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A B S T R A C T

In this work we present a soft sensor to accurately estimate the yield coefficient 𝑌𝑋∕𝑆 and the substrate uptake
capacity 𝑞𝑆𝑚𝑎𝑥 in a cultivation process using offgas measurements and a nonlinear state observer with an
underlying mechanistic model. The structural observability analysis of the mechanistic model showed that both
parameters are observable given the available measurement information. In different simulation scenarios we
analyzed under which conditions an accurate estimation is possible when measurements are uncertain. Testing
the proposed soft sensor in-silico showed that 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 can be estimated with reasonable accuracy
depending on the parameter sensitivity. Verification of the developed state and parameter estimation was
carried out in induced Escherichia coli cultivations. Besides accurate prediction of living biomass, and substrate
accumulation, decreasing 𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥 could be detected. Therefore, the developed soft sensor can be used
to control induced cultures and to prevent overfeeding situations.
1. Introduction

The control of microbial fed-batch cultivation processes is predom-
inantly based on the manipulation of the substrate feed rate (Mears
et al., 2017), which is highly impacting the product formation rate of
the culture (Kager et al., 2022). To avoid substrate accumulation, the
controlled feed rate should not exceed a critical maximum substrate
uptake capacity (𝑞𝑆𝑚𝑎𝑥). Exceeding this biological limit can lead to
overflow metabolism, toxic by-product formation and decrease of over-
all productivity (Santos et al., 2012; Neubauer et al., 2003; Pekarsky
et al., 2019; Kager et al., 2020). The maximum substrate uptake ca-
pacity 𝑞𝑆𝑚𝑎𝑥 is used as a parameter to describe the dependency of the
cell specific substrate uptake rate (𝑞𝑆 ) on the present substrate concen-
tration in the medium (𝑐𝑆 ) by different reaction kinetics e.g. Monod
kinetics (Monod, 1949). In contrast to the traditional assumption of
𝑞𝑆𝑚𝑎𝑥 being a constant parameter, previous studies revealed that 𝑞𝑆𝑚𝑎𝑥
drastically varies during the process and often declines especially in
the case of induced recombinant protein production (Lin et al., 2001;
Neubauer et al., 2003; Reichelt et al., 2017). In addition, the activated
recombinant genes decrease the biomass yield 𝑌𝑋∕𝑆 as substantial
amounts of substrate are needed for product formation. Therefore,
monitoring of 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 in real-time would be highly beneficial in
order to assure robust feed rate control without the risk of overfeeding.

∗ Corresponding author.
E-mail address: jukager@kt.dtu.dk (J. Kager).

There are several approaches presented in literature to estimate
𝑌𝑋∕𝑆 or 𝑞𝑆𝑚𝑎𝑥 dynamically in a bioprocess. Wechselberger et al. (2013)
for example used elemental balancing in strictly substrate limited cul-
tures to calculate the biomass yield during induced cultures. This
approach could also be used to determine changing growth rates as a
function of a dynamic temperature decrease (Sagmeister et al., 2013).

Other reported methodologies to determine cell characteristics are
based on transient perturbations during the cultivation. Lin et al.
(2001) found decreasing glucose uptake capacities in induced E. coli
fed-batch cultures by frequently pulsing glucose just up to 0.5 to
2 gL−1 to achieve short-term substrate unlimited conditions without
significantly influencing overall cellular growth. The maximum glucose
uptake capacity 𝑞𝑆𝑚𝑎𝑥, was then calculated based on the subsequent
drop of the dissolved oxygen (pO2). With this method decreasing max-
imum substrate uptake capacities after induction of the recombinant
genes could be shown in E. coli cultivations (Neubauer et al., 2003).
Although the analysis was applied offline and glucose was added man-
ually with syringes, the authors pointed out the potential of automation
and real-time applicability.

The automation and real-time application of this approach was re-
alized within the so called probing control, first introduced by Akesson
(1998) and later refined by de Maré (2016). Hereby the perturbation
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can be either an ‘‘up-pulse’’ meaning a short increase of the feed rate
or a ‘‘down-pulse’’ meaning a short decrease of the feed rate. The
response of the dissolved oxygen (pO2) in function of the feed pulses

as evaluated in real-time. In the case of substrate limited growth the
erturbation of substrate availability will result in a peak of the pO2
ignal. In the case of substrate saturation however, the perturbation
ill not produce a pO2 peak, since the culture is already operating
t maximum capacity (𝑞𝑆𝑚𝑎𝑥). In summary, the presence of a pO2
eak will reveal if the culture is limited on substrate or saturated on
ubstrate.

More generally, these approaches can be classified as extremum
eeking control approaches. However, in contrast to the evaluation of
he extremum condition via an objective function, here the control
nput perturbation is determined by a conditional statement through
peak detection algorithm (Dewasme and Wouwer, 2020).

By adopting these methods, the feed rate can be controlled to
aintain the culture at 𝑞𝑆𝑚𝑎𝑥 without the risk of overfeeding. However,

he probing control method inherently requires to operate close to the
aximum possible capacity 𝑞𝑆𝑚𝑎𝑥 whereas methods based on elemental

alancing only work on the other end, in strictly substrate limited
onditions with neglectable substrate accumulation. Besides that pO2
esponse based methods lead to deflections of the controlled dissolved
xygen. If deflections reach levels below 30% pO2, unwanted shifts
f the metabolism as acetate formation can occur. Therefore, these
erturbations should be avoided as they can negatively influence pro-
ess performance (Phue and Shiloach, 2005). Negative effects can be
ircumvented by building the probing control scheme exclusively on
‘down-pulsing’’ and feed supply interruption, which keeps the culture
nder strict glucose limitation and prevents the pO2 from decreasing
oo rapidly (Whiffin et al., 2004). Although probing control and ele-
ental balancing have shown their capability to determine changing

ell characteristics such as 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 in real-time they are still
imited in their applicability.

Kinetic models, which are more detailed and enable the description
f cell internal behavior could be used to describe changing yields
nd uptake rates by algebraic relations. To address the above men-
ioned challenges, a kinetic overflow metabolism model was proposed
y Pimentel et al. (2015), where a feedback linearizing control law
as implemented to keep inhibitory by-product concentrations from
verflow metabolism at low levels. Also other works successfully imple-
ent observers based on simple kinetic models for bioprocesses (Tuveri

t al., 2022; Kager et al., 2018; Sinner et al., 2021) and specifically for
verflow metabolism cultures (Bárzaga-Martell et al., 2021; Dewasme
t al., 2013; Veloso et al., 2009). In this work however the focus was
o detect shifts in the substrate uptake capacity and the biomass yield
oefficient apart from the effects of the overflow metabolism bottleneck
rinciple. Especially with combined state and parameter estimation
nd limited measurement information it is important to verify the
arameter identifiability of the kinetic expressions (Margaria et al.,
004; Raue et al., 2009) and the system observability when the model
s used for process monitoring (Lecca and Re, 2019). Further, a rather
imple model reduces the need for prior knowledge on exact system
inetics and their parameters. Therefore, we took a basic Monod-based
rowth model and tried to estimate the kinetic parameters (𝑞𝑆𝑚𝑎𝑥 and
𝑋∕𝑆 ) in real-time.

In addition to an adequate model and measurements, an observer
lgorithm is needed to accurately estimate the process states of interest.
oday, several types of observers are available (Mohd Ali et al., 2015)
nd were also successfully used for bioprocesses (Goffaux and Wouwer,
005). Considering bayesian type estimators, the traditional linear
alman Filter is rarely applied, since the performance drops when
ealing with nonlinear systems. The extended Kalman Filter (EKF) as
nonlinear variation of the Kalman Filter is more widely applied for

ioprocesses (Yousefi-Darani et al., 2020). However, because of the
inearization of the system through the Jacobians at each time step,
2

he EKF lacks accuracy when dealing with highly nonlinear systems g
nd can cause diverging predictions, for example when metabolic rates
re changing rapidly between the end of the batch phase and start of
substrate feed (Wan and Van Der Merwe, 2000). To prevent those

ivergences, other nonlinear extensions of the Kalman Filter can be
sed such as the Unscented Kalman Filter (UKF) or the Particle Filter
PF), which are not based on a linearization, but on a direct propagation
f numerous samples of the system (sigma points in case of the UKF and
articles in case of the particle filter) through the nonlinear model. By
hat, highly nonlinear systems with non-Gaussian distributions can be
stimated. Although the PF is computationally more demanding than
he previously mentioned state estimators, but for additional parameter
stimation it does not require to solve a nonlinear optimization problem
ver a time interval as for example required in a moving horizon
stimator (MHE) (Rawlings and Bakshi, 2006).

In this contribution we aim to use a kinetic model combined with
eal-time offgas measurements to estimate the maximum substrate
ptake rate 𝑞𝑆𝑚𝑎𝑥 and the biomass yield coefficient 𝑌𝑋∕𝑆 during in-
uced fed-batch cultivations. To circumvent parameter identifiability
nd state observability issues the state estimator is based on a simple,
nstructured model. By augmenting the model with the two parameters
hey can be additionally estimated without knowing their behavior
eforehand. This novel approach enables to extend the validity range
f these simple models to all phases of recombinant protein production
rocesses. To do so we first set up an unstructured biomass growth
odel including Monod kinetics and elemental balances to link the
easurable carbon evolution rate (CER) and oxygen uptake rate (OUR)

o biomass growth. We considered two model parameters as variable
ver time, the yield coefficient 𝑌𝑋∕𝑆 and the maximum substrate up-
ake capacity 𝑞𝑆𝑚𝑎𝑥. We analyzed the structural observability of the
ugmented model using Lie derivatives (Villaverde et al., 2016) and
nvestigated parameter identifiability of 𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥 based on their
ensitivity to CER and OUR measurements (Daume et al., 2019).
fter that we conducted simulation studies using a particle filter as
state observer to evaluate the feasibility of a simultaneous 𝑞𝑆𝑚𝑎𝑥

nd 𝑌𝑋∕𝑆 estimation in different scenarios, including different feeding
trategies and measurement accuracies. In the end the developed and
arameterized state observer was verified on four different experiments
o see overall estimation performance for biomass and substrate as
ell as the ability to indicate changing 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 during the
roduction phases.

. Material and methods

.1. E. coli cultivations

In total five fed-batch cultivations were conducted, which are listed
n Table 1. The first experiment P1 was solely used for the calibration
f the observation model, described in Section 4.1. The other four
xperiments were used to verify the soft sensor algorithm containing
he calibrated observation model.

The production host was a recombinant Escherichia coli BL21(DE3)
train producing the enzyme L-lactate dehydrogenase 1 (LDH), cul-
ivated in 3.3 L Labfors 5 bioreactors (Infors, Bottmingen, Switzer-
and). A DeLisa minimal medium (DeLisa et al., 1999) was used
ontaining 13.3 gL−1 KH2PO4, 4.0 gL−1 (NH4)2HPO4, 1.2 gL−1 MgSO4,
.7 gL−1 citric acid, 100mgL−1 Fe(III) citrate, 13mgL−1 Zn(CH3COO)2,
.4mgL−1 EDTA and 5mLL−1 trace element solution containing
.5mgL−1 CoCl2.6H2O, 15mgL−1 MnCl2.4H2O, 1.2mgL−1 CuCl2.2H2O,
.0mgL−1 H3BO3 and 2.5mgL−1 Na2MoO4.2H2O. The medium was
upplemented with Thiamine HCl to a final concentration of 4.5mgL−1

nd ampicillin to 50mgL−1. The pre-culture was cultivated in 1 L shake
lasks for 16 h containing 100mL DeLisa medium with 8 gL−1 glucose.
00mL pre-culture was used to inoculate 1 L of batch medium. The
atch phase was started with 15 gL−1 glucose as the carbon source.
fter the batch was finished a fed-batch phase with an exponential

lucose feed profile was performed to keep the specific substrate uptake
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Table 1
Overview of conducted experiments with Escherichia coli. The 𝑞𝑆,𝑚𝑒𝑎𝑛 values indicate the
verage 𝑞𝑆 in the production phase.
Name Purpose Feeding 𝑞𝑆,𝑚𝑒𝑎𝑛
P1 Model Calibration Std. fed-batch 0.25 g g−1 h−1

P2 Verification Std. fed-batch 0.14 g g−1 h−1

P3 Verification Feed pulses 0.35 g g−1 h−1

P4 Verification Feed pulses 0.23 g g−1 h−1

P5 Verification Overfeeding 0.31 g g−1 h−1

rate 𝑞𝑆 at a constant level. The feed rate was controlled according to
Eq. (8) with a glucose concentration of 400 gL−1.

The aimed 𝑞𝑠 before induction was 0.25 g g−1 h−1. After 24 h the
ranscription of the recombinant gene was induced by adding 1mM
sopropyl 𝛽-d-1-thiogalactopyranoside (IPTG) and adaption of the 𝑞𝑆
etpoints to the values shown in Table 1. In addition to that, the temper-
ture was lowered from 37 °C to 31.5 °C whereas the pH was controlled
ith NH4

+ and H3PO4 to 6.75 throughout the whole process. The
O2 was controlled to 30% by manipulating stirrer speed and oxygen
ontent of the air inflow. The values for the induction phase were
dentified as beneficial in a previous study for recombinant production
f inclusion bodies (IBs) in E. coli (Kopp et al., 2018).

.2. Reference analytics

For reference analytics offline samples were taken every 2 h. The
ry cell weight (DCW) and the optical density at 600 nm (𝑂𝐷600) were
easured for offline quantification of biomass. For DCW analysis 1mL

f culture broth was centrifuged at 20 000 g, the pellet was dried at
05 °C for 48 h and gravimetrically quantified in 1.5mL reaction tubes.
he glucose concentration was measured in an enzymatic analyzer
Cedex Bio HT, Roche, Basel, Switzerland) using the hexokinase based
ssay kit. The distinction between living cells and dead cells was
ade via flow cytometry according to Wurm et al. (2017), where the

iomass sample was stained with 0.75 μM of the membrane potential
ensitive DiBAC4(3) dye to stain dead cells and 3.0 μM of RH414 to
tain all plasma membranes. A CyFlow® Cube 6 flow cytometer (Partec,
ünster, Germany) was used for this purpose. For calculation of the

ead cell mass 𝑋𝑑 the ratio of dead cells to total cells was multiplied
y the DCW. The remaining share was assumed to be viable cell mass.

.3. Online analytics

Online measurements of the reactor setup included liquid tempera-
ure (𝜗𝐿), pH, dissolved oxygen tension (pO2), the substrate feed rate
𝑅 through a balance, airflow rate (𝐹𝐴𝐼𝑅), oxygen flow rate (𝐹𝑂2) and
ffgas analytics (BlueInOne, BlueSens, Herten, Germany) from which
he oxygen uptake rate (OUR) and carbon evolution rate (CER) can
e obtained. The calculation is based on 𝐹𝐴𝐼𝑅 and 𝐹𝑂2, the molar gas
olume under normal conditions 𝑉𝑀 , the inert gas fraction 𝑅𝑎,𝑖𝑛𝑒𝑟𝑡 and
he mole fractions of oxygen (O2) and CO2 in the offgas 𝑥𝑂2 and 𝑥𝐶𝑂2
espectively (Aehle et al., 2012).

ER𝑚𝑒𝑎𝑠 =
𝐹𝐴𝐼𝑅 + 𝐹𝑂2

𝑉𝑀
⋅ (𝑥𝐶𝑂2 ⋅ 𝑅𝑎,𝑖𝑛𝑒𝑟𝑡 − 𝑥𝐶𝐺𝑖𝑛) (1)

UR𝑚𝑒𝑎𝑠 =
𝐹𝐴𝐼𝑅 + 𝐹𝑂2

𝑉𝑀
⋅ (𝑥𝑂2 ⋅ 𝑅𝑎,𝑖𝑛𝑒𝑟𝑡 − 𝑥𝑂𝐺𝑖𝑛) (2)

ith

𝑎,𝑖𝑛𝑒𝑟𝑡 =
1 − 𝑥𝑂𝐺𝑖𝑛 − 𝑥𝐶𝐺𝑖𝑛

1 − 𝑥𝑂2 − 𝑥𝐶𝑂2 −
(

1 − 𝑌𝑤𝑒𝑡
𝑥𝑂𝐴𝐼𝑅

) (3)

In order to obtain the measurement errors for CER and OUR the errors
of the prime variables 𝐹𝐴𝐼𝑅, 𝐹𝑂2, 𝑥𝑂2 and 𝑥𝐶𝑂2 were taken from the
equipment documentation of the used mass flow controllers and the
offgas analyzer and were propagated through the equation system
(Eqs. (1) & (2)) using Gaussian error propagation (Müller et al., 2022).
3

3. Computational framework

3.1. Observer & plant model

Within this work we distinguish between two models: The observer
model, which was used in the state observer (particle filter) to estimate
the state and parameters based on incoming offgas measurements, and
the plant model, which was used to generate the plant feedback in the
simulation study. Besides the usage of different model parameters, the
plant model includes an algebraic description for a decreasing 𝑞𝑆𝑚𝑎𝑥
over time. The observation model contains 𝑞𝑆𝑚𝑎𝑥 as an static parameter.
An unstructured kinetic growth model, was used as the basis for both
models. It is composed of:

• four states: Volume, viable and dead biomass, susbtrate
𝑥 = [𝑉 ,𝑋𝑣, 𝑋𝑑 , 𝑆]𝑇

• two measurements: CER and OUR
𝑦 = [CER,OUR]𝑇

• and two inputs: Feed flow rate and sampling rate
𝑢 = [𝐹𝑅, 𝐹𝑜𝑢𝑡]𝑇 .

he state equations (Eq. (4) – Eq. (7)) represent the dynamics of the
ystem by mass balances. Although concentration balances are more
ommonly used in mechanistic bioprocess models to achieve a more
oncise description of the kinetics, we used mass balances to simplify
he incorporation of first principle elemental balances.
𝑑𝑉
𝑑𝑡

= 𝐹𝑅 − 𝐹𝑜𝑢𝑡 (4)

𝑑𝑋𝑣
𝑑𝑡

= 𝑌𝑋∕𝑆 ⋅ 𝑞𝑆 ⋅𝑋𝑣 − 𝑘𝑑 ⋅𝑋𝑣 − 𝐹𝑜𝑢𝑡 ⋅
𝑋𝑣
𝑉

(5)

𝑑𝑋𝑑
𝑑𝑡

= 𝑘𝑑 ⋅𝑋𝑣 − 𝐹𝑜𝑢𝑡 ⋅
𝑋𝑑
𝑉

(6)

𝑑𝑆
𝑑𝑡

= 𝐹𝑅 ⋅ 𝑐𝑆𝑅 − 𝑞𝑆 ⋅𝑋𝑣 − 𝐹𝑜𝑢𝑡 ⋅
𝑆
𝑉

(7)

The state equations (Eq. (4)–Eq. (7)) denote the liquid volume, the
living biomass, the dead biomass and the substrate mass, respectively.
Rearranging the substrate mass balance (Eq. (7)) to the feed rate 𝐹𝑅
and neglecting the outlet flow rate 𝐹𝑜𝑢𝑡 yields the equation for open
loop 𝑞𝑆 control,

𝐹𝑅𝑤(𝑡) = 𝑞𝑆𝑤(𝑡) ⋅
𝑋𝑣(𝑡)
𝑐𝑆𝑅

(8)

with 𝐹𝑅𝑤 being the calculated feed rate setpoint in L h−1, 𝑞𝑆𝑤 being the
setpoint of 𝑞𝑆 in g g−1 h−1, 𝑋𝑣 being the viable cell mass in g and 𝑐𝑆𝑅
eing the glucose concentration in the feeding solution in g L−1.

The CER and OUR model outputs can be obtained by solving
he elemental balances (carbon balance and degree of reduction bal-
nce) (Roels, 1983) to calculate the yield coefficients for CO2 pro-
uction and O2 uptake as a function of the biomass yield coefficient
𝑋∕𝑆 . Therefore, CER and OUR can be directly derived from the model
utputs by Eqs. (9) and (10) with the C-molar masses of glucose (𝑀𝑆 =
0 gmol−1) and biomass (𝑀𝑋 = 26.5 gmol−1) as well as the degrees of
eduction for glucose (𝐷𝑂𝑅𝑆 = 4), for oxygen (𝐷𝑂𝑅𝑂2 = −4) and for
iomass (𝐷𝑂𝑅𝑋 = 4.113).

ER =
(

1
𝑀𝑆

−
𝑌𝑋∕𝑆

𝑀𝑋

)

⋅ 𝑞𝑆 ⋅𝑋𝑣 (9)

OUR =
(

𝐷𝑂𝑅𝑆
𝑀𝑆

−
𝑌𝑋∕𝑆 ⋅𝐷𝑂𝑅𝑋

𝑀𝑋

)

⋅ 𝑞𝑆 ⋅
𝑋𝑣

𝐷𝑂𝑅𝑂2
(10)

The specific substrate uptake rate 𝑞𝑆 was described using Monod kinet-
cs, based on the model parameters 𝑞𝑆𝑚𝑎𝑥 and 𝑘𝑆 . For the calculation of
inetics the component masses have to be converted to concentrations
𝑐𝑆 = 𝑆

𝑉 ).

𝑞𝑆 = 𝑞𝑆𝑚𝑎𝑥 ⋅
𝑐𝑆 (11)
𝑘𝑆 + 𝑐𝑆
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Table 2
Plant model parameters and model constants.

Parameter 𝜃 Value Unit

𝑌𝑋∕𝑆 0.45 g g−1

𝑘𝑑 0.01 g g−1 h−1

𝑐𝑆𝑅 400 g L−1

𝑞𝑆𝑚𝑎𝑥,𝑖𝑛𝑖𝑡 1.2 g g−1 h−1

𝑘𝑆 0.004 g L−1

𝑀𝑋 26.5 g Cmol−1

𝑀𝑆 30 g Cmol−1

𝑀O2 32 gmol−1

𝑀CO2 44 g Cmol−1

𝐷𝑂𝑅𝑋 4.113 mole- Cmol−1

𝐷𝑂𝑅𝑆 4 mole- Cmol−1

𝐷𝑂𝑅O2 −4 mole- Cmol−1

In the plant model the 𝑞𝑆𝑚𝑎𝑥 parameter was additionally decreased
by Eq. (12) after a process time of 11 h to investigate if the state esti-
mator, including the observation model is able to detect the changing
maximum capacity.

𝑞𝑆𝑚𝑎𝑥(𝑡) =

{

𝑞𝑆𝑚𝑎𝑥,𝑖𝑛𝑖𝑡 for 𝑡 < 11 h
𝑞𝑆𝑚𝑎𝑥,𝑖𝑛𝑖𝑡 ⋅ 𝑒−0.09 h

−1⋅(𝑡−11 h) for 𝑡 ≥ 11 h
(12)

Besides of 𝑞𝑆𝑚𝑎𝑥 all other model parameters were kept constant
to study specifically the estimation of the unknown dynamics of this
parameter. All parameter values of the plant model are given in Table
2.

The basic model structure of the observation model is the same
as for the plant model. However, some adaptations were made. To
enable model parameter estimation in real-time the state vector can be
augmented with the target parameters, including zero dynamics in the
respective differential equations (Kager et al., 2018; Patwardhan et al.,
2012). We augmented the state vector with the parameters 𝑌𝑋∕𝑆 and
𝑞𝑆𝑚𝑎𝑥 yielding the new augmented state vector

̄ = [𝑉 ,𝑋𝑣, 𝑋𝑑 , 𝑆, 𝑌𝑋∕𝑆 , 𝑞𝑆𝑚𝑎𝑥]𝑇 .

For the simulation study the remaining model parameters were as-
sumed to be perfectly known and equal to the plant model. For the
experimental validations 𝑌𝑋∕𝑆 , 𝑞𝑆𝑚𝑎𝑥 and 𝑘𝑑 were parameterized based
on the experiment P1 (Fig. 1).

3.2. Model analysis and parameterization

For a successful parameter identification the model parameters
must be identifiable from the measurements that are available. For
model calibration (Section 4.1) the parameters 𝑌𝑋∕𝑆 , 𝑞𝑆𝑚𝑎𝑥 and 𝑘𝑑
are supposed to be identified using the offline measurements, which
in this case are the states: viable biomass (𝑋𝑣), dead biomass (𝑋𝑑)
and substrate mass (𝑆). The structural identifiability can be evaluated
by computing the rank of the sensitivity matrix. The local sensitivity
of a model parameter 𝜃𝑝 on state 𝑥𝑖 can be calculated by the partial
derivative of 𝑥𝑖 with respect to the parameter 𝜃𝑝.

𝑆𝑖,𝑝 =
𝜕𝑥𝑖
𝜕𝜃𝑝

(13)

he sensitivity matrix is then calculated as the Jacobian matrix of the
tates with respect to the parameter vector.

=
𝜕(𝑥1,… , 𝑥𝑚)
𝜕(𝜃1,… , 𝜃𝑛)

(14)

f the sensitivity matrix S has full rank meaning the columns are linearly
ndependent, the system is structurally identifiable.

The model parameters 𝑞𝑆𝑚𝑎𝑥, 𝑌𝑋∕𝑆 and 𝑘𝑑 were estimated with
egard to the offline measured data 𝑋𝑣,meas, glucose mass (𝑆meas) and
ead cell mass (𝑋𝑑,meas) of process P1 (Fig. 1). The optimal parameter
et was obtained by minimization of the squared error sum (𝐽 )
4

𝑆𝑆𝐸
etween the offline reference measurements (𝑌𝑖,meas) and the simulated
odel states (𝑌𝑖,model).

𝑆𝑆𝐸 =
𝑀
∑

𝑖=1
(𝑌𝑖,model − 𝑌𝑖,meas)2 (15)

s only approximate parameters from the calibration process P1 were
eeded, no weighting of the different measurements was applied. The
stimated parameters were then used as initial values in the observation
odel of the experimental validation experiments in Section 4.3.

.3. Structural generalized observability

To assess, whether the states and model parameters can be es-
imated in real-time, the structural observability of the system was
nalyzed. After augmentation of the two model parameters 𝑌𝑋∕𝑆 and
𝑆𝑚𝑎𝑥 into the state vector the generalized observability–identifiability
atrix was constructed using Lie derivatives and the rank was deter-
ined (Villaverde et al., 2016). The first order Lie derivative of the

utput function 𝑔(𝑥) with respect to the state function 𝑓 (𝑥, 𝑢) is given
s

𝑓 𝑔(𝑥) =
𝜕𝑔(𝑥)
𝜕𝑥

⋅ 𝑓 (𝑥, 𝑢). (16)

he higher order Lie derivatives are calculated based on the previous
ie derivative by

𝑖
𝑓 𝑔(𝑥) =

𝜕𝐿𝑖−1
𝑓 𝑔(𝑥)

𝜕𝑥
⋅ 𝑓 (𝑥, 𝑢) (17)

nd stacked over each other to derive the nonlinear observability
atrix (𝑥).

(𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕𝑔(𝑥)
𝜕𝑥

𝜕𝐿𝑓 𝑔(𝑥)
𝜕𝑥

𝜕𝐿2
𝑓 𝑔(𝑥)

𝜕𝑥
⋮

𝜕𝐿𝑖−1
𝑓 𝑔(𝑥)

𝜕𝑥

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(18)

If (𝑥) has full rank, the structural observability is given. The
inimum number of Lie derivatives for which (𝑥) can be of full rank

s given by 𝑛+𝑞
𝑚 − 1 with n being the number of states and q being

the number of augmented parameters (Villaverde et al., 2016). For the
calculation of Lie derivatives and evaluation of structural identifiability
the STRIKE-GOLDD Matlab® toolbox was used, which was published
by Villaverde et al. (2016).

3.4. Particle filter

In this study we used a sequential importance resampling (SIR)
particle filter algorithm to estimate the unknown model states and pa-
rameters from the OUR and CER measurements. The general algorithm
of the particle filter is based on Simon (2006), Rawlings and Bakshi
(2006). A particle filter contains multiple samples in the state space
(particles) representing the distribution of the estimated state. Each
particle is assigned to a corresponding weight reflecting the likelihood
of the respective particle to fit the measurements. In contrast to the
KF or EKF the distribution can be non-Gaussian and multi-modal.
Usually, the more particles are sampled the better the distribution can
be represented. Each particle is propagated simultaneously through the
model in a prediction step. The process prediction was performed using
the observation model (Section 3.1) with the augmented state vector
̄ , where the dynamics of the parameters 𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥 were set to 0
(exogenous form), with artificial noise on the parameters. This allows
for simultaneous state- and parameter estimation. After that in the
correction step, measurements are used to update the particle weights.
Over time, more and more particles get very small weights causing a
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Fig. 1. Open-loop model simulation after parameter estimation based on the process P1 data. The estimated parameter set is: 𝑞𝑆𝑚𝑎𝑥 = 1.3395 g g−1 h−1, 𝑌𝑋∕𝑆 = 0.4371 g g−1,
𝐷 = 0.0123 g g−1 h−1 with a relative error (NRMSE) of 5.12% for 𝑋𝑣, 7.85% for 𝑆 and 47.4% for 𝑋𝑑 . In C the corresponding reaction rates CER and OUR for the open loop model

and the measurements are shown where negative reaction rates (OUR) refer to uptake of the component by the cell and positive reaction rates (CER) refer to an evolution of the
component.
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decrease of prediction accuracy (degeneration). In this case particles
with higher weights are resampled if the number of effective particles
drops under a certain threshold (Li et al., 2014). The integration time
was defined to be 0.001 h or 3.6 s since the stiffness of the ODE system
equired a frequent solver step size. The update step (𝑘) however was
ust performed when new measurements were available with 30 s as
smallest interval.

Initialization. In the first time step (𝑘 = 0) a sample of 𝑁 = 100 particles
is randomly drawn respecting a known probability density function of
the initial state (𝑥𝑖0 ∶ 𝑖 = 1,… , 𝑁). In this work, Gaussian distribution
was assumed for the initial distribution described by the initial state
covariance matrix

𝛴0 = 𝑑𝑖𝑎𝑔[0, 0.05, 0, 0.05, 0.0004, 0.0004]. (19)

Prediction step. Time propagation of the particles through the model
state transition equation 𝑓 (𝑥) (Eq. (5) – Eq. (7)) was calculated with
additive process noise 𝑤𝑖

𝑘.

𝑥̃𝑖𝑘 = 𝑓 (𝑥𝑖𝑘−1) +𝑤𝑖
𝑘−1(𝑖 = 1,… , 𝑁) (20)

Noise levels for particle propagation were assumed to be Gaussian with
a covariance matrix

𝛴𝑤𝑘 = 𝑑𝑖𝑎𝑔[0, 0, 0, 0, 0.000025, 0.0003]. (21)

It can be seen in 𝛴𝑤𝑘 that just the last two states 𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥 are
assumed to be uncertain, which are the parameters to be estimated
in real-time within this study. There is no direct state transition vari-
ance on the other states, but they are influenced by the parameters
uncertainty through the model.

Correction (resampling) step. The measurement function was defined as
(𝑥) = [CER,OUR]. The model outputs (Eqs. (1) and (2)) are compared

in the correction step with the measured rates obtained from offgas-
analysis (Eqs. (9) and (10)). The relative likelihood 𝑞𝑖𝑘 is computed
for every particle analogous to Sinner et al. (2022). In the case of
new measurements correction is performed by multiplication of the
relative likelihood 𝑞𝑖𝑘 with the respective particle weight to update
the particle weights. Systematic resampling is carried out when the
effective particle ratio 𝑁eff drops under the critical value 𝑁eff,crit = 0.25.

3.5. Simulation study and real-time implementation

Simulation studies and real-time calculations during the experi-
ments were executed within MATLAB® and Simulink® (Version R20-
5

22a, MathWorks, Natick, Massachusetts, USA). The same Simulink
observer implementation was used for the simulation and the exper-
imental validation experiments.

Real-time process control and communication to the equipment was
realized through the Lucullus Process Information Management System
PIMS (Securecell, Urdorf, Switzerland).

Lucullus was connected via OPC to a computer where in MATLAB®,
he data preprocessing, the feed control and the state observer for the
ifferent experiments was running. The numerical derivative of the feed
eight signal was computed and smoothed with a Savitzky–Golay-Filter
pproach (Savitzky and Golay, 1964) to obtain the feed rate 𝐹𝑅 used
s model input.

. Results and discussion

.1. Model analysis and calibration

Before applying the state observer on the plant model as well as on
he different validation experiments (P2–P5) the observer model was
tructurally analyzed and parameterized using the model calibration
xperiment (P1).

.1.1. Observer model calibration and observability
The parameters of the observer model were obtained from one sin-

le experiment (P1, Table 1). The purpose of the parameter estimation
as hereby not to obtain a perfect simulation model but to get a

easonable set of initial parameter values that can be used to initialize
he particle filter.

The model calibration resulted in the estimated parameter set of
𝑆𝑚𝑎𝑥 = 1.3395 g g−1 h−1, 𝑌𝑋∕𝑆 = 0.4371 g g−1 and 𝑘𝐷 = 0.0123 g g−1 h−1.
he open loop model simulation and its fit on the experiment P1 is
hown in Fig. 1. In Fig. 1A the exponential feed rate profile of process
1 is shown, which was applied to control 𝑞𝑆 to 0.25 g g−1 h−1 by open
oop feed control according to Eq. (8). Fig. 1 shows the system states
iving biomass (𝑋𝑣), dead biomass (𝑋𝑑) and substrate mass (𝑆) from
ffline measurements as well as the model simulation. The model fits
he offline measured data well with a small normalized root mean
quare errors (NRMSE) of 5.12% for the living biomass fit and 7.85%
or the substrate fit. However, the higher NRMSE of 47.4% for the dead
iomass fit indicates that a constant 𝑘𝑑 value does not describe the
ell death accurately. Furthermore, in the first part of the fed-batch
hase (7 h to 25 h) the model underestimates the measured biomass,
hereas in the last few hours of the process the biomass is being slightly
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overestimated. This indicates, that a constant biomass yield coefficient
𝑌𝑋∕𝑆 does also not fully capture the dynamics of the biomass growth,
even if 𝑌𝑋∕𝑆 is fitted to the measured data. 𝑌𝑋∕𝑆 must be decreasing
hroughout the process to counteract this missmatch.

Fig. 1C shows the measured and simulated CER and OUR. When
omparing CER and OUR derived from the model outputs by elemental
alances (Eqs. (9) and (10)) to the online measured CER and OUR
Eqs. (1) and (2)) it can be seen that the dervied rates are higher in
he batch phase and indicate an earlier batch end. Also, in the late fed-
atch phase (after 24 h) the derived rates start to deviate more from the
nline measurements. Overall, the model is able to describe the process
ynamics of P1 and the estimated parameters can be used as the initial
arameter values for the observer model.

To analyze if the parameters 𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥 can be estimated by
ER and OUR the reduced sensitivity matrix 𝑆 defined in Section 3.2
as computed. The matrix is included in the Appendix and has a

ull rank of 2. Therefore, structural parameter identifiability based
n CER and OUR can be confirmed. For the assessment of structural
bservability the generalized observability–identifiability matrix was
onstructed using three Lie derivatives, which can be used to check
or state observability as well as parameter identifiability that are aug-
ented in the state vector. The generalized observability–identifiability
atrix (𝑥) derived in Section 3.3 has a rank of 5, which is one

ess than the number of augmented states. By calculating the rank of
ifferent reductions of the matrix the dead biomass 𝑋𝑑 was identified
s non observable. To obtain a fully observable model either a direct
easurement of dead biomass or measurements of total and viable

iomass would be needed. However, for this application the dead
iomass can be neglected to some extend as it is not crucial for the
eal-time estimation of the parameters 𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥. Overall, the

formal model analysis shows that it is possible to uniquely reconstruct
the model parameters and states (except of dead biomass) from the
measured CER and OUR signals.

4.1.2. Plant model dynamics and sensitivities
A simulation result of the plant model can be seen in Fig. 2A and

B. In order to mimic a real process, initial states of 0.25 gL−1 viable
biomass 𝑋𝑣, 0 gL−1 dead biomass 𝑋𝑑 , 22.5 gL−1 glucose 𝑆 and a starting
volume of 1 L were defined. The feed rate was increased exponentially
after 8 h to keep the specific substrate uptake rate 𝑞𝑆 at a constant level
of 0.4 g g−1 h−1. Eq. (8) was taken to calculate the feed. The biomass
yield coefficient 𝑌𝑋∕𝑆 was kept constant throughout the process. After
a process time of 11 h, induction was assumed and the 𝑞𝑆𝑚𝑎𝑥 was
exponentially decreased according to Eq. (12). This decreasing profile
was inspired by earlier studies, which revealed that 𝑞𝑆𝑚𝑎𝑥 continuously
decreases in induced recombinant E. coli processes (Neubauer et al.,
2003).

To see the impact of the decrease of 𝑞𝑆𝑚𝑎𝑥 on our measurement
information the time resolved sensitivity for 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 on CER
and OUR was computed and its normalized sum is displayed in Fig. 2C.
Normalization occurred by a division of viable cell mass 𝑋𝑣. Although
the resulting sensitivity matrix has full rank throughout the whole
process their values change over time. These changing values affect
the practical identifiability and subsequently the real-time estimation
of the parameters. Both parameters are most sensitive in the batch
phase, where due to unlimited growth the actual substrate uptake
𝑞𝑆 is at maximum 𝑞𝑆𝑚𝑎𝑥. During the first fed-batch phase with 𝑞𝑆
beeing 33 % of 𝑞𝑆𝑚𝑎𝑥 the sensitivities of both parameters drop to
lower levels. This means that changes in parameters have a lower
effect on the measurements and the measurements are therefore less
informative in this phase. Later in the fed-batch phase when 𝑞𝑆𝑚𝑎𝑥 was
exponentially decreased (11 h) the sensitivity for 𝑞𝑆𝑚𝑎𝑥 rises again. This
can be explained by the fact that if 𝑞𝑆 and 𝑞𝑆𝑚𝑎𝑥 are close to each other,
small changes in 𝑞𝑆𝑚𝑎𝑥 are influencing the model outputs CER and OUR
more significantly. Therefore, the sensitivity is high, which leads to a
6

better practical identifiability. On the other hand, if 𝑞𝑆 is way below (
𝑞𝑆𝑚𝑎𝑥, changes in 𝑞𝑆𝑚𝑎𝑥 do not affect CER and OUR much. Therefore,
the sensitivity is small with a poor practical identifiability.

In summary, the results show that especially in substrate saturated
phases, the 𝑞𝑆𝑚𝑎𝑥 parameter is highly sensitive, which usually means
that it can be well identified and estimated. The sensitivity of 𝑌𝑋∕𝑆
however seems to be more dependent on the overall 𝑞𝑆 level and is not
necessarily better in substrate saturated phases. Overall, we can expect
good estimates of 𝑞𝑆𝑚𝑎𝑥, if actual substrate uptake 𝑞𝑆 gets close to 𝑞𝑆𝑚𝑎𝑥.
Although there might be phases with better and poorer estimation, the
full rank of the time resolved sensitivity matrix indicates the possibility
to simultaneously estimate both parameters together.

4.2. Simulation study

A simulation study was carried out to investigate different scenarios
and to tune the state estimator to achieve satisfactory results. The
particle filter described in Section 3.4 was therefore used to reconstruct
the parameter trajectories shown in Fig. 2B from the measurable model
outputs CER and OUR (Eqs. (9) and (10)). The particle filter contains
the observation model, which in contrast to the plant model assumes
a constant 𝑞𝑆𝑚𝑎𝑥 during the whole process. The observer model was
initialized with deflected parameters using a Gaussian distribution
 (𝜇, 𝜎2) with a standard deviation (𝜎) of 0.15𝜇 with 𝜇 being the
true mean value. Therefore, the true parameter trajectories and initial
conditions for 𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥 are unknown to the particle filter. Fig. 2C
shows the time-resolved sensitivity of both parameters with respect
to CER and OUR since these are the online measurements that were
obtained from the system. The parameter sensitivities will become
important for the practical identifiability in the subsequent simulation
study.

In the following we investigated different scenarios to reconstruct
the ground truth from the plant model by the state estimator consider-
ing (i) perfect measurements with 𝜎 = 0, (ii) uncertain measurements
with Gaussian noise  (𝜇, 𝜎2) with 𝜎 = 0.03𝜇, (iii) different feed
profiles and (iv) the time-resolved sensitivity to tune the parameter
perturbation during the state propagation step.

4.2.1. Measurement accuracy
To investigate the estimation accuracy for unknown 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆

the simulations were carried out by deflecting both parameters using
a Gaussian distribution  (𝜇, 𝜎2) with 𝜎 = 0.15𝜇 with 𝜇 being the
reference plant model values of 𝑞𝑆𝑚𝑎𝑥 = 1.2 g g−1 h−1 and 𝑌𝑋∕𝑆 =
0.45 g g−1. The state propagation variance in the observation model
was identical as in Eq. (21) (Section 3.4). The same state transition
variance was used for all following simulation studies as well as for
the experimental verification.

Fig. 3 shows the estimation results for a perfect measurement in-
formation assumption (Fig. 3A) and for uncertain measurement in-
formation (Fig. 3B) on the measurements CER and OUR. In case of
perfect measurements (Fig. 3A), the 𝑞𝑆𝑚𝑎𝑥 estimate jumps to the correct
reference value of 1.2 g g−1 h−1 in the beginning of the process and
then perfectly tracks the reference value. After 11 h when the reference
value of the plant model starts to decrease, the estimation is lagging
a little bit behind, but the estimate follows the reference value with
a overall low error (RMSE = 0.0498 g g−1 h−1). The yield coefficient
𝑋∕𝑆 is perfectly estimated over the whole process in case of perfect
easurement information. Overall, the root mean square error (RMSE)

etween estimated parameters and the ground truth are rather low with
.0498 g g−1 h−1 for 𝑞𝑆𝑚𝑎𝑥 and 5.24 × 10−4 g g−1 for 𝑌𝑋∕𝑆 .

In the case of realistic measurement errors (𝜎 = 0.03𝜇) (Fig. 3B)
he estimations are much worse for 𝑞𝑆𝑚𝑎𝑥 (RMSE = 0.610 g g−1 h−1)
s well as for 𝑌𝑋∕𝑆 (RMSE = 0.0614 g g−1). Already at the beginning
f the process the state estimator is not able to revert the param-
ter estimates from the deflected initial conditions to the reference
alues of the plant model. At the beginning of the fed-batch phase

8 h) the 𝑌𝑋∕𝑆 estimations are approaching the reference values well,
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Fig. 2. Simulation study design with the feed rate trajectory as the control input (A), the model parameter trajectories of 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 (B) and normalized parametric sensitivities
on CER and OUR (C).
Fig. 3. Estimation of 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 based on: (A) perfect measurement information and (B) uncertain measurements with  (𝜇, (0.03𝜇)2). The state observer was initialized with
all four combinations (dotted lines) of deflected start parameters ( (𝜇, (0.15𝜇)2)).
hereas the 𝑞𝑆𝑚𝑎𝑥 estimations remain inaccurate. Estimations remain
lso unaffected by the decline of the reference value (11 h onwards)

and spread out in a random walk fashion. Since the sensitivity of
𝑞𝑆𝑚𝑎𝑥 on CER and OUR is low, estimation during this phase seems
very challenging with uncertain measurements. Although parametric
sensitivity increases again towards the end, when actual 𝑞𝑆 approaches
𝑞𝑆𝑚𝑎𝑥 (see Fig. 2C), the estimations remain unaffected and does not
reveal the decreasing 𝑞𝑆𝑚𝑎𝑥 of the plant model.

The 𝑌𝑋∕𝑆 estimations on the other hand are increasing towards
the end of the process with values significantly above the reference
value of 0.45 g g−1. The reason for the increasing 𝑌𝑋∕𝑆 estimation at
this time point is, that the substrate feed is now carried out above the
maximum uptake capacity, which results in overfeeding. With a higher
𝑌𝑋∕𝑆 , CER and OUR balances are still closing. There are two options
for the state estimator to match the model outputs. The first (and
correct) option would be to decrease the 𝑞𝑆𝑚𝑎𝑥 estimate to the reference
value and thereby correctly detect the overfeeding regime. The other
option is however to increase the 𝑌𝑋∕𝑆 estimate to shift the elemental
carbon balance more towards cell growth, which lowers CER. This
however neglects the overfeeding and assumes that the added substrate
is still completely converted to cell mass. This option is presumably
taken by the particle filter because there are no particles available
7

with a 𝑞𝑆𝑚𝑎𝑥 estimate value near the true plant reference. The 𝑞𝑆𝑚𝑎𝑥
estimates already completely separated from the reference at this point
in contrast to the 𝑌𝑋∕𝑆 estimates.

The results show that the overall parameter estimation is not satis-
fying under realistic CER and OUR measurement errors and needs to
be further improved.

4.2.2. Feedback of parameter sensitivity
In this section we utilize the normalized time-resolved sensitivity

of both parameters 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 shown in Fig. 2C for the particle
filter to increase the accuracy of state estimation with uncertain CER
and OUR measurements.

The basic idea hereby is to tune the state propagation variance
of the observation model (Eq. (21)) based on the current parametric
sensitivity. Hereby, the variance is increased if the parameter is highly
sensitive and lowered if it is less sensitive. This ensures that the
parameters with the highest impact on the measurements are adapted
to a greater extent. To do so, the time-resolved normalized sensitivity is
fed back into the particle filter and multiplied with the state transition
variance (𝛴𝑤𝑘, Eq. (21)) of 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 . Thereby, the parameter
with very low sensitivities remain static and sensitive parameters are
changed more drastically the higher the sensitivity is. This, on the one
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Fig. 4. Estimation of 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 based on uncertain measurements with
 (𝜇, (0.03𝜇)2) and feedback of parametric sensitivity for noise level tuning. The state
observer was initialized with all four combinations (dotted lines) of deflected start
parameters  (𝜇, (0.15𝜇)2)).

hand should prevent parameter estimates from randomly deviating if
they are practically non identifiable (meaning the sensitivity is close to
0), and on the other hand should boost the estimation of parameters
that are highly sensitive in that moment.

Fig. 4 shows the estimation results with the sensitivity feedback.
Besides the sensitivity feedback and the dynamical adjustment of the
parameter state transition variance, the simulation scenario is identical
to the one used in Fig. 3B. It can be seen that in contrast to Fig. 3B
the 𝑞𝑆𝑚𝑎𝑥 estimates at the end of the process are now reverting to
the reference value of the plant model. This effect is reached as the
sensitivity for 𝑞𝑆𝑚𝑎𝑥 in this phase is at the maximum (Fig. 2C) and
therefore a strong adaption of the respective parameter is possible.

Compared to Fig. 3B, also the 𝑌𝑋∕𝑆 estimates are deviating to a
lesser extent from the reference value. Again, compared to Fig. 3B
the RMSE was reduced from 0.610 g g−1 h−1 to 0.404 g g−1 h−1 in case
of 𝑞𝑆𝑚𝑎𝑥 (1.5-fold reduction) and from 0.0614 g g−1 to 0.0301 g g−1 in
case of 𝑌𝑋∕𝑆 (2.0-fold reduction). Although the effect was just analyzed
for the particle filter estimator, this approach would be also applicable
to other bayesian estimators such as the KF, EKF and UKF since all
of them rely on the definition of a process noise covariance matrix
that determines how much belief to give to the model. Making it
variable as a function of parametric sensitivitities might also increase
the performance of them. Here, a higher parametric sensitivity would
mean a higher process noise covariance and therefore a bigger influence
of the measurements than the model. Comparable effects to the one
observed here with the particle filter can be therefore expected.

Despite the slight improvements of the estimation accuracy, espe-
cially the 𝑞𝑆𝑚𝑎𝑥 estimation is still more of a qualitative information.
In this configuration the 𝑞𝑆𝑚𝑎𝑥 estimation could indicate whether over-
feeding occurs. This is the case when the current uptake 𝑞𝑆 is close
or exceeds 𝑞𝑆𝑚𝑎𝑥 as in this situation the 𝑞𝑆𝑚𝑎𝑥 parameter is highly
sensitive to CER and OUR. However, in normal operating regions
(below overfeeding regimes) the sensitivity is still too low to make any
distinctions between different levels of maximum uptake capacities. To
get a real quantitative statement for 𝑞𝑆𝑚𝑎𝑥 the parametric sensitivity
8

during this operational space needs to be enhanced.
4.2.3. Superimposed feed pulses for enhanced sensitivity
In this work we adopted the principle of superimposed feed pulses

also known as probing control (de Maré, 2016) to our model based
state estimation approach. Therefore, we applied 10mg g−1 (substrate/
biomass) feed pulses every 30min onto the underlying exponential feed
profile. The effect on the parametric sensitivity of this short pulses
can be seen in Fig. 5B, whereas the corresponding estimation results
are displayed in Fig. 5A. It can be seen that every time a pulse is
given, the sensitivity of 𝑞𝑆𝑚𝑎𝑥 peaks. Therefore, the 𝑞𝑆𝑚𝑎𝑥 estimation
is more effective at those time points. For the simulation conducted in
Fig. 5 we utilized the same sensitivity feedback procedure as introduced
in Section 4.2.2 as well as measurement errors applied in Section
Section 4.2.1. The feed pulses can also be seen in the specific substrate
uptake rate 𝑞𝑆 peaking to almost 𝑞𝑆𝑚𝑎𝑥 for a short period of time.

The enhanced sensitivity has a major influence especially on the
𝑞𝑆𝑚𝑎𝑥 estimation accuracy. Now, even in case of realistic measurement
uncertainty, the estimation shows a reasonable tracking accuracy of
the reference value with a RMSE of 0.0726 g g−1 h−1, which is a 8.4-fold
eduction of RMSE compared to the estimation shown in Section 4.2.1
nd a 5.6-fold reduction to the results obtained in Section 4.2.2. Also,
he estimation accuracy of 𝑌𝑋∕𝑆 is improved with a RMSE starting
rom 0.0614 g g−1 in Section 4.2.1, to 0.0301 g g−1 in Section 4.2.1 and
ow being at 0.0246 g g−1. All RMSE values of the different simulation
cenarios are listed in Table 3.

The results of the simulation study indicate, that despite the low
arametric sensitivity of 𝑞𝑆𝑚𝑎𝑥 in a traditional substrate limited fed-
atch process and the correlation between 𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥, the simulta-

neous estimation of both parameters from CER and OUR measurements
is possible. In comparison to the traditional probing control methodol-
ogy the presented soft sensor is able to estimate 𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥 while
overall maintaining physiologically controlled conditions.

4.3. Experimental validation

In order to verify the capability of the developed and tuned soft
sensor to estimate the observable system states and the two parameters
(𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥), four E. coli fed-batch cultivations were conducted.
The cultivations listed in Table 1 were similar to the scenarios investi-
gated in the simulation study. The cultivations were carried out accord-
ing to the description in Section 2.1. The state transition covariance was
identical to the simulation study (Section 4.2). The measurement co-
variance however was not assumed with a static relative measurement
error like in the simulation study, but propagated from the errors of the
measured prime measurement as described by Müller et al. (2022). The
initial values of the parameters were taken from the model calibration
in Section 4.1. The soft sensor configuration was identical for all four
processes.

An overview of the different processes and their state estimation
results are displayed in Fig. 6. Within Table 4 the state estimation errors
are listed in comparison to a feed-forward model simulation using the
calibrated model from Section 4.1.1. The parameter estimation results
for the single experiments are presented in Figs. 7 to 9. As process P3
and P4 were replicates, results of P3 can be found in the appendix.

The processes mainly differ by their feed profiles. Process P2 has
a similar feed profile as the calibration experiment P1. P3 and P4 in-
cluded superimposed feed pulses to enhance the parametric sensitivity
as shown in Section 4.2.3 of the simulation study. P5 had a sharply
increasing exponential feed profile to provoke substrate accumulation
in the later process phase. The process durations varied between 30 h

and 80 h, which is mainly due to the different applied feeding rates.
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Fig. 5. Estimation of 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 based on uncertain measurements with  (𝜇, (0.03𝜇)2) including superimposed feed pulses and feedback of parametric sensitivity for noise
evel tuning. The state observer was initialized with all four combinations of deflected start parameters ( (𝜇, (0.15𝜇)2).
Table 3
Root mean square errors (RMSE) of the analyzed state estimation scenarios for 𝑌𝑋∕𝑆 and 𝑞𝑚𝑎𝑥 within the simulation study. Standard estimation A refers to perfect measurement
assumption (Fig. 3A) and standard estimation B refers to uncertain measurement assumption (Fig. 3B).

Std. estimation A Std. estimation B Sensitivity feedback Superimposed pulsing Final reduction
(Section 4.2.1) (Section 4.2.1) (Section 4.2.2) (Section 4.2.3)

𝑌𝑋∕𝑆 RMSE [g g−1] 5.24 × 10-4 0.0614 0.0301 0.0246 2.49-fold
𝑞𝑆𝑚𝑎𝑥 RMSE [g g−1 h−1] 0.0498 0.610 0.404 0.0726 8.40-fold
Table 4
Root mean square errors (RMSE) for biomass and substrate of the experimental
validation experiments.

State P2 P3 P4 P5

Open-loop model RMSE [g] 𝑋𝑣 15.86 8.03 11.44 13.53
𝑆 0.3764 2.276 1.338 30.91

State estimator RMSE [g] 𝑋𝑣 6.202 7.922 7.666 9.632
𝑆 0.3480 1.230 0.7062 23.36

RMSE reduction by 𝑋𝑣 2.5x 1.01x 1.5x 1.4x
state estimator 𝑆 1.1x 1.9x 1.9x 1.3x

4.3.1. Biomass and substrate estimation results
The second row of Fig. 6 shows the estimation results of substrate

and viable biomass. It can be seen that for each process the biomass
and substrate estimates are in very good accordance to the offline deter-
mined reference measurements. Only a slight overestimation of biomass
can be observed in P3 and P4. If we compare these estimation results
with a feed-forward simulation of the calibrated model the effectiveness
of the state estimation algorithm becomes evident. The root mean
square errors (RMSE) given in Table 4 show that the state estimation
errors are always lower than the open-loop simulation (with a reduction
of up to 2.5 times), which corresponds to a reduction from 15.9 gL−1

(∼15% error) down to 6.2 gL−1 (∼6% error) for biomass in P2. Overall,
the estimation error was below 10% for biomass and below 5% for
glucose. This is in the range of other real-time measurement techniques
that used elemental balancing based methods (Wechselberger et al.,
2013), permittivity measurements (Reichelt et al., 2016), MIR spec-
troscopy (Siegl et al., 2022) or a hybridization of MIR spectroscopy and
mass balancing methods (Siegl et al., 2022). This approach provides the
advantage that only one calibration experiment was needed and the soft
sensor was able to cover the batch, fed-batch and the production phase
without any further adaptation.

4.3.2. Parameter estimation results
The improvement of the biomass estimation was reached by the
9

real-time adaptation of the model parameters 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 , which
especially after induction can significantly change. This change over
time is usually not reflected in simple unstructured models and there-
fore without any parameter adaptation their predictions are poor in the
production phase.

Fig. 7 shows the real-time parameter estimates for 𝑌𝑋∕𝑆 and 𝑞𝑆𝑚𝑎𝑥
for process P2 with the standard exponential feeding profile. As ex-
pected from the simulation study 𝑞𝑆𝑚𝑎𝑥 is only slightly adapted. The
real 𝑞𝑆 , which was calculated from the offline measurements through
the mass balances, aligns very well with the predicted 𝑞𝑆 from the
state observer and is always clearly below the assumed 𝑞𝑆𝑚𝑎𝑥. This
is also confirmed by the absence of substrate throughout the whole
process. The 𝑌𝑋∕𝑆 estimate however is significantly changed in Fig. 7
to match the model outputs with the CER and OUR measurements,
shown in the last row of Fig. 6. The yield coefficients determined from
offline measurements confirms this trend as the measured yield strongly
decreased after induction. The estimated yield corresponds well to the
offline measured yield with a RMSE of only 0.0366 g g−1.

Fig. 8 and Fig. 11 in the appendix show the parameter estimation
results for the two experiments with the superimposed feed pulses.
Although the simulation study indicated a significant increase in the
estimation accuracy of 𝑞𝑆𝑚𝑎𝑥, the trend is very similar to P2. Again,
substrate concentration was limited all the time. The 𝑞𝑆 , although
frequently increased through the addition of the feed pulses, remained
clearly below 𝑞𝑆𝑚𝑎𝑥. Under this condition, the parametric sensitivity
remains low and no proper estimation can occur. It has also been noted,
that the decreasing 𝑞𝑆𝑚𝑎𝑥 of the plant model is purely assumption based
and real experiments can behave differently. Similar to the results of P2
the yield coefficient decreased upon induction, although estimated and
reference values have a clear offset. This offset is due to a wrong start
parameter, which cannot be corrected by the state observer.

The last experiment P5 was designed to force overfeeding and
subsequent substrate accumulation in order to test if the parame-
ter estimation works under these extreme conditions. The parameter
estimation results are displayed in Fig. 9. As soon as overfeeding
took place, the 𝑞𝑆𝑚𝑎𝑥 estimate was adjusted to the edge of 𝑞𝑆 until
32 h, where the 𝑞 started again to rise. During this time span
𝑆𝑚𝑎𝑥
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Fig. 6. Cultivation data and state estimation results of three Escherichia coli fed-batch experiments conducted in a 3.3 L lab-scale bioreactor.
ow 1: Feeding profiles either standard exponential feed (P2, P5) or superimposed pulses (P2).
ow 2: Stars represent offline substrate and biomass measurements and solid lines represent the respective soft sensor estimates.
ow 3: Online CER and OUR measurements and the model outputs that are updated based on them. Negative reaction rates (OUR) refer to uptake of the component by the cell
nd positive reaction rates (CER) refer to an evolution of the component.
Fig. 7. Real-time 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 estimation of process P2 in comparison to offline
determined yield and 𝑞𝑆 .

of 5 h substrate accumulated in the culture medium. Because of the
decreased 𝑞𝑆𝑚𝑎𝑥 value excess substrate from the feed accumulated in
the reactor. This can be also clearly seen by the offline measured
substrate concentration of process P5 in Fig. 6. First, this experiment
shows that the estimation of 𝑞𝑆𝑚𝑎𝑥 works well when 𝑞𝑆 approaches the
maximum uptake capacity. Second, it confirms also the assumption that
𝑞𝑆𝑚𝑎𝑥 decreases after the induction of the product formation. In this
particular case 𝑞𝑆𝑚𝑎𝑥 dropped from 1.35 g g−1 h−1 to 0.2 g g−1 h−1. Maybe
under less harsh feeding conditions the drop would have been not so
pronounced. However, the result in this work is in line with some other
10
Fig. 8. Real-time 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 estimation of process P4 in comparison to offline
determined yield and 𝑞𝑆 .

studies (Neubauer et al., 2003; Reichelt et al., 2017) which observed
similar drops in the substrate uptake capacities.

4.3.3. Parameter estimation discussion
When comparing this real-time parameter estimation approach of

𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 to a state estimation approach of a more detailed
model where the respiratory capacity is modeled by kinetics, there
are some considerations to be made. On the one hand a parameter
estimation approach of a simple model as used here reduces the need
for prior knowledge about the system and therefore facilitates a generic
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Fig. 9. Real-time 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 estimation of process P5 in comparison to offline
determined yield and 𝑞𝑆 .

applicability and transferability of the method. On the other hand the
simple model can have poor convergence of the parameters due to
low sensitivity and practical identifiability issues. In our specific case,
the 𝑞𝑆𝑚𝑎𝑥 parameter can be estimated properly under the condition of
sufficient sensitivity as discussed in Section 4.2.3. However, when prac-
tical identifiability is getting poor the estimate is diverging as shown
in Fig. 3. In those cases one could extend the model with suitable ki-
netics describing the behavior of the respiratory capacity which would
increase robustness and accuracy. This, however necessitates a good
knowledge about the system especially during the production phase
where the metabolism is known to change over time. The parameters
have to be well identified upfront which can be a time consuming task.
Also, with increasing complexity the model can be harder to transfer
to other host systems. Therefore, it depends on the case, which model
complexity to choose.

The main challenge of a verification approach for 𝑞𝑆𝑚𝑎𝑥 real-time
estimation is, that there is no reference value available as long as 𝑞𝑆𝑚𝑎𝑥
is not exceeded.

In this case study, we could show that particularly in an overfeeding
situation in P5 the practical identifiability of 𝑞𝑆𝑚𝑎𝑥 was high enough to
roperly estimate the reduced uptake capacity of the cells (Fig. 9) and
o estimate the substrate accumulation consequently (Fig. 6). However,
or all other processes (P2–P4) a dynamic trajectory of 𝑞𝑆𝑚𝑎𝑥 was not
etected, probably because of a too low sensitivity at uptake rates
𝑞𝑆 ) wich are significantly below 𝑞𝑆𝑚𝑎𝑥. Also, the applied pulse feeding
eemed to be too weak to get a significant increase of the parameter
ensitivity. In following studies larger feed pulses could be applied in
rder to increase the sensitivity to a sufficient value to ensure real-
ime practical identifiability. This comes however with the cost that the
nfluences of the feed deviations on the process are more pronounced
nd therefore potentially infeasible for production.

. Conclusion

The goal of this contribution was to uniquely estimate the model
arameters 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 in real-time from online CER and OUR mea-
urements while keeping the culture under physiologically controlled
onditions.

To achieve this we used a particle filter as a nonlinear state observer
n combination with substrate perturbation techniques that have been
eveloped in earlier studies (Akesson, 1998; de Maré, 2016; Whiffin
t al., 2004). Our method however differs from the probing control
ethodology used in those earlier studies. The idea of probing control

s, that the feed rate is getting increased as long as the culture is
ubstrate limited and pO2 peaks are detected after the feed pulses.
herefore, over time 𝑞𝑆 is steered towards 𝑞𝑆𝑚𝑎𝑥 and the feed rate is
aximized without exceeding 𝑞𝑆𝑚𝑎𝑥 and risking substrate accumula-

ion. The problem is, that optimal productivity often takes place at a
11

ontrolled 𝑞𝑆 , which is below the maximum capacity 𝑞𝑆𝑚𝑎𝑥. The novelty c
f our contribution is the facilitation of simultaneous 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆
stimation while maintaining controlled physiological rates below the
aximum capacity. The method is based on a simple unstructured

ioprocess model utilizing elemental balancing to derive CER and OUR
rom the model states. Thus, only one calibration experiment was
eeded to parameterize the soft sensor. Most strain specific parameters
an be taken from literature or calculated in advance without much
xperimental effort. Although the assumption of those parameters as
eing constant and perfectly known in our simulation study is inaccu-
ate to some extend, the observer still gave reasonable results in the
xperimental verification. The method serves as a monitoring strategy,
hich could also be applied as a PAT tool in industrial scale applica-

ions. It is completely automated since the feed pulses are realized by a
ransient increase of the pump setpoint rather than by manual additions
f substrate.

The monitoring tool can also be seen as a basis for further im-
rovements and extensions. Dead biomass could be included by either
easuring the dead biomass directly (for example using a flow cytome-

er in an at-line fashion) or by measuring the total biomass (turbidity,
pectroscopy) as well as the living biomass (e.g. conductivity).

In addition to that, the observer could be extended to describe
cetate formation in function of the changing substrate uptake capacity
nd the conversion yield. An extension to include the product formation
ould be also of interest. Product formation however is very specific
o certian strains, products and process conditions. In this study, we
imed on a more generic view on recombinant microorganisms, which
e hope is generically applicable across different products and plasmid

ystems.
Furthermore, the state estimation algorithm provides the basis for

ore advanced bioprocess control applications that consider physi-
logical rates and capacities. A feeding strategy controlling 𝑞𝑆 to a
pecific fraction of 𝑞𝑆𝑚𝑎𝑥 is imaginable, which was not possible with
ure probing control. However, the biggest challenge for developing
nd improving such a method is, that there is no reliable reference
alue for 𝑞𝑆𝑚𝑎𝑥 yet, which makes the estimator and controller difficult
o validate.
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Fig. 10. Cultivation data of process P3 analogous to Fig. 6.

Fig. 11. Real-time 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 estimation of process P3 in comparison to offline
determined yield and 𝑞𝑆 .

Appendix. My appendix

Eq. (22) is the symbolic sensitivity matrix of CER and OUR related
to the parameters 𝑞𝑆𝑚𝑎𝑥 and 𝑌𝑋∕𝑆 .

𝑆 =

⎡

⎢

⎢

⎢

⎣

−
𝑆⋅𝑋𝑣(

𝑌𝑋∕𝑆
𝑀𝑆

− 1
𝑀𝑆

)

𝑘𝑆 ⋅𝑉𝐿+𝑆
− 𝑆⋅𝑋𝑣 ⋅𝑞𝑆𝑚𝑎𝑥

𝑀𝑋 ⋅(𝑘𝑆 ⋅𝑉𝐿+𝑆)

𝑆 ⋅𝑋𝑣 ⋅
𝐷𝑂𝑅𝑆
𝑀𝑆

−
𝐷𝑂𝑅𝑋 ⋅𝑌𝑋∕𝑆

𝑀𝑋

𝐷𝑂𝑅𝑂2 ⋅(𝑘𝑆 ⋅𝑉𝐿+𝑆)
− 𝐷𝑂𝑅𝑋 ⋅𝑆⋅𝑋𝑣 ⋅𝑞𝑆𝑚𝑎𝑥

𝐷𝑂𝑅𝑂 ⋅𝑀𝑋 ⋅(𝑘𝑆 ⋅𝑉𝐿+𝑆)

⎤

⎥

⎥

⎥

⎦

(22)

See Figs. 10 and 11.

References

Aehle, M., Bork, K., Schaepe, S., Kuprijanov, A., Horstkorte, R., Simutis, R., Lübbert, A.,
2012. Increasing batch-to-batch reproducibility of CHO-cell cultures using a model
predictive control approach. Cytotechnology 64 (6), 623–634. http://dx.doi.org/
10.1007/s10616-012-9438-1, URL: http://link.springer.com/10.1007/s10616-012-
9438-1.

Akesson, M., 1998. A Probing Strategy for Substrate Feeding in Escherichia Coli
12

Cultivations (Ph.D. thesis). Lund University of Technology, Lund.
Bárzaga-Martell, L., Duarte-Mermoud, M., Ibáñez Espinel, F., Gamboa-Labbé, B., Saa, P.,
Pérez-Correa, J., 2021. A robust hybrid observer for monitoring high-cell density
cultures exhibiting overflow metabolism. J. Process Control 104, 112–125. http://
dx.doi.org/10.1016/j.jprocont.2021.06.006, URL: https://www.sciencedirect.com/
science/article/pii/S0959152421000974.

Daume, S., Kager, J., Herwig, C., 2019. Time resolved sensitivity & identifiability anal-
ysis for directed parametrization of highly dynamic models. Comput. Aided Chem.
Eng. 46, 1111–1116. http://dx.doi.org/10.1016/B978-0-12-818634-3.50186-7,
URL: https://linkinghub.elsevier.com/retrieve/pii/B9780128186343501867.

DeLisa, M.P., Li, J., Rao, G., Weigand, W.A., Bentley, W.E., 1999. Monitoring GFP-
operon fusion protein expression during high cell density cultivation of Escherichia
coli using an on-line optical sensor. Biotechnol. Bioeng. 65 (1), 54–64.

Dewasme, L., Goffaux, G., Hantson, A., Wouwer, A., 2013. Experimental validation
of an Extended Kalman Filter estimating acetate concentration in E. coli cultures.
J. Process Control 23, 148–157. http://dx.doi.org/10.1016/j.jprocont.2012.09.004,
URL: https://www.sciencedirect.com/science/article/pii/S0959152412002235.

Dewasme, L., Wouwer, A., 2020. Model-free extremum seeking control of bioprocesses:
A review with a worked example. Processes 8 (1209), http://dx.doi.org/10.3390/
pr8101209, number: 10 Publisher: Multidisciplinary Digital Publishing Institute.
URL: https://www.mdpi.com/2227-9717/8/10/1209.

Goffaux, G., Wouwer, A., 2005. Bioprocess state estimation: some classical and less
classical approaches. In: Control and Observer Design for Nonlinear Finite and
Infinite Dimensional Systems. pp. 111–128.

Kager, J., Bartlechner, J., Herwig, C., Jakubek, S., 2022. Direct control of re-
combinant protein production rates in E. coli fed-batch processes by nonlinear
feedback linearization. Chem. Eng. Res. Des. 182, 290–304. http://dx.doi.
org/10.1016/j.cherd.2022.03.043, URL: https://linkinghub.elsevier.com/retrieve/
pii/S0263876222001460.

Kager, J., Herwig, C., Stelzer, I.V., 2018. State estimation for a penicillin fed-batch pro-
cess combining particle filtering methods with online and time delayed offline mea-
surements. Chem. Eng. Sci. 177, 234–244. http://dx.doi.org/10.1016/j.ces.2017.11.
049, URL: https://linkinghub.elsevier.com/retrieve/pii/S0009250917307388.

Kager, J., Tuveri, A., Ulonska, S., Kroll, P., Herwig, C., 2020. Experimental verification
and comparison of model predictive, PID and model inversion control in a
Penicillium chrysogenum fed-batch process. Process Biochem. 90, 1–11. http:
//dx.doi.org/10.1016/j.procbio.2019.11.023, URL: http://www.sciencedirect.com/
science/article/pii/S1359511319310335.

Kopp, J., Slouka, C., Strohmer, D., Kager, J., Spadiut, O., Herwig, C., 2018. Inclusion
body bead size in E. coli controlled by physiological feeding. Microorganisms 6
(4), 116. http://dx.doi.org/10.3390/microorganisms6040116, Number: 4 Publisher:
Multidisciplinary Digital Publishing Institute. URL: https://www.mdpi.com/2076-
2607/6/4/116.

Lecca, P., Re, A., 2019. Identifying necessary and sufficient conditions for the
observability of models of biochemical processes. Biophys. Chem. 254, 106257.

Li, T., Sun, S., Sattar, T., Corchado, J., 2014. Fight sample degeneracy and impover-
ishment in particle filters: A review of intelligent approaches. Expert Syst. Appl.
41, 3944–3954.

Lin, H.Y., Mathiszik, B., Xu, B., Enfors, S.-O., Neubauer, P., 2001. Determination of
the maximum specific uptake capacities for glucose and oxygen in glucose-limited
fed-batch cultivations ofEscherichia coli. Biotechnol. Bioeng. 73 (5), 347–357.
http://dx.doi.org/10.1002/bit.1068, URL: https://onlinelibrary.wiley.com/doi/10.
1002/bit.1068.

de Maré, L., 2016. Feeding Strategies Based on Probing Control (Ph.D. thesis).
Margaria, G., Riccomagno, E., White, L., 2004. Structural identifiability analysis of some

highly structured families of statespace models using differential algebra. j. Math.
Biol. 49, 433–454.

Mears, L., Stocks, S.M., Sin, G., Gernaey, K.V., 2017. A review of control strategies for
manipulating the feed rate in fed-batch fermentation processes. J. Biotechnol. 245,
34–46. http://dx.doi.org/10.1016/j.jbiotec.2017.01.008, URL: https://linkinghub.
elsevier.com/retrieve/pii/S0168165617300251.

Mohd Ali, J., Ha Hoang, N., Hussain, M., Dochain, D., 2015. Review and classification
of recent observers applied in chemical process systems. Comput. Chem. Eng.
76, 27–41. http://dx.doi.org/10.1016/j.compchemeng.2015.01.019, URL: http://
linkinghub.elsevier.com/retrieve/pii/S0098135415000216.

Monod, J., 1949. The growth of bacterial cultures. Annu. Rev. Microbiol. 3 (1), 371–
394. http://dx.doi.org/10.1146/annurev.mi.03.100149.002103, URL: http://www.
annualreviews.org/doi/10.1146/annurev.mi.03.100149.002103.

Müller, D.F., Lagoda, K., Wibbing, D., Herwig, C., Kager, J., 2022. Incorporation of
error propagation into an elemental balancing based soft-sensor for improved online
monitoring of microbial fed-batch processes. In: Montastruc, L., Negny, S. (Eds.),
Computer Aided Chemical Engineering. In: 32 European Symposium on Computer
Aided Process Engineering, vol. 51, Elsevier, pp. 1177–1182. http://dx.doi.org/10.
1016/B978-0-323-95879-0.50197-1, URL: https://www.sciencedirect.com/science/
article/pii/B9780323958790501971.

Neubauer, P., Lin, H.Y., Mathiszik, B., 2003. Metabolic load of recombinant protein
production: Inhibition of cellular capacities for glucose uptake and respiration after
induction of a heterologous gene inEscherichia coli. Biotechnol. Bioeng. 83 (1),
53–64. http://dx.doi.org/10.1002/bit.10645, URL: https://onlinelibrary.wiley.com/
doi/10.1002/bit.10645.

http://dx.doi.org/10.1007/s10616-012-9438-1
http://dx.doi.org/10.1007/s10616-012-9438-1
http://dx.doi.org/10.1007/s10616-012-9438-1
http://link.springer.com/10.1007/s10616-012-9438-1
http://link.springer.com/10.1007/s10616-012-9438-1
http://link.springer.com/10.1007/s10616-012-9438-1
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb2
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb2
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb2
http://dx.doi.org/10.1016/j.jprocont.2021.06.006
http://dx.doi.org/10.1016/j.jprocont.2021.06.006
http://dx.doi.org/10.1016/j.jprocont.2021.06.006
https://www.sciencedirect.com/science/article/pii/S0959152421000974
https://www.sciencedirect.com/science/article/pii/S0959152421000974
https://www.sciencedirect.com/science/article/pii/S0959152421000974
http://dx.doi.org/10.1016/B978-0-12-818634-3.50186-7
https://linkinghub.elsevier.com/retrieve/pii/B9780128186343501867
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb5
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb5
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb5
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb5
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb5
http://dx.doi.org/10.1016/j.jprocont.2012.09.004
https://www.sciencedirect.com/science/article/pii/S0959152412002235
http://dx.doi.org/10.3390/pr8101209
http://dx.doi.org/10.3390/pr8101209
http://dx.doi.org/10.3390/pr8101209
https://www.mdpi.com/2227-9717/8/10/1209
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb8
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb8
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb8
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb8
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb8
http://dx.doi.org/10.1016/j.cherd.2022.03.043
http://dx.doi.org/10.1016/j.cherd.2022.03.043
http://dx.doi.org/10.1016/j.cherd.2022.03.043
https://linkinghub.elsevier.com/retrieve/pii/S0263876222001460
https://linkinghub.elsevier.com/retrieve/pii/S0263876222001460
https://linkinghub.elsevier.com/retrieve/pii/S0263876222001460
http://dx.doi.org/10.1016/j.ces.2017.11.049
http://dx.doi.org/10.1016/j.ces.2017.11.049
http://dx.doi.org/10.1016/j.ces.2017.11.049
https://linkinghub.elsevier.com/retrieve/pii/S0009250917307388
http://dx.doi.org/10.1016/j.procbio.2019.11.023
http://dx.doi.org/10.1016/j.procbio.2019.11.023
http://dx.doi.org/10.1016/j.procbio.2019.11.023
http://www.sciencedirect.com/science/article/pii/S1359511319310335
http://www.sciencedirect.com/science/article/pii/S1359511319310335
http://www.sciencedirect.com/science/article/pii/S1359511319310335
http://dx.doi.org/10.3390/microorganisms6040116
https://www.mdpi.com/2076-2607/6/4/116
https://www.mdpi.com/2076-2607/6/4/116
https://www.mdpi.com/2076-2607/6/4/116
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb13
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb13
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb13
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb14
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb14
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb14
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb14
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb14
http://dx.doi.org/10.1002/bit.1068
https://onlinelibrary.wiley.com/doi/10.1002/bit.1068
https://onlinelibrary.wiley.com/doi/10.1002/bit.1068
https://onlinelibrary.wiley.com/doi/10.1002/bit.1068
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb16
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb17
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb17
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb17
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb17
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb17
http://dx.doi.org/10.1016/j.jbiotec.2017.01.008
https://linkinghub.elsevier.com/retrieve/pii/S0168165617300251
https://linkinghub.elsevier.com/retrieve/pii/S0168165617300251
https://linkinghub.elsevier.com/retrieve/pii/S0168165617300251
http://dx.doi.org/10.1016/j.compchemeng.2015.01.019
http://linkinghub.elsevier.com/retrieve/pii/S0098135415000216
http://linkinghub.elsevier.com/retrieve/pii/S0098135415000216
http://linkinghub.elsevier.com/retrieve/pii/S0098135415000216
http://dx.doi.org/10.1146/annurev.mi.03.100149.002103
http://www.annualreviews.org/doi/10.1146/annurev.mi.03.100149.002103
http://www.annualreviews.org/doi/10.1146/annurev.mi.03.100149.002103
http://www.annualreviews.org/doi/10.1146/annurev.mi.03.100149.002103
http://dx.doi.org/10.1016/B978-0-323-95879-0.50197-1
http://dx.doi.org/10.1016/B978-0-323-95879-0.50197-1
http://dx.doi.org/10.1016/B978-0-323-95879-0.50197-1
https://www.sciencedirect.com/science/article/pii/B9780323958790501971
https://www.sciencedirect.com/science/article/pii/B9780323958790501971
https://www.sciencedirect.com/science/article/pii/B9780323958790501971
http://dx.doi.org/10.1002/bit.10645
https://onlinelibrary.wiley.com/doi/10.1002/bit.10645
https://onlinelibrary.wiley.com/doi/10.1002/bit.10645
https://onlinelibrary.wiley.com/doi/10.1002/bit.10645


Computers and Chemical Engineering 173 (2023) 108203D.F. Müller et al.
Patwardhan, S., Narasimhan, S., Jagadeesan, P., Gopaluni, B., Shah, S., 2012. Nonlinear
bayesian state estimation: A review of recent developments. Control Eng. Pract. 20,
933–953.

Pekarsky, A., Konopek, V., Spadiut, O., 2019. The impact of technical failures during
cultivation of an inclusion body process. Bioprocess Biosyst. Eng. 42 (10), 1611–
1624. http://dx.doi.org/10.1007/s00449-019-02158-x, URL: http://link.springer.
com/10.1007/s00449-019-02158-x.

Phue, J.-N., Shiloach, J., 2005. Impact of dissolved oxygen concentration on acetate
accumulation and physiology of E. coli BL21, evaluating transcription levels of
key genes at different dissolved oxygen conditions. Metab. Eng. 7 (5), 353–363.
http://dx.doi.org/10.1016/j.ymben.2005.06.003, URL: https://www.sciencedirect.
com/science/article/pii/S1096717605000534.

Pimentel, G., Benavides, M., Dewasme, L., Coutinho, D., Wouwer, A., 2015.
An observer-based robust control strategy for overflow metabolism cultures
in fed-batch bioreactors. IFAC-PapersOnLine 48, 1081–1086. http://dx.doi.org/
10.1016/j.ifacol.2015.09.112, URL: https://linkinghub.elsevier.com/retrieve/pii/
S2405896315011933.

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J., Schilling, M., Klingmüller, U.,
Timmer, J., 2009. Structural and practical identifiability analysis of partially
observed dynamical models by exploiting the profile likelihood. Bioinformatics 25,
1923–1929.

Rawlings, J., Bakshi, B., 2006. Particle filtering and moving horizon estimation. Com-
put. Chem. Eng. 30, 1529–1541. http://dx.doi.org/10.1016/j.compchemeng.2006.
05.031, URL: https://linkinghub.elsevier.com/retrieve/pii/S0098135406001566.

Reichelt, W.N., Brillmann, M., Thurrold, P., Keil, P., Fricke, J., Herwig, C.,
2017. Physiological capacities decline during induced bioprocesses leading
to substrate accumulation. Biotechnol. J. 12 (7), 1600547. http://dx.doi.
org/10.1002/biot.201600547, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/biot.201600547. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.
201600547.

Reichelt, W.N., Thurrold, P., Brillmann, M., Kager, J., Fricke, J., Herwig, C., 2016.
Generic biomass estimation methods targeting physiologic process control in
induced bacterial cultures. Eng. Life Sci. 16 (8), 720–730. http://dx.doi.org/10.
1002/elsc.201500182, URL: http://doi.wiley.com/10.1002/elsc.201500182.

Roels, J.A., 1983. Energetics and Kinetics in Biotechnology. Elsevier Biomedical Press.
Sagmeister, P., Langemann, T., Wechselberger, P., Meitz, A., Herwig, C., 2013. A

dynamic method for the investigation of induced state metabolic capacities as a
function of temperature. Microb. Cell Factories 12, 1–11.

Santos, L., Dewasme, L., Coutinho, D., Wouwer, A.V., 2012. Nonlinear model predictive
control of fed-batch cultures of micro-organisms exhibiting overflow metabolism:
Assessment and robustness. Comput. Chem. Eng. 39, 143–151. http://dx.doi.org/10.
1016/j.compchemeng.2011.12.010, URL: https://linkinghub.elsevier.com/retrieve/
pii/S0098135411003474.

Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified
least squares procedures. Anal. Chem. 36 (8), 1627–1639. http://dx.doi.org/10.
1021/ac60214a047, Publisher: American Chemical Society.
13
Siegl, M., Brunner, V., Geier, D., Becker, T., 2022. Ensemble-based adaptive soft
sensor for fault-tolerant biomass monitoring. Eng. Life Sci. 22 (3–4), 229–241.
http://dx.doi.org/10.1002/elsc.202100091, URL: https://onlinelibrary.wiley.com/
doi/10.1002/elsc.202100091.

Simon, D., 2006. Optimal State Estimation: Kalman, H [Infinity] and Nonlinear
Approaches. Wiley-Interscience, Hoboken, N.J, OCLC: ocm64084871.

Sinner, P., Stiegler, M., Goldbeck, O., Seibold, G.M., Herwig, C., Kager, J., 2022.
Online estimation of changing metabolic capacities in continuous Corynebacterium
glutamicum cultivations growing on a complex sugar mixture. Biotechnol. Bioeng.
119 (2), 575–590. http://dx.doi.org/10.1002/bit.28001, URL: https://onlinelibrary.
wiley.com/doi/10.1002/bit.28001.

Sinner, P., Stiegler, M., Herwig, C., Kager, J., 2021. Noninvasive online moni-
toring of Corynebacterium glutamicum fed-batch bioprocesses subject to spent
sulfite liquor raw material uncertainty. Bioresour. Technol. 321, 124395. http://
dx.doi.org/10.1016/j.biortech.2020.124395, URL: https://linkinghub.elsevier.com/
retrieve/pii/S0960852420316692.

Tuveri, A., Holck, H.E., Nakama, C.S., Matias, J., Jäschke, J., Imsland, L., Bar, N., 2022.
Bioprocess monitoring: A moving horizon estimation experimental application.
IFAC-PapersOnLine 55 (7), 222–227. http://dx.doi.org/10.1016/j.ifacol.2022.07.
448, URL: https://linkinghub.elsevier.com/retrieve/pii/S2405896322008497.

Veloso, A., Rocha, I., Ferreira, E., 2009. Monitoring of fed-batch E. coli fermentations
with software sensors. Bioprocess Biosyst. Eng. 32, 381–388. http://dx.doi.org/10.
1007/s00449-008-0257-x.

Villaverde, A.F., Barreiro, A., Papachristodoulou, A., 2016. Structural identifiability of
dynamic systems biology models. PLoS Comput. Biol. 22.

Wan, E., Van Der Merwe, R., 2000. The unscented Kalman filter for nonlinear esti-
mation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing,
Communications, and Control Symposium. Cat. No.00EX373, pp. 153–158. http:
//dx.doi.org/10.1109/ASSPCC.2000.882463.

Wechselberger, P., Sagmeister, P., Herwig, C., 2013. Real-time estimation of biomass
and specific growth rate in physiologically variable recombinant fed-batch pro-
cesses. Bioprocess Biosyst. Eng. 36 (9), 1205–1218. http://dx.doi.org/10.1007/
s00449-012-0848-4, URL: http://link.springer.com/10.1007/s00449-012-0848-4.

Whiffin, V.S., Cooney, M.J., Cord-Ruwisch, R., 2004. Online detection of feed demand
in high cell density cultures ofEscherichia coli by measurement of changes in
dissolved oxygen transients in complex media. Biotechnol. Bioeng. 85 (4), 422–433.
http://dx.doi.org/10.1002/bit.10802, URL: https://onlinelibrary.wiley.com/doi/10.
1002/bit.10802.

Wurm, D.J., Marschall, L., Sagmeister, P., Herwig, C., Spadiut, O., 2017. Simple
monitoring of cell leakiness and viability in Escherichia coli bioprocesses-A case
study. Eng. Life Sci. 17 (6), 598–604. http://dx.doi.org/10.1002/elsc.201600204,
URL: http://doi.wiley.com/10.1002/elsc.201600204.

Yousefi-Darani, A., Paquet-Durand, O., Hitzmann, B., 2020. The Kalman Filter for the
Supervision of Cultivation Processes. Springer Berlin Heidelberg, Berlin, Heidelberg,
imp. URL: http://link.springer.com/10.1007/10_2020_145.

http://refhub.elsevier.com/S0098-1354(23)00072-8/sb23
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb23
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb23
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb23
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb23
http://dx.doi.org/10.1007/s00449-019-02158-x
http://link.springer.com/10.1007/s00449-019-02158-x
http://link.springer.com/10.1007/s00449-019-02158-x
http://link.springer.com/10.1007/s00449-019-02158-x
http://dx.doi.org/10.1016/j.ymben.2005.06.003
https://www.sciencedirect.com/science/article/pii/S1096717605000534
https://www.sciencedirect.com/science/article/pii/S1096717605000534
https://www.sciencedirect.com/science/article/pii/S1096717605000534
http://dx.doi.org/10.1016/j.ifacol.2015.09.112
http://dx.doi.org/10.1016/j.ifacol.2015.09.112
http://dx.doi.org/10.1016/j.ifacol.2015.09.112
https://linkinghub.elsevier.com/retrieve/pii/S2405896315011933
https://linkinghub.elsevier.com/retrieve/pii/S2405896315011933
https://linkinghub.elsevier.com/retrieve/pii/S2405896315011933
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb27
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb27
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb27
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb27
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb27
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb27
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb27
http://dx.doi.org/10.1016/j.compchemeng.2006.05.031
http://dx.doi.org/10.1016/j.compchemeng.2006.05.031
http://dx.doi.org/10.1016/j.compchemeng.2006.05.031
https://linkinghub.elsevier.com/retrieve/pii/S0098135406001566
http://dx.doi.org/10.1002/biot.201600547
http://dx.doi.org/10.1002/biot.201600547
http://dx.doi.org/10.1002/biot.201600547
https://onlinelibrary.wiley.com/doi/pdf/10.1002/biot.201600547
https://onlinelibrary.wiley.com/doi/pdf/10.1002/biot.201600547
https://onlinelibrary.wiley.com/doi/pdf/10.1002/biot.201600547
https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.201600547
https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.201600547
https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.201600547
http://dx.doi.org/10.1002/elsc.201500182
http://dx.doi.org/10.1002/elsc.201500182
http://dx.doi.org/10.1002/elsc.201500182
http://doi.wiley.com/10.1002/elsc.201500182
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb31
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb32
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb32
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb32
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb32
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb32
http://dx.doi.org/10.1016/j.compchemeng.2011.12.010
http://dx.doi.org/10.1016/j.compchemeng.2011.12.010
http://dx.doi.org/10.1016/j.compchemeng.2011.12.010
https://linkinghub.elsevier.com/retrieve/pii/S0098135411003474
https://linkinghub.elsevier.com/retrieve/pii/S0098135411003474
https://linkinghub.elsevier.com/retrieve/pii/S0098135411003474
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1002/elsc.202100091
https://onlinelibrary.wiley.com/doi/10.1002/elsc.202100091
https://onlinelibrary.wiley.com/doi/10.1002/elsc.202100091
https://onlinelibrary.wiley.com/doi/10.1002/elsc.202100091
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb36
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb36
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb36
http://dx.doi.org/10.1002/bit.28001
https://onlinelibrary.wiley.com/doi/10.1002/bit.28001
https://onlinelibrary.wiley.com/doi/10.1002/bit.28001
https://onlinelibrary.wiley.com/doi/10.1002/bit.28001
http://dx.doi.org/10.1016/j.biortech.2020.124395
http://dx.doi.org/10.1016/j.biortech.2020.124395
http://dx.doi.org/10.1016/j.biortech.2020.124395
https://linkinghub.elsevier.com/retrieve/pii/S0960852420316692
https://linkinghub.elsevier.com/retrieve/pii/S0960852420316692
https://linkinghub.elsevier.com/retrieve/pii/S0960852420316692
http://dx.doi.org/10.1016/j.ifacol.2022.07.448
http://dx.doi.org/10.1016/j.ifacol.2022.07.448
http://dx.doi.org/10.1016/j.ifacol.2022.07.448
https://linkinghub.elsevier.com/retrieve/pii/S2405896322008497
http://dx.doi.org/10.1007/s00449-008-0257-x
http://dx.doi.org/10.1007/s00449-008-0257-x
http://dx.doi.org/10.1007/s00449-008-0257-x
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb41
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb41
http://refhub.elsevier.com/S0098-1354(23)00072-8/sb41
http://dx.doi.org/10.1109/ASSPCC.2000.882463
http://dx.doi.org/10.1109/ASSPCC.2000.882463
http://dx.doi.org/10.1109/ASSPCC.2000.882463
http://dx.doi.org/10.1007/s00449-012-0848-4
http://dx.doi.org/10.1007/s00449-012-0848-4
http://dx.doi.org/10.1007/s00449-012-0848-4
http://link.springer.com/10.1007/s00449-012-0848-4
http://dx.doi.org/10.1002/bit.10802
https://onlinelibrary.wiley.com/doi/10.1002/bit.10802
https://onlinelibrary.wiley.com/doi/10.1002/bit.10802
https://onlinelibrary.wiley.com/doi/10.1002/bit.10802
http://dx.doi.org/10.1002/elsc.201600204
http://doi.wiley.com/10.1002/elsc.201600204
http://link.springer.com/10.1007/10_2020_145

	Simultaneous real-time estimation of maximum substrate uptake capacity and yield coefficient in induced microbial cultures
	Introduction
	Material and Methods
	E.coli cultivations
	Reference analytics
	Online analytics

	Computational framework
	Observer & Plant model
	Model analysis and parameterization
	Structural generalized observability
	Particle filter
	Simulation study and real-time implementation

	Results and Discussion
	Model analysis and calibration
	Observer model calibration and observability
	Plant model dynamics and sensitivities

	Simulation study
	Measurement accuracy
	Feedback of parameter sensitivity
	Superimposed feed pulses for enhanced sensitivity

	Experimental validation
	Biomass and Substrate estimation results
	Parameter estimation results
	Parameter estimation discussion


	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. My Appendix
	References


