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Abstract

Density functional theory (DFT) has established itself as one of the staple tools for materials
simulations. Methodological advances achieved in the past decades have alleviated one of the
main weaknesses of DFT: the lack of temperature-dependent treatment. Arguably the most
widespread method of including temperature is the harmonic approximation (HA). It is based on
modelling the displacement-force relationship of the individual atoms by a harmonic potential.
The nuclear Hamiltonian then consists of independent quantum harmonic oscillators which yield
an expression for the free energy. Combining this with the electronic ground state energy obtained
through DFT yields a temperature-dependent free energy for a system.

However, for systems unstable at 0K, in particular those stabilized by temperature, the HA
is not applicable and other methods, such as molecular dynamics (MD) or effective harmonic
potentials (EHP) need to be used. Both rely on importance sampling of the potential energy
surface (PES) and thus require significantly more DFT evaluations than needed for the HA. While
meeting these increased resource demands may be possible for high-symmetry configurations or
short timescales, the computational cost quickly approaches prohibitive levels. It is thus natural
that researchers aim at introducing surrogate models (SM) that calculate results much more
rapidly than pure DFT. In particular, recent advances in machine learning (ML), provide access
to exceptionally accurate SM and are thus in the focus of research across the field of computational
materials science.

In this thesis the temperature-dependent behavior of HfO2, a material commonly associated
with a temperature-stabilized cubic (cI) phase, Fm3̄m, is explored. For this high-symmetry struc-
ture, investigation by a DFT-backed EHP approach is made possible by including a reweighting
procedure. It is shown, that said reweighting allows direct evaluation of the term responsible for
describing anharmonicities in the EHP formalism, as well as the use of unregularized regression
techniques. The results, such as thermal expansion and bulk moduli, appear to agree well with
experimental data from literature.

For the lower-symmetry monoclinic (m) and tetragonal (t) phases, a DFT-based approach
would incur unfeasible computational cost, thus the use of a SM in the form a neural network
force field (NNFF) is explored for their EHP treatment. In the second manuscript, a NNFF
data acquisition and training strategy are detailed, yielding a parametrization, with an accuracy
comparable to ab-initio calculations at a fraction of the cost. The NNFF performs well on the
m- and t-phase, the previously studied cI and a lower-symmetry cubic (cII) phase presenting the
P 4̄3m spacegroup. Excellent agreement of the thermal expansion of the m- and t-phase with
experimental data is found. This is in contrast to the results obtained for both cubic phases,
where lattice constants substantially lower than experiment are found. While it is shown that cII
is favorable over cI, a phase transition to any cubic phase is not observed. It is thus hypothesized
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that cubic HfO2 is only present in a defect-stabilized form.
The advantages of NNFFs over other SM, specifically Taylor expansions of the PES, become

clear in the last manuscript included in this thesis. Automatic differentiation makes direct evalua-
tion of said high-order Taylor potentials accessible. This approach is investigated in detail, based
on three simple systems, a six-atom Lennard-Jones (LJ) cluster, an fcc-LJ-solid, as well as a silver
cluster. The limited flexibility of polynomials, i.e. the fact that they can only tend to ±∞ for
large arguments, leads to significant artifacts in free energies and derived quantities. Hence it is
concluded that global interpolation strategies, such as NNFFs, are better suited as cost-effective
SM and a critical look at power-series expansions and their applicability is recommended.



Kurzfassung

Dichtefunktionaltheorie (DFT) hat sich als eines der zentralen Werkzeuge für Materialsimulatio-
nen etabliert. In den vergangenen Jahrzehnten konnte durch methodische Weiterentwicklungen
eine der größten Schwächen von DFT behoben und temperaturabhängige Studien ermöglicht
werden. Eine der weitverbreitetsten Methoden zur Berücksichtigung von Temperatur ist die har-
monische Approximation (HA). In dieser Näherung wird die Beziehung zwischen Auslenkung
und Kraft einzelner Atome durch ein harmonisches Potential modelliert. Der dadurch bedingte
Hamiltonoperator der Kerne beschreibt dann unabhängige quantenmechanische harmonische Os-
zillatoren, die einen Ausdruck für die freie Energie ergeben.

Allerdings ist die HA für Systeme, die bei 0K nicht stabil sind, und auch für solche, die durch
Temperatur stabilisiert werden, nicht anwendbar. In diesem Fall muss man auf andere Meth-
oden wie Molekulardynamik (MD) oder effektive harmonische Potentiale (EHP) zurückgreifen.
Beide dieser Methoden erfordern das Abtasten der potentiellen Energieoberfläche (PES) durch
relevanzbasierte Stichprobenverfahren, wodurch die Anzahl an benötigten DFT Berechnungen
signifikant ansteigt. Für Systeme mit hoher Symmetrie oder kurze Zeitspannen, kann der damit
verbundene, gestiegene Ressourcenbedarf noch bewältigbar sein, allerdings nähert sich der Berech-
nungsaufwand schnell unerschwinglichen Größenordnungen. Daher versuchen Wissenschafter Sur-
rogatmodelle (SM) einzuführen, die Resultate wesentlich ressourcenschonender als DFT erzielen
können. Besonders die rasanten Entwicklungen im Bereich des maschinellen Lernens ermöglichen
außergewöhnlich genaue SM, weswegen deren Verwendung in der computerunterstützten Materi-
alchemie zunehmend weit verbreitet ist.

In dieser Arbeit wird das Temperaturverhalten von HfO2 untersucht. Dieses Material ist
bekannt dafür, eine temperaturstabilisierte kubische (cI) Phase, Fm3̄m, zu haben. Da es sich
hierbei um eine Hochsymmetriephase handelt, kann man mithilfe eines Gewichtungsverfahren
eine DFT-basierte EHP Studie durchführen. Ebendieses Gewichtungsverfahren ermöglicht eine
direkte Auswertung des Terms der Anharmonizitäten in EHP beschreibt, sowie die Verwendung
nicht regularisierter Regressionstechniken. Thermisches Ausdehnungsverhalten, sowie Kompres-
sionsmodul stehen in Einklang mit literaturbasierten experimentellen Ergebnissen.

Im Falle der monoklinischen (m) und tetragonalen (t) Phasen von HfO2, welche geringere
Symmetrien aufweisen, würde eine solche DFT-basierte EHP-Studie einen nicht durchführbaren
rechnerischen Aufwand bedeuten, weshalb ein Kraftfeld basierend auf einem neuronalen Netzwerk
(NNFF) als SM untersucht wird. Im zweiten Manuskript dieser Arbeit werden eine Datenakquise-
und Trainingsstrategie beschrieben, mit deren Hilfe ein NNFF, mit einer Genauigkeit vergleichbar
zu ab initio Methoden, aber deutlich vermindertem Rechenaufwand, erzielbar ist. Das NNFF kann
sowohl die m- und t-Phase, sowie die bereits zuvor untersuchte cI-Phase, als auch eine kubische
(cII) Phase niedrigerer Symmetrie, die der Raumgruppe P 4̄3m entspricht, akkurat beschreiben.
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Für die m- und t-Phase ist die Übereinstimmung der thermischen Ausdehnung mit dem Exper-
iment hervorragend, im Falle der beiden kubischen Phasen hingegen wird das Volumen deutlich
unterschätzt. Während gezeigt werden konnte, dass die cII-Phase energetisch günstiger ist, als die
cI-Phase, konnte kein Phasenübergang von der tetragonalen in eine der beiden kubischen Phasen
festgestellt werden. Daher wird die Vermutung aufgestellt, dass kubisches HfO2 ausschließlich in
einer defektstabilisierten Form existiert.

Die Vorteile von NNFF gegenüber anderen SM, insbesondere Taylor-Expansionen der PES
werden im letzten Manuskript dieser Arbeit herausgearbeitet. Automatische Differenzierung
machen eine direkte Evaluierung besagter Taylor-Expansionen zugänglich. Diese Methodik wird
basierend auf drei Modellsystemen untersucht: Einem Lennard-Jones (LJ) Cluster bestehend aus
sechs Atomen, einem kfz-LJ Festkörper, sowie einem Silbercluster. Die Tatsache, dass Polyno-
mialfunktionen bei großen Argument im Grenzwert lediglich die Werte ±∞ annehmen können,
führt hierbei zu signifikanten Artefakten in den freien Energien und daraus abgeleiteten Größen.
Die Verwendung von globalen Interpolationsstrategien, beispielsweise NNFF, als SM ist daher
gegenüber Expansionen zu bevorzugen.
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Chapter 1

Introduction

1.1 Motivation

Since they were conceived nearly six decades ago, density-functional-theory-based (DFT) elec-
tronic structure methods and the ecosystem surrounding them, have come a long way and are
now an integral part of materials science research. This can partially be attributed to the enor-
mous increase in computational power, but without methodological advances, these improvements
would only allow obtaining a ground state energy faster, or for a bigger system. The developments
that have pushed computational chemistry into “mainstream” research are methodological. Some
of the key contributors of those methodological advances are those alleviating one of the main
weaknesses of DFT - the lack of a treatment of temperature.

Temperature, however, is one of the most important quantities linking theoretical studies
to real-life materials, products and processes. Not only are temperature-dependent phenom-
ena responsible for thermal expansion, thus impacting e.g. strain engineering [1] or thermal
management [2] in semiconductor technologies. But microscopic phase stability and hence the
macroscopic behavior of materials, is also governed by it. Going beyond solids, predictive capa-
bilities of theoretical studies describing some of the most important fields of our time, predicting
the activity of catalysts [3], or the stability and potential uses of pharmaceutical compounds [4],
benefit greatly from the inclusion of temperature. All of these problems, and the many more that
are being explored in research groups all over the world, pose a serious challenge for purely ex-
perimental studies: The parameter space, e.g. chemical composition, arrangement or impurities,
that needs to be searched is almost infinite. Due to monetary and temporal constraints enacting
severely restricting boundary conditions upon the exploration, such research is often based on
small, iterative improvements guided by experience. For the challenges ahead of us, be it shifting
towards renewable energies, through novel solar and battery technologies, or hydrogen production
and fuel cells, an iterative approach is likely not sufficient. Thus, computational methods will
continue to be key enablers and perhaps even grow their importance as guides towards a solution.
After all, “bits are cheaper than atoms” [5].

The idea of a “digital twin”, acting as an exploratory model to rule out the most absurd
ideas and close in on the most promising ones, is already widespread in an industrial setting, e.g.
when constructing large machines. However, already before that in the 1990s the bioinformatics
community coined the term of in silico [6] in the spirit of in vivo or in situ, to refer to biological
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2 CHAPTER 1. INTRODUCTION

research done through computer simulations. Although this is a vogue expression, it describes the
idea concisely and understandably, which could be why the terminology is starting to appear in an
increasing number of DFT-based studies as well. In material science, however, a “digital materials
twin” has not yet been achieved within an acceptable error tolerance or degree of usability and
reaching this goal will likely still take years. Arguably though, the general idea behind it, is
slowly becoming established in the minds of research and industry alike. From GUI-tools, like
QuantumATK [7], over materials research consulting as done by Enthought1, to the idea of a free
database containing material parameters, such as the materials project [8]: DFT is approaching
broad applicability in an industrial setting.

While DFT run on modern computers is quite useable already, the aforementioned vast search
spaces can still create situations where resource limitations are met or exceeded, for example in
low-symmetry systems or when predicting thermal transport properties. One of the most impact-
ful recent concepts in all of modern computational chemistry was transferred from informatics
into materials science: machine learning (ML). Neural-network force fields (NNFF), introduced
in a 2007 publication by Behler [9], have experienced an enormous interest by the community.
And justifiably so, as these approaches seem to alleviate computational issues with little to no
downside and can thus be used as an appropriate surrogate model. Arguably, NNFFs could be
the missing ingredient for true in silico materials studies.

ML models might even be the key to achieving the pinnacle of materials science: Materials
by design. This is a common concept usually phrased in terms of a forward problem, i.e. predict
the outcome based on inputs, and an inverse problem, i.e. predict the inputs based on desired
outcomes. While it is certainly still a long road ahead until these problems are solved, there are
many approaches being already explored today and the potential impact of the topic can hardly
be overstated [10, 11].

1.2 Description of thesis

Timeline

The goal of this thesis is to develop and apply an above-described in silico approach in order
to improve understanding of HfO2, a material that has recently gathered much attention. It
exhibits at large number of different phases, based on temperature, pressure, strain or dopants,
each with different macroscopic properties. Initially, hopes were high to describe its ambient
phases and their temperature-mediated transitions using well-established finite-difference- (FD)
or perturbation-theory-based phonon methods, but it was soon realized that these descriptions
are not suitable to provide an accurate model of the material. This prompted implementation
of an idea already discussed in the 1950s, effective harmonic potentials (EHPs, [12, 13]), which
essentially provide a temperature-dependent description of phonons and - more importantly -
allow the study of temperature-stabilized phases, as some of HfO2 are. This is described in the
first article below.

Using the abundant data created for the cubic phase in the first article, as well as some
additional data generated for the tetragonal and monoclinic phases, a systematic approach on

1https://www.enthought.com/materials-science-chemistry/
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creating a proper training set, based on the iterative nature of EHPs, was devised. This approach
is then used to construct a potential that transfers well between (at least) four phases of HfO2.
The NNFF is then used as a backend for EHP calculations of the phases and while achieving
great agreement for the tetragonal and monoclinic phase, a large mismatch for the cubic phase
is observed. There is, however, some ambiguity regarding its high-temperature phase and in
article II an argument is presented that the spacegroup traditionally assumed is incorrect and
that perhaps a stoichometric cubic phase does not exist at all.

The differences between FD- and EHP-based approaches were more significant than antic-
ipated. To explore this idea further, we studied the applicability of such “simple” (essentially
power-series-based) descriptions of the potential energy surface (PES) on a few simple toy mod-
els, a Lennard-Jones molecule and solid, and a silver cluster. While methodologically this was
relatively well-trodden territory, the implications are quite striking and the work presented in arti-
cle III hopefully convinces some of our colleagues to take care in evaluating the limitations of their
approaches. Most of the work there was only made possible through automatic differentiability
as implemented in Google’s jax [14, 15].

jax is also what powers the NNFF used in our group (and beyond): NeuralIL. Much combined
effort has been and continues to be put into developing augmentations and improvements for it, as
it has become the working horse for almost all our projects from ionic liquids [16] and surfaces [17],
to bulk solids (HfO2 [18, 19], SiO2, ...) and soon interfaces as well. Apart from numerous bug fixes,
I worked on including a charge equilibration scheme and a repulsive short-range contribution.

Finally, an extension to the already-existing jax-md code [20], which integrates exceedingly
well with our NNFF, is proposed. It supports not only isotropic cell fluctuations but also flexible
changes of the lattice vectors. This allows studying phase transitions in silico. While thematically
this study is part of this thesis and much progress has been achieved during it, the manuscript is
still under construction and the results presented in chapter 5 preliminary.

Structure

The material HfO2 is introduced in the second chapter. The basis and background for the attached
articles is outlined in the third chapter, where we use examples and results from the already-
published work to illustrate the theory. The fourth chapter contains brief and concise summaries
of the most important publications written in the course of this thesis, while the fifth chapter
presents the unpublished molecular dynamics study. Specifics of the published work are detailed
within the corresponding manuscripts which can be found in the last chapter and more in-depth
considerations are available at the references therein. The thesis concludes with a brief review of
recent literature, combining the learnings and motivation into an outlook for what computational
chemistry and materials science can bring to the table in the foreseeable future.





Chapter 2

Hafnia

Hafnia (HfO2) has a multi-faceted phase diagram [21], with numerous industrially relevant ap-
plications: It is being used as a high-κ gate dielectric for semiconductors in its amorphous [22]
and tetragonal phase [23]. Due to its high melting point of approximately 3100K [24] and neu-
tron absorption coefficient, hafnia-toughened ceramics are relevant for the nuclear industry [25].
Owing to its low thermal conductivity, HfO2 lends itself to applications in thermal barriers [26].
There are reports of hafnia layers improving stability of ceria-based solid oxide fuel cells [27].
In its doping-stabilized [28] or pure [29] ferroelectric phase, hafnia is being considered for e. g.
nonvolatile memory applications [30] or ferroelectric field-effect transistors [31]. The material has
been researched and used for decades and industry has acquired a lot of expertise in its pro-
cessing. Due to this and the potential broad technological applications, HfO2 continues to be of
high interest today. However, even though it has been studied for well over half a century now
[24, 25, 32–44], its phase structure is still relatively poorly understood. An indication of this is
that ferroelectricity was only discovered in 2011 [28], another that phase transition temperatures
reported in literature span over 1000K [24].

Crystal structure

At ambient pressures, it is believed that hafnia transitions from a monoclinic P21c crystal struc-
ture to a tetragonal P42nmc one between approximately 1800K to 3000K [24, 45]. With in-
creasing temperature it is believed to transition to a high-symmetry cubic phase, presenting an
Fm3̄m crystal structure, before melting [46]. With an applied pressure, one finds various non-
polar orthorhombic (Pbca, Pnma) phases, while strain or doping can lead to polar orthorhombic
phases (Pca21, Pmn21) responsible for the ferroelectric properties. The discovery of these [28]
has prompted renewed interest in the material’s experimental and theoretical description, as well
as potential applications [47]. Furthermore, there are reports of various different (meta)-stable
phases discovered in theoretical investigations [38]. A non-exhaustive overview is given in Fig. 2.1.

However, similar to the isostructural material ZrO2 [49–53] there are ambiguities with respect
to the existence of a stable stoichiometric cubic phase. Not only do the reported tetragonal-
to-cubic phase transition temperatures obtained from different authors span almost 500K [24],
but there is even some doubt regarding the precise space group of cubic HfO2 [54]. While some
researchers find a mixed phase of cubic and tetragonal symmetry suggesting metastability [55],
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6 CHAPTER 2. HAFNIA

Figure 2.1: Phases of HfO2, where P21c constitutes the room temperature ground state structure.
Several (very high energy) phases are not shown. The visualizations of the atomic structures were
created using VESTA [48].

others see a clear second-order transition [42, 46]. In agreement with Barabash et al.’s [56]
initial assessment, which disregarded temperature, we find the lower-symmetry P 4̄3m cubic phase
to be energetically favorable over the commonly-believed Fm3̄m one even with temperature
included. To our knowledge there is, besides our work, no theoretical temperature-dependent
analysis of the high-temperature phase stability of HfO2 that would allow identification of the
space group. Furthermore, there are only few experimental studies describing a tetragonal-to-
cubic phase transition [42, 55, 57] and those are not in agreement.

Experimental studies at such extreme temperature conditions are difficult and, in particular
for HfO2, precise knowledge of the stoichiometry and potential impurities is key for an accu-
rate interpretation of experimental results: Temperature-induced or processing-induced oxygen
vacancies stabilize high-symmetry phases [58–61] and there are even reports of a room temper-
ature cubic phase of (severely) oxygen deficient HfO1.7 [59]. Similarly, numerous reports detail
the effects a variety of dopants have on HfO2 phase stability. These range from the ferroelectric
orthorhombic phase (Si: [28], La: [62], Sr: [63], Gd: [64]), to the tetragonal (Y, Si, Gd: [65])
and even the cubic (Y: [66]). This implies the expressed phase has a high sensitivity to (e.g.
processing-induced) impurities as well. Furthermore, several studies show the significant impact
strain has on phase equilibria [3, 67–69]. Strain is an unavoidable consequence in the manufac-
turing of thin-layer technologies such as semiconductors, but it just as well occurs in powders
commonly used for x-ray diffraction measurements in the form of surface strain.

All these factors combine in an intricate interplay which determines the exhibited crystal
structure of HfO2 and perhaps provide an explanation as to why over 60 years of research have
not yet shed light on all phenomena present in this material. As such, even though there is a
large number of studies published already, there is still a lot to learn about this material and I
hope that this thesis offers a small contribution to this undertaking.
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Previous computational work

A good starting point for the need of theoretical work supporting and verifying experimental
studies is the article published by Wang et al. [24]. This publication is an exceptional source,
containing not only their own differential thermal analyses of the ambient phase transitions of
HfO2, but also a detailed overview of previous experimental work covering over 20 years of pub-
lications. What becomes clear quickly, is that transition temperatures vary widely: Monoclinic
to tetragonal ranges 1773K to 2973K with an average of 2200K and Wang et al.’s own measure-
ments amounting to 2066K. The tetragonal-to-cubic transition shows an average of 2940K and
finally the average melting temperature measured is 3090K.

After the somewhat surprising discovery of a ferroelectric orthorhombic phase in 2011 [28],
several studies exploring the phase stability of HfO2 were performed. In particular the work
done by Huan et al. in 2014 [38], has established a nowadays widely accepted assortment of
hafnia phases through a minima-hopping method. Based on the harmonic approximation - a
simple model for incorporating temperature - a first attempt at a phase diagram was made there.
However, methodologically, imaginary phonons occurring in some of the structures, render the
free energy calculations unconvincing.

This work was extended by Barabash [56], who implemented a systematic search based on
an enumeration of displacements and distortions of the fluorite structure. Apart from numerous
relatively high energy structures, this work is to the best of my knowledge the first that deals with
the lower-symmetry cubic P 4̄3m phase. Antunes et al. [54] attempted the first thermodynamic
assessment of this “new” cubic phase, again based on the harmonic approximation and - as they
correctly point out - again producing “unreliable” results with “well-known theoretical issues” [54]
that are raised by the presence of imaginary phonon frequencies.

A machine learning-based molecular dynamics study performed using DeepMD [70] was pub-
lished by Wu et al. in 2021 [71]; however, temperatures larger than 2500K are unfortunately
not considered. They again show a monoclinic-to-tetragonal transition at approximately 2000K
confirming the results found by Fan et al., Antunes et al. and Huan et al. [38, 46, 54]. Haggerty et
al. [39] used HTXRD to catalogue the thermal expansion behavior of monoclinic and tetragonal
hafnia, highlighting in particular the anisotropic thermal expansion of monoclinic HfO2.

One of the few experimental publications describing a measured tetragonal-to-cubic transition
is provided by Tobase et al. [42]. There high-temperature x-ray diffraction (HTXRD) was per-
formed on a levitating HfO2 powder, measuring the lattice constants. Based on the c/a ratios,
they conclude a transition towards cubic is taking place at around 2800K. Similar results were
obtained in an ab initio molecular dynamics study by Fan et al. [46]. There, a tetragonal-to-cubic
phase transition was observed at 2600K. Their study, however, has its limitations, many of which
are stemming from the large computational cost of ab initio molecular dynamics. The small sim-
ulation box allows no long-wavelength deformations and the quick scans over a wide temperature
range make relaxation into a steady state unlikely. Furthermore, even if they indeed observe a
cubic phase, it would not be possible impossible to conclusively determine whether it corresponds
to Fm3̄m or P 4̄3m.

There is still no clear road towards a theoretical description of a tetragonal-to-cubic phase
transition and unambiguous determination of the space group. As is discussed above, literature
knows many cases of non-stoichiometric hafnia stabilized in a cubic structure through oxygen
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vacancies. The significant strains and extreme heat unavoidable in such experimental studies,
can have a drastic impact and thus a detailed theoretical investigation of potential phenomena
promoting cubicity in HfO2 is warranted.



Chapter 3

Background

3.1 Density functional theory
While density functional theory (DFT) is essential for the work presented here, it is just a tool
in the toolbox and not the focus of this thesis. Hence, only a brief overview of the most essential
concepts is given here.

When Walter Kohn and Pierre Hohenberg first introduced DFT in their 1964 paper [72] they
probably had not anticipated the impact and subsequent Nobel prize their findings would yield.
In principle, their theory allows finding the correct ground-state energy, E0, of a many-body
(stationary) Schrödinger equation in the Born-Oppenheimer (BO) approximation [73], i.e. for
“static” nuclei, located at Rk with charge Zk

Ĥ |Ψn⟩ = En |Ψn⟩ , (3.1)

with the many-body electronic Hamiltonian

Ĥ = −1

2
i

∇̂2
i +

1

2
i ̸=j

1

|r̂i − r̂j| −
i,k

Zk

|r̂i −Rk| , (3.2)

based on the ground-state density, n0(r) = dr2 . . . drN |Ψ0(r, r2, . . . , rN)|2 alone. At the core
of the methodology lie two key points. First, a one-to-one correspondence of the density n0

and the external potential vext = − k
Zk

|r̂i−Rk| , which parametrically depends on the nuclear
coordinates, Rk, and uniquely defines the potential energy surface and the Hamiltonian. Second,
the variational principle, guaranteeing an energy minimum at the exact ground-state density (for
a given set of Rk, i.e. vext). Or, as Becke puts it in his 2014 perspective on the 50 year anniversary
of DFT [74]

n0 → vext → Ψ0 → everything!. (3.3)

3.1.1 Kohn-Sham equations

A year later, Kohn and Sham published the Kohn-Sham (KS) equations [75], and by utilizing
the Hohenberg-Kohn theorems, provided a self-consistency framework enabling a tractable and
practical way forward. This is achieved by reformulating the many-body interacting-electron

9
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Schrödinger equation (wavefunctions |Ψ⟩) into a system describing non-interacting (NI) electrons
(wavefunctions |ϕ⟩). The KS energy is given by

E(n) = T0(n) + vext(r)n(r)dr+ J(n) + Exc(n), (3.4)

where
T0 = min

{SD n(r)}
−1

2
i

⟨ϕi|∇2|ϕi⟩ J =
1

2

n(r1)n(r2)

r12
dr1dr2 (3.5)

are the NI kinetic energy and Coulomb self-energy, respectively. Here n(r) is constructed as

n(r) =
i

| ⟨ϕi|r⟩ |2. (3.6)

Finally, Exc is the exchange and correlation energy, correcting for the error incurred by going
from |Ψ⟩ to |ϕ⟩, i.e. from interacting to non-interacting electrons by - at least formally - restoring
the total Coulomb interaction energy Vee and total kinetic energy T

Exc = T + Vee − T0 − J. (3.7)

Thus, the solutions of the Kohn-Sham-equations obtained through minimization of

−1

2
∇2 + vext(r) + dr′

n(r)

|r− r′| +
δExc

δρ
(r) ϕi(r) = ϵiϕi(r), (3.8)

are in principle exact. The KS formalism hence allows studying real many-body systems in terms
of NI single particle wavefunctions whose behavior is governed by an effective potential. However,
approximations of Exc, or rather, ϵxc defined through

Exc = drϵxc(r)n(r), (3.9)

must be made.

3.1.2 XC functionals

Constructing and studying different xc-functionals is a scientific discipline in itself, hence I will
limit myself to two well-known and widespread choices. The exchange contribution in the local
density approximation (LDA) was already published in the original paper [75] and amounts to
that of the homogeneous electron gas, ϵLDA

x (n) = −3
4

3
π

1
3 n

1
3 . The correlation contributions,

ϵLDA
c , can be obtained by interpolating quantum Monte Carlo results, as is done in [76]. Thus,

the full xc-energy can be calculated through

ELDA
xc = dr ϵLDA

x (r) + ϵLDA
c (r) n(r). (3.10)

A logical extension to this, is to not only include the density, but also its gradient, ∇n(r), [74].
This is typically done in the form of the reduced density gradient, s = |∇n|

2(3π2)1/3n4/3
, which is used
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Figure 3.1: Energy-volume curves for P21c-HfO2 obtained with PBE and PBEsol as compared to
experiment [39].

to define a so-called enhancement factor, fx. With this the generalized gradient approximation,
or GGA, exchange can be introduced

ϵGGA
x = ϵLDA

x fx(s
2), (3.11)

with one of the most ubiquitous flavors being the PBE functional [77]:

fPBE
x (s2) = 1 + κ− κ

1 + µs2

κ

. (3.12)

Here the parameters κ = 0.804 and µ = 0.21951 are determined by enforcing adherence to some
selected theoretical constraints. Different choices of κ and µ lead to different behaviors but are
just reparametrizations of the same functional. One such reparametrization is PBEsol [78].

Which functional is used depends on a virtually endless list of factors. If the results should be
comparable to existing literature, likely the same functional will be chosen. LDA underestimates
lattice constants, PBE overestimates them - a fact that is mostly corrected by PBEsol (see
Fig. 3.1). But, even as Perdew himself says in [78], “[a]t the GGA level, one must choose”, the
choice is always a trade-off between accuracy in energy, bandgap or lattice constant and other
factors, more specific to the planned study at hand. This work mostly employs PBE, as most
literature data was obtained using this functional, where adequate and reasonable, we compare
to PBEsol.

This is just a glimpse of the broad spectrum of functionals available, for a more comprehensive
overview, the reader is referred to relevant literature, e.g. Ref. [79] for solids, or Ref. [80] for
molecules.

3.2 Temperature-dependent phenomena
A typical shortcoming of DFT approaches when comparing the results with actual measurements,
is the complete absence of any notion of temperature. Most DFT-backed calculations focus on



12 CHAPTER 3. BACKGROUND

the electronic ground state energies (E0) or differences thereof, which are purely mechanical
quantities. To introduce temperature, actual thermodynamic properties need to be studied. E.g.
the Helmholtz free energy

F = U − TS, (3.13)

or the Gibbs free enthalpy,
G = F + PV, (3.14)

that link together internal energy U , temperature, T , entropy, S, pressure, P and volume, V .
For a wide-band-gap semiconductor, electronic excitations are unlikely, the internal energy can
be approximated as the thermodynamic average of the potential energy

U = ⟨EBO⟩ , (3.15)

where
EBO({Ri}) = E0({Ri}) + 1

2
i ̸=j

ZiZj

|Ri −Rj| (3.16)

is the BO potential energy.
The entropy itself has several constituents with the most important for us being the vibra-

tional, or lattice contribution, Svib. Approximations to Svib and by extension, F and G, are
ubiquitous, however, the most obvious and widely used one is the harmonic approximation.

3.2.1 Harmonic approximation

The harmonic approximation (HA) is, in essence, just an expansion of the BO potential energy in
a power series as a function of the (mass-weighted) displacements, ui =

√
mi(Ri −Ri,0) around

the equilibrium atomic positions Ri,0, truncated after the quadratic term:

EBO(ui) = EBO,0 +
iα

Φ
(1)
iα uiα +

1

2
iα,jβ

Φ
(2)
iα,jβui,αujβ

=EHA

+ . . . , (3.17)

where the indices i, j run over the number of atoms Natoms, α, β over the Cartesian coordinates.
The Φ are the partial derivatives of the energy with respect to said displacements - the so-called
force constants:

Φ
(2)
iα,jβ = Φiα,jβ =

∂2EBO

∂uiα∂ujβ uiα=uiβ=0

= − 1√
mi

∂fiα
∂ujβ uiα=uiβ=0

. (3.18)

The linear term, Φ(1)
iα , vanishes for a structure in equilibrium, i.e. with no forces acting on it,

which leaves a quadratic Hamiltonian. The quadratic form can be diagonalized by solving an
eigenvalue problem1

Φϵn = ω2
nϵn. (3.19)

1For a detailed derivation, please refer to [81]
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Expressing the Hamiltonian in the basis of these eigenvectors, it takes the form of a system of
uncoupled harmonic oscillators.

The link to DFT calculations is given through the Hellman-Feynman theorem [82], granting
access to the forces of each atom, fi. The actual implementation within the PAW basis framework
as used in VASP is detailed in [83, 84].

A compound is described on a periodic real-space lattice RI = ndim=3
i Iiαi, indexing the

periodic image I = (I1, I2, I3) ∈ Z3, with basis vectors αi. On it, the coordinates of our atoms
are expressed by placing a copy of a motif {Ri,0} at each node of the lattice:

RI,i = RI +Ri,0. (3.20)

Any such lattice is accompanied by a corresponding reciprocal-space lattice, made up of all vectors
satisfying eiQRI = 1 ∀I, or

QRI = 2πn, (3.21)

for n ∈ Z. Its respective reciprocal basis vectors βi can hence be obtained from βiαj = 2πδij.
With this, we can directly evaluate Eq. (3.21) for an arbitrary reciprocal vector Q = 3

i Jiβi, to
arrive at:

J1I1 + J2I2 + J3I3 = n, (3.22)

thus proving that the Ji are in fact also integers and Q forms a lattice as well. Now, for a
reasonably well-behaved function, such as the eigenvectors of Eq. (3.19), the Fourier series

ϵ̃n(q) =
I

eiqRIϵn, (3.23)

converges and the Fourier coefficients can be calculated by integrating over the first Brillouin zone
(BZ), defined by the period of Eq. (3.23),

ϵn =
1

VBZ BZ

e−iqRI ϵ̃n(q)dq. (3.24)

After taking into account translational symmetry, combining Eq. (3.24) and Eq. (3.19), results in
another eigenvalue problem

D(q)ϵ̃n(q) = ω2
n(q)ϵ̃n(q), (3.25)

centered around the dynamical matrix D = I′ e
−iqRI′Φ0,I′ . Treating the problem in reciprocal

space enables us to make a tractable approximation of an infinite number of real-space degrees
of freedom using finite matrices.

The ability to calculate the forces of all reasonable structures allows construction of configu-
rations with defined displacements and hence the calculation of force constants. However, most
displacements can only be represented in so-called supercells, that is, S1 × S2 × S3 repetitions of
the unit cell. Periodic boundary conditions still apply; hence some aliasing effects remain and an
additional term enters Eq. (3.18):

− 1√
mi

∂fiα;0
∂ujβ

= Φiα,jβ;0,I +
images of I

Φiα,jβ;0,I′ = Φ̃iα,jβ;0,I, (3.26)
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Figure 3.2: The phonon band structure of the P21c phase of HfO2 at V = 11.67Å3
atom−1

obtained using DFT-backed FD calculations. The path in k-space was generated by SeeK-path
[86].

resulting in the cumulant force constants [85], Φ̃ and finally the approximate dynamical matrix

D(q) =
M′

e−iqRM′ Φ̃iα,jβ;0,M′ , (3.27)

where the M′, now only include all the atoms within and on the surface of the supercell. For
q-points commensurate with the supercell, it describes the dynamical matrix exactly, while for
incommensurate points it is an approximate Fourier interpolation, resulting in a frequency-, or
band-plot as shown in Fig. 3.2.
Given the fact that all that can be hoped for is a discrete number of q-points, the frequencies and
eigenvectors will now receive an index q, instead of being a function thereof. The modes obtained
through the above, ωnq and ϵnq, are occupied by bosonic particles, phonons, of energy ℏωnq and
momentum ℏq. The 3Natoms-dimensional real-space density function describing the distribution
of displacements, ρ, can be expressed using a covariance matrix, C [87]. The elements of C, the
Cij, can be obtained as

Cij =
ℏ

2
√
mimj nq

1

ω2
nq tanh

ℏωnq

2kBT

ϵnq,i ⊗ ϵ∗nq,j. (3.28)

Hence, ρ amounts to

ρ(u) =
1

(2π)3Natoms |C|
exp −1

2
uC−1u . (3.29)

Assuming all obtained frequencies correspond to oscillations, i.e. ω2
nq > 0, the partition function

of the harmonic oscillators can be built:

Zharm =
qn

e
− ℏωnq

2kBT

1− e
− ℏωnq

kBT

, (3.30)
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Figure 3.3: (F,V) curves at various temperatures for P21c HfO2, the red line indicating the
corresponding minima.

and with it finally the Helmholtz free energy, F = EBO,0 + Fharm, through,

Fharm = −kBT lnZharm =
nq

ℏωnq

2
+ kBT ln 1− e

− ℏωnq
kBT . (3.31)

Now, thermal expansion and the Gibbs free enthalpy are within reach: By performing phonon
calculations at several volumes around the equilibrium volume of the unit cell and fitting an equa-
tion of state (EOS) a volume-dependency can be introduced. This broadly established extension
of the HA is termed the quasi -harmonic approximation (QHA). With an EOS, such as Birch-
Murnaghan’s EOS (BMEOS, [88]) fitted onto a dataset of (F (T ), V ), thermal expansion can be
obtained by finding the minimum value of F for every value of T as indicated by the red line in
Fig. 3.3. Furthermore as the BMEOS is an analytical expression, the pressure can be obtained
as the derivative of the free energy with respect to volume:

∂F

∂V T=const

= −P. (3.32)

Having obtained the pressure, G can also be computed and theoretically a phase diagram can
be built. With phonopy, Atsushi Togo published a toolkit [89] which is nowadays widely used.
Thanks to it, most of the steps described above are done automatically and the number of
calculations is drastically reduced based on symmetry considerations. The user only has to care
about properly converged force calculations, an adequate choice of the Si and a mesh of q-points
for the Fourier interpolation.

However, there are a few shortcomings of the (Q)HA. As mentioned previously, the applica-
bility of the statistical mechanics framework rests on ω2

nq > 0. If this does not hold the structure
is dynamically unstable, the HA fails and the results are unreliable at best. Sometimes how-
ever, anharmonicities can alleviate this. To treat those phases or compounds one needs to resort
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to different methods. Furthermore, scaling the volume does not necessarily lead to the lowest-
energy thermal expansion and even relaxations for a given volume performed within DFT can be
inaccurate at higher temperatures. At the absence of temperature the structure might behave
differently than e.g. at 1000K. Finally, the limitations of the (Q)HA, which is after all a local
Taylor-series-like expansion of the PES are rarely taken into consideration.

3.2.2 Effective harmonic potentials

Already in the 1950s Hooton et al. [12, 13] described an approach to treat anharmonicities using
effective harmonic potentials. It was later reformulated using a variational Ansatz by Errea et
al. [90, 91]: A trial density matrix, ρ̂, is assumed, which exactly describes the statistics of a
corresponding trial Hamiltonian, Ĥ, that only differs from the true Hamiltonian Ĥ through the
form of the approximate potential energy operator, Û , as opposed to the exact potential energy
operator, Û . Minimizing the free energy with respect to the trial density matrix is guaranteed by
the Gibbs-Bogoliubov inequality [92] to provide an upper bound on the free energy of the true
system

F [Û , ρ̂0] ≤ FEHP = F [Û , ρ̂] + Tr ρ̂(Û − Û) = Fharm + Fcorr, (3.33)

As this is the effective harmonic approximation, Û corresponds to EHA as defined in Eq. (3.17)
and hence the trial density matrix is parameterized as Eq. (3.29). The term Fharm corresponds
to Eq. (3.31). Fharm depends directly on the temperature T and indirectly on the harmonic trial
potential through ωnq. The optimal trial potential thus depends on the temperature. Ignoring
Fcorr [Eq. (3.33)] and the temperature dependence of the effective potential results in the harmonic
approximation described in the previous section.

Determining the optimal EHP and calculating Fcorr can be achieved through canonical im-
portance sampling and building a self-consistency scheme around the aforementioned connection
between FEHP and Φ, as is indicated in the inner-most box in Fig. 3.4. When self-consistency is
reached, this corresponds to minimizing FEHP [93]. As a starting point, it is convenient to use the
finite displacement (FD) second-order force constants and their corresponding potential. Then,
using Eq. (3.29), a set, S, of m displacements can be drawn, for which - by means of DFT or a
surrogate model - potential energies and forces are calculated. These forces are then used to pa-
rameterize another set of force constants, leading to a new density, a new set of displacements and
finally new forces and energies. Here, we use hiPhive [94] to efficiently determine force constants
while also relying on their routines to simplify the significant bookkeeping involved.

This cycle continues until convergence is reached, which is aided by two augmentations:

1. Obtaining the new trial density matrix through a Pulay mixing scheme [95]. In the work
presented throughout this thesis a memory of n = 5 steps and a mixing parameter of α = 0.1
was chosen.

2. Reusing configurations from previous iterations (g) in the current iteration (k) through
a reweighting procedure. As the probability densities are known, a reweighting factor is
obtained easily:

w(g→k) =
ρ(k)(u(g))

ρ(g)(u(g))
. (3.34)
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Figure 3.4: An illustration of the self-consistency workflow for effective harmonic potentials.

The latter improves the amount of available data and allows the use of unregularized fitting
methods, i.e. those that do not reward or enforce (unphysical) sparseness of the force constants.
In the presented articles the correction term, Fcorr is obtained directly as a weighted average from
the potential energies of the same samples used for determining the trial EHP

Fcorr =
1

W
g m

w(g→k)
m EBO(u

(g)
m )− E

(k)
HA(u

(g)
m ) , (3.35)

where W is the sum of all the weights. Furthermore, as described in the article below reweighting
can be used to reuse samples drawn at temperature T1 for a different temperature T2, which can
be used to obtain a dense grid of temperatures. Naturally, the extension to an effective quasi
harmonic approximation, by performing the scheme at several volumes Vk, is possible as well, as
indicated by the outermost box in Fig. 3.4.
The effective number of samples [96–99]

w
(k)
eff =

g m w
(g→k)
m

2

g m w
(g→k)
m

2 , (3.36)

provides an additional guide to data completeness. With EHPs, temperature effects are considered
not only in the frequencies and eigenvectors but also in the catch-all anharmonic correction term.
Furthermore, it is possible to treat dynamically stabilized structures using Eq. (3.31), such as the
fluorite phase of HfO2, as the soft mode vanishes with temperature. This is shown in Fig. 3.5.
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Figure 3.5: Stabilization of the soft mode at X exhibited by Fm3̄m HfO2 at V = 10.87Å3
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as temperature increases when using the EHP method. Adapted from [19].

3.3 Machine learning
Machine learning (ML) and “artificial intelligence” have become ubiquitous terms in business and
science alike. From fault identification in semiconductor manufacturing [100], fraud detection and
risk management in banking [101] to our application, the parametrization of the potential energy
surface of various materials, there is hardly an area not benefitting from the recent surge in ML
research. Regardless of the usecase, the archetypical design-process of an ML-based solution to a
given problem can be broken down into a set of steps:

1. Identifying the problem type (e.g. regression vs. classification, supervised vs. unsuper-
vised).

2. Choosing an algorithm or method and a corresponding framework to work with (tensorflow
[102], scikit [103], PyTorch [104], jax-based [14, 105], ...) and a corresponding problem-
adapted and “computer-readable” representation of the data (a descriptor).

3. Generating or obtaining a training, a validation and a test set.

4. Obtaining model parameters using the training set and iteratively improving performance
by tuning hyperparameters and model architecture based on the evaluation of the validation
set.

5. Testing the performance and transferability on unseen test sets.

While this is a very abstract set of steps, it will be specified to the case of neural network force
fields for computational chemistry in the following. It should be noted that the “recipe” provided
above cannot and should not be stringently enforced, rather it will sometimes be necessary to
backtrack and rethink previously-made decisions. For example, in our particular case, where new
data can be generated as needed, the third and fourth step are combined into one.
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3.3.1 Problem

ML applications in computational materials science can be roughly classified in three categories:
(i) the direct prediction of hard-to-calculate physical quantities (e.g. thermal conductivity [106,
107]), based on several known or easy-to-calculate physical quantities (e.g. volume, bulk modulus,
band gap, ...); (ii) the parametrization of the key DFT outputs (energy, forces) in terms of
the Cartesian coordinates or quantities derived thereof [9, 108]; finally (iii) the full ML-based
prediction of the electronic wavefunction [109, 110].

The work shown here is focused on obtaining a force field, i.e. achieving accurate and fast
predictions of the energy and forces directly from the nuclear positions to facilitate application of
the methods outlined in Section 3.4 and subsection 3.2.2, hence it belongs to the second category
mentioned above. This naturally implies a supervised regression problem.

3.3.2 Framework

Since the implementation of a neural-network-based force field within our group was already
underway, we decided to use it. To achieve a flexible and customizable implementation, while
still relying on an efficient multi-purpose backend, Google’s Deepmind jax-ecosystem ([14, 15]
and corresponding derived libraries (flax [105], optax [15]) were chosen. Using this ensures three
key features:

• Just-in-time compilation: JIT drastically reduces the execution time of python code,
making it competitive (and useable) for large-scale NNs.

• Easy parallelization: Regardless if the computing resources are CPUs, GPUs or TPUs,
jax and the XLA backend library are built to run efficiently and parallel on it, with no to
minimal code adaptations required.

• Automatic differentiability: Adhering to a few coding practices further enables jax
code to be fully end-to-end differentiable. This is not only an obvious advantage when
training NNs, but particularly when doing so for force fields as will become clear in the next
subsection.

In the following a brief introduction to neural networks (NN) will be given, which we will then
specify for the case of the neural network force field (NNFF).

Neural networks

Perhaps the simplest incarnation of an NN is the fully-connected NN, or perceptron. It consists
of an input layer, several hidden layers, Hi, each with a number of so-called neurons and finally
an output layer as shown in Fig. 3.6a. Each neuron receives all outputs of the previous layer
as inputs, I, builds a weighted linear combination with weights, w, and a bias, b, and finally
generates an output, O, by applying a nonlinear function, f , to this:

O = f(b+
k

wkIk). (3.37)
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Figure 3.6: A schematic depiction of a simple fully-connected neural network (a) and the inner
working of the outlined connections between H2 and the first neuron of H3 (b).

A schematic graphic is shown in Fig. 3.6b. The function f is a design choice, perhaps most
commonly used is the rectified linear unit or ReLU [111]: f(x) = max(0, x). As can be easily
seen, it is not smooth at x = 0, which would present an issue later on. Hence, an activation
function found itself through an automated ML-based search, the Swish-1 activation function,
[112, 113],

f(x) =
x

1 + e−x
, , (3.38)

was chosen for our application. For some other examples, e.g. the tanh or sigmoid activation
function, the gradient approaches 0 for large input values as is shown in the middle panel of
3.7. This results in a stalling training and is thus undesirable. The Swish-1 function is smooth
and does not suffer from this so-called vanishing gradient problem. The successive application of
non-linearities to linear combinations of input with a sufficient number of Hi has been shown to
be a universal function approximator [114].

All weights and biases of all neurons, denoted as Ω, compose the set of trainable parameters.
They are typically tuned by optimizing a so-called loss function through gradient descent or
variations thereof. We denote the target value corresponding to a vector of input parameters xi

as yi and the predicted output of the NN as ỹi, where each entry i indicates a portion of the
training set. With this, we can define a simple loss function, L, based on the mean squared error
(MSE):

LMSE(Ω) =
1

Ntrain

Ntrain

i=1

(yi − ỹi)
2 (3.39)

The parameters are then adapted by building the gradient of Eq. (3.39) with respect to Ω and
proceeding in the direction of −∇ΩL with a small stepsize (learning rate, LR). Repeating this
for a number of iterations (epochs) would constitute the most primitive form of a NN training
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Figure 3.7: Several well-known activation functions and their first and second derivatives.

procedure. This simple picture is, however, only useful for illustrative purposes as it would be
inefficient, unstable and slow.

In practice there are some improvements typically made when training a neural network:

• Mini-batching: Randomly splitting the training set into a number of mini-batches con-
sisting of only a few samples. This makes mini-batching more memory efficient, decreases
the risk of being stuck in a local minimum and in general provides a robust convergence
behavior. We chose a batch-size of Nbatch = 4.

• ADAM optimizer: The adaptive momentum-based optimizer [115] uses running averages
and second momenta of the gradients to scale the loss gradients resulting in a faster, more
stable training.

• Normalization: Normalization can substantially increase training speed of the network
by centering and scaling inputs - either along batches (BatchNorm, [116]), or layers as we
chose to do (LayerNorm [117]).

• Learning rate scheduling: A learning rate varying within an epoch has also been shown
to significantly improve training time. The “schedule”, i.e. the variation in the learning
rate can be any of a number of functions, with the linear-onecycle schedule [118] being our
choice. There, the LR is linearly increased for a fraction of the epoch, promoting exploration
of the PES. Then it linearly decreases back to the original value, while finally decreasing
even further improving exploitation.

• Loss functions: There is a host of loss functions available and the best choice depends
on the problem at hand. For example, the MSE is by definition very sensitive to outliers
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Figure 3.8: The log-cosh loss function as introduced in Eq. (3.40) for various values of β.

which can have detrimental impact on the overall model performance. The MAE on the
other hand is not smooth. We thus use the log-cosh loss [119]:

Llog−cosh =
1

Nbatch

Nbatch

i=1

β log cosh
yi − ỹi

β
, (3.40)

which smoothly changes between the MSE and MAE for small and large values, respectively.
This behaviour shown in Fig. 3.8 can be interpreted as a built-in gradient clipping, controlled
by the hyperparameter β.

Neural Network Force Fields

To date one of the most fruitful ML methods to parameterize the PES as a function of the
Cartesian coordinates are neural network force fields (NNFF, [120]). The approach Behler suggests
is adapted throughout this work. The total energy of the system, E, is expressed as the sum over
(not necessarily physical) individual contributions of each atom, ek. Each of these contributions
is obtained by passing a descriptor of the atom through the neural network - the sum then
constitutes E.

A suitable choice of descriptor needs to take into account the symmetries and invariances
inherent in the physics: translational, rotational and permutation invariance. In NeuralIL this is
achieved through the recipe provided by Kocer et al. [121]. Starting from a local density within
a pre-defined cutoff radius rc for each chemical element, J , around each atom k

ρkJ(R) =
j∈J ;Rkj<rc;j ̸=k

δ(R−Rkj), (3.41)

ensures translational invariance. This density is then projected onto an orthonormal basis set

cnlm;kJ =
R3

B∗(R−RkJ)ρkJ(R)d3R, (3.42)
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Figure 3.9: Descriptor of the 12-atom monoclinic HfO2 unitcell.

where the Bnlm(r) = gn−l,l(R)Y m
l (R̂) with the Y m

l being the spherical harmonics and gnl the
radial basis functions as described in [121]. Subsequent construction of the power spectrum

ρnl;kJJ ′ =
l

m=−l

cnlm;kJc
∗
nlm;kJ ′ , (3.43)

ensures rotational invariance. The concatenation of the ρnl;kJJ ′ for each J ′ in the set of chemical
species, as well as an additional embedding vector encoding the species of atom k itself then
constitutes the descriptor for one atom, Dk. As an example we show the descriptors for the 12-
atom monoclinic HfO2 unit cell for rcut = 5Å and nmax = 6 in Fig. 3.9. Finally the summation
of the atomic energy contributions described previously guarantees permutation invariance.

Thus the described framework, E , accepts as input (R,J,h), the positions and chemical types
of all the atoms in the configurations, as well as the cell, constructs the descriptors Dk and passes
them into a neural network, N (·; Ω) to output a prediction of the energy, Ẽ

E(R,J,h; Ω) =
natom

k=1

N (Dk; Ω) =
natom

k=1

ek = Ẽ, (3.44)

as depicted in Fig. 3.10. The corresponding log-cosh loss function, Eq. (3.40), can then be
constructed as

Lenergy =
1

Nbatch

Nbatch

i=1

β log cosh
Ei − E(Ri,Ji,hi; Ω)

β
(3.45)

The advantage of a twice smoothly differentiable loss function such as Eq. (3.38) and a framework
capable of automatic differentiation (AD), becomes clear when considering that the forces are the
negative gradient of the energies with respect to the positions, or in terms of our NNFF

∇RE(R,J,h; Ω) = −f̃ , (3.46)

and the fact that one DFT calculation provides only a single energy, but 3×natoms forces, i.e. the
amount of useable data is increased drastically when one trains on forces. With what amounts
to essentially one line of python code, the energy-based loss can be formulated as a force-based
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Figure 3.10: A schematic depiction of a full NeuralIL-type NNFF. Adapted from [16] with per-
mission of the authors.

loss:

Lforces =
1

Nbatch

Nbatch

i=1

1

natoms

natoms

k=1

β log

cosh
 3

α=1 (fikα +∇RE(R,J,h; Ω)ikα)
2

β

 , (3.47)

where the index i denotes the sample, the index k the atom and the index α the Cartesian coor-
dinate, hence enabling force-based training. As the optimization is based on the gradient of the
loss, ∇ΩL ∝ ∇Ω(∇R(E)), an activation function that is at least twice continuously differentiable
is required. In fact, the end-to-end differentiability can be exploited in numerous useful ways. It
for example grants direct access to the stress tensor through

σ =
1

V

∂E(R,J,h(I+ ϵ))

∂ϵ ϵ=0

, (3.48)

if E ensures correct transformation of the positions accounting for the changed cell. This is
advantageous e.g. for evaluation of Eq. (3.78). Likewise, higher-order derivatives and even Taylor
expansions can be obtained and their accuracy studied.

3.3.3 Data acquisition and training

In typical machine learning applications in industry, data acquisition and pre-processing come
with several challenges. Data might be scant or originate from e.g. different measurement equip-
ment, hence requiring more or less involved pre-processing. Further it might be difficult or
impossible to acquire new data in a reasonable timespan. For a NNFF most of these hurdles
can be eliminated already from the beginning and the amount of data is only limited by the
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Figure 3.11: Flowchart describing the training of a surrogate model during EHP calculations.

resources allocatable to DFT calculations. However, just because it is possible, it does not nec-
essarily mean that training a model on tens or even hundreds of thousands of configurations is
desirable or efficient. In fact, arguably the less data required for satisfying accuracy, the better.
More data still costs more, both in terms of time spent on DFT runs or training and, depending
on the chosen architecture, might even have a detrimental impact on inference speed. All these
factors would restrict scaling the model across different use cases. The most common approach of
data acquisition for the purpose of building a NNFF is subsampling ab initio molcular dynamics
(AIMD) trajectories. Subsampling is necessary as MD snapshots taken only a few fs apart are by
definition strongly correlated, which would hinder training, but it also means that a significant
portion of compute invested in obtaining the trajectory is not utilized for training.

In [19], a training strategy based on EHPs is proposed. Owing to the iterative nature of the
method, the samples obtained during EHP calculations have an inherent hierarchy. Furthermore,
the samples are uncorrelated. Starting with one iteration of Fm3̄m data, the amount of data is
increased in an approach akin to active learning, until the test-set error converges. Subsequently,
the surrogate model can be used to drive the EHP calculations. This cascading procedure is then
repeated for the P42nmc and finally the P21c phase, thereby constructing a transferable surrogate
model with a comparatively small number of DFT calculations. The framework is schematically
shown as a flowchart in Fig. 3.11. Using it, we were able to obtain a parametrization with excellent
accuracy for (at least) the three phases used in training and the additional P 4̄3m cubic phase,
requiring just ≈ 1500 structures.

A common way to visualize the performance of ML models are so-called parity plots, where
the true values are plotted against the respective predictions. As such a 45° line indicates perfect
agreement. An example of such a parity plot, showcasing the results of employing the described
training strategy to HfO2 is shown in Fig. 3.12. There, evaluations of the forces of an unseen
test set consisting of 50 each of Fm3̄m, P42nmc and P21c, as well as an additional set of data
points for the P 4̄3m phase which is completely novel to the NNFF, are visualized. Indeed, the
performance is comparable to other state-of-the-art NNFF for HfO2, while requiring significantly
less data [71].



26 CHAPTER 3. BACKGROUND

40 20 0 20 40
ftruth

Fm3m
P42nmc
P21c
P43m

f p
re

d

40

20

0

20

40

40

20

0

20

40

RMSE MAE
121 93
145 112
135 105
90 69
meV Å

(e
VÅ

)

(eVÅ )

40

20

0

20

40

40

20

0

20

40

Figure 3.12: Parity plot and errors of the test set performance for the energies for the Fm3̄m,
P 4̄3m, P21c and P42nmc phases of HfO2. Reproduced from [19].

3.3.4 Augmentations

Based on the training results and physical considerations we devised augmentations and modifi-
cations to the above-described procedure, several of which we introduce here.

Morse

Transferability typically refers to an ML model being applied to situations or problems it has
not been explicitly trained on. As such, we have already shown a facet of transferability by
achieving satisfactory performance on the low-symmetry cubic phase P 4̄3m. A different aspect is
the performance of the NNFF for environments it has not previously seen. While under normal
circumstances there is little that can be done to remedy this situation, aside from the generation
of additional training data, in some cases physical intuition embedded into the architecture can
alleviate the problem.

In particular, it is important that the NNFF properly reacts to two atoms coming into close
proximity of one another - a situation typically resulting in large repulsive forces of several hun-
dreds of eVÅ−1 and high energies. While these events are usually rare, they do occur, for example
when sampling from a high-dimensional Gaussian or doing MD simulations. It is undesirable to
evaluate a sufficient number of those configurations, as their contribution to any final result is
negligible. To test performance of the NNFF in these situations we constructed a training dataset
where all configurations with (at least one) |f | > 50 eVÅ−1 were excluded and trained a NNFF
on it. Evaluating its performance on the configurations exhibiting large forces, the predictions
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Figure 3.13: Comparison of NNFF performance on high-force configurations when not in- and
excluding Eq. (3.49), in the left and right panel, respectively.

were found to be essentially 0 eVÅ−1 as indicated in the left panel in Fig. 3.13. This is of course
unacceptable as it would result in an artifactual minimum state of bunched-together atoms and
a resulting failure of the simulation. In contrast, the prediction of any large force irrespective of
the accuracy will drive the system away from this situation thereby allowing the sampling process
to continue and providing robustness in a sparsely sampled region. In the work presented here,
this is achieved by including the repulsive part of a Morse potential [122], Vrep combined with a
smooth bump function, h:

Vrep(R) =
1

2
i ̸=j

dij × h(Rij, Rs, Rc)e
−2aij(Rij−bij)

h(R,Rs, Rc) = 1− g
R2 −R2

s

R2
c −R2

s

g(x) =
f(x)

f(x) + f(1− x)

f(x) =
0 x ≤ 0

exp − 1
x

x > 0
,

(3.49)

where the aij, bij and cij are element-specific parameters, optimized during training. These are
addressed by the corresponding atomic indices i and j. If Ji ̸= Jj, i.e. the chemical species
of the two atoms in question differ, the corresponding mixed parameters are obtained using the
established mixing rules [123]. Using this, satisfactory performance for the high-forces is achieved
even if they are not included in the training, as shown in the right panel of Fig. 3.13.

CENT

Owing to the fact that the original usecase for NeuralIL was ionic liquids [16], the question of the
importance of long-range electrostatic interactions naturally arises. Even though the descriptors
are purely local and can only describe what is within the respective cutoff, the performance was
already very good.

Based on the charge equilibration via neural network technique (CENT, [124–126]), the total
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energy was augmented by an additional term describing long-range electrostatic interactions

ECENT(R,J,h) =
natoms−1

i=1

natoms

j=i+1

erf
Rij√
2γij

Rij

QiQj +
natoms

i=1

Q2
i

2σi

√
π
, (3.50)

where the σi are taken to be the ionic radii as an approximation to the widths of the Gaussian
charge density distributions and γij = σ2

i + σ2
j . The charges themselves, Qi are obtained from

a global charge equilibration scheme, by minimizing

EQ = ECENT +
natoms

i=1

χ(Di; Ω̃)Qi +
1

2
KiQ

2
i , (3.51)

where χ is another NN, conceptually identical to N but with a reduced neuron and layer count
(16:16:16:1) described by the parameters Ω̃. It is used to predict the electronegativity of the atom
encoded by descriptor Di. The atomic hardnesses, Ki, are element-specific learnable parameters
that - similarly to the aij, bij, dij for the Morse augmentation, are trained in conjunction with the
parameters Ω and Ω̃. Using a Lagrange multiplier charge conservation, i Qi = 0, is ensured
and the minimization problem Eq. (3.51) is solved using standard linear algebra routines. It is
important to point out that, as opposed to [125], the Ω̃ were not trained such that Eq. (3.51)
leads to some partitioning of atomic charges, e.g. Hirshfeld charges [127], but rather the overall
framework is redefined as

E =
natom

k=1

N (Dk; Ω) + ECENT, (3.52)

i.e. both networks, N and χ were trained in one go to minimize the overall force loss introduced
in Eq. (3.47). This has the additional benefit of only having to calculate Di once. The automatic
differentiability provided by jax is key for a tractable implementation of this idea and the modular
architecture of NeuralIL facilitated straightforward integration.

As opposed to what might be expected, the performance improvements were marginal at best
(≈ 8% in force MAE). Similarly, the charges predicted by the scheme were unphysical with orders
of magnitude in difference to the ionic charges that are typically considered for ionic liquids [128].
This points toward an efficient screening of long-range electrostatics, effectively allowing even the
local descriptors to capture the most important contributions. Combined with the poor scaling
behavior of such a global scheme, it was decided that the benefits of an inclusion of CENT do
not outweigh the costs.

3.3.5 Alternative descriptors

While the choices described in the previous sections make up a capable architecture for a MLFF,
they are still choices and other architectures are constantly being developed. In this final part
of the background section, I want to point out some of those alternatives, briefly explain the
fundamental concepts and provide references to the interested reader.

There is an abundance of choice regarding descriptors for representing atomic environments. I
will present two archetypical approaches for atom-centered local atomic fingerprints, specifications
and improvements of which constitute a majority of currently employed descriptors. For a more
comprehensive overview, the reader is referred to [129, 130].
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Atom-centered symmetry functions

In the original formulation [9] by Behler and Parinello (BP), these descriptors consist of a number
of two- (G1

i ) and three-body (G2
i ) symmetry functions, which differ based on the choice of several

parameters, η, ζ, Rs, λ

G1
i =

j ̸=i

e−η(Rij−Rs)
2

fc(Rij)

G2
i = 21−ζ

j,k ̸=i

(1 + λ cos θijk)
ζe−η(R2

ij+R2
ik+R2

jk)fc(Rij)fc(Rik)fc(Rjk).
(3.53)

Here θijk is the angle formed by atoms i, j and k, with i in the center and fc is a cutoff function. A
concatenation of a certain number of Gµ

i , for different values of the parameters, is then employed to
construct the descriptor array Di. The precise formulation and notation has changed over the years
[131], but the core concept and, with it, the key issue, has remained the same: The description
cannot be systematically improved. Furthermore, the large number of “hyperparameters” results
in a significant amount of physically informed manual fine tuning work. Nonetheless, impressive
results can be achieved and the BP descriptors and flavors thereof are still widely used [132–135].

Smooth overlap of atomic positions

The second class of descriptors discussed here are the so-called smooth overlap of atomic positions
(SOAP) descriptors. The descriptors used in NeuralIL and described earlier can be considered
a subclass of these. The general idea is that an atomic density around an atom i is projected
onto a (truncated) set of basis functions, each of which is typically split into an angular part
described by the spherical harmonics, Ylm [Eq. (3.42)], and a radial part gn. Subsequently, the
power spectrum [Eq. (3.43)], is constructed which constitutes the descriptor.

The differences between the different SOAP-like descriptors (e.g. [108, 121, 129, 136]) arise
mainly from the radial functions used and the way the center atom’s chemical species is included
in the density. For example, in [129], the former are constructed as (orthonormalized) cubic and
higher-order polynomials, while the latter is done through an explicit weighting of the densities,
ρkJ = j∈J ;j=k wJiδ(R−Rkj).

3.3.6 Alternative architectures

Given the surge in ML-based computational chemistry studies2, an exhaustive overview of meth-
ods lies beyond the scope of this section. Thus, I limit myself to the ones described below and
refer the interested reader to available review articles e.g. [137, 138].

Gaussian approximation potentials

A widely used ML method in constructing force fields and arguably the most widespread alter-
native to NNs, is Gaussian process regression (GPR, or Kriging, [139]). The most well-known
incarnation are Gaussian approximations potentials (GAP, [108, 140, 141]).

2A Web of Science query for (machine learning AND density functional theory) yields ≈ 500 results for
2022 alone
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A Gaussian process is defined as a “collection of random variables, any finite number of which
have a joint Gaussian distribution” [139], hence it is a generalization of a multidimensional Gaus-
sian. It can thus be specified by a mean and any one of a number of covariance functions or
kernels [103, 139], G, measuring the similarity of two inputs.

As opposed to NNFFs, GAPs does not require iterative training, it is an interpolation method
where - in its simplest flavor - the coefficients can be obtained by matrix inversion. In the original
formulation the truncated bispectrum of the projection of the density on the 4D-hyperspherical
harmonics, b̃, are used as descriptors. Using ntrain tuples of descriptors and energies (b, E) as
training data, Gaussian processes are used to interpolate the PES. The energy of an unknown
structure is then obtained as [108]:

Ẽ(b̃1, . . . , b̃natoms) =
natoms

k

ek =
natoms

k

ntrain

l

αl exp

−1

2
m

b̃km − blm
θm

2
 =

=
natoms

k

ntrain

l

αlG(b̃k,bl),

(3.54)

where the index m runs over the components of the descriptors. The θl are hyperparameters
and G is the squared-distance kernel, encoding a presumed knowledge about the covariance. The
covariance matrix, C, includes two further hyperparameters, δ and σ, and its matrix elements
are given by:

Cmm′ = δ2G(b,b′) + σ2I. (3.55)

The interpolation parameters, α are finally obtained as the product of the matrix inversion of C
and the training data:

α = C−1E. (3.56)

As the prediction is probabilistic, an uncertainty estimate is provided at no additional cost. Its
usefulness, however, strongly depends on the appropriateness of the choice of G.

SchNet

Convolutional neural networks (CNN) have become the most important tool in computer vision
applications. The name-giving convolutional layers are essentially filters, typically acting on
discrete data points such as pixels. As such, it may seem surprising to find an application to a
continuous dataset such as atomic positions.

With SchNet [142, 143], a continuous-filter convolutional layer was introduced, taking the
R3natoms positional vectors of the atoms to an RF -dimensional feature map X. This is achieved
by expanding the distances between the atoms into radial basis functions (RBF), where the
number of RBFs corresponds to the filter resolution in conventional CNNs. By passing the RBF
representation through a number of dense layers, H, and combining the result with the feature
representation X of the previous layer, SchNet (starting out from an embedding of the atomic
charges in the first layer) essentially contains a “trainable” descriptor generator as part of its
architecture.
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NequIP

Neural equivariant interatomic potentials (NequIP, [144]) successfully combine a number of recent
concepts, resulting in remarkable performance.

• It is built as a message passing neural network (MPNN, [145]). This type of NN is based
on a graph representation of the atomic structure [146] where each atom i corresponds to
a node and each node carries a state, hi. The edges of the graph are assigned a feature
vector, eij as well - typically the distance between the two atoms i and j represented by the
nodes it is connecting. A message mi is then generated by a function M . Using an update
function, U , the state h̃i of the node i in the next layer, is obtained [144, 145, 147]

mi =
j;Rij<rc

M(hi,hj, eij) h̃i = U(hi,mi), (3.57)

i.e. the messages are passed between the nodes.

• As the name suggests, it is equivariant, specifically with respect to E(3) [148]. This group
comprises translations, rotations and inversions, the fundamental symmetries of free space.
While, for example, the energy as a scalar is invariant with respect to rotations, the forces
as vectors are not - they also need to rotate accordingly. Similarly all physical quantities,
be it scalars, vectors or higher-order tensors, have well-defined transformation behaviors for
the elements of E(3). An equivariant NN is constructed by ensuring only E(3)-equivariant
operations are used. In contrast to invariant NNs, where only scalar inputs such as the
power spectrum, Eq. (3.43), or the distance, Eq. (3.53), can be used, this enables including
more information-rich quantities, such as relative displacements, Ri −Rj [144].

• Finally, it also includes the idea of continuous-filter convolutions as introduced by SchNet.
In NequIP, they consist of a radial part constructed from a NN acting on a radial expansion
of the atomic distances and spherical harmonics acting on the corresponding unit vectors.
This renders the convolution filters equivariant, as required.

While the results achieved using NequIP were best in-class across a variety of benchmarks, the
message passing creates certain limitations. Every layer (i.e. every round of message passing)
essentially increases the effective cutoff resulting in poor scalability and parallelizeability of the
code. The authors of NequIP realized this and proceeded to introduce Allegro - an equivariant
neural network based on local operations [147].

3.4 Molecular dynamics

In BO molecular dynamics [73] the interatomic forces are calculated quantum mechanically (typ-
ically through DFT), whereas the nuclei are treated as classical particles moving in the potential
generated by the electrons. This means, the most simple ensemble, NV E, conserving the Number
of atoms, the Volume and the Energy of the system, can be implemented by just solving Newton’s
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equations of motion (EOM):

ẋ =
p

M
(3.58)

ṗ = f (3.59)

using any symplectic integrator, such as velocity Verlet [149]

x(t+∆t) ≈ x(t) + ẋ(t)∆t (3.60)

ẋ(t+∆t) ≈ ẋ(t) +
ẍ(t+∆t) + ẍ(t)

2
∆t, (3.61)

with an error of O(∆t2). After repeating this procedure for a number of timesteps ∆t, a set
of tuples of (t, x(t), p(t)), usually called a trajectory, is obtained. The goal of a typical MD
simulation is to obtain a trajectory, and potentially additional quantities, by sampling the phase
space according to a distribution, whose form is governed by the chosen ensemble. The NV E
acts as a starting point for moving towards more involved systems, keeping e.g. the temperature
(NV T ) or the temperature and pressure (NPT ) constant. Thus, a formal structure that enables
systematic construction of numerical solvers will prove advantageous. One such formalisation is
the Liouville-operator approach which in the following will be briefly explained on the example
of the NV E ensemble and then extended to allow for NV T and finally NPT systems [150].

Liouville-operator approach: Microcanonical ensemble

Tuckerman et al. [150–153] have used the elegant Liouville-operator-based approach in their
work. Here we will detail the methodology based on the simple NV E example, because it already
contains the key insights. The following is hence adapted from [150], for an in-depth treatment
please refer to it.

For any function a(x(t)) = a(qi(t), . . . , qn(t); pi(t), . . . , pn(t)) acting on a phase space vector
x(t) the time derivative in generalized coordinates (pi(t), qi(t)) is obtained through the chain rule

da

dt
=

n

i

∂a

∂qi
q̇i +

∂a

∂pi
ṗi . (3.62)

Combined with Hamilton’s EOM, q̇i = ∂H
∂pi

and ṗi = −∂H
∂qi

, we get the definition of the Poisson
bracket, {. . . }

da

dt
=

n

i

∂a

∂qi

∂H

∂pi
− ∂a

∂pi

∂H

∂qi
= {a,H} . (3.63)

With this, the Liouville operator, iL, can be defined

iLa = {a,H} =
da

dt
. (3.64)

A formally exact solution of the equation above is given by x(t) = eiLtx0. For a numerical treat-
ment, however, it is more convenient to split the operator described above into two contributions:

n

i

∂H

∂pi

∂

∂qi

iL1

−
n

i

∂H

∂qi

∂

∂pi

iL2

= iL. (3.65)
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iL1 and iL2 do not commute, i.e. [iL1, iL2] ̸= 0, hence exp (iL1 + iL2)t ̸= exp (iL1t) exp (iL2t).
Approximating the factorization using the Trotter therorem [154] yields an approximate time
evolution operator

eiL∆t ≈ eiL2∆t/2eiL1∆teiL2∆t/2 +O(3), (3.66)

with an error proportionate to O(∆t3) for a single step and an error O(∆t2) for the whole
trajectory. Considering now the special case of a particle of mass M , position x and momentum
p whose one-dimensional motion is governed by a Hamiltonian H = p2

2M
+U(x), we can explicitly

write down Eq. (3.66)
eiL∆t ≈ e∆t/2f(x) ∂

∂p e∆t p
M

∂
∂x e∆t/2f(x) ∂

∂p , (3.67)

where f(x) = −dU
dx

. With the direct translation technique

exp c
∂

∂x
g(x) = g(x+ c), (3.68)

as outlined in [151], the elegance of this approach will soon be clear. Application of the first “half”
of iL2, which acts on the momentum coordinate, onto the phase space vector x(t) yields:

e∆t/2f(x) ∂
∂px(t) = eiL2∆t/2 x

p
=

x
p+ ∆t

2
f(x)

.

The iL1 acts on the position coordinate, yielding

e∆t p
M

∂
∂x

x
p+ ∆t

2
f(x)

=
x+∆t p

M

p+ ∆t
2
f(x+∆t p

M
)

.

Finally, completing the momentum “translation”, we arrive at

e∆t/2f(x) ∂
∂p

x+∆t p
M

p+ ∆t
2
f(x+∆t p

M
)

=
x+ ∆t

M
p+ ∆t

2
f(x)

p+ ∆t
2
f(x) + ∆t

2
f(x+ ∆t

M
p+ ∆t

2
f(x) ).

(3.69)

Hence

x(t+∆t) = x(t) + ∆tv(t) +
∆t2

2M
f(x(t)) (3.70)

v(t+∆t) = v(t) +
∆t

2M
(f(x(t)) + f(x(t+∆t))) , (3.71)

which is precisely Eq. (3.61).
The beauty of this approach is that the problem is translated into simple, computer-interpretable
instructions, which in the end recover the velocity-Verlet algorithm.

Canonical ensemble and Nosé-Hoover chains

The above-described formalism can be extended to describe the canonical (NVT) ensemble by
connecting the system to an “external heat bath”. Several methods exist to do so, from velocity
rescaling, e.g. Berendsen thermostat [155], to the commonly-used Nosé-Hoover thermostat (NH,
[156]). The NH belongs to the class of extended system thermostats, i.e. they treat temperature
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through an additional heat bath variable, η, with its own mass-like parameter, Q, determining
the coupling strength. It was shown, however, that the NH scheme is limited in its applications,
as it fails to reproduce the proper distribution [152]. A possible solution in the form of Nosé-
Hoover chains (NHC) was presented in [157]. Here, several heat bath variables, η1, . . . , ηM , with
corresponding momenta, pηi and mass-like quantities Qi are chained together. The first is linked
to the particle momenta and ensures the correct average kinetic energy. The i + 1-th variable
then ensures a proper canonical average for the i-th one, resulting finally in the following set of
EOM for an N particle system of mass mi in three dimensions [151, 153]:

Ṙi =
pi

mi

ṗi = fi − pη1
Q1

pi η̇k =
pηk
Qk

k = 1, . . . ,M

ṗηk = Gk −
pηk+1

Qk+1

pηk ṗηM = GM

G1 =
N

i

p2
i

mi

− 3NkT Gk =
p2ηk−1

Qk−1

− kT, (3.72)

with the thermostat forces Gk. The corresponding Liouville operator obtains an additional term,
iLT

iLT =
M

k=1

pηk
Qk

∂

∂ηk
+Gk

∂

∂pηk
−

N

i=1

pη1
Q1

pi
∂

∂pi

−
M−1

k=1

pηk+1

Qk+1

pηk
∂

∂pηk
. (3.73)

To factorize this, Martyna and Tuckerman employ the Suzuki-Yoshida factorization scheme [158,
159] of order nsy with a reduced timestep δj =

wj∆t

nc
:

ei
LT∆t

2 =
nc

i=1

nsy

j=1

ei
Ltwj∆t

2nc =
nc

i=1

nsy

j=1

ei
Ltδj

2 ,

where the weights wj are constructed to cancel out lower-order error terms conceptionally sim-
ilar to e.g. the better-known Runge-Kutta methods [160, 161]. The resulting, now factorized,
operator, then amounts to [151]

ei
Ltδj

2 =

T1

exp
δj
4
GM

∂

∂pηM

1

k=M−1


T2

exp −δj
8

pηk+1

Qk+1

pηk
∂

∂pηk

T3

exp
δj
4
Gk

∂

∂pηk

× exp −δj
8

pηk+1

Qk+1

pηk
∂

∂pηk

N

i=1

T4

exp −δj
2

pη1
Q1

pi
∂

∂pi

×
M

k=1

T5

exp −δ

2

pηk
Qk

∂

∂ηk

M−1

k=1

exp −δj
8

pηk+1

Qk+1

pηk
∂

∂pηk

× exp
δj
4
Gk

∂

∂pηk
exp −δj

8

pηk+1

Qk+1

pηk
∂

∂pηk
exp

δj
4
GM

∂

∂pηk
.

(3.74)
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While this result may seem intimidating at first, in reality there are only five unique operators,
T1...5. Of these, T1, T3 and T5 are simply translation operators as in Eq. (3.68). T2 and T4 are
described as scaling operators, as their action is [150]:

exp cx
∂

∂x
f(x) = f(xec). (3.75)

Isobaric ensemble

Finally the Martyna-Tobias-Klein (MTK) equations [162] are considered. These describe an
ensemble at constant particle number, pressure and temperature (NPT ), i.e. allowing for volume
and lattice constant fluctuations. In case of the former, yet another dynamical variable ϵ = 1

3
ln V

V0
,

with a corresponding cell momentum, pϵ and mass W is introduced. With these, fluctuations in
the internal pressure

Pint =
1

3V

N

i=1

p2
i

mi

+
N

i=1

Ri · fi − 3V
∂U

∂V
, (3.76)

are controlled. Here fi = −∇U , are the forces on the atoms, resulting from the potential U . An
additional NHC is coupled to this “volume” DOF to control the kinetic energy. An integrator for
solving this system is presented in [153] and up to this point an implementation of the presented
ensembles is given in jax-md [20]. However, isotropic volume fluctuations are only really suitable
for fluid or gaseous systems, as in a solid, the cell shape is crucial for predicting materials properties
and hence a non-isotropic variant is required.

In the course of this thesis, we implemented such a variant into jax-md. This was the natural
choice as as interfaces well with our NNFF and can take full advantage of AD and JIT compilation.
The required equations and a suitable integrator were presented by Yu et al. in [163] and amount
to

Ṙi =
pi

mi

+
pg

Wg

Ri ṗi = fi − pg

Wg

pi − 1

Nf

Tr (pg)

Wg

pi − pη1
Q1

pi

ḣ =
h

Wg

pg ṗg = det [h] P(int) − IP +
1

Nf

N

i=1

p2
i

mi

I− pζ1
Q′

1

pg

η̇k =
pηk
Qk

ṗηk = Gk −
pηk+1

Qk+1

pηk ṗηM = GM

G1 =
N

i

p2
i

mi

− 3NkT Gk =
p2ηk−1

Qk−1

− kT

ζ̇k =
pζk
Q′

k

ṗζk = G′
k −

pζk+1

Q′
k+1

pζk ṗζM = G′
M

G′
1 =

Tr pT
g pg

Wg

− d2kT G′
k =

pζk−1

Q′
k−1

− kT,

(3.77)

where P is the applied external pressure, d the dimensionality, I the d× d identity matrix, h the
cell matrix, pg and Wg the corresponding cell momentum and mass. The Q′

k are the masses of
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the NHCs attached to the barostat. Pint is the pressure tensor whose elements are given by:

P
(int)
αβ (p,R) =

1

det(h)

N

i=1

(pi · êα)(pi · êβ)
mi

+ (fi · êα)(Ri · êβ)−
d

γ=1

∂U

∂hαγ

hγβ

=σ

,

 (3.78)

with êα representing the unit vectors in the Cartesian direction α and σ representing the stress
tensor. These EOMs result in yet another Liouville operator, iL = iL1 + iL2 + iLg,1 + iLg,2 +
iLT,particles + iLT,barostat, with the terms

iL1 =
N

i=1

pi

mi

+
pg

Wg

Ri ∇Ri

iL2 =
N

i=1

fi − pg

Wg

+
1

Nf

Tr[pg]

Wg

I pi ∇pi

iLg,1 =
pgh

Wg

∇h

iLg,2 = Gg∇pg ,

(3.79)

where the “box forces” are given by

Gg = det[h] Pint − IP +
1

Nf

N

i=1

p2
i

mi

I. (3.80)

The particle and barostat thermostat, iLT,particles and iLT,barostat are again solved by using the
factorization applied in Eq. (3.74). For iL1 and iL2 a matrix-vector differential equation [163]
needs to be solved by decoupling the Cartesian coordinates of vg = pg

Wg
through an orthogonal

transformation, O
λ = OTvgO, (3.81)

with λ being a diagonal matrix consisting of the eigenvalues, λα, of vg. At the same time a
symmetric Pint needs to be ensured, in order to prevent cell rotations, which effectively reduces
the DOF from d2 to d2 − d. Using this and four auxiliary quantities

Dαβ = eλα∆tδαβ

D̃αβ = eλα∆t/2 sinh (λα∆t/2)

λα∆t/2
δαβ

∆αβ = exp − λα +
1

Nf

Tr[vg]
∆t

2
δαβ

∆̃αβ = exp − λ+
1

Nf

Tr[vg]
∆t

4

sinh λα + 1
Nf

Tr[vg]
∆t
4

λα + 1
Nf

Tr[vg]
∆t
4

δαβ,

(3.82)
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the effects of iL1 and iL2 can be expressed as [163]

Ri(∆t) = Ri(0)ODOT +∆tviOD̃OT

vi(∆t/2) = vi(0)O∆OT +
∆t

2
fiO∆̃OT

(3.83)

and with that the solution of the flexible isotropic ensemble is complete.
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Figure 3.14: Temperature, pressure and volume trajectory of a 100 ps 216-atom Stillinger-Weber
molecular dynamics run at 300K as obtained with isotropic and flexible cell fluctuations.

In order to validate our implementation we chose a simple test system consisting of 216
Si atoms in the diamond structure, with the standard parametrization of the Stillinger-Weber
potential as introduced in [164] and implemented in [20]. To ensure a representative sampling of
the partition function, we choose a temperature of 300K and pressure of 1 bar. In accordance with
literature, we use a thermostat and barostat equilibration time of τT = 250 fs and τp = 1000 fs
respectively, with a timestep of ∆t = 1 fs for a total of 100 ps. We show the resulting trajectories
comparing isotropic and flexible cell fluctuations in Fig. 3.14. The thermostat and barostat
sufficiently control the temperature and pressure as indicated by the two panels on the left side.
Similarly, the volume evolution which is shown on the right hand side of Fig. 3.14 is essentially
indistinguishable between the two barostats and, perhaps even more importantly, the volume
fluctuations are comparable as well.
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Figure 4.1: Convergence of Fharm and Fcorr with iterations and samples.

4.1 Accurate first-principles treatment of the
high-temperature cubic phase of hafnia

In this manuscript, we study the Fm3̄m phase of HfO2 using EHPs. This phase of hafnia is
unstable at 0K, it is stabilized only through temperature effects (see Fig. 3.5) which in turn makes
a phonon-based evaluation of the free energy possible. As this work is based on DFT calculations,
data it costly and - particularly in the beginning - sparse. To overcome this limitation we evaluate
two approaches:

• Regularized regression methods: Specifically, we include a L1 regularization by em-
ploying the LASSO fitting procedure. It is found that convergence is not aided by this
penalty. In fact by the time the free energy converges, the amount of data has increased
to the point where a determination of the optimal regularization parameter through 5-fold
cross validation results in α = 0. We thus abandon this idea.

• Reweighting procedure: As described earlier, in Eq. (3.34), knowledge of the probability
density at the time of sampling allows reusing samples from previous iterations in the current
one. Additionally it is possible to use previously calculated samples at T1 to obtain the EHP
at T2.

The reweighting procedure leads to a significant increase in data utilization and efficiency and
based on the effective sample size, Eq. (3.36), we can determine when additional samples are
required. We obtain the correction term introduced in Eq. (3.35) directly as a weighted average
and in Fig. 4.1 we show that its convergence happens on a similar timescale as that of Fharm.
Having obtained EHPs for several volumes of the Fm3̄m phase, a quasi -effective harmonic ap-
proximation is applied using a generalized form of the stabilized jellium equation of state. With
this temperature-dependent physical properties are obtained that are in agreement with existing
experimental data: (i) the thermal expansion coefficient and (ii) the bulk modulus. However,
we underestimated the volume as compared to experiment which is atypical for a PBE based
treatment.
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Figure 4.2: Volumetric thermal expansion of the four studied phases (left) and lattice thermal
expansion of P42nmc and P21c (right) as compared to experimental data from Haggerty et al.
(Exp. 1, [39]), Tobase et al. (Exp. 2, [42]) and Hong et al. (Exp. 3, [57]).

4.2 Neural-network-backed effective harmonic potential
study of the ambient pressure phases of hafnia

As the first version of NeuralIL became available, just as the previous publication was finalized, a
natural next step was to train a NNFF using the data created during the DFT-backed study. This
enabled us to investigate not only the high-symmetry cubic phase, but also the other ambient
pressure phases of hafnia - the lower symmetry monoclinic and tetragonal one. To properly
and systematically build a potential transferable between those phases, we devised a framework
integrating the EHP-sampling procedure with the neural network training (see Fig. 3.11). Data
is added up to the point where the error is converged, from there on, the NNFF is used as a
surrogate.

To increase the robustness of the neural network, particularly in the situation of two atoms
getting close to each other, we augment its functionality with the repulsive part of a Morse
potential and in Fig. 3.13 we show this augmentation has the desired effect. PBE typically
overestimates lattice parameters, to calibrate for this, we extrapolate experimental results of
[39] from room temperature to 0K and extract an artificial isotropic pressure of pa = 4GPa.
Application of this pressure results in excellent agreement of volume and lattice thermal expansion
for monoclinic and tetragonal hafnia over a wide temperature range, as is shown in Fig. 4.2. At
an additional pressure of ≈ 4GPa, we find a transition from monoclinic to tetragonal at 2600K.

Naturally the artificial pressure made the volume underestimation of the Fm3̄m phase even
worse. This led to the inclusion of the lesser-known, lower-symmetry cubic P 4̄3m phase into the
study. While P 4̄3m hafnia exhibits a larger volume, it is still lower than experiment suggests.
Neither of the cubic phases is energetically favorable over the tetragonal phase, regardless of
the temperature or the applied pressure. Even more so, both cubic phases seem to become less
favorable with increasing temperature. We thus hypothesize that stoichometric cubic hafnia only
exists in a defect-stabilized form.
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4.3 Evaluating the efficiency of power-series expansions as
model potentials for finite-temperature atomistic calcu-
lations

Due to the cost of studying temperature-dependent behavior, the use of inexpensive surrogate
models is widespread. Many of these models rely on a local power-series expansion around the
equilibrium. Equipped with automatic differentiation tools, we select three simple models - the
Lennard-Jones cluster and fcc-solid and the five-atom silver cluster - as test benches to evaluate the
efficiency of power-series models. To obtain a differentiable potential for the silver cluster a NNFF
was parameterized. Based on the excellent agreement with DFT results, it is considered to be the
ground truth. As such we arrive at three differentiable PES expressions, V (R). Jacobian-vector
product operators, allow evaluation of a function on an arbitrary input point R and tangent
vector t without requiring the full Jacobian. With these, it is possible to recursively define a

Taylor series operator, Tk, and with it the order-n Taylor expansion,
(n)

Φ ,

Tk(R, t) =
1

k

∂Tk−1

∂R
t

(n)

Φ(R) =
n

k=0

Tk(R0,∆R), (4.1)

where T0(R, t) = V (R), R0 are the equilibrium positions and ∆R = R−R0. The performance of
these expansions is then compared to the original potential for EHP generation. As polynomials
can tend only towards ±∞ for large values of their argument, we see a significant decline in
quality with increase in temperature, i.e. displacement distance, as shown e.g. in the left of
Fig. 4.3 for the thermal expansion of the LJ solid. The root cause of this is shown in the right-
hand-side of Fig. 4.3 on the example of the silver cluster: The error in the force obtained from
a Taylor expansion increases by almost four order of magnitude, for one order in magnitude of
displacement increase. Global interpolation strategies, such as NNFFs, thus are a much better
alternative.
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Neural-network-backed molecular
dynamics study of hafnia

Introduction

Effective harmonic potentials (EHP) are an efficient tool for studying the thermal expansion
behavior of a single phase. In our previous work [18, 19], we have studied the ambient phase
structure of HfO2 in detail using EHPs. We have shown that application of an artificial pressure
of pa = 4GPa can compensate the overestimation in lattice constants typically experienced by
PBE [165] and results in excellent agreement of the anisotropic monoclinic and tetragonal lat-
tice constants with experiment [39]. Furthermore, we observe a transition from monoclinic to
tetragonal under the application of an additional moderate pressure (p = 4GPa), at 2600K, a
temperature comparable to literature results. However, as opposed to some experiments [42] or
ab initio molecular dynamics [46], we were not able to observe a transition into a cubic phase,
regardless of the temperature and pressure applied. Moreover, it was found that regardless of
temperature or pressure, the commonly assumed cubic Fm3̄m phase is energetically less favorable
than the lower-symmetry cubic P 4̄3m.

Extending on the study from [19] and using the neural network force field (NNFF) developed
therein as a starting point, we decide to perform molecular dynamics (MD) simulations in the work
presented here. In contrast to EHPs, MD simulations offer the possibility of studying dynamical
phenomena and metastability. Furthermore, while EHPs require knowledge of the precise crystal
structure, this restriction is lifted in MD. As such, MD offers much more flexibility to study
phase transitions. Previously, however, MD studies for HfO2 were limited. Existing classical
force field parametrizations of hafnia are sparse [166–169], with the few existing being inaccurate,
or tweaked towards the amorphous phase [169]. The computational demand of ab initio MD
on the other hand enacts severe restrictions on system size and timescale [46]. Recently, a first
machine-learning-based investigation of HfO2 was enabled by DeepMD [71]. The NNFF developed
in it was trained on over 21 000 DFT calculations, hence its construction requires a significant
investment of resources.

Here, we describe a NNFF parametrization of HfO2, obtained using a NeuralIL-type NNFF
[16] and requiring less than 2000 DFT evaluations for construction. As NeuralIL is built on
Google’s highly efficient automatic differentiation framework jax [15], it integrates exceedingly

43
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Figure 5.1: Analysis procedure of the trajectory of HfO2 lattice parameters at 2000K: Starting
from the raw data (left), a moving average is applied (middle) before sorting the lattices at each
timestep before obtaining the averages (right).

well with jax-md [20], a MD tool also built using jax, and thus allows deployment of the code
seamlessly on GPUs. We furthermore extend the NPT formalism implemented in jax, which
was previously limited to isotropic cell fluctuations, to include flexible cell shape changes, hence
allowing the direct study of phase transitions.

Method
We reviewed the methodology of flexible-cell NpT MD in Section 3.4. Based on the implementa-
tion of isotropic cell fluctuations already covered in jax-md [20], we extend the code to include
flexible cell changes as well. The implementation is validated by comparison to the isotropic case
in Fig. 3.14. The NNFF was parameterized using the data obtained and methodology described
in [19] (see Section 4.2), i.e. a cutoff radius of rc = 5Å, an embedding dimension of 4 and a total
of 128 basis functions. The architecture consists of 128 : 64 : 32 : 16 : 16 neurons.

To study HfO2 we successfully ran flexible-cell MD calculations for a 96-atom supercell at
temperatures ranging from 500K to 2500K at P = 1bar, with a timestep of ∆t = 0.1 fs and
coupling constants of τT = 50 fs and τp = 500 fs used to construct the mass-like quantities, Qk,
Q′

k and Wg for the thermostat and barostat respectively. Of the 175 ps trajectory obtained for
each temperature, the first 5 ps were considered relaxation time.

Preliminary results
In the left panel of Fig. 5.1, we show a trajectory as obtained using the above-described procedure
for 2000K. When averaging naively over the trajectory of cell parameters, as is indicated by the
dashed grey lines in the middle panel of Fig. 5.1, one might conclude that the material is indeed
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presenting a cubic phase. However, as can be clearly seen in Fig. 5.1, this is only an artifact
as the elongated side is oscillating between a, b and c, resulting in essentially equal averages for
the three sides. Hence, we apply a moving average of 500 fs to limit the impact of instantaneous
oscillations, before sorting the thus obtained cell parameters at each timestep. From these sorted
values we then obtain the averages as indicated for 2000K by the dashed grey lines in Fig. 5.1
and shown for all the studied temperatures in Fig. 5.2.

From the bottom panel in Fig. 5.2, we can clearly see a transition from monoclinic to a cell
consisting only of 90◦ angles, i.e. a collapse of β, that takes place from 1500K to 2000K. While
the top panel could be seen as an indication for an orthorhombic phase, the fluctuations are
quite large (see Fig. 5.1) and the supercell size is relatively small, which is known to lead to an
extended phase transition window. More in-depth studies of the atomic arrangements and with
a larger supercell could shed light on whether the material is indeed exhibiting an orthorhombic
phase, or is approaching tetragonality as suggested by the EHP studies and experiment. The
results shown here were obtained at ambient (i.e. 1 bar) pressure, which as already discussed
in Section 4.2 results in a PBE-typical overestimation of the lattice parameters with regards
to experiment. With the additional flexibility provided by MD it cannot be assumed that the
application of pressure just results in a compression of the lengths and it does not impact e.g.
the relative lengths too. In general, however, the agreement between MD and EHP can be
interpreted as reasonable, especially if the unpredictable behavior during a phase transition is
taken into account.

We do want to note, that these averages depend on a choice of order - had we not sorted the
lattice parameters, the data point at 2000K would suggest a cubic material. To better understand
the behavior of the structure, a metric is required that does not depend on e.g. the identification
of the “long” axis. We thus introduce a three-dimensional aspect ratio, ℵ, defined as

ℵ =
p

pcub
p =

Vi

Ve

, (5.1)

where Vi (Ve) is the volume of the largest (smallest) sphere that can be inscribed (exscribed) in
the cell (i.e. pcub = 1√

3
) and normalize it to a cubic phase. Thus ℵ = 1 if the structure is cubic.

We show the result in Fig. 5.3 and judging from this metric, we can, on the one hand, confirm
a phase transition taking place at 2000K and, on the other hand, find an indication that the
material seems to be indeed approaching a cubic phase. It is, however, unclear, if cubicity can be
reached before melting.

Trying to go to temperatures higher than 2500K originally led to failures in the MD run.
At 2700K, we experienced clustering of atoms of the same type, an environment not present in
training at all. After these clusters started appearing, we saw a rapid expansion of the cell and a
subsequent failure. To eliminate this behavior we augment the training set by randomly sampling
an additional 200 structures from the database already curated, flipping the atomic species of
each atom with a probability of 50%, obtaining the respective energies and forces through DFT
and subsequently retraining the NNFF. We then repeat the simulation at 2700K using the new
potential and an enlarged supercell of natoms = 768. No clustering is observed and the results
are shown in Figs. 5.2 and 5.3 in the area shaded in grey. Linearly extrapolating the four last
data points of ℵ would suggest a cubic transition at approximately 5800K a point at which the
material would have surely melted already.
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Figure 5.2: Lattice parameters as a function of temperature as obtained using MD (markers)
compared to EHP results of the monoclinic (dotted lines) and tetragonal (dashed lines) phase.
In the bottom panel the cell angles from MD are shown. The shaded area indicates a different
potential and supercell size used (see text).
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Figure 5.3: The 3D aspect ratio, ℵ, as a function of temperature. The shaded area indicates a
different potential and supercell size used (see text).
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Outlook
When extracting physical statements from the trajectories, it is key to assert when the NNFF
is interpolating properly and when it is outputting nonsensical results due to a lack of training
in an area. Introduction of an uncertainty metric, e.g. a committee-based approach, could
alleviate situations similar to the observed clustering and provide guidance on the network’s
performance. Likewise, the impact of larger supercells on the temperature-dependent behavior
and phase transitions temperature windows, as well as the application of an artificial pressure pcorr,
as was done in the EHP-based manuscript in Section 4.2, need to be assessed. Furthermore, MD
grants access to a rich selection of physical quantities through fluctuation formulas and Green-
Kubo relations which are worth exploring. While promising, this work would go far beyond
the scope of this thesis: We do, however, plan on targeting these goals and extending on the
preliminary work shown here in the near future.





Chapter 6

Conclusion and Outlook

Conclusion

In this thesis methods to capture temperature-dependent behaviors of materials were developed,
and employed on HfO2. Based on an effective harmonic potential treatment in combination with
a reweighting scheme, the temperature-aided stabilization of the soft mode in Fm3̄m hafnia was
shown using density functional theory. Furthermore, the convergence behavior of the anharmonic
correction term, as obtained by importance sampling, was found to be equivalent to the harmonic
free energy contribution.

Building on the data obtained during this study, a enhanced NeuralIL-type neural network
force field was trained and iteratively improved, by utilizing the inherent iterative nature of
effective harmonic potentials. With this parametrization exploration of the phase stability and
temperature-dependent behavior of four phases of HfO2 was made possible. After accounting for
the lattice overestimation induced by the PBE functional by introducing an artificial pressure,
excellent agreement of the lattice thermal expansion of monoclinic and tetragonal hafnia with
experiment was observed across a wide temperature range. Similarly, a free-energy-based phase
transition from monoclinic to tetragonal was seen at 2600K. In stark contrast, neither the
Fm3̄m phase, nor the lower-energy and lower-symmetry P 4̄3m phase were commensurable with
experiment and irrespective of the applied pressure or temperature a tetragonal-to-cubic transition
was not found.

To further explore the (lack of) cubicity in HfO2, a preliminary molecular dynamics study was
started. This required implementation of a flexible cell NpT-extension to jax-md. First results
are in agreement with those obtained using effective harmonic potentials, although the work is
far from finished.

Finally, the necessity of carefully assessing the validity and limitations of employed methods
was made clear in a study exploring the anharmonicities in Lennard-Jones solids and clusters. In
particular simple harmonic approaches and power-series-based surrogate models are shown to have
severe shortcomings when used in inappropriate situations, constituted by e.g.high temperatures.
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Outlook

Owing to the developments of the recent years and the challenges lying ahead of us, it can be
expected that atomistic simulations will only continue to increase their pace of evolution. With
machine learning as a catalyst, a whole new world of possibilities has been made available, the
extent and impact of which I believe is not yet in sight. It truly is an excellent time to be
working in this field as numerous competing ideas are appearing while a clear “winner” is yet to
be determined. As such there is an abundance of methods, topics and fields one could dive into.
Here I want to present a vision-board of topics that appear interesting to me.

Hafnia

Given the fact that not all our initial goals for HfO2 were achieved, and the many more open
questions that exist regarding this material, it is only natural to further pursue hafnia. Indeed,
as pointed out in the preceding chapter, a future manuscript is already being planned. However,
there is still much more to achieve: From the impact of defects or alloying HfO2, the exploration
of orthorhombic and ferroelectric phase stability, to interfaces and their induced strains - hafnia
provides a multitude of scientifically interesting issues. Machine learned potentials equipped with
an uncertainty metric that integrate well with molecular dynamics or effective harmonic potential
codes can enable a more thorough and accurate investigation than ever before and in the future
perhaps even the creation of a true in silico materials twin. The road to achieving this is not
clear cut and there are several possibilities of advancing current methodology towards that goal.

Machine learned potentials

With the ideas introduced in NequIP and Allegro [144, 147], its successor in spirit, the group
at Harvard university surrounding Boris Kozinsky have enabled ab initio levels of accuracy for
calculations as large as 100 million atoms. Of course this still requires significant amount of
computer time but with the large-scale GPU projects1 currently being undertaken in the US
and all over the world, those demands should not pose a significant obstacle in the near future.
Thus, I think the usage of MLFFs will become even more widespread in the next years. Different
methods should be explored, compared and benchmarked using a standardized framework and
dataset. Owing to its architecture and functional programming style, NeuralIL lends itself to
experimentation and continuous improvement. Already in the past we have shown that the
modular style can be exploited to quickly implement and test novel concepts introduced in the
much broader field of machine learning and continuing this work to further improve NeuralIL’s
capabilities is an exciting proposition.
One aspect I did not touch upon is uncertainty estimates. With GAPs those are essentially built
into the model, but with NNs it is also possible to obtain them at a reasonable cost. There
are several promising methods, ranging from seemingly trivial ensembling techniques based on
bootstrapping or differently seeded initial weights, to more involved concepts like heteroscedastic
loss functions [170]. The latter can, in a drastic simplification, be understood as a way of allowing

1e.g. https://www.nersc.gov/news-publications/nersc-news/science-news/2021/berkeley-lab-targets-exascale-
with-perlmutter-and-nesap/



51

the NN to compensate for inaccurate predictions in the evaluation of the loss: an uncertainty.
Implementing, validating and finally exploiting those uncertainty metrics would increase resilience
and reliability of NNFFs across the board and should, in my opinion, be a priority.

Automatic differentiability

Automatic differentiability (AD) has so far only been sparsely used in atomistic simulations, aside
from making machine learning implementations more tractable. This will likely change in the
future. Combining uncertainty metrics with AD and an appropriate sampling scheme to perform
active learning based on the uncertainties is a direction worth pursuing [171]. This approach
would allow investing only in those DFT calculations that grant the largest improvements. In
turn, this could open up efficient exploration and model construction of complex and hard-to-
sample configurations, such as interfaces and grain boundaries, further closing the gap to classical
MD use cases.
This is not the only area of potential impact of AD: With jax-md [20] it is possible to obtain
essentially fully differentiable molecular dynamics trajectories. Some of the implications of this
are explored in e.g. [172], but I am convinced that we have not yet grasped the potential impact
of this development. Going even further, one could imagine a fully featured DFT code based on
an AD framework. While there are some first exploratory studies [173], this idea is still in its
infancy.

Effective harmonic potentials

Effective harmonic potentials are a versatile and useful tool for studying phases and their behav-
iors, and as we have shown, generate data for potential construction. As such it would prove to be
a promising undertaking to integrate EHP generation into a jax-based framework that interfaces
well with NeuralIL. Combining this integrated framework with an active learning scheme, would
allow not only obtaining a useable NNFF and temperature-dependent phonons in one shot, but
also ionic relaxation based on free energies.
Moreover EHPs rely on sampling from a real-space probability distribution corresponding to
a harmonic potential, a restriction that could be lifted by employing normalizing flows [174].
Conceptually this would even allow sampling directly from a canonical distribution and obtaining
thermodynamic averages based on these samples alone, although an intermediate formulation
could still rely on a surrogate potential and a Gibbs-Bogliubov-based free energy minimization.
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Accurate First-Principles Treatment of the High-
Temperature Cubic Phase of Hafnia

Sebastian Bichelmaier, Jesús Carrete, Michael Nelhiebel, and Georg K. H. Madsen*

1. Introduction

One of the biggest drawbacks of density functional theory (DFT)
calculations is the lack of temperature-induced effects. However,
due to the exponential growth in computing power and continu-
ous methodological developments, the previously prohibitively
expensive calculations necessary to remedy that shortcoming
are becoming viable for the investigation of new materials.
Consequently, the inclusion of temperature is a prominent
theme in many current computational efforts.[1–8]

In the present study we focus on hafnia, HfO2, which has a
multifaceted phase diagram[9] and numerous industrially

relevant applications, ranging from a
high-κ gate dielectric for semiconductors
in its amorphous[10] and (more recently
suggested) tetragonal phase,[11] to a ferro-
electric in its orthorhombic states[12] for
e. g. nonvolatile memory applications.[13]

An accurate DFT treatment of its
temperature-dependent behavior has
proven difficult to achieve in previous
theoretical efforts.[14] In the simplest
approach, the effect of temperature is
included by means of the harmonic approx-
imation (HA), where the second-order
interatomic force constants (IFCs) are
obtained by applying small displacements
and mapping the corresponding forces
induced by them. However, in the case
of structures governed by anharmonic
potential energy surfaces (PES), the HA
might yield imaginary frequencies, thus

indicating mechanical instability, even when experiments con-
firm the existence of those structures.

Ab initio molecular dynamics (AIMD) approaches[15] can, in prin-
ciple, treat such temperature-stabilized structures, but obtaining the
free energy of reasonably complex systems through thermodynamic
integration proves to be a resource-intensive task and quickly
becomes intractable. Moreover, AIMD treats the nuclear motion
in a completely classical fashion, and therefore cannot capture effects
such as zero-point motion, which can be relevant, e.g., accurately
describing the vibrations of light and strongly bonded atoms.

An emerging category of alternatives to AIMD can be labeled
as effective harmonic potentials (EHP). The idea goes back to
1955[16] and in essence, involves determining the best HA
for the part of the PES which dominates nuclear motion.
Temperature-dependent contributions to the free energy are then
included using independent quantum harmonic oscillators
based on these EHPs. Especially at lower temperatures, EHPs
have proven to be a rich starting point for understanding
temperature-dependent behavior using ab initio methods and
have prompted various implementations and formulations of
the underlying theory.[3,6,7,17–20] The various implementations
differ in how the PES is sampled and how the HA is determined.
The options include sampling along the HA eigenvectors,
stochastic sampling, and molecular dynamics trajectories.

The term accounting for the deviation between the EHP and
the true PES is likely the least well-determined in an actual EHP
implementation. At lower temperatures, it can often be neglected
but it is a key quantity at higher temperatures.[20] In the present
study, we focus on the high-temperature cubic (Fm3m) hafnia
phase (c-HfO2), which is an example of a temperature-stabilized
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HfO2 is an important high-k dielectric and ferroelectric, exhibiting a complex
potential energy landscape with several phases close in energy. It is, however, a
strongly anharmonic solid, and thus describing its temperature-dependent
behavior is methodologically challenging. An approach based on self-consistent,
effective harmonic potentials (EHP) to study the potential energy surface (PES) of
anharmonic materials is proposed. The introduction of a reweighting procedure
enables the usage of unregularized regression methods by efficiently utilizing the
information contained in every data point obtained from density functional theory.
The approach is detailed and tested on the example of the high-temperature cubic
phase of HfO2. It is demonstrated how the correction term for the deviation
between the EHP and the true PES can be calculated directly from the same
sampling used for determining the EHP. The calculated temperature-dependent
physical properties are in agreement with existing experimental data, thereby
opening for the predictive treatment of HfO2 over a wide temperature range.
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structure where the small displacement HA yields imaginary
frequencies.[14] We show how the use of reweighting in combi-
nation with unregularized regression can be employed to obtain
the temperature-dependent EHP. Special attention is given to the
deviation between the EHP and the true DFT PES. We demon-
strate how this correction term can be calculated directly from the
same sampling used for determining the trial EHP. We find a
good agreement with available AIMD calculations and experi-
ments, thereby opening for the predictive treatment of HfO2 over
a wide temperature range.

2. Method

2.1. Background

A system described by a Hamiltonian bH is in a state of thermal
equilibrium at constant volume, temperature T, and number of
particles when its free energy

F½bρ0 ¼ Trðbρ0 bHÞ þ kBTTrðbρ0 logbρ0Þ (1)

is at a minimum. This equilibrium state is described by a partic-
ular quantum mechanical density matrix, bρ0, which, were if
known, would provide access to the whole thermodynamics of
the system. However, it is impossible to solve this problem
exactly for all but trivial model systems.

The EHP can be formulated as a variational problem,[20,21]

where a trial density matrix, bρ, which exactly describes the statis-
tics of a corresponding trial Hamiltonian, bℋ, is introduced. bℋ
differs from the true Hamiltonian bH only in the form of the
approximate potential energy operator, bV, as opposed to the exact
potential energy operator, bV . Minimizing the free energywith respect
to the trial density matrix is guaranteed by the Gibbs–Bogoliubov
inequality[22] to provide an upper bound on the free energy[20,21]

F½bV ,bρ0 ≤ ℱEHP ¼ F½bV,bρ þ Tr½bρðbV bVÞ ¼ Fharm þ Fcorr

(2)

In the HA, the trial potential is parameterized as

VðuÞ ¼ 1
2
uTΦu (3)

in terms of the mass-weighted displacements,
u ¼ M 1=2ðr r0Þ, with ion masses M, from the minimum-
energy configuration and the second-order force constants, Φ,
with eigenvalues and eigenvectors ω2

λ ελ, so that

Φ ¼
X
λ

ω2
λελ ⊗ ελ (4)

Within the HA, the projection onto real space of the trial
density matrix can be expressed in closed form

ρðuÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ3NjCj

p exp
1
2
uC 1u (5)

The covariance matrix C can be obtained from the aforemen-
tioned ωλ and ελ[23]

C ¼ ℏ
2
ffiffiffiffiffiffiffiffiffiffiffiffi
MiMj

p X
λ

1

ωλ tanh
ℏωλ
2kBT

ελ ⊗ ελ (6)

Likewise, the expression for the harmonic contribution to the
free energy, Fharm, is given by[23]

FharmðTÞ ¼
X
λ

ℏωλ

2
þ kBT log 1 exp

ℏωλ

kBT
(7)

Fharm depends directly on the temperature T and indirectly on
the harmonic trial potential through ωλ [Equation (4)]. The opti-
mal trial potential thus depends on the temperature. Ignoring
Fcorr [Equation (2)] and the temperature dependence of the
effective potential results in the well-known quasi-HA.

2.2. Temperature-Dependent Effective Potentials

We implement the search for the optimal EHP by approximating
the real-space density matrix by means of canonical importance
sampling and treating the interdependence of ℱEHP and Φ as a
self-consistent problem. When self-consistency is reached, this
corresponds to minimizing ℱEHP.

[7]

The starting point is the second-order force constants and
corresponding potential, Vð1Þ, obtained through small displace-
ments. From the eigenvalues and eigenvectors and the tempera-
ture of interest the associated trial density, ρð1Þ, is obtained
through Equation (5) and (6). We replace the imaginary square
roots of possible negative eigenvalues from intermediate steps
with their modulus. From this probability density, the first set
of displacements, Sð1Þ, is drawn. A new EHP is obtained by cal-
culating the potential energies and forces corresponding to the
displacements using DFT and finding the parametrization of the
force constants in Equation (3), which best represent the relation-
ship between forces and displacements, as will be discussed in
the following. The iterative process then progresses by construct-
ing a new density matrix using Equation (6) and (5). To aid con-
vergence, the new trial density matrix, ρðkÞ, is obtained through a
Pulay mixing scheme[24] with a memory of n ¼ 5 steps and a
mixing parameter of α ¼ 0.1, as commonly used. A new set
of displacements is now drawn and the process continues until
convergence is reached.

To efficiently use all the data obtained fromDFT, the reweight-
ing factor[17] is introduced

wðg!kÞ
m ¼ ρðkÞðuðgÞm Þ

ρðgÞðuðgÞm Þ
(8)

Thereby displacement vectors, uðgÞm , belonging to a set drawn
in a previous iteration, SðgÞ, and their corresponding forces and
potential energies can be included as if they belong to the current
set, SðkÞ. Using the reweighting factors significantly increases the
amount of available data and allows using an unregularized fit-
ting procedure to obtain the force constant matrix. To simplify
the notation, we introduce the stiffness tensor, whose elements
are defined as

www.advancedsciencenews.com www.pss-rapid.com
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Ψαβ
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
MiMj

q
Φαβ

ij (9)

The trial potential for iteration k is found by finding the force
constants which minimize the weighted sum of the least-squares
deviations from the calculated forces fm, i. e.X
g

X
m

wðg!kÞ
m kf ðgÞm þΨuðgÞm diagðMÞ 1

2k22 (10)

In Figure 1, the free energy evaluated according to
Equation (7) is shown as a function of the iterations until con-
vergence for the 0K DFT-relaxed structure using a temperature
of T ¼ 2500K. Typically the convergence criterion of

kℱðg 1Þ
EHP ℱðgÞ

EHPk < 2.5meV fu 1 for three successive iterations
is reached in 10 15 iterations when five structures are added
per iteration for the initial temperature point, totaling 50–75 DFT
runs.

Alternatively, a loss function involving a penalty

X
g

X
m

wðg!kÞ
m kf ðgÞm þ ΨuðgÞ

m diagðMÞ 1
2k22 þ αkΨk1

 !
(11)

can be defined. This is known as the LASSOminimization target
function. The α parameter determines the strength of the L1 reg-
ularization and promotes sparsity of the force constant matrix.
Regularization is common in machine learning tasks and can
be a computational advantage.[25] However, there is no a priori
reason that Ψ should be particularly sparse. Thus, a process
called fivefold cross-validation [26], during which the available
data is split into five complementary subsets, is performed at
every step of the iteration. For each value of α in a predefined
range, Equation (11) is then minimized for every unique choice
of four of those subsets. The resulting models are then evaluated
on the corresponding set left out in the minimization. Through
this procedure, the regularization strength can be tuned to pro-
vide the model which generalizes best, i.e. has the best perfor-
mance on said left-out set.

In Figure 1, we show the convergence behavior at T ¼ 2500K
for the 0K DFT-relaxed structure. Notably, the α parameter
quickly approaches zero as the calculation progresses. This is
understandable as regularization is typically applied when fitting

samples that insufficiently cover the sample space. Thus, as the
amount of data points available for fitting increases, every fold in
the cross-validation procedure will be more and more equally
representative of the rest, so the L1 penalty will actually hinder
minimizing Equation (11) and will be forced toward zero by the
algorithm itself, effectively resulting in Equation (10).

We choose the unregularized least-squares approach
[Equation (10)] for two reasons: We are, for all but the first
few iterations, confronted with an overdetermined system, as
only a total of 52 independent force constants remain after con-
sidering symmetry and the cut-off and every sample provides 576
force–displacement pairs. Furthermore, if a nonzero L1-penalty
was indeed used throughout the calculation, the force constants
obtained would not fulfill the property of minimizing the free
energy once self-consistency is reached.[7] As argued previously,
the regularization parameter must approach zero, because the
coverage increases with every iteration. While we would presum-
ably not have arrived at an artificially increased free energy, using
LASSO only provides a minor speed up, while introducing
additional uncertainty in the results.

The correction term, Fcorr, has previously been calculated by
representing the DFT PES in a simpler form[17,20] or by using the
trajectory obtained from an AIMD run.[6,27] We calculate Fcorr

directly from the DFT potential energies obtained from the same
sampling as used for determining the trial EHP, Equation (10),
as a weighted average

Fcorr ¼
1
W

X
g

X
m

wðg!kÞ
m VðuðgÞm Þ VðkÞðuðgÞm Þ

h i
(12)

where W is the sum of all the weights. Similar to the EHP the
reweighting allows using all DFT calculations to obtain Fcorr and
Figure 1 illustrates that the convergence is also comparable,
meaning that convergence of ℱEHP is reached within 10–15
iterations.

It is straightforward to extend the formalism described earlier
to reuse samples drawn at temperature T1 for a different
temperature T2, by building reweighting factors accounting
for this. This provides a fast way to calculate force constants
at temperatures near T1. At temperatures more different from
T1 the sample set might not be adequate anymore, necessitating
augmentation by additional DFT runs. As an example, we can

2

Figure 1. Convergence of the free energy contributions with iterations for the exemplary case of the 0 K density functional theory (DFT)-relaxed structure,
V0 ¼ 32.62Å3, at T ¼ 2500 K. The upper plot is for the least-squares penalty function, Equation (10) and the lower for LASSO, Equation (11). The total
free energy,ℱEHP, and the harmonic contribution, Fharm, are plotted according to the scale on the left-hand side y-axis and Fcorr with respect to the y-axis
to the right. In every iteration, five new structures are added. In the inset, the decreasing optimal regularization strength, α, is shown.
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mention that using the displacements and forces obtained for
T1 ¼ 2500K, shown in Figure 1, at T2 ¼ 2100K, but reweighted
according to Equation (8) results in convergence after adding
only two additional iterations. Once convergence has been
obtained for a mesh of temperatures, free energies can be
obtained at intermediate temperatures without additional DFT
calculations. As a measure of when those additional calculations
are necessary, we use the effective number of samples,[28,29]

wðkÞ
eff ¼

P
g
P

m wðg!kÞ
m

h i
2

P
g

P
m

wðg!kÞ
m

h i
2 (13)

which has also been widely used in other sampling strate-
gies.[30,31] As can be observed in Figure 2, the number of effective
samples is indeed a useful metric for the completeness of the
data at a given temperature. However, it would be inefficient
to augment the data if the poorly sampled regions are small
and the surrounding points are described by the existing samples
well enough, as is the case in the situation shown in the inset in
Figure 2. To prevent this, we apply a smoothing spline, as imple-
mented in ref. [26] weighted with the effective samples to
ℱEHPðTÞ. This ensures smoothness of the free energy as a
function of temperature, by a weighted interpolation according
to the effective samples and hence avoids artifactual oscillations
in later results.

2.3. Computational Details

We use the plane-augmented-wave (PAW) formalism[32] in the
frozen-core implementation of VASP[33] with the valence config-
urations 5p 6s 5d for Hf and s2p4 for O and the recommended
cutoff of 600 eV. The force calculations for the phonons are per-
formed on a supercell, consisting of a 4 4 4 repetition of
the primitive cubic unit cell, using just the Γ-point. We use pho-
nopy[34] with the nonanalytical correction described in ref. [35]
for obtaining the initial small displacements force constants. The
fitting of the force constants [Equation (10) and (11)] is done

using scikit-learn[26] and the cluster formalism established in
ref. [36] given a pre-defined cutoff rcut ¼ 7Å.

We perform the steps outlined earlier for various deforma-
tions of the 0K DFT-relaxed structure; we include volumes from
V ¼ 30.70 to 37.77Å3 fu 1, as well as various temperatures
ranging from 2100 to 3100K. To arrive at a simple but general
analytical expression we then fit the free energies using

ℱEHPðV ;TÞ ¼ c0 þ
c1

V1=3
þ c2
V2=3

þ c3
V

(14)

achieving an average deviation between the actual and fitted free
energy of less than 7meV fu 1, which corresponds to less than
3meV atom 1. This allows us to find the equilibrium lattice
parameter and volume at every temperature point of interest with
a high accuracy.

3. Results and Discussion

We settle on a temperature range from 2100 to 3100K to ensure
full coverage of the stable range of c HfO2, 2800–3100 K,[37]

with the upper bound close to the melting temperature. To
accurately treat this temperature range, we perform an initial
self-consistent run at T1 ¼ 2500K, augment it with samples
at T2 ¼ 2100K and, guided by the effective sample size,
Equation (13), includes T3 ¼ 3000K for some deformations.

As an example, we show the phonon band structure of the 0K
DFT-relaxed structure in Figure 3, as obtained using small dis-
placements and using the EHP at elevated temperatures. As can
be seen c HfO2 shows instability in the small-displacements
(0 K) phonon spectrum at X ¼ ð0, 1=2, 1=2Þ in the Brillouin
zone, which in, the structurally similar, ZrO2 has been linked
to the cubic-to-tetragonal phase transition.[38] Within the studied
temperature range, we see a continuous hardening (shown in the
inset) of said mode indicating that temperature-induced anhar-
monic effects are stabilizing this phase. For the additional
volumes that are studied ( 6 to 16% volume changes), we find
a similar behavior and can report stable phonon spectra for the
whole volume and temperature range.

Figure 2. Free energy and effective samples as a function of temperature
atþ2% deformation, i.e., a volume of 34.62 Å3. In regions where the effec-
tive samples, as shown by the bars in the background, are low, the free
energy shows discontinuous behavior. The brown line is a smoothing
spline using the effective samples as weights, whereas the blue points
are the data points.

Figure 3. Phonon band structure and density of states of c HfO2 of the
0 K DFT-relaxed structure. The soft mode at 0 K indicated by the negative
frequencies at X in blue continuously hardens as temperature increases
and the structure becomes stable.
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The absence of imaginary phonon frequencies makes it
possible to calculate the vibrational contribution to the free
energy according to Equation (7). Figure 4 depicts the volume
dependence of the free energy at four different temperatures.
Equation (14) captures the behavior of c HfO2 across the stud-
ied temperature range and as expected the equilibrium volume
increases with temperature. Interestingly, Fcorr not only shifts the
curve to lower energies, 100meV fu 1, but it also changes the
positions of the minima. As expected, Fcorr gets larger with
temperature, i.e., with increasing anharmonic contributions to
the relevant parts of the PES. As a result, the contribution gen-
erally favors larger volumes and can be expected to be important
for a correct prediction of thermal expansion.

The role of the correction term becomes even more apparent
when looking at the thermal expansion in Equation (5).
Comparing the unit-cell volume of c HfO2 with experimental
and theoretical results from the literature[9,39] illustrates how
neglecting Fcorr will provide underestimated unit-cell volume
in situations where anharmonicity contributes a significant
portion of the total energy. Such situations can arise when
describing materials that are inherently anharmonic, or generally
for materials at elevated temperatures. HfO2 is in our study
subject to both of these circumstances and thus any description
not taking the anharmonic correction into account is bound to
lead to inaccurate conclusions.

When Fcorr is included, the offset in the thermal expansion
coefficient is reduced to about 0.5 Å3, or 1.2%, Figure 5. The
remaining offset can be due to limiting the trial density matrices,
ρ, in Equation (2) to those which can result from a harmonic
model Equation (3). However, as the offset is constant with tem-
perature it is likely not the result of the neglected higher order
force constants as this would entail additional temperature
dependence. We argue instead that it can be attributed to inher-
ent approximations of the chosen DFT functional. It is worth not-
ing that the AIMD study reported in ref. [39] (employing the same
PBE functional) also finds slightly lower volumes than the experi-
ment. The calculated thermal expansion coefficient [see inset in
Figure 5] is approximately constant, 3.3 10 5 K 1, until an

increase in thermal expansion can be observed as themelting tem-
perature, Tm 3100K, is approached. The thermal expansion
coefficient is not impacted by a small constant offset in the vol-
ume, and our results are within or very close to the uncertainty,
indicated by a red bar, of the experimental average over the range
from 2800 to 3100 K, 4ð1Þ 10 5 K 1, obtained by Hong. et al.[39]

The volume data from Tobase et al.[9] would result in αV ¼ 4.39
10 5 K 1 over the region of 2823–3043K. However, due to the
large uncertainty in the volume measurements, the error bar
would span about 8.3 10 5 K 1, and hence it is not shown in
the graph.

Finally, we report the temperature dependence of the
c HfO2 bulk modulus. Due to the fact that the second deriva-
tive of Equation (14) with respect to the volume is not linear, the
bulk modulus obtained by our method is naturally dependent on
the volume at a given pressure at which it is evaluated. Evaluated
at 0GPa we find a bulk modulus of B0 ¼ 180GPa, which
decreases to 120GPa over the range of 2100 to 3100K. This dras-
tic softening is expected as we are approaching the melting point
of the material. In their recent study, Irshad et al.[40] measured
the bulk modulus of pressure-stabilized, nanocrystalline
c HfO2 at ambient temperature, finding B0 ¼ 242ð16ÞGPa.
Applying a small pressure of 4GPa (corresponding to a volume
change of 1.5% ) to our result, yields a comparable bulk modulus
of about 210GPa at 2100K, decreasing to 170GPa at 3100K.

4. Conclusion

The behavior of c HfO2 in the high-temperature regime was
studied using EHP. At elevated temperatures, the unstable mode
exhibited by the cubic structure hardens, resulting in a stable
phonon spectrum. It was shown that, without consideration of
the anharmonic correction term [Equation (2)], an accurate
description of this phase is not possible and it is conjectured that
this term is crucial throughout a broad spectrum of high-
temperature materials studies. The thermal expansion behavior
reported, αV ¼ 3.3 10 5 K 1, is in good agreement with
the existing experimental and theoretical data, if averaged over

Figure 4. Comparison of the free energies obtained for various volumes
and temperatures with and without the correction term in Equation (2).
The solid lines are the fitted SJEOS as described in Equation (14), while the
bars in the background are representing the effective sample size from
Equation (13). The correction shifts the free energy downwards and
towards larger volumes.

Figure 5. The unit-cell volume expansion as a function of temperature
calculated with (without) the correction term plotted in brown (orange).
The results are compared to experimental data[9,39] and AIMD
calculations.[39] The thermal expansion coefficient, αV ¼ 1

V
∂V
∂T p, is shown

in the inset. The shaded area in the inset indicates the experimental
uncertainty.
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the same temperature range. In the range of 2100 to 3100K, the
bulk modulus of c HfO2 exhibits a softening from 180 to
120GPa.

The lack of quantum effects in molecular dynamics and the
inadequacy of a purely harmonic treatment at high temperatures
have often made it necessary to mix the two methods for a pre-
dictive treatment of phase diagrams over a wide temperature
range (see ref. [41] for a recent study of HfO2 ). The present
results establish EHP as a viable alternative to molecular dynam-
ics at high temperatures, thereby presenting the opportunity to
use them to study temperature-induced effects over a broad
temperature range.

Machine learned force fields have recently appeared as a viable
surrogate for DFT in the research of HfO2.

[42,43] With the recent
improvements to the accuracy of the predicted forces[44] of these
force fields, it is conceivable that they could be used for obtaining
EHP, thereby enabling large-scale studies of phase space.
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A neural-network-backed effective harmonic potential study of the ambient
pressure phases of hafnia
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(Dated: March 9, 2023)

Phonon-based approaches and molecular dynamics are widely established methods for gaining
access to a temperature-dependent description of material properties. However, when a compound’s
phase space is vast, density-functional-theory-backed studies quickly reach prohibitive levels of com-
putational expense. Here, we explore the complex phase structure of HfO2 using effective harmonic
potentials based on a neural-network force field (NNFF) as a surrogate model. We detail the data
acquisition and training strategy that enable the NNFF to provide almost ab-initio accuracy at a
significantly reduced cost and present a recipe for automation. We demonstrate how the NNFF can
generalize beyond its training data and that it is transferable between several phases of hafnia. We
find that the thermal expansion of the low-symmetry phases agrees well with experimental results
and we determine the P 4̄3m phase to be the favorable (stoichiometric) cubic phase over the estab-
lished Fm3̄m. In contrast, the experimental lattice constants of the cubic phases are substantially
larger than what is calculated for the corresponding stoichiometric phases. Furthermore, we show
that the stoichiometric cubic phases are unlikely to be thermodynamically stable compared to the
tetragonal and monoclinic phases, and hypothesize that they only exist in defect-stabilized forms.

I. INTRODUCTION

The intricate link between microscopic crystal struc-
tures and macroscopic materials properties necessitates
understanding the former to predict the latter. Tem-
perature is an important contributor to phase stability.
However, computational studies of its impact generally
require extensive sampling and with that a large number
of energy and force evaluations. Hence, temperature de-
pendence has been notoriously difficult to combine with
accurate computational methods like density functional
theory (DFT) [1].

Effective harmonic potentials (EHPs) are a widely
used method to include temperature dependency into
ab-initio studies [2–8]. An EHP is constructed by
sampling the potential energy surface (PES) using
temperature-dependent displacement distribution func-
tions and fitting effective force constants. Performing
the described procedure with a DFT backend is com-
putationally demanding, especially for low-symmetry
structures. Thus, while the method gives access to
structure- and pressure-dependent free energies, its ap-
plication to the calculation of phase transitions has been
somewhat limited [6]. It would be an obvious advantage
if the sampling of the PES inherent to the EHP could
be used to simultaneously train a surrogate model.

Recently, machine-learning (ML) force fields (FFs)
are becoming increasingly widespread in the field of
computational materials science [9–11], with appli-
cations ranging from an accurate description of the

∗ Correspondence email address: georg.madsen@tuwien.ac.at

martensitic phase transition in the memory alloy NiTi
[12] or grain boundaries in copper systems [13] to struc-
tural phase transitions [14] and surface reconstructions
[15] in SrTiO3. Given sufficient training, MLFFs can
replace DFT calculations at a vastly reduced cost, and
combining them with EHPs can lead to significantly
lower computational demands.

Hafnia (HfO2) has recently attracted particular re-
search interest [8, 16–21]. Similar to the isostructural
material zirconia (ZrO2) it boasts a rich phase dia-
gram with various internal (doping, alloying) and exter-
nal (strain, temperature) factors contributing to phase
stability and it is thus an ideal use case for MLFFs
[22, 23]. At ambient pressure and temperatures up
to approximately 2050K the material presents a mon-
oclinic (P21c) crystal structure (m-phase), which, as
temperature increases, undergoes a first-order transi-
tion into a tetragonal (P42nmc) one (t-phase) [24, 25].
Furthermore, hafnia is believed to transition to a high-
symmetry cubic (Fm3̄m) phase (cI-phase) in a nar-
row temperature window immediately below the melt-
ing point [26].

There is, however, still quite some ambiguity regard-
ing the transition to a high-symmetry cubic phase. The
reported t-to-c phase transition temperatures for HfO2
span almost 1000K [25], and there is even some doubt
regarding the existence of a pure cubic phase or its pre-
cise space group [27]. Indeed, some researchers find
the lower-symmetry P 4̄3m (cII-phase) phase to be en-
ergetically favorable [28], although to our knowledge no
theoretical studies, that properly take temperature into
account, exist. For HfO2, few experimental studies de-
scribing a t-to-c phase transition exist, potentially due



2

to the extreme temperature requirements and the dif-
ficulties these conditions present for accurate experi-
mental analysis. Nonetheless, some researchers find a
mixed phase of cubic and tetragonal symmetry suggest-
ing metastability [29], while others see a clear second-
order transition [19]. It should be pointed out that sim-
ilar ambiguities have been reported with respect to the
existence of a stable stoichiometric cubic phase in the
related ZrO2 [30–34]. Thus, additional theoretical ef-
forts are warranted, not only to clarify if a stable stoi-
chiometric cubic phase exists, but also to shed light on
its crystal structure.

In this work, we build an MLFF using a neural net-
work (NNFF) with a methodology corresponding to an
evolved version of the one presented in Ref. 35. We
construct a NNFF that can describe the part of the po-
tential energy landscape studied well, and then employ
it as the backend calculator for an EHP-based treat-
ment of HfO2. We analyze the m-to-t phase transition
and establish a case for P 4̄3m being the more likely
candidate for a high-T cubic phase in HfO2 over the
traditionally assumed Fm3̄m. The full thermodynam-
ical picture however suggests that neither of the cubic
phases is completely stable in purely stoichiometric con-
ditions, but may be stabilized by oxygen vacancies.

We furthermore discuss EHPs for training set gener-
ation. Generation of a proper training set for MLFFs is
far from trivial [36]. Molecular dynamics (MD) trajec-
tories typically consist of strongly correlated structures
thus subsampling very long trajectories is required, re-
sulting in hundreds of DFT calculations not used in
training. Some authors combine this with active learn-
ing, using a subsampled trajectory as a baseline and an
uncertainty metric, such as a committee of networks,
to guide additional calculations [37–39]. Continuously
retraining NNFFs with often only marginal augmenta-
tions to the data is computationally demanding and the
accuracy of committee-based error estimates is still un-
der debate [40]. Here, we show a training strategy based
on EHPs, whereby the inherent physically meaningful
and iterative sampling of the PES can be exploited.
Thereby an NNFF is trained systematically on the cu-
mulative data obtained up to each iteration, mimicking
an active learning approach.

II. METHOD

A. Effective harmonic potentials

As presented in detail elsewhere [8], an effective
harmonic potential V and its associated density ma-
trix ρ̂ can be obtained through a variational approach
[2, 6, 41], resulting in a parametrization of the optimal
harmonic potential in terms of the second-order force

constants, Φ:

V(u) = 1

2
uTΦu (1)

out of which a corresponding density matrix

ρ(u) =
1

(2π)3N |C| exp −1

2
uC−1u , (2)

can be built. Here u refers to the mass-weighted dis-
placements of the atoms, u =

√
Mi (Ri −Ri,0). The

elements of the covariance matrix, Cij are obtained as

Cij =
ℏ

2 MiMj λ

1

ωλ tanh
ℏωλ

2kBT

ϵλ,i ⊗ ϵ∗λ,j , (3)

where ωλ and ϵλ are the eigenvalues and -vectors of
the second-order force constants [Eq. (1)] and Mi is the
mass of atom i. The free energy, F = Fharm+Fcorr, con-
sisting of a harmonic contribution and an anharmonic
correction term, can then be expressed as

Fharm(T ) =
λ

ℏωλ

2
+ kBT log 1− exp − ℏωλ

kBT

(4)

Fcorr(T ) =
1

N
n

[V (un)− V(un)] , (5)

with un corresponding to samples drawn from the
real-space distribution defined by the density matrix,
Eq. (2), and V to the true energy as obtained from
DFT.

B. Neural-network force field

1. Architecture and loss

We use a NeuralIL architecture [35], with a cutoff-
radius of 5Å, an embedding dimension of 4 and a total
of 28 basis functions in a perceptron consisting of 128 :
64 : 32 : 16 : 16 : 16 neurons. We employ a log-cosh
based loss [42] for the forces

Lf =
0.1 eVÅ−1

natoms

natoms

i

log

cosh
 1

3 α ∆f2
i,α

0.1 eVÅ−1

 ,

(6)

where ∆f is the difference between the actual force as
obtained from DFT and the NNFF-predicted force, α
indexes the three Cartesian axes and i the atoms.

While the forces in principle contain enough informa-
tion to model the potential energy surface, including an
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energy loss can enable more efficient learning of multi-
ple local minima. Furthermore, once unit cell volume
is included as a variable, a continuum of structures ex-
hibiting zero forces, but with different energies, needs
to be accurately described. Hence, an energy loss can
be included in the overall loss

LE =
0.1 eV
natoms

log cosh
∆E

0.1 eV
, (7)

where ∆E corresponds to the error of the predicted en-
ergy as compared to the DFT result. The obvious ap-
proach of combining Eqs. (6) and (7) is to introduce
a new hyperparameter, wE , tuning the fraction of the
energy loss included in the overall loss:

Ltot,manual = (1− wE)Lf + wELE . (8)

However, as the loss measures the quality of the NNs
approximation of the PES, the optimal choice of weight
might change or depend on the composition or the
dataset of the compound studied. Furthermore, man-
ually tuning a hyperparameter is time- and resource-
intensive.

Several approaches have been developed to overcome
these obstacles. We implemented and tested the in-
verse certainty weighting [43] and the inverse Dirichlet
weighting [44], but both resulted in instabilities during
training, which manifested themselves as very large en-
ergy weights and essentially halted any progress. The
most stable and efficient approach tested for the present
datasets was Mitrevski’s [45] implementation of the
stochastic multi-gradient descent algorithm [46]. Here
the gradients of Eqs. (6) and (7), ∇Lf and ∇LE , are
corrected using the first and second momenta (adamiz-
ing, [45]), resulting in smoothed contributions of the
force (L̃f ) and energy loss (L̃E). Subsequently the com-
mon descent vector is calculated

∇L = (1− ωE)∇L̃f + ωE∇L̃E (9)

where ωE is obtained through a quadratic optimization

min
ωE

ωE∇L̃E + (1− ωE)∇L̃f

2

0 ≤ ωE ≤ 1 .

(10)
The use of a common descent vector has been shown

to result in a stable and efficient multi-objective opti-
mization and enables exploration of the Pareto border
[45]. To validate the method in the context of our study,
we trained a neural network and stored the weights over
all epochs and batches. The resulting NN is compared
to two NNs trained with the average of these gathered
weights ωE ≈ 0.273, one using just the adamized loss,
Eq. (9), and ignoring Eq. (10) and one using Eq. (8).
Indeed, training NNs with the fixed energy weight re-
sults in a parametrization with similar performance as

applying Eqs. (9) and (10). The advantage thus lies in
the elimination of the ωE hyperparameter, which oth-
erwise would have to be manually tuned.

The loss described above is minimized over a total
of 1000 epochs using a one-cycle scheduler, varying the
learning rate linearly from 1.5× 10−4 to 1.5× 10−3 and
back, with the final 10% decreasing further to 1.5 ×
10−5.

2. Augmentation

Due to the high dimensionality of the sampling space
described earlier, we find forces in the training set rang-
ing from a few meVÅ−1 to several hundreds of eVÅ−1,
caused by atoms being close to each other. As it is
impossible and undesirable to enumerate a sufficient
number of atomic environments resulting in those high
forces and the NNFF behaving potentially erratically in
untrained areas we include a repulsive contribution as
suggested in [47]. We choose the repulsive part of the
Morse potential to provide some robustness in those
sparsely sampled regions:

Vrep(r) =
1

2
i ̸=j

dij × h(rij , rs, rc)e
−2aij(rij−bij), (11)

where rij is the distance between atoms i and j, rs
is a trainable switching radius and rc the cutoff ra-
dius, set equal to the cutoff radius of the NNFF, i.e.
rc = 5Å. The aij , bij , dij represent element-specific pa-
rameters which are optimized during the training pro-
cess if atom i and j are of the same type. For inter-
actions between two different chemical species, the cor-
responding “mixed” parameters obtained through the
rules established in Ref. 48 are used. The bump func-
tion, h, is defined by

f(x) =
0 x ≤ 0

exp − 1
x x > 0

(12)

g(x) =
f(x)

f(x) + f(1− x)
(13)

h(r, rs, rc) = 1− g
r2 − r2s
r2c − r2s

. (14)

To test how efficiently a NNFF can be built to be
useful as a surrogate model for EHPs, we decided to
analyse a subset of the DFT data generated for our
investigation of cI-HfO2 from [8]. As the cubic phase
shows an instability at 0K, the first iteration data con-
tains numerous high-energy configurations with large
forces. We use a subset of the first 5 iterations, re-
sulting in 172 structures, to validate this approach and
train four NNFFs: using (i) only those configurations
where the norms of all forces are below 50 eVÅ−1 and
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(ii) NOHIGHMORSE

RMSE:
5.81 eV Å−1
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Figure 1. Comparison of the NNFF with and without the
Morse model evaluated on high-force configurations, with
training data including and excluding high-force configura-
tions.

without Eq. (11) (NoHighNoMorse), (ii) only those
configurations where the norms of all forces are below
50 eVÅ−1 and with Eq. (11) (NoHighMorse), (iii) all
configurations without Morse (AllNoMorse) and (iv)
all configurations with Morse (AllMorse). The re-
sulting parity plots on the high-force configurations are
shown in Fig. 1. As expected, the NoHighNoMorse
NNFF performs poorly; in fact, it predicts a negligi-
ble force where large forces should be expected. This
would lead to quickly-failing sampling as an artifactual
minimum state with clusters of atoms would be consid-
ered advantageous. The NoHighMorse potential, on
the other hand, predicts at least some high force. As
the exact value in this case is not necessarily impor-
tant the addition of the term Eq. (11) can indeed be
understood as fulfilling its intended purpose: providing
robustness in sparsely sampled regions. Naturally, for
production runs we include all data, where the addition
of the Morse potential proves superior as well.

C. Computational details

The DFT data used throughout this manuscript is
obtained using the projector-augmented-wave (PAW)
formalism [49] as implemented in VASP [50] using the
PBE functional [51], an energy cutoff of 600 eV and the
5p6s5d and 2s2p as valence states for Hf and O respec-
tively. Supercells of size 4×4×4, 4×4×3, 2×2×2 and

Figure 2. Flowchart of the EHP sampling procedure and
gradual construction of a data base used to parametrize the
surrogate NNFF.
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Figure 3. Decrease of force and energy MAE for increasing
number of structures. The first panel shows convergence of
the error as cubic data is added; the vertical dashed line
indicates the chosen number of cubic training structures.
In panels two and three this is repeated for tetragonal and
monoclinic structures, respectively.

2×2×2 were used for the Fm3̄m, P42nmc, P 4̄3m and
P21c phases, respectively. A Γ-only k-point mesh was
used for all calculations. Doubling the k-point mesh in
each direction only had minimal impact on the energies
(≈ 3meV atom−1) and forces (< 0.1meVÅ−1), compa-
rable to the error incurred by the NNFF. The lattice
constants of both cubic phases cover −2% to 5% of
their respective equilibrium values. For the tetragonal
phase, deformations in a and c span −1% to 4% and
−1.5% to 3%, respectively. The monoclinic lattice pa-
rameters vary individually in the range of −5% to 5%.

III. RESULTS

A. Neural network validation and transferability

To construct a NNFF as a surrogate model for the
EHPs we started with a subset, the T = 2500K sam-
ples, of the DFT data generated for our investigation



5

of cI-HfO2 from Ref. 8. As this data was generated 30
points at a time through an iterative DFT-based EHP
scheme, it has a naturally implied hierarchy. Starting
out from a density matrix (ρ0) constructed from the FD
force constants, we move along this EHP hierarchy as
indicated in Fig. 2, adding data points to the electronic
structure database after each iteration. Based on this
database an NNFF is parameterized at each iteration.
The performance is assesed on a test set consisting of
50 randomly chosen and unseen structures from each of
the phases, Fm3̄m, P42nmc and P21c resulting in the
first panel of Fig. 3. This process continues, mimicking
active learning, until the error has converged for the cu-
bic phase, as is indicated by the bottom arrow in Fig. 2.
After convergence, the number of cubic structures con-
tained in the database is fixed at 270 structures (the
dashed line in the first panel of Fig. 3). Now, using
the NNFF the force evaluations for treatment of the
cubic phase with the EHP algorithm can be performed,
following the top-right arrow in the flowchart (Fig. 2).

Next, we start from this database and repeat the pro-
cedure for each (a, c) pair defined for the tetragonal
phase, adding ≈ 75 tetragonal structures sampled at
2500K to the database at each iteration. In the mid-
dle panel of Fig. 3 it can already be seen that the local
environments in the tetragonal and cubic phase have a
high degree of similarity, requiring only an additional
≈ 300 structures until the prediction error stops im-
proving. Finally the same procedure is repeated for all
the (a, b, c) combinations of the monoclinic phase. A
major improvement in performance for the monoclinic
test set can be seen already after the first addition of
monoclinic data to the training set (corresponding to
the first set of points in the third panel of Fig. 3). For
convergence a total of 921 additional monoclinic data
points is required.

Phase Force (meVÅ−1) Energy (meV atom−1)

RMSE MAE σ RMSE MAE σ
Fm3̄m 174 108 2989 4 3 185

P42/nmc 201 141 4474 5 4 227
P21c 155 120 2327 3 2 44

Table I. Comparison of the root-mean-square error (RMSE),
the mean-absolute error (MAE) and the standard deviation
(σ) of the data for the three phases contained in the valida-
tion set.

This cascading algorithm results in a training set with
1487 structures and a validation set with 599 struc-
tures. The corresponding validation statistics and the
standard deviation of the dataset are shown in Table I.
The parity plots and statistics of the final model ap-
plied to said test set, as well as to an additional set
of data points for P 4̄3m, are shown in Fig. 4. Clearly,
the model performs well on the three phases used to
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Figure 4. Parity plots and errors of the test set performance
for the energies (top) and forces (bottom) for the Fm3̄m,
P 4̄3m, P21c and P42nmc phases of HfO2.

generate configurations constituting the training data
set, but it also provides excellent predictions for the
completely unknown cII phase. This indicates the local
environments sampled throughout the training provide
enough diversity to result in a transferable model. As an
additional qualitative validation metric we show the ex-
cellent agreement of the NNFF and DFT-backed finite
displacement (FD) and EHP phonon spectrum of the
Fm3̄m phase in the supplemental materials. Notably,
none of the small-displacement FD configurations were
part of the training, yet their prediction is sufficient to
reconstruct a phonon spectrum.

B. Influence of pressure

For a first look at the stability of the four phases con-
sidered, energy-volume curves with all atoms at their
equilibrium positions are shown in Fig. 5. For the
tetragonal (P42nmc) and monoclinic phase (P21c) we
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Figure 5. The (E, V )-curves of the various phases of HfO2

under consideration. The solid lines show the actual (E, V )
curves, i.e., taking variations of the lattice constants into
account, while the dashed lines are only volume-scaled.

have calculated curves both by fully relaxing all lat-
tice constants at each volume (full lines) and by simply
scaling the volumes and keeping the aspect ratios fixed
at the optimal volume values (dashed lines). For the
P21c phase, the effect of the unit cell can be split into
the impact of changing the cell lengths and of changing
β. Within the studied volume region 10.5Å3

atom−1

to 12.5Å3
atom−1, the impact of β relaxation is neg-

ligible; hence, β is kept constant at its optimal equi-
librium angle β0 = 99.69◦. Energy-volume curves in
literature (e.g. Fig. 4 in [22]) often suggest a first-order
phase transition between the P21c, P42nmc and Fm3̄m
induced by a pressure of ≈ 8.7GPa when the effect
of vibrations is neglected. This, however, only holds
if the lattice constants are volume-scaled. With vari-
able cell lengths, the tetragonal and monoclinic phases
are favorable over the Fm3̄m until their axes are com-
pressed to the point that they become essentially cu-
bic at 10.3Å3

atom−1. Fig. 5 also shows that the
lower-symmetry cubic P 4̄3m phase is lower in energy
(by 23meV atom−1) than Fm3̄m at ambient pressure.
Again, no first-order pressure induced phase transition
to Fm3̄m is found and the two phases gradually be-
come energetically indistinguishable at volumes around
10.3Å3

atom−1.
The optimal PBE volumes are given in Table II. Ex-

trapolating the experimental data of the monoclinic and
tetragonal phase by Haggerty et al. [52] to 0K, we ar-
rive at equilibrium volumes of V exp

0 = 11.39Å3
atom−1

and V exp
0 = 10.91Å3

atom−1 for the monoclinic phase
and tetragonal phases respectively. The PBE results in
Table II thus overestimate the volume by ≈ 2.5− 3.0%.

0GPa 4GPa
PBE PBEsol PBE

Fm3̄m 10.89 10.54 10.73
P 4̄3m 11.07 10.68 10.89
P42nmc 11.23 10.79 11
P21c 11.68 11.28 11.44

V (Å3
atom−1)

Table II. Volumes of the phases as obtained using PBE and
PBEsol functionals at 0GPa in comparison to those ob-
tained by application of an artificial pressure pa = 4GPa

The tendency to overestimate unit cell volumes can sub-
stantially influence the calculated thermodynamic prop-
erties [53–55] and is a well-known shortcoming of the
PBE functional [53, 56]. It has led to the development
of more specialized functionals like the Wu-Cohen [57]
and PBEsol [58] functionals where a lower exchange en-
hancement leads to volumes in better agreement with
experiment. In Table II we show that PBEsol underes-
timates the volumes by approximately 1 %. The most
straightforward strategy, however, is the addition of a
small artificial isotropic pressure, pa [53–55]. Here we
choose to perform the calculations with PBE and fix the
artificial pressure pa = 4GPa, resulting in the volumes
shown in Table II. The thus obtained bulk modulus for
the m-phase, B0 = 184GPa is in agreement with exper-
imental results ranging from 187GPa to 197GPa [59].

C. Influence of temperature

Besides pressure, temperature is an important con-
tributor to phase stability. Conceptually, the EHP
treats the influence of temperature in a manner similar
to the quasi-harmonic approach, by calculating phonons
on a grid of lattice constants, but with the important
difference that a self-consistent phonon spectrum must
be calculated for each set of lattice constants and tem-
peratures. Furthermore the free energy contains the
correction term accounting for the difference between
the ensemble-averaged potential energy and its effective
harmonic approximation.

For the investigation of the cubic phase in Ref. 8
eight volume points were considered. Using an effec-
tive sampling technique to reuse data points, approxi-
mately 1200 single-point calculations were required to
achieve convergence for a rather narrow temperature
range. Achieving convergence for the full temperature
range for a low symmetry structure like the P21c can
become computationally prohibitive. Using a conserva-
tive estimate, the total number of calculations required
for all four phases at the current temperature range
would exceed 80000. While possible, this would have
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been a major undertaking and the advantage of using
a comparatively cheap surrogate model becomes appar-
ent. The NNFF evaluates a configuration in negligible
time and there is no need to be frugal when it comes to
the number of samples drawn at each iteration. Con-
sider for example, the Fm3̄m phase, where we evaluated
150 000 structures. For the tetragonal phase approxi-
mately 500 000 structures were evaluated, and for the
monoclinic phase that number was almost 2.3 million.
This allows obtaining good effective sample sizes and,
with them, a much more accurate evaluation of partic-
ularly Fcorr.

The finite-displacement phonon band structure of
Fm3̄m exhibits imaginary frequencies around the X
point [8, 16, 27]. This instability at X = ( 12 ,

1
2 ,

1
2 )

was linked to a cubic-to-tetragonal deformation in zir-
conia which is structurally similar [60]. This would indi-
cate that the phase is mechanically unstable and would
make the application of Eq. (4) invalid. We have al-
ready shown that the EHP makes Fm3̄m become me-
chanically stable at temperatures of 2100K and above
[8]. Using the NNFF as the backend we can employ
a much finer temperature mesh and provide a clearer
picture. As shown in Fig. 6, the lowest X-point fre-
quency increases continuously with temperature until
it abruptly changes sign at around 1200K. Moreover,
we find a small instability in the phonon band struc-
ture close to the Γ point, at ( 1

30 ,
1
30 , 0) and permuta-

tions thereof, in the P 4̄3m phase when using the finite
displacement method (Fig. 7). Clearly, this phase is
also mechanically stabilized through temperature, and
using the EHP P 4̄3m becomes stable at temperatures
lower than 1000K.

Having achieved real phonon spectra, the free en-
ergies of the phases can be calculated using Eq. (4)
and the correction term Eq. (5). We use the EHP ap-
proach for all phases, including those that are mechan-
ically stable in the ordinary harmonic approximation
(namely P21c and P42nmc), and obtain free energy-
volume curves as a function of temperature and phase
and hence the thermal expansion. As shown in Fig. 8,
under the artificial pressure pa = 4GPa, the thermal
expansion of the monoclinic and tetragonal phases very
closely matches the results measured by Haggerty et
al. [52] and Tobase et al. [19]. The monoclinic re-
sult at room temperature, V = 11.54Å3

/atom, is fur-
ther corroborated by measurements performed by Ruh
et al. (V = 11.52Å3

/atom, [61]) and Akahama et al.
(V = 11.53Å3

/atom, [59]). Also individual lattice pa-
rameters agree well with experiment, as shown in the
supplementary information.

Considering the good agreement found for the tetrag-
onal and monoclinic phases, it is somewhat surprising
that we see a distinct mismatch with experiment for the
presumed cubic HfO2 phases [19, 62]. Nonetheless, we
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can draw some important conclusions: First, the rarely
studied P 4̄3m, while still differing by 3%, is closer in
volume to those measurements than the Fm3̄m phase.
Secondly, the phases measured in [19, 62] might not
correspond to stoichiometric HfO2. Previous investiga-
tions indicate a stabilization of high-symmetry phases
over the monoclinic phase particularly with decreasing
oxygen content [63–66]. Specifically a low-temperature
cubic phase of HfO1.7 is reported in Ref. 64. Further-
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more, oxygen-deficient, but stoichiometrically unspeci-
fied, nanoparticles of cubic hafnia have been obtained
through synthesis in a reductive solvent [65]. These
oxygen-deficient structures could in turn be affected by
vacancy-mediated chemical expansion, as discussed ex-
tensively in literature [67–69], which would explain the
discrepancy visible in Fig. 8.

D. Thermodynamic phase stability

Using the free energy-volumes curves we furthermore
find that temperature stabilizes the tetragonal P42nmc
phase compared to the P21c phase, in agreement with
experiment [24, 25]. However, as seen in Fig. 9, the ap-
plication of additional pressure is essential to stabilize
the P42nmc phase over the P21c within the temper-
ature window studied in this work. For example, at
2600K, a pressure of roughly 4GPa in addition to pa is
needed to stabilize the tetragonal phase. This can again
potentially be attributed to the chosen functional, PBE,
which tends to produce slightly enlarged cells. A further
indication supporting this is that the pressure needed to
take the PBE equilibrium volume of the Fm3̄m phase
to the PBEsol equilibrium volume, is of the same order
of magnitude (7.7GPa).

Interestingly, we do not find that temperature stabi-
lizes the two studied cubic phases, Fm3̄m and P 4̄3m,
compared to the tetragonal phase, Fig. 10. While the
EHP methodology, due to the harmonic ansatz used
in the construction of the density matrix, is not able
to capture all anharmonic contributions, the effect of
further corrections would have to be very significant
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Figure 9. The differences in free enthalpy of the monoclinic
and tetragonal phase of HfO2. The x-axis includes an arti-
ficial pressure of pa = 4GPa as discussed in the text.

to overcome the energy differences required for a tran-
sition to a cubic lattice. Not even the studied pres-
sure ranges are able to stabilize the cubic lattices, as is
shown in Fig. 10. On the other hand, the energy dif-
ferences are small in comparison with the characteristic
scale of thermal fluctuations per degree of freedom (e.g.
the P42nmc-to-P 4̄3m enthalpy difference at 4GPa is
approximately 12meV atom−1, but kBT at 2000K is
≈ 172meV atom−1). Processing-induced oxygen vacan-
cies, or, at temperatures this high, even temperature-
induced oxygen vacancies [62, 70, 71] might stabilize the
cubic phase over its tetragonal counterpart, in partic-
ular in combination with interface and surface strain
of the fine powders typically used in XRD measure-
ments. Future research should more closely investi-
gate how the energy balance between Fm3̄m and P 4̄3m
shifts when those parameters are considered. Likewise,
the impact potential contributions to this picture aris-
ing from configurational entropy in the presence of de-
fects should be probed. As a simple estimate TSconf =
TkB [(1− c) log (1− c) + c log c] ≈ 28meV atom−1 at
an assumed defect concentration of c = 10%.

These results do not preclude metastability as might
be achieved in experiment: We emphasize that for a
phase to be stable within the EHP formalism, its free
energy needs to be the lowest. This might even be
the case in molecular dynamics under certain condi-
tions, such as in the work by Fan et al. [72] using
ab-initio molecular dynamics (AIMD), in which they
claim to observe a transition to Fm3̄m. However,
the computational restrictions inherent to AIMD might
limit the interpretability of these results. First of all,
the use of a small simulation box precludes relaxation
through long-wavelength deformations. Secondly, the
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molecular-dynamics trajectory quickly scans through
temperatures or pressures without a guarantee that the
system is allowed to fully relax. To the extent a cubic
phase is observed in Ref. 72, the methodology is fur-
thermore insufficient to conclusively establish whether
it corresponds to Fm3̄m or P 4̄3m. Those limitations,
imposed by the high computational cost of direct ab-
initio molecular dynamics, highlight the value of an ac-
celerated surrogate model.

IV. CONCLUSION

We have described a framework to construct neu-
ral network force fields (NNFF) using effective har-

monic potentials (EHP) and applied it towards the
parametrization of a transferable NNFF for HfO2. The
potential performs comparably to state-of-the-art, with
an out-of-sample force-MAE of ≈ 100meVÅ−1 and an
energy-MAE of ≈ 10meV atom−1, despite being trained
on only ≈ 1500 structures. The NNFF is then applied
in conjunction with EHPs to study phase stability of
the ambient phases of HfO2. The methodology leads to
agreement with experimental literature regarding the
thermal expansion of the P21c and P42nmc phases. At
roughly 4GPa, which is comparable to an effective pres-
sure linking PBE and PBEsol, we find a monoclinic-
to-tetragonal phase transition at a temperature com-
parable to experiment (2500K vs. 2050K). We fur-
thermore conclude that the most likely stoichiometric
high-temperature space group of cubic bulk HfO2 is
P 4̄3m, as opposed to the traditionally assumed Fm3̄m.
Nonetheless, we do not see a tetragonal-to-cubic phase
transition within the temperature and pressure range
studied in this work and find that the observed lattice
constants of the cubic phases are substantially larger
than what is calculated for the corresponding stoichio-
metric phases. Future studies should explore the po-
tential of metastability (e.g. through molecular dynam-
ics) and the impact of oxygen vacancies on the various
phases.
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Comparison DFT and NN-backed phonon spectra

X U

10

5

0

5

10

15

20

25

f 
(T

H
z
)

K L W X

Wave vector
0.0 2.5

DOS (THz 1) 

NN

DFT

X U

0

5

10

15

20

f 
(T

H
z
)

K L W X

Wave vector
0 2

DOS (THz 1) 

NN

DFT

Figure 1: Comparison of finite displacement (top) and 2500K EHP (bottom) phonon spectra

for Fm3̄m phase of HfO2 at V = V0 = 32.62 Å
3

As shown in the top panel of Figure 1, the finite displacement phonons agree exceptionally
well. Even more so, when considering that the NNFF is not trained to reproduce the
very carefully chosen and very small (0.01 Å) displacements used in obtaining these spectra.
Comparing the spectra obtained at 2500K using EHP shown in the bottom panel of Figure 1,
we find a good agreement too. The slight deviations in the optical modes can likely be
attributed to the fact that the convergence criterion is based on the free energy and the fact
that the NN-obtained spectra are obtained from a much higher sampling, i.e. they can be
expected to be more accurate.
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Comparison experimental and NN-backed EHP lattice constants
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Figure 2: Lattice constants for P21c (top) and P42nmc (bottom) as obtained with the NN-
backed EHP approach as compared to Haggerty et al.1.
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Abstract

Given the cost of ab-initio calculations, predictive studies of temperature-dependent

phenomena in strongly anharmonic systems pose a serious challenge. Using a relatively

inexpensive surrogate model for the potential energy surface to build temperature-

dependent effective harmonic potentials is a possible solution. Automatic differentia-

tion makes high-order Taylor potentials as surrogate models a relatively accessible

possibility. Here Lennard-Jones clusters and solids are used as a test bench on which

to perform a detailed analysis of such a procedure. It is found that results might only

be valid in a narrow temperature regime, outside of which the local nature of Taylor

expansions leads to drastic artifacts in the free energies and derived quantities such

as the thermal expansion. Those shortcomings are traced to the limited flexibility of

polynomials as approximants and are therefore fundamental. The observed behavior

is confirmed using density functional theory on a five-atom silver cluster. A global

interpolation strategy, in the form of a neural-network force field, is suggested as a

better path to cost-effective surrogate models.

K E YWORD S

automatic differentiation, Lennard-Jones clusters, neural-network force field, Taylor potential

1 | INTRODUCTION

An ultimate goal of computational materials science is to deliver predictions about the suitability of a given material for a specific practical applica-

tion. Progress toward that end requires calculations to be performed under increasingly realistic conditions. In this context, what can be generally

classified as effective harmonic potentials (EHPs) have emerged to study temperature-dependent effects using density functional theory (DFT).

EHPs date back to Hooton in 1955 [1] and retain the analytical and computational convenience of the well-known harmonic approximation while

avoiding some of its worst limitations. They have recently been successfully used for the calculation of the phase diagram of Ti1 xAlxN [2], the

anomalous thermal behavior of ScF3 [3] and FeSi [4], the structural phase transitions of BaTiO3 [5], SrTiO3 [6] and SnSe [7, 8] as well as the stabil-

ity of the high-temperature cubic phase of HfO2 [9].

EHPs aim at approximating the actual dynamics of the nuclei in the relevant parts of the potential energy surface (PES) at a given temperature

and offer an attractive balance of accuracy and efficiency. This has given rise to a number of frameworks differing mostly in the criteria used to

find the optimal EHP, and in the way, the PES is sampled [10–16]. However, common to all implementations of EHPs is that they rely on impor-

tance sampling of the PES for a given temperature and set of structural parameters. As a result, when a large range of different conditions, for

example, temperatures and structural phases, are of interest, the required number of DFT calculations can be prohibitive.
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The use of a relatively inexpensive surrogate model for the PES then becomes advantageous. One possibility in this respect is the use of

higher-order Taylor expansions of the PES. This has been done in a number of molecular dynamics simulations [17–19] and recent EHP studies

[6, 8, 15, 20]. At temperatures nearing absolute zero and in particular contexts (e.g., Reference 21 compared to [22]) a remarkable agreement of

such methods with experiment can be obtained. The open-source hiPhive package [15] makes these high-order expansions of the PES accessible

and eliminates the need to reimplement the significant bookkeeping involved. An alternative for efficiently deriving Taylor expansions is available

through automatic differentiation (autodiff) [23, 24]. While autodiff is a well-established method [25], it has only risen to prominence with the

current, rapid development of machine learning (ML) methodologies and frameworks such as JAX [26]. Recently, the use of machine-learned force

fields (MLFF) as surrogate models has surged in the study of solids [27, 28] and molecules [29, 30] alike. At the same time, the underlying autodiff

is also having an impact on more traditional chemistry tools like PES exploration [31], molecular dynamics [32] and electronic structure calculation

[33]. Applying autodiff to PES allows the setup of higher-order Taylor expansions with machine precision. However, due to the intrinsic local

nature of Taylor expansions, it is important to take a critical look at their use as surrogate models for finite-temperature calculations beyond the

small-displacement regime.

In this paper, we employ the widely used Lennard-Jones potential (LJ) as a test case to assess the use of Taylor expansions as surrogate PES

models when constructing EHPs. Despite its simplicity, the LJ model offers all the required ingredients for this kind of study, including a significant

degree of anharmonicity. Furthermore, it has been shown that the model, though used only as an illustrative example in this work, can provide valu-

able insight into the physics particularly of solid noble gases and the impact vibrational effects have on their bulk properties [34]. We analyze both

the case of finite LJ clusters using autodiff as well as that of the fcc LJ solid using hiPhive [15], with a focus on normal modes and thermal expansion.

Finally, to emphasize the transferability of the analysis described before to more practical situations, we study a five-atom silver cluster, comparing

exact calculations using DFT and a machine-learned global approximant [35] to higher-order expansions thereof.

2 | METHODOLOGY

2.1 | Effective harmonic potentials

Let bV and bρ0 be the ionic PES and density matrix of the system, respectively, and let us introduce a trial harmonic potential bV, with an associated

trial density matrix bρ. Any EHP fulfills the following variational property [8, 13, 14] based on the Gibbs-Bogoliubov inequality [36] for the free

energy F:

F bV,bρ0h i
≤F EHP ¼ F bV,bρh i

þTr bρ bV bVn o
¼ FharmþFcorr: ð1Þ

All harmonic quantities, the potential V, the density matrix bρ and the expression for the free energy, Fharm, can be evaluated explicitly in terms
of the mass-weighted displacements (u¼M1=2ðr r0Þ, expressed using the diagonal matrix of ionic massesM) of the atoms from their equilibrium

positions and the eigenvalues and eigenvectors (ω2
λ and ϵλ, respectively) of the EHP:

V uð Þ¼
X
λ

1
2
ω2
λu ϵλ ϵλ u ð2aÞ

ujbρjuh i¼ ρ uð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð Þ3NjCj

q exp
1
2
u C 1u ð2bÞ

Here, ℏ is the reduced Planck constant, kB the Boltzmann constant and T the temperature. The matrix C expresses the covariance of the

atomic displacements in the harmonic approximation, with elements Cij given by

Cij ¼ ℏ

2
ffiffiffiffiffiffiffiffiffiffiffi
MiMj

p X
λ

1

ωλ tanh
ℏωλ
2kBT

ϵλ,iϵλ,j: ð3Þ

The EHP free energy is then given by the contributions

Fharm Tð Þ¼
X
λ

ℏωλ

2
þkBT log 1 exp

ℏωλ

kBT
ð4Þ
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Fcorr Tð Þ¼ 1
N

X
n

V unð Þ V unð Þ½ , ð5Þ

where un are the samples from the real-space distribution defined by the density matrix, Equation (2b). If no structural parameters are relaxed,

finding the effective force constants which minimize the weighted sum of the least-squares deviations from the calculated forces for those sam-

ples is equivalent to a direct minimization of F EHP [16] and leads to an EHP providing a upper bound of Equation (1).

The dependence of the density matrix, Equations (2b) and (3), on the eigenvectors defining the EHP, Equation (2a), makes sampling the PES

by an iterative algorithm natural. The closed-form expression of the density matrix in Equation (2b) allows an efficient reuse of data points sam-

pled using different covariance matrices for obtaining both the EHP and the correction term [9]. Still, when constructing EHPs for a range of dif-

ferent temperatures and structural phases it would be an obvious advantage to train a relatively inexpensive and transferable surrogate PES on

which the iterative sampling can be performed.

2.2 | High-order Taylor expansions using automatic differentiation

One possible surrogate PES explored is the use of high-order Taylor expansions. We write the Taylor expansion of the PES around the equilibrium

positions, r0, as

Φ
nð Þ

rð Þ¼V r0ð Þþ 1
2!

X ∂2V
∂ri∂rj

j
r0

ΔriΔrjþ 1
3!

X ∂3V
∂ri∂rj∂rk

j
r0

ΔriΔrjΔrk… ð6Þ

where the indices i, j, and k are composite indices labeling a specific ion and Cartesian direction, with Δri ¼ ri ri,0 being the displacement from

equilibrium.

To construct the expansions, we rely on the automatically differentiable python framework JAX [24, 26]. The JAX framework creates the

Jacobian-vector product (JVP) operator, which for a given function, f xð Þ :ℝn 7!ℝm, provides a map Jf xð Þt :ℝn 7!ℝm that can be evaluated at an

arbitrary input point x and tangent vector t. The JVP of any composite function, fðxÞ¼ gðhðxÞÞ for which the JVPs of its constituents are known,

can be computed via the chain rule

Jf xð Þt¼ Jg h xð Þð ÞJh xð Þt, ð7Þ

By starting from T 0 r,tð Þ¼V rð Þ :ℝ3natoms 7!ℝ, we can hence recursively define a Taylor-series operator

T k r,tð Þ¼1
k
∂T k 1 r,tð Þ

∂r
t ð8Þ

and build the order-n Taylor expansion as

Φ
nð Þ

rð Þ¼
Xn
k¼0

T k r0,Δrð Þ: ð9Þ

The JAX framework creates the JVP operator so that the JVP of a composite function can be evaluated without ever requiring the full Jaco-

bian. The recursion in Equation (9) can thus be performed without evaluating the derivatives, which grow in dimensionality with the order of the

expansion. This allows us to build a Taylor expansion of arbitrary order accurate to within machine precision through successive use of the JVP.

2.3 | Lennard-Jonesium

Our first model system is the six-atom LJ Ar cluster. The potential contains a standard LJ contribution from each pair of atoms:

V rð Þ¼2ε
X
i≠ j

σ

rij

12 σ

rij

6
" #

: ð10Þ
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We take the LJ parameters for Ar (M = 39.9 amu) introduced in Reference [37], that is, σ = 3.4 Å and ϵ = 10.3 meV. All Taylor potentials as

expressed through Equation (9) are obtained through the autodiff procedure described above.

We also study thermal expansion in an infinite fcc LJ crystal, which involves deformations not spanned by the basis of normal modes. Due to

the long-range nature of the LJ potential, we introduce a smooth cutoff at 12 Å using the bump function bump function [38] defined through a

composition of functions that ensure a differentiable, smooth change from zero to one for arguments ranging from the cutoff radius, rc to the

switching radius, rs:

f xð Þ¼
0 x≤0

exp
1
x
x>0

(
ð11Þ

g xð Þ¼ f xð Þ
f xð Þþ f 1 xð Þ ð12Þ

h r,rs, rcð Þ¼1 g
r2 r2s
r2c r2s

ð13Þ

The chosen cutoff fits well in an 8 8 8 supercell with the equilibrium lattice parameter a = 5.272 Å, corresponding to an equilibrium vol-

ume of V0 = 36.64 Å3. We obtain the force constants for this case using hiPhive [15], which greatly simplifies the handling of space-group sym-

metries and thus drastically reduces the number of force constants that need to be calculated. We obtain a dataset of 76 800 configurations from

supercells with random displacements drawn from a multidimensional normal distribution N μ¼0ð Å, σ = 0.03Å), which we split into training

(90%) and test (10%) subsets. All Taylor potentials are fitted to the training set using linear regression and evaluated on the test set. For the

fourth-order potential, we chose [12Å, 7 Å, 6 Å] as the cutoffs for the respective orders; for the sixth order we add [5.5 Å, 5 Å] to that list. There-

fore, in contrast to the case of the cluster, the Taylor expansions do not contain all possible terms, which would be infinitely many. The use of

short cutoffs for the higher orders is standard practice in force-constant calculations for crystalline solids and both the Φ
4ð Þ
and the Φ

6ð Þ
potentials

achieve a coefficient of determination R 2≈1 for both the test and training forces, indicating that the models describe the data well. We repeat

the fit for 10 volumes from 35.9 to 51.3 Å3 to obtain free energy versus volume curves for each expansion order.

2.4 | Machine-learned global surrogate

As a first surrogate PES, we employ NeuralIL [35], a neural network force field (NNFF) loosely following the Behler-Parinello template [39]. A cut-

off radius of 6 Å, an embedding dimension of 4 and a total number of 28 basis functions are used [35]. Additionally, we include the repulsive term

of a Morse-potential

Vrep rð Þ¼1
2

X
i≠ j

d h rij, rs, rc e 2a rij bð Þ ð14Þ

where rij is the distance between atoms i and j, while a, b, d represent parameters optimized during the training process and h is the bump function

defined by Equation (13).

We use a fully connected pyramidal NN architecture built from six hidden layers consisting of 128:64:32:16:16:16 neurons with Swish-1 [40]

nonlinearities. The learning rate is varied linearly [41] using a one-cycle scheduler that sweeps from 5 10 4 to 5 10 3 and back, ending with

5 10 5 for the last 10% of each epoch. The target of the AdamW-based [42] optimization is a log-cosh loss function [43]. It consists mainly of a

force-based loss, but we also include a small portion of the energy-loss to ensure a correct origin of energies

L¼ 0:1eVÅ
-1

3natoms

X3natoms
i

log cosh
f i,pred f i,truth

0:1eVÅ
-1 þ0:1eV

natoms
log cosh

Epred Etruth
1eV

* +
: ð15Þ

The DFT calculations are performed using NWChem [44], with the B3PW91 hybrid approximation to the exchange and correlation terms of

the Hamiltonian [45]. Silver atoms are described using a double-ζ LANL2DZ basis set [46] with the valence configuration 4s 24p 64d 105s 1 and the

remaining electrons were treated with an effective core potential. The iterative calculations require between 20 and 45 iterations of the proce-

dure outlined in the methods section. In each iteration, 100 structures are added. The convergence of F EHP, as well as of the frequencies, fi is

shown for the example of T = 1000K in Figure 1. A run is considered converged if none of the frequencies change by more than 5 10 3 for
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three successive iterations. In the first iteration we draw 100 structures from a normal distribution, N μ¼0Å,σ¼10-3Å , to start the calcula-

tion off.

The potential for the high-symmetry singlet five-atom orthogonal ditrigonal cationic silver cluster [47] is trained for 500 epochs using 2000

training and 1000 validation data points. The data points are randomly chosen out of over 20 000 generated during the NWChem-backed EHP

calculations performed for temperatures 10, 50, 70, 100, 500, 750 and 1000 K. The validation statistics suggest a high-performance parametriza-

tion through the NNFF with a mean average error (MAE) in the forces of MAE¼ fpred ftruth
D E

¼8:7meVÅ
-1
and a per-atom energy MAE of

1
natoms

Epred Etruth
D E

¼3:7meVatom 1 on the validation data-set. This compares favorably to the standard deviations of the forces (1 eVÅ 1)

and energies (180meVatom 1). The corresponding parity plot is shown in Figure 2.

3 | RESULTS AND DISCUSSION

3.1 | Lennard-Jones cluster

In its ground state, the six-atom LJ Ar cluster adopts the structure of a regular octahedron, with all six atoms at symmetrically equivalent positions

[48]. Keeping those positions constant, we obtain Taylor approximants, Equation (9), from second up to eighth order. We then scan a range of

F IGURE 1 Convergence of F EHP and of the frequencies (inset), as a function of iterations using the NWChem backend. In every iteration,
100 new structures are added.

F IGURE 2 Truth versus prediction plot of the energy (orange) and forces (blue) of the 1000 validation data points produced by the NNFF
trained on 2000 points. The gray dashed lines indicate perfect agreement.
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temperatures up to 120 K, corresponding to the reduced temperature kBT=ϵ’1. At each temperature and for each Taylor expansion we obtain

an EHP following the procedure described above for the exact potential.

Figure 3 shows the frequencies extracted from those EHPs at four representative temperatures. Due to the high symmetry of the structure,

only five unique non-zero eigenvalues exist. This can be understood in terms of the irreducible representations of the point group Oh. The vibra-

tional representation can be decomposed in terms of one singly degenerate (A1g), one doubly degenerate (Eg) and three triply degenerate

(T2g ,T1u,T2u) irreducible representations

Γvib ¼A1gþ2Egþ3T2gþ3T1uþ3T2u,

The breathing mode of the cluster, with the highest frequency, is nondegenerate and the two lowest-lying modes are doubly degenerate. The

remaining nine modes appear in groups of three.

The second-order Taylor expansion is a plain harmonic approximation to the PES and naturally leads to temperature-independent frequen-

cies. Moreover, from perturbation theory it is known that the term of odd order 2n + 1 does not introduce changes in the frequencies with

respect to the even term 2n. The results of our numerical procedure are consistent with both facts, which serve as a test of the method.

The errors of the frequencies obtained from the EHPs, corresponding to each of the Taylor expansions, as compared to those of the exact

potential EHP, increase with increasing temperature and decrease with increasing order. They range from 13.7% to 36% for the Φ
2ð Þ
and 0.01% to

0.7% for the Φ
8ð Þ
potential over the investigated temperature interval from 0 to 120K. Strictly speaking, the 0 K frequencies do not include any

temperature effects, but still take into account the dynamics of the ground state of each normal mode considered as a quantum harmonic oscilla-

tor, reflected in the first term of Equation (4). Even this ground-state effect is grossly underestimated when considering only the harmonic approx-

imation of the PES. The fourth-order expansion has an acceptable error for intermediate temperatures up to 50K, particularly for the low-

frequency modes, which have the largest impact on the free energy. For higher temperatures, at least the sixth order has to be taken into account

as well. Obtaining such an expansion for actual solids is a daunting task, given the increase in the number of derivatives with their order and the

number of force calculations required by each of them.

It is noticeable how all frequencies increase monotonically with the order of the expansion. The Taylor expansions thus systematically lead to

a softer EHP than the actual potential. That phenomenon points to a dominant effect of the strongly repulsive / r 12 short-range component of

the pair potential, which grows more steeply toward r!0 than any power law with a positive exponent can capture.

Looking at the convergence of the approximation to the free energy F EHP and its components, Fcorr and Fharm, in Figure 4, we find a similar

situation as for the frequencies. Due to the failure of the second-order expansion to reproduce the low frequencies even at low temperatures, it

performs an order of magnitude worse than Φ
4ð Þ
and we thus omit it from the figure. The error in the harmonic portion, Fharm (top panel) is negative

in accordance with the observation of the Taylor approximations yielding too soft EHPs. Fcorr partially compensates that negative error (see mid-

dle panel) but the negative part of the error still dominates (bottom panel). As expected, the quality of the approximation decreases with increas-

ing temperature for all orders.

This behavior with respect to temperature is rooted in the intrinsically local character of power-series expansions. In particular, the highest-

order term always dominates as the distance from the center of the approximation grows, and the model potential can only tend toward ∞. The

effect is apparent even for the simple problem of the LJ Ar dimer, with a minimum at an interatomic distance of 21/6σ = 3.82Å. The intervals

within which a Taylor model incurs an error of 25% or less are 3.53–4.22Å for Φ
2ð Þ
, 3.43–4.37Å for Φ

4ð Þ
, 3.40–4.51Å for Φ

6ð Þ
, 2.51–4.65Å for Φ

8ð Þ
, and

2.28–4.77Å for Φ
10ð Þ
. The gains with each order become subsequently more and more modest and extremely high orders would be required to get

a significant improvement with respect to the basic harmonic approximation.

F IGURE 3 Comparison of frequencies obtained for different orders and temperatures. The dashed lines in brown indicate the results
obtained using the exact potential.
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To highlight the practical relevance of the shortcomings of power series as global models of the energy landscape, we consider the probability

that a point sampled from a high-dimensional Gaussian distribution falls outside of the core region of that distribution along at least one axis. In

one dimension most of the mass of a Gaussian distribution lies in that core region: for instance, there is a 95% probability that a random deviate

falls within 2σ of the mean. However, for an isotropic D-dimensional Gaussian, the maximum of the density function is located σ
ffiffiffiffiffiffiffiffiffiffiffiffi
D 1

p
away

from the origin and the probability that a random deviate falls in a hyperspherical shell of half-width 2σ around this value is at least 95%. As a con-

sequence, even for rather moderate D the probability of sampling regions of space where the Taylor expansion is a poor approximant is over-

whelming. This applies both to the sampling procedure used in this article and to the trajectory of a system simulated using molecular dynamics,

for which series expansions are sometimes also used as model potentials. This observation is not tied to the choice of potential; it rather stems

from the intrinsic inadequacy of evaluating samples drawn from a particular high-dimensional probability distribution with local expansions. It thus

applies in an identical fashion to real solids treated with DFT or any other higher-level theory, necessitating at least a careful analysis of the appli-

cability of such an expansion for the particular situation in question.

3.2 | Lennard-Jones solid

Considering now the fcc LJ crystal, the temperature-dependent behavior of the vibrational spectrum at a given volume shows some features rem-

iniscent of the finite systems. As shown in Figure 5, the frequencies evaluated at a fixed volume are significantly hardened by temperature, and

the effect of the ground-state harmonic motion is already very significant.

An expansion of the solid leads to a softening of the LJ interactions, and therefore, to lower effective frequencies. The harmonic portion of

the free energy decreases accordingly, resulting in a temperature dependent minimum of F EHP. To study the impact of temperature on the equi-

librium volumes in the framework of the Taylor-series surrogate PESs we compute Taylor-series for each volume. We then obtain the EHPs as

described in the methodology section for each combination of volumes and Taylor-series expansions. Finally, the contribution to the free energies

are obtained according to Equations (4) and (5) and the corresponding free-energy-volume curves, as well as a breakdown of F into its contribu-

tions Fharm and Fcorr can be found in the Supporting Information.

We perform this procedure for Φ
2ð Þ
, Φ

4ð Þ
, and Φ

6ð Þ
. The simplest approximation is a volume-dependent Φ

2ð Þ
, which corresponds to the widely used

quasi-harmonic approximation (QHA). We depict the thermal expansion behavior calculated with three EHPs in Figure 6, as well as the thermal

F IGURE 4 Comparison between the differences of the contributions to the free energy obtained with Taylor potentials of different orders
and those obtained using the exact potential, as a function of temperature. Top: harmonic contribution; middle: correction term; bottom: full free
energy.
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expansion coefficient in the inset. Clearly, the QHA performs poorly even for low temperatures and grossly overestimates thermal expansion.

Moreover it only predicts a minimum up to T >70K, after which the free energy decreases monotonically with increasing volume. The fourth

order improves on this slightly, yielding minima up to T = 120K, but performance is comparable to the exact calculation only up to about 80K.

The results of the Φ
6ð Þ
potential are reasonably close to those obtained using the exact LJ energy function. However, it yields instabilities for large

volumes and temperatures. If the thermodynamics of this solid were studied on the basis of, one could wrongly conclude from this that a phase

transition will happen at this temperature and volume. None of the approximations yielded results above the characteristic temperature of the

system, T = 120K, where the depth of the well, ϵ, is comparable to kBT.

F IGURE 5 The three phonon bands of the Lennard-Jones fcc solid at the 0 K volume as a function of temperature in the regular harmonic

approximation, at 0 K including zero-point motion, at 50 K, and at 100 K.

F IGURE 6 Thermal expansion as a function of temperature of the Lennard-Jones fcc solid as obtained from the QHA and the EHPs
constructed from Φ

4ð Þ
, Φ
6ð Þ
and the exact potential. The inset shows the thermal expansion coefficient.

F IGURE 7 Normal-mode frequencies of the 5-atom ditrigonal orthogonal silver cluster as a function of temperature, obtained by
constructing EHPs using a NNFF (dashed lines) and the fourth-order Taylor expansion thereof, Φ

4ð Þ
(dash-dotted lines).
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3.3 | The silver cluster

To validate these studies for a system studied using DFT calculations we use the high-symmetry singlet five-atom orthogonal ditrigonal cationic

silver cluster [47]. Comparing the results of the NWChem-backed EHP runs to those obtained using the NNFF as described in the methods sec-

tion, we find an excellent agreement of the frequencies. Furthermore, a relative mean squared error in the Hessians of less than 1% is achieved,

indicating that the NNFF has captured the small displacement regime as well. Thus, the assumption that the NNFF can indeed be used as a global

surrogate is warranted.

This enables us to study power-series expansions of the PES using the NNFF instead of DFT. Notably, Equation (9) does not impose any

requirements on the function aside from smoothness and differentiability, both of which are ensured by the construction of the NNFF as

described in detail in Reference [35]. For brevity, we limit ourselves to the fourth-order Taylor expansion, Φ
4ð Þ
, which is obtained through

Equation (9). On first glance at Figure 7, the frequencies obtained using Φ
4ð Þ
the potential satisfactorily reproduce those obtained through the

NNFF. Nonetheless, despite the system being much less anharmonic than the LJ systems, the Φ
4ð Þ
prediction of the lowest-frequency mode devi-

ates significantly from the NNFF- and NWChem-backed result starting at about 300K, as shown in the inset. Specifically, it approaches the dou-

bly degenerate second-lowest mode, suggesting that the Φ
4ð Þ
potential induces a spurious symmetry.

A different perspective on this can be gathered by looking at the relationship between the root-mean-squared error (RMSE) of the forces and

the L2-norm of the displacements in the validation dataset, as depicted in Figure 8. Here, the local nature of the expansion and the fact that poly-

nomials can only tend to for large values of their argument become visible—the further away from the equilibrium positions Φ
4ð Þ
is evaluated, the

worse the accuracy. Using the inverse relationship of normal-mode frequency and thermal amplitude implied by the equipartition theorem, this

inaccuracy can give an approximate but intuitive explanation for the deviation of the lowest-frequency mode.

4 | CONCLUSION

Using finite and periodic Lennard-Jones systems as easy-to-analyze benchmarks with significant anharmonicity, we explore the usefulness of

power-series expansions as relatively inexpensive surrogate models of the potential energy surface for the evaluation of thermodynamical proper-

ties at finite temperatures via effective harmonic potentials.

A general trend is that local expansions of the potential energy surface fail to capture important behavior at elevated temperatures and even

corrections due to zero-point motions of the ions. In particular, the very commonly used quasi-harmonic approximation performs very poorly

when it comes to predicting thermodynamic properties. High-order (sextic or octic) expansions are required to obtain reasonable results at inter-

mediate temperature, but even those can introduce significant artifacts like instabilities and nonexistent phase transitions. Furthermore, in real

solids, the number of parameters contained in those high-order Taylor approximants renders them unfeasible or only possible with very short

cutoffs.

The root cause of such deficiencies is the behavior of polynomials for large values of their arguments, together with the fact that a many-

body system at finite temperature has a significant probability of visiting areas far from the minimum of the potential energy surface. One pos-

sible solution to this issue is the parametrization of the potential energy surface using a global description, such as the neural network

employed in this manuscript. Not only are such global approximants more flexible and transferable to different numbers of atoms or, in the case

of solids, different cell shapes, they also require less computational effort than, for example, a full third-order, or partial fourth-order

correction.

F IGURE 8 RMSE of the force prediction of Φ
4ð Þ
as a function of displacement magnitude for the validation data. Points not obtained through

Equation (2b) (i.e., the first iterations) were omitted.
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