing the breathing pattern test results in table 4.6 between the external
participants and the reference candidate, it can be seen that the mean total score be-
haved as expected by rising in the recovery phases, after the event had happened. The
SCR score showed better results for the reference candidate compared to the external
participants, since the latter presented a lower mean score for event and recovery phase
set side by side to the resting phase, while the former provided a more event-related mean
score. The HR reached a score that was in accordance with the phases for the external
participant and the reference candidate. In addition to that, the HR change showed a
decreasing tendency for both non-resting phase for external participants, which was only
achieved for the recovery phase by the reference candidate. Given those results, it can be
said that the difference in total score was reached for both groups within the breathing
pattern test. Furthermore, the external participants that were not tested throughout the
implementation process, were able to prove that the implementation can produce results
comparable to the reference candidate. By comparing both score, the HR score is to be
preferred, especially when considering the results of the external participants.
The arithmetic task in table 4.7 showed good results for HR score and total score, but
unsatisfactory mean SCR scores through the different phases. These results are similar
to those presented for the breathing pattern test, which showed that the implementation
testing with breathing patterns instead of established stress tasks still produced a final
system that was able to detect different stress phases in classic stress test design. Similar
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4.2. Implementation of REALSTRESS

Figure 4.4.: Different binning sizes for sliding window algorithm in dual measurements
of SCR and heart rate change. The implemented score for both signals
individual and the averaged score is represented graphically. Additionally,
the different phases of protocol for the breathing pattern test are marked by
color (normal breathing - blue; breath holding - pink).
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4. Results

can be said about the cold pressure test presented in the same table. The mean total
score of the recovery phase for this test is clearly increased compared to the resting phase,
which is what was expected from the implementation. As was said for all previous results
for this testing round, the heart rate score performed much better than the SCR score.
However, for the cold pressure test, SCR shows a stronger increase in score for the event
phase, especially compared to the other tests performed.
What is evident in all four tests is that the SCR score and the heart rate score are out
of sync for most of the results. While the SCR score showed a peak mean value during
events, the heart rate score increased more towards recovery. Thus, the total score, being
the average of the both single scores, is generally lower in comparison.
The presented results therefore support the hypothesis that the implemented scoring
function is able to deliver a score, whose averaged value is distinct between different
phases. However, the size of difference in scoring is of smaller scale than expected.
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5. Discussion

This chapter presents an in-depth discussion of the results presented in the previous
chapter. Firstly, the implications of the statistical answers to the first research question
are reviewed. After, the results of the implementation and testing phase of REALSTRESS
are addressed.

5.1. Experimental Testing of Low-Cost Sensors
The first part of this thesis concerned itself with the hypothesis that inexpensive and
open-source biomedical sensors are able to detect stress in a laboratory setting. To
answer this research question, eight sensors of different price range were challenged in
a small-scale stress induction experiment, which involved five participants. Through
statistical analysis of the recorded data, the hypothesis was supported for two out of the
five inexpensive sensors and for all three mid-priced sensors by BITalino. Both, EDA and
PPG (Arduino), proved successful in distinguishing between different test phases through
their signal features. The ST sensor was not able to produce similar results, and rejected
the hypothesis with a p-value of 0.975 through the Welch’s t-test for equal means. EMG
and blood pressure (fitness tracker) signals were inconclusive, because statistical analysis
of the data sets was not possible due to poor sampling rate of the signals. Finally, the
three BITalino based sensors (ECG, PPG, respiration belt), who are located within a
slightly higher price range, proved to meet expectations by delivering distinguishable
signals between all test phases.

The results presented for the EDA and both PPG sensors are in line with previous
research findings, such as [5], [61] and [60]. The outstanding performance of the EDA
extracted SCL feature is apparent when visually examining the data, which showed that
the SCL amplitude decreased sharply with the start of each stress tasks and recovered
slowly right after (see figure A.8). When comparing SCL between the one EDA-non-
responder participant and remaining candidates (see figure A.7 for an example), the
signal decreased constantly in amplitude for the non-responder, while it was more distinct
in amplitude distributions for the remaining (EDA responding) participants. Given those
findings, the measured SCL signal can be interpreted as not random, but as a specific
response to the stressor. Thereafter, SCR did not perform as well as SCL regarding the
results of the statistical analysis, even though it is the preferred EDA signal within most
stress research publications [77]. This might have been due to the relatively low signal
sampling rate of only 70 Hz. Keeping in mind that SCR is a fast-changing signal, which
is extracted through peak finding algorithms, and that SCR peaks are often not clearly
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separated from each other, it makes peak finding additionally challenging in EDA signal
analysis [54].
The low sampling rate was less troublesome for the data processing of the Arduino-based
PPG sensor, as peak detection for this type of signal is generally easier to perform as the
peaks are more distinct. This was proven by direct comparison between Arduino PPG
and BITalino ECG and PPG sensors, where the latter had a sampling rate of 1 kHz. All
three resulting heart rates were similar within their performance during the statistical
analysis. Overall, all three cardiovascular sensors behaved as expected from literature for
the given task. However, it is remarkable that both PPG senors provided comparable
results given the price difference of almost 100e between them.
The low sampling rate of the Arduino system also influenced the EMG sensor negatively.
Both biomedical signal processing tools used in this thesis were not able to analyze
the EMG signal properly by extracting peaks or removing noise. As a result, the peak
detection had to be done manually, so that remarks can still be made about the data.
First, the peak count showed an excess of events during the task phase for three out of
the five participants. This speaks for the usability of the method for stress detection, and
is in line with results presented in related work such as [43]. However, since the signal
was not processable with external open-source tools, the sensor cannot be recommended
for further research, since it limits the ability to analyze the data effectively.
The ST sensor was not able to distinguish between resting phase and the sampled mix
of data for all task phases. It could be argued that this result is not representative,
since the p-value of the Welch test rejected the null hypothesis of equal means between
the data sets only for one out of four tasks when analyzed separately. However, other
factors argue against the usability of the sensor, most prominently the test of sensor
stability described in the additional remarks of the results. Even though the ST sensor
showed only small fluctuation over three minutes of recording, the witnessed temperature
increase of 0.4 °C within 30 seconds during the test behaved similarly to the increases
seen in the measured data for the experimental protocol. Therefore, the changes in ST
might exhibit some randomness due to the sensor’s behavior. Another argument against
the sensor is based on the relatively low sensor accuracy of 0.5 °C. Given that ST is a
slow changing biomedical signal, larger shifts in ST could not be expected within the
experiment. While smaller changes are possible, related research with sensor equipment
of higher accuracy showed results in which ST changes were observed to be much smaller
than measured in this thesis for comparable time intervals [90]. In conclusion, the chosen
ST sensor is not a suitable choice for human stress response research given the reasoning
provided above.
The respiration rate was expected to show a very clear difference between resting phase
and task phase, since the resting phases were non-verbal, while most task phases had
a least a small talking component. Furthermore, previous research, such as [91], rated
respiration features as useful tools in stress detection. Even though all participants were
asked to not talk during task 3 and task 4, none of them managed to perform those tasks
non-verbally. When comparing the results (difference in means between phases) between
verbal and non-verbal tasks, it is surprising that the difference to the resting phase is
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much stronger for the non-verbal exercises. The contrary result would have been more
intuitive, with a more significant difference between verbal tasks and resting phase. Even
though the participants spoke during non-verbal talks, the amount of talking done was
much less compared to verbal tasks. The results suggests that the respiration rate is a
good indicator for distinguishing between test phases, even when the tasks are non-verbal.
Not much can be said about the fitness tracker used for measuring blood pressure. Given
that the sensor did not allow for customization and that the sampling rate was very low,
no usable results could be extracted from the sensor.

In summary, all sensors except for the fitness tracker, the ST sensor and the EMG
sensor, were able to produce data that allowed to discriminate between the resting phase
and the task phases with statistical significance. The inexpensive PPG Arduino sensor
was able to perform comparable to the more expensive PPG Bitalino sensor. Both the
EDA system and the EMG sensor suffered due to their low signal sampling rate, which
made it more difficult to post-process the data using tools specifically targeted towards
such sensors (the usual sampling frequency is in the range of 1 kHz [56] [24]). However,
while the EDA features could still be used for further analysis, the EMG data had to be
manually analyzed which excluded the data from statistical tests, since it would have
been too much effort to process the data manually in more detail.
The research question investigated in this thesis stands out compared to similar research
work done for commodity and inexpensive sensor hardware, such as [60], [43] or [86], due
to the extremely inexpensive PPG sensor used during experiments. Despite low price,
the sensor was able to produce similar results to the almost thirty-times as expensive
BITalino PPG sensor.

For future research done on this topic and following this thesis’s results, certain improve-
ments need to be made to minimize limitations encountered in this thesis.
Firstly, the introduction of less-familiar equipment during the stress test, since two
tasks were performed on a Nintendo Switch, led to many questions by the participants
during the tasks. This was a problem, because the tasks were originally designed to be
non-verbal. In future experiments, non-verbal tasks should not be performed on for the
participants non-familiar equipment to provide accurate results.
Secondly, if the budget provides the possibilities, some sensors should be replaced with
more advanced sensors which deliver a continuous, high-quality signal of higher sampling
rate. The sensor that would benefit most from updating are the ST sensor, the blood
pressure sensing unit and the EMG sensors. The latter two sensors would benefit in form
of better automatic post-processing possibilities. The former needs to be updated to
ensure that the results for ST measurements are not just random sensor behavior but a
response to the stressor.
Lastly, a larger number of participants for stress testing could provide a higher level of
confidence for the results of the experimental part of future research work. Furthermore,
shortening the length of the test protocol might be useful, since data collection would be
less time consuming, which would allow for more subjects to be tested.
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5.2. Review of REALSTRESS

The second research question of this thesis tied up with the results of the first, by asking
if the inexpensive biomedical sensors, which have proven themselves to be sufficient in
simple stress measurements through the methods of part one, were capable of performing
live stress measurements with direct feedback for the to be measured participants in form
of a real-time stress scale. After several rounds of testing throughout the implementation
process, the final round of stress trials performed on the reference candidate, who was
the main test subject for all of implementation, and external participants, who were not
included in the implementation process, answered the research question through positive
results. Although the mean value by which the stress scale differed between testing
phases was small, the existence of this difference within all four tests showed that the
implementation was successful. Between the two sensor stress scores, SCR provided a
more intuitive result, since its peak score appeared during the event phases of the protocol.
However, HR change score showed higher magnitudes of stressor reaction, although this
response was delayed and appeared primarily during the recovery phase. Given that
the final implementation was built with the delayed signal behavior in mind, the results
are what was expected. Because the two score peaks are out of sync, the total score,
which is the averaged score of both sensor scores, suffers in amplitude. Nevertheless,
the implementation presented sufficient success, by delivering a result that answered the
research question positively.

Reviewing the results in more detail, a few observations need to be made about the
different code-resources considered for the real-time signal processing. The first PPG lib-
rary that was tested and eventually chosen, PulseSensorPlayground.h, requires a manual
threshold input to work. Therefore, this library was a possible choice for measurements,
where the threshold is similar for all individuals or threshold-finding is performed ex-
ternally. During testing with external participants, the library failed to detect a HR for
some participants. Since the function’s threshold was set for the reference candidate, this
behavior was expected to an extent. This means in concrete terms that the implementa-
tion only worked for those users, whose PPG signal met the threshold. However, when
looking at the results of the external testing, the library was successful when averaged
over all participants. Furthermore, the threshold-problem was not only influenced by
participant-specific signal characteristics, but also by temperature influences on the blood
flow to the fingers.
Even though the threshold-problem was an inconvenience for the implementation, similar
libraries, such as BioData’s Heart.h, did not compare to PulseSensorPlayground.h in
terms of stability and accuracy. Furthermore, the latter offered processing tools with
and without interrupt functions, which provided an additional level of customizability.
One interesting discovery was made when analyzing the PPG signal further: The sensor
appeared to output not a raw PPG signal, but the second derivative of it. This might
have caused the problems for the BioData library, because it was expecting a different
signal behavior.
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The EDA sensor tested with BioData’s SCR calculation functions showed expected
behavior, with the signal responding to events (breath holding) and recovering after.
However, it appeared that the signal was rising even before the breath was held, which
might be due to anticipation. Nevertheless, the SCR functionality BioData offered was
the most promising and intuitive, which might be because the EDA sensor used by
BioData was very primitive, which could lead to the code being more robust to noisier
signals. The SCL signal produced was not considered for the implementation, even
though SCL showed excellent results for the first research question. Because the good
results for SCL of part one were mainly due to the length of measurements, and the long
recovery phase of the SCL signal could be accounted for since the signal did not need to
respond to changes quickly, the focus was laid on SCR. Computing an implementation
based on SCR is better suited for live detection of stressor responses, since signal changes
are faster compared to SCL.
The code-resource published by Engineersgarage.com did not work as intended and con-
stantly reported a change in signal. This comes especially surprising, because the authors
used the exact same EDA sensor that was used in this thesis. Their code determined the
change threshold automatically, which might not have worked as intended and lead to
output being hyper-sensitive.
Going back to the results of the tests performed with the final implementation of the
scoring function, generally, the SCR score performed worse compared to the HR score.
Especially for the external participants, the score changed only slightly between the
testing phases, and not always as intended. Since the SCR score showed far better results
for the reference candidate, over-fitting might have been a bigger problem for SCR than
for the HR score. Furthermore, the final implementation might had worked better on the
external participants, if the influence of SCR score on the total score would have been
significantly reduced or even removed completely. However, the SCR score provided good
results for the reference candidate, which leads to the conclusion that the signal could be
a valuable asset if over-fitting is able to be avoided during the implementation process.
This could be done by including more reference candidates throughout implementation,
and fitting the data on each candidate individually as well as on the candidates’ average.

Another limitation proved to be dual measurements of both sensors: The superior
method of HR calculations with PulseSensorPlayground.h was determined to be the PPG
tool using an interrupt function. However, this function can interrupt (hence the name)
other functions in doing their job, or work worse themselves when other functions are
also executed in the same loop. This was proven though the results, which showed that
for dual measurements using the interrupt function, the HR signal was no longer stable.
Therefore, the code-version working without an interrupt function was chosen for the
final implementation, since it provided better overall results for dual measurements.
Alternatively, both sensors could have been measured through separate microcontrollers,
with the total score being calculated on a third device. However, one main topic of this
thesis was a simple and inexpensive design, which would have not been achieved by using
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more devices than necessary.

The problem of dual measurements continued throughout the implementation of sliding
window functions for both sensors. Finding the best combination of binning sizes for the
sliding windows showed expected results. Bigger bins for the HR function provided the
best scores, which is in line with literature. Considering that most measures of HRV
require bigger window sizes to be reliable [75], and the measure used for the HR changes
in this thesis’s trials is somewhat related to those measures (basic form of numeric
deviation of HR), the results are reasonable.

Even though the results presented showed that a live stress feedback could be done with
inexpensive sensors and open-source libraries, more research has to be done to present a
solution that works reliably for all users. It would be advised to include more reference
candidates during the implementation process to avoid over-fitting. Another improvement
that should be done is the inclusion of an automatic threshold finder for the PPG signal
processing. Furthermore, different sensor types or extracted signals from the presented
sensors could be considered. More specifically, how a SCL-based score compares to its
SCR counterpart presented in this thesis.
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Finally, this chapter presents a conclusion of the thesis’ work. The first section concerns
itself with the conclusion of the first research question. Conclusion and outlook for
REALSTRESS are presented in the second section of this chapter.

6.1. Experimental Testing of Low-Cost Sensors
This thesis extends work done in the area of human stress sensing, by hypothesizing that
low-cost sensors are able to measure biomedical signals with high-enough quality to be
used in stress detection experimental trials. In order to verify this research question,
sensor data collected within a classic stress test design was reviewed through statistical
means. Out of the five inexpensive sensors tested, two supported the hypothesis (EDA,
PPG), one sensor rejected it (ST sensor), and two had too low of a sampling rate to
perform statistical testing on their data (EMG, fitness tracker/blood pressure). Further-
more, the low-cost Arduino PPG sensor was able to compare to the mid-price PPG and
ECG sensors by BITalino.
The sensor testing was done with unique tasks on different individuals, which included
an EDA-non-responder participant. While the number of participants would need to
be increased for a more generalized result, this mix of trials and person-specific stress
reactions provided a good perspective on the sensors abilities. Expectations about the
performance of the inexpensive sensors were kept within limits, since most of the previous
work this thesis ties in with presented results acquired through higher-cost well established
biomedical equipment. However, expectations were exceeded for both EDA and PPG
(Arduino), which were the most prominent sensors tested within the stress research
literature found. Unanticipatedly, both signal extraction tools used in this thesis did
not manage to process EMG data, because of its low sampling rate. All three BITalino
sensors performed as expected, which in turn made the two cardiovascular sensors (ECG,
PPG) a good reference base for the other sensors to be compared against.
The work presented in this thesis about low-cost sensor usability for stress detection
has extended the previous work by not only testing inexpensive sensing equipment, but
also comparing it to higher-budget sensors directly. Additionally, the results present
possible limitations that can be met when using cheaper equipment (e.g., issues due to low
sampling rate). By focusing on a simpler and more customizable sensing system, which
does not require proprietary software to be used, this research provides a reproducible
low-budget solution for human stress response detection.

When following up on this thesis, future researchers should take care to invest in a
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different system for EMG and ST measurements. Furthermore, testing the low-cost
sensors in non-laboratory tests could be interesting, especially considering movement
artifacts. Finally, engaging a higher number of participants in the experimental sessions
should give the results a higher level of confidence.

6.2. REALSTRESS

The aim of the second part of this thesis was to determine the practicability of imple-
menting a sensor-based stress scale with real-time feedback through low-cost biomedical
sensor equipment. By means of statistical signal analysis of different phases within a
laboratory stress test, a distinction between the mean stress scales could be demonstrated
for a reference candidate and an external control group. Furthermore, the distinction
between test protocol phases could not only be made for the stress inducing exercise on
which the implementation was based on, but also for two disparate popular stress trials.
Thereby, the implementability of the proposed system could be confirmed.
On the grounds that numerous open-source libraries for biomedical signal extraction
already existed, focusing the implementation on building a sliding-window system that
works for dual signal processing rather than reinventing the wheel by producing a signal
processing tool from scratch, was the route chosen for this thesis. In retrospect, this
decision proved to be wise, since the combination of two different signal processing tools
working simultaneously verified the expectations of mutual conflicts between the sensors.
However, through step-wise parameter adjustments and extensive testing, the signal
processing functions could be adjusted to produce the desired results. Furthermore, since
the testing during the implementation process was done based on breathing patterns,
the expectations for the usability of the score for more classical stress inducing tasks
were lowered. Nonetheless, the scale proved to be comparably efficient for the latter,
exceeding expectations and demonstrating that the body’s reaction to breath holding
can be used to adjust a system for stress detection. Finally, it was anticipated that the
implementation would inherit some form of over-fitting due to it only being based on one
candidate. Still, the final score was less prone to over-fitting than initially thought, even
though it was still noticeable.
The second part of this thesis has demonstrated that real-time feedback in stress measure-
ments is possible with inexpensive sensor equipment. Furthermore, the implementation
could be accomplished through less-conventional stress inducing methods, but still trans-
ferred well in tests, where proven stress tasks were up for testing. A real-time feedback
stress scale, available in educational facilities or bigger office spaces, could improve
the conception of stress throughout individuals, and might lead to improved health
by reminding users to take their bodies’ own stress signals more serious. This work
confirms that this concept can be realized with low-cost sensors and open-source libraries,
providing a foundation that can be built upon in future research.
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6.3. Outlook
Based on the results, future research adding to this work might consider a more versatile
approach for the implementation, including more candidates throughout the building-
process. Additionally, since this thesis focused the real-time feedback implementation on
two sensors that were deemed appropriate given the initial selection, including different
sensors in future research might share more insight in the topic of real-time signal
processing. Considering experimental settings outside the laboratory might also be an
interesting follow up to this thesis.
The next step for improving the implementation would be investing in a user-friendly
interface that presents the stress score graphically. This could be done through the
gaming engine Unity.
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A. Appendix

Figure A.1.: Difference in peak finding using Neurokit2 and BioSPPy seen on random
cuts of task and rest phases. A clear difference in found peaks can be seen.

Figure A.2.: BioData’s beats per minute function tested on resting state.
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A. Appendix

Figure A.3.: Pair-Plot of Selected Features for all Task Phases separately in comparison
to the initial Resting Phase. The window size for skin conductance response
(SCR) is 10 seconds, and for heart rate (HR) change is 40 seconds.
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Figure A.4.: Filtered electromyography (EMG) datasets with manually marked events.
The task duration is marked in green, the resting period is shadowed in blue.
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A. Appendix

Figure A.5.: PulseSensor Playground library tested using the libraries example project
with (A) and without (B) interrupt function to calculate heart rate on
breathing pattern of alternating normal breathing (R, blue) and breath-
holding (E, magenta).
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Figure A.6.: BioData’s electrodermal activity functions skin conductance level (SCL) (A)
and skin conductance response (SCR) (B) tested on breathing pattern of
alternating normal breathing (R, blue) and breath-holding (E, magenta).
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A. Appendix

Figure A.7.: Distribution of skin conductance level (SCL) data of all testing phases for an
electrodermal activity (EDA)-non-responder (A) compared to a participant
with EDA response (B).

Figure A.8.: Curve progression of skin conductance level (SCL) during part of the stress
testing performed on participants in July 2022.
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