
DISSERTATION

Object Change Detection for Autonomous
Indoor Robots in Open-World Settings

conducted in partial fulfillment of the requirements for the degree of a

Doktor der technischen Wissenschaften (Dr. techn.)

supervised by

Ao.Univ. Prof. Dipl.-Ing. Dr. techn. Markus Vincze
E376 Automation and Control Institute

submitted at the

TU Wien

Faculty of Electrical Engineering and Information Technology

by

Dipl.-Ing. Edith Langer

DOB 11.09.1988
Matr. Nr.: 00725806

Vienna, March 2023 Edith Langer

Acknowledgment

I like to thank Markus Vincze for accepting me in the Vision4Robotics group and for
his professional but also personal support during my Ph.D. journey. At its beginning,
Michael Zillich supported me in finding my research direction. Thank you!

I’m grateful that Timothy Patten joined the group. With his kind and caring way
and his endless support in discussing ideas and writing papers, he has contributed a
great deal to the success of this work. Thank you Tim for proofreading my thesis in
your spare time!

I’m glad to have met all the great people working together with me in the V4R group.
Special thanks to Georg Halmetschlager-Funek and Markus Suchi for collecting one
or the other ECTS as a group, Jean-Baptiste Weibel for fruitful discussions, Simon
for making the time at university more fun, and Matthias for being the heart of the
lab and gluing it together and for the pre-pandemic tea breaks to cheer me up when I
was close to giving up. I also like to thank Markus Leitner, Christian Eder, and Kevin
Wolfram for their help in setting up robot experiments and annotating data.

I am deeply indebted to Ursula Hufnagl, one of the most selfless people I know.
Thank you for your time, your compassion, and for never giving up on me.

I am grateful for the friends I met during my time in the student dorm, at VrVis,
and university. A special mention deserves the MIST - although we don’t manage to
meet regularly anymore, I always enjoy the time we spend together.

Andrea and Maria, I know you now for more than half of my life. Thanks for listening
and for the encouraging words when I doubted research and myself. You are always
there for me! I hope we will continue testing and eating a lot of ice cream together in
the future!

A heartful thank you to my family, especially my parents, who made it possible for
me to study in the first place and always encouraged me on my way.

Last but not least I like to express my special gratitude to Harri who supported me
in every possible way and it is no exaggeration to say that without him I would not
have been able to complete this journey.

This work was funded by the European Community’s Seventh Framework Programme
under grant agreement no. 610532 (SQUIRREL), the Vienna Science and Technology
Fund (WWTF) under grant agreement No.ICT15-045 (RALLI), the Austrian Science
Fund (FWF) under grant agreement I3967-N30 (BURG), and the Austrian Research
Promotion Agency (FFG) under grant agreement 879878 (K4R).

I

Abstract

Deploying robots in homes to fulfill advanced tasks such as tidying up or filling the
dishwasher, requires the capability to understand and adapt to changing environments.
Detecting task-relevant objects is a key aspect for further steps such as object recognition
and manipulation. Available learning-based object detectors achieve reasonable results
when training and test data stem from the same distribution and all objects are known
in advance. However, in an open-world setting, it is not enough to handle known objects,
the robot also needs to detect objects it has never seen before. Another important
aspect of object detection is the question of where in the environment it makes sense
for a robot to look for objects. The proposed methods in this thesis not only support
the robot in exploring the environment continuously but also perform tasks such as
open-world object change detection. Due to the interest in not only table-top scenes but
larger entities such as full rooms, 3D reconstructions are a common choice to represent
environments. Reconstructions are used to store a specific state of the environment
as a reference for future comparisons to the current state. This reveals changes in
the environment depicting potentially interesting objects.While the first presented
method uses voxel-based differencing to detect novel objects, the advantage compared
to other works is that the current recording of the environment is created on-the-fly
while the robot moves around to fulfill an unrelated task. In order to make differencing
robust against insignificant changes in the environment, such as small movements of
furniture, the second approach exploits semantic segmentation allowing the division
of the environment into meaningful parts. This concept builds the basis for the third
approach where a point pair feature descriptor is used to match detected objects from
different timestamps and categorize them either into static, moved, removed, or novel.

For qualitative evaluation, and as part of the contribution of this thesis, we create
the new dataset ObChange, which is specifically designed for detecting changes on the
object-level. The dataset provides real-world environment reconstructions from different
timestamps acquired with a robot and where small objects that change are annotated.
Until now no other publicly available dataset combines all of these characteristics. We
use ObChange to show that our method using semantic segmentation to partition an
environment achieves superior object detection results compared to global differencing
methods. Furthermore, we use the dataset to compare our object detection and matching
method against an adaption of recently published learning-based work. Even when only
considering objects presented in the training set, the baseline falls behind our approach
when considering real-world scenarios. Additionally, real-world robot experiments
demonstrate the applicability of the proposed methods.

II

Kurzzusammenfassung

Roboter sind längst in der Industrie, aber auch im alltäglichen Leben angekommen.
Obwohl Aufgaben wie Staubsaugen gut bewältigbar sind, stoßen autonome Roboter
selbst bei scheinbar einfachen Aufgaben wie etwa Zimmer aufräumen oder das Befüllen
eines Geschirrspülers an ihre Grenzen. Ein Grund dafür ist die dynamische Umgebung
und das notwendige, stets aktualisierte Verständnis darüber. Dabei ist die Detektion auf-
gabenrelevanter Objekte essentiell für weitere Schritte wie etwa Objektwiedererkennung
und -manipulation.

Verfügbare lernbasierte Systeme zur Objektdetektierung erzielen gute Ergebnisse,
wenn Trainings- und Testdaten aus der gleichen Verteilung stammen und alle Objekte
im Voraus bekannt sind. Allerdings treffen diese Voraussetzungen für viele Umgebungen
und Aufgaben nicht zu. Es ist daher essentiell, dass Roboter sich auch in nicht abge-
schlossenen Umgebungen (open world) zurechtfinden und Objekte detektieren können,
die sie noch nie zuvor gesehen haben. Eine wichtige zu klärende Frage ist, wo in der
Umgebung ein Roboter sinnvollerweise nach Objekten suchen soll. Die in dieser Arbeit
vorgestellten Methoden ermöglichen dem Roboter sowohl die kontinuierliche Erkundung
der open-world Umgebung als auch die Detektierung der darin befindlichen Objekte,
sollten diese neu sein oder ihre Position verändert haben. Um die Methoden nicht nur
auf Tischszenen zu beschränken, sondern auch auf größere Umgebungen anzuwenden,
wie zum Beispiel ganze Räume, sind 3D-Rekonstruktionen eine gängige Wahl. Re-
konstruktionen werden verwendet, um einen bestimmten Zustand der Umgebung als
Referenz zu speichern und diesen mit zukünftigen Zuständen zu vergleichen. Auf diese
Weise werden Veränderungen in der Umgebung sichtbar, die potenziell interessante
Objekte darstellen.

Die erste vorgestellte Methode detektiert Objekte, indem sie zu unterschiedlichen
Zeitpunkten aufgenommene, voxelbasierte Rekonstruktionen einer Umgebung mitein-
ander vergleicht. Der Vorteil gegenüber anderen Arbeiten besteht darin, dass dies
gänzlich nebenbei erfolgen kann, während der Roboter sich im Raum bewegt und eine
andere Aufgabe durchführt. Um die Unterschiede in einer Umgebung und damit die
Objektdetektierung robust gegenüber unbedeutenden Veränderungen zu machen, wie
zum Beispiel geringfügige Bewegungen von Möbeln, unterteilt der zweite Ansatz in
dieser Arbeit die Umgebung in semantisch sinnvolle Einheiten, welche dann unabhängig
abgearbeitet werden. Dieses Konzept bildet die Grundlage für die dritte Methode,
bei der ein Merkmalsdeskriptor verwendet wird, um zu unterschiedlichen Zeitpunkten
detektierte Objekte zu vergleichen und sie entweder als statisch, verschoben, entfernt
oder neu zu kategorisieren.

III

IV

Ein wichtiger Beitrag dieser Arbeit ist der neue Datensatz ObChange. Er eignet
sich besonders zur quantitativen Auswertung von Methoden, welche Objekte durch
den Vergleich zweier Umgebungszustände detektieren. Der Datensatz besteht aus
Rekonstruktionen von realen Umgebungen zu verschiedenen Zeitpunkten, die mit einem
Roboter aufgenommen wurden und in denen kleine Objekte annotiert sind. Bislang
gibt es keinen anderen veröffentlichten Datensatz, der all diese Eigenschaften vereint.
Basierend auf ObChange erzielt die vorgestellte Objektdetektierungsmethode, welche
semantische Information zur Partitionierung einer Umgebung verwendet, bessere Ergeb-
nisse als globale Vergleichssmethoden. Darüber hinaus verwenden wir den Datensatz,
um unsere Methode, welche nicht nur Objekte detektiert sondern diese auch zwischen
zwei Zeitpunkten abgleicht und kategorisiert, zu evaluieren. Die Ergebnisse werden
mit einer leicht abgeänderten Form einer kürzlich vorgestellten Arbeit, welche lernba-
sierte Objektdetektoren verwendet, verglichen. Selbst wenn nur die im Trainingsset
verwendeten Objekte berücksichtigt werden, schneidet der lernbasierte Ansatz schlechter
ab. Zusätzlich zu den erzielten Ergebnissen der vorgestellten Methoden auf ObChange,
zeigen wir mit durchgeführten Roboterexperimenten, dass die Ansätze auch in der
echten Welt anwendbar sind.

Contents

Abstract II

1 Introduction 1
1.1 Motivation . 3
1.2 Problem Statement . 3
1.3 Contributions and Outline . 5

1.3.1 On-the-Fly Detection of Novel Objects using OctoMaps – Chapter 4 7
1.3.2 Change Detection by Combining Global Semantic Information

and Local Geometric Verification – Chapter 5 7
1.3.3 Autonomous Object Mapping in Open-World Settings – Chapter 6 8

1.4 List of Publications . 9

2 Related Work 11
2.1 3D Representation of Environments . 11
2.2 Unsupervised Change Detection for Indoor Environments 12

2.2.1 Frame-to-Frame Comparison . 13
2.2.2 Map-to-Map Comparison . 14
2.2.3 Frame-to-Map Comparison . 15

2.3 Learning-Based Object Detection Covering Unknown Objects 15

3 Datatsets 18
3.1 Existing Indoor Datasets . 18
3.2 Object Change Detection Dataset for Indoor Environments 20

4 On-the-Fly Detection of Novel Objects on the Floor 25
4.1 Motivation . 25
4.2 Method . 26

4.2.1 Generation of Reference OctoMap 27
4.2.2 Generation of Environment Exploration Poses 27
4.2.3 Robot Motion Planning . 29
4.2.4 OctoMap Differencing and Region Detection 30
4.2.5 Storing Discovered Regions of Interest 31
4.2.6 Examining Regions of Interest 32
4.2.7 Object Segmentation . 33

V

VI Contents

4.3 Experimental Results . 33
4.3.1 Real environment . 35
4.3.2 Simulated environment . 36

4.4 Conclusion . 37

5 Robust and Efficient Object Change Detection by Combining Global
Semantic Information and Local Geometric Verification 40
5.1 Introduction . 40
5.2 Method . 42

5.2.1 Object Detection from Global Semantic Context 42
5.2.2 Object Verification with Local Geometry 44

5.3 Experimental Results . 45
5.3.1 Dataset . 46
5.3.2 Implementation Details . 46
5.3.3 Comparison Methods . 48
5.3.4 Metrics . 48
5.3.5 Results . 49
5.3.6 Generality to Different Reconstruction Methods 49

5.4 Conclusion . 52

6 Where Does It Belong? Autonomous Object Mapping in Open-
World Settings 53
6.1 Introduction . 53
6.2 Object Mapping using Local Surfaces 54

6.2.1 Problem Definition . 55
6.2.2 System Overview . 55
6.2.3 Reconstruction of the Indoor Environment and Plane Extraction 56
6.2.4 Reconstruction of Surfaces and Object Detection 57
6.2.5 Object Matching and Categorization 59

6.3 Experiments and Discussion . 63
6.3.1 Evaluation on the Robotic Dataset ObChange 63
6.3.2 Robot Experiments . 70
6.3.3 Discussion . 72

6.4 Conclusion . 74

7 Conclusion 78
7.1 Summary . 78
7.2 Outlook . 80

7.2.1 Improving Object Reconstruction and Detection 80
7.2.2 Expanding on Object Detection Results 81

Appendix 82
A.1 Examples from the Object Change Detection Dataset 82

A.1.1 Small Room . 83
A.1.2 Living Area . 84
A.1.3 Office Desk . 85

Contents VII

A.1.4 Kitchen Counter . 86
A.1.5 Big Room - Part 1 . 87
A.1.6 Big Room - Part 2 . 88

Bibliography 89

List of Figures

1.1 Examples of commercially available robots 2
1.2 A kitchen scene at two different timestamps where objects of interest,

i. e. changes, are marked with a bounding box. 5
1.3 Overview of on-the-fly object change detection using OctoMaps. 7
1.4 Overview of using global structures and local verification to detect novel

objects. 8
1.5 Overview of detecting and matching objects between two timestamps. . 9

3.1 Human Support Robot from Toyota with the RGB-D camera highlighted. 21
3.2 Overview of YCB objects used for our dataset. 22
3.3 Reconstructions for the big and small room showing the reference state. 23
3.4 Reconstructions for the living area, office desk, and kitchen counter

showing the reference state. 24

4.1 Typical scenes for a robot that has to clear away toys. 25
4.2 Flowchart showing the method parts described in Section 4.2.1, 4.2.4

and 4.2.5. 28
4.3 Result of the view triangle generation visualized for two different envi-

ronments. 29
4.4 Reference and current OctoMap (with the detected objects highlighted)

depicting the environment used in the real-world experiments. 32
4.5 Flow diagram of the proposed segmentation approach performed at a

computed viewpoint. 33
4.6 Comparison of the number of segmentation actions needed to find all

objects in the real environment. 36
4.7 Comparison of the time needed to find all objects in the real environment. 37
4.8 Comparison of the number of segmentation actions needed to find all

objects in the simulated environment. 38
4.9 Comparison of the time needed to find all objects in the simulated

environment. 39

5.1 A household robot compares the stored reference map to the current
situation and detects relevant changed objects. 41

5.2 Overview of our proposed novel object discovery method showing object
detection results for each step. 43

VIII

List of Figures IX

5.3 Examples from ScanNet showing annotation inaccuracies. 44
5.4 The two steps of the local verification are shown for a permanent and a

novel object. 46
5.5 Qualitative examples for all five environments from the dataset 51
5.6 Qualitative examples of our approach applied on the same recording for

different reconstruction methods. 52

6.1 System overview of our approach to detect and match objects. 56
6.2 Example surfaces reconstructed with ElasticFusion using RGB and ICP,

ElasticFusion using only ICP, and our approach of fusing the robot poses
with the estimated camera poses from ElasticFusion (only ICP). 59

6.3 Example showing how objects are separated using PPF matching. . . . 63
6.4 3D object map of detected objects using Mask R-CNN trained on COCO

created with the approach from [103]. 66
6.5 Detection performance of the COCO-baseline, the YCBV-baseline, and

our method on the YCB objects used in the dataset. 70
6.6 Correlation matrices for each environment showing the relative and

absolute categorization results. 71
6.7 Reconstruction of the environment used for the real robot experiments. 73
6.8 Results of real-world robot experiments. 76
6.9 Examples of missed objects. 77
6.10 Examples of hypotheses generated based on PPF. 77

A.1.1Small room from the object change detection dataset (Section 3.2). Top:
full-environment reconstruction created with voxblox. Bottom: selected
surfaces of interest from ObChange. 83

A.1.2Living area from the object change detection dataset (Section 3.2). Top:
full-environment reconstruction created with voxblox. Bottom: selected
surfaces of interest from ObChange. 84

A.1.3Office desk from the object change detection dataset (Section 3.2). Top:
full-environment reconstruction created with voxblox. Bottom: selected
surfaces of interest from ObChange. 85

A.1.4Kitchen counter from the object change detection dataset (Section 3.2).
Top: full-environment reconstruction created with voxblox. Bottom:
selected surfaces of interest from ObChange. 86

A.1.5One part of the big room from the object change detection dataset
(Section 3.2). See Figure A.1.6 for the other part. Top: full-environment
reconstruction created with voxblox. Bottom: selected surfaces of interest
from ObChange. 87

A.1.6One part of the big room from the object change detection dataset
(Section 3.2). See Figure A.1.5 for the other part. Top: full-environment
reconstruction created with voxblox. Bottom: selected surfaces of interest
from ObChange. 88

List of Tables

1.1 Definition of the different categories an object gets assigned to when
comparing an environment at two different timestamps. 4

1.2 Overview of the methods presented in this thesis. Differences are pointed
out by three main aspects. 6

3.1 Comparison of indoor object discovery and change detection datasets . 18

4.1 Parameters used for the experiments. 34

5.1 Parameters used for the experiments. 47
5.2 Comparison of different methods on the robotic dataset. 50

6.1 Parameters used for evaluation . 64
6.2 Overview of the dataset used for the quantitative evaluation. 65
6.3 Results of the baseline trained on COCO and YCBV compared to the

results of our method evaluated on ObChange. 69
6.4 Results of mapping objects from the robot experiments. 72

X

Chapter 1

Introduction

Human expectations of robot capabilities are influenced by movies and convincing
marketing and advertisement. While research in the field of robotics has made huge
progress over the last decade, there is still a large gap between what humans expect
from robots and what they are really capable of doing robustly in real-world settings.
Let us think about robots beyond research prototypes that are currently operating in
the world. Industrial robots in factories and robot vacuum cleaners at home are the
first examples that immediately come to mind. Not so common, but already in use, are
delivery robots in restaurants bringing food and drinks to tables as well as robots as
museum guides or in hotels to inform tourists about nearby attractions, showing them
the elevator or the dining room. Figure 1.1 shows four of the previously mentioned
robots as examples of robots deployed in the real world.

All these available robots have one thing in common: their main goal is to plan
collision-free trajectories in a known and pre-mapped environment. Additionally, some
of them transfer information via determined sentences, simple dialogues, or shown on
an attached screen. While the aforementioned service robots, which assist humans, may
get in contact with unknown objects, they do not require further information about
them. For example, it is irrelevant if the object blocking their way is a backpack or a
potted plant as long as they are able to navigate around it. Robots, which are designed
to manipulate objects, usually apply predefined actions to known objects, such as an
industry robot assembling a product.

The mentioned applications for commercially available robots show that, at the
moment, robots demonstrate their strength in structured environments performing
predictable actions, which do not require learning about new objects. Dealing with
changing and dynamic environments is therefore an active research area [1]–[3]. Also,
the fact that many tasks of a service robot require the ability to work in open-world
settings, where not every object is known by the robot in advance, recently gained
attention in research [4]–[7]. To unlock the potential of robots, future approaches need
to enable robots to adapt to and semantically understand the environment and the
objects within as well as to learn about new objects.

With these observations in mind, the goal of the developed and presented methods in
this thesis is to improve a robot’s ability to autonomously detect objects in open-world
environments. The overarching main idea of the techniques introduces in this thesis

1

2 1 Introduction

Figure 1.1: Examples of commercially available robots deployed outside of research
labs. From top to bottom and left to right: robot guide by MetraLabs in
the German Museum of Technology (©SDTB/C. Kirchner), robot vacuum
cleaner by Dreame, food delivery robot by Pudu, industrial robot by Kuka
(©KUKA AG).

is to re-use as much information as possible. For example, when considering scene
understanding, instead of repeatedly analyzing the whole environment all over again to
capture and understand the current situation, we propose to focus on relevant regions
by utilizing change detection and concentrating the analysis on the identified changes.
An example where the concept of change detection is highly effective is a fetch-and-carry
robot for the elderly [8], [9], which first needs to identify where the required object
is placed. Another example is a surveillance robot [10]. It needs to detect if objects
are out of place compared to the normal state of an environment. One way to obtain
the locations of such objects is via change detection by finding differences between the
current situation and the reference. This is also the initially required step for a robot
with the task of tidying up an office or apartment1. The identified locations serve as

1http://www.squirrel-project.eu

1.1 Motivation 3

the basis for subsequent processing steps. The robot navigates there, recognizes or
classifies the object, derives the correct storage location, and brings the object to the
target location.

The complexity of these applications increases significantly when the robot has to
deal with real-world conditions such as dynamic environments, changing accessibility
of viewpoints, cluttered scenes, and objects it may not have seen before. The latter is
particularly relevant because a robot rarely has the chance to learn about all objects it
encounters in advance. Generally, the successful accomplishment of the mentioned tasks
requires the robot to detect known as well as unknown objects and further differentiate
between static, moved, removed, and novel objects.

1.1 Motivation

To fulfill tasks such as fetching objects, patrolling, or tidying up, a mobile robot needs
to detect objects robustly and efficiently. As a first step, it is important for the robot
to know where to look for objects of interest and focus its attention on these locations.
This is crucial to achieve satisfying results for subsequently needed computer vision
algorithms dealing with object classification or recognition where the actual viewpoint
of the camera heavily influences the accuracy. Loghmani et al. [11] show in their work
that most of the datasets are created under constrained and artificial settings where
objects are nicely placed in the center of the image. This leads to the fact that methods
achieve excellent results when tested on the dataset, but underperform in the real world,
particularly when deployed on a robot. Loghmani et al. extract two situations that are
especially challenging for object classification methods. First, the classification accuracy
depends on the object size in the image. Thus small objects and objects far away
from the robot are difficult to correctly classify. Therefore, the smaller an object, the
closer a robot should try to get. Second, occluded objects are found to be challenging.
Distinctive parts may be hidden by other objects or they are cut-off because the object
is not fully in the field of view. With these challenges in mind, it is essential that a
mobile robot has the necessary knowledge of an object of interest, like position and
size, in order to approach it in such a way that it is perfectly in the field of view for
subsequently applied computer vision methods.

1.2 Problem Statement

A common approach to tackle the problem of where to focus the view is to extract
regions of interest via change detection as employed by [12]–[17]. The basic idea is to
compare the state of an environment at two different timestamps and to consider the
differences as dynamic objects, which should gain the robot’s attention. In contrast
to a different research area where live motion is used for object discovery [18]–[21],
change detection is based on the more relaxed assumption that the robot operates
in a semi-static environment. To perform change detection it is not necessary that
the robot actively observes when objects move or are moved. It has to be noted that
methods, which utilize geometric change between two timestamps to detect objects,

4 1 Introduction

do not directly provide information about the semantics of the objects and are not
able to tell if discovered differences represent one object or multiple objects forming
a heap. Therefore, when considering more complex tasks, such as tidying up a room
autonomously, more information about objects is needed. Robust object detection,
however, is an important prerequisite for follow-up computer vision techniques, such as
segmentation or classification.

To perceive the environment, technologically advanced robots are typically equipped
with cameras. Low-cost RGB-D cameras using time-of-flight or structured light tech-
nology, e. g. Microsoft Kinect, Asus Xtion, or Intel RealSense, are a common choice.
Besides an RGB image, these cameras also provide aligned dense depth measurements,
which supplement computer vision algorithms with an additional and highly relevant
dimension. Since these types of cameras are sensitive to sunlight, we focus on indoor
applications and leverage the fact that indoor environments are always man-made.
Therefore, it is a fair and common assumption that objects sit on nearly horizontal
planes considering physical plausibility [22], [23]. Tables, shelves, sofas, chairs, and even
the floor are examples of possible supporting planes for objects.

The kind of objects we want to detect using change as a cue is potentially detachable
from the supporting plane and of a size manageable by a mobile robot, while other
works usually focus on bigger objects such as furniture [16], [24]. In general, objects
detected by comparing the same environment at two different timestamps, t0 and t1, can
be categorized into static, moved, removed, and novel. These four categories represent
all possibilities and, therefore, a detected object has to be assigned to one of them.
The definition of the categories is given in Table 1.1 and Figure 1.2 shows an example
of object change detection by comparing a kitchen scene recorded at two different
timestamps. Previous works, such as [12], [14], [25], and the methods described in
Chapters 4 and 5, are only interested in the fact that something has changed between
t0 and t1, meaning if an object is new at respectively removed from its current location.
This is in contrast to the general definition given in Table 1.1, which takes the whole
environment into account and not only a certain location. To be able to differentiate
between truly novel respectively removed and moved objects in an environment, the
detected objects need to be matched between the two timestamps t0 and t1. In Chapter 6
we present an object detection method with a subsequent matching step. Therefore,
this method is able to categorize the objects into the four defined categories.

Table 1.1: Definition of the different categories an object gets assigned to when compar-
ing an environment at two different timestamps.

Category Description
Static Object moved less than a distance d at time t1 compared to t0

Moved Object is detected at time t0 and at time t1, but at different locations
Removed Object is detected at time t0 but not at time t1

Novel Object is detected at time t1 but not at time t0

1.3 Contributions and Outline 5

Figure 1.2: A kitchen scene at two different timestamps where objects of interest, i. e.
changes, are marked with a bounding box. Orange: object moved, turquoise:
object was removed, violet: object is novel.

1.3 Contributions and Outline

In this thesis, we present methods to discover objects based on the comparison of an
indoor environment represented as 3D reconstruction at two different timestamps. The
main contributions of the thesis are as follows:

• an annotated dataset consisting of five different indoor environments, which
is suitable to evaluate object change detection and object matching methods
(Chapter 3),

• unsupervised object change detection and object matching methods, which are
independent of training data and consequently, there is no need for tedious object
modeling (Chapters 4, 5, and 6),

• efficient methods, which are applicable in open-world settings because dynamic
objects do not need to be known in advance (Chapters 4, 5, and 6),

• leveraging semantic information to systematically focus the change detection
methods on promising regions (Chapters 5 and 6), and

• additional experiments performed with real robots showing the practicality of the
proposed methods (Chapters 4 and 6).

6 1 Introduction

Table 1.2: Overview of the methods presented in this thesis. Differences are pointed
out by three main aspects.

On-the-Fly
(Chapter 4)

Local Verification
(Chapter 5)

Object Mapping
(Chapter 6)

Reconstruction
Method

OctoMap Voxblox
Voxblox,

ElasticFusion

Object Locations Floor
Floor,

horizontal planes
Horizontal planes

Object Categories Novel Novel
Static, moved,
removed, novel

While the three methods presented in this thesis have a slightly different focus,
commonly for all of them, their output contains the location and the spatial extent
of all detected objects. Depending on the reconstruction method used to map the
environment, the output may consist of a more detailed depiction of the objects, such
as a better geometric representation or the incorporation of color. In summary, the
developed methods differ in the following main aspects:

• The reconstruction method used to represent the environment – OctoMap [26],
voxblox [27], or ElasticFusion [28]

• The locations at which objects are discovered – On the floor and/or placed on
other horizontal planes

• The object categories, which are distinguished when comparing the current
recording to a reference – Static, moved, removed, and/or novel objects.

Table 1.2 outlines how the three object change detection methods presented in this
thesis relate to these aspects, while the following subsections give a compact description.
It has to be noted that the first two methods automatically categorize detected objects as
novel, in the sense of novel at this specific location compared to novel in the environment,
which is the case for the third method.

The following subsections outline the ideas of the change detection methods discussed
in this thesis.

1.3 Contributions and Outline 7

1.3.1 On-the-Fly Detection of Novel Objects using OctoMaps

– Chapter 4

Identifying objects in an environment, which were not at this location before, is an
important capability for a robot, which conducts surveillance or maintains order in
homes or industrial settings. In previous works, the robot navigates in the environment
using pre-defined waypoints and analyzes the parts of the scene visible from these
waypoints. Without knowing where to find novel objects, this process is time-consuming
and prone to detecting false positives. To overcome these limitations we propose a
method that combines navigation and attention in order to rapidly detect objects,
which are new at that location. We exploit the OctoMap, which maps the environment
as a voxel grid and is generated as a by-product while the robot moves around to
fulfill its (unrelated) task. The voxel size of an OctoMap has to be considered as a
trade-off between the degree of detail depicted in the map and the immanent noise of
the integrated depth measurements. We use the current OctoMap of an environment to
compare it to a reference. The reference is previously generated and depicts the target
state of the environment. Computing the difference between the reference map and
the map of the current state indicates regions of interest, which consist of one or more
objects. These regions are attention cues where subsequent steps, like segmentation,
should be performed. The focus of this work is on detecting objects on the floor, which
are novel and therefore were not present at this location when the reference map was
generated. We show the benefits of using object change detection in simulated as well
as real-world experiments and present the duration and number of segmentation actions
required to discover all novel objects. Figure 1.3 shows a simplified flowchart of the
method. A more detailed description of the contributions, the approach, and the results
are given in Chapter 4 and have been published in the scientific paper [Langer, ROBIO
2017].

OctoMap t
0

Differencing

OctoMap t
1

Filtering Bounding
cylinder

Figure 1.3: Overview of on-the-fly object change detection using OctoMaps.

1.3.2 Change Detection by Combining Global Semantic Infor-
mation and Local Geometric Verification – Chapter 5

Previous object change detection approaches, such as [13], [14], [29], do not distinguish
between novel objects or simple scene readjustments nor do they sufficiently deal
with localization error and sensor noise. To overcome these limitations, we combine
the strengths of global and local methods for the efficient detection of novel objects
compared to a reference of the environment. In this work, the 3D reconstruction method

8 1 Introduction

used to map the full environment is based on the voxblox library. Global structure in
the reconstruction, determined from 3D semantic information, is exploited not only
to directly establish object candidates but also to efficiently extract horizontal planes.
These planes, including the floor, help to discover additional object candidates, which
were missed by the semantic segmentation method because they are, e. g., too small.
The set of object candidates is then locally verified by comparing isolated geometry
to a reference reconstruction provided by the task. This is a two-step approach. First,
for each object, the supporting plane gets aligned between the two timestamps to
compensate for mapping inaccuracies. Second, the object itself gets aligned and the
overlap indicates if the object in the current map is novel or not. We evaluate our
approach on a real-world robotic dataset containing different types of environments with
a total of 31 recordings and 260 annotated objects (see Section 3.2). Figure 1.4 shows a
simplified flowchart of the method. A more detailed description of the contributions,
the approach, and the results are given in Chapter 5 and have been published in the
scientific paper [Langer, IROS 2020].

Global

voxblox t
0

Semantic
segmentation

voxblox t
1

Colored
voxels

Plane
alignment

Object
alignment

Local

Plane and ob-
ject extraction

Differencing

Figure 1.4: Overview of using global structures and local verification to detect novel
objects.

1.3.3 Autonomous Object Mapping in Open-World Settings –
Chapter 6

For numerous applications in robotics, it is not enough to detect objects, which are new
at a location compared to a reference like in the two previously mentioned methods.
In order to release the full potential of a service robot, it is necessary to distinguish
between truly novel objects in the environment and objects that are out of place and
have moved to a new location. With this knowledge available the robot is, e. g., able
to bring back moved objects to their original position. The problem of categorizing
detected objects into static, moved, removed, and novel is particularly challenging in
open-world scenarios without a predefined set of objects the robot is going to encounter
in the environment.

The main idea of the presented method is to create a full reconstruction of the
environment using voxblox once and extract interesting surfaces that the robot should
visit repeatably. For each surface of interest, a detailed reconstruction with ElasticFusion

1.4 List of Publications 9

Object matching

Local
matching

Semi-local
matching

Global
matching

Colored pixels
+ category

voxblox

Semantic
segmentation

Plane
extraction

ElasticFusion
Object

extraction

Object
extraction

t
0

Plane
parameters

plane1

plane2

planeN

.

.

.

.

.

.

.

.

.

ElasticFusion
plane2

planeN

.

.

.

t
1

.

.

.

.

.

.

plane1

Figure 1.5: Overview of detecting and matching objects between two timestamps.

is generated. Based on these partial reconstructions we identify planes, consider clusters
on top as objects, and compute their point-pair-feature descriptors. These feature
descriptors are used to match potential objects between a reference and the current
state and categorize them robustly into static, moved, removed, and novel objects even
in the presence of partial object reconstructions and clutter. Our approach dissolves
heaps of objects without specific object knowledge, but only with the information
acquired from change detection. The evaluation is performed on real-world data, which
include challenges affecting the quality of the reconstruction as a result of noisy input
data. We perform a quantitative evaluation and compare our method against a baseline
using learning-based object detection. The results show that, even in the case of a
closed-world assumption where the training set of the baseline contains all objects
occurring in the test scenes, our approach outperforms the baseline for most test cases.
Lastly, we also deploy our method on a robot and demonstrate its effectiveness with
real-world experiments. Figure 1.5 shows a simplified flowchart of the method. A more
detailed description of the contributions, the approach, and the results are given in
Chapter 6 and have been published in the scientific paper [Langer, Frontiers 2022].

1.4 List of Publications

Parts of the content presented in this dissertation have been previously published in
the following papers:

• Edith Langer, Timothy Patten, and Markus Vincze. Where Does It Be-
long? Autonomous Object Mapping in Open-World Settings. Frontiers
in Robotics and AI, 2022. DOI: 10.3389/frobt.2022.828732

• Edith Langer, Timothy Patten, and Markus Vincze. Robust and Efficient Ob-
ject Change Detection by Combining Global Semantic Information and

10 1 Introduction

Local Geometric Verification. IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2020. DOI: 10.1109/IROS45743.2020.9341664

• Edith Langer, Bram Ridder, Michael Cashmore, Daniele Magazzeni, Michael Zil-
lich, and Markus Vincze. On-the-Fly Detection of Novel Objects in Indoor
Environments. IEEE International Conference on Robotics and Biomimetics
(ROBIO), 2017. DOI: 10.1109/ROBIO.2017.8324532

• Edith Langer, Michael Zillich, and Markus Vincze. On-The-Fly Detection of
Regions of Interest to Find Dynamic Objects in Indoor Environments.
Poster at Austrian Robotics Workshop (ARW), 2016

Chapter 2

Related Work

This chapter gives an overview of available reconstruction methods using RGB-D data
as input, reviews literature related to the work presented in this thesis dealing with
unsupervised object discovery by exploiting changes in an environment at different
timestamps, and discusses learning-based object detection approaches tackling the
open-world challenge.

2.1 3D Representation of Environments

An accurate 3D representation of an environment requires the fusion of many camera
frames. However, it is not expedient to fuse the raw data, which usually results in noisy
reconstructions. In this section, we discuss reconstruction methods, which combine
frames from RGB-D cameras in an intelligent way in real time. The list of methods is
not comprehensive but covers the most popular ones. Available methods are divided
according to their underlying geometric representation. In general, methods are either
based on points or voxels, but exceptions exist, e. g. ScalableFusion [30] uses triangle
meshes.

Two voxel-based mapping methods, which require camera poses relative to the
world as input, are OctoMap [26] and voxblox [27]. Both are designed to run on a
CPU only. While the former stores occupancy probabilities in octrees, the latter works
with Truncated Signed Distance Fields (TSDF). To generate TSDFs each voxel stores
the distance to the closest surface point up to a defined truncated distance t. Voxels
behind a surface have a negative value and voxels in front have a positive one. The
zero-crossing of the TSDF defines the surface. Usually, new input frames are integrated
using ray casting. TSDF is a very popular choice for 3D reconstructions and is suitable
to smooth out sensor noise when several frames of a region are given. All the following
methods use TSDF, perform simultaneous localization and mapping (therefore do not
require camera poses as input), and need a GPU for processing. KinectFusion [31] made
TSDF popular for dense real-time reconstruction purposes. Whelan et al. [32] extended
this approach to not only work with table-sized scenes but large environments. They
also integrated loop closure and, in a further extension, color. Loop closure applies
when coming back to a region, which was already mapped. It accounts for drift in
pose estimation and subsequent distortion of the map. InfiniTAM [33] divides the

11

12 2 Related Work

scene into overlapping submaps and then optimizes transformations between them to
achieve better and more efficient loop closure results. BundleFusion [34] also works
with submaps but in a hierarchical manner. First, consecutive frames are pooled into
chunks and their poses are optimized. This intra-chunk optimization is followed by an
inter-chunk optimization leading to a globally consistent reconstruction.

The advantage of point-based methods is that the camera input can be directly
used without the need to compute an implicit function and convert it to a grid structure.
The most prominent way to represent point-based maps is an unordered list of surfels.
A surfel is a point in 3D space with additionally assigned attributes like normal, color,
radius, and confidence. The radius of a surfel adapts to the density of the map, while
the confidence value allows the differentiation between stable and unstable points.
Confidence increases if data from several frames are associated with a point. Keller
et al. [35] leverage the confidence value to deal with dynamic objects in the scene
and exclude them from the reconstruction. ElasticFusion [28] adopts ideas from [35]
and includes loop closure using non-rigid deformations. Unfortunately, the ability to
reconstruct dynamic scenes is lost.

2.2 Unsupervised Change Detection for Indoor En-

vironments

Object detection in RGB images, as well as 3D data, is an active field in computer
vision and robotics. While most of the single frame, learning-based detectors are
limited by their training dataset, some methods working on 3D data use only geometric
properties [36], [37] or additional semantics [38]. Although the mentioned 3D methods
are useful in open-world settings, this section reviews work related to object detection
by comparing an environment at two different timestamps. This is closer to the work
presented in this thesis as it limits the set of detected objects to the ones that changed,
which are often relevant in robotic applications.

Available approaches performing object change detection can be divided into those
computing the difference between (1) two single camera frames [13], [39], (2) two
(partial) 3D reconstructions [14], [16], [17], [25], [29], [40]–[42] and (3) a reconstruction
and a single frame [12], [15]. As for (1), the environment is usually captured from fixed
waypoints, which the robot sequentially visits. This is not very flexible in terms of view
capturing if, e. g., the pre-defined waypoint cannot be approached due to an obstacle.
Furthermore, acquiring only one single view of an area is insufficient to capture it to
its full extent and, especially in cluttered scenes, suffers from occlusion. However, the
apparent extension of taking several views and performing change detection for each of
them separately generates the problem of ultimately fusing the results, which may be
ambiguous. This problem does not exist for methods falling into category (2), which
directly work on 3D reconstructions to detect changes in an environment. Typically
the 3D reconstructions used in this context are composed of geometric primitives such
as points, surfels, voxels, or meshes. The drawback of reconstructions, when used to
map larger areas, is the possibility of warping, smearing, and inaccuracies. This leads
to a significant number of wrongly detected objects. Existing methods propose several

2.2 Unsupervised Change Detection for Indoor Environments 13

strategies to reduce their occurrences by filtering detected objects of small size [40], [41]
or planar shape [13], [14], applying morphological operations [16], [41], or use a very
restrictive camera trajectory [14].

Computing the difference between two recordings of an environment inherently leads
to the distinction between static background and dynamic objects. Therefore, several
methods exploit this information not only to discover objects but also to model the
static parts of an environment and refine them with every visit [12], [14], [16], [25], [39].

2.2.1 Frame-to-Frame Comparison

Comparing two frames picturing the same area of an environment at different timestamps
received attention shortly after the rise of affordable RGB-D cameras. Mason and
Marthi [13] leverage the supporting surface assumption and detect horizontal planes in
RGB-D frames while the robot moves around. Clusters on top of planes are referred
to as objects. They store simple properties for each object, such as color, size, and
shape. However, when the robot revisits the location of a known object, they only
compare the two-dimensional convex hull to detect changes. This very limited change
detection approach assumes a global reference frame and does not rely on registered
frames. Alimi et al. [39] compare RGB-D frames from table-top scenes captured from
pre-defined locations. The frames are registered using ICP and afterward downsampled
to make differencing more robust against sensor noise. For each remaining cluster after
differencing a feature vector based on geometric and visual appearance is computed
and stored in a database. Feature vectors from previously stored objects are compared
to classify the newly detected clusters as novel, moved, or removed.

Recently, Adam et al. [43] proposed an approach to detect added, moved, and removed
objects in a reconstructed environment at two different timestamps. The initial change
detection is obtained by computing the difference between two aligned and rendered
depth images. Based on this difference, projected to the 3D space, supervoxels are
built and further used to propagate the changes also to the parts of the object that
were not detected in the first place. This leads to geometric transformation consistency.
To compute the dominant transformations of objects, learned features (trained on a
different task, therefore still an unsupervised method) for every point are extracted
and then matched by nearest neighbor search. RANSAC is applied to extract 3D
rigid transformations. For each transformation, a graph optimization problem is solved
to segment the corresponding object. Finally, they perform a connected component
analysis to resolve over-segmentation. This leads to the effect that in some cases it is
not possible anymore to differentiate single objects. The different change categories
(added, moved, removed) are not considered in the evaluation, which uses the 3RScan
dataset [24]. Similar to the designed baseline in Chapter 6 they use Mask R-CNN
trained on the COCO dataset for their baseline to generate semantic object labels.
These labels are used instead of the geometric consistency term to propagate changes.

In contrast to aligning images taken at a specific location, pairing frames from a
robot’s camera stream without any pose information is a non-trivial task and reduces
the performance of change detection approaches as shown by Park et al. [44] and Weihs
et al. [45].

14 2 Related Work

2.2.2 Map-to-Map Comparison

Creating a 3D reconstruction of an environment and comparing it to a 3D reconstruction
of the same environment (or parts of it) at a later point in time is a very common
approach for unsupervised object change detection. Herbst et al. [25] use a probabilistic
sensor model for change detection taking color, depth, and surface orientation into
account. They use surface patches to describe the environment and determine the
probability that the surface patches move between two aligned RGB-D maps. The
approach is demonstrated with table-top scenes where just the differencing step alone
takes 180 seconds. This indicates that the approach does not scale. Finman et al. [40]
discover objects through differencing of reconstructions. They propose a free-space
filtering technique, which prevents the method from detecting a change in an area
that was unseen in one map but visible in the other one because of different viewing
poses. Differencing requires an accurate alignment of the two reconstructions, therefore
a bounding cube is manually set to identify the overlapping regions. The overlapping
regions are then aligned using ICP, which tends to fail if big parts have changed. The
focus of their work is on learning segmentation methods to re-discover objects in future
visits. The best method assigned to an object is then used to segment the whole
environment at the next visit. This result is used to find segments with features similar
to the query object. The main goal of Ambrus et al. [14] is to create and maintain
the static structure of a room, the so-called meta-room, which is subsequently used to
extract dynamic objects. At each visit, a map is built from several registered point
clouds observed from one location using different camera angles limiting the application
to convex rooms. According to the clustered differences between two RGB-D scans of
the environment, the meta-room is updated to model previously occupied parts. This
method deals with structural room changes by detecting spatially and visually similar
clusters over past observations, which are then added to the meta-room. In a follow-up
work, Ambrus et al. [46] extend the approach to take sensor noise into account. Based
on the meta-room approach Bore et al. [47] detect changed objects and additionally
track the movement of these objects over time by defining a two-stage movement model,
which is limited to a closed world. With the same goal in mind as Ambrus et al. [14],
Fehr et al. [16] propose an approach to create a dense 3D reconstruction of the static
structure of an environment using TSDF. The TSDF value is used to identify changes
between the static map and the current observation. Dynamic objects are not integrated
into the static map, but segmented and stored in a database. They apply the approach
of Furrer et al. [36] to incrementally update and refine the stored objects.

In Chapter 5 and Chapter 6 we introduce and build on the idea of dividing an
environment into meaningful regions to perform a more robust object change detection,
which was recently adopted by Fu et al. [29]. They propose to model the environment
as a set of SDF volumes, so-called PlaneSDFs, each of them representing a plane and
its supported objects. For each PlaneSDF a 2D height map is computed and the
thresholded difference between two of them results in a change mask. To filter wrongly
detected objects they compare the 3D local surface geometry. For each key voxel of
an object and its counterpart in the target environment, a shape descriptor and their
similarity is computed. The distribution of all similarity scores is used to determine if

2.3 Learning-Based Object Detection Covering Unknown Objects 15

an object has changed. The quantitative evaluation using our newly created dataset
(see Chapter 3) shows improved results compared to [17], with the constraint that their
method also detects slightly moved furniture or objects, which were manually excluded.

2.2.3 Frame-to-Map Comparison

Similar to their previous work [25] Herbst et al. [12] detect changes by using a proba-
bilistic sensor noise model with the difference that during the reconstruction process
a single RGB-D frame is compared to a stored 3D map. While processing incoming
frames, the background map is updated as well as the 3D model for each detected
object using a connected component algorithm. Once spatially close objects are merged,
it is not possible to split them even when they are seen separated in the future.

Song et al. [15] reason that a robot usually stays in the same environment. Their
goal is to determine global instance-based labeling and to further recognize individual
objects. The method requires a high-quality reconstruction, which is based on the
output of an RGB-D camera array. Based on the full semantic labeling generated by a
crowd-sourcing marketplace, objects are either classified as movable or non-movable.
Non-movable objects are considered as background and are used to align new frames
with the reconstruction. For the remaining environment parts, a SIFT descriptor is
computed and used for object matching. Objects that cannot be matched with already
known ones are considered novel. Although manual labeling is required to achieve
refined alignment, we categorize this method as unsupervised because the change
detection process itself does not rely on specific training data. Furthermore, given
recent advances in automatic semantic labeling such as, e. g., SparseConvNet [48] or
MinkowskiEngine [49], the manual step could be simplified or replaced.

2.3 Learning-Based Object Detection Covering Un-

known Objects

While comparing reconstructions of an environment from two different timestamps
allows to discover unknown objects in 3D, learning-based approaches face the challenge
of detecting objects not seen during the training phase. Based on this requirement,
extracting 3D bounding boxes of objects including unknown ones recently gained
attention in research. Category-level methods [50]–[53] are trained on pre-defined
categories and applied to unseen instances from these categories. This is a first step
in the right direction. However, the result depends on the selected training categories.
Kollar et al. [54] and Kriegler et al. [55] train their models on synthetic stereo image
datasets and apply them to real-world data. Both utilize only 3D geometric primitives
and are therefore independent of 3D object models and semantic information of objects.
Kriegler et al. state promising results for cuboid-shaped and cylindrical objects on table
top-scenes, but the method needs improvement for objects that are not compact and
can not be described with simple primitives, such as a pair of scissors.

The term object detection is not used consistently in the research community. For
example, the famous architectures YOLO [56] and Mask R-CNN [57] are considered as

16 2 Related Work

object detectors. Although, their aim is not only to find all objects and their boundaries
in a 2D image but also to assign a class to each detected object. Considering 3D use
cases the class label is a good indication when associating the 2D detections from
several input images. Because Mask R-CNN is part of the baseline in Chapter 6, we
give an overview of available learning-based object detectors including classification
and how they extend to open-world settings. YOLO and Mask R-CNN [57] are very
popular, yet limited to a closed world, and show weakness by assigning unknown objects
mistakenly a learned class with high confidence [58]. While learning-based open-world
object classification is an emerging research field [6], [7], [59], [60], the extension to
open-world object detection is only recently defined by Joseph et al. [4] and consists
of two tasks: (1) detect known objects as well as objects, which were not explicitly
used for training and (2) incrementally learn these unknown objects. The first point,
which is the aim of open-set object detection, is hard to achieve because unknown
objects are categorized as background during training. Concerning the second step,
incrementally extending the knowledge of a trained detector leads to the problem of
catastrophic forgetting [61], [62], which describes the challenge of maintaining robust
performance on known classes as new classes are learned. Before Joseph et al. defined
the problem of open-world object detection, only two works existed that deal with
estimating uncertainty and therefore being able to distinguish unknown objects [63], [64].
However, they are not capable of gradually extending their knowledge when new classes
emerge, which is essential to be useful in real-world applications. Recently, triggered by
the formal definition, open-set [5], [65]–[67] and open-world object detection [4], [68]
are perceived as important, though challenging, tasks.

Kim et al. [5] present a neural network, which generates object proposals for unknown
objects by comparing the location and shape of proposed regions with available annotated
data. Compared to state-of-the-art object detection algorithms, performance for known
objects dropped marginally. In the work of Li et al. [65] region proposals, generated
with a Region Proposal Network (RPN), together with their corresponding feature
maps are the input to a mask segmentation module on pixel-level predicting also the
confidence. In a second step proposed object masks with a high uncertainty for all
trained classes are classified as unknown otherwise as known. Applying this method,
they reduce false positive detections generated by Mask R-CNN [57]. Du et al. [66]
suggest exploiting spatial and temporal information from video streams to generate
proposals for unknown objects. This is achieved by computing the dissimilarity of
feature vectors from known objects and object candidates from different frames. They
jointly train an object detector together with an uncertainty regularization branch. Cen
et al. [67] transfer the problem of open-set object detection to the 3D space and apply
their method to LIDAR data. Based on the fact that object detectors often wrongly
assign known classes to unknown objects they extract objects with high uncertainty
utilizing a metric-learning framework and Euclidean distance sum in metric space. For
each of these unknown objects, a more precise bounding box is acquired by unsupervised
clustering of points.

The open-world object detector proposed by Joseph et al. [4] uses an RPN to auto-
label unknown objects by selecting regions with a high objectness provided that they
do not overlap with an annotated ground truth object. Additionally, they use a binary

2.3 Learning-Based Object Detection Covering Unknown Objects 17

energy-based classifier on contrastive clustered data from the feature space. To be
able to learn new classes without forgetting existing ones and without retraining from
scratch, they utilize example replay and store a balanced set of examples to fine-tune the
model. Gupta et al. [68] adapt an approach, which uses an end-to-end object detection
model with transformers. They use an attention-driven approach to detect potential
unknown objects. To be able to distinguish unknown objects from the background,
they introduce an additional class besides the known classes, namely novel. Finally,
they implement a foreground objectness branch to transfer knowledge from known
to unknown objects and help to learn the model to differentiate between foreground
and background. They use the same approach as [4] to countermeasure the problem
of catastrophic forgetting. In their experiments they outperform the method of [4],
however, the recall for unknown objects is very low with a maximum of 7.5.

Chapter 3

Datatsets

In this chapter, we list and describe available indoor datasets in the context of change
detection (see Section 3.1). After careful consideration, we acquired a new robotic
dataset fulfilling the requirements needed to evaluate the performance of the object
change detection methods proposed in this thesis. A detailed description of this dataset
is given in Section 3.2.

3.1 Existing Indoor Datasets

Only a few datasets are available that capture not only table-top scenes but full indoor
environments at different timestamps. The characteristics of these datasets, which are
applicable for change detection, are summarized and compared in Table 3.1.

Table 3.1: Comparison of indoor object discovery and change detection datasets
(O=Office, H=Household, W=Warehouse).

#
Env

iro
nm

en
ts

#
R
ec

or
di

ng
s

Typ
e

R
ea

l w
or

ld
R
ob

ot
R
ef

er
en

ce
m

ap

O
pe

n
wor

ld
Sm

al
l o

bj
ec

ts
A

nn
ot

at
io

n

Mason et al. [13] 1 1 2 67 O � � – � � –
Ambrus et al. [46] 1 88 O � � – � � –3

Fehr et al. [16] 3 23 H/O � – � � – –
Qian et al. [69] 1 18 W � � � – – -
Halber et al. [70] - Rescan 13 45 H � – – � – �

Wald et al. [24] - 3RScan 478 1482 H � – – � – �

Park et al. [44] - ChangeSim 10 80 W – � � � – �

Weihs et al. [45] - RoomR 120 6000 H – � � – � �

Ours - ObChange 5 31 H/O � � � � � �

1Rosbags available on request.
2Includes several rooms.
3Only partially and inconsistently annotated.

18

3.1 Existing Indoor Datasets 19

The dataset described in [13] is captured over a long time period using a mobile robot.
The robot autonomously gathers data during frequent visits to an office environment
consisting of several rooms, where change is naturally induced by the employees.
Similarly, the dataset of Ambrus et al. [46] consists of data captured with a robot in a
regular office, so it includes a large variety of objects and even people. However, the
dataset only considers one room with the robot placed in the middle and not moving
during acquisition. Only the RGB-D sensor is rotated on a pan/tilt unit. As a result,
interesting regions and objects are far away from the camera, thus the views to create
the reconstruction of the room are constrained. Fehr et al. [16] provide raw recordings
from a handheld Google Tango for three different environments. The main focus of
the work is not on object detection but on static environment recovery. Therefore, the
dataset mainly contains furniture that moved between successive observations. Recently,
Qian et al. [69] created a robotic warehouse dataset where fences and boxes move. It
is intended for the evaluation of semi-static reconstruction methods. The datasets
provided by Halber et al. [70] and Wald et al. [24] are captured with a handheld device.
Each object in a recording has an instance ID to enable the inference of the movement
between two timestamps. While the former provides voxel annotations the latter also
provides the 3D transformations for moved objects. The dataset from Park et al.[44]
consists of warehouse environments created by simulating a drone flight using a game
engine.

Publicly available datasets differ not only in the type of environment they present, like
office, household, or warehouse, but also in the number of different environments. While,
e. g., Ambrus et al. [14] capture data from a single room only, Wald et al. [24] provide
almost 500 different environments. As a downside, however, the latter is acquired with
a handheld device and therefore leads to trajectories that would not be possible with
a robot. In our opinion, only data captured by a robot is suitable to reliably test
approaches developed specifically for robotic tasks.

In order to perform a quantitative evaluation of change detection approaches an accord-
ing annotation of the test data is needed. Only the datasets introduced in [70], [24], [44],
and [45] provide the necessary information to be suitable for evaluation purposes. Halber
et al. [70] and Wald et al. [24] add semantic instance segmentation to 3D reconstructions
to support tracking of objects between different timestamps. Since object matching can
be ambiguous, both provide the necessary information to allow equally likely solutions.
The dataset of Wald et al. [24] additionally includes 3D transformation for each moved
object. Rescan [70] and 3RScan [24] are both open-world datasets, meaning that objects
are not only moved but also new ones are introduced or existing ones are removed
between timestamps. In contrast, the data in ChangeSim from Park et al. [44] is
annotated frame-wise. It is curated to support online detection approaches, which work
directly on frames. For change detection, they define the following categories: new,
removed, replace, rotated, or static. The most important category for object matching,
moved, is not defined. This makes it impossible to differentiate between a removed or a
moved object in an environment. Weihs et al. [45] introduce the new dataset RoomR
with object rearrangements. It is based on the virtual and interactive environment
AI2-THOR [71]. Assuming a closed world, they provide the start and goal poses of all
objects while images are generated by AI2-THOR on-the-fly.

20 3 Datatsets

Datasets created in a simulated environment, like ChangeSim and RoomR, have
the big advantage of automatically gathering precise annotations of a large number of
environments as well as the possibility to control the amount of sensor noise, shadow,
and other challenging factors. However, since closing the sim-to-real gap is an ongoing
research area [72]–[74], we believe it is not enough to train and evaluate methods only
on simulated data.

Unfortunately, except for RoomR, all annotated datasets focus on bigger entities
like furniture and therefore lack the annotation of smaller objects like a mug. On the
one hand, this is very cumbersome for real-world data, on the other hand, available
tools are not suitable for fine-grained annotations. Wald et al. [24], for example, use
the annotation tool provided by Dai et al. [75], where a pre-segmentation step of the
environment usually results in under-segmentation making it impossible to annotate
smaller objects.

The highlighted problems with existing datasets were the reason for us to create a
new robotic indoor dataset that also includes the annotation of small objects. The
following section explains the dataset in more detail.

3.2 Object Change Detection Dataset for Indoor

Environments

For different robotic applications, it is highly relevant to collect knowledge about small
objects, such as a mug or a hammer, as well as track them over time as they naturally
move more frequently than, for example, a couch. However, as visible in Table 3.1 the
aspect of annotated small objects is underrepresented in the available change detection
datasets and not present at all in datasets captured in the real world. Therefore, we
provide a new dataset focusing on small objects, which is gathered in an open-world
environment with a real robot. This dataset is suitable for quantitatively evaluating
object change detection methods as well as methods developed for object matching,
which categorize objects into static, moved, removed, or novel when comparing an
environment at two different timestamps.

To be able to provide real robotic data, we used the Human Support Robot from
Toyota [76]. It is equipped with an Asus RGB-D camera mounted on the head. Figure 3.1
shows the robot observing objects on a table. The camera stream, consisting of RGB
and depth data, is stored together with the transformation matrices between coordinate
frames.

To build a dataset focusing on object change detection it is necessary to visit and
explore an environment at several different timestamps. A set of waypoints is defined so
that the robot explores the environment exhaustively when navigating from one waypoint
to the next. Between the visits, the general structure of the environment remains the
same, but objects may move or disappear or new ones are added. Furthermore, furniture
and permanent background objects may be slightly rearranged. These rearrangements
are small so that the moved furniture does not interfere with the robot’s navigation
and that the moved objects are considered irrelevant in a tidy-up task.

The dataset comprises five different environments, namely a big room, a small room,

3.2 Object Change Detection Dataset for Indoor Environments 21

Figure 3.1: Human Support Robot from Toyota with the RGB-D camera highlighted.

a living area, an office desk, and a kitchen counter. Each environment is captured
in a clean and tidied-up state, which we refer to as the reference. Figure 3.3 and
Figure 3.4 show these references for all five environments as reconstructions created
with voxblox [27]. Additionally, the robot visits each environment five or six times while
between each visit a subset of objects from the YCB dataset [77] is rearranged. Objects
of diverse sizes ranging from small, such as a screwdriver, to large, such as a plastic
water pitcher, are selected. The collection of objects used in the dataset is shown in
Figure 3.2. Every time before an environment is explored by the robot, between 3
and 18 objects are selected and placed at various locations. In summary, the dataset
consists of five different environments, 31 observations (including the reference), and
260 arranged YCB objects in total.

Based on the recorded data, we generated two datasets consisting of 3D reconstructions
with the YCB objects labeled. The main distinctions between the two datasets are the
different reconstruction methods and the scale of the reconstructions.

The dataset used in Chapter 5 comprises full-environment reconstructions. Voxblox
was the reconstruction method of choice. We found in an empirical evaluation that

22 3 Datatsets

Figure 3.2: Overview of YCB objects used for our dataset.

this is the only method that is able to generate realistic reconstructions using the
camera data from the robot together with the transformation matrices. One drawback
of the generated full-environment reconstructions is the low level of detail. This dataset
is publicly available at https://www.acin.tuwien.ac.at/en/vision-for-robotics/

software-tools/object-change-detection-dataset-of-indoor-environments/.
The second dataset is a collection of reconstructions of interesting areas. Areas in an

environment are selected if they contain a potential object support plane (excluding
the floor). To generate high-quality reconstructions we extend ElasticFusion [28] by
integrating odometry data. Section 6.3.1.1 gives more details regarding how the areas of
interest are selected and reconstructed. The dataset, which we call ObChange (Object
Change), is available at https://doi.org/10.48436/y3ggy-hxp10.

Both datasets are annotated using the same approach comprising automatic and
manual labeling. First, the publicly available 3D object models of the YCB objects are
roughly aligned in the reconstruction. Next, points within a small distance threshold
to the model points are automatically selected using a k-d tree. As a final step, single
points are manually added to or removed from the object masks. This is necessary
because most objects are usually not reconstructed precisely.

A subset of reconstructions from both datasets is visualized in the appendix.

3.2 Object Change Detection Dataset for Indoor Environments 23

Big Room

Small Room

Figure 3.3: Reconstructions for the big and small room showing the reference state.

24 3 Datatsets

Living Area

Kitchen Counter

Office Desk

Figure 3.4: Reconstructions for the living area, office desk, and kitchen counter showing
the reference state.

Chapter 4

On-the-Fly Detection of Novel Objects on
the Floor

4.1 Motivation

Consider the scenario where a robot is given the task to tidy a child’s room. The robot
must find items lying strewn on the floor, recognize these items and then put them in
the places where they belong. This task is also of interest in other applications where
floors should be free of objects. For example, in elderly care, objects on the floor may
cause a person to fall. Therefore, it is important to detect obstacles and remove them in
order to reduce the risk of falling. In these scenarios, the first step is to search for and
detect objects on the floor. An example of such a scenario of cluttered toys is shown in
Figure 4.1. In this work, we focus on detecting novel objects, which lie on the floor.
However, the approach is easy to adapt so that it is applicable for other tasks, which
involve, e.g., objects on tables as well (see Chapter 5 and[43]).

We propose a method to detect objects, which are at a location that was unoccupied in
a reference and call them novel objects. The method compares two OctoMaps depicting
the same environment but captured at different points in time. An OctoMap [26] is a
3D voxel grid representing the environment and is used primarily for navigation. It is
updated while the robot is moving around utilizing depth data from the sensor. While
other works [13], [39] find differences between the current and a previous state for a

Figure 4.1: Typical scenes for a robot that has to clear away toys.

25

26 4 On-the-Fly Detection of Novel Objects on the Floor

specific camera pose, this method aims to find novel objects in parts of the environment
that the robot has previously visited and independent of the robot’s current position.
This means that while comparing OctoMaps, the robot is not required to be near a
potential object location to be able to detect it. We refer to these areas of change as
regions of interest, which represent one or several object candidates. Consequently, the
aim of this work is not to find specific objects, but any object that is newly introduced
at a previously unoccupied location. Objects and their appearance are not required to
be known by the robot in advance. The proposed method is independent of pre-learned
object models and applicable to open-world settings.

This approach for on-the-fly detection of regions of interest during navigation allows
a robot to be more aware of changes in its surroundings and respond faster to these
changes. The robot detects regions of interest during an ongoing task and returns to
them when requested by the planning module. Knowing the position of potentially
interesting regions enables a robot to reliably find and segment objects more efficiently.
Having a region of interest in the field of view, it is not necessary to segment the whole
frame, but use the identified region as an attention cue. This is more efficient than
explicitly visiting waypoints and segmenting the whole environment regardless of how
likely it is that objects are present.

To evaluate the performance of the proposed approach we use a mobile robot platform
with an omnidirectional base, a navigation system based on a laser sensor, and an
active pan-tilt head with an RGB-D sensor (Asus Xtion Pro LIVE). We show that our
approach outperforms a fixed waypoint setup in terms of runtime and the number of
segmentation actions required to find all novel objects in the environment. Experiments
are performed in simulation as well as with a real robot. Different experimental setups
are performed ten times each to capture realistic variation. In total, results from 160
(80 simulated, 80 real) experiments are analyzed.

To summarize, the contributions of this work include

• an efficient approach to search for novel objects by exploiting OctoMaps,

• on-the-fly detection of object candidates while the robot is carrying out a task
and navigates through the environment,

• OctoMap comparisons at any time, regardless of the robot’s current position, as
object candidates are inherently stored in the current OctoMap,

• an attention cue to achieve robust and fast segmentation of detected objects in
the environment.

The following sections describe the novel object detection approach in more detail,
specify the conducted experiments, and discuss consequent results. The content of this
chapter follows previously published work in [41].

4.2 Method

Figure 4.2 gives an overview of the proposed method to detect novel objects. In this
work, we describe the method on the basis of the task of exhaustively exploring an

4.2 Method 27

environment. The robot stores a reference OctoMap depicting the static parts of the
environment, which is created during a one-time mapping run. To find novel objects not
contained in the reference, a set of view triangles, which covers most of the environment
floor is generated. Subsequently, a plan is created to visit these view triangles and
the robot executes this plan. During execution, the current OctoMap is updated while
the robot moves around. Whenever the planner requests a comparison, the reference
OctoMap is subtracted from the current one. The remaining voxels are checked against
the dilated 2D occupancy grid used for navigation to overcome small misalignments.
Voxels are then clustered into regions of interest, which are filtered and the remaining
ones are stored in a database. The planning system receives these regions and uses them
to improve its current plan. Details of these steps are given in the following sections.

4.2.1 Generation of Reference OctoMap

As an initial step, we build an OctoMap, which captures the static parts of the
environment. Subsequently, it is used as a reference, against which the current state
of the environment is compared. It is important that the reference OctoMap depicts
the environment very precisely. OctoMaps are generated by using measurements from
an RGB-D sensor, which is known to be noisy [78]. Spurious measurements from the
acquired OctoMap are manually deleted using octovis, a viewer that is provided by
the developers of the OctoMap library. To make our approach more robust against
discretization effects, the OctoMap is dilated by iterating over its voxels and setting
each neighbor of an occupied voxel to occupied. We refer to the dilated OctoMap as the
reference OctoMap. This map is stored and used for subsequent searches. An example
of a dilated OctoMap is depicted in Figure 4.2 (top left) and in Figure 4.4a. Note, that
the generation of the reference OctoMap has to be performed only once as long as the
static parts of the environment do not change.

4.2.2 Generation of Environment Exploration Poses

To explore an environment completely the RGB-D sensor must sense every part of it.
This task shows the characteristics of a set cover problem. Given a set of V possible
sensing locations, each with a fixed sensing region, we want to select a small subset
V ′ ⊆ V that maximizes the observed area. The problem presented in this paper satisfies
submodularity, which is the property of diminishing returns. When a small portion
of the area has been observed a new observation can yield more information, however
making a new observation when most of the environment has already been observed
will yield less information.

We approximate the area of the floor, which is seen by the robot’s camera at a specific
pose, as a triangle called the view triangle. The area covered is a function of the field
of view of the RGB-D sensor (trangle) and a cut-off distance (trheight) beyond which
the measurement becomes too noisy. Additionally, the 2D occupancy map used for
navigation is exploited to check if obstacles potentially block the view. Given that
the environment exploration problem is submodular, we use a greedy algorithm to
determine where to sense and find a near-optimal solution [79]. However, we have not

28 4 On-the-Fly Detection of Novel Objects on the Floor

database

capture
target state

save reference
OctoMap

dilated reference OctoMap R current OctoMap C

capture
current state

subtracted OctoMap D

subtract

convert to
point cloud

cluster
and filter

save
objects

dilated 2D occupancy grid

filter points conflicting with map

difference as
point cloud

detected
objects

potential objects

Figure 4.2: Flowchart showing the method parts described in Section 4.2.1, 4.2.4 and
4.2.5.

4.2 Method 29

Figure 4.3: Examples of the result of the view triangle generation. Left: Environ-
ment used for experiments with real robot. Right: Environment used for
experiments in the simulator.

yet identified where the robot can sense. Given that it is an unstructured area we
use a random sampling approach. We randomly sample 1000 view triangles and use a
greedy algorithm to find a set of exploration poses that covers most of the floor of the
environment.

We want the set of view triangles to be small as finding an optimal route to visit
all these view triangles is a traveling salesman problem which is NP-hard. While we
use view triangles to navigate through the space, it is important to note that we do
not perform segmentation there. Other object detection approaches in contrast could
use each of these view triangles as a pose to carry out object segmentation actions. As
mentioned before this may take an unnecessarily long time, as most of them will not
contain an object.

We store the view triangles in the Knowledge Base (KB) so that the planning system
(see next section) has the necessary information to find an initial search plan. Figure 4.3
shows examples of environments, which are used for our experiments, covered by view
triangles. The angle of the view triangles corresponds to the horizontal viewing angle
of the camera and the height of the view triangles depicts the viewing distance of the
tilted camera.

4.2.3 Robot Motion Planning

We use a planning system to solve the problem of exploring the environment, finding
regions of interest, and ultimately inspecting all found regions of interest. We use the
domain-independent planner FF [80] to solve these problems. Plans are generated by
providing a Planning Domain Definition Language (PDDL) [81] domain and problem
file. The domain contains actions that can be performed to affect the world. In our
case it contains the actions the robot can perform: goto_waypoint, explore_waypoint,

30 4 On-the-Fly Detection of Novel Objects on the Floor

etc. Each action has a set of preconditions that must be satisfied before the action can
be executed and an effect that is applied when the action is executed. For example,
the (goto_waypoint robot wp1 wp2) action requires the robot to be at wp1 and when
the action is executed the robot is no longer at wp1 but is at wp2. The problem file
contains the initial state and goal we want to reach. The initial state contains the
current location of the robot, the locations of the view triangles, identified regions of
interest, and the connectivity between them. The goal is to have visited all the view
triangles and inspected all regions of interest.

We use the ROS module ROSPlan [82] to construct the PDDL files, find a plan,
and use this plan to autonomously control the robot. ROSPlan contains a KB that
1) stores data in a database and 2) maps symbols to data. Plans are generated by
providing a PDDL domain and populating the KB with predicates that describe the
world. ROSPlan generates a problem file and solves the resulting planning problem.
This plan is converted into an Esterel program [83] and dispatched.

Dispatched actions are handled by ROS modules that listen to the dispatched actions.
For example, ROSPlan contains a ROS module that is an interface for MoveBase. It
listens to ‘goto_waypoint’ actions and maps the action parameters to 3D coordinates
stored in the KB. It then calls the MoveBase action server with these coordinates. The
feedback of this action server is communicated to ROSPlan to monitor the execution of
its plan. If an action fails (e.g., MoveBase cannot reach the desired location) it triggers
a replan and dispatches the resulting new plan.

Initially, we take the set of generated view triangles (see 4.2.2) and create a plan to
visit them all. During the execution of this plan, we discard view triangles covering
an area, which was already mapped on-the-fly. Subsequently, we create a new plan to
inspect all regions of interest found from OctoMap differencing.

This planning process is an iterative process. When we have inspected all regions of
interest we replan by generating a new set of view triangles and find a plan to visit these
and subsequently inspect newly found regions of interest. This process continues until
a predefined termination condition is satisfied. This could be having found a certain
number of objects, a certain percentage of area explored, or a time limit.

4.2.4 OctoMap Differencing and Region Detection

While navigating between view triangles an OctoMap is built and subsequently used
to find regions of interest by comparing it to the reference OctoMap. We define the
difference D, between the current OctoMap C and the reference OctoMap R as

D = {C \ R} = {c ∈ C | c /∈ R}, (4.1)

in other words, D contains only voxels that are in C but not in R. The two OctoMaps,
C and R, are built based on the robot’s localization and are therefore in the same
coordinate frame and automatically aligned.

Despite generally good alignment between the 2D occupancy grid (constructed using
a laser ranger scanner) and the OctoMap, we noticed that the laser-based map is more
accurate. This is probably due to the increase in depth measurement errors of the

4.2 Method 31

RGB-D sensor at large distances. Furthermore, the OctoMap accumulates spurious
measurements when localization temporarily fails and as a result, for example, new voxels
appear behind a wall. This cannot be handled with the dilated OctoMap. Therefore we
compare D to the 2D occupancy grid to reduce the effects of noisy measurements. We
dilate the occupied pixels of the 2D occupancy grid by a small, 5 × 5 pixels, rectangle
to be more robust. To be able to compare the OctoMap D with the 2D occupancy grid,
each voxel is projected vertically to the x-y plane. This approach removes voxels that lie
outside the map or have the same position as an occupied grid cell in the 2D occupancy
grid. Figure 4.2 contains an example of a dilated occupancy grid with gray being pixels
outside of the map, white being the free space, black depicting the occupied pixels, and
red the dilated area.

The next step of our algorithm is to cluster the remaining voxels based on their
Euclidean distance. This allows us to filter out clusters that are likely to contain objects,
which are not relevant to the robot’s task. Suppose the task is to find toys scattered on
the floor and to eventually pick them up and place them at their respective stow-away
location. Clusters that are too small and contain less than cmin voxels are considered
noise. Very large clusters with more than cmax voxels may correspond to moved furniture,
which is too heavy for the robot to move. Furthermore, we filter clusters hovering above
the floor and clusters that are taller than cheight. In Figure 4.2, for example, the cluster
on the bottom right was removed because it is too tall and the robot would not be able
to manipulate it. Also, the cluster representing the object placed on the table (visible
in red in the current OctoMap) was removed because it is not reachable by the robot.
However, those filter rules can be adjusted according to the robot’s task. Objects placed
on the table may be of interest to other robots accomplishing a different task. Each
remaining cluster fulfilling the requirements represents a potentially interesting region.
Figure 4.4b shows the OctoMap from one of our experiments with the real robot. This
OctoMap was compared with the dilated version of the OctoMap in Figure 4.4a. The
seven white cylinders depict the bounding cylinders of the detected regions of interest.

The resolution res of the OctoMap determines the size of objects that can be found.
Using a high resolution results in a detailed map, but requires a very low-noise sensor
and precise mapping. On the other hand, defining a low resolution prevents the method
from finding small objects. The points representing these objects would become fused
with the supporting plane points into one voxel. Also, the dilation of the OctoMap to
reduce the effect of measurement noise hinders the algorithm to detect small objects
close to static parts of the environment, like walls. A suitable resolution for the OctoMap
depends therefore on the sensor noise and the desired detail of the OctoMap.

4.2.5 Storing Discovered Regions of Interest

The planner needs to know about possible regions of interest. We make this information
available by storing identified regions in the KB. For each region we store the following
attributes:

• Timestamp: This is the time when the respective region was detected by OctoMap
differencing.

32 4 On-the-Fly Detection of Novel Objects on the Floor

(a) Reference OctoMap R depicting the
static parts of our test environment.

(b) Current OctoMap C with toys lying on
the floor.

Figure 4.4: Reference OctoMap R and current OctoMap C depicting the environment
used in our real-world experiments. The white cylinders in C indicate the
clusters identified by our method.

• Position: We compute the position in map coordinates by extracting the maximum
spatial extent in all three major directions and calculating the center.

• Bounding cylinder : We use a cylinder to describe the outline of the object.

• Examined flag: This flag is set to true once the robot has examined the region.

Every time the planner dispatches the explore_waypoint action the current OctoMap
is compared with the reference and newly detected regions are checked against those
already stored in the KB. New regions are inserted, already stored regions are updated
if they have been growing in size (because they are seen again from a different view),
and stored regions that are not confirmed are removed.

4.2.6 Examining Regions of Interest

During the execution of the initial plan, which explores the generated view triangles
(see Section 4.2.3), all discovered regions of interest are stored in the KB. The next step
is to create a plan to examine these regions. For each region of interest, we generate a
set of potential viewpoints. To compute these viewpoints, we query the KB. Based on
the position and size of the region of interest, we determine viewpoints from where the
robot is able to segment it. Depending on the robot’s size and whether it has a pan-tilt
unit, the optimal distance to view an object varies. We define a minimum distance
examdist between the robot center and the object boundary to ensure that the robot
base is not visible in the camera image. Ideally, equally distributed viewpoints with
a step size examstep and the same distance to the object are created around it. Our
algorithm compares each of these viewpoints against the OctoMap. If it is not reachable

4.3 Experimental Results 33

or something is in the line of sight between the robot and the object, the algorithm
attempts to find a new suitable viewpoint that is nearby, otherwise, it is ruled out. The
generated viewpoints consist of a pose in combination with a suitable tilt angle to view
the object.

4.2.7 Object Segmentation

After moving to one of the computed viewpoints, the robot has the previously identified
region of interest in the field of view. The currently sensed point cloud is cropped
according to the dimensions of the bounding cylinder of the respective region of interest
including a margin µ in each direction. This has two advantages:

• The time to segment the point cloud decreases.

• Focusing only on the region of interest prevents segmentation to bleed out into
static parts of an environment, like a wall or a table leg.

Based on the cropped point cloud, we estimate the ground plane using RANSAC [84]
and remove the points associated with the plane. The remaining point cloud is used
to extract clusters based on proximity, smoothness (dot product of normals), and the
color difference between two points. An example of the proposed segmentation pipeline
is shown in Figure 4.5.

Figure 4.5: Flow diagram of the proposed segmentation approach performed at a com-
puted viewpoint.

4.3 Experimental Results

In order to evaluate the effectiveness of our approach, we integrate our implementation
with an existing system running on a mobile robot platform.

The robot’s goal in our experiments is to find a given number of objects distributed on
the floor in the environment. This means the robot will continue searching (generating
regions of interest and performing segmentation) and replanning until all objects are

34 4 On-the-Fly Detection of Novel Objects on the Floor

Table 4.1: Parameters used for the experiments.
Method Parameter Value
OctoMap resolution res 0.05 m
View triangle generation viewing distance/triangle height trheight 2.0 m
View triangle generation field of view trangle 58◦

Cluster filtering min. cluster size cmin 4 voxels
Cluster filtering max. cluster size cmax 1000 voxels
Cluster filtering max. cluster height cheight 0.5 m
Examination waypoint min. dist. between object and robot examdist 0.4 m
Examination waypoint uniform step size examstep 60◦

Object segmentation crop margin µ 0.15 m

found. As we noted in Section 4.2.3, a different termination criterion could be used.
We have chosen a fixed number of objects because it allows us to scale the problem by
varying the number of objects to find. The location of the segmented objects is then
compared to the ground truth positions of the objects.

We compare our approach against segmenting at each created view triangle, which
is similar to the methods using fixed waypoints, such as [39] and [13]. We use simple
environments with limited clutter to allow repeatable tests because the segmentation
method occasionally over-segments cluttered scenes.

The search space for novel objects is restricted to the floor because of the robot’s
design. The camera is mounted quite low, which makes it impossible to see onto a table
and the robot would not be able to grasp things from a table. However, with a different
robot, the provided approach is applicable to other setups as well. Novel objects could
also be detected on tables or on shelves when adjusting the filtering rules as mentioned
in Section 4.2.4. For all the experiments in this work, we use the parameter values
listed in Table 4.1.

We perform experiments with a mobile robot in simulation as well as in a real
environment. The simulated and real environments have a size of approximately 90 m2

and 30 m2. They contain, among other items: sofas, chairs, desks, and cupboards. We
perform our tests with one, three, five, and seven novel objects in the environment.
20 view triangles are generated for the simulated environment and ten view triangles
for the real environment. We execute each experimental setup ten times. The object
locations do not change within one batch, however, the view triangle generation contains
a random component and thus returns different results for each test run. In total, we
conduct 160 experiments: two methods, two environments, four numbers of objects
placed in the environments, and ten runs for each setup.

4.7 % of the detected regions of interest are false positives when running the ex-
periments with the real robot. This is the effect of localization errors and depth
measurement noise. Ideally, this gets resolved by the robot moving to the wrongly
detected regions and examining them to realize that there is no object of interest. The
examined flag gets set to true and the planner moves on. We do not experience any
false positives in the simulation, as it has a perfectly calibrated system. In the following
discussion, we refer to our proposed approach as dynamic method and name the method

4.3 Experimental Results 35

that segments at each view triangle static method.

4.3.1 Real environment

Figure 4.6 shows the number of segmentation actions needed to find all the distributed
objects in the real environment. Our approach almost always needs as many segmenta-
tion actions as there are objects because it first finds regions of interest and use them
as cue for potential objects. The static method is very fortunate in the experiments
with one object. In more than half of the cases, it finds the object with the very first
segmentation action. For the other experiments with more objects the static method
needs on average three times as many segmentation actions as the number of objects.
Furthermore, the variance for the static method is much higher than for our method.
Our approach clearly outperforms the static method when it comes to the number
of segmentation actions. This is advantageous when segmentation is computationally
expensive. Also, the number of segments not corresponding to objects of interest reduces
due to only segmenting relevant areas.

Segmenting a frame on the robot takes on average 9 s for the static method compared
to 5 s for the dynamic method. The reason for the speedup is that the computed
bounding cylinders are used as attention cues, allowing the point cloud to be reduced
to contain only relevant parts.

Note, that although the segmentation method is actually quite simple, it takes
considerably longer than most reported state-of-the-art methods. The reason for this is
the limited computing power on the robot (i5 CPU at 2.4 GHz) in combination with
the high load due to the many modules running on the robot. We choose not to tune
the processes (turning off computationally costly components etc.), as this is precisely
the type of situation encountered by a real robot: limited resources requiring efficient
management methods.

Figure 4.7 shows the overall time the robot needs to find all objects. The original
times for the static and dynamic methods are shown in light green and pink. Similar to
the number of segmentation actions, the measured time needed to find the objects is
also very widespread for the static method. The experimental setup with one object is
handled slightly better by the static method when comparing the median time. This is
because the object is found with the first segmentation action in six out of ten runs.
However, on average, the dynamic method completes the task faster. For the other
setups where more objects are scattered on the floor, our method achieves superior
results.

Since the static method needs to segment more often, the run time of the segmentation
process plays an important role. Therefore, we recompute the overall time with a more
realistic and state-of-the-art assumption. We assume a real-time performance of 40 ms
for segmenting the whole frame as stated by Ückermann et al. [85] and 20 ms for
segmenting the cropped frame. The results are shown in Figure 4.7 by the blue and
violet boxplots. Still, our method clearly outperforms the static method. For example,
finding seven objects in the environment is on average twenty minutes faster.

36 4 On-the-Fly Detection of Novel Objects on the Floor

Figure 4.6: Comparison of the number of segmentation actions needed to find all objects
in the real environment.

4.3.2 Simulated environment

We also run the experiments in a simulated environment using Gazebo as simulator [86].
The area in the simulation is three times larger than the area used for experiments
with the real robot. In this larger environment, travel distance plays a more important
role. Therefore, we changed the order in which the regions of interest are explored.
The robot in the real environment uses the timestamp of the regions. After finding the
given number of regions of interest, the robot explores the regions in the order they
were found. This is not optimal and increases the travel time of the robot significantly
when it travels back and forth between regions in a large environment. Therefore, we
reduce the travel time for exploring all regions by implementing a greedy traveling
salesman problem solution over the locations of regions. We also take advantage of
the fact that the robot knows where it has already inspected the environment. Before
moving to a new view triangle we check the area spanned by the view triangle against
the current OctoMap. If more than 90 % of the view triangle area is already covered
by the OctoMap, the planner does not add the view triangle to the plan. The robot
already explored that part of the environment and most likely would not acquire new
information.

Figure 4.8 and Figure 4.9 show that our method again outperforms the static
method. The results for the static method present again a high variance for both

4.4 Conclusion 37

Figure 4.7: Comparison of the time needed to find all objects in the real environment.

measurement criteria. In simulation segmenting the whole frame takes approximately
6 s and segmenting the cropped frame takes approximately 1 s. We again recalculate
the overall search times assuming a segmentation time of 40 ms for the whole frame
and 20 ms for the cropped one. The recalculated times are shown in blue and violet.

To sum up, the robot’s performance greatly benefits from using regions of interest.
The time to find regions of interest by OctoMap comparisons is negligibly small (less
than 800 ms for 90 m2) compared to the otherwise necessary travel time to visit all the
view triangles, which are needed to find all objects as in the static method.

4.4 Conclusion

In this chapter, we proposed a method to detect novel objects on the floor in an indoor
environment by exploiting OctoMaps initially generated for navigation. Our method
does not rely on fixed waypoints but uses arbitrary view triangles to guide the robot
through the environment. The view triangle generation may be omitted if the robot
moves around while pursuing a plan and therefore maps the environment on-the-fly. By
comparing the currently mapped environment to a reference OctoMap, the proposed
method reliably finds regions of interest, which contain one or several novel objects.
Taking the dimensions of these regions into account enables segmentation to perform
on cropped point clouds and, consequently, this improves the processing time notably.

38 4 On-the-Fly Detection of Novel Objects on the Floor

Figure 4.8: Comparison of the number of segmentation actions needed to find all objects
in the simulated environment.

Due to the given robot design, objects were only placed on the floor for the experiments.
Although detecting objects on the floor is crucial, e. g., to prevent the elderly from
falling, it is important to note that the proposed method generalizes also to other
locations. Adam et al. [43] adopt this work to use it as a baseline for detecting novel
objects in the 3RScan [24]. They report that our method performs very similar to
their approach in terms of intersection over union, but falls behind by 12 % concerning
the recall. Additionally, we also use the proposed method as one of the baselines in
Chapter 5. The evaluation is performed on our acquired dataset (see Section 3.2) where
objects are placed not only on the floor but also, e. g., on tables, sofas, and drawers.
While achieving a high recall, the precision is low due to the sensitivity to slightly
moved furniture as a result of the spatially global approach. This constraint is the main
focus of the work described in Chapter 5.

4.4 Conclusion 39

Figure 4.9: Comparison of the time needed to find all objects in the simulated environ-
ment.

Chapter 5

Robust and Efficient Object Change
Detection by Combining Global Semantic

Information and Local Geometric
Verification

5.1 Introduction

The ability to detect objects, which are new at a location, in large environments is
key for enabling robot tasks such as surveillance, tidying up, or maintaining order in
homes or workplaces. These tasks share the commonality of operating in the same
environment every day. As such, revisiting a particular environment enables robots to
utilize domain knowledge and exploit their memory from previous visits. By storing a
reference map of the environment, a robot is able to check for scene consistency and
therefore detect changes on the object level. A household robot, for example, uses the
cleaned-up version of the environment as a reference map to discover objects it should
tidy up (see Figure 5.1). While a surveillance robot knows which objects are expected
in its environment and triggers an alarm when the comparison to the current state
reveals a missing object. In both cases, the robot is only interested in novel or removed
objects, but not in objects that have a permanent place, such as a lamp or computer
keyboard, which may move only slightly.

The standard approach to detect inconsistencies in the environment is to compute
the difference between a reference and the current situation. This has the advantage
over recognition methods, e.g. [87]–[89], since no object models are required, to be
suitable for open-world conditions. A disadvantage, however, is that change detection
applied at a large scale is sensitive to sensor noise and localization error. Furthermore,
the readjustment of uninteresting objects, such as furniture or decorations, cannot be
distinguished from novel objects.

This work presents a new approach to detect objects in real-world indoor environ-
ments based on reconstructions and overcomes the limitations of existing global scene
differencing methods. Our idea is to exploit the strength of different approaches by
combing full knowledge about environmental context with local geometry. At a global
level, semantic segmentation reveals structures where objects are likely to be located,

40

5.1 Introduction 41

Figure 5.1: A household robot tidying up. It compares a previously acquired reference
map to the current state of the environment. Although the chair and other
permanent objects moved slightly (colored in green), only the mug (colored
in pink) should be detected as novel and therefore tidied up.

such as on a table, couch, or floor. In agreement with the real-world fact that objects
are mainly placed on surfaces [13], [23], we use relevant structures to identify horizontal
planes. The set of object candidates that are extracted from the planes is processed at
a local level through geometrical verification against the reference map. In contrast to
global scene differencing, local alignment is robust to the effects of sensor noise and
localization error.

For the quantitative evaluation of our method, we use our generated full-environment
dataset as described in 3.2. Experiments show that our approach significantly outper-
forms the baseline methods.

In summary, the contributions include

• the exploitation of knowledge from the task domain such as previous visits and
the structure of the environment,

• a proposal of a unified approach for 3D open-world novel object detection that
combines semantic information, plane extraction, and local verification,

42 5 Combining Global Semantic Information and Local Geometric Verification

• a significantly improved detection rate of novel objects using the combination of
semantic knowledge and perception in comparison to competing approaches.

5.2 Method

This work addresses the problem of detecting novel objects in 3D environments. A novel
object refers to an object or to a heap of objects, which is new in the environment at
its current location or in close proximity. This differs from permanent objects that are
always present at the same location or might have moved only slightly. Our approach, as
outlined in Figure 5.2, combines multiple sources of information. Semantic information
with horizontal plane detection is used at the environment level to generate an initial
set of object candidates. The candidates are then verified through local geometric
alignment. The local verification step overcomes the inaccuracies of global differencing
because smaller regions suffer less from noise and warping in the reconstruction. The
global detection stage is necessary to determine where to apply local verification, which
would be time-consuming if performed exhaustively.

This section describes the proposed approach. We first explain the procedure for
extracting object candidates from the global environment using semantic information.
We then outline the verification procedure using local geometry.

5.2.1 Object Detection from Global Semantic Context

From the global reconstruction, semantic information is exploited to discover novel
objects. Semantic segmentation has received the most attention in the computer vision
community for pixel-wise classification of images and the rise of deep learning, in
particular convolutional neural networks, has drastically improved results [90], [91]. The
introduction of the ScanNet dataset [75] has enabled the transition to apply semantic
segmentation to dense 3D reconstructions of indoor environments. In this work, semantic
segmentation generates class labels for all vertices in the 3D reconstruction. We use
SparseConvNet [48] trained on ScanNet, however, other methods and other training
datasets could also be applied. Specific details of our implementation are given in
Section 5.3.2.2.

We identify objects or parts of objects by searching for protrusions on supporting
planes, i.e. horizontal surfaces on which objects may lie. Instead of searching for horizon-
tal planes in the whole environment, the semantic information is leveraged by limiting
the search space to relevant classes1. The reconstruction vertices corresponding to these
classes are clustered. For each cluster, horizontal planes are fit using RANSAC [84]
with the distance threshold τr_dist and the angle threshold τr_angle. Considering only
the semantically relevant subset of vertices not only reduces the number of points that
need to be processed but also achieves more accurate plane estimates because there are
fewer outliers. Candidate objects are found by segmenting the vertices that lie above

1Floor, cabinet, bed, chair, sofa, table, bookshelf, counter, desk, shelves, night stand, other structure,
other furniture, and other props.

5.2 Method 43

Figure 5.2: Overview of our proposed novel object discovery method showing object
detection results for each step. Detected objects are displayed in pink.

44 5 Combining Global Semantic Information and Local Geometric Verification

Figure 5.3: Examples from ScanNet showing annotation inaccuracy. Most small objects
are incorrectly labeled, either under-segmented or not separated from the
supporting structure. Top: original scan. Bottom: annotation with objects
in pink.

the detected supporting planes using Euclidean distance-based clustering [23] with the
distance threshold τsegm.

In the ScanNet dataset the otherprop class is defined and annotated. It is a general
label typically associated with small items that do not belong to indoor structures.
The vertices with the otherprop prediction could be used to directly identify objects,
however, they are insufficient for discovering novel objects as we show in our evaluation
(see Section 5.3). The main reason is that the ground truth scenes in ScanNet are
labeled based on pre-segmented patches, which tend to undersegment the scenes.
Therefore, trained models do not exhibit high precision around object boundaries. This
is particularly problematic for small objects that either lack precise boundaries or are
merged with the supporting structure (see Figure 5.3). Nonetheless, we also include all
clusters of the otherprop class in the initial set of object candidates. These are then
verified using local geometry as described next.

5.2.2 Object Verification with Local Geometry

Change detection is commonly used to identify novel objects in an environment as it
requires no prior object information. Typically, a difference is computed between two
spatially aligned observations. Points in the result set D are points from observation C
that do not have a corresponding point in observation S within a distance d (adapted
from [14]):

D = {c|c ∈ C ∧ � ∃ s ∈ S, �c,s� < d}. (5.1)

This formulation is highly sensitive to the distance threshold used. Furthermore, the
pervasiveness of noise from depth sensors and localization errors reduce detection

5.3 Experimental Results 45

accuracy.

Our approach leverages the idea of change detection but applies the operation locally.
Since object candidates are already generated from the full environment using semantic
information, it is no longer necessary to perform global change detection. It is sufficient
to apply the operation in local regions around the initial candidates. This is a two-stage
process. First, for each detected object cluster, we extract the supporting plane in
its surrounding. It is aligned to the nearest horizontal plane in the reference map
(plane-plane alignment) by applying the Iterative Closest Point (ICP) algorithm [92]
with a maximum allowed distance dpp and fixed rotation around the x- and y-axes.
This initial step makes the verification of the actual object more efficient and robust
since the second ICP step permits only transformations in the x- and y-direction and
rotation around the z-axis to align the object cluster with the reference map (object-map
alignment) allowing a maximum distance of dom. For this operation, we use a crop of the
current map with a margin ccurr around the detected object and a crop of the reference
map with a margin cref around the potential object location as input. Moreover, the
plane points detected in the first step are removed to ensure better alignment. Figure 5.4
exemplifies the steps of local verification.

Given ICP convergence, we transform the object point cloud and use Eq. (5.1) to
determine the object’s overlap with the reference map. Objects that have a lower
overlap than omax are considered as newly introduced into the environment. Details
about the parameters used in the local verification stage are provided in Section 5.3.2.3.

Finally, the discovered novel objects are clustered with a distance threshold τfilter.
Clusters with less than objmin points are considered as noise and removed from the
result set.

Applying local verification has advantages over global differencing. Firstly, it can
adapt to subtle changes between the observations, thus accounting for slightly moved
objects that are not novel. Secondly, the inaccuracy of warped reconstructions can be
absorbed. In contrast, global differencing is anchored to the full environment, which
means it is inflexible and requires precisely aligned observations.

In our formulation, permanent objects are identified if they only move within the
dimension specified by the reference crop cref to account for reasonable environment
rearrangements. In reality, if a permanent object moves a greater distance, it is in fact
out of place and should be detected. If an environment is rearranged, it is necessary to
generate a new reference map.

5.3 Experimental Results

This section presents experimental results using our collected full-environment dataset.
Before we describe the implementation of the proposed method, in particular, for
reconstruction and semantic segmentation, a short summary of the dataset is given.
We then introduce the comparison methods and outline the metrics used for evaluation.
Lastly, we report quantitative and qualitative results as well as show the generality of
our approach by applying it to different reconstruction methods.

46 5 Combining Global Semantic Information and Local Geometric Verification

plane-plane alignment

object-map alignment

Permanent object Novel object

plane-plane alignment

object-map alignment

Figure 5.4: The two steps of the local verification are shown for a permanent and a
novel object. The reference crop is colored in turquoise, current object and
supporting plane in orange. Note in the novel object example, the two-step
approach prevents ICP from aligning the object to the reference plane.

5.3.1 Dataset

The quantitative evaluation of the presented method and the comparison to baseline
methods are based on the dataset introduced in Section 3.2. While datasets exist
for related problems, e.g. [14], [16], none simultaneously fulfill the requirements of
comprising different environments, providing annotations for small objects, and are
recorded by a mobile robot. The utilized dataset consists of environments of different
sizes. For each environment, an object-free recording exists (i.e. reference map) as
well as various additional setups containing novel objects, rearranged furniture, and
permanent items. Overall, we consider five distinct environments and a total of 31 full
reconstructions generated with voxblox [27] including 260 annotated objects from the
YCB object set.

5.3.2 Implementation Details

5.3.2.1 Reconstruction

The voxblox framework [27] is used to generate TSDF-based reconstructions. It was
initially developed for planning purposes but is shown to be suitable for other robotic
applications, such as incremental scene segmentation [38] and for extracting 3D object
models [36]. Voxblox creates dense 3D maps based on the TSDF representation. We
use the robot pose from the recordings instead of using camera tracking. However, the

5.3 Experimental Results 47

Table 5.1: Parameters used for the experiments.
Method Parameter Value
Voxblox TSDF voxel size 0.01 m
Voxblox TSDF integrator method simple
Voxblox max. ray length 2.0 m
RANSAC distance threshold τr_dist 0.01 m
RANSAC angle threshold τr_angle 5◦

Object segmentation Clustering distance threshold τsegm 0.015 m
LV ICP max. distance plane-plane alignment dpp 0.05 m
LV ICP max. distance object-map alignment dom 0.15 m
LV reference crop margin cref 0.2 m
LV current crop margin ccurr 0.05 m
LV max. difference distance d from equation 5.1 0.014 m
LV max. object overlap omax for novel objects 0.7
Object filtering Clustering distance threshold τfilter 0.02 m
Object filtering Minimum number of object points objmin 15

option to refine the pose by aligning the input data to the existing structure with ICP
is employed. The voxblox framework is very suitable for robotic applications not only
because it provides the option to directly integrate the robot’s pose, but also because it
runs on a CPU only. Details about the parameters are given in Table 5.1.

5.3.2.2 Semantic Segmentation of Dense 3D Maps

SparseConvNet [48] is used to perform semantic segmentation on the full 3D recon-
structions. It accepts a set of colored points as input. The output from voxblox is
converted to this format by taking the centroid and average color of each voxel in the
reconstruction. The network is trained on the ScanNet dataset [75] with the standard
test, validation, and training splits. The annotations follow the second version of the
dataset. Data is augmented using the provided tools from SparseConvNet. To train
the model we used the default settings of SparseConvNet except for the following
parameters: m=32, residual_blocks=True, scale=50, block_reps=2, batch_size=5. In
addition to the 20 classes in the ScanNet benchmark, we included otherprop to have a
total of 21 classes.

5.3.2.3 Parameters

Table 5.1 lists all parameters used in our implementation. This comprises the parameters
for creating the reconstructions with voxblox, for detecting planes and objects above
the supporting planes as well as the various parameters for the local verification (LV)
stage and the final filtering of novel objects.

48 5 Combining Global Semantic Information and Local Geometric Verification

5.3.3 Comparison Methods

We select two baseline methods to compare our method against. Both perform scene
differencing to detect dynamic objects. The method proposed by Ambrus et al. [14]
(Meta-room) creates a reference map from several observations. This point-based
volumetric representation is called meta-room and is further used for change detection.
After aligning an observation to the meta-room, the difference between them is computed.
The remaining points are clustered, then planar and small clusters are removed. Because
the focus of our paper is object change detection, we use our object-free reference map
created with voxblox as the meta-room when evaluating the change detection scheme
in [14]. To ensure a fair comparison, we adapted the original parameters to the
characteristics of our dataset, which achieves better results.

As another baseline, we compare against the method from Chapter 4, which uses an
OctoMap [26] (Octomap) for representation and differencing. The effect of noisy sensor
input is slightly reduced due to the quantization of the points into voxels and also the
dilation applied to the reference map. We modified the method to detect all objects,
not only those on the floor as in the original approach.

In addition to the two baseline methods, we give results for the different modules
of our proposed approach. We use the direct output of semantic segmentation on the
object level by considering all vertices labeled with the otherprop class (Semantic
segm.). Ours (no planes) states the result when applying semantic segmentation and
locally verifying the object candidates, but without including possible objects from
supporting planes. We also evaluate our proposed method using only object detection
from the global semantic context and without the verification stage of ICP alignment
and local differencing (Ours (no LV)) to demonstrate the improvements of the final
stage of our pipeline (Ours (full)).

Note that our method without local verification (Ours (no LV)) as well as semantic
segmentation (Semantic segm.) only propose potential objects but do not exclude
objects because they do not incorporate knowledge from a reference map.

5.3.4 Metrics

A number of different metrics are considered for the evaluation. The commonly used
metrics of precision and recall are applied at the point level. These measure the accuracy
of the object detections by considering all detected points in the environment and all
points from the ground truth annotation. Precision measures the proportion of detected
points that correspond to the ground truth (TP/(TP + FP)) and recall measures the
proportion of ground truth points that are in the detection set (TP/(TP + FN)). The
F1-score is also reported as it provides the harmonic mean of the two quantities.

Since we are concerned about the detection performance of objects, we also report two
additional metrics. We measure the number of missed objects by comparing the overlap
of the clustered detections with the ground truth objects. If no point of a ground truth
object is detected then it is considered missing. To measure overestimation (i.e. false
positives), we sum the number of detected clusters that do not overlap with a ground
truth object for each recording. While this is not an accurate measure for false positive

5.3 Experimental Results 49

detections, it allows an additional comparison of approaches at the object level.

5.3.5 Results

Table 5.2 shows the performance of the evaluated methods on our robotic dataset.
The results from the different setups of each environment are averaged for precision,
recall, and F1-measure. We also provide the standard deviation for these three metrics.
Missed objects and wrongly detected objects are summed. The total average for all
environments is also given. Qualitative results of our method for one setup of each
environment are shown in Figure 5.5.

The quantitative results show that our approach clearly outperforms the baseline
methods. Precision increases drastically for the methods that apply local verification.
This shows the benefit of performing differencing only in restricted local areas. Meta-
room and Octomap both report lower recall than our approach because of their post-
filtering step, which is used to address the limitations of global differencing.

Semantic segmentation (Semantic segm.) performs surprisingly well in terms of recall,
given the fact it was trained on a completely different dataset. However, the high
number of missed objects indicates that especially smaller objects cannot be detected.
Comparing the object candidates proposed by semantic segmentation to the reference
map by applying our local verification step (Ours (no planes)) results in higher precision
and it decreases the number of wrong objects. However, objects are still missing and the
recall remains low. This is improved by exploiting the semantic information to explore
horizontal planes (Ours (no LV)) and find small objects. However, without utilizing
the knowledge from a reference map the number of wrongly detected objects explodes.
Incorporating both proposed steps, semantic plane detection and local verification
(Ours (full)), results in the best trade-off. The full method achieved good precision
as well as recall and therefore the highest F1-score overall. On average, our method
identifies 97.8 % of all novel objects in the dataset while detecting only 14 false positives
per recording. This shows the importance of combining global and local procedures for
accurate novel object detection.

The most common failure case of our method occurs when spatial clustering is not
able to separate novel and permanent objects that are touching. An example of this is
shown in Figure 5.5 at the bottom where the yellow-white sugar box is clustered together
with the coffee machine. During local verification, the whole cluster is removed because
the alignment of the coffee machine leads to a high overlap. In order to deal with this
case, a segmentation algorithm could be applied to separate objects. Another failure
case is induced by small objects, which get rejected in the course of local verification
because it is very likely to find a transformation into the reference map resulting in a
high overlap.

5.3.6 Generality to Different Reconstruction Methods

Our approach is applied to the output of different reconstruction methods to show its
generality. We consider Kintinuous [32], ElasticFusion [28], and ScalableFusion [30].
Reconstructions of the reference map as well as observations are generated using the

50 5 Combining Global Semantic Information and Local Geometric Verification

Table 5.2: Comparison of different methods on the robotic dataset.
(Pr = precision, Re = recall, F1 = F1-score, M = missed objects,
W = wrongly detected objects)

Pr Re F1 M W
Big Room

Octomap[41] 0.07±0.04 0.42±0.15 0.12±0.07 42 434
Meta-room[14] 0.24±0.30 0.55±0.05 0.25±0.27 31 464
Semantic segm. 0.40±0.17 0.63±0.10 0.48±0.13 26 138
Ours (no planes) 0.78±0.13 0.62±0.10 0.69±0.10 27 50
Ours (no LV) 0.28±0.07 0.78±0.04 0.40±0.07 2 469
Ours (full) 0.60±0.17 0.77±0.04 0.66±0.12 3 168

Small Room
Octomap[41] 0.11±0.05 0.61±0.18 0.19±0.08 15 176
Meta-room[14] 0.04±0.03 0.44±0.08 0.07±0.04 24 276
Semantic segm. 0.16±0.09 0.52±0.24 0.24±0.14 21 119
Ours (no planes) 0.55±0.36 0.47±0.26 0.51±0.30 26 28
Ours (no LV) 0.17±0.06 0.66±0.17 0.27±0.10 6 236
Ours (full) 0.53±0.25 0.64±0.20 0.57±0.22 9 72

Living Area
Octomap[41] 0.11±0.08 0.50±0.08 0.17±0.10 19 74
Meta-room[14] 0.13±0.18 0.42±0.10 0.14±0.14 15 122
Semantic segm. 0.25±0.16 0.41±0.12 0.30±0.15 23 49
Ours (no planes) 0.83±0.29 0.41±0.12 0.53±0.17 23 13
Ours (no LV) 0.26±0.12 0.69±0.11 0.37±0.13 4 87
Ours (full) 0.79±0.24 0.68±0.11 0.72±0.17 5 24

Office Desk
Octomap[41] 0.18±0.07 0.77±0.13 0.28±0.10 8 73
Meta-room[14] 0.17±0.25 0.39±0.20 0.17±0.18 12 146
Semantic segm. 0.13±0.05 0.72±0.08 0.22±0.07 5 72
Ours (no planes) 0.49±0.27 0.65±0.08 0.52±0.18 8 16
Ours (no LV) 0.13±0.04 0.83±0.06 0.22±0.07 0 147
Ours (full) 0.46±0.23 0.75±0.09 0.54±0.20 3 36

Kitchen Counter
Octomap[41] 0.43±0.08 0.41±0.08 0.41±0.07 9 40
Meta-room[14] 0.56±0.17 0.35±0.12 0.44±0.14 9 70
Semantic segm. 0.19±0.04 0.92±0.07 0.31±0.05 0 197
Ours (no planes) 0.53±0.17 0.73±0.24 0.55±0.11 7 64
Ours (no LV) 0.16±0.05 0.72±0.25 0.26±0.08 2 189
Ours (full) 0.62±0.21 0.61±0.23 0.54±0.09 8 55

Average
Octomap[41] 0.18±0.14 0.54±0.18 0.23±0.13 18.6 159.4
Meta-room[14] 0.23±0.26 0.43±0.13 0.21±0.20 18.2 215.4
Semantic segm. 0.23±0.15 0.64±0.21 0.32±0.14 15.0 115.0
Ours (no planes) 0.64±0.27 0.58±0.19 0.57±0.14 18.2 34.2
Ours (no LV) 0.20±0.09 0.74±0.14 0.31±0.11 2.8 225.6
Ours (full) 0.60±0.23 0.69±0.15 0.61±0.16 5.6 71.0

5.3 Experimental Results 51

Ours Ground Truth

B
ig
R
oo
m

K
itc
he
n

C
ou
nt
er

O
ffi
ce

D
es
k

Li
vi
ng

A
re
a

Sm
al
lR
oo
m

Figure 5.5: Qualitative examples for all five environments from the dataset.
Detected/ground truth objects colored in pink.

52 5 Combining Global Semantic Information and Local Geometric Verification

Kintinuous F1 = 0.94 ElasticFusion F1 = 0.93 ScalableFusion F1 = 0.96

Figure 5.6: Qualitative examples of our approach applied on the same recording for
different reconstruction methods. Detected objects are visualized in pink,
wrong detections are highlighted with a yellow ellipse. All reconstructions
are displayed with original point size.

default implementations of each mentioned method. The outputs of these methods
are converted to a point set by taking the centroids (and average color values) of the
voxels [32] or surfels [28] or taking the mesh vertices from [30]. For ElasticFusion and
ScalableFusion, the differencing threshold is reduced by half to 0.007 m (d in Eq. (5.1))
due to the higher point density.

Figure 5.6 shows example outputs from the reconstruction methods for a recording
of the office environment. The setup includes four novel objects when comparing it to
the reference. All mentioned reconstruction methods are able to produce reasonable
results, achieving high F1-scores. In all three cases, every novel object was identified.
ElasticFusion and ScalableFusion detected one very small wrong object each.

5.4 Conclusion

This work addressed the problem of detecting novel objects in 3D reconstructions
of indoor environments. We presented an approach that analyzes the environment
globally and detects objects utilizing semantic information. The semantic context is
exploited to extract objects on horizontal planes from relevant structures. The detected
objects are then verified by performing change detection with a reference map in a
local region. Results achieved on the full-environment dataset (see Section 3.2) show
that our combined approach outperforms existing baselines. Our approach correctly
detects novel objects while excluding slightly moved furniture and decoration. It is
even possible to detect only partially visible objects as well as cluttered novel objects,
whereby a post-processing step would be needed to separate them into single objects.
A possible solution to dissolve heaps of objects using change detection is presented in
Chapter 6. The method described in the following chapter builds on the ideas of the
presented work and distinguishes between truly novel objects and moved objects in the
environment by utilizing a fast and easy to compute feature descriptor.

Chapter 6

Where Does It Belong? Autonomous
Object Mapping in Open-World Settings

6.1 Introduction

When asking people what they wish robots could do at home, tidying up is top-
ranked [93], [94]. To work towards the open challenges, several competitions have been
started, for example, the ICRA 2018 “Tidy Up My Room” Challenge1 or the WRS
RoboCup@Home [95] tidy-up task.

The tidy-up task is complex because a robot operates in an unstructured and dynamic
environment where it needs to localize known as well as unknown objects. To determine
where objects belong, the robot needs to have knowledge about the intended storage
locations for these objects, e.g., in a knowledge base [96] or another form of reference.
The focus of this work is on the perception system for the tidy-up task and related
applications, for which we refer to object detection and matching as the object mapping
task.

Object detection is the prerequisite for finding matches. It reduces the object mapping
task to the problem of comparing the locations of objects in the environment at two
time instances. This definition is generic and independent of the specific robot task.
For example, if the task is tidy up, a comparison is performed between the present
situation and a reference map. If the task is patrolling, the observant robot will use all
object detections to create a present object map for the new time instance and finds
deviations from the normal state. For fetching an object, the knowledge of where this
object was last seen, i. e., in the present object map, is used to retrieve it and, if not
found, to start a search that may include historic information about where the object
has been found before.

Similarly to the object mapping task, the object rearrangement task as introduced
by Batra et al. [97] also deals with the goal of transforming the current state of the
environment into a target state assuming a closed world. This does not represent the
real world, which must consider objects that appear, and are therefore unknown, or
disappear. Today most approaches assume a given and fixed set of objects, e.g., [45],
[47].

1http://juxi.net/challenge/tidy-up-my-room/

53

54 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

Towards the goal of open-world object mapping, we present an approach that copes
with all possible cases of static, moved, removed, and novel objects in different environ-
ments. We partition an environment into local horizontal surfaces, which is motivated
by the fact that objects are typically found on furniture such as tables or shelves.
Furthermore, it is infeasible for daily use to repeatedly and exhaustively scan the whole
environment. Tasks rather need to check if the object is at a specific location or surface.
Finally, the concept of local horizontal surfaces is easily extendable to (1) include other
structures such as vertical surfaces to locate a broader variety of objects including
pictures, switches, or door handles and (2) comprise multiple rooms.

At the core of our approach is a comparison function to match detected objects
to previously seen instances. To achieve this we represent surfaces where the objects
reside as a 3D point cloud. For autonomous surface discovery, we exploit semantic
segmentation. Finally, the concept of local surfaces enables high-quality reconstructions
of every individual surface, which enhances the matching of detected objects using
state-of-the-art methods such as Point Pair Feature (PPF) descriptors [88]. PPFs
are computationally cheap and run on CPU only, which plays a considerable role for
approaches deployed on mobile robots.

Our approach is evaluated on the ObChange dataset (see Section 3.2). It encompasses
multiple recordings of five environments with a total of 219 annotated objects. Taking
all possible comparisons of recordings per environment into account, this leads to 961
objects for detection and matching. We report the results achieved on ObChange
compared to a baseline using a learning-based detection approach as well as highlight
possible failures and remaining challenges. Furthermore, we show the performance
of our proposed approach using a fully autonomous system working in a real indoor
environment.

To summarize, our contributions are

• a procedure that uses semantic segmentation and plane fitting to reliably de-
tect objects and that robustly handles all cases encompassed in an open-world
environment, that is, static, moved, removed, and novel objects,

• an object matching approach that does not rely on a trained classifier or pre-defined
3D models and thus, works in an open-world setting by leveraging information
extracted from 3D representations,

• the utilization of the ObChange dataset to evaluate different detection methods
categorizing objects into the four cases,

• an evaluation on a fully autonomous robot that performs experiments in a real
environment.

6.2 Object Mapping using Local Surfaces

This section formally defines the problem of object mapping in arbitrary environments
in Section 6.2.1. An overview of the perception components for this task is given
in Section 6.2.2. Finally, the details for reconstruction, object detection, and object
matching are described in Sections 6.2.3 to 6.2.5.

6.2 Object Mapping using Local Surfaces 55

6.2.1 Problem Definition

The goal of this work is to detect objects in an environment and to further assign
each object a category depicting its relationship to previous detections. The focus
is on objects, which are detachable from the surface they are placed on and can be
manipulated by a service robot. To remain task-independent, we compare objects
present in an environment at time t0 and objects detected at a later time t1. We refer
to objects detected at t0 as models and denote the set of detections as M. Objects
detected at t1 are referred to as candidates and the set is denoted C. Detected objects
are matched across the time instances, then categorized into static, moved, removed,
and novel; see also Table 1.1. A static object is a candidate c ∈ C that has a matching
model m ∈ M and where the distance between c and m is less than a threshold
d. This threshold is selected depending on the uncertainty in robot localization, the
reconstruction, object detection, object placement, etc. The value may be different
depending on specific applications. We use d = 20 cm throughout the chapter. A
moved object is a candidate that has a matching model but where the distance between
the objects is greater than d. An object is considered removed if it exists in M but
has no matching candidate in C. Novel objects are any candidates in C that have no
matching model in M. The set of models M is the union of all static, moved, and
removed objects at t0 while the intersection of these must be empty. Likewise, the
set of candidates C is the union of static, moved, and novel objects at t1 while their
intersection must be empty.

6.2.2 System Overview

An overview of the proposed perception system for autonomous object detection and
matching is given in Figure 6.1. The approach is composed of two phases: (1) setup of
the reference map (blue), which needs to be performed only one time, and (2) a run
through the environment to visit all or a subset of known surfaces and match detected
objects (green and orange). If the larger structure of the environment or the main
surfaces (such as furniture) are significantly moved, phase one must be repeated to
generate a new reference map.

This work leverages the concept of surfaces to focus object comparisons, which
ultimately leads to improved object detection. Technically, this is achieved by first
combining the reconstruction of the environment and semantic segmentation to create
a list of relevant surfaces, see Section 6.2.3. Then a more detailed scan of every surface
is performed to improve the reconstruction. This high-quality reconstruction of each
surface is used to detect objects (see Section 6.2.4), which are stored in a database as
the reference object map for future change detection requests. When the robot revisits
environments and surfaces for its specific task, for example, tidying up a kitchen counter,
a new detailed reconstruction is generated. Objects are extracted and then matched to
those in the reference. The matching process is performed in three different ways to
handle different cases as outlined in Section 6.2.5.

In this work, we use only change as a cue for segmentation, which is fully applicable
to open-world settings. If change occurs multiple times, then a heap of objects may

56 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

Figure 6.1: System overview of our approach to detect and match objects. The setup
of the reference is performed only once.

become disentangled, otherwise, the heap will be considered as a single object. In the
following sections, we refer to each detection as an object, both for single-standing
items or heaps of objects.

6.2.3 Reconstruction of the Indoor Environment and Plane
Extraction

The first step for detecting objects is to identify the regions where objects are commonly
located, in other words, the surfaces. Similar to the approach described in Chapter 5,
the search space for objects is reduced according to the assumption that objects are
typically placed on horizontal planes in home environments [22], [98]. To extract
horizontal planes, the environment is reconstructed using voxblox [27]. This method

6.2 Object Mapping using Local Surfaces 57

runs on CPU only and is tightly coupled with ROS [99], both great qualities when
working with a robot. The coarse reconstruction of the environment, which is a result
of the voxelized representation, is used to geometrically search for planes. To do so,
the reconstruction is transformed into a point cloud by extracting the centroids of all
voxels. In addition, SparseConvnet [48] is applied to the reconstruction to retrieve a
semantic label for each point and consequently to exclude non-relevant regions for the
plane search – all points are removed that are not assigned any of the following classes:
cabinet, bed, chair, sofa, table, bookshelf, counter, desk, shelves, nightstand, other
props, other structure, and other furniture. Since we focus on horizontal planes, only
points with a normal facing upward are retained. Finally, for each semantic class, the
remaining points are downsampled and are the input to RANSAC [84] to fit a plane.
Each iteration generates one plane and these points are removed from the input to
enable further plane fitting. The loop ends when the extracted plane consists of less
than a certain number of points.

For each plane, descriptive information such as the plane coefficients, convex hull
points, and centroid are stored in a database. Additionally, waypoints for the robot to
navigate to when inspecting the plane are computed. Waypoints are equally distributed
positions around the plane at a fixed distance to the edge of the convex hull. The pose
of each waypoint is described by its position and orientation, which faces the center of
the plane. All the surface information is used for subsequent visits.

6.2.4 Reconstruction of Surfaces and Object Detection

Once the global reconstruction of the environment is created, a higher-quality local
reconstruction is generated for each surface to enable more precise object detection.
In this work, we use ElasticFusion [28] for local surface reconstructions. It uses
both photometric and geometric pose estimation, which is configured using a relative
ICP/RGB tracking weight parameter. While ElasticFusion is more precise than voxblox,
it still suffers specific failure cases, which need to be addressed for robust operation on a
mobile robot. Firstly, viewpoints focusing on large planar and low-textured surfaces have
too few features to track the camera pose, which results in misalignment (see Figure 6.2
(top)). Secondly, changing lighting conditions resulting in over- and underexposed
images is problematic for registration as depicted in Figure 6.2 (middle). Other sources
of error are geometric symmetries as well as low depth disparity. Figure 6.2 (bottom)
shows an example reconstruction using RGB and ICP registration, which suffers from
duplicated and misaligned objects or smeared objects.

To countermeasure those real-world problems we propose a computationally simple
solution. Our idea is to assist the tracking method of ElasticFusion whenever the
estimated trajectory begins to significantly diverge from the reported robot odometry
data. Clearly, odometry data has inaccuracies, thus using it directly is not sensible.
Whenever the registration fails completely (e.g., Figure 6.2 (top)) the estimated pose
and the odometry pose differ significantly. Resetting the estimated pose to the odometry
data is not feasible either because this leads to smeared reconstructions. Our approach
is to blend the poses from the camera tracking and odometry data to repair drift and
misalignment errors in the running reconstruction. For each frame, before running

58 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

ElasticFusion’s frame processing, we recompute the pose given the last estimated pose
and the robot pose from odometry data. To this end, we first compute the difference
between the last estimated pose E and the current robot pose C.

More specifically, the poses are represented by transformation matrices:

E = [RE|tE] , C = [RC |tC] ∈ SE3 (6.1)

with rotation components RE, RC ∈ SO3 and translation components tE, tC ∈ R
3.

Next, the matrix D representing the difference is computed:

D = C−1E = [RD|tD] . (6.2)

Given this, we compute the angular difference:

φ = | arccos

�
trace(RD) − 1

2

�
|, (6.3)

to derive the mixing term:

λ = max


min


1.0,

�
φ

zr

�2

 , min


1.0,

�
|tD|

zt

�2




 , (6.4)

where zr and zt are constant scaling factors. This allows the modified E ′ to be used as
a replacement for E through a linear combination of the poses:

E ′ = λC + (1 − λ)E. (6.5)

The more the two poses disagree (i.e., the estimated pose diverges from the pose
measured by the robot) the more the odometry pose is used in the hope of future
agreement. Clearly, if odometry is less accurate, the results will degrade. However, it
still prevents ElasticFusion from completely failing in difficult scenes. In our experiments,
we found good results with zr = 0.2 and zt = 0.2, which is used for all experiments.

Integrating the tracked camera and robot poses generates high-quality reconstructions
in real-world scenarios from the robot trajectory. This adaption is used to create a
reconstruction for each plane, which is stored in the database. Plane parameters and
waypoints derived in the setup stage are queried from the database. Based on this
information, the robot navigates around the plane while the camera is directed to
the center of the plane. Before ElasticFusion transforms the camera stream into a
reconstruction, the depth images are pre-processed by cropping them such that only the
surface of interest is retained. Cropping the depth input prevents ElasticFusion from
trying to align the background (e.g., walls) at the expense of reconstruction accuracy of
objects placed on the plane. Benefiting from the local surface concept, trajectories to
create surface reconstructions are comparably short and result in precise reconstructions.
From these generated surface reconstructions, objects are extracted by removing the
points of the plane according to the known plane parameters. The parameters αmax, to
allow deviation from a perfectly horizontal plane, and dplane, which defines the maximum
distance of inlier points to the detected plane, have to be chosen to take into account

6.2 Object Mapping using Local Surfaces 59

Figure 6.2: Each row shows a surface of one of the environments in our dataset. The
first column is the result of ElasticFusion using RGB and ICP information
to estimate the camera pose, the second row shows results using only ICP
and the last column shows the result of fusing the robot poses with the
estimated camera poses from ElasticFusion (only ICP).

small inaccuracies. The remaining points within the convex hull are clustered using
Euclidean distance. All points up to 0.3 m above the plane are considered, however, this
value can be chosen depending on the application. We use a minimally shrunk convex
hull to reduce the number of false positive detections such as walls or armrests. At this
stage, we do not try to separate objects in clutter and treat each cluster as an object.

6.2.5 Object Matching and Categorization

To support high-level robot tasks, objects are assigned one of the four categories, which
is an indicator of what action should be performed with the object. For example, in a
tidy-up task a static object should be left alone while a moved object should be returned

60 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

to its original location. Performing the categorization requires the determination of
which objects are present in different visits and additionally finding those that match.
The following subsections explain the different stages of matching, which are also
depicted in Figure 6.1.

6.2.5.1 Local Matching

For each detected object, a check is performed to determine if it is still approximately
located at the same position. If there exists a model and a candidate within a distance
less than d, they are considered a potential match. A confidence score for the match
is computed by aligning their point clouds with ICP (with fixed rotations around the
x- and y-axes), which is suitable in this case as their proximity provides a good initial
registration. Two scores are then computed if ICP converges: one for the model Sm

and one for the candidate Sc due to the object potentially not being symmetric. The
model and the candidate are a match if min(Sm, Sc) > τicp for a given threshold τicp.

Formally, we consider the model point cloud Pm and candidate point cloud Pc. For
each point pm ∈ Pm, a set of points Qm,c ⊂ Pc is determined as the collection of all
corresponding points in Pc that have a distance to pm less than the inlier threshold
τ after alignment. A score is then computed for pm and each pc ∈ Qm,c, which is
composed of the geometric and color similarity. Given the point normals, nm and nc,
the geometric score is given by:

sgeo =


nm · nc if nm · nc ≥ τgeo,

0 otherwise.
(6.6)

The color score is computed as:

scol =


0 if κm ⊖ κc ≥ τcol

1 − κm⊖κc

τcol

otherwise,
(6.7)

where κm and κc are the color values of the points pm and pc in LAB-space and ⊖
is the CIEDE2000 color difference [100]. τgeo and τcol are thresholds. The similarity
score between pm and pc in the correspondence set is the weighted combination of the
geometric and color scores:

sm,c =


0 if sgeo = 0 ∨ scol = 0

wsgeo + (1 − w)scol otherwise,
(6.8)

where w balances the contribution of the geometric and color similarity.
The overall fitness score for the model is defined as:

Sm =
1

|Pm|

pm∈Pm

s∗

m,c, (6.9)

where s∗
m,c is the best similarity score for pm given all the scores computed for the points

in its correspondence set Qm,c. Likewise, the overall fitness score for the candidate is
computed:

Sc =
1

|Pc|

pc∈Pc

s∗

c,m. (6.10)

6.2 Object Mapping using Local Surfaces 61

A match is recorded if both scores Sm or Sc are greater than the matching threshold
τicp. If only a subset of the points match, it is necessary to examine if either or both
of the model and candidate need to be split into independent objects. A split based
on the overlapping points is insufficient due to possible over- or under-segmentation of
the objects. Therefore, to generate more precise object boundaries we perform region
growing based on color and normal similarity where only points that contributed to
the score are seed points. For all seed points, points within a radius r are added if
color and normal are similar enough compared to the seed point. The color difference is
computed with the CIEDE2000 formula using the color values in the LAB-space of both
points and is compared against the maximum allowed color difference rgcol. The dot
product from the normal vectors is used to check if the angle difference is not greater
than rggeo. Points that fulfill both criteria are added and act as new seed points. If
no more points can be added, the region growing stops. All points in the result that
belong to the model or candidate are categorized as static. The remaining points form
a new object in the respective set.

6.2.5.2 Semi-local Matching

Spatial proximity at t0 and t1 is the prerequisite to match static objects with ICP. For
other objects placed on the same plane, but which are further away or rotated and
where the initialization is therefore poor, a more robust matching scheme is required
that is independent of the pre-alignment.

We match objects by using a global descriptor based on Point Pair Features (PPFs),
which is invariant to rigid transformations. The descriptor is proposed by Drost
et al. [88]. It is a simple learning-free descriptor, nevertheless top-ranked in pose
estimation challenges [101]. PPFs are represented by a four-dimensional feature vector
describing the distance between two points as well as the relationship between their
normal vectors. Due to their simplicity PPFs are fast to calculate. The feature vector is
computed for all sampled point pairs of a model. Point pairs with similar features are
stored together in a hash table, whereas the feature vector is the hash key. The hash
table is used for a fast look-up to find point pairs of the model with similar features
compared to sampled point pairs of the object. For each match, a transformation
to align the model and object point pairs is computed and an efficient Hough voting
scheme is applied to retrieve the final transformation.

In our system, the PPF descriptor is computed for each unmatched object and
the pipeline returns for each candidate between zero and ten hypotheses for each
model. Next, for each hypothesis, we compute a confidence score for the model and the
candidate as formulated in (6.9) and (6.10) and then compute the average of Sm and
Sc. Only the best-fitting hypothesis from each model is retained per candidate. Note
that planar and small objects are filtered before applying PPF matching. All objects
are downsampled to achieve a unified point density with a voxel size v and only objects
with more than objmin points and where less than τplane of the points are explained by
a plane model are kept. Otherwise, their geometric characteristic is too generic and
would result in many false matches.

More concretely, the matching problem is simplified by eliminating objects that match

62 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

with high certainty and are therefore assumed to be the same objects or heaps of objects.
To unravel the hypothesis we use a bipartite maximum matching graph [102]. The
nodes on one side are the models and on the other side are the candidates. A connecting
edge exists if the model hypothesis for a candidate fulfills min(Sm, Sc) > τhigh, where
τhigh is a fixed threshold. The weight of an edge is the minimum of the two scores. The
maximum weighted matching of the graph is then computed. For each model-candidate
pair in the graph solution, we compute the spatial distance and categorize it either as
static or moved. These models and candidates are considered as fully matched and are
not processed any further.

With the reduced set of models and candidates, a new graph is built where the
condition for an edge is relaxed. An edge is created if min(Sm, Sc) > τmin and
avg(Sm, Sc) > τlow. The edge weight is computed as the average of the two scores
amplified by the exponential function. This graph is then used to compute the maximum
weighted matching. With τlow << τhigh it is possible to match models and candidates in
heaps. In such cases, it is infeasible to achieve very high confidence because of objects
that are clustered together and increase the number of points used to normalize the
score. This concept also helps to overcome deficits arising from incomplete reconstruc-
tions caused, for example, by few viewpoints or occlusions. The extracted matching
results from the graph are then processed the same way as described in Section 6.2.5.1:
starting from the matched points region growing is performed to extract all points from
the reconstruction belonging to the matched model/candidate. These points are then
categorized as static or moved depending on their spatial distance. The remaining
points are considered as an additional model/candidate.

For all unmatched candidates, new hypotheses with the unmatched models are
computed. The matching process restarts by building a graph with the relaxed edge
condition. This procedure is repeated until no more matches are found.

6.2.5.3 Global Matching

The final matching procedure considers objects that have been moved between different
surfaces. This is performed by collecting all models and candidates from all surfaces
that were not matched in the local or semi-local steps. Technically, the same approach
as described in Section 6.2.5.2 is applied but now all objects from all surfaces are pooled
together to perform global matching. The PPF descriptor is the basis for hypotheses
creation and computed confidence scores are used as edge weights for a maximum
weight bipartite graph. In the case that there is no match for a candidate or a model in
the entire environment, a candidate object is considered novel and a model object is
considered removed.

The advantage of our approach is that the robot does not need to learn object
models in a cumbersome process, but inherently extends its knowledge through change
detection. Figure 6.3 shows an example of the clutter-dissolving capabilities of our
system on an example from the ObChange dataset. At timestamp t0 a pitcher and a
mug are detected next to each other. They are treated as one object. At timestamp t1

the pitcher is a single standing object, while the mug belongs to a pile together with
the bowl. First, the pitcher is matched and with that information, the mug is separated

6.3 Experiments and Discussion 63

Timestamp t0

Timestamp t1

Figure 6.3: Example showing how objects are separated using PPF matching. Objects
next to each other having the same shadow color are recognized as one
object by the robot. After objects are matched they have the same shadow
color in both recordings.

from the pitcher in t0. Now the separated mug is matched with the mug in t1. The
result of the matching process is that the heaps are disentangled and instead of three
object clusters the robot is now aware of five individual objects.

6.3 Experiments and Discussion

This section evaluates the performance of our approach for detecting and categorizing
object changes. It is compared against two variants of a learning-based method as
baselines and quantitative experiments are conducted with the newly created ObChange
dataset, consisting of recordings from a real autonomous robot (see Section 3.2 for an
overview and Section 6.3.1 for details). Additionally, we qualitatively demonstrate the
applicability of our method in real-world scenarios with online experiments using a
real robot (see Section 6.3.2). Finally, we discuss the indications of our experimental
results and the consequent open research questions in Section 6.3.3. For reproducibility,
we give an overview of all parameters used for the dataset and real-world evaluation
in Table 6.1.

6.3.1 Evaluation on the Robotic Dataset ObChange

Since no suitable dataset exists to evaluate object mapping, we created ObChange. Its
detailed description is given in Section 6.3.1.1. Section 6.3.1.2 introduces the metrics
to measure the performance for the evaluation. In order to analyze our approach
quantitatively, we compare it to two learning-based baselines using state-of-the-art
methods as outlined in Section 6.3.1.3. Section 6.3.1.4 outlines the evaluation setup
and in Section 6.3.1.5 we discuss the results and open challenges in detail.

64 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

Table 6.1: Parameters used for evaluation
Method Parameter Value
Local plane extraction Maximum angle αmax between plane normal

and upward-directed axis
5◦

Local plane extraction Inlier distance threshold dplane for plane
model

0.015 m

Matching score Inlier threshold τ for radius search 0.01
Matching score Color threshold τcol for point-wise matching 20
Matching score Dot product threshold τgeo between two nor-

mal vectors for point-wise matching
0.95

Matching score Linear weight factor w for combined score 0.7
Object filtering Voxel size v for object downsampling 0.005 m
Object filtering Minimum number of object points objmin 200
Object filtering Proportion of object points to count as plane

τplane

0.9

Region growing Point inlier radius r 0.01 m
Region growing Maximum allowed angle between normal vec-

tors of neighboring points rggeo

5◦

Region growing Maximum allowed color difference between
neighboring points rgcol

15

Local matching Minimum score for candidate match τicp 0.7
Semi-local matching Low score threshold τlow for graph edge 0.4
Semi-local matching High score threshold τhigh for graph edge 0.8
Semi-local matching Minimum score for model and candidate τmin 0.2
PPF Distance sampling rate as defined in [88] 0.025
PPF Orientation sampling rate as defined in [88] 5

6.3.1.1 The ObChange Dataset

For the quantitative evaluation of the object mapping task, we use the ObChange dataset
created from real camera data collected by a robot. Details about the acquisition, the
five different environments, and the experimental setup are given in Section 3.2. For
each recording between 3 and 17 objects from the YCB object set are labeled (only
excluding those placed on the floor). For the ObChange dataset, we use all environments
and all different recordings, which include YCB objects – in total 26 recordings.

The ObChange dataset extension from the data used in Chapter 5 respectively [17]
is necessary to achieve high-quality reconstructions to enable object matching. For
each environment, a 3D semantically labeled reconstruction is created, which is used to
identify horizontal planes as described in Section 6.2.3. For each detected plane, images
from the recorded stream where the surface is visible are extracted, depth images are
masked according to the plane parameters and ElasticFusion is used to reconstruct
the area. Only with the combination of odometry pose and camera tracking pose as
given in Equation 6.4, suitable reconstructions for all surfaces are achieved. In this
dataset, the robot drives exhaustively through an environment and, therefore, may

6.3 Experiments and Discussion 65

Table 6.2: Overview of the dataset used for the quantitative evaluation. Except for the
first two columns the numbers state the sum over all possible comparisons
per environment.

Environment #visits #surfaces #objects #static #moved #removed #novel
Big Room 6 12 425 28 260 50 87
Small Room 5 5 208 72 62 25 49
Living Area 5 11 108 0 54 30 24
Office Desk 5 4 100 12 28 24 36
Kitchen Counter 5 2 120 10 66 14 30

26 34 961 122 470 143 226

see surfaces of interest at several points in time. Unfortunately, ElasticFusion cannot
handle non-continuous input data. To overcome this problem, we first create individual
reconstructions for each appearance of the surface and then merge them using ICP. We
visually check the results and adjusted them manually if needed. This manual step is
not needed in the real world where the robot moves around the surface only once. The
collection of all surface reconstructions together with their point-wise labeling of all
YCB objects form the ObChange dataset.

Compared to our work in the previous chapters we are not only interested in detecting
all objects, but also to assign them to one of the four categories - static, moved, removed,
and novel. To create a more meaningful evaluation of the possible categories, we compare
each recording with all other recordings of the same environment, leading to 961 objects
in total. For each comparison the objects of both recordings are counted, meaning that
static and moved objects are counted at t0 and t1. Table 6.2 gives an overview of the
data for each environment.

6.3.1.2 Metrics

In ObChange only YCB objects are annotated. Besides being possibly categorized as
static, YCB objects are the only objects that change, i.e., are moved, removed, or novel.
All other objects are static or move only slightly. They are considered background and
are therefore irrelevant for object change detection. Given that, we apply the following
metrics:

• Detected objects: The number and percentage of detected YCB objects.

• Correctly categorized objects: The number and percentage of YCB objects that
are correctly categorized as static, moved, removed, or novel.

• False positives: The number of background objects that are not categorized as
static plus the number of objects that are correctly classified, but parts of it have
an incorrect category assigned.

6.3.1.3 Baseline

To the best of our knowledge, no other work exists to categorize objects into static,
moved, removed, and novel by comparing environments at two time instances. Thus, in

66 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

Figure 6.4: 3D object map of detected objects using Mask R-CNN trained on COCO
created with the approach from [103]. Besides some background objects,
all YCB objects are detected, except for the gelatin box (marked with cyan
rectangle).

order to evaluate our object mapping approach, we extend the recent work of Oliveira
et al. [103]. Their proposed method detects objects with Yolov3 [56] trained on the
COCO dataset [104] in each frame. These object detections are used to create a 3D
object map by temporal and spatial associations. We utilize this 3D object map to
perform object matching. Thus, based on their work we develop two baselines. Instead
of Yolov3 we use Mask R-CNN [57], another state-of-the-art object detector because
it is not only readily available for the established COCO dataset but also for the
YCBV dataset [105]. We refer to the baselines as the COCO-baseline respectively the
YCBV-baseline.

For both baselines, we create 3D object maps for all dataset recordings using the
standard parameters mentioned in [103] with the following exceptions: (1) use Mask
R-CNN instead of Yolov3, (2) decrease the distance threshold for the bounding box
center distance to 0.0001 (which equals to 30 pixels) and decrease the spatial association
to 0.3 m for better results. The RGB images from the recordings and the estimated
poses from ElasticFusion, which are more accurate than pure robot poses, constitute
the input for 3D object maps. For the COCO-baseline we do not include detected
objects from the following COCO categories in the 3D object map because they cover
classes not relevant for indoor object change detection: person, vehicle, outdoor, animal,
furniture (except potted plant), and appliance. The example in Figure 6.4 shows the
detected objects with their assigned classes overlayed on the reconstruction.

Based on the generated 3D object maps, we compute the changes between two visits
to an environment using the assigned labels from the object detector. An object with a
class label that exists in the visit at time t0, but not at time t1, is considered removed
and vice versa as novel. If there is exactly one object of a specific object class in both
visits, it is either categorized as static or moved depending on the distance between the
object’s bounding box centers compared to the threshold d. In the case that several
objects from the same class are detected, we find an association by utilizing the feature
vector of the second last layer of Mask R-CNN. This is inspired by Qiu et al. [106]
who extract the features from the last layer as instance-level features. However, in

6.3 Experiments and Discussion 67

our experience features from the last layer are already too class-specific, whereas the
second last layer is more suitable for instance comparisons. Because an object is usually
detected in several frames, the feature vector is extracted for each. To find the best
matching instances from the same class within two visits, we compute for an object at
t0 the dot-product between all its feature vectors with all feature vectors of all objects
from the same class from t1 then match the object that achieves the highest value.
Depending on the distance between the two matched objects they are either categorized
as static or moved.

The baseline using Mask R-CNN trained on the YCBV dataset [105] is evaluated to
analyze the performance when provided a tailored training set in comparison to the
more general COCO dataset. Park et al. [107] provide the weights for Mask R-CNN,
which they trained for their pipeline to participate in the BOP challenge [101] on the
YCBV dataset.

6.3.1.4 Evaluation

Our evaluation is based on manually labeled data. In ObChange all YCB objects are
point-wise labeled in all surface reconstructions for all the recordings. Besides the object
point indices, the object name is stored as ground truth data. The categories (static,
moved, removed, novel) are extracted given two recordings and the ground truth: If
the object name exists only in one of the two recordings, the object is novel or removed.
If it occurs in both recordings, we compute the centroid of both objects and depending
on the Euclidean distance assign the category static or moved.

Our method works directly on the surface reconstructions and therefore the resulting
object points match directly to the labeled data and no further processing is needed.
We consider an object as detected if at least 50 % of the points in the result overlap
with the labeled points. Each point in the result has one of the four categories assigned.
The object matching stage may erroneously assign different labels to data points from
the same object due to imprecise region growing. Therefore, we use the maximum voted
category per object and compare it against the ground truth. If the categories match,
the object is correctly categorized. Otherwise, it counts as a wrongly categorized object.
For the categories static and moved, the correct association of the two involved objects
must be given to be counted as correct. For example, it is not enough that an object at
time t0 and t1 is categorized as moved, also the association that the object at t0 moved
to the location of the object at t1 must be given. The sum of false positives combines
two different failure cases: (1) a YCB object where parts of it are wrongly classified.
An object is therefore counted as correctly classified and at the same time, it is a false
positive. (2) Points in the result that are categorized as moved, removed, or novel but
do not belong to any YCB object are from a static background object. We cluster the
points and each cluster is counted as one false positive object. Equally to [17] this
metric is an approximation because no ground truth labeling for background objects
exists.

In contrast, a point-wise evaluation is not possible for both baselines. Each detected
object is described by a single 3D location and a label. Therefore, for each object in the
ground truth, the centroid is computed and the closest object in the result is identified.

68 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

If the distance is less than ten centimeters we count it as a detected object, otherwise,
it is a false positive. Further, we check for each detected object if there is a nearby
ground truth object with the same category, which was not already matched. If so, the
detected object is correctly categorized. The associations for moved and static detected
objects must correspond to the ground truth. For the evaluation of the YCBV-baseline,
we remove objects from the ground truth that do not appear in the YCBV dataset and
are therefore not used for training.

We provide an additional evaluation based on the fact that if one of the two objects of
a static or moved model-candidate pair is not detected, a subsequent failure may occur.
For example, if a moved mug is detected at t0, but not at t1, it can never be categorized
correctly as moved. Therefore, we re-evaluate the methods based on an adapted ground
truth. Only detected objects are considered when re-computing the categorization for
the ground truth objects. The correct categorization for the mug in the previously
mentioned example would then be removed. This way we evaluate the categorization
process stand-alone and independent of the preceding detection performance.

6.3.1.5 Results

A summary of the performance of our proposed method as well as the two baselines on
ObChange is given in Table 6.3. Our method detects 91.8 % of all the labeled objects in
the dataset while achieving the lowest number of false positive objects. Inspecting the
detection rates of the two baselines, the result is surprising. Applying Mask R-CNN
trained on the COCO dataset outperforms Mask R-CNN trained on the YCBV dataset
by a significant margin although the ground truth objects in ObChange are selected
from the YCB objects. Recently, Dhamija et al. [58] investigate state-of-the-art object
detectors and their performance in open-world settings. They show that all methods
detect objects from classes not presented during training with high confidence, despite
the fact, that object detectors should only detect objects from known classes. This
could explain the good performance of the COCO-baseline, although trained on different
classes. We conjecture that the detection performance of the YCBV-baseline is only
about 43 % because of two reasons: (1) although the objects used in ObChange are
from the official YCB object set, some have a slightly different texture than the objects
in the YCBV dataset used for training and (2) the training data is captured from a
certain distance range, while the robot did not always get as close to the objects in the
dataset. Therefore, we assume that the object detector overfits to the training data,
which is a huge problem when applying it to images that are dissimilar to the training
dataset. The detection rate could be increased by using a lower confidence threshold,
however, this would also increase the number of false positives.

Our approach classifies 64.2 % of the detected objects correctly. This is 1.5× more
than with the COCO-baseline and 3× more than with the YCBV-baseline. The difference
between the results evaluated on the original ground truth and the adapted ground
truth (#Correctly categorized in detected objects) is small for our approach because
we achieve a high detection rate. For the YCBV-baseline, the difference is significant.
Comparing the adapted ground truth, the YCBV-baseline slightly outperforms our
approach in terms of correctly categorized objects (given that a substantially lower

6.3 Experiments and Discussion 69

Table 6.3: Results of the baseline trained on COCO and YCBV compared to the results
of our method evaluated on ObChange and averaged per environment.

Result using Mask R-CNN trained on COCO dataset

Environment
#Total
objects

#Detected
objects

#Correctly
categorized

#Correctly categorized
in detected objects

#False
positives

Big Room 425 340 (80.0 %) 117 (27.5 %) 130 (38.2 %) 218
Small Room 208 164 (78.8 %) 102 (49.0 %) 106 (64.6 %) 10
Living Area 108 72 (66.7 %) 61 (56.5 %) 65 (90.3 %) 20
Office Desk 100 64 (64.0 %) 50 (50.0 %) 55 (85.9 %) 64
Kitchen Counter 120 88 (73.3 %) 50 (41.7 %) 57 (64.8 %) 22
Overall Performance 961 728 (75.8 %) 380 (39.5 %) 413 (56.7 %) 334

Result using Mask R-CNN trained on YCBV dataset

Environment
#Total
objects

#Detected
objects

#Correctly
categorized

#Correctly categorized
in detected objects

#False
positives

Big Room 215 95 (44.2 %) 48 (22.3 %) 75 (78.9) 219
Small Room 100 32 (32.0 %) 14 (14.0 %) 18 (56.3) 75
Living Area 56 20 (35.7 %) 12 (21.4 %) 18 (90.0) 22
Office Desk 40 24 (60.0 %) 18 (45.0 %) 24 (100) 36
Kitchen Counter 100 48 (48.0 %) 24 (24.0 %) 34 (70.8) 49
Overall Performance 511 219 (42.9 %) 116 (22.7 %) 169 (77.2 %) 401

Result of our approach

Environment
#Total
objects

#Detected
objects

#Correctly
categorized

#Correctly categorized
in detected objects

#False
positives

Big Room 425 419 (98.6 %) 286 (67.3 %) 290 (69.2 %) 66
Small Room 208 183 (88.0 %) 131 (63.0 %) 136 (71.6 %) 13
Living Area 108 92 (85.2 %) 75 (69.4 %) 78 (84.48 %) 10
Office Desk 100 88 (88.0 %) 76 (76.0 %) 78 (88.6 %) 24
Kitchen Counter 120 100 (83.3 %) 49 (40.8 %) 56 (56.0 %) 28
Overall Performance 961 882 (91.8 %) 617 (64.2 %) 638 (72.3 %) 141

number of objects is detected in the first place). However, it has significantly more false
positives even though it is specifically trained for the objects in the dataset.

The performance of our approach and the baselines for each YCB object used in the
evaluation is shown in Figure 6.5. It shows that the smallest object in the dataset, the
large marker, cannot be localized by any method. However, our method was able to
detect other small objects such as screwdrivers. It can be seen that our method has
difficulties detecting a plate because a significant amount of points is explained by the
supporting plane model and are within the distance threshold dplane. Interestingly, for
all objects from the YCB dataset, the localization performance of the COCO-baseline
is superior compared to the YCBV-baseline. The lemon is the only object where our
approach performs significantly worse in categorizing than the baseline. The reason is
that the lemon is small as well as part of a pile in most of the recordings. The wrong
categorizations of the master chef can are the result of incomplete object reconstructions
and the confusion with the pitcher, which has a very similar appearance.

Figure 6.6 shows for each environment how many of the detected objects are correctly

70 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

ai
rp
la
ne

b_
cu
ps

ba
se
ba
ll

bo
wl

c_
cu
ps

ch
ip
s_
ca
n

cr
ac
ke
r_
bo
x

d_
cu
ps

e_
cu
ps

f_
cu
ps

fla
t_
sc
re
wd
riv
er

fo
am
_b
ric
k

ge
la
tin
_b
ox

h_
cu
ps

i_c
up
s

j_c
up
s

la
rg
e_
m
ar
ke
r

le
m
on

m
as
te
r_
ch
ef
_c
an

m
in
i_s
oc
ce
r_
ba
ll

m
ug

pe
ac
h

pe
ar

ph
illi
ps
_s
cr
ew
dr
iv
er

pi
tc
he
r_
ba
se

pl
at
e

pu
dd
in
g_
bo
x

ru
bi
ks
_c
ub
e

sk
ille
t

su
ga
r_
bo
x

te
nn
is_
ba
ll

tim
er

to
m
at
o_
so
up
_c
an

0

20

40

60

80

100

%

coco
ycboursResults per Object Class

Correctly Classified
Wrongly Classified
Missed Objects

Figure 6.5: Overview of YCB objects used in the dataset. The performance for each
object is shown for our approach (first bar), the COCO-baseline (second
bar), and the YCBV-baseline (third bar). If the object is not in the YCBV
dataset, no bar for the YCBV-baseline is visualized.

classified (#Correctly categorized in detected objects) split into the four categories
static, moved, removed, and novel. For each predicted category, the absolute numbers
as well as the relative numbers are given. The column wrong matching is only relevant
for the static and moved categories. It indicates cases where the objects have the correct
class assigned, but the association between object pairs is wrong. The correlation
matrices show that removed and novel objects are correctly categorized with a high
probability. The association of static objects, which is usually found by local matching
using ICP, also achieves reasonable performance. Important to notice that for the living
area none of the static objects was from the YCB dataset and only YCB objects are
annotated in ObChange and are therefore applicable for the quantitative evaluation.
The below-average performance in the kitchen counter environment, especially for static
and moved objects, stems from the more cluttered recordings and the resulting unclear
object boundaries in the reconstructions, which poses a problem for object separation
using region growing.

6.3.2 Robot Experiments

For the real-world robot experiments, we use a Toyota Human Support Robot in an
environment with nine surfaces and conduct three runs with different object changes.
Figure 6.7 presents the reconstruction of the environment using voxblox. It also shows
the planes that are automatically extracted by exploiting semantic labeling as outlined
in Section 6.2.3. For each surface, viewing poses for the robot are generated at a
distance of 20 cm to the convex hull of the plane, oriented towards the plane center, and
evenly distributed every 30 cm around the circumference. To create the reference map

6.3 Experiments and Discussion 71

Figure 6.6: Correlation matrices for each environment showing the relative and absolute
categorization results.

at t0 (used for all three comparison runs), the robot visits each surface and stores the
detected objects in the database. 20 out of 21 objects placed on the extracted planes
are detected. The object set and their locations then partially change for the three runs
at times t1 to t3.

Table 6.4 presents the results. For each run at t1, t2, and t3 we give the numbers
of the objects assigned to the four categories compared to the ground truth. Missed
objects are those that were not detected at all and therefore result in incorrectly
categorized objects. The table also shows the number of false positive objects as
defined in Section 6.3.1.2. In our experiments, the difference in the numbers of the last
column between our approach and the ground truth stems from the sum of objects
that were not detected (#Missed) and from wrongly matched objects. In total 70
objects (

�
#Correct(GT) −

�
#Removed(GT)) were placed in the three runs, which

are compared to the reference run from t0. In summary, most of the objects are detected
(65 of 70) and from the detected ones 61 objects are correctly categorized (61 of 65).

72 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

Table 6.4: Results of mapping objects from the robot experiments. The rows with GT
refer to ground truth for the respective runs 1, 2, and 3 at t1, t2, and t3.

Run #Static #Moved #Removed #Novel #Missed #FPs #Correct
1 17 2 1 4 1 0 24

GT 18 2 1 4 0 0 25
2 12 5 2 3 1 0 22

GT 13 6 2 3 0 0 24
3 5 10 1 3 3 2 19

GT 8 12 1 4 0 0 25

Including the removed objects and considering the missed objects as wrongly classified,
65 of 74 objects are correctly mapped (last column in the table). For each run, the
detection and matching part took approximately 10 minutes on a standard laptop.

Figure 6.8 gives details about the matches. In the setup phase as well as in each visit
of the environment, a wooden box standing in the corner of the shelf was not detected
because it was bigger than the shelf depth and therefore not within the convex hull
(marked with a red cross in Figure 6.8). In run 1 all detected objects are matched
correctly. In run 2, the pringles can is misclassified when comparing the environment at
time t0 and t2. At t0 the pringles can is close to a tea box, which is correctly categorized
as moved, but region growing fails to stop at the object boundaries. Therefore, the
two objects are considered as one object and are assigned the same label. This leads
to the error that the pringles can at t2 is wrongly labeled as novel. At time t3 the
keyboard is partially occluded when the robot moves around the table. Therefore,
the reconstruction is only a planar surface, which is not considered an object. As a
consequence, the keyboard from time t0 is matched to the keyboard of a laptop (labeled
as M11 in Figure 6.8). The other wrongly categorized objects result from the inability
to split the orange and blue objects on the table in the middle of the room. Although for
both objects PPF found the correct match and the confidence is the highest compared
to other possible matches, it is still too low to accept the match. The reason is the low
geometric overlap because the two objects are only partially reconstructed at t3 but
almost a full model exists from t0.

6.3.3 Discussion

Based on the evaluation results using ObChange and the robot experiments, in the
following sections, we highlight the findings on remaining open challenges due to factors
such as robot localization, covering surfaces with views, the detection of small objects,
partially occluded objects, and quality of reconstructions.

6.3.3.1 Robot Localization Error

Precise robot localization is necessary for most change detection applications. It
supports the pairing of frames as well as the creation of clean reconstructions. In our
experience, the performance of dense visual SLAM methods in environments with areas

6.3 Experiments and Discussion 73

Figure 6.7: Reconstruction of the environment used for the real robot experiments. The
detected planes are highlighted in turquoise.

of little visual and geometric features greatly benefits from integrating odometry data
assuming state-of-the-art localization. Our solution to integrate odometry data into the
ElasticFusion framework could reconstruct all surfaces in ObChange because the robot
drift is insignificant. In case this cannot be guaranteed, the recent work by Houseago
et al. [108] shows how to integrate odometry data and dense visual SLAM in the
presence of drift. Although their method could be integrated into our system, we opted
for a computationally cheap approach. This is important when working with mobile
robots, where limited resources have to be shared among different system components.

6.3.3.2 Search Space

Detecting objects is a trade-off between reducing the search space and not missing
objects (examples are shown in Figure 6.9). At the same time the chance to detect
false positives increases with a less restricted search space. The concept of surfaces
reduces the search space significantly but may lead to missed objects if the surface
plane is occluded or if it is not nearly planar. We decrease the number of false positive
detections by utilizing a shrunk convex hull of the plane but this may cause objects at
the border to not be detected.

6.3.3.3 Detection of Small Objects

The detection of small objects is a well-known problem. Especially when working with
3D maps, actions taken to reduce the effect of noise and misalignments are the reason for

74 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

filtering small objects. Our evaluation shows that neither the learning-based approaches
nor the surface concept approach are capable of reliably detecting small objects.

6.3.3.4 Occlusion

Occlusion poses a significant challenge for object matching because parts of an object
are missing. The same accounts for incomplete reconstruction due to view limitations.
Generally, ambiguities due to partial reconstructions or truly similar object appear-
ance(see Figure 6.10 first two examples) need to be counter-measured by taking into
account as much information as possible – for example, color PPF [109] could provide
better a-priori hypotheses at the cost of higher computational efforts.

6.3.3.5 Object Matching Verification

A verification step to check if a match is physically plausible, similar to [36] or [110]
could help in some cases to reject inconsistent matches. However, this method of
verification does not work in all cases – approaches fail when objects are partially visible
or symmetric. For example, a tube-like object standing on a table was detected at t0

(tube0) and at t1 (tube1), but only the bottom half was visible in the latter. The object
matching and registration is ambiguous and resulted in aligning tube1 to the top of
tube0. For verification purposes, projecting tube0 into the t1-recording results in half
of the tube being below the supporting plane, which is physically implausible. This
triggers a rejection even though the matched objects are the same. More generally, the
fact that detected objects can actually be a heap poses challenges in geometric and
semantic verification.

6.3.3.6 Reconstruction Quality

Clearly, the quality of the surface reconstruction and therefore the 3D object models
impacts the performance of object matching applications. While ElasticFusion tends to
create reconstructions with smoothed normals, it also connects spatially close objects
with additional points having a continuous color gradient. While this kind of reconstruc-
tion is appealing and preferred, for example, in video games, we prefer a more realistic
depiction of the environment. This is especially relevant when performing processing
steps such as matching or region growing, which favor distinctive geometric features.

6.4 Conclusion

In this work, we tackled the core perception capabilities for open-world operation in
the context of the object mapping task. This was defined as comparing the locations of
objects in the present visit (present object map) to a previously stored reference map.
Without loss of generality, we proposed to create a 3D reference map of the environment.
Comparing complete environment reconstructions is impractical for many application
scenarios, therefore, we presented a concept where only local surfaces are reconstructed.
This has the benefit that local comparisons are performed more rapidly and that local

6.4 Conclusion 75

surfaces are reconstructed more accurately. The latter is critical to enhance object
detection and matching results. We showed that semantic segmentation methods are
suitable to autonomously provide high-level partitioning into relevant surfaces.

The key step of object mapping is to compare object detections and match objects
from two different time instances. The main contribution of this work is the perception
of all possible cases of static, moved, removed, and novel objects. For the quantitative
evaluation, we used the ObChange dataset and compared the proposed approach against
two baselines using state-of-the-art learning-based methods. Results indicate that
the proposed method significantly improves over the baselines in terms of detected
objects as well as the accuracy of categorization. Furthermore, we conducted real-world
experiments with an autonomous mobile robot to demonstrate our developed capabilities
in a realistic setting.

76 6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings

Figure 6.8: Results of real-world robot experiments. Each row shows the comparison
of the reference environment (first column) with the state of the same
environment at a different time (second column). Each detected object is
marked with an ellipse and labeled with M (moved), R (removed), or N
(novel). Correct categorizations are colored in green, wrong ones in red.
Objects, which got matched, have the same number assigned. For simplicity
static objects are not highlighted. Missed objects are marked with a red
cross.

6.4 Conclusion 77

Figure 6.9: Examples of missed objects. Extracted planes are visualized in red. First
image: two objects in black rectangle. Only the yellow cup is detected
because the couch seat is too curved. Second and third image: only few
object points are within the convex hull of the plane and therefore classified
as noise and rejected. Note, that in the third example the reconstruction is
very sparse because the robot did not get close enough to the surface.

Figure 6.10: Examples of hypotheses generated based on PPF.

Chapter 7

Conclusion

Autonomous robots are a particularly good fit for repetitive and tedious tasks. In
the future, households will benefit from the co-existence of helper robots undertaking
more complex tasks than they do nowadays. According to the survey conducted by
Bugmann and Copleston [93], people wish for service robots to fulfill tasks, which
require interactions with objects, such as filling and emptying the dishwasher, preparing
food, and tidying up.

Although progress is made in this direction, it is still a long way to safely deploy
autonomous mobile robots that need to be able to understand their surroundings
in the ever-changing real world. To develop their full potential it is necessary that
service robots are able to adapt to new situations without the need for tedious manual
adjustment or even worse, without the need for a technical expert. For example, a
robot needs to recognize when the environment has changed and therefore initiates the
process to update the stored maps or it needs to detect new objects in its surroundings
and subsequently has to learn their appearance and meaning.

When a robot has to deal with objects, detecting them is the first step. It is usually
followed by methods to extract the semantic meaning, estimate the object pose, and
manipulate the object. In this thesis, we described methods to lay the foundations for
robots to detect objects in open-world scenarios by comparing the current situation
to a stored reference. This concept enables a robot to detect unknown objects that
it has never seen before. While the first two methods categorize all detected objects
as novel, the third method distinguishes between static, moved, removed, and novel.
These four cases cover all possible states an object in an environment compared to a
reference can have. In this chapter we give a summary of the proposed object change
detection methods (Section 7.1) and insights into potential improvement and future
research directions (Section 7.2).

7.1 Summary

This thesis encompasses three methods to detect objects using the change in the
environment between two timestamps as a cue. The methods differ in the geometric
representation of the environment, where objects are detected, and the capability
to distinguish between static, moved, removed, and novel objects. Additionally, in

78

7.1 Summary 79

Chapter 3 we present ObChange. It is a new dataset, which is suitable for quantitatively
evaluating object change detection methods. In contrast to existing datasets, the data
were acquired with a robot in real environments and with a focus on small objects. We
recorded RGB and depth streams from five different environments where a selection
of YCB objects was introduced – in total 26 recordings with 260 YCB objects plus a
tidied-up version of each environment. Two versions of the dataset are available with
all YCB objects annotated. One version consists of full-environment reconstructions
created with voxblox. The other version divides an environment into meaningful parts
and uses ElasticFusion to map them, which leads to a more detailed representation.

The first method to detect objects is described in Chapter 4 and builds on OctoMaps,
which is a voxel-based map representing the environment. The aim is to find all novel
objects placed on the floor. This means that the corresponding location in the reference
map is unoccupied. The method compares a stored reference OctoMap against the
currently available one, which is built on-the-fly while the robot fulfills a task and
navigates in the environment. An OctoMap inherently stores information if a voxel
is unoccupied or hasn’t been seen yet. Therefore, the planning system can request a
change detection at any time. It is not necessary that the whole environment is mapped
before, but obviously, objects are only found in the part, which has been seen already.
The detected differences get clustered and filtering rules are applied depending on the
task and the robot design. We showed in real-world experiments that the presented
approach reliably finds regions of interest, which contain one or several novel objects.
Our method significantly outperforms a method based on fixed viewpoints with regard
to the number of segmentation actions and the time needed to find and segment all
novel objects in the environment. Nevertheless, this method is sensitive to dynamic
environments and detects even slightly moved furniture partially as novel objects.

Hence, in Chapter 5 we present and discuss the idea of utilizing semantic information
about the environment to perform more robust change detection. Instead of computing
a global difference, relevant horizontal planes are taken into account separately. Clusters
on top of these planes are considered as potential interesting objects. To detect objects
that are new at a location, which was unoccupied compared to a reference map, a
two-step approach is applied. First, the corresponding planes from two timestamps
are aligned and then for each currently present object cluster placed on the plane we
use ICP (with a fixed upward direction) to find a transformation that results in a
high overlap with a spatially close cluster in the reference. Object clusters with a low
overlap are considered novel at this location. We evaluated the proposed approach
and its intermediate steps and compared it to global change detection methods using
the dataset described in Chapter 3. The results show that our method outperforms
the baselines, especially in terms of precision while also achieving a high recall and
detecting most of the novel objects.

In Chapter 6 we adopt the idea of using semantic segmentation to divide the en-
vironment into meaningful parts and create a reconstruction for each of them. The
short trajectories and combining the robot and camera poses lead to a more precise
representation with fewer artifacts. This is crucial to be able to differentiate between
static, moved, removed, and novel objects when comparing an environment at two
different timestamps. These four cases cover all possible states an object in the envi-

80 7 Conclusion

ronment compared to a reference can have. We match detected objects on horizontal
planes based on color and geometric similarity. First, spatially close object clusters
are compared using ICP. If there is a match, the objects are static. Otherwise, a PPF
descriptor is used to match objects across the whole supporting plane and if there
is no match all remaining surfaces are checked. If no match is found in the whole
environment the object is categorized as removed respectively novel, otherwise as moved.
The method enables the disentanglement of heaps if objects are moved or removed
at another timestamp. The quantitative evaluation is performed on the ObChange
dataset and the proposed method is compared against learning-based object detection
methods. The results show that it outperforms even the baseline with the tailored
training set. Finally, we demonstrate the applicability of the approach with real-world
robotic experiments.

7.2 Outlook

To conclude, we discuss remaining open challenges risen from experiments and evalua-
tions (Section 7.2.1). Additionally, the last section outlines possible extensions, which
build on the object detection methods described in the thesis (Section 7.2.2).

7.2.1 Improving Object Reconstruction and Detection

Improving the reconstruction quality in terms of accuracy as well as completeness
boosts the result of all perception-related tasks. One way to generate a more consistent
coloring across a reconstruction of the environment is the integration of the work from
Alexandrov et al. [111] with the reconstruction method. It reduces the vignetting effect
and therefore leads to better results in subsequent steps, such as object matching where
color is used in one part of the matching score equation.

Another open challenge is the detection of small objects and objects that are partially
hidden, where in both cases multiple views, as well as close-up views, might be a future
solution to work on. Also, active manipulation to separate heaps or generate different
views is a promising direction [19].

Deformable objects also pose a challenge for perception algorithms. While the
proposed methods detect rigid as well as non-rigid objects, subsequent steps like object
matching, recognition, or pose estimation suffer from the different shapes an object
can take. A possible solution is to divide objects into meaningful parts and build new
approaches based on that.

Finally, another important future research direction includes reflective, refractive,
and transparent objects. RGB-D cameras provide invalid or noisy depth data for these
kinds of objects. Therefore, it is not possible to map objects in reconstructions and
subsequently detect them. Initial approaches exist on how to estimate missing depth
data [112].

7.2 Outlook 81

7.2.2 Expanding on Object Detection Results

Considering an autonomous robot fulfilling a task, such as tidying up or fetch-and-carry
as described at the beginning of the thesis, several different components need to be
developed and linked together. Navigation, planning, perception, and manipulation
are essential parts of such a complex robotic system. In Chapter 6 we integrated
some of these components to discuss the performance of the presented method using
a robot in the real world. A state machine is responsible for coordinating the robot’s
navigation and invoking the object detection and matching method. Generally, the
object detection methods described in this thesis represent an important initial step at
the object perception level. However, more actions are required on top of the presented
work to constitute a full working system that handles open-world situations and learns
about new objects. The results of the presented methods serve as a starting point for
potential future steps. The robot is now able to position itself and the camera in a
way that the object is accurately in the field of view. Especially for a novel object in
the environment, the robot needs to retrieve more information about it to handle it
correctly. There are several options: (1) The robot presents an image of each novel
object to a human via a screen where the human then enters characteristics such as
object class, storage location, owner, and so on. (2) An image of a novel object is used
as a query image to find similar ones on the web where information gets extracted
from surrounding text. (3) A classifier does not need a model of each object instance
but abstracts general features to assign objects to a class. However, when objects of
unknown classes appear the classifier needs to be retrained.

While the thesis focuses on the key aspect of perceiving all object changes, object
pose estimation needs to be further integrated with grasping. For these and other
subsequent steps like object recognition, full 3D object models are beneficial. Assuming
changes occur regularly the burden of manually creating them can be circumvented by
merging partially detected objects into a complete 3D model as proposed by Furrer et
al. [36].

Another interesting extension, especially for the fetch-and-carry task, is to keep track
of where objects have been seen in the past. This knowledge is useful to compute
probabilities where objects are likely located. It reduces the amount of time needed
to find a requested object when the robot first navigates to locations with a high
probability.

Appendix

A.1 Examples from the Object Change Detection

Dataset

The following subsections show an exemplary recording of each environment of the novel
object change detection datasets described in Section 3.2. In each figure (Figure A.1.1–
A.1.6) the full-environment reconstruction is shown on the top. It is created with voxblox
and used for the evaluation in Chapter 5. At the bottom of each figure surfaces of interest
from ObChange are arranged. We only present those which include objects from the
YCB dataset [77]. ObChange is generated with an adapted version of ElasticFusion [28]
and is used for the quantitative evaluation in Chapter 6. The proposed semantic
splitting of the environment into regions containing supporting planes results in shorter
camera trajectories. This leads to more accurate reconstructions in ObChange compared
to the full-environment ones.

82

A.1 Examples from the Object Change Detection Dataset 83

A.1.1 Small Room

Figure A.1.1: Small room from the object change detection dataset (Section 3.2).
Top: full-environment reconstruction created with voxblox.
Bottom: selected surfaces of interest from ObChange.

84 7 Conclusion

A.1.2 Living Area

Figure A.1.2: Living area from the object change detection dataset (Section 3.2).
Top: full-environment reconstruction created with voxblox.
Bottom: selected surfaces of interest from ObChange.

A.1 Examples from the Object Change Detection Dataset 85

A.1.3 Office Desk

Figure A.1.3: Office desk from the object change detection dataset (Section 3.2).
Top: full-environment reconstruction created with voxblox.
Bottom: selected surfaces of interest from ObChange.

8
6

7
C

o
n
clu

sio
n

A.1.4 Kitchen Counter

Figure A.1.4: Kitchen counter from the object change detection dataset (Section 3.2). Top: full-environment reconstruction
created with voxblox. Bottom: selected surfaces of interest from ObChange.

A
.1

E
x
a
m

p
les

fro
m

th
e

O
b

ject
C

h
a
n
g
e

D
etectio

n
D

a
ta

set
8

7

A.1.5 Big Room - Part 1

ObChange

Full-Environment

Figure A.1.5: One part of the big room from the object change detection dataset (Section 3.2). See Figure A.1.6 for the other part.
Top: full-environment reconstruction created with voxblox. Bottom: selected surfaces of interest from ObChange.

8
8

7
C

o
n
clu

sio
n

A.1.6 Big Room - Part 2

ObChange

Full-Environment

Figure A.1.6: One part of the big room from the object change detection dataset (Section 3.2). See Figure A.1.5 for the other part.
Top: full-environment reconstruction created with voxblox. Bottom: selected surfaces of interest from ObChange.

Bibliography

[1] B. Xu, W. Li, D. Tzoumanikas, M. Bloesch, A. Davison, and S. Leutenegger,
“MID-fusion: Octree-based object-level multi-instance dynamic SLAM,” in Proc.
of the IEEE International Conference on Robotics and Automation (ICRA), 2019,
pp. 5231–5237 (cit. on p. 1).

[2] C. Gomez, A. C. Hernandez, E. Derner, R. Barber, and R. Babuška, “Object-
based pose graph for dynamic indoor environments,” IEEE Robotics and Au-
tomation Letters, vol. 5, no. 4, pp. 5401–5408, 2020 (cit. on p. 1).

[3] S. Krivic, M. Cashmore, D. Magazzeni, S. Szedmak, and J. Piater, “Using
machine learning for decreasing state uncertainty in planning,” Journal of
Artificial Intelligence Research, vol. 69, pp. 765–806, 2020 (cit. on p. 1).

[4] K. Joseph, S. Khan, F. S. Khan, and V. N. Balasubramanian, “Towards open
world object detection,” in Proc. of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2021, pp. 5830–5840 (cit. on pp. 1, 16,
17).

[5] D. Kim, T.-Y. Lin, A. Angelova, I. S. Kweon, and W. Kuo, “Learning open-world
object proposals without learning to classify,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 5453–5460, 2022 (cit. on pp. 1, 16).

[6] P. Perera, V. I. Morariu, R. Jain, V. Manjunatha, C. Wigington, V. Ordonez,
and V. M. Patel, “Generative-discriminative feature representations for open-set
recognition,” in Proc. of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 11 814–11 823 (cit. on pp. 1, 16).

[7] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-scale long-
tailed recognition in an open world,” in Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2537–2546 (cit. on
pp. 1, 16).

[8] D. Fischinger, P. Einramhof, K. Papoutsakis, W. Wohlkinger, P. Mayer, P. Panek,
S. Hofmann, T. Koertner, A. Weiss, A. Argyros, et al., “Hobbit, a care robot
supporting independent living at home: First prototype and lessons learned,”
Robotics and Autonomous Systems, vol. 75, pp. 60–78, 2016 (cit. on p. 2).

[9] M. Bajones, D. Wolf, J. Prankl, and M. Vincze, “Where to look first? Behaviour
control for fetch-and-carry missions of service robots,” in Proc. of the Austrian
Robotics Workshop, 2014, pp. 500–516 (cit. on p. 2).

89

90 Bibliography

[10] N. Hawes, C. Burbridge, F. Jovan, L. Kunze, B. Lacerda, L. Mudrova, J. Young,
J. Wyatt, D. Hebesberger, T. Kortner, et al., “The STRANDS project: Long-term
autonomy in everyday environments,” IEEE Robotics & Automation Magazine,
vol. 24, no. 3, pp. 146–156, 2017 (cit. on p. 2).

[11] M. R. Loghmani, B. Caputo, and M. Vincze, “Recognizing objects in-the-wild:
Where do we stand?” In Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), 2018, pp. 2170–2177 (cit. on p. 3).

[12] E. Herbst, P. Henry, and D. Fox, “Toward online 3-D object segmentation
and mapping,” in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 3193–3200 (cit. on pp. 3, 4, 12, 13, 15).

[13] J. Mason and B. Marthi, “An object-based semantic world model for long-term
change detection and semantic querying,” in Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2012, pp. 3851–3858 (cit.
on pp. 3, 7, 12, 13, 18, 19, 25, 34, 41).

[14] R. Ambrus, N. Bore, J. Folkesson, and P. Jensfelt, “Meta-rooms: Building and
maintaining long term spatial models in a dynamic world,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2014, pp. 1854–1861 (cit. on pp. 3, 4, 7, 12–14, 19, 44, 46, 48, 50).

[15] S. Song, L. Zhang, and J. Xiao, “Robot in a room: Toward perfect object
recognition in closed environments,” CoRR, abs/1507.02703, 2015 (cit. on pp. 3,
12, 15).

[16] M. Fehr, F. Furrer, D. Ivan, J. Sturm, I. Gilitschenski, R. Siegwart, and C. Cadena,
“TSDF-based change detection for consistent long-term dense reconstruction and
dynamic object discovery,” in Proc. of the IEEE International Conference on
Robotics and Automation (ICRA), 2017 (cit. on pp. 3, 4, 12–14, 18, 19, 46).

[17] E. Langer, T. Patten, and M. Vincze, “Robust and efficient object change detec-
tion by combining global semantic information and local geometric verification,”
in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2020, pp. 8453–8460 (cit. on pp. 3, 12, 15, 64, 67).

[18] A. Ayvaci and S. Soatto, “Detachable object detection: Segmentation and depth
ordering from short-baseline video,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol. 34, no. 10, pp. 1942–1951, 2011 (cit. on p. 3).

[19] T. Patten, M. Zillich, and M. Vincze, “Action selection for interactive object
segmentation in clutter,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, pp. 6297–6304 (cit. on pp. 3, 80).

[20] C. Xie, Y. Xiang, Z. Harchaoui, and D. Fox, “Object discovery in videos as fore-
ground motion clustering,” in Proc. of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 9994–10 003 (cit. on p. 3).

[21] X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley, and C. Stachniss,
“Moving object segmentation in 3D LiDAR data: A learning-based approach
exploiting sequential data,” IEEE Robotics and Automation Letters, vol. 6, no. 4,
pp. 6529–6536, 2021 (cit. on p. 3).

Bibliography 91

[22] M. Björkman and D. Kragic, “Active 3D scene segmentation and detection of
unknown objects,” in Proc. of the IEEE International Conference on Robotics
and Automation (ICRA), 2010, pp. 3114–3120 (cit. on pp. 4, 56).

[23] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-range scene seg-
mentation and reconstruction of 3D point cloud maps for mobile manipulation
in domestic environments,” in Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2009, pp. 1–6 (cit. on pp. 4, 41, 44).

[24] J. Wald, A. Avetisyan, N. Navab, F. Tombari, and M. Nießner, “RIO: 3D
object instance re-localization in changing indoor environments,” in Proc. of
the IEEE/CVF International Conference on Computer Vision (ICCV), 2019,
pp. 7658–7667 (cit. on pp. 4, 13, 18–20, 38).

[25] E. Herbst and D. Fox, “Toward object discovery and modeling via 3-D scene
comparison,” in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2011, pp. 2623–2629 (cit. on pp. 4, 12–15).

[26] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Oc-
toMap: An efficient probabilistic 3D mapping framework based on octrees,”
Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013 (cit. on pp. 6, 11, 25, 48).

[27] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incre-
mental 3D Euclidean signed distance fields for on-board MAV planning,” in Proc.
of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 1366–1373 (cit. on pp. 6, 11, 21, 46, 56).

[28] T. Whelan, S. Leutenegger, R Salas-Moreno, B. Glocker, and A. Davison, “Elas-
ticFusion: Dense SLAM without a pose graph,” in Proc. of Robotics: Science
and Systems (RSS), 2015 (cit. on pp. 6, 12, 22, 49, 52, 57, 82).

[29] J. Fu, C. Lin, Y. Taguchi, A. Cohen, Y. Zhang, S. Mylabathula, and J. J. Leonard,
“PlaneSDF-based change detection for long-term dense mapping,” IEEE Robotics
and Automation Letters, vol. 7, no. 4, pp. 9667–9674, 2022 (cit. on pp. 7, 12, 14).

[30] S. Schreiberhuber, J. Prankl, T. Patten, and M. Vincze, “ScalableFusion: High-
resolution mesh-based real-time 3D reconstruction,” in Proc. of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2019, pp. 140–146
(cit. on pp. 11, 49, 52).

[31] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P.
Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, “KinectFusion: Real-time dense
surface mapping and tracking,” in Proc. of the IEEE International Symposium
on Mixed and Augmented Reality, 2011, pp. 127–136 (cit. on p. 11).

[32] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. J. Leonard, and J. McDonald,
“Kintinuous: Spatially extended KinectFusion,” in Proc. of RSS Workshop on
RGB-D: Advanced Reasoning with Depth Cameras, 2012 (cit. on pp. 11, 49, 52).

[33] O. Kähler, V. A. Prisacariu, and D. W. Murray, “Real-time large-scale dense
3D reconstruction with loop closure,” in Proc. of the European Conference on
Computer Vision (ECCV), 2016, pp. 500–516 (cit. on p. 11).

92 Bibliography

[34] A. Dai, M. Nießner, M. Zollöfer, S. Izadi, and C. Theobalt, “BundleFusion: Real-
time globally consistent 3D reconstruction using on-the-fly surface re-integration,”
ACM Transactions on Graphics (TOG), 2017 (cit. on p. 12).

[35] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb, “Real-time
3D reconstruction in dynamic scenes using point-based fusion,” in Proc. of the
IEEE International Conference on 3D Vision (3DV), 2013, pp. 1–8 (cit. on
p. 12).

[36] F. Furrer, T. Novkovic, M. Fehr, A. Gawel, M. Grinvald, T. Sattler, R. Siegwart,
and J. Nieto, “Incremental object database: Building 3D models from multiple
partial observations,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018, pp. 6835–6842 (cit. on pp. 12, 14,
46, 74, 81).

[37] K. Tateno, F. Tombari, and N. Navab, “Real-time and scalable incremental
segmentation on dense slam,” in Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2015, pp. 4465–4472 (cit. on p. 12).

[38] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Siegwart, and J.
Nieto, “Volumetric instance-aware semantic mapping and 3D object discovery,”
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 3037–3044, 2019 (cit. on
pp. 12, 46).

[39] P. Alimi, D. Meger, and J. J. Little, “Object persistence in 3D for home robots,” in
Proc. of the ICRA Workshop on Semantic Perception, Mapping and Exploration,
2012 (cit. on pp. 12, 13, 25, 34).

[40] R. Finman, T. Whelan, M. Kaess, and J. J. Leonard, “Toward lifelong object
segmentation from change detection in dense RGB-D maps,” in Proc. of the
IEEE European Conference on Mobile Robots (ECMR), 2013, pp. 178–185 (cit. on
pp. 12–14).

[41] E. Langer, B. Ridder, M. Cashmore, D. Magazzeni, M. Zillich, and M. Vincze,
“On-the-fly detection of novel objects in indoor environments,” in Proc. of IEEE
International Conference on Robotics and Biomimetics (ROBIO), 2017, pp. 900–
907 (cit. on pp. 12, 13, 26, 50).

[42] E. Langer, T. Patten, and M. Vincze, “Where does it belong? Autonomous
object mapping in open-world settings,” Frontiers in Robotics and AI, vol. 9,
2022 (cit. on p. 12).

[43] A. Adam, T. Sattler, K. Karantzalos, and T. Pajdla, “Objects can move: 3D
change detection by geometric transformation consistency,” in Proc. of the
European Conference on Computer Vision (ECCV), Springer, 2022, pp. 108–124
(cit. on pp. 13, 25, 38).

[44] J.-M. Park, J.-H. Jang, S.-M. Yoo, S.-K. Lee, U.-H. Kim, and J.-H. Kim, “Chan-
geSim: Towards end-to-end online scene change detection in industrial indoor
environments,” in Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021, pp. 8578–8585 (cit. on pp. 13, 18, 19).

Bibliography 93

[45] L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi, “Visual room rearrange-
ment,” in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 5922–5931 (cit. on pp. 13, 18, 19, 53).

[46] R. Ambrus, J. Folkesson, and P. Jensfelt, “Unsupervised object segmentation
through change detection in a long term autonomy scenario,” in Proc. of the
IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2016,
pp. 1181–1187 (cit. on pp. 14, 18, 19).

[47] N. Bore, J. Ekekrantz, P. Jensfelt, and J. Folkesson, “Detection and tracking of
general movable objects in large three-dimensional maps,” IEEE Transactions
on Robotics, vol. 35, no. 1, pp. 231–247, 2018 (cit. on pp. 14, 53).

[48] B. Graham, M. Engelcke, and L. van der Maaten, “3D semantic segmentation
with submanifold sparse convolutional networks,” in Proc. of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 9224–
9232 (cit. on pp. 15, 42, 47, 57).

[49] C. Choy, J. Gwak, and S. Savarese, “4D spatio-temporal ConvNets: Minkowski
convolutional neural networks,” in Proc. of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019, pp. 3075–3084 (cit. on
p. 15).

[50] D. Chen, J. Li, Z. Wang, and K. Xu, “Learning canonical shape space for category-
level 6D object pose and size estimation,” in Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 11 973–11 982
(cit. on p. 15).

[51] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas, “Nor-
malized object coordinate space for category-level 6D object pose and size
estimation,” in Proc. of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 2642–2651 (cit. on p. 15).

[52] M. Tian, M. H. Ang, and G. H. Lee, “Shape prior deformation for categorical
6D object pose and size estimation,” in Proc. of the European Conference on
Computer Vision (ECCV), Springer, 2020, pp. 530–546 (cit. on p. 15).

[53] M. Z. Irshad, T. Kollar, M. Laskey, K. Stone, and Z. Kira, “CenterSnap: Single-
shot multi-object 3D shape reconstruction and categorical 6D pose and size
estimation,” in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2022, pp. 10 632–10 640 (cit. on p. 15).

[54] T. Kollar, M. Laskey, K. Stone, B. Thananjeyan, and M. Tjersland, “SimNet:
Enabling robust unknown object manipulation from pure synthetic data via
stereo,” in Conference on Robot Learning, PMLR, 2022, pp. 938–948 (cit. on
p. 15).

[55] A. Kriegler, C. Beleznai, M. Murschitz, K. Göbel, and M. Gelautz, “PrimitivePose:
3D bounding box prediction of unseen objects via synthetic geometric primitives,”
in IEEE International Conference on Robotic Computing (IRC), 2022, pp. 1–8
(cit. on p. 15).

94 Bibliography

[56] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv
preprint arXiv:1804.02767, 2018 (cit. on pp. 15, 66).

[57] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proc. of
the IEEE/CVF International Conference on Computer Vision (ICCV), 2017,
pp. 2961–2969 (cit. on pp. 15, 16, 66).

[58] A. Dhamija, M. Gunther, J. Ventura, and T. Boult, “The overlooked elephant of
object detection: Open set,” in Proc. of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2020, pp. 1021–1030 (cit. on pp. 16, 68).

[59] S. Pidhorskyi, R. Almohsen, and G. Doretto, “Generative probabilistic novelty
detection with adversarial autoencoders,” in Proc. of the Advances in Neural
Information Processing Systems (NeurIPS), vol. 31, 2018 (cit. on p. 16).

[60] T. Boccato, T. Patten, M. Vincze, and S. Ghidoni, “In the depths of hyponymy:
A step towards lifelong learning,” in Proc. of the International Conference on
Autonomic and Autonomous Systems, 2020, pp. 103–109 (cit. on p. 16).

[61] R. M. French, “Catastrophic forgetting in connectionist networks,” Trends in
cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999 (cit. on p. 16).

[62] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu,
K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Overcoming
catastrophic forgetting in neural networks,” Proc. of the National Academy of
Sciences, vol. 114, no. 13, pp. 3521–3526, 2017 (cit. on p. 16).

[63] D. Miller, L. Nicholson, F. Dayoub, and N. Sünderhauf, “Dropout sampling for
robust object detection in open-set conditions,” in Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 3243–3249 (cit. on
p. 16).

[64] D. Miller, F. Dayoub, M. Milford, and N. Sünderhauf, “Evaluating merging
strategies for sampling-based uncertainty techniques in object detection,” in
Proc. of the IEEE International Conference on Robotics and Automation (ICRA),
2019, pp. 2348–2354 (cit. on p. 16).

[65] Y. Li and J. Košecká, “Uncertainty aware proposal segmentation for unknown
object detection,” in Proc. of the IEEE/CVF Winter Conference on Applications
of Computer Vision, 2022, pp. 241–250 (cit. on p. 16).

[66] X. Du, X. Wang, G. Gozum, and Y. Li, “Unknown-aware object detection: Learn-
ing what you don’t know from videos in the wild,” in Proc. of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 13 678–
13 688 (cit. on p. 16).

[67] J. Cen, P. Yun, J. Cai, M. Y. Wang, and M. Liu, “Open-set 3D object detection,”
in Proc. of the IEEE International Conference on 3D Vision (3DV), 2021,
pp. 869–878 (cit. on p. 16).

Bibliography 95

[68] A. Gupta, S. Narayan, K. Joseph, S. Khan, F. S. Khan, and M. Shah, “OW-DETR:
Open-world detection transformer,” in Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022, pp. 9235–9244 (cit. on
pp. 16, 17).

[69] J. Qian, V. Chatrath, J. Yang, J. Servos, A. Schoellig, and S. L. Waslander,
“POCD: Probabilistic object-level change detection and volumetric mapping
in semi-static scenes,” in Proc. of Robotics: Science and Systems (RSS), 2022
(cit. on pp. 18, 19).

[70] M. Halber, Y. Shi, K. K. Xu, and T. Funkhouser, “Rescan: Inductive instance
segmentation for indoor RGBD scans,” in Proc. of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 2541–2550 (cit. on pp. 18,
19).

[71] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon,
Y. Zhu, A. Gupta, and A. Farhadi, “AI2-THOR: An interactive 3D environment
for visual AI,” arXiv preprint arXiv:1712.05474, 2017 (cit. on p. 19).

[72] S. Höfer, K. Bekris, A. Handa, J. C. Gamboa, F. Golemo, M. Mozifian, C.
Atkeson, D. Fox, K. Goldberg, J. Leonard, et al., “Perspectives on sim2real
transfer for robotics: A summary of the r: Ss 2020 workshop,” arXiv preprint
arXiv:2012.03806, 2020 (cit. on p. 20).

[73] S. Thalhammer, M. Leitner, T. Patten, and M. Vincze, “PyraPose: Feature
pyramids for fast and accurate object pose estimation under domain shift,” in
Proc. of the IEEE International Conference on Robotics and Automation (ICRA),
2021, pp. 13 909–13 915 (cit. on p. 20).

[74] J.-B. Weibel, T. Patten, and M. Vincze, “Robust sim2real 3d object classification
using graph representations and a deep center voting scheme,” IEEE Robotics
and Automation Letters, vol. 7, no. 3, pp. 8028–8035, 2022 (cit. on p. 20).

[75] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner,
“Scannet: Richly-annotated 3D reconstructions of indoor scenes,” in Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 5828–5839 (cit. on pp. 20, 42, 47).

[76] T. Yamamoto, K. Terada, A. Ochiai, F. Saito, Y. Asahara, and K. Murase,
“Development of human support robot as the research platform of a domestic
mobile manipulator,” ROBOMECH journal, vol. 6, no. 1, pp. 1–15, 2019 (cit. on
p. 20).

[77] B. Calli, A. Singh, J. Bruce, A. Walsman, K. Konolige, S. Srinivasa, P. Abbeel, and
A. M. Dollar, “Yale-CMU-Berkeley dataset for robotic manipulation research,”
The International Journal of Robotics Research, vol. 36, no. 3, pp. 261–268, 2017
(cit. on pp. 21, 82).

[78] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling Kinect sensor noise for improved
3D reconstruction and tracking,” in Proc. of the International Conference on
3D Imaging, Modeling, Processing, Visualization & Transmission (3DIMPVT),
2012, pp. 524–530 (cit. on p. 27).

96 Bibliography

[79] G. Nemhauser, L. Wolsey, and M. Fisher., “An analysis of the approximations for
maximizing submodular set functions,” in Mathematical Programming, vol. 14,
1978, pp. 265–294 (cit. on p. 27).

[80] J. Hoffmann, “FF: The fast-forward planning system,” AI magazine, vol. 22,
pp. 57–62, 2001 (cit. on p. 29).

[81] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld,
and D. W. et al., “PDDL - The Planning Domain Definition Language,” Yale
Center for Computational Vision and Control, Tech. Rep., 1998 (cit. on p. 29).

[82] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera, N.
Palomeras, N. Hurtos, and M. Carreras, “ROSPlan: Planning in the robot
operating system,” in Proc. of the International Conference on Automated
Planning and Scheduling (ICAPS), vol. 25, 2015, pp. 333–341 (cit. on p. 30).

[83] G. Berry and G. Gonthier, “The ESTEREL synchronous programming language:
Design, semantics, implementation,” Science of Computer Programming, vol. 19,
no. 2, pp. 87–152, 1992 (cit. on p. 30).

[84] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,”
Communications of the ACM, vol. 24, no. 6, pp. 381–395, 1981 (cit. on pp. 33,
42, 57).

[85] A. Ückermann, C. Elbrechter, R. Haschke, and H. Ritter, “Real-time hierarchical
scene segmentation and classification,” in Proc. of the IEEE-RAS International
Conference on Humanoid Robots (Humanoids), 2014 (cit. on p. 35).

[86] N. Koenig and A. Howard, “Design and use paradigms for Gazebo, an open-source
multi-robot simulator,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, vol. 3, 2004, pp. 2149–2154 (cit. on
p. 36).

[87] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms for
local surface description,” in Proc. of the European Conference on Computer
Vision (ECCV), 2010, pp. 356–369 (cit. on p. 40).

[88] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally: Efficient
and robust 3D object recognition,” in Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2010, pp. 998–1005 (cit. on
pp. 40, 54, 61, 64).

[89] T. Fäulhammer, M. Zillich, J. Prankl, and M. Vincze, “A multi-modal RGB-D
object recognizer,” in Proc. of the IEEE International Conference on Pattern
Recognition (ICPR), 2016, pp. 733–738 (cit. on p. 40).

[90] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in
Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2881–2890 (cit. on p. 42).

Bibliography 97

[91] A. Valada, R. Mohan, and W. Burgard, “Self-supervised model adaptation for
multimodal semantic segmentation,” International Journal of Computer Vision,
vol. 128, no. 5, pp. 1239–1285, 2020 (cit. on p. 42).

[92] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 14,
no. 2, pp. 239–256, 1992 (cit. on p. 45).

[93] G. Bugmann and S. N. Copleston, “What can a personal robot do for you?” In
Proc. of the Conference Towards Autonomous Robotic Systems, 2011, pp. 360–371
(cit. on pp. 53, 78).

[94] M. Cakmak and L. Takayama, “Towards a comprehensive chore list for domestic
robots,” in Proc. of the ACM/IEEE International Conference on Human-Robot
Interaction (HRI), 2013, pp. 93–94 (cit. on p. 53).

[95] H. Okada, T. Inamura, and K. Wada, “What competitions were conducted in
the service categories of the world robot summit?” Advanced Robotics, vol. 33,
no. 17, pp. 900–910, 2019 (cit. on p. 53).

[96] M. Tenorth and M. Beetz, “KnowRob: A knowledge processing infrastructure
for cognition-enabled robots,” The International Journal of Robotics Research,
vol. 32, no. 5, pp. 566–590, 2013 (cit. on p. 53).

[97] D. Batra, A. X. Chang, S. Chernova, A. J. Davison, J. Deng, V. Koltun, S.
Levine, J. Malik, I. Mordatch, R. Mottaghi, et al., “Rearrangement: A challenge
for embodied AI,” arXiv preprint arXiv:2011.01975, 2020 (cit. on p. 53).

[98] Z.-C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and M. Beetz, “General
3D modelling of novel objects from a single view,” in Proc. of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), 2010, pp. 3700–
3705 (cit. on p. 56).

[99] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: An open-source Robot Operating System,” in Proc. of the
ICRA Workshop on Open Source Software, vol. 3, 2009 (cit. on p. 57).

[100] M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-
difference formula: CIEDE2000,” Color Research & Application, vol. 26, no. 5,
pp. 340–350, 2001 (cit. on p. 60).

[101] T. Hodaň, F. Michel, E. Brachmann, W. Kehl, A. Glent Buch, D. Kraft, B. Drost,
J. Vidal, S. Ihrke, X. Zabulis, C. Sahin, F. Manhardt, F. Tombari, T.-K. Kim,
J. Matas, and C. Rother, “BOP: Benchmark for 6D object pose estimation,”
Proc. of the European Conference on Computer Vision (ECCV), 2018 (cit. on
pp. 61, 67).

[102] J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices,” Journal
of Research of the National Bureau of Standards, Section B, Mathematics and
Mathematical Physics, vol. 69, no. 125-130, pp. 55–56, 1965 (cit. on p. 62).

98 Bibliography

[103] F. D. de Oliveira, M. R. da Silva, and A. F. Araújo, “Spatio-temporal data
association for object-augmented mapping,” Journal of Intelligent & Robotic
Systems, vol. 103, no. 1, pp. 1–19, 2021 (cit. on p. 66).

[104] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft COCO: Common objects in context,” in Proc. of
the European Conference on Computer Vision (ECCV), Springer, 2014 (cit. on
p. 66).

[105] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “PoseCNN: A convolutional
neural network for 6d object pose estimation in cluttered scenes,” in Proc. of
Robotics: Science and Systems (RSS), 2018 (cit. on pp. 66, 67).

[106] J. Qiu, Y. Yang, X. Wang, and D. Tao, “Hallucinating visual instances in total
absentia,” in Proc. of the European Conference on Computer Vision (ECCV),
Springer, 2020, pp. 264–282 (cit. on p. 66).

[107] K. Park, T. Patten, and M. Vincze, “Pix2Pose: Pixel-wise coordinate regression
of objects for 6D pose estimation,” in Proc. of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 7668–7677 (cit. on p. 67).

[108] C. Houseago, M. Bloesch, and S. Leutenegger, “KO-fusion: Dense visual SLAM
with tightly-coupled kinematic and odometric tracking,” in Proc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2019, pp. 4054–
4060 (cit. on p. 73).

[109] C. Choi and H. I. Christensen, “3D pose estimation of daily objects using
an RGB-D camera,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012, pp. 3342–3349 (cit. on p. 74).

[110] D. Bauer, T. Patten, and M. Vincze, “SporeAgent: Reinforced scene-level plausi-
bility for object pose refinement,” in Proc. of the IEEE/CVF Winter Conference
on Applications of Computer Vision, 2022, pp. 654–662 (cit. on p. 74).

[111] S. V. Alexandrov, J. Prankl, M. Zillich, and M. Vincze, “Calibration and correc-
tion of vignetting effects with an application to 3D mapping,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2016, pp. 4217–4223 (cit. on p. 80).

[112] S. Sajjan, M. Moore, M. Pan, G. Nagaraja, J. Lee, A. Zeng, and S. Song, “Clear
grasp: 3D shape estimation of transparent objects for manipulation,” in Proc. of
the IEEE International Conference on Robotics and Automation (ICRA), 2020,
pp. 3634–3642 (cit. on p. 80).

Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde. Die aus
anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher
Form in anderen Prüfungsverfahren vorgelegt.

Vienna, March 2023

Dipl.-Ing. Edith Langer

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contributions and Outline
	1.3.1 On-the-Fly Detection of Novel Objects using OctoMaps – Chapter 4
	1.3.2 Change Detection by Combining Global Semantic Information and Local Geometric Verification – Chapter 5
	1.3.3 Autonomous Object Mapping in Open-World Settings – Chapter 6

	1.4 List of Publications

	2 Related Work
	2.1 3D Representation of Environments
	2.2 Unsupervised Change Detection for Indoor Environments
	2.2.1 Frame-to-Frame Comparison
	2.2.2 Map-to-Map Comparison
	2.2.3 Frame-to-Map Comparison

	2.3 Learning-Based Object Detection Covering Unknown Objects

	3 Datatsets
	3.1 Existing Indoor Datasets
	3.2 Object Change Detection Dataset for Indoor Environments

	4 On-the-Fly Detection of Novel Objects on the Floor
	4.1 Motivation
	4.2 Method
	4.2.1 Generation of Reference OctoMap
	4.2.2 Generation of Environment Exploration Poses
	4.2.3 Robot Motion Planning
	4.2.4 OctoMap Differencing and Region Detection
	4.2.5 Storing Discovered Regions of Interest
	4.2.6 Examining Regions of Interest
	4.2.7 Object Segmentation

	4.3 Experimental Results
	4.3.1 Real environment
	4.3.2 Simulated environment

	4.4 Conclusion

	5 Robust and Efficient Object Change Detection by Combining Global Semantic Information and Local Geometric Verification
	5.1 Introduction
	5.2 Method
	5.2.1 Object Detection from Global Semantic Context
	5.2.2 Object Verification with Local Geometry

	5.3 Experimental Results
	5.3.1 Dataset
	5.3.2 Implementation Details
	5.3.3 Comparison Methods
	5.3.4 Metrics
	5.3.5 Results
	5.3.6 Generality to Different Reconstruction Methods

	5.4 Conclusion

	6 Where Does It Belong? Autonomous Object Mapping in Open-World Settings
	6.1 Introduction
	6.2 Object Mapping using Local Surfaces
	6.2.1 Problem Definition
	6.2.2 System Overview
	6.2.3 Reconstruction of the Indoor Environment and Plane Extraction
	6.2.4 Reconstruction of Surfaces and Object Detection
	6.2.5 Object Matching and Categorization

	6.3 Experiments and Discussion
	6.3.1 Evaluation on the Robotic Dataset ObChange
	6.3.2 Robot Experiments
	6.3.3 Discussion

	6.4 Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Outlook
	7.2.1 Improving Object Reconstruction and Detection
	7.2.2 Expanding on Object Detection Results

	Appendix
	A.1 Examples from the Object Change Detection Dataset
	A.1.1 Small Room
	A.1.2 Living Area
	A.1.3 Office Desk
	A.1.4 Kitchen Counter
	A.1.5 Big Room - Part 1
	A.1.6 Big Room - Part 2

	Bibliography

