
Unüberwachtes Inkrementelles
Lernen für Objekt-zentriertes

Mapping in
Open-World-Umgebungen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Stefan Fiedler, BSc
Matrikelnummer 00155490

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze
Mitwirkung: Michael Schwärzler, PhD (Industrial Supervisor)

Wien, 9. März 2023
Stefan Fiedler Markus Vincze

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Unsupervised Incremental
Learning in Open-World

Object-Centric Mapping for
Mobile Autonomous Robots

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Stefan Fiedler, BSc
Registration Number 00155490

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Markus Vincze
Assistance: Michael Schwärzler, PhD (Industrial Supervisor)

Vienna, 9th March, 2023
Stefan Fiedler Markus Vincze

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Stefan Fiedler, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 9. März 2023
Stefan Fiedler

v

Danksagung

Diese Arbeit wurde im Rahmen eines bezahlten Praktikums bei Baxalta Innovations
GmbH, einem Unternehmen von Takeda Pharmaceuticals, Inc., geschrieben. Ich möchte
mich bei allen bedanken die mir die Gelegenheit zur Arbeit an diesem Thema geboten
haben, insbesondere bei Christoph Pistek, Larissa Kahr und Patricia Wildberger.

Mein besonderer Dank gilt meinem akademischen Betreuer Markus Vincze und Michael
Schwärzler als meinem Industrial Supervisor. Ich bedanke mich ebenfalls bei Robert
Sablatnig and allen Teilnehmerinnen und Teilnehmern des Diplomandenseminars für ihre
Verbesserungsvorschläge zu dem Thema und zu den Zwischenberichten.

Ich möchte mich bei Janek Janßen für das Teilen seiner Erfahrung zur Programmierung
mit ROS bedanken, bei Ádám Wolf für sein Feedback zu Anwendungen mobiler autonomer
Roboter in Laborumgebungen und bei Jason Young für zusätzliche Diskussionen über
Anwendungen mobiler Roboter.

Darüber hinaus gilt mein Dank Alexandra Umprecht für ihre technische Unterstützung,
und Quang-Hieu Pham für die Zusendung einer Kopie des Supplementary zu “Real-time
Progressive 3D Semantic Segmentation for Indoor Scenes” für meine Literaturrecherche.

vii

Acknowledgements

This thesis was written as part of a paid internship at Baxalta Innovations GmbH, a
company of Takeda Pharmaceuticals, Inc. I would like to thank everyone who provided
me the opportunity to work on this topic, in particular Christoph Pistek, Larissa Kahr,
and Patricia Wildberger.

Special thanks go to my academic supervisor Markus Vincze and Michael Schwärzler as
my industrial supervisor. My thanks also go to Robert Sablatnig and everyone at the
graduand seminar for their feedback on the topic and progress reports.

I would like to thank Janek Janßen for sharing his insights into ROS programming, Ádám
Wolf for his feedback on applications of mobile autonomous robots in lab environments,
and Jason Young for further discussions on mobile robotic applications.

In addition, my thanks go to Alexandra Umprecht for her technical support, and Quang-
Hieu Pham for providing me with a copy of the Supplementary on “Real-time Progressive
3D Semantic Segmentation for Indoor Scenes” for my literature research.

ix

Kurzfassung

Objekt-zentriertes Mapping ist eine naturgemäße und effiziente Darstellung von 3D-
Umgebungen im Einsatz von Robotern, die eine große Zahl abstrakter Tätigkeiten
ermöglicht. Aktuelle Ansätze zum dreidimensionalen Bildverstehen sind oft auf die
Annahme geschlossener Trainingsdatensätze beschränkt.

In praxisnahen Szenarien begegnen autonome Agenten häufig neuartigen Objekten und
Umgebungen. Modelle für das Bildverstehen so anzupassen, dass neue Objektklassen
erkannt und segmentiert werden, ist eine herausfordernde Aufgabe in Bereich des ma-
schinellen Sehens und Lernens. Zusätzlich ist es wünschenswert dass mobile autonome
Roboter unbekannte Objekte erkennen und ohne menschliche Eingriffe aus Beobachtungen
sinnvolle neue Kategorien bilden können.

In dieser Arbeit kombinieren wir unüberwachtes inkrementelles Lernen, die Erkennung
neuartiger Objekte und die Bildung neuer Kategorien mit Objekt-zentriertem Mapping
von unstrukturierten Innenräumen. Unser Framework ermöglicht es mobilen autonomen
Robotern in vollständig automatisierter Weise Objektkategorien in RGB-D Sensordaten
zu entdecken und zu lernen, und dieses neue Wissen auf Instanz-basierte metrisch-
semantische 3D-Rekonstruktionen anzuwenden.

Eine Evaluierung mit vier Sätzen von Aufnahmen von Alltagsszenerien demonstriert die
generelle Anwendbarkeit unseres Ansatzes, misst die Auswirkungen von inkrementellem
Lernen auf Objekterkennung und Segmentierung und illustriert die Funktionalität des
Frameworks mit zahlreichen Beispielen. Wir schließen der Evaluierung eine Erörterung
der Ergebnisse und potentieller zukünftiger Verbesserungen unserer Methode an.

xi

Abstract

Object-centric mapping is a natural and efficient representation of 3D environments in
robot applications that enables a large range of high-level tasks. Current approaches to
3D scene understanding are often limited by the assumption of closed sets of training
data.

In real-world scenarios, autonomous agents frequently encounter novel objects and unseen
environments. Adapting models for scene understanding to detect and segment new
object classes is a challenging problem in computer vision and machine learning. In
addition, it is desirable for mobile autonomous robots to discover unknown objects and
form meaningful new categories from observations without human supervision.

In this work, we combine unsupervised incremental learning, novelty detection, and
category discovery with dense object-centric mapping of real-world indoor environments.
Our framework enables mobile autonomous robots to discover and learn object categories
from RGB-D sensor data, and apply this new knowledge to instance-aware metric-semantic
3D reconstructions in a completely automated fashion.

Evaluations on four sets of real-world scene recordings demonstrate the general practicality
of our approach, measure the effects of incremental learning on object detection and
segmentation, and illustrate the functionality of the framework with numerous examples.
We follow this with a discussion of evaluation results and of potential future improvements
to our method.

xiii

For those who would stand
against the weight of a

universe to rise but
one step further
over its horizon.

~
D. W. Bradley

Contents

1 Introduction 1
1.1 Open-World Scene Understanding in Robotic Applications 2
1.2 Robotic Perception and Task Execution 2
1.3 Challenges in Open-World Scene Understanding 3
1.4 Contribution . 5

2 Related Work 7
2.1 Scene Reconstruction . 7
2.2 Simultaneous Localization and Mapping 9
2.3 Scene Graphs . 12
2.4 Semantic Parsing . 15
2.5 Object Discovery . 19
2.6 Incremental Learning . 21
2.7 Open-World Scene Understanding . 23

3 Unsupervised Incremental Learning in Open-World Object-Centric
Mapping 31
3.1 Design Choices . 32
3.2 System Design . 43
3.3 Object-Centric Mapping . 48
3.4 Instance-Aware Semantic Segmentation 54
3.5 Novelty Detection and Class Discovery 60

4 Evaluation and Results 69
4.1 Choice of Dataset . 69
4.2 Dataset Generation . 73
4.3 Evaluation Protocol . 77
4.4 Results and Discussion . 79
4.5 Ablation Study . 102

5 Conclusion 119
5.1 Future Work . 121

List of Figures 123

xvii

List of Tables 125

Bibliography 127

CHAPTER 1
Introduction

Mobile robots are a promising new asset in the field of lab automation, with current
research and development mainly focusing on use cases in data acquisition and pick-and-
place tasks [WWT+21a]. The functionality and autonomy of mobile robots are in part
restricted by their limited artificial intelligence capabilities. This is in turn partly due to
a lack of scene understanding [KMvB+20].

Current dense SLAM methods can create 3D scene reconstructions in high detail, in-
crementally and in real-time [HCC22]. Annotating the geometry with object class, and
instance, information results in metric-semantic and instance-aware mapping [WNT22].
Object-centric SLAM methods model scene geometry at object granularity through
reconstruction [MCB+18], scene differencing [LPV22], or geometric-semantic segmenta-
tion [GFN+19].

From 3D mappings higher-level representations, such as free space skeletonization or scene
graphs, can be derived to enable efficient computations, e.g. for navigation [RVA+21],
collision avoidance [OTSN18], as well as visual questioning and answering and task
planning [KPSK19].

Object detection and semantic segmentation typically operate under a closed-set as-
sumption. Current methods achieve high levels of accuracy, necessary for meaningful
object-level representations and scene graph generation. The closed-set assumption
however limits the applicability to domains with a fixed set of a priori known object
classes. For many real-world applications, systems that are capable of incrementally
learning classes and adapting to new domains would be highly advantageous [KMvB+20].

The aim of this thesis lies in the research and development of a method for mobile
autonomous robots that enhances the autonomy in and understanding of open-world
environments through unsupervised adaptation to new domains. In particular, we intend
to design and implement a general, modular, and extensible framework including object-
centric SLAM, open-world object detection, new class discovery, and incremental learning

1

1. Introduction

from real-world RGB-D data sets based on state-of-the-art software and development
methodologies.

1.1 Open-World Scene Understanding in Robotic
Applications

Mobile autonomous robots rely on detailed, accurate, and up-to-date models of their
environment for navigation, task planning, and object manipulation. Consequently,
SLAM (Simultaneous Localization and Mapping) is a common task for mobile robots
intended to create a consistent global 3D scene representation from sensor data [KPSK19].

Advances in algorithms and processing power allow to execute SLAM online and in
an incremental fashion, suitable for real-time applications [HCC22]. Improved sensor
technology and memory capacity increase the accuracy and detail of 3D mapping and
reconstruction, but also lead to more data that needs to be processed [KMvB+20].

Processing this data in higher-level tasks, such as navigation, semantic querying, or
scene manipulation, puts high computational requirements on algorithms and can hinder
real-time interactions. It is therefore beneficial to have methods for scene understanding
that go beyond data in the form of point clouds, volumes, or meshes [Dav18].

Scene graphs are a compact, abstract, efficient, and versatile representation of envi-
ronments. In this context, scene graphs model semantic relationships between scene
elements, e.g. geometric and comparative relations, and store attributes, such as color
and shape [AHG+19].

Scene graph construction typically depends on correct object detection or scene seg-
mentation. Realizing object detection and segmentation with deep neural networks
achieves state-of-the-art results but requires training with large annotated, domain-
specific datasets [WNT22]. This approach can achieve excellent results under closed-set
conditions, but may assign unknown objects to wrong classes with high confidence,
limiting their applicability to the domain of the dataset [LPV22].

Collecting datasets for new domains, such as lab environments, is labor-intensive and
time-consuming. Re-training networks has to be carried out each time a new class of
objects is introduced [AKC+22]. Advances in persistent mapping, in particular scalable
and generic solutions that are weakly, self- or unsupervised, are a promising approach to
many challenges in long-term and dynamic 3D scene understanding [WNT22]

1.2 Robotic Perception and Task Execution
As can be seen from the above considerations, perception plays a central role in robotic
systems and task execution. According to Batra et al. [BCC+20] “perception converts
sensory input to a representation of the world, from which planning produces actions.”
Mobile autonomous robots can be regarded as a form of embodied AI. Batra et al. define

2

1.3. Challenges in Open-World Scene Understanding

embodied AI as “the study and development of intelligent systems with a physical or
virtual embodiment.” They note the importance of object detection, pose estimation,
navigation, and consistent representations of the environment for robotic applications, as
they can all be required for higher-level tasks.

Several examples illustrate this point. In their work, Batra et al. consider rearrangement
as a high-level task with a wide range of applications. Informally, rearrangement in the
robotic context can be defined as transforming a scene from the current state to a specific
goal state. The goal state can be described for example as a geometric configuration,
using natural language or a formal predicate-based specification, or by a robot examining
the goal state beforehand.

Puente et al. [dlPBE+14] consider several user-relevant tasks for home environments,
including ambient assisted living. These tasks typically involve some form of human-robot
interaction (HRI), i.e., the two-way communication between a robot and a human user
in way that is natural to humans. From these tasks they define multiple technical
requirements for robotic perception.

Tasks considered include calling the robot, finding the user, bringing an object, and
multimodal HRI. Perception requirements following from these tasks are 2D localization
and mapping, obstacle avoidance for safe navigation, object detection and pick up, as
well as person detection and gesture recognition.

Rosinol et al. [RVA+21] demonstrate the importance and usefulness of higher-level scene
representations in their spatial perception engine. They use a dynamic scene graph
automatically created from 3D scene reconstructions to perform hierarchical semantic
path planning in an efficient and scalable manner.

As another example of robots working in human environments, Langer et al. [LPV22]
approach the challenging task of a household robot cleaning and picking up objects.
They propose scene and object change detection as a method for robotic perception in
unstructured and unseen environments, which can be useful for a wide variety of tasks.

Hughes et al. [HCC22] reiterate the need for high-level, consistent representations of
environments in future robots to understand instructions, plan task execution, and
accomplish tasks. They also note how persistence is important for long-term autonomy,
in scaling to large environments, corrections in face of new evidence, and model sizes
that are proportional to the size of the environment.

1.3 Challenges in Open-World Scene Understanding

These ambitious goals are faced with a number of challenging problems. Hughes et
al. [HCC22] see a rise of interest in metric-semantic mapping, with recent works including
object-based maps, and dense maps from volumetric models, point clouds, or meshes.
However, dense maps do not directly lend themselves to navigation.

3

1. Introduction

Hierarchical mapping in early robotics is limited to 2D, to bridge the gap between
topology and geometry. More recently, scene graphs are investigated as hierarchical
models of 3D scenes.

Kasaei et al. [KMvB+20] note time complexity as a large issue in real-world robotic
applications. Other issues that service robots currently cannot deal with appropriately
are unknown environments, open-ended learning of object categories, 3D representations
for global navigation, object recognition for local navigation, and collision detection in
object manipulation.

On the other hand, Kasaei et al. conclude that other major issues are close to completion
in specific types of environments. These include path planning and grasp planning in
known, reliable environments. Object recognition, as a prerequisite for these planning
tasks, can achieve almost perfect scores in predetermined scenarios.

Under open-set conditions, novel objects are explicitly assigned the unknown label.
Developing for these conditions can handle objects not seen in training more gracefully.
Methods for open-world environments go one step further and incrementally learn
unknown classes to be able to recognize them in further tasks [JKKB21]. For unsupervised
class-incremental learning it is necessary to also perform category discovery on novel
objects [URG22].

Open-world class-incremental learning bypasses the problem of training datasets lacking
samples of domain-specific classes. This allows to apply methods to new domains without
additional preparations and to extend domain knowledge on the task [QRX+21].

Recently, researchers have begun to tackle the problem of incremental and continuous
learning for object detection [JKKB21, JRK+21, Dav21, GNJ+22, ZLH+22, ZLS+22,
YPRL22, DWGL22], semantic segmentation [MZ19, CYC+21, URG22], and instance
segmentation [CGFC22].

Major challenges in this area include catastrophic forgetting, i.e., the inability of systems
to retain knowledge of old tasks as new tasks are learned, as well as computational and
storage limitations with respect to system performance [PKP+19]. While incremental
learning methods are typically less accurate than fine-tuning to a specific domain, they
perform substantially better than the baseline of fine-tuning with new data only, and
thus show the general feasibility of the approach.

With regards to sensor hardware, Zollhöfer et al. [ZSG+18] report as additional challenges
resilience against background light, in particular outdoors, the quality of depth data,
objects made of semi-transparent media, and multi-path effects, i.e., indirect paths of
active light in certain types of depth sensors.

Wald et al. [WNT22] report several challenges related to creating scene graphs, including
noise, distortion, and occlusions in real-world data, and ambiguities in the description of
graph nodes and edges. Objects may be assigned different classes depending on their
location, for example ‘towel’ and ‘blanket’, and partially reconstructed objects can appear
to look alike.

4

1.4. Contribution

a) b)
c)

…

Initial
Model

Retrained
Model

…

h)

e)
f)

g)
i)

d)

Figure 1.1: In dense SLAM, RGB-D sensor data a) is segmented b) and fused into global
map annotations c) and d). Depth segmentation typically leads to over-segmented maps
c). Semantic annotation alone lacks segmentation at the object level d). Combining both
creates scene reconstructions e) with object instance and class information. However,
object detection and semantic information is limited to the closed-set training classes i)
of the instance segmentation model. Our framework extends the initial model with new
categories in a completely automated fashion. Leveraging information from a set e) of
global maps, it detects novel objects f), clusters object views based on visual similarity
g), and creates a new training set h) to retrain the model using incremental learning.

In conclusion, Kasaei et al. [KMvB+20] note that improvements in research areas are not
always linear. Instead, different methods are faced with trade-offs, for example between
accuracy and speed. The authors see this mainly in planning modules.

In other areas, different approaches are developed in parallel, without a clear indication
which is best suited for a task. Kasaei et al. state this type of situation exists in many
areas concerning service robots. This includes object representations, using hand-crafted
or learned descriptors for object perception, and different approaches to scene perception
based on bounding boxes or image segmentation.

1.4 Contribution
This work addresses the limitations of closed-set object detection in creating object-centric
3D scene representations, and intends to enable robots to learn new object categories
during operation with no human intervention. To this end, our approach combines
object-level SLAM with unsupervised open-world class-incremental learning as a basis for
higher-level scene representations. In this way it is possible to learn new object classes
and adapt to new domains in a completely automated fashion, while avoiding re-training

5

1. Introduction

the system [PKP+19]. The problem formulation and a concept of our contribution are
illustrated in Figure 1.1.

We construct a software framework that consists of several recently published methods
for metric-semantic mapping, category discovery, and incremental learning for open-world
object detection and semantic segmentation. The underlying 3D model is specifically
chosen so as to serve as a foundation for higher-level scene representations, such as scene
graphs, and collaborative tasks, including interaction with and teaching by humans. It is
our expectation that advancements in open-world scene understanding will provide an
important step towards the development of truly autonomous robots [Dav18].

Our main contribution lies in the combination of unsupervised incremental learning with
open-world object detection and semantic segmentation for metric-semantic mapping. To
this end, we leverage the geometric segmentation of novel objects in the SLAM algorithm
to provide expressive samples for class discovery and incremental learning.

The newly learned classes for object detection and semantic segmentation in turn are
used to improve the geometric segmentation of objects in the 3D model. We perform
several experiments on real-world scene data, measure the effects of incremental learning
on object detection and segmentation, and illustrate the performance of our framework
with scene visualizations and examples from class discovery.

This work is structured as follows: related work is presented in chapter 2, roughly grouped
into sections related to scene reconstruction (2.1), SLAM (2.2), scene graphs (2.3), scene
understanding (2.4), object discovery (2.5), incremental learning (2.6), and open-world
semantic parsing (2.7). Our framework is presented in detail in chapter 3. The design
choices are listed in section 3.1, and section 3.2 provides an overview of the system design.
The remaining sections of this chapter focus on each of the three main components of the
framework: object-centric mapping (3.3), instance-aware semantic segmentation (3.4),
and novelty detection and category discovery (3.5). We present the evaluation of our
framework in chapter 4, including the choice of dataset (4.1) and dataset generation (4.2),
evaluation protocol (4.3), as well as a summary and discussion of experimental results
(4.4). We provide a conclusion and an outlook on future work in chapter 5.

6

CHAPTER 2
Related Work

Given the combination of several methods from computer vision and machine learning in
our framework, related work can be grouped roughly into four different topics:

• scene reconstruction, SLAM, and scene graphs,

• object-related scene understanding,

• novelty detection, object and category discovery, as well as

• incremental learning and real-world semantic parsing.

With the multi-faceted nature of these topics, however, there is considerable overlap
between different sections, as many of the works listed herein are related to more than
one aspect of our framework.

2.1 Scene Reconstruction
Object-centric mapping is part of the broader topic of scene reconstruction, where the
goal is to create a faithful geometric 3D representation of an environment, or scene,
through visual means. Scene reconstruction methods can be categorized into offline and
online methods. While the latter allow robotic systems to incrementally reconstruct
scenes during operation, offline methods typically trade speed and immediate updates
for higher accuracy and reconstruction quality [ZSG+18].

As Zheng et al. [ZZZ+19] mention, larger environments require robust, global pose
estimation typically found in offline methods. However, improved algorithms and GPU-
based optimizations allow for global pose estimation in online scene reconstruction as
well.

7

2. Related Work

Another categorization of reconstruction methods relates to static and dynamic scenes.
Dynamic scenes may contain moving objects and persons, and methods designed for such
scenes can handle and represent movement and dynamic changes appropriately.

Methods for static scenes only consider non-moving parts of the environment and filter
any dynamic scene elements as outliers [ZSG+18]. Since our framework only deals with
static scenes, the focus of the related work is also on such methods.

2.1.1 3D Scene Representations

Reconstruction methods are based on 3D representations for individual objects or the
whole scene, and the choice of representation can affect the performance and expressiveness
of the reconstruction. Zollhöfer et al. [ZSG+18] provide an extensive overview of methods
and representations. They classify representations as either voxel-based, point-based, or
hybrid.

In general, the 3D representation must model the geometry of the scene, and support
the fusion of new data into the model. Since there is a potentially large amount of data
to integrate, efficient implementations are necessary, in particular for online methods.

Voxel-based approaches store values of a signed distance function (SDF) in a regular
voxel grid, with negative values typically representing points inside a volume, and positive
values outside. All surfaces are implicitly defined as the zero-crossing of this distance
field. Each voxel can store additional attributes, such as color values.

In a basic voxel grid, the size of grid elements and the grid as a whole is predefined.
Hierarchical models and voxel hashing allow for efficient storage, making it possible to
adapt recordings to arbitrary scene dimensions not limited by GPU memory. Adapted
voxel hashing also supports irregular grids and can record objects and scenes at different
levels of detail.

In point-based approaches, sensor data is stored directly as point or surfel elements.
These points can store additional attributes, such as color or point size. Surfels contain
additional data that allows for fast direct rendering, and as such provides a trade-off
between memory consumption and rendering speed.

Hybrid approaches combine different representations. One example includes clustering
planar and non-planar regions. Planar regions are then defined by a shared normal vector,
and non-planar regions are represented as point clouds.

In all representations, the integration or fusion of new data has to deal with the uncertainty
of camera localization and sensor noise. For voxels, the weighted averaging of incoming
and existing values in the voxel grid is a common merging step. This eliminates sensor
noise through temporal integration of samples.

In point-based representations, points have associated states: incoming points are unstable
at first, and merged several times with other points before becoming stable to eliminate

8

2.2. Simultaneous Localization and Mapping

outliers. In order to merge points, it is necessary to find correspondences between points,
e.g. with index maps and dense correspondence finding.

As Grinvald et al. [GFN+19] point out, an important advantage of volumetric representa-
tions is the explicit modeling of empty space, and that object models retain information
about surface connectivity. This means they are directly suitable for navigation and
motion planning in robotic applications. On the other hand, surfels can handle loop
closures efficiently, but the lack of surface connectivity makes visibility calculations and
collision detection much harder.

Schöps et al. [SSP19] additionally mention the ability of surfels as a dynamic data
structure to change the resolution in scenes during recordings. Surfels can also represent
thin objects that do not enclose a volume, which would not be possible with voxels.

2.2 Simultaneous Localization and Mapping
As Zollhöfer et al. [ZSG+18] point out, “online reconstruction is directly related to
Simultaneous Localization and Mapping (SLAM).” In SLAM, the position and orientation
of the sensor, typically mounted on a mobile platform, is tracked, and the recorded data
is integrated into a global map. Here, there is a strong focus on correct localization,
while the reconstruction is typically limited in detail.

2.2.1 Scene Reconstruction Pipeline
Zollhöfer et al. [ZSG+18] provide an overview of typical steps in static scene reconstruction
pipelines. These include depth map processing, camera pose estimation, and depth map
fusion.

Depth map preprocessing primarily aims at noise reduction and outlier removal. In this
step it is also possible to derive additional information from the range map if needed,
such as surface normal vectors.

Camera pose estimation computes the best alignment transformation for the current
image frame. This transformation can be estimated frame-to-frame, frame-to-model, or
with a global approach.

Depth map fusion transforms points from current the frame using the estimated trans-
formation, and merges them with the common model. Since the scene reconstruction
pipeline is only tangentially related to the scope of our work, we refer to [ZSG+18] for a
more detailed introduction to the topic.

2.2.2 Dense SLAM
With dense SLAM, it is possible to model continuous surfaces in greater detail, and
provide accurate localization. Dense SLAM also offers “the potential for detailed semantic
scene understanding,” as Whelan et al. [WSMG+16] put it.

9

2. Related Work

In a similar vein, Davison [Dav18] predicts the development of SLAM towards Spatial
AI systems. He defines Spatial AI as

“the online problem where vision is to be used, usually alongside other sensors,
as part of the Artificial Intelligence (AI) which permits an embodied device
to interact usefully with its environment.”

As such, it is not bound to a specific, abstract representation, but must continuously and
in real-time provide useful and relevant information to other parts of the system. In this
context, an embodied device could be an autonomous robot or a mobile platform.

While there is still a huge gap between the requirements of potential future robots and
what is technically possible today, Davison provides two hypotheses regarding important
properties of such systems. First of all, he notes:

“When a device must operate for an extended period of time, carry out a
wide variety of tasks (not all of which are necessarily known at design time),
and communicate with other entities including humans, its Spatial AI system
should build a general and persistent scene representation which is close to
metric 3D geometry, at least locally, and is human understandable.”

Secondly, regarding the performance of Spatial AI systems, Davison notes their usefulness
“for a wide range of tasks is well represented by a relatively small number of performance
measures.” Metrics mentioned in [Dav18] include, among others, local pose accuracy in
new areas, long term pose repeatability, tracking and relocalization robustness, but also
object detection and classification accuracy, and scene change detection accuracy.

2.2.3 Semantic Maps
Metric-semantic maps combine geometric and semantic information. Approaches in
this area of research annotate map elements with semantic class labels and potentially
other semantic information. Such a representation can be an efficient model of semantic
knowledge, for example for navigation or robotic interaction.

As Rosinol et al. [RVA+21] put it, “metric-semantic understanding is the capability of
grounding semantic concepts [...] into a spatial representation.” This development is
driven by the availability of affordable cameras with depth sensors and the advancement
of real-time dense SLAM [WWT+21b]. Wu et al. [WWT+21b] note that “the research
focus has shifted from reconstructing the 3D scene geometry to enhancing the 3D maps
with semantic information about scene components.”

2.2.4 Object-Level SLAM
While metric-semantic maps add semantic class attributes to map elements, this informa-
tion alone does not allow a distinction between individual instances of objects from the

10

2.2. Simultaneous Localization and Mapping

same class [GFN+19]. Object-oriented maps are a way to add instance-level information
to metric maps, by making objects a main building block of the scene representation.
McCormac et al. [MCB+18] argue that

“this is a natural and efficient way to represent the things that are most
important for robotic scene understanding, planning and interaction; and it
is also highly suitable as the basis for human-robot communication.”

Tateno et al. [TTN15] present a method for incremental object segmentation in SLAM
frameworks. Their general approach is suitable for any frame-wise segmentation and
SLAM algorithm. Geometric segmentation is performed in each depth image, and a
Global Segmentation Map (GSM) is built on top of the 3D reconstruction.

A merging procedure projects the GSM into each camera frame and merges new and
existing segments. This procedure runs in constant time, irrespective of the GSM size
or the number of depth maps, and makes processing of depth maps for segmentation
possible in real-time.

McCormac et al. [MCB+18] apply a voxel-base approach to reconstruct objects in a scene
at different resolutions, by using a separate TSDF (Truncated Signed Distance Field)
for each object. SLAM incrementally refines object representations, which are used for
tracking, relocalization and loop closure detection.

With their method, each scene consists of an optimizable pose graph of objects. This
approach aims to capture objects in detail, distributing drift and registration errors in
pose graph edges. In particular, this means no intra-object TSDF warping is necessary.

The work of McCormac et al. uses 2D instance mask predictions with Mask R-CNN and
3D voxel masks for instance foreground fusing. More specifically, they treat foreground
and background detections as (α, β) parameters of a Beta distribution conjugate prior,
and update foreground mask accordingly to provide a clear separation between objects
and background.

The Incremental Object Database by Furrer et al. [FNF+18] scans scenes with a robot
to extract 3D object models. It stores partial observations in a database, and merges
matching observations to update models. Unobserved parts of a scene are reconstructed
with information from the database. This method uses the segmentation of depth image
to generate partial shapes and voxel-based TSDF representations for models.

To find similar objects, the method applies keypoint detection and descriptors on point
clouds of objects, then performs matching and registration. It provides geometric-only
segmentation and builds a database of exact shapes, which lacks semantic information
for high-level planning.

Grinvald et al. [GFN+19] employ a voxel-based representation to incrementally build
volumetric, object-level semantic maps from RGB-D sensor input. They combine un-
supervised geometric segmentation with instance-aware semantic predictions from a

11

2. Related Work

Mask R-CNN network, and fuse geometric and instance-aware semantic information
into a global segmentation map. The main steps in this approach consist of geometric
segmentation, semantic instance-aware segmentation refinement, data association, and
map integration.

The main contributions comprise of combined geometric-semantic mapping that extends
object-detection to novel objects of unseen categories, tracking and matching instance
predictions across multiple frames with a global data association strategy, and evaluation
on real-world datasets and an online robotic setup. It is based on previous work for incre-
mental geometry-based scene segmentation in the Incremental Object Database [FNF+18]
and the voxel-based scene representation VoxBlox [OTF+17].

Schmid et al. [SDS+21] build a semantic volumetric map at the object level that can deal
consistently with scene changes, e.g. moved furniture, over long periods of time. This
method takes as input RGB-D images and a panoptic segmentation of the images to
produce one sub-map per semantic entity.

In this way, it uses multiple resolutions to store the room layout and objects efficiently, and
can integrate multi-resolution TSDFs and manage maps consistently. In particular, it can
handle moved and updated objects at the object-level, without reconstruction artifacts,
and separately model nearby objects with different resolutions to ensure geometric details
are captured at an appropriate level.

Grinvald et al. [GTSN21] reconstruct scenes and track dynamic objects in a single volume.
Their method is designed to store multiple surfaces in the same data structure, and
explicitly handle occlusions of objects. Most other methods use separate volumes for each
moving object, but this creates a problem when scaling to a larger number of objects
and with defining an explicit occlusion handling strategy. The per-frame segmentation
method is the same as in [GFN+19]. For this method, exact segmentation is especially
important for accurate reconstruction results.

2.3 Scene Graphs
Scene graphs are an abstract representation of objects and object relations that is espe-
cially useful for higher-level scene understanding [WWT+21b]. Originating in computer
graphics, scene graphs allow for compact and complex representations of 3D environments.

3D data results in large scene graphs, which have the advantage of being human-readable
representations that present scene information in a compact form [WNT22]. Hughes et
al. [HCC22] define a scene graph as

“a layered graph where nodes represent spatial concepts at multiple levels
of abstraction (from low-level geometry to high-level semantics including
objects, places, rooms, buildings, etc.) and edges represent relations between
concepts.”

12

2.3. Scene Graphs

Armeni et al. [AHG+19] propose hierarchical scene graphs with attributes and relations
to model 3D scene reconstructions. Their models consist of four layers with increasing
levels of abstraction, ranging from camera views to objects, rooms, and buildings.
Attributes on graph nodes include camera parameters, object class, material, shape,
and other descriptive information such as room type and illumination. Edges in the
graph model different kinds of relations between nodes, including spatial order, relative
magnitude, occlusion relationships, and parent entities, i.e., rooms or buildings.
In order to reduce the effort to create scene graphs manually, Armeni et al. make two
contributions to automate scene graph annotations. To improve 2D detection, they
frame query images in panorama pictures and run object detection on these extended
images. Secondly, to deal with misclassifications, they enforce detection consistency
across multiple views from different camera locations.
Wu et al. [WWT+21b] present SceneGraphFusion as a method for real-time incremental
panoptic segmentation and incremental scene graph generation from RGB-D image
sequences. They use the geometric segmentation of depth images by [TTN15] for node
segmentation, and PointNet for feature extraction from segments.
Geometric segmentation separates the point cloud into nodes, and node and edge features
are computed from the properties and neighborhood relations of updated segments. The
node and edge features are then used to predict a scene graph which is fused into a
globally consistent model.
Since geometric segmentation can lead to over-segmentation, ‘same-as’ relations are used
to connect parts of the same object where needed. In addition to incremental scene
graph generation, the method of Wu et al. produces accurate panoptic segmentation of
large-scale scenes, and runs at interactive speed with a frame rate of 35 Hz.
An extension of scene graphs towards a spatial perception engine that captures actionable
information for robotic agents is presented by Rosinol et al. [RVA+21]. Motivating
examples for the development of their Kimera engine include obstacle avoidance and
planning, human interaction, long-term autonomy, and prediction.
Dynamic Scene Graphs (DSG) in the Kimera engine contain a bounding volume hierarchy
(BVH) suitable for fast collision checking. It allows for the visualization of agents’
trajectories and to answer more complex queries in visual question answering. The model
‘forgets’ parts of scenes by pruning graph nodes, and stores instances of the same object
efficiently as duplicates. Lastly, it can use the metric-semantic mesh as input to a physics
simulation and perform robotic agent actions in this simulation to predict their outcomes.
The spatial perception engine is split into core and DSG modules. The core module
contains visual-inertial odometry, fast single-frame and multi-frame mesh generation,
semantic segmentation based on video frames, and loop detection as well as pose graph
and mesh optimization. The core module is described in more detail in [RACC20].
The DSG module performs tasks for higher levels of the scene graph, including unknown
object detection, pose detection for objects with known 3D models, human detection,

13

2. Related Work

and the Kimera BuildingParser for places, structures, rooms and buildings. The Build-
ingParser uses Voxblox Skeleton from [OTSN18] for place detection.

As Rosinol et al. point out, an important advantage over [AHG+19] is the provision of
traversability and other actionable information, allowing robots to plan navigation and
interactions with the environment. In addition, their spatial perception engine takes
dynamic entities, such as humans, into account, which is necessary for navigation in
crowded areas.

Hughes et al. [HCC22] optimize the spatial perception engine of [RVA+21] for the
online generation of hierarchical scene graphs in real-time. Their work addresses several
performance issues of the Kimera engine, in particular the fact that the ESDF used
in [RVA+21] does not scale well with scene size.

The ESDF is based on an estimated robot trajectory, and as the trajectory changes with
loop closures, each loop closure would require a re-computation of the scene graph. In
addition, places and rooms are extracted with batch processing, which is incompatible
with real-time requirements.

As the first real-time spatial inception engine, the main contributions of this paper include
the reconstruction of a local ESDF, which builds meshes and generalized Voronoi diagrams
incrementally from the ESDF. This allows to create a graph of places, and to cluster
places into rooms in real-time, with room segmentation based on community-detection.

Loop closures and graph optimization are based on hierarchical descriptors in the scene
graph. They use top-down closure detection with statistics collected in graph nodes, and
bottom-up geometric verification to register putative matches.

In their evaluation on real and simulated data, the engine shows comparable performance
to batch processing with respect to the accuracy of 3D reconstructions, and outperforms
existing approaches in the quality and number of loop closures.

Wald et al. [WNT22] extend on previous work [WDNT20] and provide a method that
works on point cloud data, uses novel sparse convolutions, and learns semantic segmen-
tation and instance embeddings from 3D data. A graph prediction module predicts
class labels of object nodes and edges directly from scene features. As in previous work,
scene graphs in this paper are “semantically rich and particularly dense.” Nodes contain
attributes and subject-predicate-object relationships as in [WDNT20].

In contrast to earlier publications, this work does not rely on prior knowledge in the form
of segmentation masks, and uses a 3D backbone with sparse convolutions, as opposed to
PointNet in [WDNT20]. It includes color and normals for semantic feature learning and
uses an embedding space to segment nodes. Graph nodes are initialized with segmented
clusters, as opposed to the ground-truth segmentation of previous work. As such, this
method can be applied to real-world setups.

The authors note that scene graphs can be especially helpful e.g. for changing indoor
scenes and matching image against different 3D scenes with lighting and object changes.

14

2.4. Semantic Parsing

For scene similarity, scene graphs are an intermediate representation, and “fundamentally
resilient to dynamic environments.” The usefulness of this representation is demonstrated
in their application to scene retrieval tasks.

2.4 Semantic Parsing
As can be seen from related works on scene graphs and object-oriented SLAM, scene
understanding often relies on semantic parsing, i.e., object detection and segmentation,
to create higher-level models. Zheng et al. [ZZZ+19] identify semantic parsing and scene
classification as the two main problems of scene understanding.

Here we only provide a short introduction to the topic as it relates to scene understanding.
Since the focus of our work is less on the methods themselves and more on their application
in the context of object-centric mapping, we refer the reader to additional literature for
a more in-depth discussion and comparison of related work.

In the image domain, common terminology refers to object detection as detection with
bounding boxes [HGDG17]. Semantic segmentation applies per-pixel class labels to
images, but does not detect individual objects. Instance segmentation combines both
approaches in that it detects and classifies object instances, and generates a segmentation
mask for each. As Wan et al. [WLY+21] note, semantic segmentation methods are
“sensitive to viewpoint changes and also suffer from inconsistent predictions across
different views.”

2.4.1 Object Detection
Mask R-CNN by He et al. [HGDG17] is an object detection and instance segmentation
network that belongs to the class of two-stage detectors. Two-stage detectors first predict
a set of region proposals based on the output of a feature extraction network. These
proposals are refined in the box regression head, and each detection is classified. For
instance segmentation, an additional instance mask is generated.

One-stage, or single-shot detectors, on the other hand, directly predict classes and
bounding boxes without region proposals. According to [CGFC22], two-stage detectors
typically have better performance at the expense of efficiency.

Both kinds of detectors can be seen as meta-architectures, as they can be used with
different kinds of feature extraction networks. For example, [HGDG17] report significant
gains in accuracy and speed for a Feature Pyramid Network (FPN) as the backbone to
Mask R-CNN, compared to a Residual Network (ResNet).

2.4.2 Semantic Segmentation in 2D
Pham et al. [PDC+18] combine bounding boxes from object detection with the Detectron
network and edge detection in images, and apply simulated annealing for the final
segmentation result. Their image partition sampler is one of the main contributions

15

2. Related Work

of this paper and generates a region boundary hierarchy, where object instances are
represented by regions of the hierarchy.

Instead of predicting a segmentation mask for each detection, this approach generates a
global pixel-wise image segmentation. It can detect known and unknown objects in an
open-set environment, and does not require instance masks for training.

Panoptic Segmentation

By definition, instance segmentation tasks are focused on detecting and segmenting only
countable objects or persons, also referred to as ‘things’ in the literature. In addition,
segmentation masks can overlap, as each object is segmented separately. This is in
contrast to semantic segmentation, where each pixel in an image is classified exactly once.
Classes in semantic segmentation can represent ‘things’ as well as uncountable parts, or
‘stuff’, such as grass, sky, walls, or roads.

Kirillov et al. [KHG+18] introduce panoptic segmentation as a new type of task that
combines semantic and instance segmentation in a coherent way. They also propose
Panoptic Quality (PQ) as a new evaluation metric, designed to capture all aspects of
panoptic segmentation and being easy to compute and interpret.

The task definition includes both stuff and thing classes and, like semantic segmentation,
must assign a class label to each pixel. Additionally, each pixel is assigned an instance
ID, and pixels with the same class and instance belong to the same object. For classes of
uncountable parts, the instance ID is ignored. A special void label is used for unknown
or ambiguous objects.

Kirillov et al. note that the definition of which classes are countable, i.e., the split
between things and stuff, is a design choice for the creation of datatsets, following the
convention of previous works. A recent survey of panoptic segmentation methods can be
found in the paper by Li et al. [LC22].

2.4.3 Semantic Segmentation in 3D
Segmentation tasks can also be performed in 3D, where they segmentation is typically
applied to each 3D element, i.e., voxel, point, or surfel, or to regions in a scene. Wald et
al. [WTS+18] present a method for online scene reconstruction and real-time semantic
segmentation that does not require a GPU and is fast and efficient enough to run on
mobile devices.

They use the geometric segmentation of [TTN15] to extract 3D segments from RGB-D
sensor data, and compute fully incremental feature descriptors for segments based on
their point clouds. A random forest is used for the classification of segments, and updated
segments are fused into a globally consistent map.

The computational complexity of segmentation and data fusion depends only on sensor
resolution, not on the size of the scene, as only updated segments have to be processed.

16

2.4. Semantic Parsing

Evaluation shows the performance is comparable to other methods, but faster and more
efficient.

Nakajima [Nak20] proposes two semantic mapping methods that assign class probabilities
to regions of a map, or semantically annotate only known objects; that is, both approaches
reduce the computational complexity and memory requirements compared to annotations
of each map element, and use the geometric segmentation method of [TTN16].

Their first work [NTTS18] presents a surfel-based method for real-time semantic scene
reconstruction that combines geometric and semantic segmentation. It is in part motivated
by the demand for efficient semantic mapping suitable for mobile or embedded devices
and applicable to unknown environments.

The framework consists of four components: SLAM, semantic segmentation with a CNN,
incremental geometric 3D mapping, and class probability updates for 3D map segments.
Camera pose tracking, SLAM, as proposed by [TTN15], and 2D semantic segmentation
run in parallel, with a low-res CNN being used for semantic segmentation as inaccuracies
are resolved by the label-fusion approach.

For each frame, geometric edge detection from the depth image is refined with semantic
segmentation, as geometric segmentation alone cannot detect edges, e.g. between two
flat objects. Segments are extracted from the refined edge map as connected components
and fused into the geometric 3D reconstruction. The segment map of the scene is then
rendered to the current image frame and combined with semantic segmentation for
probability fusion to create a semantic 3D map.

This method assigns class labels not to surfels but to segments, in order to reduce
computational and memory requirements. Grinvald et al. [GFN+19] note that geometric
segmentation approaches tends to over-segment objects, and grouping of articulated scene
elements into separate objects is generally not possible without instance-level information.

The second framework by Nakajima et al. [NS18] provides object-oriented mapping as a
natural representation for object manipulation and task planning. It stores scenes at the
object level, and can be applied to SLAM extensions, e.g. pose graph optimization and
dynamic scenes.

According to Nakajima et al., most systems employ 2D object detection and instance
segmentation to fuse class and instance labels with the 3D map. Their approach uses
YOLO v2 as a fast object detector, and annotates each geometrically segmented region
with bounding boxes. In this way, parts of objects that are over-segmented by the
geometric approach can be detected and merged.

As an advantage over instance segmentation, geometric segmentation provides clear
boundaries between objects in the 3D reconstruction. Similar to [NTTS18], this framework
renders the geometric reconstruction to the current image frame and combines it with
the object bounding boxes. The refined geometric map is then fused with class labels
from the object detector, and class probabilities are updated in the final map.

17

2. Related Work

Instance-Aware Semantic Segmentation

Pham et al. [PHNY19] generate 3D scene reconstructions in real-time on top of the
voxel hashing pipeline, and combine 2D semantic segmentation with 3D mapping. The
geometric reconstruction is integrated with the results of a semantic segmentation CNN
to provide an initial 3D segmentation. This intermediate model is continually refined with
a higher-order Conditional Random Field (CRF) to incrementally correct segmentation
errors.

As this process can be computationally intensive, Pham et al. employ a progressive
super-voxel clustering scheme to provide a new domain to the CRF and meet real-time
constraints. To save memory for the integration of new data, each voxel only stores the
current class label and its confidence, following the update strategy of SemanticFusion.

This work also includes an extension to instance segmentation, where the CRF outputs
instance IDs instead of class labels. Instead of directly using instance information from
2D segmentation, which would require tracking segments over multiple frames, new
instances are spawned from the largest connected component in each CRF inference step
that is not assigned to an instance ID yet.

2D/3D Joint Semantic Segmentation

Hou et al. [HDN19] are the first to present an approach that jointly uses 2D and 3D
features to predict object bounding boxes and semantic instance segmentation in 3D
scans and is trained in an end-to-end fashion. They employ a fully-convolutional 3D
architecture that is trained on scene parts and can perform single-shot inference. The
system takes 3D scene geometry and RGB-D images as input, and back-projects 2D
image features extracted with a segmentation network onto the voxel geometry. Features
from multiple images are combined with max-pooling.

The network consists of two main components for object detection and masking. Each
part has its own backbone for feature extraction, as the two-backbone structure is found
to converge faster during training and provide better segmentation performance.

Object detection has two sets of 3D convolutions for small and large receptive fields,
and each set defines anchors for small and large objects (larger than 1 m3). A 3D RPN
predicts object bounding boxes, and a 3D RoI pooling layer predicts classes. 2D color
and 3D geometry features are forwarded to object detection and per-voxel instance mask
segmentation.

Mask segmentation maintains the spatial resolution of input for best performance, and
reduces features from object detection to class probabilities. On evaluation with real-world
data, this method is shown to perform significantly better than other state-of-the-art
methods.

Hu et al. [HZJ+21] note that 2D and 3D segmentation contain complementary information,
such as fine details and geometry, that can be used to supplement each other at different
levels, yet joint information processing is usually very limited and mostly unidirectional.

18

2.5. Object Discovery

They propose a bidirectional projection module (BPM) that can transfer information
between 2D and 3D processing and demonstrate its application on two U-Net type
networks for 2D and 3D segmentation. At each layer of the U-Net networks, the BPM
computes a link matrix and bidirectionally projects features to the 2D and 3D space.

Evaluations on real-world datasets show benefits for both 2D and 3D segmentation tasks
and top performance on the ScanNetv2 benchmark. The authors believe the BPM to be
useful for other tasks as well, such as classification, detection, and instance segmentation.

The work of Wan et al. [WLY+21] is motivated by the observation that many segmentation
methods on 3D point clouds such as PointNet++, MCCNN, and MinkowskiNet focus on
point clouds, but ignore geometry and semantic information details available in RGB-D
sensor data. On the other hand, 2D semantic segmentation is sensitive to viewpoint
changes and can vary considerably between views, making it difficult to achieve consistent
results. To overcome these issues, 2D-3D joint end-to-end segmentation methods use
information from 3D and 2D for improved accuracy.

Wan et al. propose a new architecture for the incremental generation of 3D recon-
structions with a joint 2D-3D segmentation method. Their architecture includes object
tracking, mapping, as well as 2D and 3D segmentation modules, to extend traditional
SLAM with scene understanding. 2D object detection is based on geometric and se-
mantic segmentation, and instances are detected as the union of segments from both
segmentations.

In order to correct the segmentation results of partial object views, a sparse map stores
geometric landmarks and semantic segmentations. The map is projected into the current
image and projected regions are checked against instance segmentation results. The
system keeps track of and updates class probabilities, and adds or removes objects based
on predefined threshold values.

A dense map is generated in parallel for the final reconstruction and joint 2D-3D
segmentation. The architecture extracts features from 2D segmentation and projects
them onto the 3D voxel model. 2D features from multiple views are transformed by
a Semantic Projection Block, and fused with the 3D features from a 3D-Net encoder.
The combined features are then transformed back by the 3D-Net decoder for semantic
predictions. Evaluation shows the ability to simultaneously create accurate reconstructions
and semantic predictions.

2.5 Object Discovery
In addition to their frameworks for semantic mapping, Nakajima et al. [NKSK19] propose
a novel method to discover new categories of objects for 3D scene understanding. Their
work incrementally builds a 3D map, assigns deep and geometric features to regions, and
clusters regions based on these features. A surfel-based 3D segmentation map is the key
data structure for this method, and incrementally built and updated in 4 steps, for each
input frame.

19

2. Related Work

First, the geometric information from depth images is integrated in SLAM. For object-
level segmentation, Nakajima et al. use an adapted RGB-D SLIC superpixel segmentation
based on color and depth information. The superpixels are further merged with agglom-
erative clustering, based on the similarity of color, position, and normals, to penalize
concave shapes. These 2D labels are then assigned to or updated in the 3D segmentation
map.
Class discovery relies on this 3D segmentation map, and clusters object-level segments
based on deep and geometric features. Geometric features are extracted with the Global
Orthographic Object Descriptor (GOOD), computed from the 3D segmentation map
projected into the local video frame. Deep features come from the last layer of a CNN
applied to the 2D images and projected onto the 3D map.
Clustering of 3D segments is performed with the Markov clustering algorithm, which
allows for a flexible number of nodes. For clustering, the distance between segments is
defined as the weighted distances of geometric and deep features, with weights based on
the entropy of deep features to account for unknown objects. The output of clustering is
then stored as a cluster label per object.

2.5.1 Scene Change Detection
Langer et al. [LPV20] discover objects in 3D environments with a form of change detection:
scene differencing uses multiple observations of environments and compares 3D models
to detect changes in the form of new or moved objects.This approach does not depend
on the knowledge of objects or prior training. However, global differencing suffers from
sensor noise and mapping errors, and cannot distinguish between moved and new objects.
When applied to single frames, scene differencing may miss objects if viewpoints do not
cover the whole scene.
Langer et al. address these issues with post-processing on 3D data. Semantic segmentation
of the whole scene is used to find object candidates. Post-processing extracts planes from
the scene, and considers objects on planes as likely candidates. They then perform local
matching of candidates using a previously recorded reference map of the scene. With
this method it is possible to detect novel objects, even if they are only partially visible,
in a manner that is robust to sensor noise.
Another work by Langer et al. [LPV22] proposes an object mapping method from partial
3D reconstructions in open-world scenarios that does not depend on trained classifiers
or known 3D object models. Their method identifies objects as clusters on top of
planes, and uses Point-Pair Features (PPF) for matching corresponding observations.
It categorizes objects into static, moved, removed, and novel instances, can deal with
partial reconstructions and clutter, and detects individual objects in heaps using only
change detection.
Plane detection uses down-sampled and filtered point clouds extracted by Voxblox [OTF+17].
Plane parameters and way points are used to navigate a robot around each plane, focused
at its center, to collect more detailed 3D data of objects.

20

2.6. Incremental Learning

In order to group objects into four classes for robotic tasks – static, moved, removed,
and novel – the framework uses three different object matching strategies. For static
objects, local matching finds potential candidates nearby. It registers point clouds with
ICP (Iterative Closest Point), and if ICP converges, assigns object to the static class.
If a match is limited to a subset of points, it performs region growing using matching
points as seed points, in order to prevent over- and under-segmentation of splits.

Semi-local matching is based on PPF descriptors. It finds the ten best hypotheses, and
filters planar and small objects to avoid false matches. Matching is performed with a
bipartite graph. Found matches belong to the static or moved class. A second matching
attempt with relaxed conditions can match objects in heaps, and also works for incomplete
reconstructions. It uses the same region growing as for local matching, and the process is
repeated until no more matches are found.

Global matching employs the same procedure as for semi-local matching, but considers
objects from all surfaces. The PPF descriptor is used to create hypotheses and confidence
scores as edge weights in a bipartite graph. Objects for which no match is found are
assigned to the new or removed class.

2.6 Incremental Learning
While deep-learning based methods can provide excellent results on the tasks they are
trained on, one of their main limitations is the fact that the knowledge is fixed once
training is finished. Extending the knowledge to new tasks, classes, or domains typically
requires extensive re-training [KMvB+20].

Pretraining and fine-tuning networks is a method to adapt or extend models faster and
more easily. However, it leads to the loss of performance on old knowledge if fine-tuning
is not jointly performed on old and new training data [SSA17]. Training models with a
subset of classes after pretraining violates the statistical assumption about samples being
independent and identically distributed, which leads to catastrophic forgetting [YPRL22].
The concept of incremental learning provides methods for extending networks that take
existing knowledge into account to reduce the re-training effort.

A distinction can be made between incremental and open-ended learning in the way
learning is scheduled. While incremental learning uses a predefined set of new classes
to learn, open-ended learning presents the model with a continuously growing set of
classes [KLT20].

Continual learning can also be described as task-, domain-, or class-incremental. Class-
incremental learning presents new classes at each learning step, for example in object
detection. Task-incremental methods use a classifier with multiple heads, one for each
task, e.g. object detection and segmentation. Domain-incremental methods are targeted
at performing the same task on different, but related data distributions, i.e., the focus is
on a label shift in data instead of new classes [HZ21].

21

2. Related Work

Continual learning can be further restricted to online or offline scenarios. In an online
setting, training data is presented to the system only once, while offline training can
process the same data multiple times. The online scenario is typically closer to real-world
applications, but also more challenging [HZ21].

Incremental learning is generally categorized into rehearsal-, regularization- and parameter
isolation-based methods [CGFC22]. Rehearsal uses a subset of old training data to prevent
the loss of old knowledge when training on new data. This old data can be stored from
previous training sessions, or it can be generated from a probabilistic model, for example
if old data is no longer available [PKP+19].

Regularization can be prior-focused, in which case it prevents changes to important old
parameters. Data-focused regularization takes the difference in activations between the
old and new model as a regularization term to retain old knowledge. Parameter-isolation
based methods use a subset of parameters for each task that are prevented from changing
during re-trainig.

While incremental learning is a broad topic with a large area of applications, here we
consider related work only in the context of scene understanding and its applicability to
object-centric mapping. For a more extensive coverage of the topic, we refer the reader
to several recent publications.

Parisi et al. [PKP+19] provide a review of lifelong learning methods with neural net-
works. Kasaei et al. [KMvB+20] review lifelong learning methods with a focus on object
recognition and manipulation tasks for service robots. Qu et al. [QRX+21] present an
overview of recent advances of continual learning methods in computer vision.

Joseph et al. [JRK+21] present an approach to class-incremental object detection based
on meta-learning. While most approaches to incremental learning use a form of knowledge
distillation, their method learns to modify the model gradient during training in order to
adapt more quickly to new classes while avoiding catastrophic forgetting. This approach
is task-agnostic and highly scalable in terms of model size.

Adaptation of the model gradient is realised by a set of gradient preconditioning matrices,
which are inserted between layers of the object detector. A meta-training objective is
used to learn these matrices such that updates for old and new tasks are optimized.

Joseph et al. also note that knowledge distillation poses a form of intransigence in the
way that the distillation loss enforces predictions of the old model. They propose a new
loss function that learns generalizable gradients to improve adaptability and counter the
loss of old knowledge.

He et al. [HZ21] introduce the use of pseudo-labels derived from clustering to continual
learning. This general approach can be applied to supervised incremental learning
methods and allows to use training data for which no human-annotated labels are
available. They propose to apply the old model as a feature extractor to new, unlabeled
training data in each training step. They then cluster the extracted features and create a

22

2.7. Open-World Scene Understanding

new pseudo label for each cluster. Finally the old model is re-trained using the training
data with added pseudo-labels.
Integration into regularization methods with a distillation loss is performed by replacing
labels with pseudo-labels. For rehearsal-based methods it is possible to use exemplars
based on cluster means. For bias-based methods that require a validation set, both the
training and validation set can be created with pseudo-labels. He et al. also apply different
clustering methods to their approach, but evaluation results indicate that the choice of
clustering method is not critical for the learning performance in their experimental setup.

2.7 Open-World Scene Understanding
Joseph et al. [JKKB21] introduce the task of open-world object detection that extends
object detection to an open-world setting. Unlike closed-set scenarios, where all object
classes are known from training, images in this task may contain objects from unknown
classes, which should be detected as such. In addition, the model should learn new
classes in an incremental fashion as new information, in the form of class labels, becomes
available.
In their work, they propose ORE as a method for open-world object detection that uses
contrastive clustering, an unknown-aware proposal network, and energy based unknown
identification. The object detection model is adapted from Faster R-CNN, but applies
contrastive clustering to features from the residual block in the RoI head.
Contrastive clustering stores one prototype vector for each known class, and minimizes
contrastive loss to separate classes in latent space. Clustering requires a prototype for the
unknown class too, but labels for unknown objects are not available. Instead, background
region proposals are used as potential unknown objects as a simple heuristic.
The RPN and classification head are modified to identify unknowns and label them
accordingly. The modified network describes object features in latent space with energy
based models. Due to contrastive clustering, there is a clear separation between known
classes and the unknown class, and the energy distributions of their features can be
modeled with a Weibull distribution.
To classify a prediction as unknown, the modified classification head compares the energy
values of latent features for the known and unknown class distributions and assigns the
unknown label to an object if the corresponding energy value is higher. During training,
to mitigate catastrophic forgetting, ORE stores a balanced set of exemplars for all classes
and use these for fine-tuning in each incremental learning step.
Gupta et al. [GNJ+22] present OW-DETR as a transformer-based approach to open-
world object detection, noting several shortcomings of ORE. These include the use of a
held-out validation set for estimating the energy-based classifier probability distributions,
and the selection of a single latent prototype for the unknown category for performing
contrastive clustering, which does not capture intra-class variations and may affect
separation between known and unknown classes.

23

2. Related Work

ORE uses background region proposals as pseudo-unknowns, which Gupta et al. conclude
causes a bias towards known classes. They argue their pseudo-labeling scheme provides
better generalization and is suitable for single-stage object detectors. The main features
of OW-DETR include an attention-driven pseudo-labeling mechanism that proposes
unknown candidates, a novelty classification branch that detects unknowns, and an
objectness branch that distinguishes objects from background.

The pseudo-labeling mechanism selects region proposals with high attention scores that
do not match any known class as unknowns. The novelty classification branch is then
trained on known classes and the pseudo-unknowns to distinguish known and unknown
objects.

For the objectness branch, knowledge transfer is used to learn the characteristics of known
foreground objects for the unknown class. Evaluations show improved performance for
the open-world and incremental object detection tasks over ORE with the MS-COCO
dataset.

Zheng et al. [ZLH+22] introduce the task of open set object detection and discovery. A
distinct feature of this new type of task is the automated labelling of novel classes for
incremental learning, which has to be performed by a human in other settings. They
propose a two-stage approach to this type of problem, consisting of Object Detection
and Retrieval (ODR) and Object Category Discovery (OCD) modules.

The ODR module implements an open-set detector to detect known objects and localize
unknown objects, and stores samples of known and unknown objects. The OCD module
discovers new categories of objects from unknown classes with unsupervised contrastive
learning and semi-supervised clustering.

For class discovery, unsupervised domain-agnostic mix-up augmentation and contrastive
learning are applied to the set of samples from known and unknown objects to create
more discriminating features in a latent space. These embedded features are clustered
with a semi-supervised constrained k-means algorithm, which enforces the assignment of
labelled instances to their ground truth classes.

Since k-means requires to specify the number of clusters beforehand, the number of novel
categories is estimated with deep transfer clustering. For the initialization of clustering
step, the centroids of known classes are manually computed. Experiments show that this
method outperforms other baseline methods.

Zhao et al. [ZLS+22] revisit open-world object detection in their RE-OWOD framework.
Its prominent features are a Proposal Advisor and a Class-specific Expelling Classifier
(CEC). The advisor helps the RPN to detect unknown objects and distinguish them from
background. The CEC removes unsure predictions, and prevents model from assigning
known class labels to unknown objects. It adjusts the probabilities of test samples
belonging to certain classes based on training set proposals and training ground truth.
The expelling indicator adjusts activation boundaries with a class-specific expelling
indicator. If the indicator is positive for a class, a proposal is not assigned to this class.

24

2.7. Open-World Scene Understanding

Instead, the proposal is assigned to the class with the highest score, selected from the
remaining classes, or to the unknown class.

Zhao et al. additionally define five principles for benchmark construction and two fair
evaluation metrics for open-world object detection from the perspective of the unknown
class. The new metrics are Unknown Detection Recall (UDR) and Unknown Detection
Precision (UDP). Both emphasize the distinction of unknown objects from background
which is especially challenging in object detection without supervision.

Zhao et al. identify several challenges regarding metrics for open-world object detection
evaluation. Unknown objectness must distinguish unknowns from background. Unknown
discrimination must distinguish unknowns from known classes. Incremental conflict
balances learning of previous and current known classes, with a focus on incremental
learning.

The benchmarking principles are summarized as follows:

• Class openness: known and unknown class sets do not overlap and can exist in
images at the same time during inference; for training, only known classes are
labeled.

• Task increment: the set of known classes is increased incrementally. At each step a
subset of unknown classes are annotated and added to the known set.

• Annotation specificity: for training and validation, only annotate known classes;
for testing, in addition to known classes, annotate unknown instances as ‘unknown’.

• Label integrity: label all objects for testing; unlabeled objects can lead to correctly
identified unknown objects being considered as false positives.

• Data specificity: no overlap between training, validation, test datasets; no duplica-
tion within datasets.

Sylph is a hyper-network-based, continuous, fine-tune free incremental few-shot object
detector proposed by Yin et al. [YPRL22]. It provides several key improvements over
previous approaches, including decoupling object localization and classification, and a
class-agnostic detector pretrained on base classes, i.e., classes with a high number of
instances.

This work is motivated by the observation that traditional object detection relies on large
training sets for building a model, with labor-intensive and time-consuming training.
Real-world datasets with a long tail of classes contain few samples and take much longer
to train.

Few-shot object detection tries to alleviate this problem. It can use base classes mainly
in two ways. A model is either pretrained on base classes, and fine-tuned on a selection of
seen and new classes. However, this is often not practical in real-world scenarios. On the

25

2. Related Work

other hand, meta-learning teaches a model how to learn: the model is trained episodically
in order to adapt to new classes faster.

The framework consists of two main components: an object detector with a class-agnostic
bounding box regressor and a classification subnetwork, and a hyper-network that
generates class-specific codes for the classifier. Both components share the same weights
for their feature extraction backbones.

The hyper-network extracts features for a small number of support samples per class,
and inputs these to a code generator module. The code generator is split into a code
predictor head and a code process module. The former predicts weights and biases for
each sample, while the latter aggregates the predictions into a single weight and bias,
and normalizes the results to avoid gradient explosion.

Using class-agnostic localization is preferred for few-shot detection as it is difficult to
learn localization from a few samples. Per-class binary classifiers allow adding new classes
without changing the detection of seen classes.

The method achieves three important goals: incremental, sequential learning without
additional training, detecting new and seen classes in one pass, and avoiding forgetting
of learned classes. Evaluation shows that it provides effective training and improves
accuracy over previous methods. It is the first incremental few-shot object detection
method without test-time training with a performance close to fine-tuning-based methods
on large scale datasets.

2.7.1 Open World Semantic Segmentation
A formal introduction of incremental learning for semantic segmentation is provided by
Michieli et al. [MZ19]. Their focus lies on the most general setting, in which images from
previous learning steps are not used, and new images can contain instances of known
classes in addition to new classes. The general setting also requires an approach for
scaling to a large number of classes.

Michieli et al. present an approach that distills knowledge from a previous model to a new
one in each incremental learning step, and does not store images of previously learned
classes, or older models. The loss function consists of a cross-entropy and distillation loss
term, and several distillation loss functions are evaluated. The knowledge distillation
scheme also includes freezing the encoder part of the new model as a way to preserve
existing knowledge during re-training. Evaluation on the Pascal VOC2012 dataset show
that this method outperforms the baseline of fine-tuning in most cases.

Cen et al. [CYC+21] are the first to introduce an open-world semantic segmentation
system, consisting of a deep metric learning network (DMLNet) with contrastive clustering
and two proposed methods for few-shot incremental learning. The authors motivate their
work by the shortcomings of two common approaches to anomaly semantic segmentation:
uncertainty estimation and generative models. These methods tend to either produce
many false-positive outlier detections, or cannot model complex environments.

26

2.7. Open-World Scene Understanding

Cen et al. combine open-set semantic segmentation module and incremental few-shot
learning to accomplish open-world semantic segmentation. Open-set segmentation consists
of two parts, a closed-set and an anomaly segmentation module. The latter creates an
anomalous probability map, where pixels with high probability are considered an anomaly.
Class labels of other pixels are assigned by the closed-set segmentation module.

The closed-set segmentation module is realized with DMLNet, which embeds image
features in a metric space using contrastive clustering. Classification is based on a set
of prototypes, and pixels are assigned to classes by measuring the similarity of their
embedded feature vectors to each of the prototypes.

Anomaly segmentation includes two identification criteria for out-of-distribution pixels:
metric-based maximum softmax probability, based on the maximum class probability
of closed-set segmentation, and Euclidean distance sum, based on the distance to class
prototypes. During the lifetime of the model, class prototypes are fixed. Cen et al. note
that learnable prototypes “cause instability during training and make no contribution to
better performance.”

Incremental few-shot learning updates the closed-set module when new labels are provided
by a human oracle, and uses up to five images for re-training. For incremental learning,
two methods are proposed. Both assume that a single class is added in each learning
step.

The Pseudo-Labeling Method (PLM) is based on several branch heads, one for predicting
base classes, the others for predicting one new class each. Given a labelled image, this
method combines all predicted masks and the label image to train the new branch head.
For inference, the same procedure is used, without a label image. The Novel Prototype
Method (NPM) calculates a prototype for the new class as a mean feature of all instances,
and assigns the new class label if a prediction is closest to the new prototype and its
distance is below a threshold.

The authors report “state-of-the-art performance on three challenging open-set semantic
segmentation datasets without using additional data or generative models.”

The method of Uhlemeyer et al. [URG22] provides unsupervised incremental semantic
segmentation and class discovery in open-world settings. Their main contribution is
a modular procedure for learning novel objects without manual annotation. They use
segmentation quality estimates to identify regions of unknown classes in segmented
images, then cluster regions and apply pseudo-labels to segments in order to retrain the
segmentation model with new classes.

This method is related to novelty detection with cluster similarity measures for class
discovery, class-incremental learning with knowledge distillation and rehearsal methods,
and open-world recognition. In this work, Uhlemeyer et al. define novelties as unseen
objects that constitute a new concept. Their approach to semantic segmentation with
unknown classes first assigns a softmax probability to each pixel for every known class
using a conventional network.

27

2. Related Work

They then estimate the prediction quality on segments, i.e., connected regions with the
same label, using the average dispersion measure over segments. Additionally, geometric
properties are recorded for each segment, and both metrics are fed into a meta-regressor.

This regressor is trained on the metrics and true IoU of all segments to estimate the
prediction quality. It then identifies segments below a threshold as unknown. Connected
segments that are predicted as unknown are merged into image patches as potential
unknown objects.

These image patches are clustered into new categories in two steps. First, they are
processed by a CNN trained on ImageNet to extract high-level and high-dimensional
feature vectors. The feature vectors are compressed with PCA and t-SNE to create a
low-dimensional embedding.

These embeddings are clustered with DBSCAN, where only core points of clusters are
considered as cluster members, and clusters below a minimum size are discarded. Each
remaining cluster represents a novel category that is used to re-train the segmentation
model. Under ideal conditions, the segmentation performs perfectly on in-distribution
data, the meta-model detects all (but only) unknowns, and novel objects of different
classes are separable.

The semantic incremental learning uses a rehearsal- and knowledge distillation-based
approach. It extends the initial model by replacing the final layer in the model and
re-initializing affected weights. The class weights of the cross-entropy loss are set to
the inverse class frequency for each batch. The rehearsal method adds images to the
re-training set that contain underrepresented known classes, or ones that are similar to
novel classes. To find similar classes for novel objects, this method counts the pixels from
each novelty assigned to known classes by the old model.

2.7.2 Open World Instance Segmentation
Cermelli et al. [CGFC22] revisit the standard data-focused regularization-based knowledge
distillation framework to model missing annotations for incremental learning in object
detection. Following conventional incremental learning protocols, each learning step
contains only annotations for new classes, and any annotations for old or future classes
are missing. Their work is founded in the observation that in this type of setting, new
training steps containing only annotations for new classes leads to models learning to
classify old classes as background. In addition, new classes are considered as background
in previous training steps, making it more difficult to extend the network.

Cermelli et al. provide adapted loss functions to handle missing annotations in training
data for object detection, and include an extension of their approach to the task of
incremental learning for instance segmentation. They reformulate the loss functions in
the knowledge distillation framework such that they take into account the probability of a
model predicting old classes on regions without annotations, or predicting current classes
as background. Evaluation shows that their approach outperforms other state-of-the-art

28

2.7. Open-World Scene Understanding

methods for the object detection task, and outperforms other baselines for instance
segmentation.

Kim et al. [KLA+22] propose a classifier-free Object Localization Network (OLN) based on
localization-based objectness learning. Their approach is capable of learning generalizable
objectness purely on how well proposals match annotated regions, and uses localization
quality estimators for region proposals at the image level and for each RoI. Their
work is motivated by the insight that classification in existing methods can overfit to
labeled objects, associating novel objects with the background. The OLN avoids such
foreground-background classification in favor of increased generalization capabilities.

OLN is build on Faster R-CNN, which is also used as a baseline for evaluation. The
model replaces classification in the RPN and the RoI head with localization quality
estimates, such as centerness and IoU. Kim et al. demonstrate that this approach shows
better generalization to unknown classes and across different datasets, and present an
extension to open-world instance segmentation by adding a class-agnostic mask head
akin to Mask R-CNN.

The authors see potential applications for learning-based proposals in various areas
including open-world object detection, segmentation, robot grasping, video understanding,
and large vocabulary detection. Their evaluation shows that this method outperforms
other approaches on rare and common classes for the large vocabulary dataset LVIS.

29

CHAPTER 3
Unsupervised Incremental

Learning in Open-World
Object-Centric Mapping

Our system is intended to provide a perceptional basis on which to perform various lab
monitoring tasks, as mentioned previously. In particular, this involves tasks performed
by mobile autonomous robots, as stationary cameras cannot cover all use cases and the
continuing development and advancements in robotics promise to free lab workers from
highly repetitive, tedious, and dangerous tasks.

Object-centric scene models are a natural and versatile abstraction of computational
representations of physical environments. These models also form the basis for higher
level abstractions, in particular scene graphs. In practical applications, mobile robotic
systems are often confronted with unstructured, open-world environments.

There we can make little assumptions about the geometric nature of the environment,
and most object instances that a computer vision system encounters are unknown at the
time of system design and implementation. It is therefore necessary to be able to extend
the system’s knowledge during operation in an efficient and effective manner.

Our problem statement can be summarized as follows: we want to create a system that
generates a metric-semantic map of unstructured environments from visual input (P1).
We specifically target visual input because of its feature-rich, contextualized imagery
which unstructured point clouds obtained from 3D scanners often lack.

The system shall segment the map at the object level in an online fashion (P2), and
be able to detect unknown objects (P3) using category discovery, and group instances
of unknown objects by similarity (P4). Finally, it shall learn new categories of objects

31

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

in an unsupervised incremental learning step to extend the object detection model and
semantic segmentation (P5).

Various methods from related works exist that have already covered each of these steps
individually or in combination with other methods. However, to the best of our knowledge
this is the first time that all five are combined in one system. This problem statement
poses the question of how the interaction between different parts of the system should
occur.

To approach this issue, we also need a system design that facilitates a working solution
(P6). This framework should be modular and flexible so that it is possible to exchange
and compare different methods for each part with minimal changes to the overall design.

To evaluate the system performance, we need to define a primary metric and evaluation
protocol. Since we do not know of any previous work which approaches the same computer
vision task, it is necessary to come up with our own evaluation protocol (P7).

One particular challenge is the fact that methods for novelty detection and category
discovery are inherently stochastic and it is not possible to predict in advance which
categories will be detected and learned. Hence we adapt the evaluation from related
computer vision tasks, such as panoptic segmentation and class-incremental learning in
2D.

The performance evaluation is specifically intended to gain insights into the following
research questions:

1. How does unsupervised incremental learning in object-centric SLAM affect object
detection performance?

2. How does novelty detection perform?

3. How does category discovery perform?

3.1 Design Choices
Following these premises, there are several practical considerations and constraints that
limit the selection of methods, software, and hardware for the implementation. The
system should be able to work on mobile robots equipped with small, low-cost visual
sensors. In particular, this excludes larger and more expensive LiDAR scanners.

In order to generate a 3D reconstruction of a scene, depth information is needed as
well. According to Labbé and Michaud [LM19], monocular SLAM approaches suffer from
scale drift over time. Alternatives include stereo or RGB-D cameras and visual-inertial
odometry.

With the advent of affordable, high-quality RGB-D sensors, these are a good match for
this task. The proposed framework does not make any assumptions about the source of

32

3.1. Design Choices

Figure 3.1: Scene 286 from the SceneNN dataset reconstructed as a point cloud using
our framework, and visualized with flat rendering in Open3D. Point colors correspond to
global segment labels.

sensor data, but accurate alignment between RGB and depth frames is desirable. With
more recent consumer hardware it is also possible to purchase RGB-D cameras where
RGB and depth sensor are mounted on the same stiffener, allowing for a high-quality
and affordable integrated solution with better alignment for 3D reconstruction tasks.

3.1.1 Scene and Object Representations
The robotic tasks this system is targeted at also affect the choice of scene and object
representation. Common choices are unstructured representations, namely point clouds
and surfels, regular representations using voxels in combination with Signed Distance
Fields (SDFs), and meshes as irregular representations.

Point clouds and surfels (short for surface elements) are unstructured representations that
are the result of point sampling the environment with a depth sensor. Besides 3D coordi-
nates, points can have additional attributes, including color and point normals [ZSG+18].
An example of a colored point cloud created with our framework is shown in Figure 3.1.

Point clouds are a lightweight data structure in terms of storage requirements and required
post-processing from raw sensor data. They support arbitrary resolutions for objects
and scenes, and resolutions can be highly varying within and between individual objects,
depending on the required amount of detail.

Surfels are point primitives with additional attributes computed in a preprocessing
step optimized for fast, high-quality rendering. Algorithms specialized for hardware-
accelerated visibility calculations and rendering can achieve real-time frame rates even
for large datasets. In this way, surfels essentially provide a fine-grained trade-off between
memory overhead, quality and performance [PZVBG00].

Point clouds and surfels lend themselves to global map optimizations through local trans-
formations, in particular for loop closures in online scene reconstructions, as demonstrated
by Schöps et al. [SSP19]. Since this type of representation does not enclose a volume, it
can also be used to model small and thin objects without loss of detail. However, Schöps

33

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

Figure 3.2: A scene reconstructed for navigation and path planning with a voxel-based
SDF representation, from Oleynikova et al. [OTSN18].

et al. also cite the discrete representation of objects with point-based methods as a main
drawback, and meshing as a possible solution.

On the downside, unstructured 3D representations do not provide any information on
surface connectivity. As such, visibility calculations and collision detection are more
difficult to compute. A disadvantage, in particular for mobile robotics applications, is the
lack of distinction between free and unobserved space, i.e., there is no explicit modelling
of free space. This means point clouds need additional information for collision-free path
planning [OTF+17].

Voxels are a regular volumetric 3D representation with a fixed resolution for each scene or
object. The memory overhead is higher than for point clouds as the voxel data structures
explicitly store free and occupied voxels, as well as the spatial layout of each volumetric
element. On the other hand this allows to directly model observed free space, for example
to facilitate robotic path planning and navigation tasks [OTSN18].

Basic implementations of voxel data structures also have a fixed size, limiting the amount
of space that a recording can cover. However, more advanced approaches dynamically
allocate voxels to overcome this limitation. Simply storing free and occupied space as
voxels provides poor surface approximations. Additional per-voxel distance information
leads to a higher-order, implicit surface representation based on different forms of signed
distance fields. Figure 3.2 contains an example of a scene reconstructed with TSDF and
ESDF representations.

Voxel-based 3D representations typically integrate data over multiple frames to account

34

3.1. Design Choices

for imprecise and noisy measurements, and can store additional probabilities for class and
instance labels [GFN+19]. More recent voxel-based approaches also allow for tracking
and reconstructing multiple dynamic objects simultaneously [GTSN21]. As Grinvald et
al. [GFN+19] note, reconstructions from voxel grids contain explicit surface connectivity
information which can be used e.g. for robotic object manipulation tasks.

One particular downside of voxel representations are more difficult intra-object transfor-
mations compared to point clouds. This makes retargeting parts of a global map during
online reconstruction computationally more expensive [HCC22]. As point clouds are
more suitable for keypoint detection and registration (e.g. with ICP), voxel-based SDFs
can be transformed into point clouds with the marching cubes algorithm as is done for
example by [FNF+18].

Meshes are an irregular 3D representation and another common option for modeling
scenes. Meshes can be stored in compact data structures and support surface connectivity.
In particular, for scenes with many planar regions it is possible to approximate these
surfaces with a low-resolution model without a significant loss of precision. However,
the piece-wise linear nature of meshes leads to poor approximations for curved surfaces
unless the amount of detail is appropriately increased. Figure 3.3 gives several examples
of scene reconstructions from the SceneNN2016 dataset.

The inherent surface connectivity in meshes facilitates visibility calculations and collision
detection. Like surfels, meshes allow for textured rendering, which is used in some
methods of scene understanding for projections of global segmentation map into video
frames. Geometric segmentation approaches can also make use of mesh connectivity when
determining object boundaries, as is done for segmentation refinement in [HPN+16], for
example. As a disadvantage, algorithms for mesh processing tend to be more complex
when taking topology into account.

Because of their intricate nature, meshes are typically provided as output of post-
processing point clouds or voxels in SLAM applications, and not as intermediate repre-
sentations for scene reconstruction [RACC20]. Algorithms that convert point clouds and
surfels into meshes include Marching Cubes and SurfelMeshing [SSP19]. Similarly, voxels
can be transformed into point clouds with Marching Cubes [FNF+18].

The approach of using an unstructured internal representation for scene reconstruction
and triangulating meshes from them combines the advantages of both. In particular, this
provides SLAM with a dense scene representation that can quickly adapt to loop closures.
During scene reconstruction the generated mesh can be used as a compact model e.g. for
a conventional rendering pipeline or collision detection [RVA+21].

For the purpose of this system, a voxel representation is the primary choice as it allows to
integrate noisy data and uncertain semantic and instance segmentations into a consistent
global map in a unified manner. This is crucial to achieve reliable results for metric-
semantic mapping in the face of segmentation predictions varying from frame to frame.
As mentioned, a volumetric representation also stores observed free space explicitly,
allowing to use this information directly in potential path planning and navigation

35

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

(a) (b)

(c) (d)

Figure 3.3: Several scenes from the SceneNN dataset, reconstructed as meshes and colored
with instance labels, from Hua et al. [HPN+16].

tasks. Voxblox++ [GFN+19], the method used in our system design, features a meshing
algorithm for transforming the voxel model. In our implementation, the mesh output
serves as the model for all visualizations of results and for the comparison of scene
segmentations with ground truth in the performance evaluation.

3.1.2 Target Domain
The application of our method is primarily targeted at lab automation, and thus includes
mostly industrial settings with various devices and pieces of equipment as well as
workstations and offices. Even if those indoor environments show a high degree of
structure, this method is designed to make little assumptions about scene geometry.

More specifically, the environment does not have to conform to a Manhattan or Atlanta
geometry, i.e., the assumption that walls are aligned to a rectangular grid, or there is
one vertical direction and several directions orthogonal to it. We also do not employ the
plane hypothesis for object segmentation, that is, there is no assumption that objects
are most likely to be found on flat surfaces that are mostly horizontal, as is done, for
example, in [LPV22].

The geometry is only taken into account during depth segmentation, where the depth

36

3.1. Design Choices

image is segmented based on the convexity of contiguous areas. This type of segmentation
however is not limited to a particular scene category but derived from a more general
idea of ‘objectness’ [KMFF13].

There is no hard limit on the size of scenes or the level of detail with which they are
recorded, although in the current implementation there are no provisions for out-of-core
data processing during recording. Hence, scene size is mainly limited by the amount of
main memory.

For the novelty detection node, which consumes most of the main memory in our
implementation, out-of-core processing can be achieved by simply storing collected
data on disk until it is processed in a sequential fashion for category discovery. More
sophisticated data collection schemes could also be devised, providing a trade-off between
memory, storage and processing requirements, as briefly described later on.

3.1.3 Scene Perception
Scene perception is the process of transforming sensory input into a model of objects
and the environment. In this regard, the object representation module is an important
aspect as its output is used for learning as well as object recognition [AKC+22].

On one hand, the type of object representation depends on the kind of sensory input
to the system. RGB cameras typically have a higher resolution than depth sensors,
and provide photometric information, i.e., color and texture, as additional low-level
features [BGT+20]. Some 3D laser-based depth sensors, as used in many recent hardware,
may provide less accurate measurements with reflective surfaces and around object
edges [TDCH21]. For this reason it can be beneficial to use both modalities for 3D
reconstruction.

Another design choice involves the dimensionality of representations for the object
recognition task. In this case, we use Mask R-CNN as a state-of-the-art object detection
approach that also provides high-level features for the class discovery module. This
approach allows us to easily combine the geometric-semantic segmentation of Voxblox++
with the incremental learning method of MMA and class discovery akin to [URG22]. The
system therefore detects objects and segments the scene in the color and depth input
images before integrating each 3D frame into the global map, including semantic and
instance labels.

Arguably, it would be conceptually simpler to integrate each input image into the global
map first and then perform segmentation on the 3D representation. Object detection
in 2D has the advantage that its result are available to the robotic system as early as
possible, preferably at each video frame. With segmentation in 3D, 3D data collection
and geometric segmentation precedes object detection and semantic segmentation, as for
example in [WWT+21b].

One of the well-known disadvantages of deep learning-based methods is the need for large
training datasets [GFN+19]. For classes with small numbers of samples, deep learning

37

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

tends to perform poorly, resulting in low detection rates and frequent misclassifications.
This is a problem in particular for long-tailed class distributions, with a small number
of frequent classes and a large number of rare classes, that often occur in real-world
settings. The same need for ’big data’ poses a major challenge in incremental learning.
Training on only new classes violates the i.i.d. (independent and identically distributed)
assumption about the training data and thus has a negative effect on previously learned
classes [YPRL22].

Exemplar-based representations of object classes such as Sylph in [YPRL22] provide
a retraining-free alternative to class-incremental deep learning. However, Sylph only
features object recognition without segmentation and is thus not directly applicable to
our framework.

Topic modelling as with Local-LDA [KLT20] and Local-HDP [AKC+22] is a generative
model that uses topics as a latent structure to represent data. Its object representations
are compact and can be processed efficiently. In contrast to instance segmentation in 2D,
Local-LDA assumes objects are already segmented in 3D before categorization.

This segmentation would have to be performed beforehand, either based on some general
geometric assumptions such as the plane hypothesis, or with a separate segmentation
model. In the latter case, this model would have to be (re-)trained separately as well,
making this approach less attractive for incremental learning.

3.1.4 Novelty Detection, Category Discovery, and Incremental
Learning

The object detection and segmentation model for our system is intended to be trained
initially on a set of common classes that occur in many different categories of environments,
such as walls, floors, desks, and chairs. The idea is that these classes serve as a form of
basic knowledge of the environment and guide the category discovery task as the system
tries to ’fill in the gaps’ between known objects and structures in the scene.

For novelty detection, all unknown segments of the scene are considered novel, following
the panoptic segmentation approach in [URG22]. For simplicity, we assume that all
newly discovered categories belong to the object (’thing’) type, as opposed to structures
(’stuff’), i.e., each manifestation of a category is a separate instance in the segmentation
model.

During operation, the robot system occasionally encounters novel objects in real-time
over longer periods of time. During each recording, the system only gets to view objects
from a few different angles. Since active exploration is not included in the framework, it is
not possible to optimize viewpoint selection, resulting in limited data for the incremental
learning step.

It is however possible to retroactively select for each novel object a variety of views from
different angles, once the recording is finished or a certain amount of data has been
collected. This intends to make the best use of the limited data at hand. We combine this

38

3.1. Design Choices

idea with the recording of multiple scenes before each category discovery and incremental
learning step.

In the best case scenario, this allows the system to collect observations of similar novel
objects from different scenes, and propose more generalized categories for incremental
learning. Following these design decisions, the system design opts for a simpler batch
approach to incremental learning instead of a continuous one.

3.1.5 Software Modules
In order to limit the implementation of necessary functionality to a reasonable amount
of work, we rely on existing open-source software for the framework where possible. Due
to the complexity and tight schedule, re-implementing methods from the literature is
considered beyond the scope of this project.

As a consequence, the choice of methods for each part is limited to those whose authors
have made their implementations publicly available. This in turn affects the system
design as a whole, as not all methods can be combined and integrated with equal ease.

Thankfully, there are a number of recent papers with code available from which to choose
from. We adapt these methods where necessary to implement the functionality of our
framework. The framework also relies on a large number of other open-source software
to facilitate rapid prototyping of the implementation, most notably ROS1, PyTorch2,
Open3D3, and related projects.

3.1.6 Exclusions from Scope
Since the framework already covers a wide variety of methods to solve the problem at
hand, it is especially important to define any exclusions from scope. This helps focus on
the most relevant aspects of the problem, and measure the performance of the system
with respect to a small number of components that form the proposed solution.

Regarding robotic platforms that use the framework, the system does not concern itself
with path planning, navigation or low-level motion control. It should however be noted
that such tasks can be implemented on top of a voxel-based scene representation as
provided by the system.

The system does not include any method for localizing the robot or camera, and thus
relies on an external source of reliable odometry. Likewise, there is no mechanism for
camera calibration or alignment between RGB and depth images in the framework,
instead sensor data is taken as-is.

The evaluation does not consider the effects of odometry, calibration and alignment on
mapping. Since evaluation mostly deals with the effects of incremental learning on two

1https://www.ros.org/
2https://pytorch.org/
3http://www.open3d.org/

39

https://www.ros.org/
https://pytorch.org/
http://www.open3d.org/

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

different mappings produced from the same sensor data, these are of less concern to the
given problem and the interpretation of results.

The framework does not provide any means to detect or model quasi-static, moving, or
flexible objects over time. It also does not perform object tracking or human sensing.
While there are various recent publications dealing with these topics, these are excluded
from the scope of this work to focus on unsupervised incremental learning in the context
of object-centric mapping.

For the same reason, active exploration and object manipulation for the purpose of
interactive learning are not included. However, these topics are of great interest as well
in extending the capabilities of robots in real-world scenarios and may be considered
complementary approaches to unsupervised incremental learning.

With regards to unsupervised incremental learning, the focus is on the application and
integration of existing learning techniques in the context of open-world object-centric
SLAM, rather than developing new methods in this area.

Lastly, this framework relies on publicly available, annotated datasets for the purpose
of training, validating and testing our implementation. Creating high-quality, fully
annotated datasets of 3D environments is a time-consuming and labor-intensive task, as
indicated by Dai et al. [DCS+17], that goes beyond the scope of this work. Using existing
datasets also has the advantage that it allows for easier comparison with previous and
future methods in this field of research.

3.1.7 Software Framework
With the software targeted at deployment in mobile autonomous robots, it is important
to take into account the distributed nature of such applications. The operational range
and runtime of mobile robots is usually limited by their battery capacity. For this reason,
the on-board computational resources are typically much more limited than that of a
contemporary consumer PC or server hardware.

Integrating less computing hardware reduces the load on and power consumption of
the robot, but also reduces their capabilities as a computing platform. In particular,
robots often lack a high-performance GPU (or any at all), which means they are not
well suited for many deep learning based approaches that rely on fast parallelization of
memory-intensive calculations.

Retrofitting high-end PC components to a robot not only faces the issue of increased
power consumption. It is also hindered by a lack of, or high cost, for ruggedized hardware
that is designed to withstand the sometimes extreme conditions robots have to operate
in.

It is therefore desirable to have a system that can distribute computations over several
machines, or nodes, connected by varying network links. In such systems, mobile platforms
are at the edge of the computational cloud, executing tasks like data acquisition and

40

3.1. Design Choices

inspection. They transfer collected sensor data over the network to other nodes, typically
servers, for processing or long-term storage.

Data transfer can occur continuously, during operation, or in batch mode, whenever the
robot has finished a mission. The latter case is of particular interest when robots operate
in environments without a permanent network connection or the bandwidth is too low to
support large data transfers.

Developing an application in a distributed framework is a fundamental design decision
that affects the overall system design as well as individual components that comprise the
communication nodes [WWWK96]. It has long been known that programming paradigms
which work well in tightly coupled, local applications do not scale at the network level,
as Treichel et al. note [TH01]:

“The infrastructure, it was thought, could be built to remove all of the
differences between references to a remote service and references to a local
service. This paper argues that all such attempts are doomed to failure and
can, at best, enable the development of systems that are fragile, prone to
unavoidable errors, and restricted in scale.”

Instead, it is necessary for distributed software development to take potential network
and system failures into account and explicitly handle concurrency issues:

“In particular, we argued that distributed infrastructures must present a
model of partial failure to the programmer, since only at the application level
can such failure be dealt with; must deal with concurrency issues, rather than
leaving them to the infrastructure; and must at the application level realize
what parts of the program are local and what parts are at least potentially
remote.” (ibid)

Data-Oriented Architecture

Data-Oriented Architecture (DOA) [Jos07] is a data-centric approach to the design of
distributed systems that offers loose coupling between components and fault tolerance at
the network level with explicit Quality of Service (QoS).

DOA replaces remote procedure calls (RPCs) between networked components with a
publish-subscribe model with deterministic resource management. Each computational
node in the network can publish and subscribe to an unlimited number of topics. Topics
are channels for the transfer of messages, or application-specific data types. Each domain
contains a set of topics that are shared between nodes.

Multiple nodes can receive the same message, and publish messages on the same topic.
Message filters limit the range of data nodes receive on a topic, and can synchronize and
combine data from different topics, e.g. RGB and depth images as well as odometry.

41

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

Figure 3.4: Illustration of Data-Oriented Architecture concepts: data instead of function
calls are the main aspect of communication in a distributed system. Loosely-coupled
components publish and subscribe to data topics over a central message bus. The
middleware dynamically manages topics and QoS, and supports establishing direct data
paths between components. Image from Joshi [Jos07].

Nodes are publishers, subscribers, or both, on one or multiple topics. Figure 3.4 illustrates
the concept of DOA.

In this model, neither publishers nor subscribers need to know about other nodes sending
or receiving messages, allowing for loose coupling between nodes. The only information
that nodes need to share is the metadata about topic data types in the form of message
definitions. It is noteworthy that RPCs and Service-Oriented Architecture (SOA) can be
implemented on top of a DOA middleware [Jos07]. In this regard, they are considered a
special case of DOA.

DOA can be useful for different types of machines or nodes in a distributed system:
edge systems have real-time constraints with ‘real-world’ functions, for example robots,
instrumentation, radars, or communications equipment.

Enterprise systems provide higher-level user interaction, decision support, and storage
and retrieval of historical data. They work in ‘soft’ real-time, with a time scale at
human level. Examples of enterprise systems include application servers, web servers,
and applications.

Systems-of-Systems (SoS) are comprised of many edge or enterprise systems, including
other SoS. They are loosely coupled with many independent entry points, an independent
control domain, and realize multiple objectives. Figure 3.5 exemplifies the SoS approach
on a fictitious airport control organisation.

ROS, the Robot Operating System4, is a set of libraries and framework for the development
and robotic applications. In addition to a wide variety of algorithms and methods related

4https://www.ros.org

42

https://www.ros.org

3.2. System Design

Figure 3.5: Illustration of a data-oriented system-of-systems on the example of an airport
control operation: DOA ties together multiple heterogeneous systems with different time
scales. Each system uses its own communication network and connects to other systems
over strictly defined network gateways. Image from Joshi [Jos07].

to computer vision and robotic tasks, it features a DOA middleware for data transfer
between ROS nodes, with support for QoS parameters to declare the quality of data
transmission.

ROS version 1 provides a proprietary implementation of DOA, while ROS 2 uses the Open
Management Group’s (OMG) Data Distribution Service (DDS) [Spe07] and Real-Time
Publish Subscribe Protocol5 (RTPS) standards. The discovery of components requires
a central ‘core’ node in ROS 1, but is decentralized in ROS 2. While ROS 2 marks an
important technological update to the ROS framework, our implementation is based on
ROS 1 for easier integration with some of the existing software used in the project.

3.2 System Design

Following the general problem description and design decisions, the system design can
be broken down into five main components. Each component implements a specific
functionality within the framework, and is implemented as its own computational node.
Nodes communicate with each other over ROS topics, and can be run on different
machines if necessary. In particular, the RGB-D camera input node is intended to be run
on the robot itself, while the more computational-heavy components can be offloaded to
server hardware.

5https://www.omg.org/spec/DDSI-RTPS

43

https://www.omg.org/spec/DDSI-RTPS

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

RGB-D

SDS

IS

ND/CD

GSM

Robot

Segmentation
Features

Re-Training
Dataset

IS ModelsROS Bag

Control

Instance
Segmentation

SDS/GSM
Data

Segment
Label
Map

Segment Point
Clouds

Metric-
Semantic Map

Global Label Map
Instance Counts

Figure 3.6: Overview of the system design, including main components, data flow, and
data storage. The system consists of five main components, implemented as distributed
computing nodes. Video input from the RGB-D sensor node is processed by instance (IS)
and semantic depth segmentation (SDS), and integrated into the global segmentation map
(GSM). The novelty detection node (ND) collects data during scene reconstructions and
performs category discovery (CD) on selected segments to prepare a retraining dataset
for the instance segmentation model. Three data stores facilitate testing and debugging
of the framework, and store intermediate and persistent data.

Figure 3.6 shows the high-level concept of the system design with its five main compo-
nents, including all data transfers between nodes and essential data storage required
for operation. In this diagram, the outer loop, containing the RGB-D sensor input,
depth segmentation, and global segment map, represents a basic SLAM approach without
instance segmentation or category discovery. Two inner nodes provide instance segmenta-
tion, novelty detection and category discovery to the system. Not shown in this diagram
are the service calls that individual nodes offer and which can be used, for example, to
orchestrate the test and evaluation setup.

3.2.1 RGB-D Sensor Node

The RGB-D node publishes RGB and depth images, including camera calibration infor-
mation, as individual messages, which are received by the depth segmentation, instance
segmentation, and category discovery nodes. Besides providing color and depth images,
the RGB-D sensor node also transmits odometry data as a separate topic.

While odometry is essential for the operation of the SLAM algorithm, its computation
is considered outside the scope of this work. Instead we assume an external source
that provides this data with sufficient accuracy. In practice, this would come from the
robot’s internal sensors, an additional module implementing, for example, visual-inertial

44

3.2. System Design

odometry, or in the case of a test setup, be included with the dataset.

3.2.2 Metric-Semantic Segmentation
The instance segmentation node (IS) performs instance-aware semantic segmentation on
each RGB video frame and publishes the results for geometric-semantic segmentation.
Segmentation results include a bounding box, segmentation mask, class label, and
confidence score for each object detection. Geometric-semantic segmentation (SDS)
partitions the depth image into convex regions, or segments, and combines them with
the semantic segmentation results.

Segments in the depth image that overlap the same instance mask are merged and
assigned the class label of the instance. Segments that do not match an instance are
labeled as unknown. The depth segmentation node then transforms each 2D segment
into a 3D point cloud and publishes these point clouds for the global segment map.

The 2D segmentation is also published in the form of a segment label map. This label
map assigns a unique label to all pixels of each segment in the depth image, i.e., it acts
as a segmentation mask for the geometric segments.

3.2.3 Global Segmentation Map
The global segmentation map (GSM) node takes on the task of integrating the per-frame
data into a consistent, global metric-semantic map. Primarily, this task consists of
merging points into voxels of the map, and keeping track of class and instance labels for
each voxel. This includes mapping the segment labels, which are unique only within a
frame, to global segment labels. Segments that overlap by a certain amount are also
merged in this stage.

The map is continuously updated during the system’s operation and can be published as
a labeled mesh at regular intervals (for example, every two seconds) or following an RPC
request. Vertex attributes of the mesh include segment, instance, and class labels. In
this way, the global map can be easily used as input to the generation of higher-level
scene representations such as scene graphs.

3.2.4 Novelty Detection and Category Discovery
The final parts of the framework are novelty detection (ND) and category discovery (CD),
implemented in a single node. This node collects scene data over longer periods of time
(in the range of several minutes to half an hour) and, when triggered, performs novelty
detection and category discovery on collected data to generate a data set for retraining
the segmentation model in an incremental learning step.

For this task, the node collects data from all other nodes, including RGB images from
the sensor node, segmentation feature maps from instance segmentation, segment label
maps from geometric-semantic segmentation, and global segment maps. Global segment

45

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

maps are published by the global map node and assign a global segment label to each
segment in the segment label maps.

This way the novelty detection node can keep track of which segments in each video frame
represent the same global segments. The global segment map also contains information
about merged segment, to keep the internal representation of segments the novelty
detection node in sync with the global map.

While there is no use of the global map on the side of the robot in our system, Figure 3.6
indicates potential uses in future systems by a dashed line between the global segment
map node and the robot. The global map could for example be used to steer exploration
of the environment by actively optimizing viewpoints and planning paths to improve the
3D reconstruction. With such an extension, the framework would form a closed control
loop allowing robots to continuously explore and improve their understanding of the
environment.

3.2.5 Data Stores
The system design contains three data stores, of which two are essential for operation.
The two essential ones store the instance segmentation models and data sets pertaining to
category discovery and incremental learning. The instance segmentation models include
the model that is currently used by the segmentation network at each point in time, and
loaded from the store during startup of the segmentation node. Models adapted from
the current one by means of retraining in an incremental learning step are also stored
here for use at the next iteration of scene recordings.

The data store for category discovery is mainly needed because of the size of the recorded
data sets, which range from 5 to 15 GB per scene (uncompressed), depending on the
amount of RGB-D video data. Since we record multiple scenes (five in our evaluations)
before each incremental learning step, the system may run out of memory if intermediate
data is not stored on disk after each scene recording. For novelty detection, the collected
data is loaded from the data store and preprocessed scene by scene before collectively
processing it in the category discovery step.

The final training data set for incremental learning is then written to the data store as
well, together with metadata for the data loader in the deep learning framework. Storing
this intermediate data also has the advantage that it allows to test novelty detection,
category discovery, and incremental learning with different algorithms and parameters
without having to re-run the whole object detection and mapping pipeline.

The third data store is connected to the sensor node, and can record or replay sensor
data. Data is stored in the form of ROS messages, with full message headers including
time stamps and divided into topics, in a ROS-specific file format called ‘bags’. Replaying
such files mimics the output of ROS nodes and as such can be used to test the system
repeatedly with new recordings, or existing recordings from publicly available data sets.
It also allows to run the system in offline mode, where a robot only records raw sensor

46

3.2. System Design

data during its mission and puts it in the data store afterwards, from which it is then
processed by the framework.

3.2.6 Synchronization

Nodes can be restarted individually and in any order without disrupting the system
operation. Message queues in publishers and subscribers store data until the respective
node is ready to transmit or receive messages. However, queue sizes are limited to prevent
out of memory conditions and nodes can miss messages if they are offline or too slow,
which can affect the results of 3D reconstruction.

For evaluation, we receive multiple messages from different topics with strict time
synchronization where possible. For example, to ensure that RGB video frames are
processed with their corresponding segmentation results, the instance segmentation node
publishes its results with the same time stamp as the RGB image the results are derived
from. On the receiving end, the depth segmentation node uses strict synchronization
on the RGB image and segmentation result topics so that corresponding messages are
always received together.

However, strict synchronisation is not possible for sensor input and odometry due to
sampling at different points in time (and possibly at different rates). Depending on the
type of RGB-D sensor, color and depth images may be captured independently, resulting
in slight time shifts and thus time stamps for each message.

Likewise, sampling points of odometry data may not match visual sensor data if derived
from a different source such as visual-inertial tracking built into a robot. In this case, nodes
rely on approximate time synchronization of topics, and for odometry, on interpolation
provided by the ROS tf26 library.

It should be noted that, due to slight variations in timing and the concurrent nature
of processing, the number of processed messages, and consequently the results of 3D
reconstruction and object detection, may vary between different runs even when using
the exact same sensor inputs, loaded from a data file.

As an additional optimization, we route RGB image messages through the instance
segmentation node, instead of passing it directly from the sensor node to depth segmen-
tation and category discovery. The instance segmentation node receives all RGB image
messages, and re-publishes those on a new topic which it has processed and published
results for.

Depth segmentation and category discovery nodes only subscribe to this new topic and
thus only receive messages processed by instance segmentation. In this way, network
load is reduced and RGB image topic subscriber queues do not fill up with messages that
are never processed.

6http://wiki.ros.org/tf2

47

http://wiki.ros.org/tf2

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

Figure 3.7: Overview of the data processing pipeline in Voxblox++: Each pair of RGB and
depth images is segmented with instance and geometric segmentation, respectively. Both
results are combined in a semantic refinement step, matching segments to object instances.
The object-centric map integrates each video frame, and keeps track of segments and
object instances over a complete recording session. From Grinvald et al. [GFN+19]

3.2.7 Additional Modules and Tools

The core functionality is extended by additional modules and tools to cover the full scope
of work from initial training to evaluation of results. For training and evaluating the
system, we combine the scene geometry, annotations, and 2D instance segmentations of
the SceneNN2016 and SceneNN2018 datasets, and convert the recordings of sensor data
into the bag file format with our own tools. A separate tool extracts a subset of this
data, including metadata, as an initial training set for instance segmentation.

For the initial training and incremental learning steps of the instance segmentation model,
we re-use the code supplied with [CGFC22] and adapted to our framework. Another tool
of ours performs the evaluation of the metric-semantic mapping results before and after
each retraining step. Additional code was written to provide the visualizations of results
for this thesis.

Test runs for generating data for evaluation and retraining are largely automated with
an additional ROS node. This node orchestrates the playback of sensor data for multiple
scenes in sequence, data collection and category discovery in the novelty learning node,
and storing meshes from the global segmentation map after each scene reconstruction
session. The incremental learning steps and segmentation model updates themselves
are not fully automated, as the additional complexity of implementing and testing this
functionality was not considered worthwhile in the context of this project.

3.3 Object-Centric Mapping

The 3D scene reconstruction and semantic mapping part of the framework is based on
Voxblox++ by Grinvald et al. [GFN+19]. It is an approach to image-based semantic

48

3.3. Object-Centric Mapping

mapping and object discovery and incrementally builds volumetric, object-centric maps
from RGB-D sensor data.

Voxblox++ combines works from object detection in RGB images and dense 3D recon-
struction, and extends object detection to novel objects of unseen categories. It builds
accurate metric-semantic maps with pose and shape information for objects and unknown
object-like instances.

The volumetric map representation is targeted at navigation and interaction planning
tasks, allowing these tasks to derive free space and connectivity information from the
reconstructed maps. The 3D representation is based on Voxblox by Oleynikova et
al. [OTF+17] and uses a voxel data structure to store a truncated signed distance field
(TSDF).

The main features of Voxblox++ in the context of this framework are the geometric-
semantic segmentation scheme, the data association strategy, and map integration.
Geometric-semantic segmentation can be further divided into geometric segmentation
and instance-aware semantic refinement. These features comprise the four basic steps that
are used to process each RGB-D video frame for scene mapping. Figure 3.7 illustrates
these steps of the Voxblox++ pipeline.

3.3.1 Geometric Depth Segmentation
Geometric segmentation follows the method of Furrer et al. [FNF+18]. It is a convexity-
based approach that detects real-world physical boundaries in depth images associated
with each video frame, and outputs a 2D image of segment contours. Figure 3.8 shows
an example of RGB and depth input and the resulting geometric segmentation.

The segmentation process detects contours based on depth information. It assumes
objects are mostly convex shapes or comprised of convex shapes. The segmentation
process first estimates normal vectors from the depth image. It then finds concave regions
by comparing angles between adjacent normal vectors.

Lastly, it measures the 3D distance of adjacent pixels to locate large depth discontinuities.
These depth discontinuities indicate physical boundaries between different objects. The
geometric segmentation then creates a set of regions from both the concavity and depth
discontinuity measurements.

This partition of the image into a set of closed 2D regions forms the basis of map elements
for the 3D reconstruction. Using information about the current camera location, the 2D
regions can be transformed into corresponding 3D segments in the global map coordinate
system.

This step alone is usually not sufficient as an object detection mechanism to provide
meaningful segmentation, as a convexity-based approach tends to over-segment objects
and cannot make a distinction between different object instances. An example of over-
segmentation can be seen in the geometric depth segmentation step of Figure 3.7.

49

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

(a) (b) (c)

Figure 3.8: Example of geometric depth segmentation on a single video frame, as
performed by Voxblox++. Subplots show, in order: a pair of RGB and depth input
images, and the segmentation result of similar depth frame. In the result, each segment is
marked with a numbered bounding box for visualization purposes. RGB input is included
for reference only and not used in geometric segmentation.

(a) (b)

Figure 3.9: Example of instance-aware semantic segmentation on a single video frame,
as performed by Mask R-CNN Benchmark. Subplots show RGB input on the left and
the segmentation result on the right. Results are visualized with colored segmentation
masks, bounding boxes, and class labels.

3.3.2 Instance-Aware Semantic Refinement

Instance-aware semantic refinement has the purpose of inferring categories for 3D segments
and grouping them into distinct object instances. The refinement step first applies
instance segmentation to the RGB image, which detects object instances in the image
with bounding boxes, and predicts segmentation masks and class labels for each object.
It then assigns segments from the geometric segmentation step to object instances.
Figure 3.9 gives an example of instance segmentation results visualized with object
bounding boxes, segmentation masks, and class labels.

Semantic refinement associates segments with objects by the overlap between their
corresponding 2D regions and segmentation masks. Each segment is assigned to the
object with the highest overlap, if the overlap percentage is above a predefined threshold.
Such segments are then said to belong to this object instance, and to the category of the

50

3.3. Object-Centric Mapping

(a) Object-Centric Map (b) Ground Truth Instance Map

(c) Semantic Instance Segmentation (d) Geometric Depth Segmentation

Figure 3.10: Comparison between instance segmentation, geometric segmentation, as
in [FNF+18], and object-centric mapping, as provided by Voxblox++. Compared to geo-
metric segmentation, the object-centric mapping approach can prevent over-segmentation
of non-convex objects (blue circle). In comparison with instance segmentation, Voxblox++
can also detect objects without clear geometric boundaries (red circle). All images from
Grinvald et al. [GFN+19].

object. Segments not assigned to any object are left without semantic information.

If multiple segments are associated with the same object they are presumably over-
segmented and belong to the same non-convex object instance. A comparison between
examples of object-centric mapping depth segmentation, and semantic instance segmen-
tation is shown in Figure 3.10.

3.3.3 Persistent Data Association
Initially, there is no correspondence between segments from different frames. As Pham
et al. [PHNY19] point out, the straightforward approach of propagating instance-based
segmentation from 2D to 3D is complicated by the fact that the segmentation network
only predicts one frame at a time.

It is therefore necessary to track instances over time, which Pham et al. regard as
a challenging problem in this approach. In this regard, instance tracking is the most

51

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

important feature of Voxblox++ when it comes to instance-aware semantic mapping.

Voxblox++ solves this problem and matches per-frame predictions to segments in the
global map with its data association strategy. This strategy defines persistent geometric
segment and object instance labels that are unique and valid during the whole scene
mapping session. It maps local segments and object instances in the current frame to
persistent, or global, labels based on the overlap of local and global segments in the
global map.

For each frame, the data association strategy matches predicted segments to segments in
the global map, and object instances from the current frame to persistent instance labels.
Persistent segments that match predicted segments can only be those which are visible
in the current frame, as there can be no overlap otherwise. Finding the best match for
each segment involves projecting the segment points into the voxel map and counting the
segment labels to which the voxels belong.

For each visible segment, the corresponding predicted segment label is the one with the
highest overlap. Matches only occur if the overlap is greater than a threshold of 20 %, to
prevent matches between poorly overlapping segments.

The data association formulation disallows matching more than one segment in the current
frame to each segment label in the map. This makes it possible to fix under-segmentations
over time, i.e., two or more distinct segments stored as one. If matching more than one
segment to each label were allowed, distinct segments would always be matched to the
same under-segmented label of the map.

Instance tracking matches persistent segment labels to object labels, based on pairwise
counts in the global map between segment and instance labels. Specifically, for each
segment with an object instance in the current frame, if it is not assigned to a persistent
instance label yet, it is assigned to the instance label with the highest pairwise count.
If there is no match, a new object label for this instance is created. These counts are
initialized and updated in the final data integration step.

3.3.4 Global Data Integration
The last major step in the processing pipeline involves the incremental fusion of geometry,
class, and instance information into a global TSDF volume. For this purpose, Voxblox++
extends Voxblox with the incremental fusion of class and instance labels.

As in Voxblox, this step fuses 3D segments in current frame into the global map,
and in a similar fashion does so for class and instance labels. We refer the reader
to [OTF+17] and [GFN+19] for a detailed description of the map integration method
and implementation. Through the additional information stored in the map, each 3D
segment is defined by the sets of voxels containing its segment label.

Finally, for each per-frame segment with an associated per-frame object instance, this
step updates the pairwise counts between its corresponding global segment and object

52

3.3. Object-Centric Mapping

label. Pairwise counts between global segment and class labels are updated in the same
way. A formal description of all steps can be found in [GFN+19].

As Grinvald et al. note, the quality of the 3D reconstruction is in part affected by camera
pose estimation errors that, in their evaluation, accumulate to up to 0.5 m. However,
as their work focuses on mapping, they leave the issue of inaccurate localization and its
effect on map quality to future work.

In a similar vein, the focus of this work lies in the effect of incremental learning on
metric-semantic mapping, and the use of object-centric scene representations for novelty
detection and category discovery. Inaccuracies in 3D reconstruction are therefore less of
a concern for evaluation, especially when the same or very similar scene reconstructions
can be recreated from recorded sensor data repeatedly, but with different instance
segmentation models.

3.3.5 Adaptation for Novelty Detection

The Voxblox++ implementation provides several additional features that are particularly
useful for the visualization and evaluation of mapping results. These include publishing
the global volumetric map as a point cloud, and storing the map and individual segments
as meshes. The map mesh provides per-vertex annotations for persistent segment,
instance, and class labels.

The global segmentation map node offers RPC services for requesting a snapshot of the
map and resetting the map after each reconstruction session. We use these services in
the control node for orchestrating the evaluation of different scene recordings from the
SceneNN datasets.

There are only a few changes to Voxblox++ needed to integrate it into our framework.
First of all, while the code base of Voxblox++ comes with an implementation of Mask R-
CNN for instance segmentation, we use a different implementation, namely Mask R-CNN
Benchmark7 from Cermelli et al. [CGFC22], that is modified for incremental learning.
This change is as simple as replacing the instance segmentation node in Voxblox++ with
our own version, as the format of inputs and outputs of the nodes are basically the same.

We extend the geometric segmentation node to publish a segment label map for each
video frame, i.e., a 2D image that assigns a per-frame segment label to each pixel of the
depth image. Likewise, we collect and publish the mapping of per-frame segments to
persistent segment labels in so-called global segment maps.

These global segment maps also include information about segment merges that occur in
the semantic refinement stage. in In this way, the category discovery node has all the
information required to track segments over multiple video frames.

7https://github.com/facebookresearch/maskrcnn-benchmark

53

https://github.com/facebookresearch/maskrcnn-benchmark

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

3.4 Instance-Aware Semantic Segmentation
Instance-aware semantic segmentation is performed by a Mask R-CNN network, adapted
for class-incremental learning by Cermelli et al. [CGFC22]. They in turn base their
adaptation on the so-called Mask R-CNN Benchmark8 implementation.

Mask R-CNN is itself a further development of Faster R-CNN, a two-stage object detection
network with improved region alignment, and adapted for instance segmentation. As
such, it first applies a class-agnostic region proposal network (RPN) to the image.

This network produces a configurable number of region proposals from a limited number
of rectangular areas with fixed aspect ratios, called anchors, and with binary objectness
scores. Non-maximum suppression (NMS) eliminates overlapping proposals, and the
remaining proposals are fed to the classification head.

The classifier assigns for each region and every class a confidence score and a bounding
box regression. Regions that are assigned a class label other than ‘unknown’ are then
processed by the class-specific segmentation head to produce the instance segmentation
masks, in the form of one binary mask per region and class. Proposals labeled as unknown,
or background, do not have an associated segmentation mask.

3.4.1 Inference Output

The inference stage of the network directly outputs the segmentation results as bounding
boxes with associated class labels and segmentation masks. This stage of the network
is used as-is, without any changes to its functionality. The segmentation results are
akin to panoptic segmentation [KHG+18] in that the networks predicts both objects and
structures, also referred to as ‘things’ and ‘stuff’ in the literature.

One difference to panoptic segmentation is the fact that structure segments, such as walls
and floors, receive unique instance labels during map integration. However, segments
with a geometric continuation are typically merged so that there are only a small number
of structure instances in each scene.

It should also be noted that scene graph generation can make use of structures as
instances when deriving support relationships and other relations between scene elements,
for example in the work of Wald et al. [WNT22].

Unlike panoptic segmentation, the masks in instance-aware semantic segmentation can
overlap, due to the process of calculating each mask individually for every detection.
However, this does not pose a problem for subsequent stages in our framework, as
segments are only assigned to the object instance of a mask with which they have the
largest intersection, and instance assignments are integrated over multiple frames to
eliminate noise and spurious detection results.

8https://github.com/facebookresearch/maskrcnn-benchmark

54

https://github.com/facebookresearch/maskrcnn-benchmark

3.4. Instance-Aware Semantic Segmentation

3.4.2 Backbone Network
The RPN, classifier, and mask head process each image based on features extracted by a
‘backbone’ network. Mask R-CNN, in the implementation at hand, comes with two types
of backbones: ResNet and FPN. According to [HGDG17], using an FPN backbone leads
to gains in both accuracy and speed.

We use a ResNet-50 backbone with C4 architecture as the default, the same that is used
for incremental learning in instance segmentation by [CGFC22]. The backbone network
has a depth of 50 layers and the final convolution layer 4 is used for feature extraction
by the downstream tasks.

Inputs to the inference stage of the network use the native resolution of RGB sensor data
at 640×480 pixels. The final layer of the backbone network outputs a feature map with
a spatial resolution of 40×30 and 1024 channels. This feature map is used by the box
and mask heads, and also published for the category discovery stage.

3.4.3 Initial Training
Initial training of the segmentation network is done with ImageNet pretraining initializa-
tion and fine-tuning on the domain dataset, which can be considered a de-facto standard
approach for object detection [LZZ21]. ImageNet is a large-scale visual classification chal-
lenge and dataset. The pretraining approach uses classification data and low-resolution
images to train a classification network from scratch.

The feature extraction stage of this network is then transferred to a network designed
for the downstream task, for example object detection, instance segmentation, or pose
estimation. Fine-tuning of the second network is applied with a dataset for the downstream
task, and with higher-resolution images.

This ‘backbone initialization’ intends to provide the second network with a more gener-
alizable feature extraction stage from which the target vision tasks can benefit. A big
drawback is the GPU and RAM heavy nature of this pretraining process, which can take
multiple days to complete even on large compute clusters, depending on the batch size
and training schedule [GDG+17].

For initial training of the instance segmentation network, we use a freely available
Detectron model9 pretrained on ImageNet as the feature extraction backbone. Fine-
tuning is performed with a set of images and metadata extracted from the SceneNN2016
and SceneNN2018 datasets, and containing a selected subset of classes forming the basic
knowledge of the model.

Pretraining vs. Training from Scratch

Alternatives to ImageNet pretraining include Direct pretraining, Montage pretraining, and
training from scratch. He et al. [HGD18] show that it is possible to train object detectors

9https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/MSRA/R-50.pkl

55

https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/MSRA/R-50.pkl

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

from scratch with longer training times. They also show that ImageNet pretraining
accelerates convergence but does not improve the detection performance of the final
network.

Training from scratch uses larger image sizes in the training stage, which leads to
increased memory consumption and in turn reduced batch sizes. To counteract this issue,
training from scratch introduces Group Normalization (GN) and Synchronized Batch
Normalization (SyncBN) as new modules for normalization. However, GN increases
memory consumption and model complexity, and SyncBN increases the runtime of the
training procedure as it requires cross-GPU communication.

The Montage pretraining approach trains the feature extraction network on a classification
task just like ImageNet pretraining, but needs a classification head that is specific to this
method. For this training step it uses montages of images from the downstream task
data set as input, which consist of the assembly of multiple cropped images. According
to the comparison by [LZZ21], Montage pretraining achieves comparable performance to
ImageNet pretraining in a fraction of the time. The downside of this approach is the
additional complexity in training.

Direct pretraining [LZZ21] offers a simpler approach to pretraining with higher accuracy
and faster training steps. Compared to training from scratch with GN, inference is also
faster. This method provides a trade-off between image resolution and batch size, with
a small image resolution during initial training and a large resolution in fine-tuning,
equivalent to ImageNet pretraining.

This allows for larger batch sizes in the first training step, and increases the performance
when combined with regular batch normalization. Like training from scratch, this
approach only uses the target task dataset as input. The study of [LZZ21] shows that
performance, as measured by mAP, increases with batch size and image resolution, and
saturates at higher parameter values. In their experiments, a batch size of 8 and image
resolution of 640 in width achieve the best performance.

3.4.4 Training Parameters

Parameter Initial
Training

Incremental
Learning

Batch Size 8 4
Base Learning Rate 0.01 0.0004

Steps 10000, 12500 3250
Iterations 18000 10000

Weight Decay 0.0001 0.0001
Learning Rate Decay 0.1 0.1

Momentum 0.9 0.9

Table 3.1: Instance segmentation learning parameters

56

3.4. Instance-Aware Semantic Segmentation

We choose learning parameters based on the same network architecture in [CGFC22],
which are summarized in Table 3.1. In contrast to [CGFC22], the batch size is increased
to 8 in initial training, and the base learning rate and number of iterations are increased to
0.01 and reduced to 18000, respectively, according to the Linear Scaling Rule [GDG+17].

In the retraining step, all images are cropped first to remove the black borders in depth
images, which do not cover the full field of view of the RGB sensor. This border and its
effect on depth segmentation masks can be seen in Figure 3.8.

Since the RGB image extends beyond the borders of the visible area in the depth
image, not cropping the dataset images would skew the retrained model towards ignoring
objects near image borders. For initial training, this step is not required as the instance
segmentation masks and bounding boxes are derived from renderings of the ground truth
mesh and not from depth images.

For data augmentation in initial training, we use random horizontal flip as the only
transformation, which is enabled in Mask R-CNN Benchmark by default. In retraining,
transformations additionally include random crops to a size of 480×360 and resizing to
full image dimensions.

Image normalization uses the same values as used by the pretrained model, which are
(102.9801, 115.9465, 122.7717) for pixel means, and (1.0, 1.0, 1.0) for standard deviation,
with RGB pixel values ranging from 0 to 255 in each color channel.

3.4.5 Incremental Learning
When supplied with a data set of new classes, the instance segmentation model can be
retrained in one or more incremental learning steps. For this step, we use the method of
Modelling Missing Annotations (MMA) from Cermelli et al. [CGFC22].

This work provides a new approach to class-incremental learning for object detection and
an extension of the method to instance segmentation. It is applicable to two-stage object
detectors, in particular Faster R-CNN and related architectures such as Mask R-CNN.
The implementation is based on Mask R-CNN Benchmark, however its application is not
limited to this particular network architecture.

Knowledge Distillation

MMA addresses ‘catastrophic forgetting’, that is the loss of performance on known classes
when retraining the network, by revisiting the knowledge distillation framework from
Shmelkov et al. [SSA17] for object detection and instance segmentation tasks. Knowledge
distillation is a form of regularization that involves two models, a student and a teacher
model.

During learning, the student model is trained to mimic the output of the teacher model,
and learn the new classes from the retraining dataset at the same time. As per the
standard training protocol for class-incremental learning, the retraining dataset contains

57

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

Figure 3.11: Illustrative example of an incremental object detection learning task. Each
row represents a single step in incremental learning. According to the training protocol,
a model is only presented with new classes in ground truth data, but expected to predict
old and new classes alike. In every image, future classes can be included that have not
been learned yet. From Cermelli et al. [CGFC22].

annotations only for instances of classes that are new in this learning step. However,
training images typically contain instances of old and future classes as well.

In the standard formulation of knowledge distillation, this leads to the student model
learning to associate these classes with the background, exacerbating the problem of
catastrophic forgetting and making learning new classes more difficult. Figure 3.11
illustrates this issue for three training steps and a set of old, new, and future classes.

Full retraining, with a complete dataset containing all classes, does not have the problem
of catastrophic forgetting but can quickly become prohibitively expense in terms of
computational overhead, especially when frequently retraining the network. It might also
not be possible to store the original dataset indefinitely, for example because of copyright
issues. While it is be possible to avoid full retraining with a rehearsal method, this would
still require retaining on a subset of all previous training sets.

Modelling Missing Annotations

Cermelli et al. [CGFC22] identify a particular problem with incremental learning in object
detection that has not been addressed so far. In a standard object detection training
pipeline, regions of interest (RoIs) that match a ground truth annotation (positive RoIs)
are assigned the annotation’s class label, and RoIs that do not match any annotation
(negative RoIs) are assigned to the background.

58

3.4. Instance-Aware Semantic Segmentation

Figure 3.12: Overview of MMA in a knowledge distillation framework for object detection:
the student and teacher models consist of feature extraction (FE), region proposal network
(RPN), and fully convolutional network (FCN). Both models are input an image where
only new classes are annotated. The student model associates unannotated objects (old
class, in blue) with old classes or the background. For objects with annotations (new class,
in red), the student maximizes the probability of the teacher’s background belonging to
the background or a new class. Image from Cermelli et al. [CGFC22]

When a negative RoI is associated with the background in incremental learning tasks,
this causes two types of problems: first, if the RoI contains an old class, the model learns
to predict this class as background, amplifying catastrophic forgetting. If, on the other
hand, the RoI contains a future class, and it is predicted as background, this will make
learning this class in following training steps more difficult.

MMA reformulates the classification and distillation loss to associate negative RoIs with
the background or an old class, and positive RoIs with the background or a new class. In
other words, it allows the student model to predict either an old class or the background
in any regions not associated with an annotation of a new class, and adjusting the
background probability of the teacher model to match the probability of having a new
class or the background.

The effect of MMA on knowledge distillation loss is illustrated in Figure 3.12. With this
formulation, experiments in [CGFC22] show that this method outperforms others on
single-step and multi-step object detection tasks on the Pascal VOC dataset without
reusing images from earlier training steps, and outperforms other baselines for the instance
segmentation task on the Pascal SBD 2012 dataset.

Adapted Knowledge Distillation Loss

Describing the changes of MMA in more detail, we start with the training loss of Faster R-
CNN, which consists of classification and regression terms for the RPN and classification
head:

ℓfaster = ℓRP N
cls + ℓRP N

reg + ℓRCN
cls + ℓRCN

reg

59

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

MMA adapts the term ℓRCN
cls for unbiased classification loss by learning only new classes

on positive RoIs, and avoids assigning negative RoIs to background by maximizing over
the sum of background and old class probabilities. This handles missing annotations
within the regular loss function. Knowledge distillation introduces two loss terms, in
addition to the common term for Faster R-CNN ℓfaster:
ℓ = ℓfaster + γ1ℓRCN

dist + γ2ℓRP N
dist

These terms force the class scores and box coordinates of the student to closely follow
the teacher’s output and thus avoid forgetting on old classes. However, as mentioned
earlier, new classes observed by the teacher in past training steps were assigned to the
background, and thus make learning harder for the student network.
MMA changes ℓRCN

dist to allow the student to predict new classes or background on regions
classified as background by the teacher, and follows the teacher prediction on old classes.
For the second term, ℓRP N

dist , the student model follows the teacher only if its objectness
score is lower than the teacher’s. The idea being that a higher objectness score in the
student likely means it has detected an instance of a new class.
For the task of instance segmentation, the loss function includes additional terms for
distillation and classification loss:
ℓ = ℓmask + γ1ℓRCN

dist + γ2ℓRP N
dist + γ3ℓMASK

dist , ℓmask = ℓfaster + ℓMASK
cls

The distillation loss term ℓMASK
dist with hyper-parameter γ3 computes the per-pixel binary

cross-entropy loss between teacher and student model masks, but only for old classes.
We refer the reader to [CGFC22] for a complete description of the computation of the
loss function.
The hyper-parameters γ1, γ2, and γ3, are set to 1, 0.1, and 1, respectively. In [CGFC22],
γ2 is decreased, and the learning rate increased when learning more classes at once. In
this framework, both parameters are fixed for simplicity, even though the number of new
categories may vary depending on cluster selection.

3.5 Novelty Detection and Class Discovery
Our framework draws its main inspiration for novelty detection and class discovery from
two previously published works. From Nakajima [Nak20] we incorporate the idea of using
3D segments as the basis of novelty detection and feature extraction, and from Uhlemeyer
et al. [URG22] we apply their method of category discovery with feature embedding and
clustering. However, our approach is different from both in several key aspects.
With regards to [URG22], both our and their approach cluster unknown objects based on
visual similarity, as defined by features extracted from a Convolutional Neural Network
(CNN). In each case, clusters define new classes and the training data for incremental
learning steps. According to [URG22], this is also the prevailing method for class discovery
in other works. Figure 3.13 illustrates the general idea of class discovery based on feature
extraction.

60

3.5. Novelty Detection and Class Discovery

Figure 3.13: Feature extraction for category discovery, as proposed by Uhlemeyer et
al. [URG22]. Segments from novelty detection are input to a CNN to generate feature
vectors, which are embedded in a lower-dimensional space. Clustering groups similar
segments to create novel categories. Image from Uhlemeyer et al. [URG22].

For clustering, we use constrained clustering, i.e., we add constraints to the cluster
membership of individual samples, while the clustering in [URG22] is unconstrained. The
intention being that different views of the same segment are supposed to remain in the
same cluster, as they are already known to belong to the same object due to segment
tracking in the global map.

Uhlemeyer et al. assess segmentation quality estimates on connected components of
semantic segmentation, and use components with low estimates as candidates for cluster-
ing. In contrast, we use segments from depth segmentation with no associated semantic
instances as candidates for clustering.

For feature extraction, [URG22] crop rectangular candidate regions from RGB images
and feed them into an image classification CNN trained on ImageNet. We extract features
directly by cropping candidate regions from a feature map using geometric-semantic
segmentation masks. Our feature map is reused from instance segmentation, which is
pretrained on ImageNet. In both cases, the features are taken from the final layer of the
CNN before classification or object detection.

3.5.1 Overview
In our framework, novelty detection and category discovery work on labelled segments
extracted from RGB-D images by the geometric-semantic segmentation of Voxblox++.
That is, the boundaries of these segments are defined by geometrical features of the
environment and not by the segmentation masks from object detection.

This has the positive side effect of novelty detection being less reliant on segmentation
masks with highly accurate predictions. In addition, all of the processing in this stage is
image-based and done on a per-frame basis, and does not involve any 3D data.

3.5.2 Scene Data Recording
Novelty detection and category discovery are performed in a semi-offline fashion. During
each scene reconstruction session, all relevant data about global segments, including

61

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

RGB video frames and segmentation feature maps, is recorded continuously as they are
published by the other nodes in the framework.

When a certain amount of data has been collected, the novelty detection node is signalled
to stop data collection, find novel segments and perform category discovery, and output
a new training set for re-training the instance segmentation model. In our evaluation, we
signal the novelty detection node after sets of five scene reconstructions each.

However, other signal conditions could be used as well, for example the duration of
recordings and the amount of data collected, or thresholding based on a metric that
periodically measures data quality or category discovery performance with the data at
hand.

3.5.3 Data Processing Pipeline
The main steps of data processing for novelty detection and category discovery in the
framework are summarized as follows: data collection gathers all segment data and
metadata that is relevant for category discovery. Novelty detection groups the data into
known and unknown segments, and only uses the latter for category discovery.

Category discovery computes one or more low-dimensional embeddings for each segment,
and groups these embeddings with constrained clustering. We determine an internal
measure of the quality of each cluster and select the top N clusters as new categories.
The final segment data from category discovery is then stored, to be consumed as a
training dataset for incremental learning of the instance segmentation model.

It should be noted that, while most of the data processing is performed offline, other
nodes in the system do not have to be suspended during category discovery. Instead,
category discovery and incremental learning can be relegated to a background process
until the updated segmentation model is ready to be incorporated into the system.

There is also some room to perform parts of segment data preprocessing online, at the
expense of additional computational complexity during data collection. However, in this
framework we have opted to include preprocessing in the offline stage to simplify data
handling and to allow for easy testing and fine-tuning of novelty detection and category
discovery.

3.5.4 Segment & Instance Tracking
As the first step of novelty detection, the system continuously collects a subset of the data
that is published. This includes data that is processed by instance and geometric-semantic
segmentation and the global segmentation map for each video frame.

Each global segment can appear in multiple video frames, and we want to process multiple
observations of every segment for category discovery. Hence we refer to each observation
as a segment view, to distinguish it from the global segment itself which is unique across
views. In order to keep track of multiple observations for each segment, the system

62

3.5. Novelty Detection and Class Discovery

processes the association between per-frame and global segment labels as well as segment
merging, as published in the global segment map.

For the extraction of features for each segment view, the segmentation features published
by instance segmentation, and the segment label map from depth segmentation are stored
as well. Lastly, the original RGB images are collected for training data generation.

Segment data and metadata is stored in a hierarchical data structure that keeps track of
segments over multiple frames and associates them with the per-frame data, i.e., RGB
images, segment label maps, and segmentation feature maps. This data structure stores
all information for a single scene. When recording multiple scenes, each has its own data
set to keep persistent labels separate, as they are unique only within each scene.

3.5.5 Novelty Detection
In the next step, we group all segments into known and unknown objects for novelty
detection, based on their association with an object instance. To this end, the novelty
learning node retrieves the pairwise counts between segment and object instance labels,
referred to as instance counts in Figure 3.6, from the global segmentation map. Known
segments are those which are assigned to an object instance, i.e., their pairwise counts are
strictly positive. All other segments are unknown and candidates for category discovery.

In this step we also filter segment views to increase the quality of the resulting training
data set and the balance with respect to potential novel categories. We only include a
maximum ratio, and a fixed total number n of segment views per segment, 15 in this case,
to prevent objects that are frequently visible from dominating the training data set. That
is, with the number of segment views vi for segment i. we use only max(1, min(vi/r, n))
of the views.

This subset is randomly sampled from all available views for each segment. More
sophisticated methods for sample selection would also be possible, e.g. by taking the
position of the camera into account, to capture each object from a variety of angles that
is as large as possible.

3.5.6 Feature Extraction
After the selection of segment views has been determined, each segment view is assigned
a feature vector based on the feature map from instance segmentation. The feature map
is masked with the binary segmentation mask of the segment, for the video frame the
segment view appears in. The segmentation mask is again derived from the segment
label map.

Since the feature map has a low spatial resolution of 40×30, it is first up-scaled to the
resolution of the segmentation mask, which equals that of the depth image, using bi-linear
interpolation. The channels in the feature map are then averaged over the segment area,
resulting in a single, high-dimensional feature vector per segment view.

63

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

If the segment view consists of two or more merged segments, we use the union of their
areas to compute the feature vector. We hypothesize that the up-scaled low-resolution
feature map in Mask R-CNN includes spatial context when extracting segments, similar
to rectangular crops in [URG22].

This feature vector is stored alongside the other segment data so it is possible to keep
track of which features belong to which global segment label and frame. For performance
reasons, up-scaling and averaging segmentation features is implemented on the GPU,
while all other computations in this stage are done on the CPU.

Computing average features over segments is done offline for simplicity, instead of in the
novelty learning node when frames are received. Segment masks may be merged during
recordings, e.g. for segments that are disjoint in the first frame and connected later on by
a segment not visible initially. For this reason it is not sufficient to compute the feature
vector of each segment as it is published.

To handle these cases in an online fashion, an incremental update scheme could be devised
that updates average feature vectors using the segmentation maps and feature maps
when segments are merged. However, this update scheme is beyond the scope of the
current implementation.

Segment views are processed frame-by-frame, as caching up-scaled feature maps would
require too much memory, and recomputing the interpolated feature maps for each view
would be too computationally heavy. Likewise, features are computed per-scene since
loading more than one scene data set would exceed available memory on the test system.

3.5.7 Feature Embeddings

At this point each feature is assigned an ID that is unique across multiple scenes, as
global labels alone are not sufficient to distinguish features from different scenes. In
this framework, feature IDs simply consist of the scene name and global segment label
combined.

The feature vectors are not well suited for conventional clustering methods, due to the
fact that distances between arbitrary pairs of vectors are likely to be very similar in
high-dimensional spaces. This well-known observation is part of a series of problems
when working with high-dimensional data or algorithms, and often subsumed under the
notion of the ‘curse of dimensionality’ [Dom12]. Therefore, in order to compute suitable
embeddings for clustering, we follow the same approach as [URG22].

We apply Principal Component Analysis (PCA) to reduce the dimensionality of feature
vectors, and use t-distributed Stochastic Neighbor Embedding (t-SNE) with an Euclidean
distance metric to compute 2D embeddings. This procedure, as used by Uhlemeyer et al.,
is taken from an earlier evaluation of feature extractors, distance metrics, and feature
dimensions, being the best performing setup in comparison [ORF20]. The parameters
used for both methods are listed in Table 3.2.

64

3.5. Novelty Detection and Class Discovery

Parameter Value
PCA Components 50
t-SNE Components 2
t-SNE Perplexity 30

t-SNE Learning Rate 200
t-SNE Early Exaggeration 12

t-SNE Max. Iterations 5000

Table 3.2: Parameters for segment feature embedding with PCA and t-SNE.

PCA transforms the feature vectors into a lower-dimensional space while minimizing
the sum of squared errors of the reconstruction, and minimizes information loss from
dimensionality reduction. Embedding with t-SNE is originally designed for the visual-
ization of high-dimensional data in two or three dimensions. It tries to minimize the
Kullback-Leibler divergence between joint probabilities of the high- and low-dimensional
space.

Since the Kullback-Leibler divergence is not convex, the optimization process can end up
in local minima, and the output of t-SNE depend on its initialization10. It can therefore
be useful to start t-SNE with different initial values and pick the best result, however
this is not done in our framework.

In the embedding step, we use features from all scenes combined to compute the principal
components and the embeddings with t-SNE. This intends to allow the following clustering
step to group objects from different scenes in one cluster, and thus provide an opportunity
for category discovery to form more general novel categories across scenes.

3.5.8 Category Discovery
Following the approach by [URG22], a traditional clustering method is used to group the
feature embeddings into novel categories. The clustering method of choice is Density-
Based Spatial Clustering of Applications with Noise, or DBSCAN for short [EKX+96].

This method assumes clusters to form areas of high sample density, separated by low-
density areas. As such, it can unambiguously detect noise and clusters that are non-convex,
unlike for example k-Means.

DBSCAN classifies samples in the data set as core and non-core points or noise. Core
points are those with a minimum number of neighbors nmin within a distance ϵ. Non-core
points are within the distance threshold of core points but do not have a minimum
number of neighbors, and intuitively represent the fringe of clusters.

The clustering method recursively groups core points within distance ϵ to from clusters,
and assigns each a cluster label. Non-core points that are neighbors of core points are

10https://scikit-learn.org/stable/modules/manifold.html#t-sne

65

https://scikit-learn.org/stable/modules/manifold.html#t-sne

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

Parameter Value
Distance Metric Euclidean

Constraint Factor 0.125
DBSCAN ϵ 2.5

DBSCAN Neighbors 10
Cluster Min. Size 30

Cluster Min. Score 0
Max. Pseudo-Labels 20

Table 3.3: Parameters for DBSCAN clustering and must-link constraints approximation.

assigned to the respective cluster as well. Isolated points are labeled as noise and do not
belong to any cluster.

DBSCAN has two essential parameters, the minimum number of neighbors nmin and the
maximum neighbor distance ϵ. The maximum distance is the most critical parameter
and needs to be set according to the data set. A value too small or too large will result
in no clustering occurring or most samples ending up in a single cluster.

The number of neighbors controls the tolerance of clustering towards noise. For larger
data sets and noisy data it can be beneficial to increase this value. Table 3.3 lists the
parameters used in constrained clustering.

When clustering samples with multiple segment views for the same segment, we want
these features to end up in the same cluster because they must belong to the same
object. Constrained clustering can model this information with must-link constraints,
i.e., additional constraints that two or more samples must always be assigned to the same
cluster.

For DBSCAN, we can use a precomputed distance matrix and reduce the distance between
features from the same segment to approximate must-link constraints. Instead of setting
the distances for these feature pairs to zero, we relax the must-link constraints as a way
to balance similarity based on geometric segmentation and visual features.

This may lead to assigning segment views from the same segment to different clusters,
although geometric segmentation may not be correct to begin with, e.g. when two
adjacent objects are detected as one segment.

The results of clustering are one cluster label per embedding and thus per segment view,
and the labelling of samples as core or non-core points. The results of DBSCAN are
deterministic, but the assignment of non-core points to clusters can vary depending on
the ordering of data11. In the following steps, only core points are considered as belonging
to clusters. Non-core points and their associated segment views are treated as noise and
discarded.

11https://scikit-learn.org/stable/modules/clustering.html#dbscan

66

https://scikit-learn.org/stable/modules/clustering.html#dbscan

3.5. Novelty Detection and Class Discovery

3.5.9 Cluster Selection
As the clustering step may return a large number of clusters, it is useful to limit the
total number of novel categories in each incremental learning step. For this purpose, the
clustering quality is measured, and only the top k clusters are used as training data. We
estimate cluster quality based on Silhouette Coefficients [Rou87] as an internal measure
of cluster cohesion and separation, as well as on cluster sizes and numbers of segments.

The Silhouette Coefficient for a point i is defined using the mean intra-cluster distance
ai and the mean nearest-cluster distance bi, as ci = (bi − ai)/max(ai, bi). The Silhouette
Score for the clustering is taken to be the average of all coefficients. Similarly, we can
define scores for single clusters as the average of coefficients of its samples.

Silhouette Coefficients are bounded by −1 and 1, with large negative values indicating
incorrect clustering and 1 indicating highly dense clusters. Values around zero are typical
for overlapping clusters. Well-separated and dense clusters produce higher scores12.

In addition to cluster cohesion and separation, we also want to take cluster sizes and the
number of different segments within each cluster into account. Intuitively, each cluster
should not only be dense and well-separated, but generalize to a larger set of segments
to increase its usefulness as a new category.

In order to capture this idea, the number of all segment views for each unique segment
in each cluster is counted to compute a weight for its Silhouette Score. Given a set of n
unique segments li in a cluster c, and their respective number of segment views ki, the
cluster weight wc is computed as

wc = log(�n
i=1 ki) = �n

i=1 log(ki)

With the Silhouette Score sc of cluster c, its final score fc is defined as fc = wc∗s2
c∗sign(sc).

Here, the Silhouette Score is squared to favor smaller clusters with higher positive scores
over larger clusters with lower positive scores. The sign function preserves the sign of sc

such that the final score is negative if sc is negative. Sorting clusters by their score and
taking the top k then gives the final result of category discovery.

3.5.10 Training Data Preparation
In preparation for the incremental learning step, a new training data set is written based
on the results from category discovery. First, we group all segment views associated with
sample points by scene, based on their unique IDs. Since the scene data sets are too
large to fit into memory at once, the segment views are processed scene-by-scene.

For each scene, the information about associated segment views and the video frames
they appear in are collected from the scene data set. The video frames are then written
as image data for the training set. This includes the segmentation mask derived from the

12https://scikit-learn.org/stable/modules/clustering.html#
silhouette-coefficient

67

https://scikit-learn.org/stable/modules/clustering.html#silhouette-coefficient
https://scikit-learn.org/stable/modules/clustering.html#silhouette-coefficient

3. Unsupervised Incremental Learning in Open-World Object-Centric Mapping

segment label map, bounding box coordinates computed from the segmentation mask,
and a pseudo-label based on the cluster index as a class label.

For each video frame, we enumerate the segments that appear in this frame, and write
out all segments of each new category as an instance segmentation annotation. In this
step, it is important to include all segment views from selected segments, not just the
segment views used for clustering. Otherwise segmentation masks would be incomplete,
violating annotation specificity as one of the open-world object detection benchmarking
principles defined by Zhao et al. [ZLS+22], affecting re-training. Training data must be
fully annotated with respect to new categories, to allow new categories to be learned
without the ambiguity of missing annotations, as outlined by Cermelli et al. [CGFC22].

68

CHAPTER 4
Evaluation and Results

The testing and evaluation of this framework requires a public dataset of RGB-D
recordings with accompanying ground truth 3D reconstructions and instance-aware
semantic segmentations. This dataset has to fulfill several criteria in order to be usable
for evaluation and to compare our method to other publications.

4.1 Choice of Dataset
First of all, the dataset must contain full RGB-D video sequences for the mapping to
reconstruct each scene with sufficient detail. The resolution of the RGB-D frames must
be high enough to support object detection and instance segmentation, and the frame
rate should be stable enough to guarantee an approximately constant frame rate within
the framework.

We do not consider synthetic datasets for training or evaluation but rather use actual
recordings of real-world scenes. As Dai et al. [DCS+17] report in their experiments,
training with a synthetic dataset provides limited knowledge transfer for future tasks.
However, synthetic datasets may be a good option to complement other data for training
or evaluation [PJY+21].

Since camera localization is beyond the scope of the implementation of this framework,
the dataset has to provide this information too. This can also be useful for comparison
with other works, since metric-semantic mapping can be evaluated independent of a
specific localization method.

In order to measure the effect of incremental learning on object-centric mapping, a ground
truth mesh or point cloud with instance-aware semantic annotations is required. These
annotations have to be dense, i.e., cover the whole reconstruction, and include not only
objects but also structures such as walls, floors, and ceilings. Since novelty detection

69

4. Evaluation and Results

(a) (b)

(c) (d)

Figure 4.1: Examples of wall, floor, and ceiling segments erroneously picked up by novelty
detection, and included in novel categories. These segments were not correctly labeled
by instance segmentation, and thus considered novel objects in the framework.

picks up objects and structures, it is necessary to have annotations for both to accurately
measure the results of category discovery.

These panoptic annotations are also necessary when using the dataset for training of
the initial instance segmentation model. This framework is intended to perform novelty
detection based on a model that is pretrained on a set of common classes including
structure classes. Without these structure classes in the training set, novelty detection
picks up a large number of wall and floor segments for category detection.

Even with structure classes included in initial training, segments that are missed by
instance segmentation and remain unlabeled are picked up by novelty detection and can
be included in novel categories. Figure 4.1 gives several examples of wall, floor, and
ceiling segments taken from category discovery results.

For evaluation, we favor a dataset with a small set of more general classes for semantic

70

4.1. Choice of Dataset

annotations, instead of an open-dictionary approach, where the set of classes is fundamen-
tally unlimited. Finally, the dataset must include a sufficient number of scene recordings
to provide enough sequences for initial training as well as validation and test setups.

4.1.1 Instance Segmentation Dataset - SceneNN2016
As the dataset for training, testing, and evaluation, we choose SceneNN1, initially created
by Hua et al. [HPN+16], and updated in [HTY18]. The original SceneNN, also referred
to as SceneNN2016, comprises a real-world annotated dataset of 100 scenes from different
categories, including office scenes, living rooms, kitchens, bedrooms, and others. The
scenes are named with three-digit numbers, which we also use to refer to individual scenes
in the evaluation.

Each scene features per-vertex annotations in a ground truth mesh generated from
RGB-D videos. The RGB-D videos from which scenes were reconstructed are included
as well, with a resolution of 640×480 for the RGB and depth images, and a frame rate of
approximately 30 fps.

Each image is timestamped so that it is possible to accurately synchronize RGB and
depth data. The estimated camera positions in each recording are provided as 4×4
rotation matrices, with respect to a global coordinate system, for each video frame.

All objects in each scene are segmented using per-vertex instance IDs, and each instance
comes with additional information stored in one XML file per scene. This information
comes in the form of instance colors and oriented bounding boxes. Most objects are also
labeled with an open-dictionary text, however this is not the case for all instances, in
particular for structures such as walls and floors.

The instance segmentation in the work of Hua et al. [HPN+16] is performed with their
own annotation tool called ‘sese’. This tool includes a feature to render the segmented
ground truth meshes using the estimated camera positions, resulting in per-frame 2D
instance segmentations with a unique color for each object instance. These colors can
then be used to map segments in the renderings to the additional instance information
from the XML file.

4.1.2 Semantic Segmentation Dataset - SceneNN2018
Hua et al. [HTY18] re-annotate 76 scenes of the original SceneNN dataset for use in
their semantic segmentation method. The semantic labels span 40 classes matching
NYU-D dataset annotations, including objects, structures, and super-categories such as
‘furniture’, ‘structure’, and ‘prop’. The complete list of classes is available online2. We
refer to this re-annotated dataset as SceneNN2018.

While SceneNN2016 creates ground truth meshes from scene reconstructions, this dataset
only contains per-vertex data in the form of annotated point clouds. That is, there is no

1https://hkust-vgd.github.io/scenenn/
2https://hkust-vgd.ust.hk/scenenn/home/cvpr18/data/nyu_color.xml

71

https://hkust-vgd.github.io/scenenn/
https://hkust-vgd.ust.hk/scenenn/home/cvpr18/data/nyu_color.xml

4. Evaluation and Results

connectivity information in ground truth geometry. Additionally, scenes are cropped at a
height of approximately 2 m and spurious segments outside the main area are removed,
leading to missing class labels for parts of the original scenes, in particular ceilings.

Since the text labels in SceneNN2016 are incomplete and sometimes inconsistent, we
transfer class labels from SceneNN2018 to create a combined dataset with instance-aware
semantic annotations in 2D and 3D. This combined dataset, consisting of 76 scenes
from SceneNN2018 with class and instance labels, is then used to create training data
for fine-tuning the initial instance segmentation model, and to test and evaluate the
framework.

4.1.3 Dataset Issues

Despite its usefulness, there are several issues with SceneNN, some of which are specific
to this dataset, and others are more general in nature. Regarding the text labels in
SceneNN2016, these are not always applied consistently or correctly and, in some cases,
contain spelling and labelling errors.

Common examples for inconsistent labels include ‘window’, ‘blinds’, and ‘curtains.’
Examples of incorrect labels include ‘pot’ vs. ‘stove’, or a large plastic bottle in scene
276 labelled as ‘kettle.’ The latter case suggests that visual confirmation from real video
footage could prove helpful when labelling 3D meshes, as the distinction between these
object classes is arguably more apparent in color images than in 3D reconstructions.
Some classes in SceneNN2018 are not easily distinguishable, even for humans, or the
classification of objects may depend on their usage. Examples include ‘desk’ vs. ‘table’
vs ‘night stand’ and ‘shelf’ vs. ‘bookshelf.’

A similar problem arises when trying to match open-dictionary text labels from Sce-
neNN2016 with the 40 classes used in SceneNN2018. Here it is not always obvious, or
ambiguous, which class an instance with a certain label belongs to without looking at
the object in question. For example, a ‘TV stand’ might best fit into the ‘cabinet’ or
‘furniture’ class, depending on its specifics.

It turns out that instance colors in the annotation files do not always match the colors in
the ground truth mesh. These are required to associate 2D instance segmentations in
video frames with other instance metadata.

More generally, real-world datasets typically feature long-tail distributions of classes,
that is, most instances belong to a small number of classes, while all other classes appear
in only a few instances. This can create problems when learning and evaluating object
detection and segmentation tasks for rare classes, as the available training data is severely
limited [YPRL22]. In the dataset generation step, we try to address each of these issues.

72

4.2. Dataset Generation

wall curtain table
floor shelves desk

ceiling bookshelf books
door cabinet paper

window chair lamp

Table 4.1: List of classes from SceneNN used for the initial training set, structure classes
in italics.

4.2 Dataset Generation

For the initial training set, we select 15 common classes that the instance segmentation
should be fine-tuned to. The selection is highlighted in Table 4.1, and includes objects
and structures that can be found in most indoor scenes.

To create a training set for the initial object detection and segmentation model, it is
advantageous to include a sufficient number of images containing approximately equally
distributed class occurrences. Each image must be annotated with bounding boxes, class
labels, and segmentation masks for each instance of the 15 included base classes. This
follows the principle of annotation specificity for open-world object detection, as outlined
by Zhao et al. [ZLS+22].

The main steps in combining both datasets for our dataset generation are therefore
as follows: first, the ground truth vertex data of SceneNN2016 and SceneNN2018 are
registered for each scene, and class labels transferred per-vertex to determine the most
likely class for each instance.

By rendering the ground truth meshes of SceneNN2016 with instance colors for all camera
positions, a 2D instance label map is generated for each frame. From these label maps,
in combination with the class annotations, per-scene statistics are collected regarding the
occurrences of classes and instances in each scene and video frame.

Finally a number of RGB images are selected from the scene recordings, the segmentation
masks, bounding boxes, and class labels of all instances in these images belonging to the
15 base classes are computed, and all information and meta-data is stored on disk.

The subsequent evaluation of the framework requires the raw RGB-D sensor data,
including camera localization, and the ground truth meshes with combined instance and
semantic labels. For this task, raw sensor data from scene recordings are converted to the
ROS-specific bag file format, and the same label transfer method as in the initial dataset
generation is used. The complete set of scenes is also split into training, validation, and
test data, based on the scene categories provided by [HPN+16], which are also available
online3.

3https://hkust-vgd.ust.hk/scenenn/main/category.csv

73

https://hkust-vgd.ust.hk/scenenn/main/category.csv

4. Evaluation and Results

4.2.1 Label Transfer
In preparation for label transfer and dataset generation, timestamped sensor images are
extracted from source files and stored in the ROS bag file format as RGB and depth
image topics.

ROS bag files store streams of ROS messages for one or more topics, thus allowing to
replay data is if it were published directly by a ROS node or set of nodes. For camera
localization, the transformation matrices of each frame are converted to the ROS-internal
representation in the form of positions and quaternion rotations, and included in the bag
files.

The label transfer from SceneNN2018 point clouds to SceneNN2016 meshes consists of
four main steps: point cloud registration to align the ground truth data sets, matching
individual vertices to points with a radius-limited nearest neighbor search, determining
the most likely class for each instance based on the class labels of matched points, and
assigning final class labels by incorporating information from original text labels.

Since label transfer does not require mesh connectivity information, only the vertex
coordinates and annotations are loaded from the SceneNN2016 meshes, resulting in
corresponding point clouds for further processing. Registration between the original
SceneNN2016 point clouds and the re-annotated data from SceneNN2018 is necessary
because the latter reorients points relative to the coordinate origin and the ground plane.

Alignment is performed for each scene, and divided into two steps. First, both point
clouds are downsampled, FPFH features are computed for each, and a coarse registration
is estimated. This registration is then refined on the full point clouds with Iterative
Closest Point (ICP). The result is a rigid transformation that aligns both point clouds.

Once aligned, each vertex in the SceneNN2016 data is matched with points from Sce-
neNN2018 using nearest neighbor search. Since the latter is cropped, not every vertex
has a match. In order to avoid matching vertices to far-away, unrelated points, nearest
neighbor search is limited by a radius approximately equal to the sampling resolution of
the data. In this formulation, multiple vertices may match to the same point, but this is
unlikely to happen and generally not an issue for the label transfer method.

Class labels are transferred for each instance, that is, all vertices with the same label are
grouped into disjoint sets. Then, the class labels of matching points are counted for each
set, and the class with the highest count is taken as the preliminary class label for this
instance. Points without a nearest neighbor are assigned the unknown label in this step.

For registration and nearest neighbor search we use the implementation provided by
Open3D [ZPK18]. In the label transfer step we also check if the point colors of each
instance match those stored in the scene annotations file, and correct entries if necessary.

Some instances in the ground truth meshes are not listed in the annotations. These
instances appear to represent smaller spurious segments caused by noisy reconstructions,
and are ignored for dataset generation and evaluation.

74

4.2. Dataset Generation

Set Category Scenes

Training Work Place & Bedroom

082, 074, 073, 080, 045,
032, 025, 078, 084, 052,
076, 041, 047, 231, 209,
086, 038, 057, 036, 201,

054, 069, 062,
252, 016, 021, 227

Test 1 Kitchen & Other 527, 294, 286, 621, 522
Test 2 Kitchen & Other 260, 255, 276, 270, 609
Test 3 Living Room & Bed Room 272, 087, 223, 093, 005
Test 4 Bed Room 249, 240, 234, 265, 237

Table 4.2: Sets of scenes from SceneNN used for initial training, and for evaluation (Test
1 to 4). Also listed are the scene categories each set falls into.

As the point clouds in SceneNN2018 are cropped, the annotations are incomplete with
respect to the ground truth meshes, and it is necessary to check preliminary class labels
against the original text labels. Text labels are normalized by first removing all spelling
variants, e.g. underscores vs. spaces, digits, and extra white-space. Then, all text labels
are aggregated, sorted, and duplicates removed to create a mapping to a canonical set of
labels. This mapping removes all spelling errors, chooses one of each set of synonyms,
and uses only one of plural and singular forms.

If the preliminary class label is unknown, and the text label matches one of the 40 class
names from the SceneNN2018 annotations, we use the corresponding class label as the
final label. Otherwise, the preliminary class label is assigned to an instance.

This is primarily done to automatically label segments of ceilings, which are cropped
from SceneNN2018, but also serves as a confirmation that class labels are transferred
correctly. If both the preliminary class label and the canonical text label map to a known
class, but are different, a warning is issued. However, this only affects instances were
class labels are ambiguous, as mentioned above.

4.2.2 Initial Training Set
For the initial training set, all instances in the training set of scenes belonging to the
base classes are selected. Instances for which the area values in the scene annotation is
below a class-specific threshold are excluded.

This threshold is set to 5000 for object classes with larger instances (i.e., excluding
‘books’, ‘paper’, and ‘lamp’), based on typical instance values, and zero for all others.
In this way, random small segments from reconstruction errors are excluded to prevent
erroneous annotations that could degrade model performance during fine-tuning.

For each remaining instance, a set of video frames is selected, and all selected frames are

75

4. Evaluation and Results

annotated and added to the training set. In order to create a more balanced set, we only
select a subset of frames per instance.

Specifically, if the set of frames containing instance i is of size ni, only ni/r or nmax,
whichever is lower, are drawn randomly from this set. For each instance, at least 1 frame
is used. In this case, nmax is set to 50 and r to 6.

For each selected video frame, annotations for all instances of base classes are included in
the training metadata. Base classes are split into objects and structures. For each object
instance, a separate annotation, containing bounding box, class label, and segmentation
mask, is added.

Structure instances of the same class and within the same frame are merged, and one
annotation is added for the combined bounding box and segmentation mask. This is
done to approximate a panoptic segmentation approach within the instance segmentation
model.

In both cases, annotations with (combined) segmentation masks smaller than a predefined
size of 500 pixels are discarded. The size limit is derived from the COCO dataset, which
groups objects into small (< 322), medium (< 642), and large (> 962) segments for
evaluation [LMB+14].

For the training set, we extract images and annotations from 27 scenes, as listed in
Table 4.2. 23 of these scenes are from the ‘work place’ category, and 4 from the ‘bedroom’
category. This results in a dataset of 1350 images with 6772 annotations in total. Of
these, 20 % are used for testing, and the rest for training, resulting in a 1080/270 split.

4.2.3 Training & Evaluation Datasets
For validation and testing, the scenes not used for initial training are split into four
groups related to the available scene categories. Since the training set mostly contains
scenes from the ‘work place’ category, the idea is to measure how the framework performs
in different domains, namely scenes from different categories, including kitchens, living
rooms, lounges, and study spaces.

Each of the four groups contains two sets of scenes, one for development and validation,
i.e., hyper-parameter tuning, and the other for evaluation. Each set contains five scenes
from the respective categories.

Some scenes remain unused as they are not assigned to a specific category by the SceneNN
dataset. Following standard practice, evaluation on the test sets is only performed once
the framework development and hyper-parameter tuning is complete.

The evaluation process compares the results of scene reconstruction with ground truth
meshes from the dataset generation step, containing combined semantic and instance
annotations. This means the evaluation, at least to some degree, relies on accurate
reconstructions, proper alignment between ground truth and reconstruction, and on the
correct labeling of segments and instances. This is not self-evident, as the reconstruction

76

4.3. Evaluation Protocol

methods and the data input, i.e., the subset of processed video frames, differ between
ground truth and predicted data.

As mentioned earlier, the dataset may contain mislabeled ground truth segments which
can affect final results. However, since our main focus is on the effect of incremental
learning on object detection performance, and not on the performance of object detection
itself, this is less of an issue in our evaluation. We leave investigations on the influence
of reconstruction errors and ground truth data quality on metric-semantic mapping to
future research.

The framework does not make a distinction between background and unknown objects.
This is intentional as the system is supposed to detect objects and structures, similar to
panoptic segmentation. Hence there is no background class in the dataset or instance
segmentation. Instead, all segments in the ground truth meshes are labeled as unknown
or one of the base classes, and all results are assigned a base class label or pseudo-label.

4.3 Evaluation Protocol
In order to achieve reproducible results, the evaluation of this framework does not only
define the dataset that is used, but also the metrics and sequence of steps required to
perform each measurement. As [ZLS+22] phrase it, evaluation metrics are intended to
“quantify the performance of a model targeted for a specific task.” For the evaluation
of our work, the performance regarding the following research questions are of primary
interest:

• How does unsupervised incremental learning affect object-centric mapping perfor-
mance?

• How does novelty detection perform?

• How does category discovery perform?

Since there is, to the best of our knowledge, no previous work on unsupervised incremental
learning in object-centric mapping, the evaluation protocol takes inspiration from the
evaluation of open-world object detection tasks, in particular [URG22] and [ZLS+22].

Class-incremental learning is evaluated in two main steps for every scene category set.
First, each scene in the set is reconstructed with the initial segmentation model, and
the segmentation performance is measured. Then, the initial model is retrained with
novel categories extracted from the recordings, and used to reconstruct the same scenes.
Segmentation performance is measured again, and changes to the first measurement are
reported.

77

4. Evaluation and Results

4.3.1 2D Instance Segmentation Metric
For the evaluation of instance segmentation models on base classes before and after
retraining, we use mean Average Precision (mAP) as the primary metric. The mAP
metric is averaged over all classes and instances, as commonly used in object detection
tasks, and outlined for example in the COCO dataset [LMB+14] evaluation guidelines4.

In this context, precision is based on the ratio of properly detected object instances, or
true positives TP , and all detections, i.e., true positives and false positives FP . This
precision value is calculated per class and averaged over all classes, excluding the unknown
class label.

In order to determine if a detection is correct, each detection is assigned a confidence
score, and a threshold is set for this score above which the detection is considered a true
positive. For object detection and instance segmentation tasks such as for the COCO
dataset, the Intersection over Union (IoU) is commonly used. In the general case of
two sets, it can be defined as the ratio of the cardinality of their intersection and the
cardinality of their union.

The average precision can be calculated for a single IoU threshold, or for a range of
values, depending on the evaluation task. COCO guidelines use the latter approach,
which is also used in the evaluation of Mask R-CNN Benchmark.

In this evaluation, mAP is measured for multiple IoU scores, ranging from 0.5 to
0.95 at 0.05 steps, per instance. Calculating the mAP for different IoU values favors
models with better localization [LMB+14]. For 2D object detection, the IoU sets are
typically rectangular bounding boxes, and for instance segmentation, pixel-wise binary
segmentation masks.

4.3.2 3D Instance Segmentation Metric
In the evaluation of 3D instance segmentation in this framework, the IoU is based on
sets of points from point clouds, representing volume elements of objects. An example
of a 3D instance segmentation method that performs its evaluation in 2D is the work
of McCormac et al. [MHDL16]. Here, the segmented mesh is projected into the current
frame, and evaluated against single-frame segmentation with a CNN to measure the
performance increase.

As Pham et al. [PHNY19] note, evaluation in 2D, by projecting of 3D labels to video
frames, faces the problem of 2D images not covering the whole scene and ambiguities
in 2D-3D projections. For these reasons, and because our focus lies on 3D instance
segmentation, we choose subsets of point clouds as the basis of IoUcalculations.

Unsupervised incremental learning poses two main challenges regarding novel categories:
the object classes these categories represent are not known in advance, and they are
likely to not fall into the same set of classes with which the ground truth is labeled.

4https://cocodataset.org/#detection-eval

78

https://cocodataset.org/#detection-eval

4.4. Results and Discussion

We approach this problem by calculating a confusion matrix between pseudo-labels and
ground truth classes, and assigning pseudo-labels to the most prominently detected
classes.

To compute the confusion matrix, the first important step requires matching instances
between reconstructions and ground truth. For this step, we use the same approach as
for label transfer in dataset generation to assign a ground truth class and instance label
to each point in the reconstruction.

This means the ground truth and reconstruction point cloud are registered to find an
accurate alignment, and radius-limited nearest neighbor search is used to match each
point in the reconstruction with at most one point in ground truth. Then, the ground
truth instance labels are counted for each instance in the reconstruction, and each pair
of instances with the greatest overlap is matched.

In this instance matching, points in the reconstruction without matching points in ground
truth are ignored, following the approach by Wu et al. [WWT+21b]. Using an IoU score
of over 50 % to detect a match ensures that this matching is unique [KHG+18].

Based on these instance pairs, it is possible to compute the confusion matrix for each
scene and over all scenes of every category group. We refrain from using mAP as an
evaluation metric for 3D instance segmentation as there are not enough instances of all
classes in the test scenes to compute a valid score.

4.3.3 Clustering Evaluation
For the category discovery module, visualizations of the feature embeddings and clusters
are provided to assess its performance. These are useful for a qualitative evaluation in
particular of cluster separation, cohesion, and overlap.

Visualizations are included for selected clusters, i.e., those used as new categories in
incremental learning, and other, unused clusters. Additionally, individual instances of
detected pseudo-labels are highlighted to provide a more detailed picture of the results.

4.4 Results and Discussion
All tests and measurements are performed on an Ubuntu 20.04 instance running on
Windows 10 WSL (Windows Subsystem for Linux), on a dedicated workstation with an
Intel Core i9-10900X CPU clocked at 3.70 GHz and 64 GB of RAM. Instance segmentation
training and inference, and a small part of category discovery data preprocessing, use an
Nvidia Geforce RTX 3080 GPU (Ampere architecture) with 24 GB of RAM.

4.4.1 Hyper-Parameter Tuning
The validation scene sets are used to tune hyper-parameters and assess the correctness of
individual modules. This includes different approaches to category detection, in particular

79

4. Evaluation and Results

different clustering methods and cluster selection mechanisms. Only after completing
these steps is the whole framework evaluated on the test sets to produce the final results.

Different values for several hyper-parameters are tried, with the aim of improving category
detection results and the size of the retraining sets. With a specific set of segments
of feature maps gathered during a scene reconstruction session, the results of category
detection are influenced only be the feature embedding method, clustering, and cluster
selection.

Parameters for feature embedding are mostly the same as in [ORF20], as they are already
the best-performing in their evaluation. Changes in these parameters also do not show
noticeable differences in results, but increasing the number of steps for t-SNE does
improve the KL-divergence slightly.

The size of the retraining set is primarily influenced by the number of segment views,
assuming that clusters are approximately equal in size, as might be expected when
segment views come from a multitude of objects and the clustering is valid. When most
samples are lumped into a few clusters or most clusters are below the size threshold, this
will skew the size of the retraining set.

As for clustering, DBSCAN is used in the validation step with and without approximated
must-link constraints in the form of a modified precomputed distance matrix. For the
multiplicative factor of distances between same-segment samples, several values are tried,
ranging from 1/8 to 1/2.

For the number of samples typically collected in our scene recordings, the more general
clustering method OPTICS proves to be too slow when using a precomputed distance
matrix and larger minimum sample distances, at least in the provided open-source
implementation5.

In this fine-tuning stage, all assessments of cluster results are done with visual inspections
only, mostly due to the lack of an objective measurement of clustering quality, and
because testing the whole framework with different sets of hyper-parameters is beyond
the scope of this thesis. Therefore, larger and more rigorous experiments to study the
effects of hyper-parameters on our framework are left for future research.

4.4.2 Initial Training
The first part of the framework to evaluate is the initial training of the instance segmen-
tation model. It uses a backbone pretrained on ImageNet as a feature extractor, and is
fine-tuned on an initial dataset generated from a subset of SceneNN data containing 15
base classes.

This means the initial model is fine-tuned on domain-specific data, and the evaluation
measures how well the fine-tuned model detects the base classes. We use mAP as the

5https://scikit-learn.org/stable/modules/clustering.html#optics

80

https://scikit-learn.org/stable/modules/clustering.html#optics

4.4. Results and Discussion

w
al
l

flo
or

ce
ili
ng

do
or

w
in
do
w

cu
rt
ai
n

sh
el
ve
s

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

bo
ok
s

pa
pe
r

la
m
p

Class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra
g
e
P
re
c
is
io
n

Task

OD

IS

Figure 4.2: Object detection (OD) and instance segmentation (IS) performance of the
Mask R-CNN model, fine-tuned and tested on the initial training dataset. Dashed bars
represent mAP values over all classes for each task.

primary evaluation metric, and report per-class and overall Average Precision for the
object detection and instance segmentation tasks.

Both tasks are evaluated on the test set of the initial training data. These results also
serve as the baseline for measuring the effects of incremental learning on the detection
and segmentation performance with regards to old classes. Figure 4.2 summarizes the
evaluation of the initial model after fine-tuning.

As can be seen, precision is highest for common classes, such as ‘window’, ‘curtain’, ‘wall’,
or ‘cabinet.’ Precision is generally higher for the object detection task, with the exception
of the ‘window’ and ‘curtain’ classes. The instance segmentation task shows particularly
low scores for the classes of ‘shelves’ and ‘bookshelf’, and also for ‘chair’, ‘table’, and
‘desk’.

The lower instance segmentation scores for certain classes might be related to additional
scene clutter around these objects that makes it difficult to segment them properly. This
effect could be exacerbated by the low spatial resolution of the segmentation network
feature map, however a closer investigation would be necessary to confirm this hypothesis.

The ‘lamp’ class has the lowest score overall, presumably related to the low number of
occurrences in the training set. With lamps, there is also the problem that some of its
instances are turned on during scene recordings, leading to overexposure by the emitted
light and making proper segmentation impossible. This could explain why the instance
segmentation score is zero for this class, while the object detection score is slightly better.

81

4. Evaluation and Results

Training Data

Some observations can also be made on the generated training data, of which Figure 4.3
shows several examples. As mentioned earlier, training data annotations, i.e., segmenta-
tion masks and bounding boxes, are derived from rendering ground truth meshes using
estimated camera positions.

These camera positions are not always accurate, and can lead to misalignment between
segmentation masks and the actual image content. This is noticeable in several frames, and
can arguably have a negative effect on model performance when trained with inaccurate
data.

Likewise, but for different reasons, boundaries between instances in renderings of ground
truth meshes can appear jagged when close to each other in the scene. This might be
related to the rendering method used, and in particular to ‘z-fighting’, where objects that
occupy the same screen space and are approximately at the same distance to the camera
have an arbitrary depth order, based on the precision of the z-buffer. However, we did
not investigate this issue further, as its effects on fine-tuning are presumably small.

The number of samples for certain classes in the training set is quite small. This is due
to the nature of most real-world datasets following a long-tail class distribution with a
small number of frequent classes and a large number of infrequent ones.

Because some scene recordings are particularly short, randomly selected images from
these scenes can be quite similar, reducing the quality of training data. While it is
possible to counterbalance the effects of image and class distributions in the dataset, we
use it as-is since the most important classes are represented with sufficient frequency.

4.4.3 Object-Centric Mapping
With the instance segmentation model in place, it is possible to test the framework on all
scene sets. Each scene recording generates a 3D reconstruction with per-point annotations
for class, instance, and segment labels. Figure 4.4 shows annotated visualizations for four
different scenes as reconstructed by our framework.

As can be seen, the reconstructions are generally detailed and accurate enough to capture
many typical household items, ranging from cups to bowls, bottles, boxes, chairs, tables,
and other furniture. Surfaces are considerably more noisy than the ground truth meshes
from SceneNN.

This is in part due to low frame rates of approximately 1-2 fps during online reconstruction.
Low frame rates lead to less data being integrated into the global map and thus less
corrections for noisy depth images.

However, since the focus of the framework is on robotic applications and not on visually
pleasing 3D reconstructions, this is less of an issue in itself as long as the global map
is accurate enough as a foundation for higher-level tasks. It should also be noted that
the ground truth dataset uses a 3D reconstruction method with global optimization that

82

4.4. Results and Discussion

Figure 4.3: Examples of initial training set images with annotations, as shown in the
center column. Each annotation consists of a segmentation mask, bounding box, and class
label. For visualization purposes, masks and bounding boxes are colored with random
colors. The original RGB camera frames (left column) and 2D instance segmentations
(right) are provided for reference. Instance segmentations are rendered from ground truth
meshes with a unique, random color per instance.

83

4. Evaluation and Results

does not run at interactive frame rates [CZK15], and as such can not be used directly to
replace the online reconstruction method in our framework.

Judging from the visualizations, segmentation performance is generally at the level
expected from the segmentation model mAP results. In some cases, objects are over-
segmented, for example the chair to the right in scene 294. In other cases, segments
from two distinct objects are merged, as in scene 234 with the cabinet and floor to the
right. Presumably, more accurate, per-frame instance segmentation and higher frame
rates should be able to improve these segmentation errors.

4.4.4 3D Instance Segmentation

To quantify the performance of instance-aware semantic segmentation in 3D reconstruc-
tions, we compute the confusion matrices for each scene, based on the IoU between
reconstructed and ground truth instances. The confusion matrices are summarized for
each set of scenes in Figure 4.6.

Confusion matrices for each set show generally good results for structure classes, i.e.,
walls and floors, as indicated by a large number of matching prediction and ground
truth instances. The number of correctly detected ceiling instances is lower, presumably
because of the low number of correctly annotated ceiling segments in the dataset.

As far as object classes are concerned, the best results are achieved for the ‘chair’ and
‘cabinet’ classes. Results for other classes is considerably lower, e.g. for ‘table’ and ‘desk’
instances.

In general, the 3D instance segmentation results are in-line with the performance of the
segmentation model. With limited detection capabilities of the instance segmentation
model, object instances tend to get confused with objects of classes that are close either
physically or semantically.

For the first test set, it can be seen that instances of the ‘sofa’ class, which is not part
of the initial training set, are detected as chairs instead. Further examples of similar
objects include ‘cabinet’ and ‘counter’, ‘desk’ and ‘cabinet’, and ‘bookshelf’ and ‘cabinet.’

Example of object instances misclassified based on physical proximity feature a whiteboard
mounted on a wall, assigned to the ‘wall’ class, and a set of books on a desk, assigned to
the ‘desk’ class.

As is known behavior from closed-set object detection networks, instances of unknown
classes tend to be assigned to one of the known classes with high confidence scores [LPV22].
In this regard it could be helpful to not only increase the performance of the instance
segmentation network on known classes, but also extend the framework to include a
prediction quality estimate, as for example proposed by Rottmann et al. [RCH+20].

In this context, it is worth mentioning again that the reconstruction quality differs
between scenes processed online in our framework, with Voxblox++ at low frame rates,

84

4.4. Results and Discussion

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4: Examples of scenes reconstructed with our framework and the initial instance
segmentation model. Scenes shown are, from top to bottom row: 223, 234, 255, and
294. The reconstructions are colored based on different per-vertex attributes, from left
to right: semantic, instance, and segment labels. Areas without attributes are colored in
light grey. Best viewed with magnification.

85

4. Evaluation and Results

(a) (b)

(c) (d)

Figure 4.5: Examples of unlabeled segments in ground truth mesh models, mostly
representing smaller segments of walls, ceilings, and various background items.

and the ground truth mesh models, reconstructed with a global optimization method
running offline at non-interactive frame rates [CZK15].

These differences in reconstructed geometry may directly affect evaluation results, as
any mismatch between ground truth and predicted geometry can change the overlap
measures with IoU scores. This in turn influences the measurement of object detection
precision and confusion matrices.

There are several instances of segments without class labels in the ground truth dataset.
These are typically small segments at the boundaries of scenes that were left unlabeled.
Figure 4.5 illustrates several of these segments in ground truth data.

4.4.5 Novelty Detection and Category Discovery
With each completed recording of a scene set, the novelty detection node prepares a
subset of novel segment views for category discovery. These samples are embedded into a

86

4.4. Results and Discussion

un
kn
ow
n

w
al
l

flo
or

cu
rt
ai
n

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

Prediction

unknown

wall

floor

chair

table

desk

sofa

whiteboard

prop

G
ro
u
n
d
Tr
u
th

0 0 0 0 0 0 1 0

1 3 0 1 1 0 0 0

0 0 4 0 0 0 0 0

0 0 0 0 0 13 0 0

0 0 0 0 0 5 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 4 0 0

0 1 0 0 0 0 0 0

0 2 0 0 0 0 0 0

(a)

w
al
l

flo
or

do
or

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

de
sk

Prediction

unknown

wall

floor

door

cabinet

chair

counter

fridge

box

prop

G
ro
u
n
d
Tr
u
th

6 0 1 2 0 1 3

4 0 0 0 1 0 0

0 4 0 0 0 0 0

2 0 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 2 0

0 0 0 0 1 0 0

1 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 3 0

(b)

w
al
l

flo
or

do
or

ch
ai
r

ta
bl
e

de
sk

pa
pe
r

Prediction

unknown

wall

floor

chair

table

paper

lamp

dresser

towel

box

prop

G
ro
u
n
d
Tr
u
th

3 1 0 2 0 2 0

7 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 0 6 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 1

(c)

w
al
l

flo
or

ce
ili
ng

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

Prediction

unknown

wall

floor

window

cabinet

chair

desk

books

bed

pillow

box

bag

prop

G
ro
u
n
d
Tr
u
th

4 1 1 1 2 3 1 4

3 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 2 0 0 1

0 0 0 0 0 2 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 1

1 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 2 0 0

(d)

Figure 4.6: Combined confusion matrices for the initial model and scene test sets 1 to 4,
in order. Each matrix plots the classes of predicted instances vs. classes of matching
ground truth instances. Instance matching is performed based on an Intersection over
Union (IoU) score of > 0.5. Rows and columns with all zeros are removed for brevity.

low-dimensional feature space, grouped into clusters, and each cluster is scored. The top
N clusters are then used as new categories in the following incremental learning step.

Here we visualize the cluster results using the low-dimensional embeddings of all samples,
as produced by PCA and t-SNE, and the DBSCAN clustering method. To provide more
readable results, the visualizations are split into selected clusters, other (not selected)
clusters, and all clusters, for each scene test set. All visualizations are shown in Figure 4.7.

With the exception of the first clustering, all show a high number of clusters with large
numbers of overlaps. However, selected clusters are well-separated, dense, and mostly
non-overlapping. This indicates that the cluster selection method at hand is suitable to
detect new categories within the clustering results.

4.4.6 Retraining Datasets
To complement the category discovery visualizations, we present several samples from
selected clusters. All of these samples are included in the retraining datasets and used
in the incremental learning steps. The samples are shown in Figure 4.8, Figure 4.9,

87

4. Evaluation and Results

100 75 50 25 0 25 50 75 100

x

100

50

0

50

100

y

(a)

100 75 50 25 0 25 50 75 100

x

100

50

0

50

100

y

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(b)

75 50 25 0 25 50 75 100

x

100

50

0

50

100

y

(c)

150 100 50 0 50 100 150

x

150

100

50

0

50

100

150

y

(d)

150 100 50 0 50 100

x

150

100

50

0

50

100

150

y

150

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(e)

150 100 50 0 50 100 150

x

150

100

50

0

50

100

150

y

(f)

150 100 50 0 50 100 150

x

150

100

50

0

50

100

150

y

(g)

100 50 0 50 100 150

x

150

100

50

0

50

100

150

y

150

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(h)

150 100 50 0 50 100 150

x

150

100

50

0

50

100

150

y

(i)

150 100 50 0 50 100 150

x

100

50

0

50

100

y

(j)

100 50 0 50 100 150

x

100

50

0

50

100

y

150

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(k)

150 100 50 0 50 100 150

x

100

50

0

50

100

y

(l)

Figure 4.7: Scatterplots of clustering results in category discovery, for the test scene sets.
Clusters selected for incremental learning are shown in the center column, other clusters
on the right. The left column shows all clusters combined. Rows 1 to 4 show plots for
test sets 1 to 4, respectively. Samples displayed in grey are non-core points or noise. For
clarity, cluster memberships are indicated with dashed bounding boxes. Best viewed with
magnification.

88

4.4. Results and Discussion

Figure 4.10, and Figure 4.11. These samples only include a small part of the retraining
datasets, as there are up to 20 new categories in each.

In some images, a misalignment between RGB and depth images can be observed. This
is presumably caused by a lack of hardware synchronization between the RGB and depth
sensors employed for scene recordings, and as such depends on the type of sensors used.
The misalignment is especially noticeable with fast camera movements, and may affect
the quality of segmentation masks in the retraining dataset.

Novel categories include a variety of objects, from kitchen utensils to household items and
furniture. In several instances, category discovery is able to group similar objects from
the same scene and across different scenes into the same category. This indicates that
the approach in our framework is capable of generalizing novelty detection and category
discovery across multiple scenes, or multiple recordings of the same scene.

A significant portion of the categories come from spurious novelty detections. These are
the result of instance segmentation failing on segments from known classes, including
walls and floors. Since these segments are not semantically labeled, novelty detection
considers them as new objects. Such segments are therefore also processed in category
discovery and can end up as samples in the retraining set.

The most straightforward solution to this problem would be to improve instance seg-
mentation for known classes. If all segments of walls, floors, or other known objects are
properly detected and semantically labeled, they will by definition not end up in the
novelty detection and category discovery pool of segment views.

4.4.7 Incremental Learning Steps
With the retraining datasets that are generated by category discovery from each scene
test set, it is possible to update the initial instance segmentation model. Each incremental
learning step takes the initial model and extends it with one of the four retraining datasets.
Every dataset contains up to 20 new categories. This number may vary depending on
the number of clusters detected in category discovery and the results of cluster selection.

When a model is retrained, one important aspect to evaluate is the model performance
on the detection and segmentation of old classes. Since ‘catastrophic forgetting’ is a
major concern in incremental learning methods, it is necessary to ensure knowledge of
old classes is retained.

To this end, we evaluate each model on the initial test set for model fine-tuning. Figure 4.12
summarizes the results. In general, the performance on both the object detection and the
instance segmentation tasks are comparable to that of the initial model. This indicates
that the incremental learning method of Cermelli et al. [CGFC22] is able to prevent
catastrophic forgetting, and retain model performance on old classes.

However, for test sets 2, 3, and 4, there is a distinct drop in performance for the ‘wall’
and ‘floor’ classes. This might be explained by the retraining sets containing one or more
novel categories that consist of samples belonging to one of these classes.

89

4. Evaluation and Results

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.8: Examples of category discovery samples from scene test set 1. Objects include,
from top to bottom row: a radiator, a potted plant, a flower pot, a computer monitor,
and a set of stairs. Note how (g) to (i) groups pots from two different scenes into one
category.

90

4.4. Results and Discussion

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.9: Examples of category discovery samples from scene test set 2. Objects include,
from top to bottom row: a bunch of bananas, a counter, cupboards, a pan and teapots,
and rice cookers. Note how (g) to (i) and (m) to (o) group objects from different scenes
into one category, respectively.

91

4. Evaluation and Results

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.10: Examples of category discovery samples from scene test set 3. Objects
include, from top to bottom row: storage boxes, a jacket, a cardboard box, a radiator,
and a lamp. In (m) to (o), two similar lamps are grouped into one category.

92

4.4. Results and Discussion

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 4.11: Examples of category discovery samples from scene test set 4. Objects
include, from top to bottom row: clothes on a shelf, a bed, picture frames, a paper bag,
and clothes on an ironing board.

93

4. Evaluation and Results

If the original model is retrained to label ‘wall’ and ‘floor’ classes with a new pseudo-label,
it will consequently impact the performance on the original classes. Likewise, the lower
performance on the ‘curtain’ class in scene test set 3, and on the ‘window’ class in set 4,
might be related to overlaps between the novel categories and old classes.

Interestingly, for the model retrained on the novel categories from scene set 2, the
performance on the ‘ceiling’, ‘window’, and ‘curtain’ classes is above that of the original
model. It can be hypothesized that the reduced performance on ‘floor’ and ‘wall’ classes,
leads to increased confidence scores and, in turn, higher detection rates for semantically
related classes such as ‘ceiling’, ‘window’, and ‘curtain.’ However, this remains to be
tested with additional evaluations before a clear conclusion can be drawn.

4.4.8 Retrained Object-Centric Mapping

The instance segmentation models retrained in the incremental learning steps are used
again to reconstruct the same sets of scenes as with the initial network. With the models
refined to detect novel categories, here we show the effects of the extended instance
segmentation on the reconstructions of several scenes.

Test 1

For scene 294 from the first test set, as shown in Figure 4.13, the network is able to
detect part of the potted plant in the background as a new object. While not easily
visible, there is another part of a second potted plant to the right that is detected as
well. While the complete plant is not detected, presumably related to the poor quality
of training data segmentation annotations caused by misaligned sensor hardware, this
result indicates that the framework is able to detect even small and intricate structures,
and transfer results to distinct, but visually similar objects.

Test 2

In scene 255, visualized in Figure 4.14, the radiator to the right is detected in large parts,
even though the retraining dataset only contains smaller segments as annotations. From
the scene visualizations one can also see how individual segments are merged into larger
instances by the semantic refinement process of Voxblox++. Another novel segment is
part of the ceiling in the upper left corner.

Test 3

Scene 223 from test set 3, shown in Figure 4.15, features another radiator, distinct from
the one in scene set 2, and the front of a small table. The radiator is almost completely
detected, but split into two instances. This indicates that the segment merging was not
entirely successful for this instance.

94

4.4. Results and Discussion

w
al
l

flo
or

ce
ili
ng

do
or

w
in
do
w

cu
rt
ai
n

sh
el
ve
s

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

bo
ok
s

pa
pe
r

la
m
p

Class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra
g
e
P
re
c
is
io
n

Task

OD

IS

(a)

w
al
l

flo
or

ce
ili
ng

do
or

w
in
do
w

cu
rt
ai
n

sh
el
ve
s

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

bo
ok
s

pa
pe
r

la
m
p

Class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra
g
e
P
re
c
is
io
n

Task

OD

IS

(b)

w
al
l

flo
or

ce
ili
ng

do
or

w
in
do
w

cu
rt
ai
n

sh
el
ve
s

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

bo
ok
s

pa
pe
r

la
m
p

Class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra
g
e
P
re
c
is
io
n

Task

OD

IS

(c)

w
al
l

flo
or

ce
ili
ng

do
or

w
in
do
w

cu
rt
ai
n

sh
el
ve
s

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

bo
ok
s

pa
pe
r

la
m
p

Class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra
g
e
P
re
c
is
io
n

Task

OD

IS

(d)

Figure 4.12: Object detection (OD) and instance segmentation (IS) performance of the
Mask R-CNN model after retraining on novel categories from test scene sets, evaluated
on the initial training dataset. Subplots show results for scene test sets 1 to 4, in order.
Dashed bars represent mAP values over all classes for each task.

95

4. Evaluation and Results

(a) (b)

(c) (d)

Figure 4.13: Four renderings of scene 294, reconstructed with a retrained instance
segmentation model and colored with different sets of labels. Subplots show, in order:
newly detected categories, all class labels, instance labels, and segment labels. Best
viewed with magnification.

Test 4

In scene 234, a bed and part of a cat tree are detected from the unknown objects. This
scene is shown in Figure 4.16. The bed is almost completely detected, except for part
of the blanket. Part of the floor is merged into the object, presumably as the instance
segmentation mask is overlapping this segment during the scene recording. The cat tree
is also detected in large parts, however its category is not specific to the object but rather
related to a cluster of wall segments.

Other Scenes

Additional images show more examples of objects detected with the retrained models. In
Figure 4.17, these objects are: a jacket and parts of the ceiling, a cardboard box and
part of a blanket, a lamp and books in a bookshelf, and the backrests of folding chairs.
Figure 4.18 shows the following objects: the lid of a cardboard box and parts of a kitchen
counter, a sink and kitchen utensils, segments of a wall below a whiteboard, and parts of
stairs.

As these objects are only partially detected, this suggests the amount or quality of

96

4.4. Results and Discussion

(a) (b)

(c) (d)

Figure 4.14: Four renderings of scene 255, reconstructed with a retrained instance
segmentation model and colored with different sets of labels. Subplots show, in order:
newly detected categories, all class labels, instance labels, and segment labels. Best
viewed with magnification.

retraining data was not sufficient, or that retraining was stopped too early. On the
other hand, these results confirm that, in principle, the framework is able to extract
meaningful new categories from observations without human intervention, and recognize
these objects in future recordings.

4.4.9 Retrained 3D Instance Segmentation

The confusion matrices are computed for scenes reconstructed with retrained models as
well. Results are comparable with the initial scene reconstructions, with some scores
lower and a few cases of improved detections.

For example, in the retrained scene test set 3, a piece of paper is correctly detected that
was not detected in the original reconstruction. In the retrained scene test set 4 there is
an additional correct detection of a desk instance.

Most object instances from new categories do not show up in the confusion matrices.
These instances do not overlap the respective ground truth instances by more than 50 %,
as measured by IoU, and thus do not count as positive predictions. As with the initial

97

4. Evaluation and Results

(a) (b)

(c) (d)

Figure 4.15: Four renderings of scene 223, reconstructed with a retrained instance
segmentation model and colored with different sets of labels. Subplots show, in order:
newly detected categories, all class labels, instance labels, and segment labels. Best
viewed with magnification.

98

4.4. Results and Discussion

(a) (b)

(c) (d)

Figure 4.16: Four renderings of scene 234, reconstructed with a retrained instance
segmentation model and colored with different sets of labels. Subplots show, in order:
newly detected categories, all class labels, instance labels, and segment labels. Best
viewed with magnification.

scene sets, the effects of reconstruction quality on evaluation results have to be taken
into account.

In order for new category instances to be properly detected, instance segmentation would
have to be improved. These improvements would typically come from larger retraining
sets with higher-quality images and annotations, including accurately aligned depth
sensor data, and from longer incremental learning schedules.

4.4.10 Memory & Storage Requirements

Finally, we list the approximate memory and storage requirements for the framework at
runtime, as far as they are different from the original works used herein. The memory
consumption of the global segmentation map, Voxblox++, and the instance segmentation
network, Mask R-CNN Benchmark, are unchanged to their original releases.

99

4. Evaluation and Results

(a) (b)

(c)

(d)

Figure 4.17: Further examples of newly discovered categories in scenes reconstructed by
our framework, with a retrained instance segmentation model. Base classes are unlabeled
in this visualization. Scenes shown, in order: 093, 240, 272, and 609. Best viewed with
magnification.

The largest memory and storage requirement comes from novelty detection, which collects
all RGB frames, segmentation maps, feature maps, and related segment metadata during
scene recordings. In our implementation, this data is stored uncompressed and thus takes
several gigabytes of space before it is processed for category discovery.

As outlined earlier, most of the data could be processed online with a more sophisticated
update scheme. Image compression could also help to reduce the memory footprint,
at the expense of additional computations from compression and decompression. The
segment metadata itself is very compact and typically consists of less than 20 segments
per-frame, plus time stamps, pointers to per-frame data and merged segments.

100

4.4. Results and Discussion

(a)
(b)

(c)
(d)

Figure 4.18: Further examples of newly discovered categories in scenes reconstructed by
our framework, with a retrained instance segmentation model. Base classes are unlabeled
in this visualization. Scenes shown, in order: 087, 276, 286, and 527. Best viewed with
magnification.

4.4.11 Timings

For the initial segmentation model fine-tuning, the training time is over 13 h. The
retraining times for incremental learning vary between 2 h 57 min and 4 h 36 min.

The system runs at an overall frame rate of about 1 to 2 frames per second during
scene recordings. The instance segmentation network can perform multiple inferences
per second on input frames of size 640×480. The Mask R-CNN benchmark reports an
approximate inference time of 0.1678 s per image, or about 5.96 images per second.

This indicates that the overall frame rate is limited by processing in the depth segmentation
and global map nodes. This could be accelerated with multi-threading, however not all
parts of the implementation are thread-safe as of now.

The runtime for offline processing of category discovery data is dominated by preprocessing,

101

4. Evaluation and Results

w
al
l

flo
or

cu
rt
ai
n

ca
bi
ne
t

ch
ai
r

15

Prediction

wall

floor

chair

table

sofa

whiteboard

prop

G
ro
u
n
d
Tr
u
th

3 0 1 1 0 1

0 4 0 0 0 0

0 0 0 0 9 0

0 0 0 0 3 0

0 0 0 0 3 0

1 0 0 0 0 0

0 0 0 0 1 0

(a)

w
al
l

flo
or

ce
ili
ng

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

de
sk 15 19

Prediction

unknown

wall

floor

door

chair

counter

prop

G
ro
u
n
d
Tr
u
th

6 0 1 3 1 0 1 1 0

4 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 2 0 0 1

(b)

w
al
l

flo
or

bo
ok
sh
el
f

ch
ai
r

de
sk

pa
pe
r

Prediction

unknown

wall

floor

curtain

cabinet

chair

table

paper

box

bag

prop

G
ro
u
n
d
Tr
u
th

4 3 2 2 1 0

2 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 1 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 1

0 0 0 3 0 0

0 0 0 1 0 0

0 0 0 2 0 0

(c)

w
al
l

flo
or

ce
ili
ng

do
or

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

Prediction

unknown

wall

floor

bookshelf

cabinet

chair

desk

books

lamp

bed

pillow

box

prop

G
ro
u
n
d
Tr
u
th

2 1 1 1 0 1 1 1 2

3 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 1 1

0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0

(d)

Figure 4.19: Combined confusion matrices after retraining for scene test sets 1 to 4, in
order. Each matrix plots the classes of predicted instances vs. classes of matching ground
truth instances. Instance matching is performed based on an IoU score of > 0.5. Rows
and columns with all zeros are removed for brevity.

i.e., extracting feature vectors for each segment. Feature embedding with t-SNE takes
the second longest time to complete, if we discount the actual loading and storing of
data in the category discovery node.

For scene test set 1, the computation of feature vectors takes approximately 47,0 s for all
five scenes combined. Computing the feature embeddings takes about 39,7 s. All other
steps in category discovery, for example computing the distance matrix, clustering, and
cluster selection, take less than a second to complete. The numbers for the other test
sets are in a similar range.

4.5 Ablation Study
To better understand the effect of different system parameters on object detection and
segmentation performance, we perform two additional sets of experiments. The first set
involves instance segmentation models that are retrained with extended learning schedules.
The second set of experiments uses the same models as the first, but additionally simulates

102

4.5. Ablation Study

an increased processing frame rate of the system.

Both are performed on and evaluated for each of the four scene test sets. While these two
additional evaluations do not provide enough data to draw definitive conclusions, they
illustrate the importance of instance segmentation performance and processing frame
rate on object detection and reconstruction quality in object-centric mapping.

4.5.1 Extended Incremental Learning Schedule
For the first set of tests, the incremental learning schedule for retraining is extended
by a factor of 1.8, equal to 18000 iterations. Figure 4.20 shows the performance of the
retrained models on the initial test set.

The performance for the ‘wall’ and ‘floor’ classes is improved for test sets 2, 3, and 4, and
also for ‘ceiling’ and ‘window’ classes in set 4, compared to the models with a shorter
retraining schedule. Results are significantly worse for the ‘curtain’ class in set 4. Other
classes show little to no noticeable variation in performance.

Figure 4.21 summarizes the confusion matrices for each scene test set. In comparison to
the regular training schedule, the number of correct detections has increased overall, but
also the number of misclassified objects. With an increased learning schedule, there are
also more objects classified as belonging to one of the new categories.

Examples of scene reconstructions with semantic, instance, and segment labels are shown
in Figures 4.24, 4.25, 4.26, and 4.27. Figure 4.28 shows some of the new objects detected
in the test scenes.

4.5.2 Increased Processing Frame Rate
The second set of experiments also uses the retrained models with an extended incremental
learning schedule. In addition, the processing frame rate is increased approximately by a
factor of five. To this end, we decrease the playback speed of test data during evaluation
by the same amount, resulting in an effective increase in the number of processed frames.

Most notably, this improves the reconstruction quality of scene recordings, owing to the
fusion process in the global map. Following a better surface reconstruction, clutter in
geometric segmentation is reduced as well. This leads to a significantly lower number of
segments, as can be seen in Figure 4.22. Whether the effect is due to the fusion process
or segment merging in Voxblox++, or both, remains to be investigated.

The confusion matrices for each scene test set are shown in Figure 4.23. The number
of correct detections is higher than in the previous experiment, with the number of
misclassifications staying approximately the same. In particular, there are more objects
detected from new categories. Figures 4.29, 4.30, 4.31, and 4.32 show reconstruction
examples for four scenes, and Figure 4.33 gives additional examples of detected objects
in this setting.

103

4. Evaluation and Results

w
al
l

flo
or

ce
ili
ng

do
or

w
in
do
w

cu
rt
ai
n

sh
el
ve
s

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

bo
ok
s

pa
pe
r

la
m
p

Class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra
g
e
P
re
c
is
io
n

Task

OD

IS

(a)

w
al
l

flo
or

ce
ili
ng

do
or

w
in
do
w

cu
rt
ai
n

sh
el
ve
s

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

bo
ok
s

pa
pe
r

la
m
p

Class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra
g
e
P
re
c
is
io
n

Task

OD

IS

(b)

w
al
l

flo
or

ce
ili
ng

do
or

w
in
do
w

cu
rt
ai
n

sh
el
ve
s

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

bo
ok
s

pa
pe
r

la
m
p

Class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra
g
e
P
re
c
is
io
n

Task

OD

IS

(c)

w
al
l

flo
or

ce
ili
ng

do
or

w
in
do
w

cu
rt
ai
n

sh
el
ve
s

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

bo
ok
s

pa
pe
r

la
m
p

Class

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
v
e
ra
g
e
P
re
c
is
io
n

Task

OD

IS

(d)

Figure 4.20: Object detection (OD) and instance segmentation (IS) performance of the
Mask R-CNN model after extended retraining on novel categories from test scene sets,
evaluated on the initial training dataset. Subplots show results for scene test sets 1 to 4,
in order. Dashed bars represent mAP values over all classes for each task.

104

4.5. Ablation Study

un
kn
ow
n

w
al
l

flo
or

w
in
do
w

cu
rt
ai
n

ca
bi
ne
t

ch
ai
r

Prediction

wall

floor

chair

table

sofa

whiteboard

prop

G
ro
u
n
d
Tr
u
th

0 1 0 1 3 1 0

0 0 4 0 0 0 0

0 0 0 0 0 0 11

0 0 0 0 0 0 5

0 0 0 0 0 0 4

0 1 0 0 0 0 0

1 0 0 0 0 0 1

(a)

w
al
l

flo
or

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

de
sk 15 18 19

Prediction

unknown

wall

floor

door

chair

desk

prop

G
ro
u
n
d
Tr
u
th

15 0 1 2 0 0 1 0 0

1 0 0 0 0 1 0 0 0

0 4 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 3 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 2 1

(b)

w
al
l

flo
or

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

pa
pe
r

00 02

Prediction

unknown

wall

floor

cabinet

chair

table

paper

lamp

box

bag

prop

G
ro
u
n
d
Tr
u
th

5 3 1 2 2 2 2 0 0 0

10 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1

0 0 0 0 6 0 0 0 0 0

0 0 0 0 0 0 3 0 0 0

0 0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0

1 0 0 0 2 0 2 0 1 0

(c)

w
al
l

flo
or

ce
ili
ng

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk 08 16

Prediction

unknown

wall

floor

door

cabinet

chair

table

desk

paper

lamp

bed

pillow

box

prop

G
ro
u
n
d
Tr
u
th

3 0 2 2 0 1 0 4 2 1

2 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 1 0 0 0

0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 2 0 0

0 0 0 1 0 0 0 0 0 0

2 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 0 0

(d)

Figure 4.21: Combined confusion matrices after retraining with an extended learning
schedule for scene test sets 1 to 4, in order. Rows and columns with all zeros are removed
for brevity.

105

4. Evaluation and Results

(a)

(b)

(c)

Figure 4.22: Renderings of scene 294 with color coded segment labels and for three
different evaluation settings. Subplots show reconstructions with the initial model, the
retrained model with extended learning schedule, and the latter model with an increased
frame rate, in order. With a higher frame rate, surface reconstruction improves and the
number of segments decreases, particularly noticeable on the right. Best viewed with
magnification.

106

4.5. Ablation Study

un
kn
ow
n

w
al
l

flo
or

cu
rt
ai
n

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

Prediction

unknown

wall

floor

chair

table

desk

sofa

whiteboard

prop

G
ro
u
n
d
Tr
u
th

0 0 1 0 1 0 0 1 0

1 1 0 1 0 1 0 0 0

0 0 5 0 0 0 0 0 0

0 0 0 0 0 0 9 0 0

0 0 0 0 0 0 5 0 2

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 6 0 0

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

(a)

w
al
l

flo
or

ce
ili
ng

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk 01 03 08 15 18 19

Prediction

unknown

wall

floor

door

cabinet

chair

desk

counter

dresser

box

prop

G
ro
u
n
d
Tr
u
th

12 1 2 5 3 0 0 2 0 1 1 2 0 0

2 0 0 0 1 0 0 0 0 0 0 0 0 0

0 5 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 3 0 1 2 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 2 1

(b)

w
al
l

flo
or

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

la
m
p 00 01 08

Prediction

unknown

wall

cabinet

chair

table

paper

lamp

dresser

box

prop

G
ro
u
n
d
Tr
u
th

4 1 1 0 0 0 0 1 0 1 0

11 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 5 0 0 0 0 0 0

0 0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1

0 0 0 1 1 0 0 0 1 0 0

(c)

w
al
l

flo
or

ce
ili
ng

do
or

bo
ok
sh
el
f

ca
bi
ne
t

ch
ai
r

ta
bl
e

de
sk

bo
ok
s

la
m
p 06 08

Prediction

unknown

wall

floor

bookshelf

cabinet

chair

table

books

bed

pillow

box

night stand

bag

prop

G
ro
u
n
d
Tr
u
th

4 1 1 1 2 1 3 1 3 0 1 0 1

5 0 0 0 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 3 0 1 1 0 0 0 0

0 1 0 0 0 0 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 2 1 1 0 0 1 0

(d)

Figure 4.23: Combined confusion matrices after retraining with an extended learning
schedule and increased frame rate for scene test sets 1 to 4, in order. Rows and columns
with all zeros are removed for brevity.

107

4. Evaluation and Results

(a) (b)

(c) (d)

Figure 4.24: Scene 223, reconstructed with extended retraining and colored with different
sets of labels. Subplots show, in order: newly detected categories, all class labels, instance
labels, and segment labels. Best viewed with magnification.

108

4.5. Ablation Study

(a) (b)

(c) (d)

Figure 4.25: Scene 234, reconstructed with extended retraining and colored with different
sets of labels. Subplots show, in order: newly detected categories, all class labels, instance
labels, and segment labels. Best viewed with magnification.

109

4. Evaluation and Results

(a) (b)

(c) (d)

Figure 4.26: Scene 255, reconstructed with extended retraining and colored with different
sets of labels. Subplots show, in order: newly detected categories, all class labels, instance
labels, and segment labels. Best viewed with magnification.

110

4.5. Ablation Study

(a) (b)

(c) (d)

Figure 4.27: Scene 294, reconstructed with extended retraining and colored with different
sets of labels. Subplots show, in order: newly detected categories, all class labels, instance
labels, and segment labels. Best viewed with magnification.

111

4. Evaluation and Results

(a) (b)

(c) (d)

Figure 4.28: Examples of additional categories discovered in scenes reconstructed with
extended retraining. Base classes are unlabeled in this visualization. Scenes shown are
093, 260, 272, and 276, in order. Best viewed with magnification.

112

4.5. Ablation Study

(a) (b)

(c) (d)

Figure 4.29: Scene 223, reconstructed with extended retraining and higher frame rates, and
colored with different sets of labels. Subplots show, in order: newly detected categories,
all class labels, instance labels, and segment labels. Best viewed with magnification.

113

4. Evaluation and Results

(a) (b)

(c) (d)

Figure 4.30: Scene 234, reconstructed with extended retraining and higher frame rates, and
colored with different sets of labels. Subplots show, in order: newly detected categories,
all class labels, instance labels, and segment labels. Best viewed with magnification.

114

4.5. Ablation Study

(a) (b)

(c) (d)

Figure 4.31: Scene 255, reconstructed with extended retraining and higher frame rates, and
colored with different sets of labels. Subplots show, in order: newly detected categories,
all class labels, instance labels, and segment labels. Best viewed with magnification.

115

4. Evaluation and Results

(a) (b)

(c) (d)

Figure 4.32: Scene 294, reconstructed with extended retraining and higher frame rates, and
colored with different sets of labels. Subplots show, in order: newly detected categories,
all class labels, instance labels, and segment labels. Best viewed with magnification.

116

4.5. Ablation Study

(a) (b)

(c) (d)

Figure 4.33: Examples of additional categories discovered in scenes reconstructed with
extended retraining and higher frame rates. Base classes are unlabeled in this visualization.
Scenes shown are 093, 260, 270, and 276, in order. Best viewed with magnification.

117

CHAPTER 5
Conclusion

In this thesis, we presented a framework and method for unsupervised class-incremental
learning in object-centric mapping. This work is intended to extend the capabilities of
mobile autonomous robots in application areas related to object detection and instance-
aware semantic mapping.

To the best of our knowledge, we are the first to tackle the problem of unsupervised
class-incremental learning in the context of object-centric mapping in an integrated
fashion. Our framework is designed to extract novel segments from scene recordings,
form new categories from this data, and retrain the segmentation model to detect the
novel categories in future observations, all without human intervention.

Our contributions are as follows:

• we propose, implement, test, and evaluate a framework for unsupervised incremental
learning in open-world object-centric mapping, and

• we adapt the method of category discovery from 2D segmented images to persistent
segmentations in 3D global maps, using per-view feature vectors from segmentation
feature maps and constrained clustering.

We have shown, through theoretical considerations and practical experiments, that our
framework and method is able to detect novel objects, create meaningful new categories,
and learn to recognize objects from these categories in new recordings. Experiments have
demonstrated that, given enough data, the framework is capable of grouping multiple
similar objects into categories within and across different scenes.

These categories can be learned incrementally and used to detect included objects in later
scene reconstructions. Furthermore, results indicate that the system is able to recognize

119

5. Conclusion

novel objects it has not seen before, based on categories introduced through incremental
learning.

All components in this framework are automated and do not require any supervision for
mapping, novelty detection, category discovery, or incremental learning. Training and
evaluation is performed on a real-world dataset consisting of 47 scene recordings with
raw RGB-D footage and semantic instance annotations on ground truth meshes.

This thesis initially fine-tunes the instance segmentation model on training data from a set
of scenes in the work place category, and executes the framework on four different scene
sets from other domains, including kitchens, bed rooms, and living rooms. Evaluations
on these scenes indicate that, in principle, knowledge from instance-aware semantic
annotations transfers to novel environments.

As the development of our framework represents early research, there are several short-
comings that we were not able to fully address in the course of this work. First of all, and
probably most importantly, the training data is limited, both in variety and in quantity,
and causes the initial model to fall short of state-of-the-art performance in instance
segmentation.

This not only limits the semantic mapping aspect of the framework, but also causes
issues further down the line, in particular with novelty detection where segments of
known classes are detected as novelties. Retraining the segmentation models on novel
categories that overlap with old classes might accelerate forgetting of these old classes
and negatively affect segmentation performance.

A natural solution to this problem would be to use more extensive, higher quality data
for fine-tuning the initial model. Using datasets with no misalignment between RGB and
depth images could improve segmentation performance for initial fine-tuning as well as
incremental learning. Inaccurate segmentation masks from geometric segmentation also
affect feature extraction and thus have a potentially negative effect on clustering in the
category discovery component.

Conceptually, the tracking of segments as implemented requires recording all mappings
from local to persistent segment and instance labels, and all changes including segment
merges. This approach is potentially error-prone, e.g. if a mapping or merge is missed by
the novelty detection node due to synchronization issues.

Since we need to match per-frame segment labels to global labels for each input image, it
is not possible to simply read global labels from the reconstruction in the global map at
the end of each recording session. However, integrating segment tracking and novelty
detection into the global segmentation map could provide a more robust solution.

In its current formulation, the framework cannot detect boundaries of unknown objects,
and groups all segments of the same pseudo-label into one instance. This is due to the
nature of the Mask R-CNN network used for instance segmentation, which does not
provide bounding box detections or segmentation masks for unknown object instances.

120

5.1. Future Work

5.1 Future Work
For category discovery, an adapted cluster selection that eliminates clusters resembling
existing classes could be useful, in addition to more accurate fine-tuning on the initial
class set. This could prevent new categories in incremental learning from interfering with
the knowledge of existing classes, and increase overall segmentation performance.

As it is, the novelty detection and category discovery component assumes all unlabeled
segments belong to novel objects, and labeled segments to known classes. However,
this assumption does not always hold, and it might be beneficial to employ prediction
quality estimates as part of novelty detection, as for example proposed by Rottmann et
al. [RCH+20].

In order to more accurately detect unknown objects, and prevent over-segmentation
of unknown object instances, combining the framework with another object detection
model would be an interesting topic for future work. In particular, a network for object
detection without classification such as OLN-Mask by Kim et al. [KLA+22] could prove
useful for semantic refinement and novelty detection in the context of object-centric
mapping. Such an approach would however require the application of an incremental
learning method to this network in order to use it within the framework.

Replacing the backbone of Mask R-CNN with another network, for example FPN, might
also be beneficial. Such a network could provide higher-resolution feature maps, and
thus more accurately localized feature vectors, which might achieve a better distinction
between adjacent segments in a scene.

Alleviating the strictly unsupervised nature of the approach, and incorporating human
guidance and feedback, would allow the framework to be extended towards a system
capable of human-robot interaction. This could have several useful implications, for
example guiding the learning process towards objects of particular interest to the user,
and correcting misclassifications that a robot has made in the past [KX22].

As the implementation has not been optimized for speed and high throughput, the frame
rate is on the lower end of that for robotic applications. As the ablation study has
shown, it would be worthwhile to optimize the implementation, either to improve the
segmentation and reconstruction quality, or to run the framework on mobile platforms
with limited computational resources.

Lastly, in its current form, the application of our method does not take into account an
active role of mobile autonomous robots in their exploration of the environment, although
it is briefly hinted at in the system design overview. A robotic system could steer the
scene recording towards unknown objects, based on the knowledge contained in the global
object-centric map, and thus create higher-quality scene recordings for novelty detection
and category discovery [ZSG+18]. On the other hand, active or interactive exploration
could be helpful in correctly classifying objects that might be obstructed or otherwise
difficult to recognize [ZZZ+19].

121

List of Figures

1.1 Problem Description and Contribution Overview 5

3.1 Scene reconstruction example from SceneNN dataset 33
3.2 Voxel-based SDF representation example, from [OTSN18] 34
3.3 Examples of SceneNN dataset ground truth meshes, from [HPN+16] . . . 36
3.4 Illustration of DOA concepts, from [Jos07] 42
3.5 Illustration of a data-oriented system-of-systems, from [Jos07] 43
3.6 Methodology system design overview . 44
3.7 Overview of the data processing pipeline in Voxblox++, from [GFN+19] . 48
3.8 Example of geometric depth segmentation in Voxblox++ 50
3.9 Example of instance-aware semantic segmentation in Mask R-CNN Benchmark 50
3.10 Comparison between instance segmentation, geometric segmentation, and

object-centric mapping, from [GFN+19]. 51
3.11 Illustrative example of incremental object detection, from [CGFC22] . . . 58
3.12 Overview of Modelling Missing Annotations (MMA), from [CGFC22] . . . 59
3.13 Overview of feature extraction for category discovery, from [URG22]. 61

4.1 Examples of erroneous segments in novelty detection 70
4.2 Object detection and instance segmentation performance of initial model . 81
4.3 Examples of initial training set images with annotations 83
4.4 Scenes reconstructed with the initial instance segmentation model 85
4.5 Unlabeled segments in ground truth mesh models 86
4.6 Combined confusion matrices for the initial model and scene test sets . . 87
4.7 Scatterplots of clustering results in category discovery 88
4.8 Category discovery samples from scene test set 1 90
4.9 Category discovery samples from scene test set 2 91
4.10 Category discovery samples from scene test set 3 92
4.11 Category discovery samples from scene test set 4 93
4.12 Object detection and instance segmentation performance of retrained models 95
4.13 Visualization of scene 294 with four different label sets 96
4.14 Visualization of scene 255 with four different label sets 97
4.15 Visualization of scene 223 with four different label sets 98
4.16 Visualization of scene 234 with four different label sets 99
4.17 Examples of newly discovered categories with retrained instance segmentation 100

123

4.18 Further examples of category discovery with retrained instance segmentation 101
4.19 Combined confusion matrices for scene sets after retraining 102
4.20 Object detection and instance segmentation performance of models with

extended retraining schedule . 104
4.21 Combined confusion matrices after extended retraining 105
4.22 Comparison of reconstruction quality between evaluations 106
4.23 Combined confusion matrices after extended retraining 107
4.24 Reconstruction of scene 223 with extended retraining 108
4.25 Reconstruction of scene 234 with extended retraining 109
4.26 Reconstruction of scene 255 with extended retraining 110
4.27 Reconstruction of scene 294 with extended retraining 111
4.28 Examples of category discovery with extended retraining 112
4.29 Reconstruction of scene 223 with extended retraining and higher frame rates 113
4.30 Reconstruction of scene 234 with extended retraining and higher frame rates 114
4.31 Reconstruction of scene 255 with extended retraining and higher frame rates 115
4.32 Reconstruction of scene 294 with extended retraining and higher frame rates 116
4.33 Examples of category discovery with extended retraining and higher frame

rates . 117

124

List of Tables

3.1 Instance segmentation learning parameters 56
3.2 Parameters for segment feature embedding with PCA and t-SNE. 65
3.3 Parameters for DBSCAN clustering and must-link constraints 66

4.1 List of initial training set classes . 73
4.2 Training and evaluation scene sets and categories 75

125

Bibliography

[AHG+19] Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir, Martin Fischer,
Jitendra Malik, and Silvio Savarese. 3D scene graph: A structure for unified
semantics, 3D space, and camera. In IEEE/CVF International Conference
on Computer Vision, pages 5664–5673, 2019.

[AKC+22] Hamed Ayoobi, Hamidreza Mohades Kasaei, Ming Cao, Rineke Verbrugge,
and Bart Verheij. Local-HDP: Interactive open-ended 3D object cate-
gory recognition in real-time robotic scenarios. Robotics and Autonomous
Systems, 147:103911, 2022.

[BCC+20] Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia
Deng, Vladlen Koltun, Sergey Levine, Jitendra Malik, Igor Mordatch,
Roozbeh Mottaghi, et al. Rearrangement: A challenge for embodied AI.
arXiv e-prints, pages arXiv–2011, 2020.

[BGT+20] Mohammed Bennamoun, Yulan Guo, Federico Tombari, Kamal Youcef-
Toumi, and Ko Nishino. Guest editors’ introduction to the special issue on
RGB-D vision: Methods and applications. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42:2329–2332, 10 2020.

[CGFC22] Fabio Cermelli, Antonino Geraci, Dario Fontanel, and Barbara Caputo.
Modeling missing annotations for incremental learning in object detection.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3700–3710. IEEE, 2022.

[CYC+21] Jun Cen, Peng Yun, Junhao Cai, Michael Yu Wang, and Ming Liu. Deep
metric learning for open world semantic segmentation. In IEEE/CVF
International Conference on Computer Vision, pages 15333–15342, October
2021.

[CZK15] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust reconstruction
of indoor scenes. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 5556–5565, 2015.

[Dav18] Andrew J. Davison. FutureMapping: The computational structure of
spatial AI systems. CoRR, abs/1803.11288, 2018.

127

[Dav21] Achal Dave. Open-world Object Detection and Tracking. PhD thesis,
Carnegie Mellon University, 2021.

[DCS+17] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas
Funkhouser, and Matthias Nießner. ScanNet: Richly-annotated 3D recon-
structions of indoor scenes. In IEEE conference on computer vision and
pattern recognition, pages 5828–5839, 2017.

[dlPBE+14] Paloma de la Puente, Markus Bajones, Peter Einramhof, Daniel Wolf,
David Fischinger, and Markus Vincze. RGB-D sensor setup for multiple
tasks of home robots and experimental results. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2587–2594. IEEE,
2014.

[Dom12] Pedro Domingos. A few useful things to know about machine learning.
Communications of the ACM, 55(10):78–87, 2012.

[DWGL22] Xuefeng Du, Xin Wang, Gabriel Gozum, and Yixuan Li. Unknown-aware
object detection: Learning what you don’t know from videos in the wild.
arXiv e-prints, pages arXiv–2203, 2022.

[EKX+96] Martin Ester, Hans-Peter Kriegel, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In
Second International Conference on Knowledge Discovery and Data Mining.
AAAI Press, 1996.

[FNF+18] Fadri Furrer, Tonci Novkovic, Marius Fehr, Abel Gawel, Margarita Grinvald,
Torsten Sattler, Roland Siegwart, and Juan Nieto. Incremental object
database: Building 3D models from multiple partial observations. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 6835–6842. IEEE, 2018.

[GDG+17] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch SGD: training ImageNet in 1 hour. CoRR,
abs/1706.02677, 2017.

[GFN+19] Margarita Grinvald, Fadri Furrer, Tonci Novkovic, Jen Jen Chung, Cesar
Cadena, Roland Siegwart, and Juan Nieto. Volumetric instance-aware
semantic mapping and 3D object discovery. IEEE Robotics and Automation
Letters, 4(3):3037–3044, 2019.

[GNJ+22] Akshita Gupta, Sanath Narayan, KJ Joseph, Salman Khan, Fahad Shahbaz
Khan, and Mubarak Shah. OW-DETR: Open-world detection transformer.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9235–9244. IEEE, 2022.

128

[GTSN21] Margarita Grinvald, Federico Tombari, Roland Siegwart, and Juan Ni-
eto. TSDF++: A multi-object formulation for dynamic object tracking
and reconstruction. In IEEE International Conference on Robotics and
Automation, pages 14192–14198. IEEE, 2021.

[HCC22] Nathan Hughes, Yun Chang, and Luca Carlone. Hydra: A real-time spatial
perception engine for 3D scene graph construction and optimization. arXiv
e-prints, pages arXiv–2201, 2022.

[HDN19] Ji Hou, Angela Dai, and Matthias Nießner. 3D-SIS: 3D semantic instance
segmentation of RGB-D scans. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4421–4430. IEEE, 2019.

[HGD18] Kaiming He, Ross B. Girshick, and Piotr Dollár. Rethinking ImageNet
pre-training. CoRR, abs/1811.08883, 2018.

[HGDG17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask
R-CNN. In IEEE International Conference on Computer Vision, pages
2961–2969, 2017.

[HPN+16] Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi Tran,
Lap-Fai Yu, and Sai-Kit Yeung. SceneNN: A scene meshes dataset with
annotations. In Fourth International Conference on 3D Vision, pages
92–101. Ieee, 2016.

[HTY18] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Pointwise convo-
lutional neural networks. In Computer Vision and Pattern Recognition
(CVPR), 2018.

[HZ21] Jiangpeng He and Fengqing Zhu. Unsupervised continual learning via
pseudo labels. arXiv e-prints, pages arXiv–2104, 2021.

[HZJ+21] Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, and Tien-Tsin Wong.
Bidirectional projection network for cross dimension scene understanding.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14373–14382. IEEE, June 2021.

[JKKB21] K J Joseph, Salman Khan, Fahad Shahbaz Khan, and Vineeth N Balasub-
ramanian. Towards open world object detection. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5830–5840. IEEE,
2021.

[Jos07] Rajive Joshi. Data-oriented architecture: A loosely-coupled real-time SOA.
Technical report, Realtime Innovations, Inc., 2007.

129

[JRK+21] K J Joseph, Jathushan Rajasegaran, Salman Khan, Fahad Shahbaz Khan,
and Vineeth N Balasubramanian. Incremental object detection via meta-
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

[KHG+18] Alexander Kirillov, Kaiming He, Ross B. Girshick, Carsten Rother, and
Piotr Dollár. Panoptic segmentation. CoRR, abs/1801.00868, 2018.

[KLA+22] Dahun Kim, Tsung-Yi Lin, Anelia Angelova, In So Kweon, and Weicheng
Kuo. Learning open-world object proposals without learning to classify.
IEEE Robotics and Automation Letters, 7(2):5453–5460, 2022.

[KLT20] Seyed Hamidreza Mohades Kasaei, Luís Seabra Lopes, and Ana Maria Tomé.
Local-LDA: Open-ended learning of latent topics for 3D object recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 42:2567–
2580, 2020.

[KMFF13] Andrej Karpathy, Stephen Miller, and Li Fei-Fei. Object discovery in 3D
scenes via shape analysis. In IEEE International Conference on Robotics
and Automation, pages 2088–2095. IEEE, 2013.

[KMvB+20] S. Hamidreza Kasaei, Jorik Melsen, Floris van Beers, Christiaan Steenkist,
and Klemen Voncina. The state of service robots: Current bottlenecks in
object perception and manipulation. CoRR, abs/2003.08151, 2020.

[KPSK19] Ue-Hwan Kim, Jin-Man Park, Taek-Jin Song, and Jong-Hwan Kim. 3-D
scene graph: A sparse and semantic representation of physical environments
for intelligent agents. IEEE Transactions on Cybernetics, 50(12):4921–4933,
2019.

[KX22] Hamidreza Kasaei and Songsong Xiong. Lifelong ensemble learning based
on multiple representations for few-shot object recognition. arXiv e-prints,
pages arXiv–2205, 2022.

[LC22] Xinye Li and Ding Chen. A survey on deep learning-based panoptic
segmentation. Digital Signal Processing, 120:103283, 2022.

[LM19] Mathieu Labbé and François Michaud. RTAB-Map as an open-source
LiDAR and visual simultaneous localization and mapping library for large-
scale and long-term online operation. Journal of Field Robotics, 36(2):416–
446, 2019.

[LMB+14] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev,
Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. Microsoft COCO: common objects in context.
CoRR, abs/1405.0312, 2014.

130

[LPV20] Edith Langer, Timothy Patten, and Markus Vincze. Robust and efficient
object change detection by combining global semantic information and
local geometric verification. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 8453–8460. IEEE, 2020.

[LPV22] Edith Langer, Timothy Patten, and Markus Vincze. Where does it belong?
Autonomous object mapping in open-world settings. Frontiers in Robotics
and AI, 9, 2022.

[LZZ21] Yang Li, Hong Zhang, and Yu Zhang. Rethinking training from scratch for
object detection. arXiv e-prints, pages arXiv–2106, 2021.

[MCB+18] John McCormac, Ronald Clark, Michael Bloesch, Andrew Davison, and
Stefan Leutenegger. Fusion++: Volumetric object-level SLAM. In Inter-
national Conference on 3D Vision, pages 32–41. IEEE, 2018.

[MHDL16] John McCormac, Ankur Handa, Andrew J. Davison, and Stefan Leuteneg-
ger. SemanticFusion: Dense 3D semantic mapping with convolutional
neural networks. CoRR, abs/1609.05130, 2016.

[MZ19] Umberto Michieli and Pietro Zanuttigh. Incremental learning techniques
for semantic segmentation. In IEEE/CVF International Conference on
Computer Vision Workshop, pages 3205–3212. IEEE, 2019.

[Nak20] Yoshikatsu Nakajima. New Class Discovery Based on Efficient Fusion of
Semantics and Geometry for Incremental 3D Scene Understanding. PhD
thesis, Graduate School of Science and Technology, Keio University, 2020.

[NKSK19] Yoshikatsu Nakajima, Byeongkeun Kang, Hideo Saito, and Kris Kitani.
Incremental class discovery for semantic segmentation with RGBD sensing.
In IEEE/CVF International Conference on Computer Vision, pages 972–
981, 2019.

[NS18] Yoshikatsu Nakajima and Hideo Saito. Efficient object-oriented semantic
mapping with object detector. IEEE Access, 7:3206–3213, 2018.

[NTTS18] Yoshikatsu Nakajima, Keisuke Tateno, Federico Tombari, and Hideo Saito.
Fast and accurate semantic mapping through geometric-based incremental
segmentation. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 385–392. IEEE, 10 2018.

[ORF20] Philipp Oberdiek, Matthias Rottmann, and Gernot A Fink. Detection
and retrieval of out-of-distribution objects in semantic segmentation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops, pages 328–329, 2020.

131

[OTF+17] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and
Juan Nieto. Voxblox: Incremental 3D euclidean signed distance fields
for on-board MAV planning. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1366–1373. IEEE, 2017.

[OTSN18] Helen Oleynikova, Zachary Taylor, Roland Siegwart, and Juan Nieto. Sparse
3D topological graphs for micro-aerial vehicle planning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1–9.
IEEE, 2018.

[PDC+18] Trung Pham, Thanh-Toan Do, Gustavo Carneiro, Ian Reid, et al. Bayesian
semantic instance segmentation in open set world. In European Conference
on Computer Vision, pages 3–18, 2018.

[PHNY19] Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit Yeung.
Real-time progressive 3D semantic segmentation for indoor scenes. In IEEE
Winter Conference on Applications of Computer Vision, pages 1089–1098.
IEEE, 2019.

[PJY+21] Jin-Man Park, Jae-Hyuk Jang, Sahng-Min Yoo, Sun-Kyung Lee, Ue-Hwan
Kim, and Jong-Hwan Kim. ChangeSim: towards end-to-end online scene
change detection in industrial indoor environments. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 8578–8585.
IEEE, 2021.

[PKP+19] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and
Stefan Wermter. Continual lifelong learning with neural networks: A review.
Neural Networks, 113:54–71, 2019.

[PZVBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross.
Surfels: Surface elements as rendering primitives. In Annual Conference
on Computer Graphics and Interactive Techniques, pages 335–342, 2000.

[QRX+21] Haoxuan Qu, Hossein Rahmani, Li Xu, Bryan Williams, and Jun Liu.
Recent advances of continual learning in computer vision: An overview.
arXiv e-prints, pages arXiv–2109, 2021.

[RACC20] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. Kimera: an
open-source library for real-time metric-semantic localization and mapping.
In IEEE International Conference on Robotics and Automation, pages
1689–1696. IEEE, 2020.

[RCH+20] Matthias Rottmann, Pascal Colling, Thomas Paul Hack, Robin Chan,
Fabian Hüger, Peter Schlicht, and Hanno Gottschalk. Prediction error meta
classification in semantic segmentation: Detection via aggregated dispersion
measures of softmax probabilities. In International Joint Conference on
Neural Networks, pages 1–9. IEEE, 2020.

132

[Rou87] Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53–65, 1987.

[RVA+21] Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun
Chang, Jingnan Shi, Arjun Gupta, and Luca Carlone. Kimera: From SLAM
to spatial perception with 3D dynamic scene graphs. The International
Journal of Robotics Research, 40(12-14):1510–1546, 2021.

[SDS+21] Lukas Schmid, Jeffrey Delmerico, Johannes Schönberger, Juan Nieto, Marc
Pollefeys, Roland Siegwart, and Cesar Cadena. Panoptic Multi-TSDFs: a
flexible representation for online multi-resolution volumetric mapping and
long-term dynamic scene consistency. arXiv e-prints, pages arXiv–2109,
2021.

[Spe07] OMG Available Specification. Data Distribution Service for real-time
systems version 1.2. Manual of Object Management Group, 1, 2007.

[SSA17] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremen-
tal learning of object detectors without catastrophic forgetting. CoRR,
abs/1708.06977, 2017.

[SSP19] Thomas Schöps, Torsten Sattler, and Marc Pollefeys. SurfelMeshing: Online
surfel-based mesh reconstruction. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PP:1–1, 10 2019.

[TDCH21] Michal Tölgyessy, Martin Dekan, L’uboš Chovanec, and Peter Hubinskỳ.
Evaluation of the Azure Kinect and its comparison to Kinect V1 and Kinect
V2. Sensors, 21(2):413, 2021.

[TH01] Jeanie Treichel and Mary Holzer. Sun Microsystems Laboratories: The
first ten years. Perspectives, page 5, 2001.

[TTN15] Keisuke Tateno, Federico Tombari, and Nassir Navab. Real-time and
scalable incremental segmentation on dense SLAM. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 4465–4472.
IEEE, 2015.

[TTN16] Keisuke Tateno, Federico Tombari, and Nassir Navab. Large scale and long
standing simultaneous reconstruction and segmentation. Computer Vision
and Image Understanding, 157, 05 2016.

[URG22] Svenja Uhlemeyer, Matthias Rottmann, and Hanno Gottschalk. Towards
unsupervised open world semantic segmentation. CoRR, abs/2201.01073,
2022.

133

[WDNT20] Johanna Wald, Helisa Dhamo, Nassir Navab, and Federico Tombari.
Learning 3D semantic scene graphs from 3D indoor reconstructions. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
3960–3969. IEEE, 06 2020.

[WLY+21] Yingcai Wan, Yanyan Li, Yingxuan You, Cheng Guo, Lijin Fang, and
Federico Tombari. Semantic dense reconstruction with consistent scene
segments. arXiv e-prints, pages arXiv–2109, 2021.

[WNT22] Johanna Wald, Nassir Navab, and Federico Tombari. Learning 3D semantic
scene graphs with instance embeddings. International Journal of Computer
Vision, 130:1–22, 03 2022.

[WSMG+16] Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J Davi-
son, and Stefan Leutenegger. ElasticFusion: Real-time dense SLAM and
light source estimation. The International Journal of Robotics Research,
35(14):1697–1716, 2016.

[WTS+18] Johanna Wald, Keisuke Tateno, Jürgen Sturm, Nassir Navab, and Fed-
erico Tombari. Real-time fully incremental scene understanding on mobile
platforms. IEEE Robotics and Automation Letters, 3(4):3402–3409, 2018.

[WWT+21a] Ádám Wolf, David Wolton, Josef Trapl, Julien Janda, Stefan Romeder-
Finger, Thomas Gatternig, Jean-Baptiste Farcet, Péter Galambos, and
Károly Széll. Towards robotic laboratory automation plug & play: The
“LAPP” framework. SLAS Technology, 2021.

[WWT+21b] Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Fed-
erico Tombari. SceneGraphFusion: Incremental 3D scene graph prediction
from RGB-D sequences. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 7515–7525. IEEE, 2021.

[WWWK96] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall. A note on dis-
tributed computing. In International Workshop on Mobile Object Systems,
pages 49–64. Springer, 1996.

[YPRL22] Li Yin, Juan M Perez-Rua, and Kevin J Liang. Sylph: A hypernetwork
framework for incremental few-shot object detection. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages 9035–9045.
IEEE, 2022.

[ZLH+22] Jiyang Zheng, Weihao Li, Jie Hong, Lars Petersson, and Nick Barnes.
Towards open-set object detection and discovery. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3961–3970. IEEE, 2022.

[ZLS+22] Xiaowei Zhao, Xianglong Liu, Yifan Shen, Yuqing Ma, Yixuan Qiao, and
Duorui Wang. Revisiting open world object detection. arXiv e-prints, pages
arXiv–2201, 2022.

134

[ZPK18] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern
library for 3D data processing. arXiv:1801.09847, 2018.

[ZSG+18] Michael Zollhöfer, Patrick Stotko, Andreas Görlitz, Christian Theobalt,
Matthias Nießner, Reinhard Klein, and Andreas Kolb. State of the art on
3D reconstruction with RGB-D cameras. In Computer Graphics Forum,
volume 37, pages 625–652. Wiley Online Library, 2018.

[ZZZ+19] Lintao Zheng, Chenyang Zhu, Jiazhao Zhang, Hang Zhao, Hui Huang,
Matthias Niessner, and Kai Xu. Active scene understanding via online
semantic reconstruction. In Computer Graphics Forum, volume 38, pages
103–114. Wiley Online Library, 2019.

135

	Introduction
	Open-World Scene Understanding in Robotic Applications
	Robotic Perception and Task Execution
	Challenges in Open-World Scene Understanding
	Contribution

	Related Work
	Scene Reconstruction
	Simultaneous Localization and Mapping
	Scene Graphs
	Semantic Parsing
	Object Discovery
	Incremental Learning
	Open-World Scene Understanding

	Unsupervised Incremental Learning in Open-World Object-Centric Mapping
	Design Choices
	System Design
	Object-Centric Mapping
	Instance-Aware Semantic Segmentation
	Novelty Detection and Class Discovery

	Evaluation and Results
	Choice of Dataset
	Dataset Generation
	Evaluation Protocol
	Results and Discussion
	Ablation Study

	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

