
Community blockchain
provisioning

Untersuchung der Eignung von XMPP für
permissionierte private Blockchains

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Tomáš Šedivý, BSc
Matrikelnummer 1128710

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: A.o. Univ. Prof. Dr. Dipl.-Ing. Eva Maria Kühn
Mitwirkung: Dr. Dipl.-Ing. Gerson Joskowicz

Wien, 15. April 2021
Tomáš Šedivý Eva Maria Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Community blockchain
provisioning

Studying the suitability of XMPP for permissioned
private blockchain systems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Tomáš Šedivý, BSc
Registration Number 1128710

to the Faculty of Informatics

at the TU Wien

Advisor: A.o. Univ. Prof. Dr. Dipl.-Ing. Eva Maria Kühn
Assistance: Dr. Dipl.-Ing. Gerson Joskowicz

Vienna, 15th April, 2021
Tomáš Šedivý Eva Maria Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Tomáš Šedivý, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der
Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. April 2021
Tomáš Šedivý

v

Danksagung

Ich möchte einer Reihe von Menschen, die dazu beigetragen haben, diese Masterarbeit zu
ermöglichen, meinen herzlichen Dank aussprechen. Zunächst möchte ich meinen Betreuern
A.o. Univ. Prof. Dr. Dipl.-Ing. Eva Maria Kühn und Dr. Dipl.-Ing. Gerson Joskowicz für
Ihre Geduld, hilfreichen Ratschläge und Anleitungen danken. Ohne Ihre Hilfe wäre diese
Masterarbeit nicht möglich gewesen. Als nächstes möchte ich meinem Arbeitgeber Ing.
Robert Siegel, MBA dafür danken, dass er für mich zeitliche Bedingungen geschaffen hat,
die mir ermöglicht haben, diese Arbeit zu schreiben. Ich möchte auch meiner Verlobten
Lucia für ihre Liebe und Unterstützung in den letzten Jahren meines Studiums danken.
Abschließend möchte ich meiner Familie, meinen Freunden und Kollegen für ihre Geduld,
ihr Interesse und ihr Verständnis für diese Masterarbeit danken.

vii

Acknowledgements

I would like to express my thanks to a number of people who contributed to make this
thesis possible. First of all I would like to express my deep gratitude to my supervisors
A.o. Univ. Prof. Dr. Dipl.-Ing. Eva Maria Kühn and Dr. Dipl.-Ing. Gerson Joskowicz.
I thank you for your patience, helpful advice and guidance, without which this thesis
would not have been possible. Next I like to thank my employer Ing. Robert Siegel, MBA
for creating the time conditions that allowed me to write this thesis. I also would like
to thank my fiance Lucia for her love and support during the final years of my studies.
Finally I would like to thank my family, friends and colleagues for their patience, interest,
and understanding with regards to this thesis.

ix

Kurzfassung

Blockchain Technologien gewinnen immer mehr Interesse der Industrie und das nicht
nur im Finanzsektor aber auch in anderen Disziplinen. Dies gilt insbesondere für
permissionierte private Blockchains, welche über ein Zugriffskontrollmechanismus verfügen
und die Datenprivatsphäre schützen. Permissionierte private Blockchains brauchen
zusätzliche Off-chain Dienste die Funktionalität bereitstellen die man nicht mit einer
Blockchain implementieren kann. Dazu gehört die Verteilung von privaten Daten und
Nachrichtenübertragung.

XMPP ist ein ausgereiftes Kommunikationsprotokoll das sich nicht nur als Chat Kommu-
nikationssystem sondern auch in vielen anderen Anwendungen als zuverlässig und hoch
erweiterbar erwiesen hat.

Diese Arbeit analysiert die Eignung von XMPP für Off-chain Dienste und zeigt, dass
XMPP alle Funktionen bietet, die für ein Off-chain Kommunikationsprotokoll erforderlich
sind. Leider führt die Zentralisierte Architektur von XMPP zu einem zentralen Fehlerpunkt
in einem stark verteilten System wie einer Blockchain.

xi

Abstract

Blockchains are receiving an increased amount of attention not only in the financial
sector but also in other disciplines. This applies specially to permissioned private
blockchains, which provide a fine graded access control mechanism and ensure data
privacy. Permissioned private blockchains rely on additional Off-chain services, which
provide functionality, which cant be implemented on a blockchain. This includes private
data distribution and messaging.

XMPP is a mature communication protocol, which has proven to be reliable and highly
extensible not only as a chat communication system but also in many other different
applications.

This thesis analyzes the suitability of XMPP for Off-chain services and shows that XMPP
provides all features required by a Off-chain communication protocol. Unfortunately the
centralized nature of XMPP creates a central point of failure in a highly distributed
system like a blockchain.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Aim of the Work . 2
1.2 Methodological Approach . 2
1.3 Structure of the Work . 2

2 Blockchain Basics 5
2.1 Blockchain Basics . 5
2.2 Transactions . 6
2.3 Consensus . 6
2.4 Data Structures . 7
2.5 Smart Contract . 8
2.6 Taxonomy . 8

3 Permissioned Blockchain Systems 11
3.1 Corda . 11
3.2 Hyperledger Fabric . 13
3.3 MultiChain . 15
3.4 Tendermint . 15
3.5 Quorum . 16

4 Problem Statement 19

5 Related Work 21
5.1 Corda . 21
5.2 Hyperledger Fabric . 22
5.3 MultiChain . 22
5.4 Tendermint . 23
5.5 Quorum . 24

xv

6 Requirement Analysis 25
6.1 Functional Requirements . 25
6.2 Non-Functional Requirements . 26

7 XMPP 29
7.1 XMPP Architecture . 29
7.2 Jabber Id . 30
7.3 Network and XML Streams . 31
7.4 Namespaces . 32
7.5 Stanza . 32
7.6 XMPP Security . 37
7.7 XMPP Features and Extensions . 38

8 Smart-Toolbox - Blockchain Provisioning 43
8.1 Smart-Toolbox Concept . 43
8.2 Membership and Messaging Service . 49
8.3 Smart-Toolbox Use Cases . 50
8.4 Architecture and Use Cases . 50
8.5 Key Management . 67

9 Evaluation 71
9.1 Private Data Distribution . 71
9.2 Offline Capability . 72
9.3 Direct Messages . 72
9.4 Message Broadcast . 73
9.5 Synchronous Messages . 73
9.6 Asynchronous Messages . 74
9.7 Group Support and Dynamic Group Creation 74
9.8 User Query . 75
9.9 User Groups . 75
9.10 Cryptography Storage . 75
9.11 Non-Functional Requirements . 76
9.12 Disadvantages of XMPP . 76
9.13 Summary . 76

10 Conclusion and Future Work 79
10.1 Conclusion . 79
10.2 Future Work . 80

List of Figures 81

List of Tables 83

Acronyms 85

Bibliography 87

CHAPTER 1
Introduction

Since the crypto-currency Bitcoin was proposed by the paper [Nak19] in 2008 and
firstly solved the double spending problem without a central authority [CPV+16],
blockchain systems have received enormous attention [DXM+19]. They are employed in
many financial (equity exchange, stock market, diamond certification) and non-financial
(documents authenticity verification, email certification, notary services) applications
[CPV+16]. A blockchain is a distributed database that maintains an immutable ledger
typically deployed in a peer-to-peer (P2P) network [DXM+19]. The ledger stores a certain
and verifiable record of every transaction that has been executed in the blockchain, while
maintaining the anonymity and privacy of all involved users [CPV+16].

This thesis deals with permissioned private blockchains, which utilize one or more
authorities to decide if a given user can participate in the network [XWS+17]. This
specific form of a blockchain requires access control mechanisms in which each participant
has access only to a subset of all data stored on the ledger. In contradiction to these privacy
requirements, trusted interactions between participants of a blockchain based system
depend on full access for all participants to the complete ledger. Private blockchains
therefore rely on additional communication mechanisms for dynamic group creation,
negotiation of smart contracts, cryptographic material sharing and protection of private
data [Hyp19].

The eXtensible Messaging and Presence Protocol (XMPP) is a communication standard for
presence and instant messaging, which is based on a distributed client-server architecture
and has a wide range of applications in industry. It features group management, multi
user chat, direct messaging and a highly extensible architecture, which can be used to
underpin additional peer-to-peer mechanisms like the exchange of cryptographic material
and encrypted store-and-forward [SA11a].

The features and extensibility of XMPP suggest that this protocol is capable of replacing
all Off-chain communication employed in various permissioned private blockchain systems,

1

1. Introduction

while maintaining security and stability. This thesis analyzes the suitability of XMPP
using an example program, which will demonstrate the suitability of XMPP in comparison
with existing permissioned blockchain and distributed ledger systems.

1.1 Aim of the Work
This thesis analyzes the suitability of a standardized messaging system based on XMPP,
as its features can be used to solve the problems which arise from the limited data
visibility in a permissioned private blockchain, and to facilitate member management,
dynamic group creation and Off-chain communication.

During the course of this thesis an example program was created to demonstrate an
XMPP based implementation of the Off-chain features required by permissioned private
blockchains. It is possible to invite participants (a subset of the entire community) for
a given workflow or use case. Our implementation handles signature verification and
the creation, signing and distribution of certificates. Example use cases include dynamic
group creation through XMPP-based invitations of identified and pseudonymous users
required by voting and auction applications.

The suitability of XMPP is analyzed by comparing the XMPP based implementation to
equivalent ones found in other permissioned private blockchains based on the requirements
for Off-chain communication defined in chapter 6.

1.2 Methodological Approach
In the first step, existing Off-chain communication mechanisms employed in various
blockchain system have been analyzed, and based on the result of this analysis a list of
requirements for an Off-chain communication system has been defined.

The next step was to design a suitable software architecture and to choose the technological
stack for the implementation. Since this thesis is part of the Smart-toolbox project [sma],
which is still being actively developed, the initial architecture evolved during the course
of this thesis.

Finally, the suitability of XMPP has been evaluated through a comparison with existing
Off-chain communication mechanisms employed in various private blockchain systems in
terms of capabilities, performance and complexity, based on the requirements defined in
the first step.

1.3 Structure of the Work
The thesis is structured as follows: the chapter 2 introduces the basics of blockchain
technology in an implementation independent manner. The chapter 3 summarizes several
popular permissioned private blockchain implementations. The chapter 4 defines the

2

1.3. Structure of the Work

problem which is addressed in this thesis. The chapter 5 evaluates existing Off-chain
communications systems employed in various permissioned private blockchains, which is
then used as the basis for the chapter 6, which defines all functional and non-functional
requirements for an Off-chain communications system.

XMPP is introduced in the chapter 7, which provides detailed information about the
internal mechanisms of this protocol, and the chapter 8 introduces the Smart-Toolbox
project.

The chapter 9 compares the features of our implementation with features of existing
Off-chain communication systems based on the requirements defined in chapter 6, and
finally the chapter 10 concludes this thesis and presents opportunities for future research.

3

CHAPTER 2
Blockchain Basics

Recently, blockchain systems have received enormous attention [DXM+19]. They are
employed in many financial (equity exchange, stock market, diamond certification) and
non-financial (documents authenticity verification, email certification, notary services)
applications [CPV+16]. A blockchain is a distributed database that maintains an
immutable ledger typically deployed in a peer-to-peer (P2P) network without relying
on a central intermediary [DXM+19]. The ledger stores a certain and verifiable record
of every transaction that has been executed in the blockchain, while maintaining the
anonymity and privacy of all involved users. Each transaction is verified by a majority
consensus of the blockchain participants and it cannot be erased or modified [CPV+16].
This chapter outlines the basic principles behind blockchain systems in a implementation
independent fashion, while linking described technologies with concrete systems.

2.1 Blockchain Basics
This section introduces the basic principles behind the blockchain technology. Figure-2.1
illustrates a chain of blocks, which is a list of chronologically ordered blocks containing
the hash of the previous block and a list of transactions [Vuk15]. Based on the consensus
mechanism, the blockchain might also contain a nonce containing a solution for the

Figure 2.1: A chain of blocks. This figure is a reprint from [Nak19].

5

2. Blockchain Basics

Figure 2.2: Transaction workflow of a blockchain. This figure is a reprint from [Nak19].

proof of work puzzle (see Section 2.3 for more details). The chain of blocks is known
by each node participating in the blockchain system and new blocks are broadcasted
automatically. The immutability of data is ensured by the fact that a transaction cannot
be changed without the modification of hashes contained in previous blocks in every node
included in the blockchain. If multiple new blocks are being added to the blockchain
the system has to decide which block is valid [XWS+17]. This is decided by a consensus
mechanism, which is discussed in section 2.3.

2.2 Transactions
One of the key challenges for transactions in a p2p based system which does not rely
on a central intermediary is the double spending problem. The transaction mechanism
in a blockchain system solves this issue by choosing the first transaction. As this has
to be done without a central authority, each transaction has to be publicly announced
and the majority of all participants have to agree using a consensus mechanism on the
historical order in which the transactions have been received [Nak19]. The consensus
mechanism is described in section 2.3. Ownership in a blockchain system is defined using
a chain of digital signatures. As shown in figure-2.2, each transaction signs the hash of
the previous transaction with the public key of the next owner and adds these to the
end of the signature chain. The entire chain of ownership can then be validated using
signature verification [Nak19].

2.3 Consensus
The consensus protocol has a major impact on the scalability and security of a blockchain
system [XWS+17]. The role of a consensus protocol is to ensure unambiguous ordering

6

2.4. Data Structures

of transactions and blocks across all participants and to maintain the integrity and
consistency of a blockchain. A consensus protocol has to ensure that the entire blockchain
network eventually converges to a single chain without long term forks and it has
to prevent Sybil attacks, where a single group of entities dominates and controls the
consensus process, for example, by using fake identities [Bal17]. The following summarizes
the basic principles behind various consensus systems.

The proof of work approach is based on a difficult computer problem, designed such that
the correctness of a solution is easily verifiable, although the time needed to find such a
solution is effectively random. A block can only be created if a particular instance of this
computer problem is solved. This and the randomness of the required computation time
creates a race for the block creation. This process is called mining and requires a large
amount of computing power and electricity. The blockchain system also has to ensure
that all participants consider the longest observed chain to be valid, which means that
an attacker has to outrun all other miners if he wants to create faulty blocks [XWS+17].
Proof of work is used by bitcoin and multichain [DGG20].

The proof of stake approach is based on the idea that the owner of a digital currency is
interested in the correctness of a transaction and thus selects a miner based on his stakes
usually combined with a random factor. Proof of stake is computationally less expensive
as proof of work and has smaller latency[XWS+17]. This approach can be optionally
used in Tendermit [ten20b].

The proof of retrievability approach repurposes the energy costly proof of work mining
puzzle so that the solution includes the storage of a part of a public dataset [MJS+14].

All blockchain systems rely on consensus mechanisms which are tolerant to Byzantine
faults, since no two participants trust each other and there is no central authority. A
Byzantine fault in a distributed system happens when a subset of its components share
conflicting or wrong information [LSP19]. However, each participant is able to verify the
correctness of the whole chain by inspecting the local copy of the replicated data. This
approach has been adopted in Hyperledger fabric, which is a permissioned blockchain
[Bal17], but also in core Tendermint in combination with proof of stake to prevent Sybil
attacks [XWS+17], Corda [Hea16], and Quorum [Cha20].

2.4 Data Structures
As mentioned in section 2.1, the basic data structure used in blockchain systems is a
chain (or list) of cryptographically linked blocks [Vuk15]. This section summarizes other
data structures commonly used in blokchain implementations.

GHOST or the Greedy Heaviest-Observed Sub-Tree is a modification of the chain of blocks
algorithm, where the conflict resolution of concurrent forks is based on the selection of
the heaviest subtree [SZ15]. This allows shorter inter-block times and better throughput
[XWS+17]. A variant of this mechanism is used in Ethereum [SZ15].

7

2. Blockchain Basics

The Block DAG approach uses a directed acyclic graph rather than the chain of blocks
list structure, which makes it possible to include non-conflicting transactions from
independently mined concurrent blocks in the main chain [XWS+17].

The Segregated Witness approach separates the signature from the data in the transaction
so that the signature does decrease the block size limit. This can further decrease the
size of all transactions, which are replicated on all nodes [XWS+17].

Another common data structure used in blockchains systems is a merkle tree, where each
non leaf node is labelled with the hash of its child labels and each leaf is labelled with
a value. In the context of blockchains this is usually a hash [Szy04]. Bitcoin utilizes
merkle trees to save storage [Nak19]. Corda structures each transaction into a merkle
tree, which allows oracle sigatures with limited data visibility [Hea16].

2.5 Smart Contract

A ledger in a blockchain system can be seen as a state transition system in which
the modification of ownership is defined by a state transition function, also known
as a smart contract [B+14]. Smart contracts are both automated and self enforcing,
and are implemented as part of a computer protocol [CPV+16]. Early blockchain
implementations, like bitcoin, had a very limited capability for auxiliary data and
programmable transactions. Newer blockchains provide a programmable Turing complete
infrastructure for smart contracts, which are executed within a transaction and are able
to store computational results in the ledger [XWS+17]. Smart contracts can be based on
one of the following computational models [Hea16]:

• The Unspent Transaction Output (UTXO) model, where each payment takes the
previous unspent transaction as input and generates a new unspent transaction.
This model is used by Bitcoin and Corda [ZXD+20].

• The virtual computer model, which is described as a single-threaded execution
on the memory state of a global computer [Hea16], and the new state is recorded
directly instead of calculation of unspent transactions. This model is used by
Etherum and Hyperledger Fabric [Hea16].

2.6 Taxonomy

This section summarizes the taxonomy proposed in the paper[XWS+17], which analyses
architectural characteristics of blockchains and defines a blockchain taxonomy. We will
discuss the taxonomy based on level of decentralisation and blockchain infrastructure
configuration.

8

2.6. Taxonomy

2.6.1 Level of centralization
A centralized system has one central trusted authority, which validates all transactions.
This authority can manipulate the entire system and is the single point of failure. In
contrast, a fully decentralized system cannot rely on mutual trust between users or a
central entity. This includes permissionless blockchains such as Bitcoin or Ethereum,
where anyone can join the network, validate transactions and mine blocks [XWS+17].

The paper [XWS+17] also defines partially decentralized (and partially centralized)
systems based on two aspects permission and verification:

• A permissioned blockchain controls the access of users using one or more authorities,
which may decide if a given user can join the network, mine or to initiate a
transaction. A permission management mechanism may become a single point of
failure. There are two kinds of permissioned blockchains:

– Permissioned blockchains with fine graded access control.

– Permissioned blockchains with privileged miners(write) and unprivileged
normal nodes (read).

• Verification on the blockchain can only access data that is part of a transaction
and no external system can be accessed directly [XWS+17]. This is because a
transaction has to be deterministic and cannot depend on external data [Hea16].
This problem can be solved using a verifier, which is a trusted entity that can verify
conditions that depend on external state. A verifier can be implemented in the
following ways [XWS+17]:

– A centralized verifier, which can be implemented as an external server that
can sign a transaction with its own keypair. Such a server is a potential single
point of failure [XWS+17].

– A distributed verifier consisting of multiple verifiers, with the system relying
on a multi-signature schema (M-of-N) that requires keys from M out on N
verifiers [XWS+17].

– An ad hoc verifier that is a trusted arbitrator that may be human or automated
and is able to resolve disputes and sight transactions [XWS+17].

The following blockchain systems have support for verifiers: Corda [Hea16] and
Hyperledger fabric [LD20].

2.6.2 Blockchain scope
This subsection introduces the taxonomy of blockchains based on their access control
mechanisms [XWS+17].

9

2. Blockchain Basics

• Public blockchains can be accessed by anyone on the internet. This results in
better information transparency and auditability, but sacrifices performance for
this increased security. Most digital currencies are public [XWS+17].

• Private permissioned blockchains control access and permissions using one or more
central authorities. [XWS+17].

• Consortium blockchain is used by multiple organizations. Read access may be
public or private and the consensus is controlled by a privileged node [XWS+17].

2.6.3 Data storage and computation
Data storage and computation on a blockchain is not only limited by storage capacity and
computational power, but may also cost real money. Therefore, it is common practice to
store raw data outside the blockchain i.e Off-chain . However, data stored on a blockchain
may not only be for integration with external systems, but may also be used as On-chain
auxiliary data, for example "coloured coins", which may be used a representation of real
world assets on the bitcoin blockchain. An item collection is commonly stored directly
on a blockchain, but a separate chain might also be used, which could increase flexibility
as it is possible to optimize the auxiliary blockchain configuration for the stored data.
Computation in a blockchain based system can be achieved On-chain using a smart
contract or Off-chain i.e using the blockchain just as a data layer [XWS+17].

10

CHAPTER 3
Permissioned Blockchain Systems

In contrast to public blockchains a private permissioned blockchain uses a central authority
to control access to the network and provides a fine graded permissions system for data
access, transactions and asset creation. This allows for better performance as the security
does not rely on a costly proof of work consensus mechanism (see section 2.3 for more
information) [XWS+17]. The permissioned private blockchain systems introduced in this
chapter have been selected based on a literature review of recent articles and surveys
addressing blockchain systems and their application in the industry. The table 3.1
summarizes the most commonly referenced blockchain systems.

3.1 Corda
Corda is developed by R3 and was first released in 2016. It aims to create a decentralized
database, which can be used as a global ledger. Corda provides an application platform,
which allows the implementation of new capabilities bundled in CorDapps typically stored
in jar format. This makes it possible to define new datatypes, inter-node protocol flows
and smart contracts. Corda uses a similar structure as the email network. A node requires
an identity (which might be pseudonymous), but only a valid key pair is necessary to
participate in the network if a node grants an authorized account. The communication in
corda is abstracted using a programming model called flow, which is based on quasar fibers
and uses a message broker based on Advanced Message Queuing Protocol (AMQP). Flow

[AA20] [Wan21] [SIHC21] [NRP+21] [HKG+21] [BVGC21] [Alr21]
Multichain • • • • • • •
Tendermint • • •

Quorum • • • • • •
Hyperledger Fabric • • • • • •

Corda • • • • • •

Figure 3.1: Permissioned blockchain systems referenced in recent literature

11

3. Permissioned Blockchain Systems

allows interruptible transactions, off-line operation and re-synchronization of participating
nodes [Hea16].

3.1.1 Network
Corda uses a peer to peer network for communication and all messages are transported
using AMQP secured by Transport Layer Security (TLS) (see section 5.1 for more
information). The Corda network consists of the following parts [Hea16] :

• Nodes, which act as an application server for CorDapps. Each node provides access
to the peer to peer network, cryptographic key signing a relational database and
access to the vault, which stores ledger data relevant to the node owner. [Hea16].

• Identity service provided by an X509 signature authority [Hea16].

• Network map service, which provides node specific network information such as ip
addresses and identity certificates. [Hea16].

• Notary services, which are responsible for transaction ordering and timestamping.
[Hea16].

• Oracle services, which act as a verifier for external states (see section 2.6.1 for more
information) [Hea16].

3.1.2 Consensus
The consensus system employed in Corda is not based on time organized into blocks.
Instead the transaction ordering is handled by a notary service, which should be
maintained by each distrusting party. Notaries process each transaction and return
either a rejection error, in case of double spending, or a signature, which indicates the
transaction finality. Corda does not enforce a concrete consensus algorithm and even
allows the employment of different notary implementations in the same network. This
allows for a fine graded performance - trust trade off [Hea16].

Corda splits the consensus mechanism in two parts: Transaction validity and transaction
uniqueness. This separation increases privacy as the transaction validity can be verified
solely by the participants using smart contracts and signature verification. And the
transaction uniqueness, which prevents double spending, can be achieved without private
data containend in the transaction [BCGH16].

3.1.3 Transactions
Corda defines states as atomic unmodifiable units of information, which are either current
(unspent) or consumed (spent). Each Transaction consumes one or more states as input
and create zero or more new states. Every state has an identifier (StateRef), which
consists of the creating transaction and its output index. A transaction definition contains

12

3.2. Hyperledger Fabric

a list of input state references, which will be consumed during execution, a list of non-
consuming input references, a list of output states (including the notary, contracts and
data), which will be created during the execution, a list of commands, which are used as
parameters for the executed contract (this includes data from oracles), a transaction type
(normal, notary-changing or explicit upgrades), signatures, timestamps, and network
parameters [Hea16].

A transaction in Corda becomes valid when it receives signatures from all required signers,
this always includes notaries, which are responsible for transaction ordering and validation
but may include oracles and owners depending on the executed contract [Hea16].

Each transaction in Corda is structured into a merkle tree (see section 2.4 for more
details), where the label of the root identifies the transaction. This data-structure allows
transactions to be signed by an oracle or notary without complete data visibility as entire
branches containing sensitive data can be removed [Hea16].

The recorded transactions are not globally visible and the read access is limited to relevant
participants. This is achieved using cryptographic hashes used for data and participant
identification [BCGH16].

3.2 Hyperledger Fabric
Hyperledger Fabric is developed by the linux foundation under the Hyperledger project,
which was established in 2016 [C+16]. It is an open-source distributed operating system
for permissioned blockchains with an extensible architecture. It allows for modular
deployment of the ordering service, membership service, gossip service and the ledger.
The ordering service is used for the consensus mechanism. The membership service
maintains all identities and can act as Certification Authority (CA). The gossip service
disseminates blocks and distributes private data (for more information see 5.2). The
ledger acts as a value store and is located on each peer [ABB+18].

Fabric was the first blockchain system, which supports the execution of applications
written in a standard programming language like Java or Go. One fabric network can
run multiple blockchains called channels. Each channel has an independent consensus
and configuration [ABB+18].

3.2.1 Network

As you can see in figure 3.2, the Fabric network consists of clients, peers, ordering service
nodes and the Membership Service Provider (MSP). Clients create transaction proposals.
Peers validate and execute transactions. The ordering service nodes handle the ordering
of new blocks and the MSP maintains all identities [ABB+18].

Each participating node has an identity with specific permissions, which is assigned by
the MSP. The communication between nodes is handled using a peer-to-peer gossip

13

3. Permissioned Blockchain Systems

Figure 3.2: Fabric network, this figure is a reprint from [ABB+18].

protocol, which synchronizes the nodes [ABB+18] and distributes private data based on
access permissions (for more information see 5.2) [Hyp19].

3.2.2 Consensus
A transaction in Hyperledger Fabric consists of the header, signature, proposal, response
and endorsement. The header contains all metadata related to the transaction. The
proposal contains the parameters for the smart contract execution. The response holds
a read/write set containing the before and after values of the modified states. The
endorsement holds all required signatures based on the endorsement policy [Hyp20].

Hyperledger fabric is based on the execute-order-validate paradigm, which splits the
transactions mechanism into three parts [ABB+18] :

• Transaction execution, where the clients create and sign a transaction proposal,
which is sent to one or more endorsers depending on the smart contract [ABB+18].

• Transaction ordering, where the client submits a transaction based on the proposal
signed by all endorsers to the ordering service. This service guarantees the total
order of all submitted transactions and atomically broadcasts endorsements ensuring
consensus. As the ordering service does not verify any transaction there is no need
for the blockchain state to be stored on the ordering service. The separation of this
step allows for high modularity of the consensus mechanism [ABB+18].

• Transaction validation phase is executed after the ordering service or the gossip
protocol distribute the new blocks. This phase validates all signatures, checks for
read/write conflicts and updates the local ledger [ABB+18].

14

3.3. MultiChain

Each of the steps may be executed on different nodes [ABB+18].

3.3 MultiChain
MultiChain is an easy to use platform for creation and deployment of private blockchains
supporting Windows, Linux and Mac. It aims to create a smooth transition between the
bitcoin blockchain, private blockchains and vice versa. All permissions are managed on
the blockchain and can be granted or revoked using special transactions. The genesis
block defines an administrator with all permissions. MultiChain was initially forked from
the bitcoin core and has the same architecture [DGG20].

3.3.1 Network
A MultiChain deployment can run multiple blockchain instances, where each blockchain
consists of multiple nodes. Each node has a node address consisting of the blockchain
name and node ip address. Each new blockchain instance consists initially only of one
node, which mines the genesis block. New nodes can join the blockchain only after a
permission transaction, which authorizes the new node to be executed [DGG20].

3.3.2 Consensus
The consensus in MultiChain is achieved using a mining process similar to bitcoins proof
of work (see section 2.3 for more information). But in contrast to bitcoin the security of
MultiChain does not rely on proof of work, it is only used to ensure mining diversity as all
mining entities are identifiable and authorized to mine. The mining process additionally
prevents monopolization using a round robin approach, where only a given number of
blocks can be created by one node, within a given time window [DGG20].

3.4 Tendermint
Tendermint is an open source Byzantine Fault Tolerant (BFT) state machine replication
blockchain platform, consisting of Tendermint core, which provides a BFT consensus,
high level interface for deterministic applications (Application BlockChain Interface) and
management tools [BKM18].

3.4.1 Network
The Tendermint network consist of the following node types [ten20b]:

• Validator Nodes, which are responsible for the consensus [ten20b]. These nodes
should use a sentry node for communication as they are the core of the consensus
mechanism securing the Tendermint network.

• Full Nodes, which maintain a local ledger and validate transaction [ten20b].

15

3. Permissioned Blockchain Systems

• Seed Nodes, which are responsible for p2p node discovery and maintain a list of
known peers in a local address book [ten20d].

• Sentry Nodes, which act as a network proxy for validator nodes, ensuring their
safety [ten20b].

The nodes in the Tendermint network can communicate using a direct TCP connection
using the p2p package or using Remote Procedure Call (RPC) over HTTP. Both
communication systems are discussed in section 5.4 [ten20b].

3.4.2 Consensus

Tendermint is a distributed DLS based BFT consensus protocol, which is byzantine fault
tolerant if at least 2/3 of nodes are not compromised [Kwo14]. The Consensus is facilitated
by authorized participants called validators, which propose blocks of transactions and
vote on block validity. A block is considered committed if more then 2/3 of the validators
vote for validity. This guarantees that the safety of the system will not be violated if less
then 1/3 of validators are Byzantine. The security of consensus can be enhanced with a
proof of stake mechanism if the deployed application uses a currency (see section 2.3 for
more information) [ten20b]. Transactions in Tendermint are encoded as arbitrary byte
arrays and the application, which is built on the Tendermint core, decides the content of
these arrays. This increases the flexibility of Tendermint for various use cases [ten20a].

3.5 Quorum
Quorum is a private permissioned blockchain system based on the official etherum protocol
implementation. As seen in figure 3.3, privacy ensuring changes are implemented in a
separate layer above the standard implementation [Cha20]. This includes the transaction
manager, crypto enclave, consensus implementations and the network manager. The
Transaction Manager handles access to private data, manages local data and communicates
with other transaction managers. The Crypto Enclave handles the cryptography and
private key management. The Network Manager is responsible for network access control
[Cha20].

Quorum introduces a new private transaction type, which uses cryptography to prevent
unauthorized access to sensitive data. All data is stored on a shared blockchain. This
requires some changes in the smart contract architecture and the modification of the
proposal and validation system. The contract execution during the verification of private
transactions is skipped in nodes, which are not part of the transaction [Cha20].

These modifications enable the segmentation of the state database separating the public
and private states. The network is in perfect consensus on the public states, but the
private states may differ [Cha20].

16

3.5. Quorum

Figure 3.3: Quorum architecture, this figure is a reprint from [Cha20].

3.5.1 Consensus

The consensus in Quorum can be achieved using the Raft or Istanbul BFT protocols
[Cha20].

The Raft based consensus can be used in a closed membership environment, where each
Quourum (Etherum) node corresponds to one Raft node. The entire cluster has only
one leader, which is chosen using a voting process. The leader orders transactions into
blocks without the need of proof of work. A Block is accepted if it has been verified by a
majority of raft nodes [Cha20].

The Istanbul BFT protocol can tolerate up to one third of all validator nodes to be faulty.
It uses a three-phase consensus mechanism. Block validators, which are chosen using a
voting process, pick a proposer node in each consensus round. The proposer node creates
a new block, which is broadcast in the first step. This block is then validated by all
validators, which then broadcast a prepare message. The last step commits the state and
is executed after a validator node receives a prepare message from at least two thirds of
all validator nodes [Cha20].

3.5.2 Network

The nodes in Quorum network can have the following roles [Tee17]:

• A Maker node is responsible for the creation of new blocks. Each Maker has a
randomly set timer, which starts the creation of a new block. The timer is reset
after a new block from a different maker has been received [Tee17].

• A Voter node participates in the block selection process depending on the defined
consensus mechanism [Tee17].

• An Observer node is a node which has neither a vote role nor a maker role assigned.
Such a node can only receive and validate blocks [Tee17].

17

3. Permissioned Blockchain Systems

These roles are defined in the genesis block but can be assigned during runtime post
blockchain creation as the network changes [Tee17]. A node can have assigned both voter
and maker roles at once.

3.5.3 Transactions
Transactions in quorum consist of the recipient, signature of the sender, optional ether
amount, list of participants allowed to see the transaction and a payload (a hash value in
case of a private transaction) [Bas18].

Contract code in a public transaction is executed on each node, resulting in a state
change. Private transaction contracts cannot be executed on each node as the private
payload is replaced with a hash value before the transaction is propagated to other nodes.
Only authorized participants are able to access the original payload using Tessera or the
Constellation peer to peer protocol (see section 5.5 for more information) [Tee17].

18

CHAPTER 4
Problem Statement

This thesis deals with permissioned private blockchains, which use a central authority
to control access to the network and provide a fine graded permissions system for data
access, transactions and asset creation (see chapter 3 for more information) [XWS+17].
The verification system in a blockchain relies on data visibility by every authorized
participant. This makes the data stored in a permissioned private blockchain public to
all authorized users. This problem can be mitigated by the following approaches [sma20]:

• The separation of data and blockchains, which can be achieved using cryptographic
hashes of the actual data. These approaches requires an additional Off-chain
mechanism for data distribution [sma20]. For example hyperledger fabric uses the
gossip protocol for private data distribution (see section 5.2 for more information)
[ABB+18].

• A separate blockchain, where each participant is authorized to access the private
data. For example, hyperledger fabric uses this concept in so called channels, which
are immutable and cannot be altered or dynamically created [sma20].

Each of these mitigation approaches require a mechanism for user authorization or group
management to ensure data visibility for authorized users. In case of a separate blockchain
an asset synchronization system is also required to prevent double spending in separate
chains.

XMPP is a mature and extensible communication standard, which is adopted in a wide
range of applications in different industries. XMPP provides dynamic group creation, store
and forward messaging and an invitation system using standard extensions. These features
suggest that XMPP is capable of replacing all Off-chain communication employed in
various permissioned private blockchain systems, while maintaining security and stability.

19

4. Problem Statement

This thesis aims to analyze the suitability of XMPP especially for Off-chain services which
include key management, private data exchange and dynamic mutable group creation,
where the invitation system is used to dynamically group users and the messaging
functionality of XMPP is used to exchange cryptographic material and distribute private
data.

The suitability of XMPP for asset synchronization is outside the scope of this thesis.

20

CHAPTER 5
Related Work

This chapter evaluates existing Off-chain communication systems employed in various
permissioned private blockchains.

5.1 Corda
Corda is a private permissioned blockchain system developed by R3, which supports
smart contracts, observer nodes and different consensus mechanisms (see section 3.1 for
more information) [Hea16]. Corda uses a peer to peer network for communication and all
messages are transported using AMQP, secured by TLS. The reference implementation
uses the Apache Artemis message broker, which supports journalling, load balancing,
clustering and streaming of messages too large to fit in RAM. Similar to the email
network, nodes are expected to be long lived, with a globally unique identity, which
ensures delivery messages are sent using the store and forward technique, where each
message is stored on the hard drive until the recipient confirms delivery. This prevents
data loss on unstable networks and in the case of node downtime [Hea16].

The AMQP is an open binary protocol for message exchange. It provides java compatible
primitive types but is extensible and allows natural java mapping to business types.
Each message has a unique id, which prevents redelivery [Hea16]. A AMQP network
consists of named entities called nodes, which can send, receive or relay messages. These
nodes exist in a container, which may contain multiple different nodes. Each node may
act as a producer, consumer, or a queue, which stores and forwards messages [Sta12].
Corda additionally defines a session-id, which allows long lived sessions even across server
restarts and ensures that all messages are self describing. The deserialization system
in Corda is implemented with versioning in mind. Each data stream is deserialized to
a named class. A process called data evolution is triggered in cases where the name
does not exactly match. This process ensures values are mapped with existing classes,
allowing for default values in new code and discarding of future fields where possible. If

21

5. Related Work

no matching class is found, the framework synthesizes a new class, which can be accessed
using reflection. Corda nodes also provide a basic RPC mechanism, which is also based
on AMQP and allows direct interaction with a node [Hea16].

5.2 Hyperledger Fabric
Hyperledger Fabric has been developed by the linux foundation under the Hyperledger
project since 2016. It is an open-source distributed operating system for permissioned
blockchains with an extensible architecture (see section 3.2 for more information). Peer
communication in Fabric is based on the gossip protocol, which is responsible for the
distribution of new execution results to all nodes and the synchronization of newly joined
nodes, which were offline and therefore have outdated state. The gossip protocol utilizes
epidemic multicast, which enables fast detection of offline peers, while maintaining a list
of active peers (membership view). The dissemination of new blocks using the gossip
protocol is achieved in two steps. First, in the push phase, each node randomly selects
target peers from the membership view and transfers the message. Second, during the
pull step, each node randomly selects a list of peers and requests missing messages. This
process synchronizes all nodes, which can then reconstruct the entire blockchain, while
effectively utilizing the network resources [ABB+18]. Additionally, the gossip protocol
transfers private data to authorized peers [Hyp19]. The message exchange in the gossip
protocol is facilitated using gRPC in combination with TLS for security [ABB+18].

The gRPC library is a general-purpose RPC system, initially created by google, and
is commonly used in microservice architectures. As usual, in a RPC system a gRPC
client is able to call a server method transparently to the client side developer as if the
server were a local object. It has support for many common deployment environments
and programming languages such as java, c#, c++, go, php, javascript and others.
All messages in gPRC are transported in binary format using the HTTP/2 protocol.
The encoding of messages is facilitated using protocol buffers, which is an open source
serialization framework developed by google. The gRPC api supports bidirectional
streaming and synchronous and asynchronous calls [Fou20].

5.3 MultiChain
MultiChain is an easy to use platform for creation and deployment of private blockchains
and it aims to create a smooth transition between the bitcoin blockchain, private
blockchains and vice versa. MultiChain was initially forked from the bitcoin core and
has the same architecture (see section 3.3 for more information) [DGG20].

MultiChain streams provide an abstraction layer, which hides the complexity of the
underlying blockchain. A multichain stream can be used as a key value database
(document store), a time series database, or an identity driven database. Streams can be
created and closed dynamically with different access rule configurations. Each stream
represents an append only collection of items, where each item is stored as a separate

22

5.4. Tendermint

blockchain transaction, including an id, a timestamp, data and one or more publishers
which have signed the item. The id is used for later retrieval in the case of a key value
database. The data has dynamic length up to many megabytes. The timestamp is equal
to the block header timestamp [Ltd20a].

Private data access in Multichain can be realized using a combination of three streams.
One is used for public key distribution, another for data distribution and contains items
with encrypted data. The final one is used for decryption key distribution and is limited
to authorized participants. This allows blockchain data storage with limited data visibility
[Ltd20a].

5.4 Tendermint
Tendermint is an open source BFT state machine replication blockchain platform designed
to be integrated into various applications [BKM18]. The communication between nodes
can be facilitated using a RPC mechanism or a native p2p protocol [ten20b].

5.4.1 RPC
Tendermint core includes an RPC system, which allows for remote invocation of methods
using the JSONRPC over web sockets, JSONRPC over Hypertext Transfer Protocol
(HTTP) or the Uniform Resource Identifier (URI) over HTTP protocol, which is a custom
REST like interface [ten20c].

JSONRPC is a public communication specification for RPC communication. It is stateless
and transport agnostic supporting http and web sockets. The protocol encodes all request
and response messages using json [Gro13].

5.4.2 Peer to Peer protocol
Each peer in a Tendermint peer to peer network has an id consisting of the port, ip address
and an identifier corresponding to the private key of the peer. All connections use TCP
with an Station To Station (STS) protocol, secured using X25519 and chacha20poly1305.
The messages sent over this protocol are grouped into channels and each transferred
message has a channel identifier. The protocol supports synchronous and asynchronous
messaging and defines three types of packets [ten20b]:

• The ping packet consists of only one byte and is used as a keep alive mechanism,
which also checks if a given connection is still alive. A pong packet is expected
within a timeout after a ping packet is sent [ten20b].

• A pong packet is sent after a ping packet was received [ten20b].

• The msg is used to deliver messages between peers and, besides data, also contains
a channel id and End Of File (EOF) flag, which is used to mark the end of a
message consisting of multiple msg packets [ten20b].

23

5. Related Work

Data transferred using msg packets is encoded using go-amino [ten20b]. Amino is a
binary encoding format for complex objects, which is based on Proto3 [ten19].

5.5 Quorum
Quorum is a private permissioned blockchain system based on the official etherum protocol
implementation (see section 3.5 for more information). The peer to peer communication
and the distribution of private data is handled by the transaction manager [Con20c].
There are currently two transaction manager implementations in Quorum:

• Constellation, which is a general-purpose message exchange system allowing encrypted
communication between peers [Bas18].

• Tessera, which is an open source private transaction manager developed for the
Quorum blockchain [Con20d].

5.5.1 Constellation
Constellation is a haskel based peer to peer system, which was developed as a privacy
engine for the Quorum blockchain. Constellation is able to transfer encrypted data
between automatically managed nodes. It also acts as a distributed key server, where
each node holds a list of encryption keys. This list, and the list of known hosts, is updated
during the startup process, where the new node contacts all known nodes provided during
startup. Each contacted node shares its know encryption keys and node list, which is then
used for further key exchange and the process is repeated until the node is synchronized
[Con20b].

5.5.2 Tessera
Tessera is a REST based peer to peer system written in java and provides services
for encryption, decryption and distribution of private data in Quorum. Similarly to
Constellation, Tessera also maintans a list of encryption keys and manages the discovery
and synchronization of peer to peer nodes [Con20d].

24

CHAPTER 6
Requirement Analysis

This chapter defines requirements for an Off-chain messaging system capable of key
management, group management, and data synchronization. The definition is based
on existing communication mechanisms employed in different permissioned blockchain
implementations as described in chapter 5. The requirements are categorized into
functional requirements, which describe concrete features, and non-functional requirements,
which describe system properties.

6.1 Functional Requirements

6.1.1 Private Data Distribution

The system shall be able to distribute private data to authorized users.

6.1.2 Offline Capability

All messages transferred within the communication system shall be delivered even if the
recipient is offline or not reachable due to network outages. This is usually achieved using
a store and forward mechanism, where the message is persisted to the hard drive until
delivery is possible. This will allow for asynchronous invites, where the invitee receives
an invite after reconnection.

6.1.3 Direct Messages

The message system shall facilitate direct message exchange between participants. This
will allow human to human interaction and might be used for private data exchange.

25

6. Requirement Analysis

6.1.4 Message Broadcast
The message system shall be able to send the same message to a defined set of recipients
at once. This allows direct communication between a dynamic group of participants.

6.1.5 Synchronous Messages
The system shall support synchronous message delivery. This approach allows the
synchronous execution of processes like public key publishing.

6.1.6 Asynchronous Messages
The system shall support asynchronous message delivery. This approach allows the
asynchronous execution of processes like public invites.

6.1.7 Group Support
The system shall be able to create a group for private data exchange.

6.1.8 Dynamic Group Creation
The system shall be able to dynamically create a group for private data exchange.

6.1.9 User Query
The system shall be able to list all registered users, which can then be invited.

6.1.10 User Groups
The system shall be able to group users into logical groups (for example departments).
This will allow the invitation of multiple users at once.

6.1.11 Cryptography Storage
The system shall be able to store cryptographic material.

6.2 Non-Functional Requirements
6.2.1 Performance and Scalability
The system should run with reasonable performance and be highly scalable.

6.2.2 Availability
The system should allow for a high availability deployment. This is usually achieved
using redundancy.

26

6.2. Non-Functional Requirements

6.2.3 Encryption
Each connection which is used to deliver messages shall be encrypted. The security of
every communication system is dependent on encryption as this prevents network sniffing
and men in the middle attacks.

6.2.4 Security
The system has to protect the stored keys from unauthorized access.

27

CHAPTER 7
XMPP

The XMPP is a communication standard, for presence and instant messaging, which is
built on a distributed client-server architecture. The core specification of XMPP was
published in 2004 based on an instant messaging system called Jabber and has since
been adopted in a wide range of applications through the industry, not only for instant
communication but also in games, geolocation, cloud computing, disaster management,
public transport and smart cities [IVBA+14]. The protocol is asynchronous, XML based
and works across multiple servers with different domains similarly to the email network.
It features a highly extensible architecture, which is not only employed in various XMPP
Extensions Protocol (XEP) extensions but can also be used for custom payloads [SA11a].
Public XEP specifications are managed by the XMPP Standards Foundation (XSF), which
oversees the proposals, documentation and standardization of new XMPP extensions
[SAC10]. This chapter outlines the architecture and basic principles defined in the XMPP
specification. The section 7.1 introduces the distributed server architecture, which is
the basis for XMPP. XML streams and network communication are described in section
7.3. The section 7.5 deals with stanzas and the last section 7.7 then summarizes various
extensions, which are relevant to this thesis.

7.1 XMPP Architecture
XMPP enables close to realtime asynchronous end to end exchange of short structured
xml encoded data called XML stanzas (handled in section 7.5), using continuous streams
between globally addressable presence-aware clients and servers. The typical XMPP
implementation is based on a distributed client-server architecture, which can be seen
in figure-7.1. Each user authenticates with its server using a globally unique address
called Jabber ID (JID), which is based on the domain name system. XMPP allows
multiple authorized connections with the same JID as each connection is identified using
a unique resource id. For more information about JID see section-7.2. An authenticated

29

7. XMPP

Figure 7.1: Distributed client server architecture. This figure is based on [SA11a].

client can exchange XML stanzas with other participants of the network, while the other
participants do not have to be connected to the same server as the XMPP protocol
defines an inter domain or inter server relay mechanism, where one server connects to
another server and exchanges XML stanzas on behalf of its associated entities. Beside
authentication a XMPP server has to manage XML streams (handled in section 7.3)
with local clients and remote servers, deliver stanzas between connected clients, forward
stanzas to other servers for further routing, store client data (for example contact lists)
and host extensions [SA11a].

7.2 Jabber Id
The routing mechanism of XMPP requires each entity connected to the network to be
globally addressable. This not only applies to servers and clients, but also to various
additional services, and is achieved using a globally unique identifier called JID. JIDs are
based on the domain name system similarly to the email network and consist of three
parts [SA11a]:

• The domain part is a fully qualified domain name, which typically identifies the
server responsible for the routing and authentication for a given network participant,
but may also identify other entities, like for example a multi user chat service
[SA11b].

• The local part is an optional identifier, which is typically used to identify entities
associated with a server, like for example a user account, but it may also identify a
chatroom associated with a muti user chat service [SA11b].

30

7.3. Network and XML Streams

• The resource part is an optional identifier, which is used to distinguish connections
authenticated using the same JID. It is unique among all connected resources and is
defined during connection initialization either by the client or by the server [SA11a].

The XMPP standard defines 2 types of JIDs [SA11a]:

• Bare JID, which is defined in the following format: localpart@domain and is used
to identify entities in the XMPP network without relation to a specific connection
[SA11a].

• Full JID, which is defined in the following format: localpart@domainpart/resource
and is used to identify entities in the context of different connections [SA11a].

7.3 Network and XML Streams
The network communication in XMPP is facilitated through client to server and server
to server TCP connections [SA11a]. Each client connects to a server, which handles
the routing based on the recipients JID. Direct client to client communication is not
supported by the core specification, but is possible using an extension called serverless
messaging (XEP-0174) [SA08b], which is described in section 7.7.10. A connection life
cycle consist of the following steps [SA11a]:

1. Determine the server ip address and port. This step is usually done using domain
name resolution.

2. Open a TCP connection.

3. Open XML stream.

4. Optionally negotiate TLS encryption using XML commands.

5. Authenticate using Simple Authentication and Security Layer (SASL).

6. Bind resource to stream. This step is executed only in the case of a client to
server connection, and its purpose is to define a unique resource id for the full JID
associated with this connection [SA11a]. For more information see section 7.2.

7. Exchange XML stanzas.

8. Close XML Stream.

9. Close TCP connection.

An XML stream is the backbone of the XMPP protocol. As shown in figure-7.2 it is
basicaly an XML container, enclosing all XML encoded data transferred over the life
cycle of the connection and begins with a stream header, which is just a <stream> tag

31

7. XMPP

containing appropriate namespaces and attributes like from, to and version. The end of
the stream is marked by a closing XML element </stream> tag. An XML stream is used
to transfer stanzas (see section 7.5) and other xml elements, which are used for XMPP
signaling and negotiations , such as stream errors, TLS or SASL metadata. Each stream
transfers data only in one direction, which means that bidirectional communication
requires at least two streams. This can be achieved in one of the following ways [SA11a]:

• Two streams over a single TCP connection, which is typical for a client to server
session. This approach uses the same security context for both streams [SA11a].

• Two streams over two TCP connections securing each stream separately. This
approach is typical for server to server communication [SA11a].

• Multiple streams over multiple TCP connections with separate security contexts.
This is sometimes used for server to server communication for large XMPP service
providers.

The figure-7.2 shows a simplified example of bidirectional communication consisting of a
initial and response XML stream. The initiating stream contains a presence, message
and iq stanza but only the iq stanza results in a result stanza in the response stream
[SA11a]. For more information about stanzas see section 7.5.

7.4 Namespaces
The role of XML namespaces is to prevent clashes between names in different markup
vocabularies [BHLC09]. XMPP makes extensive use of this mechanism to create strict
boundaries of data ownership and to facilitate the extensibility of the basic stanza syntax
for additional functionality. Message and presence stanzas may contain one or more
child elements, with a specific namespace, which defines the semantics of they content.
The core specification of XMPP defines the jabber:client namespace for client to server
communication and jabber:server namespace for server to server communication. The
only difference between them is that the jabber:server namespace requires the definition
of the to and from attributes. Each XMPP extension is free to define its own set of
qualifying namespaces, which are used to create and identify stanzas used by the extension
[SA11a].

7.5 Stanza
The basic minimal unit employed in the XMPP protocol is called an XML stanza. It is
defined as the first level element of the XMl stream whose name is message, presence or
iq and its namespace is either jabber:client or jabber:server. There are three types of
stanzas [SA11a]:

32

7.5. Stanza

<stream>
<presence id="1" >

<show/>
</presence>

<message id="2" to="B"
<body/>

</message>

<iq to="B" id="3"
type="get">
<query/>

</iq>

</stream>

(a) Initial stream

<stream>

<iq to="A" id="3"
type="result">
<query/>

</iq>

</stream>

(b) Response stream

Figure 7.2: Bidirectional communication using two streams. This figure is based on
[SA11a].

• A message stanza is encoded with a <message> tag and is used for push messages
[SA11a].

• A presence stanza is encoded with a <presence> tag and is used for publish-subscribe
messages and broadcasting [SA11a].

• An iq stanza (Info/Query) is encoded with an <iq> tag and is used for request-
response communication [SA11a].

An XML stanza usually contains one or more XML child elements and attributes, which
encode the transferred information. The following attributes are common for all stanzas
[SA11a]:

• The to attribute contains the recipients JID. The server uses it for routing and
delivers the stanza if possible. If the to attribute is not defined the server processes
the stanzas depending on the type. Message stanzas are handled as if the to

33

7. XMPP

attribute would contain the JID of the sender. Presence stanzas are broadcast to
subscribers and iq stanzas are handled directly by the server [SA11a].

• The from attribute contains the full JID of the sender in the case of message and
iq stanzas, and the bare JID in case of subscription-related presence stanzas. The
server has to make sure that the from value is correct and can override it based on
the originating XML input stream if necessary [SA11a].

• The id attribute identifies the stanza in the context of an XML stream. The sender
utilizes the id to track response or error stanzas based on the rule that the id of
the answer has to match the id of the send stanza. This attribute is mandatory
only for iq stanzas and its value has to be unique for the XML stream [SA11a].

• The type attribute defines the purpose of a stanza and the only value which is
common to message, presence and iq stanzas is error. Each stanza type defines
its own list of possible values, which are described in section-7.5.1 (iq stanza),
section-7.5.2 (message stanza) and 7.5.3 (presence stanza) [SA11a].

• The xml:lang attribute defines the language of human readable characters contained
in the xml stanza. Child tags can override this attribute for their content. The
server may not modify or delete this attribute but should add it if it is missing.
The default value is determined based on the value defined in the output XML
stream of the client [SA11a].

.

7.5.1 Iq Stanza
The purpose of an iq stanza is to facilitate request-response communication between
authenticated entities. As shown in figure-7.3 the requesting entity sends an iq stanza
with the type ’get’. The recipient then processes the query and responds with an iq
stanza of the type ’result’. The id attribute is used to map the send stanza to the received
response. The XMPP standard defines the get, set, result and error types for iq stanzas.
which can be identified by the value of type attribute. The get stanza type is used for
data queries, where the recipient returns the requested value. The set stanza type is used
to define or to replace existing values on the recipient entity. The result type marks a
response iq stanza, which is returned after successful processing of a get or set iq stanza.
The error type is returned when the processing of a set or get iq stanza fails [SA11a].

7.5.2 Message Stanza

The figure-7.4 shows a message stanza, which facilitates the push mechanism of XMPP,
where one entity can send data to another entity [SA11a]. They are used for single

34

7.5. Stanza

Figure 7.3: Iq stanza example. This figure is based on [SA11a].

<message from="local@domain/resource"
to="romeo@montague.com"
xml:lang="en" type="normal">

<body>
Art thou not Romeo, and a Montague?

</body>
</message>

Figure 7.4: Example of a message stanza. This figure is based on [SA11a].

messages, one to one chat, alerts, notifications and other. The XMPP standard defines
5 types of message stanzas. The chat type is used in the context of one to one chat
messages, which are usually displayed to the user with a chat history. The groupchat type
is used in the context of many to many chats. The headline type is used for notifications
and alerts. This message type does not expect that a receiver sends a response. The
normal type is used in messages, which are sent outside of the context of one to one or
many to many chats, and are usually shown to the user without a history. The error
type is returned if the processing of a message fails [RFC11].

7.5.3 Presence Stanza

The figure-7.5 shows an example of a presence stanza, which facilitates the broadcast
mechanism of XMPP, in which multiple subscribed entities receive information from one

35

7. XMPP

<presence type="probe"
from="local@domain/resource" xml:lang=’en’>

<show>dnd</show>
<status>Wooing Juliet</status>

</presence>

Figure 7.5: Example of a presence stanza. This figure is based on [SA11a].

publishing entity. The publisher should send presence stanzas without the to attribute
as it is sent to all subscribers automatically [SA11a]. The XMPP standard defines 7
types of presence stanzas. The probe type is used to determine the current presence of
an entity. This presence type should be generated only by the server. The subscribe
type is sent by the subscribing entity to permanently subscribe to a contact’s presence
information. The subscribed type is sent to the subscribing entity when the publisher
allows the subscription. The unavailable type is used to inform the subscriber that the
sender is no longer available. The unsubscribe type is sent by the subscribing entity
to permanently unsubscribe from a contact’s presence information. The error type is
returned if the processing of a presence stanza failed [RFC11].

7.5.4 Stanza Error
An error stanza is usually sent back if the processing of a received stanza fails. It is of the
same kind as the failing stanza but has the type set to error. The from and to attributes
are usually swapped, but the id stays the same so that the error can be mapped by the
receiving entity. As you can see in figure-7.6, each error stanza contains an error tag
with a type attribute, which informs the sending entity under what conditions it should
send the stanza again. XMPP defines 5 error values for the type attribute. The auth
value signals that the sending entity should try again after providing credentials. The
cancel value means that the sending entity should not try to send the stanza again as the
error cannot be corrected. The continue value marks warnings and the sending entity
can continue. The modify value signals that the request should be modified before the
next attempt. The wait value means that the error is only temporary. [SA11a].

The figure-7.6 also contains an internal-server-error tag, which is one of the possible
defined conditions specified in [SA11a]. They are mandatory and specify the cause of the
error. The following summarizes some of the error conditions defined in [SA11a]:

• The bad-request condition signifies that the received stanza was malformed or had
an unknown namespace. The error type should be modify [SA11a].

• The conflict condition means that a resource with the given name already exists.
The error type should be cancel [SA11a].

36

7.6. XMPP Security

<message type="error" from="local@domain/resource"
to="romeo@montague.com">

<error type="cancel">
<internal-server-error

xmlns="urn:ietf:params:xml:ns:xmpp-stanzas"/>
</error>

</message>

Figure 7.6: Example of a stanza error. This figure is based on [SA11a].

• The feature-not-implemented condition is returned if the received namespace is
known but the requested feature is not implemented. The error type should be
cancel or modify [SA11a].

• The forbidden condition informs the requesting entity that it does not have the
necessary permissions. The error type should be auth [SA11a].

• The gone condition signifies that the recipient can no longer be found on the given
address. The error type should be cancel and the new address should be included
in the gone tag [SA11a].

• The internal-server-error condition is returned if the server-side processing of the
stanza caused an internal error. The error type should be cancel [SA11a].

• The item-not-found condition means that the addressed JID or requested item
cannot be found. The error type should be cancel [SA11a].

• The redirect condition is used to signify that the requesting entity should send
the stanza to another entity, which is written in the redirect tag. This redirect is
usually temporary and the error type should be modify [SA11a].

7.6 XMPP Security
The basis of XMPP security is channel encryption based on TLS with STARTTLS. This
encyption mechanism has to be implemented by every XMPP client and server. Although
its usage is optional, TLS should be preferred in production environments as it ensures
the integrity and confidentiality of transferred data and can prevent sniffing, stanza
replays, man-in-the-middle and other security attacks [SA11a]. TLS can be used to secure
the client to server and server to server communication, but cannot be used to protect
data during the routing process, which requires that the server can read the header of
the transmitted stanza [IVBA+14]. This disadvantage can be overcome using end to

37

7. XMPP

Figure 7.7: Xep life cycle. This figure is based on [SAC10].

end encryption proposed in the OpenPGP for XMPP extension (XEP-0373) [SSB16], or
similar plugins. See section 7.7 for more information about this extension.

7.7 XMPP Features and Extensions
XMPP is highly extensible by design and many basic features, which are not part of the
core specification, are specified as extensions[SA11a]. All public XMPP specifications are
managed by the XSF, which oversees the proposals, documentation and standardization
of new extensions called XEPs [SAC10]. This section summarizes the document life cycle
of standards track XEPs and introduces some of the public extensions of XMPP, which
are related to this thesis and might be relevant for blockchain provisioning.

7.7.1 Xsf Standardization Process
[SAC10] defines five types of XEP specifications. Informational XEPs usually describe
best practices for implementation and deployment of existing protocols. Historical XEPs
provide documentation for protocols, which were developed before XSF was instituted.
Humorous XEPs specify protocols, which should never be used in a production system
and are published as a joke. Procedural XEPs describe a process or activity of XSF, and
finally the standards track XEPs define a protocol or a protocol suite intended to be an
extension for XMPP.

The figure-7.7 shows the standardization life cycle of a standards track XEP and the
following summarizes its states as defined in [SAC10]:

• The experimental state is assigned to a XEP specification, which has been accepted
by the XMPP council and published by the XSF. It is not recommended to use
experimental XEP specifications in a production system [SAC10].

38

7.7. XMPP Features and Extensions

• The proposed state is assigned to a XEP specification, which is under consideration
by the XMPP council to be advanced to draft [SAC10].

• The draft state is assigned to a XEP specification after being subjected to extensive
discussion and it is expected that it will be used as a base for a production
ready implementation. Usage in mission critical applications should be avoided as
backwards compatibility breaking modifications to the standard might be present
[SAC10].

• The final state is assigned to a XEP specification if it has been in the draft state
for at least six months, has been adopted by at least two separate projects, and
has been advanced by the XMPP council. A final XEP should not be subject to
compatibility breaking modifications, but limited modifications are possible as long
as they are optional extensions [SAC10].

• The deferred state is assigned to a XEP specification if it is in the experimental
state and has not been updated for twelve months [SAC10].

• The retracted state is assigned to a XEP specification if its author requests its
removal [SAC10].

• The rejected state is assigned to a XEP specification which has been rejected by
the XMPP council [SAC10].

• The deprecated state is assigned to a XEP specification which should not be
implemented in new projects as it is outdated or has been replaced with a different
protocol [SAC10].

• The obsolete state is assigned to a XEP specification when the XMPP council
decides that it should no longer be implemented or deployed [SAC10].

7.7.2 Jingle

The jingle is an xmpp extension, which provides a one to one, peer to peer data channel.
The data is usually not transferred using XMPP, but using a modular dedicated transport
[LBSA+09].

7.7.3 Jingle File Transfer

The jingle file transfer extension provides a modular framework, which makes it possible
to exchange file information and to negotiate a peer to peer session for file transfer. The
file can be transfered over any jingle transport mechanism [SAS11].

39

7. XMPP

7.7.4 Multi User Chat
The multi user chat extension (XEP-0045) facilitates message exchange between multiple
users in the context of a room or channel. The current status of the specification is draft
and it features topics, invitations and a room membership control system [SA08a].

This extension introduces an occupant JID (additionally to bare JID and full JID described
in section 7.2), which has the following form: room@service/nick. The occupant JID is
used to identify a user in a specific chat room and to facilitate anonymity in an anonymous
chat room. It consists of the room part, which is the room id, the service part, which
corresponds to the hostname of the chat service and the nick part, which is the users
desired nickname within the chatroom. The multi user chat extension specifies multiple
roles with different privileges. For example, not every room member can send invites or
ban other users. Each chat room can have the following attributes [SA08a]:

• A room can be member only, which means that only users contained in the member
list can join. The member list is automatically extended by the invite mechanism
[SA08a].

• A room can be moderated, which means that only users with a voice are allowed to
send messages. This is controlled by moderators [SA08a].

• A room can be open without access control or protection by a password [SA08a].

• A room can be temporary or persistent. A temporary room is automatically
destroyed when the last user leaves and a persistent room is never automatically
destroyed [SA08a].

A multi user chat room holds a message history, which is delivered automatically after
login. The amount of historical entries that get sent depends on room configuration
[SA08a].

7.7.5 Data Forms
The data form (XEP-0004) introduces a mechanism for form processing, which can be
used for different workflows such as service configuration. For example, a multi user chat
room service might allow a user to configure a room using a form based on this extension.
The current status of this specification is final and it features form validation, request,
response, submit and cancel semantics and different field types like boolean, hidden, list
options and others [EHM+04].

7.7.6 Service Discovery
The Service discovery (XEP-0030) specification defines a flexible and extensible mechanism
for information discovery, where each entity participating on the network can use

40

7.7. XMPP Features and Extensions

this extension to request information from other entities. The current status of this
specification is final and it defines three kinds of discoverable data [HMESA08]:

• The identity of the target entity, which consists of a category (server, client ...) and
a type, which belongs to this category (IM server, phone vs. handheld client). It
is possible to define multiple identities for each entity. This data can be used for
classification and for better user interaction [HMESA08].

• The supported features and protocols of the target entity [HMESA08].

• The items or entities associated with an entity. For example, a list of hosted rooms
in a multi user chat [HMESA08].

7.7.7 Roster
A contact list in a XMPP context is called a roster and it defines a list of user specific
contacts called roster items. The roster system in XMPP is tightly bound with presence
subscription, which allows access to presence information about other users, provided
they have approved the subscription request. Each roster item defines a JID, name,
ask and an approved attribute. The JID attribute identifies a concrete user, which is
referenced by the roster item. It is additionally used to uniquely identify each roster item.
The name is not used by the server and it is defined by the roster owner. Its purpose is
to allow the use of user friendly names in the contact list. The ask attribute is used to
signal various subscription states. The approved attribute is used to signal subscription
pre-approval [RFC11].

The roster is stored on the server and can be accessed by any device. It is automatically
retrieved at login and should be refreshed regularly [RFC11]. Additionally, some XMPP
servers support shared groups. This allows the administrator to define a roster group,
which is automatically included in the roster of all authorized users.

7.7.8 Anonymous Connections
SASL, which is used for authentication in XMPP, supports multiple authentication
mechanisms. One of them is SASL ANONYMOUS, which makes it possible to connect
to an XMPP server without credentials and so anonymously without a user account.
This can be used in conbination with the multi user chat extension to ensure anonymity
[SA09].

7.7.9 Ad-Hoc Commands
The Ad-hoc commands (XEP-0050) specification defines a XMPP protocol extension,
which enables the execution and discovery of application specific commands without
the need for custom stanzas. This extension relies on service discovery (XEP-0030) for
command advertising and usually uses data forms XEP-0004 for information exchange.
The current status of this specification is draft [Mil05].

41

7. XMPP

7.7.10 Serverless Messaging
The Serverless messaging (XEP-0174) specification extends the core XMPP standard
with direct client to client communication in a Local Area Network (LAN). This extension
uses Multicast DNS (mDNS) to discover local clients, which can then initiate a direct
XML stream with optional TLS encryption for data exchange. The current state of this
specification is final [SA08c].

7.7.11 OpenPGP for XMPP
The OpenPGP for XMPP (XEP-0373) specification defines a mechanism for end to end
and multi end to multi end encryption, based on digital signatures using OpenPGP. This
extension provides a standardized way for public key discovery and a synchronization
system for private keys, which can manage secret keys across multiple devices. The
current state of this specification is deferred [SSB16].

7.7.12 Private XML Storage
The historical private XML storage (XEP-0049) specification describes a private storage
system, which was already part of jabber. Every client can store arbitrary XML encoded
data on the server using an iq stanza with the jabber:iq:private namespace. The data
privacy is ensured by the fact that only the user which stored the data has read access
[SAD04].

42

CHAPTER 8
Smart-Toolbox - Blockchain

Provisioning

This chapter introduces the basic concepts and software architecture of the Smart-Toolbox
project in section 8.1. The section 8.2 introduces the membership and messaging services,
which were implemented using XMPP during the course of this thesis. The section
8.3 shows example use cases for Smart-Toolbox and the section 8.4 introduces our
implementation, which shows how XMPP can be used to solve the issues which arise
from the limited data visibility in a permissioned private blockchain.

Smart-Toolbox is an FFG BRIDGE Project, which is developed by the Complang
research group at TU WIEN. It aims to create a simple to use development environment,
which facilitates the creation and verification of smart contracts using a pattern based
methodology [sma]. The Smart-Toolbox project provides an application environment
running on top of a permissioned blockchain system, while hiding its complexity and
providing support for different systems [sma20].

8.1 Smart-Toolbox Concept
The security of transactions between members in a distributed system usually relies on
the shared trust of a central or a third party authority, but the same level of trust can
also be achieved using a blockchain system without a single point of failure (see chapter
2 for more information). Unfortunately, the deployment of a blockchain system and
the definition of a correct smart contract is a complex process, which prevents the wide
adoption of blockchains. Smart-Toolbox aims to create an easy to use interface between
collaborative software and permissioned blockchain systems, which can be used to prevent
the execution of unauthorized actions, to ensure data consistency, and to automate
contract rules. This approach also allows the review and verification of the global state

43

8. Smart-Toolbox - Blockchain Provisioning

by each participant. Additionally, Smart-Toolbox provides a graphical user interface
allowing state visualization, creation and deployment of distributed applications based
on smart contracts, dynamic creation of participating groups, and general blockchain
secured interaction between participants [sma20].

The figure-8.1 shows a diagram of the Smart-Toolbox application environment, which
consists of the following parts [sma20]:

• The Smart-Toolbox application, which provides a Graphical User Interface (GUI)
and the toolbox runtime used by the end user [sma20].

• The common ledger, which is implemented using a permissioned blockchain system,
ensures that the necessary public information is synchronized, allowing verification
of proposals [sma20].

• The community services, which take care of Off-chain functionality, including the
membership service, messaging service, and the distribution and validation of keys
[sma20].

• The Smart-Toolbox library, which holds all template and artifact prototypes [sma20].

Community Blockchain

The Smart-Toolbox project defines a community blockchain as a permissioned private
blockchain (see chapter 3 for more information), which allows the dynamic creation of
small distributed applications where each participant, which is usually a member of a
community (club, party, association etc), may create an independent self organizing
group, invite other participants, create a template based smart contract, and execute
its interactions. A community blockchain enables the ad-hoc creation of collaborative
applications in an inter-organizational environment, dynamic group creation using an
invite mechanism, and complex end user defined interactions between participants. A
community blockchain has the following end user requirements [sma20]:

• A user has to be able to define a business proccess based on a smart contract
template [sma20].

• A user has to be able to verify a contract and to understand its meaning [sma20].

• A user has to be able to deploy a contract and to invite other community members
to participate [sma20].

• A user has to be able to join and to leave a contract [sma20].

• A user has to be able to execute the process steps as defined in a contract [sma20].

44

8.1. Smart-Toolbox Concept

Figure 8.1: Smart-Toolbox application environment. This figure is a reprint from [sma20].

A contract in the context of community blockchains is defined as a well defined interaction
between participants. As you can see in figure-8.2, each contact contains artifacts, which
either describe a participant or a real world object reference called an asset. Each contract
is based on a prototype defining its properties like name, description, business logic and
rules, which specify which properties need to be fulfilled by related artifacts. A contract
represents an interaction group within a community blockchain [sma20].

Abstract Blockchain Architecture

The Smart-Toolbox project aims to support multiple blockchain infrastructures like
MultiChain, Hyperledger Fabric, Corda/R3, Tendermint, and others. This is achieved
using the abstract blockchain architecture. As shown in figure-8.3, it consists of the
following parts [sma20]:

• The wallet or application part handles the end user interaction, visualization of the

45

8. Smart-Toolbox - Blockchain Provisioning

Figure 8.2: Contract layout. This figure is a reprint from [sma20].

local state, and contract status using an automatically generated GUI [sma20].

• The local state, which can be updated only by the chaincode based on the globally
accepted proposals [sma20].

• The blockchain core, which synchronizes the embedded distributed ledger over all
participants, maintaining consensus [sma20].

• The chaincode, which interprets operations defined in a proposal. Each proposal
may originate on either the same or a different node and is either rejected or
accepted. Accepted proposals are applied to the local state [sma20].

The figure-8.3 also shows interfaces defining the interaction between each part [sma20]:

• Interface A defines an abstraction between the application and the smart contract,
allowing the creation of update proposals and access to the contract state information,
including notifications about changes [sma20].

• Interface B defines an abstraction between the smart contract and the blockchain
core, allowing access to the global state, and subscription to blockchain events
[sma20].

• Interface C defines an abstraction between the blockchain core and chaincode,
allowing the evaluation of proposals and modification or retrial of the global state
[sma20].

Smart-Toolbox Application Environment

The Smart-Toolbox project provides an application environment, which aims to allow
the end user to create, use and publish blockchain applications hiding the complexity of

46

8.1. Smart-Toolbox Concept

Figure 8.3: Abstract blockchain architecture, this figure is a reprint from [sma20].

smart contracts and different blockchain systems. The figure-8.4 shows a diagram, which
summarizes all parts of the Smart-Toolbox application environment [sma20]:

• The template library holds predefined templates for business processes. For example,
the transfer of an asset or voting on a topic. Each template defines a set of artifacts,
which are linked to a real contract, participants or assets. Contracts represent the
state of an interaction relating participants to assets. Each participant has a role
defined by the template and each asset represents a real world object like money or
a book [sma20].

• The artifact library holds concrete artifact clases, which define specific properties of
real world objects. For example, a book can be transferred but cannot be divided
like money [sma20].

• The application runtime visualizes the local state and contract status, providing a
generated GUI, allowing the user to execute actions for the given template [sma20].

• The chaincode runtime interprets all actions submitted within a proposal and
then executes the contract, resulting in the rejection or acceptance of proposals.
Accepted proposals are applied to the local state [sma20].

• The blockchain core synchronizes the embedded distributed ledger over all participants
and maintains consensus [sma20].

• The Off-chain services provide Off-chain communication, membership services
and replicate private data [sma20].

47

8. Smart-Toolbox - Blockchain Provisioning

Figure 8.4: Smart-Toolbox application environment. This figure is a reprint from [sma20].

48

8.2. Membership and Messaging Service

Off-Chain Services

Not all features of Smart-Toolbox are implemented using blockchain technology. The
following summarizes Off-chain services used by the system [sma20]:

• The membership service manages user identities bound to X509 certificates. These
identities are bound to participants during the execution of templates [sma20].

• The library distribution service ensures that all artifact and template libraries are
replicated to each node, which in turn ensures they have the same version [sma20].

• The dynamic group formation and contract advertisement is facilitated using a
messaging service. Each member can initiate a new contract and send invites to
other users, which may accept and join dynamically, creating a new group, which
then participates in the contract [sma20].

• Private data has to be distributed using an Off-chain mechanism, as each blockchain
participant has access to the ledger and thus might access private data without
authorization. This mechanism ensures consistency and privacy of data using a
dedicated blockchain for every dynamically created group, which contains only
hashes of the actual data, and point to point connections, which distribute private
data only to authorized users [sma20].

This thesis deals with various Off-chain communication services in the context of Smart-
Toolbox and analyzes the suitability of XMPP as a membership and messaging service
in permissioned private blockchains.

8.2 Membership and Messaging Service
The membership service in Smart-Toolbox manages the user identities and binds them
to X509 certificates [sma20]. Our XMPP based implementation provides a membership
service, which utilizes the openfire user management system, which holds all registered
users. We have also implemented an openfire plugin, which is responsible for the key
management and stores certificates related to a given user. Because this is a proof of
concept implementation, the plugin also acts as a trusted authority and signs all issued
client certificates with the domain certificate. All signed certificates are then stored in a
local LevelDB instance so that the keys can be retrieved even after the server is restarted.
The plugin also provides signed public keys for signature verification to the client side.
The key management is handled in section 8.5.

The messaging service in Smart-Toolbox handles the dynamic creation of self organizing
groups using the publish-invite-join principle, which is an essential feature in a community
blockchain [sma20]. Our XMPP based implementation provides this functionality using
the multi user chat extensions (see section 7.7.4 for more information). This extension
was used without any modification as it already provides the required privacy features

49

8. Smart-Toolbox - Blockchain Provisioning

and an invite system, which can be seamlessly used to transfer metadata required by the
underlying blockchain system (the invitation mechanism is discussed in section 8.4.4).
This demonstrates that XMPP, in combination with the multi user chat extension, fulfills
the following requirements: 6.1.2, 6.1.4, 6.1.3, 6.1.8.

8.3 Smart-Toolbox Use Cases
Smart-Toolbox use cases can be divided into the following categories[sma20]:

• Community-wide or group-wide decision making processes, where contract participants
make a decision using votes. For example, voting, selection, auctioning, etc. [sma20].

• Transactions, where contract participants exchange or share digital assets according
to contract rules in a verifiable way. This includes shared ownership, equipment
use, etc. [sma20].

The following describes an example workflow for an auction use case. As described in
section 8.1, the template library holds predefined templates for business processes and the
artifacts library contains prototype artifacts defining the properties of assets. An auction
template has a placeholder for a non-fungible asset, which gets sold, and placeholders
for bids, which can be linked to fungible assets. The workflow can be divided into the
following steps [sma20]:

• The initiating user (initiator) has to create assets using the prototypes defined in
the artifacts library. As required by the auction template the new asset has to be
non-fungible[sma20].

• The seller selects the auction template, specifies all other details required for an
auction and invites buyers (invitees)[sma20].

• Each invitee can accept the invitation and place offers, which are only visible to
the seller and the submitting buyer. Each offer has to be bound to a fungible asset
as defined by the template [sma20].

• The auction is finished when the seller accepts an offer. This triggers an exchange
transaction on the blockchain ensuring both parties receive the expected asset
[sma20].

8.4 Architecture and Use Cases
As stated in section 8.1, the Smart-Toolbox application environment and permissioned
private blockchains rely on various Off-chain services. We have developed a reference
XMPP based implementation for the membership and messaging service during the
course of this thesis (for more information about XMPP see chapter 7). This section

50

8.4. Architecture and Use Cases

Figure 8.5: Deployment diagram of the XMPP integration implemented over the course
of this thesis.

summarizes the architecture of our implementation and explains various design decisions
in the context of the requirements defined in chapter 6.

We have chosen to use the spring framework as the base for our implementations as it
allowed us to utilize the inversion of control design pattern and therefore dependency
injection. Spring also made the integration with the existing Smart-Toolbox infrastructure
easier as it also uses spring and relies on the spring mvc library for the GUI.

Our implementation divides responsibility for the requirements according to a client
server architecture, which is based on the XMPP protocol. The figure-8.5 shows the
deployment diagram of our test system, where the server side is deployed inside a docker
container. We have chosen the openfire XMPP server as it supports all required XEP
extensions and features a highly extensible architecture.

The server provides all standard XMPP communication features and also acts as a
membership service.

The client side is integrated in the Smart-Toolbox project as a spring bean called
SmartToolboxOffchainProxy. This bean handles all offchain communication, ensures
the current state is not lost upon restarts and hides the details of low level message
exchange. This allows for future research comparing different communication technologies
to XMPP. Another important part shown in the deployment diagram in figure-8.5 is the
XMPPClient bean, which is responsible for low level XMPP communication using the
smack XMPP library and which exposes only the required functionality, including key

51

8. Smart-Toolbox - Blockchain Provisioning

Figure 8.6: Class diagram of the XMPPClient bean related classes.

retrial, message listeners and group management functions, hiding the complexity of the
XMPP protocol.

8.4.1 XMPPClient
The figure-8.6 shows the class diagram of the most important classes related to the
XMPPClient bean. The XMPPClientFactory class is responsible for the creation of
XMPPClient instances. The XMPPClient class represents an XMPP client facade
and provides all high-level functionalities required by Smart-Toolbox, while hiding the
complexity of all XMPP related operations. This is achieved using the XMPPConnection
class, which is part of the smack library and which forwards all XMPP related logic,
the CertificateHelper class, which is responsible for all certificate operations, and the
KeyStoreManager class (explained in section 8.5), which stores the required certificates
in a secure keystore. Additionally, The CertificateBuilder class handles the creation
of certificates and the MucEventLister and XMPPClientListener classes are used for
notifications in the context of multiuser chat and XMPP events.

The XMPPClient forwards all XMPP related functionality to the smack library, which
then handles low level XMPP communication with the server, providing listeners for
various notifications. The XMPPConnection class acts as a gateway to the XMPP network
and provides synchronous and asynchronous methods for sending stanzas (see section
7.5 for more information). The XMPPClient client class manages the XMPPConnection
instance and only exposes the disconnect and isConnected methods. Each XMPP
operation, which relies upon a live connection, also verifies the current connection status

52

8.4. Architecture and Use Cases

Figure 8.7: Class diagram of the SmartTolboxOffchainProxy bean related classes.

and automatically reconnects if necessary. This process can be seen in figure-8.8 (1.1.1.2).
All multi user chat related operations are delegated to the MultiUserChatManager smack
class. All contact list related operations are handled by the Roster smack class, and
messages are forwarded using the ChatManager class. The figure-8.8 also shows how
an anonymous XMPPClient instance is created. Such XMPPClient instances use the
ANONYMOUS SASL authentication and do not require a username or password (for more
information see 7.7.8). This is achieved using the performSaslAnonymousAuthentification
(1.1.1.1.2) call on the smack Builder class. The creation of anonymous XMPPClient
instances is implemented using a createAnonymousXMPPClient (1.1) method inside the
XMPPClient class, because both XMPPClient classes share the same KeyStoreManager
instance. Smart-Toolbox can use anonymous connections to further secure any multi
user chat communication (see 8.4.4 for more information).

53

8. Smart-Toolbox - Blockchain Provisioning

Figure 8.8: Sequence diagram showing the creation of anonymous XMPPClient instances
and the automatic reconnection mechanism.

54

8.4. Architecture and Use Cases

8.4.2 SmartToolboxOffchainProxy

The figure 8.7 shows the class diagram of the most important classes related to the
SmartToolboxOffchainProxy bean, which is responsible for all Off-chain related functions
of Smart-Toolbox. This currently includes the messaging, membership service and private
data distribution service, but will be extended in the future with a library distribution
service as described in section 8.1. The SmartToolboxOffchainProxyManager class holds
all instances of the proxy mapped using the username. This makes it possible to login with
multiple users within one application instance. The SmartToolboxOffchainProxyManager
is implemented as a spring service, ensuring only one instance is present in the Invertion
Of Control (IOC) container. This service uses the SmartToolboxOffchainProxyFactory to
create a new proxy, which, thanks to the XMPPClientFactory, also creates an XMPPClient
instance responsible for all XMPP operations. Each SmartToolboxOffchainProxy contains
a list of messages which have been received during the current session. We distinguish
between standard messages and blockchain messages, which are used by Smart-Toolbox
and should not be visible to the end user. The SmartToolboxOffchainProxy class also
exposes a KeyStoreManager instance, which is currently stored in the XMPPClient
instance as the underlying keystore is secured using the XMPP login password (see
section 8.5 for more information). Each Invitation instance holds all invitation related
data, including sender, credentials, channel and description. The ProposalHandler class
represents a contract execution, grouping all users which accepted an invitation into
one group. This class exposes proposal related methods, and in our XMPP based
implementation uses a MultiUserChat instance for low level communication. The
PersistentCache stores all Invitations and ProposalHandlers ensuring the current state
survives application restarts. Additionally, a listener interface is used to notify other
Smart-Toolbox components about new messages and invitations.

8.4.3 Event Listeners

The asynchronous nature of XMPP is usually handled using the listener pattern. Our
example implementation combines the standard event listeners of the smack library,
which are executed in the context of the current connection in the XMPPClientListener
class, which is used as the last parameter in the XMPPClient constructor. This includes
the ConnectionListener, IncomingChatMessageListener, OutgoingChatMessageListener
and InvitationListener. All events which are related to a multi user chat are combined in
the MucEventListener class, which has to be provided as a parameter in the createRoom
and joinRoom functions. This includes the InvitationRejectionListener, MessageListener,
PresenceListener, ParticipantStatusListener, SubjectUpdatedListener and UserStatusListener
interfaces of the smack library. The SmartToolboxOffchainProxy class uses an instance
of the SmartToolboxProxyXMPPClientListener, which extends the XMPPClientListener,
forwarding messages and invites (handled in section 8.4.4) to the proxy.

55

8. Smart-Toolbox - Blockchain Provisioning

8.4.4 Invite System

Smart-Toolbox and community blockchains rely on the publish-invite-join principle for
contract creation. This has been addressed in our XMPP based implementation of the
SmartToolboxOffchainProxy bean, which is based on the multi user chat XMPP extension
(See section 7.7.4 for more information). The identity of each participant in the chat
room is hidden by a nickname. A multi user chat in XMPP might be private, protected
by a password, members only, or open without any access control. Because of the privacy
requirements of Smart-Toolbox an open room is not appropriate. A member only room
also does not provide enough privacy as it is not possible to disable the member list
query, which maps nicknames to real users. For this reason, the password protected
room was chosen. Unfortunately. password protected rooms still do not prevent admin
in the middle attacks, where the administrator identifies the authoring user. This can
be mitigated using anonymous connections (see section 7.7.8 for more information),
which can be activated using a setting in the SmartToolboxOffchainProxyFactory. The
password and the room (or channel) name is part of each Invite instance, which also
holds the sender, recipient, contract id and description.

Publish and Invite

The first step in the publish-invite-join principle is publishing the contract. In our
implementation this means that a new chatroom has to be created. This is done in
the createInvitation (1.3) method of SmartToolboxOffchainProxy, automatically hidden
from Smart-Toolbox. The figure-8.9 shows a sequence diagram of this method, which
requires a list of invited users, a nickname of the initiator, contract id and a designation
as parameters. A user list can be created manually or as shown in the diagram using
getAllRegisteredUsers (1.1) or getUserGroup (1.2) methods. The createInvitation method
firstly creates a ProposalHandler (1.2.1), which will later be used for proposals operations,
and generates a secure password (1.2.2). Then the XMPPClient class is used to create a
password protected room, which is assigned to the returned ProposalHandler instance
and used to send all invites from the provided list. Additionally, the PersistantCache is
used to persist the new ProposalHandler.

Receive Invitation

All invitations are forwarded using the XMPP server as described in chapter 7. The
figure-8.10 shows a sequence diagram for receiving invites. All invites are received by the
smack library, which forwards the invite to an instance of the SmartToolboxProxyXMPP-
ClientListener class (1.1). The listener parses the invite and creates a new Invitation
instance, which is then forwarded to the SmartToolboxOffchainProxy (1.1.5) and persisted
to the PersistentCache (1.1.5.1). The invitation is cached until it is accepted or declined
by the user.

56

8.4. Architecture and Use Cases

Figure 8.9: Sequence diagram showing the createInvitation method of the SmartToolbox-
OffchainProxy bean.

Accept and Decline Invitation

The figure 8.11 shows the process of accepting and declining invitations. All invitations are
stored in the PersistentCache and Smart-Toolbox can access them using the getInvitations
(1.1) method. Then the acceptInvitation (1.2) method is called if a user chooses to accept
an invite. The room name (1.2.1) and password (1.2.2) are retrieved from the invitation
and used in the joinRoom (1.2.3) method. This creates a new MultiUserChat instance,
which is then assigned to a new ProposalHandler. The invitation is removed from
PersistentCache and the ProposalHandler is stored to the PersistentCache.

The declineInvitation (1.3) method is called if a user chooses to decline an Invitation,
which is then removed from the PersistentCache and declined using the XMPPClient
instance. Because the current implementation uses a password protected room it is still
technically possible to join the room if the password is known.

57

8. Smart-Toolbox - Blockchain Provisioning

Figure 8.10: Sequence diagram showing how a invitation is propagated to the Smart-
ToolboxOffchainProxy.

8.4.5 Proposal Send And Receive

All communication within a contract group is handled using a ProposalHandler instance,
which within the context of our XMPP based implementation represents one chat room. A
ProposalHandler instance can only be created by creating or accepting an invitation (see
section 8.4.4 for more information). The figure 8.12 describes how a proposal is propagated
to the chatroom and thus to all contract participants. First, the ProposalHandler ensures
the chatroom connection is valid and reconnects using the stored invitation if necessary.
This ensures a stored ProposalHandler in PersistentCache is still able to send proposals
after application restart. Second, the sendMessage method is called on the MultiUserChat
instance sending the proposal to the chatroom.

The figure-8.13 shows how a proposal is received. The smack library receives a new chat
room message and forwards it to the ProposalHandlerMucEventListener, which takes the
message body (1.1.1) and stores it to the ProposalHander (1.1.2).

Each ProposalHander has to be destroyed after the contract is finished. This is achieved
using the destroyProposalHandler (1.1) method of SmartToolboxOffchainProxy shown
in the figure 8.14. The method destroys the XMPP chat room (1.1.2) and removes the
ProposalHandler from the PersistenCache (1.1.3).

58

8.4. Architecture and Use Cases

Figure 8.11: Sequence diagram showing how an invitation can be accepted or declined.

59

8. Smart-Toolbox - Blockchain Provisioning

Figure 8.12: Sequence diagram showing how a proposal is send to the multi user chat.

Figure 8.13: Sequence diagram showing how a proposal is received from the multi user
chat.

60

8.4. Architecture and Use Cases

Figure 8.14: Sequence diagram showing the destruction of a ProposalHandler.

8.4.6 Group Management
The SmartToolboxOffchainProxy class provides contact group management functions,
which allow the creation and retrieval of groups referenced by a group name. Smart-
Toolbox expects that the membership service provides user group support controlled by
an authorized user (administrator). Our XMPP based implementation is based on roster
groups (see section 7.7.7 for more information). This makes it possible to have a separate
contact list for each user, which can add or remove its own contacts and, in combination
with contact list sharing provided by the openfire server, have shared groups controlled
by an administrator. As you can see in figure 8.15, a UserGroup instance can be created
using the createUserGroup (1.1) method, which also creates a new RosterGroup if it
does not exist (1.1.1), or getUserGroup (1.3) methods. The UserGroup class exposes
the getUsers (1.4) method, which takes all RosterGroup entries (1.4.1) and creates a
corresponding RegisteredUser class and the addUser method, which stores a new roster
entry to a RosterGroup, while returning a corresponding RegisteredUser instance.

8.4.7 Key Retrieval and Certificate Signing Request
The XMPP standard and its extensions cover most of the communication requirements
which are required by Smart-Toolbox. This includes group management and direct
messaging, but excludes the distribution of cryptographic material. Although the
OpenPGP extension discussed in section 7.7.11 could be used for public key sharing it
is not possible to sign a Certificate signing request (CSR) as required by our proof of
concept implementation. For this reason, a custom plugin has been implemented. We
have defined the following custom iq stanzas (See section 7.5 for more information) to
extend XMPP with the required features:

• The CsrIQ get iq stanza is used in the certificate signing process. The namespace
is custom:iq:Keyproc and the stanza includes the CSR requests as payload.

61

8. Smart-Toolbox - Blockchain Provisioning

Figure 8.15: Sequence diagram showing group management related methods.

62

8.4. Architecture and Use Cases

Figure 8.16: Sequence diagram showing the CSR process.

• The GetPublicKeyIQ get iq stanza is used in the public key query process. The
namespace is custom:iq:Keyproc.

• The ResponseIq set iq stanza is used for query response and encodes the result of a
given query. The namespace is custom:iq:smarttoolbox.

The client side CSR process execution can be seen in figure 8.16. The sendCsr (1.1)
method of the SmartToolboxOffchainProxy forwards the request to the XMPPClient
instance (1.1.1), which uses the CertificateHelper class to build a CSR (1.1.1.1) and
converts it to the pem format (1.1.1.2). The result is applied to a new CsrIQ instance,
which is synchronously sent to the server. The server signs the request using the domain
certificate and returns the resulting certificate in pem format. The certificate is then
stored to the keystore using the KeyStoreManager class (1.1.1.8).

As you can see in figure 8.17, the SmartToolbox class exposes the getPublicKeyFromServer
(1.1) method, which takes a key id as a parameter. There are no rules for the Id so it
is even possible to retrieve keys, which are not related to a user but are used in other
parts of the system. The request is forwarded to the XMPPClient class, which creates a
GetPublicKeyIQ (1.1.1.1) stanza. This stanza is then synchronously sent to the XMPP
server (1.1.1.2), returning a ResponseIq containing the key in pem format.

63

8. Smart-Toolbox - Blockchain Provisioning

Figure 8.17: Sequence diagram showing the key retrieval from server.

8.4.8 Login and Initialization

This subsection describes how the SmartToolboxOffchainProxy is created, how the XMPP
connection is created, and how the initialization process ensures that all ProposalHandlers
are reinitialized and updated.

SmartToolboxOffchainProxyManager

The SmartToolboxOffchainProxyManager class holds a map of all authorized instances
of the SmartToolboxOffchainProxy class. The figure-8.20 shows a sequence diagram
describing the getProxy and createProxy methods. Each instance can be retrieved using
the getProxy (1.2) method, and the key for retrieval is the login user name which was used
to create the given instance. The createProxy (1.1) method takes the username, password,
and server address as arguments and uses the SmartToolboxOffchainProxyFactory to
create a new SmartToolboxOffchainProxy instance (1.1.1.1). This method creates an
instance of the XMPPClient class using the XMPPClientFactory (1.1.1.1.1.1), initializes
the PersistentCache (1.1.1.1.1.2), and reconnects all ProposalHandler instances (1.1.1.1.1.3)
which were stored in the PersistentCache.

XMPP Login

The login process can be seen in figure 8.18. The XMPPClientFactory class contains a
static method (1.1.1.1), which creates an XMPPClient instance for the given username, a
password and an XMPP server hostname. The constructor creates a self signed certificate
(1.1.1.1.1.1), which is used for xmpp encryption and builds an XMPPTCPConnection.
Then the ensureLiveConnection (1.1.1.1.2) method is called, which logs the user into the
XMPP server. Additionally, a KeyStoreManager is created using the credentials provided
in the constructor.

64

8.4. Architecture and Use Cases

Figure 8.18: Sequence diagram showing the login process.

All methods exposed by XMPPClient which depend on a live XMPP connection will
automatically reinitialize a disconnected or broken connection using the ensureLive-
Connection (1.1.1.1.2) method and effectively re-login if necessary. This mechanism is
hidden from Smart-Toolbox and done automatically.

ProposalHandler Reconnect

The figure 8.19 shows the reconnection process of ProposalHandler instances (1.1.3).
PersistanceCache stores all data in a database, which ensures data consistency across
application restarts. The first step is to retrieve all stored ProposalHandler instances
from the PersistanceCache (1.1.3.1), which are then reconnected using the connect
(1.1.3.2) method. This is achieved using the Invitation instance stored as a field in each
ProposalHander. The Invitation holds the channel (room) and credentials (password),

65

8. Smart-Toolbox - Blockchain Provisioning

Figure 8.19: Sequence diagram showing the reconnection of ProposalHandlers during the
initialziation process.

which are used to join the multi user chat room (1.1.3.2).

8.4.9 Support for synchronous Administrative Commands (RPC)
Our implementation provides a send action function as shown in figure 8.21. This
mechanism allows the synchronous execution of custom commands using the XMPP
protocol and is defined as follows. The sending client invokes the sendAction method
providing an action name, list of parameters and a callback method (1). The XMPPClient
instance then sends the request using the SendActionIQ stanza (1.1). The XMPP server
then forwards the iq stanza to the target client and the smack library executes the
handleIQRequest method in the XMPPClient (3). the SendActionIQ stanza is then
recognized and the newIncomingAction callback is invoked (3.1). The smart-toolbox
application can then execute the action with the given parameters. The value returned in
the newIncomingAction callback is then encoded and returned to the sending client as a
payload in a ResponseIq stanza. The sending client invokes the reciveResponse callback
(2.1) after the ResponseIq is received (2). This shows that it is possible to implement an

66

8.5. Key Management

Figure 8.20: Sequence diagram showing the initialization process.

Figure 8.21: Sequence diagram showing how an action can be sent between participants.

RPC mechanism using XMPP.

8.5 Key Management

This section summarizes all key management related logic implemented in the course
of this thesis. The server side plugin is responsible for the signing of CSR requests and
provides a key based storage of signed certificates. The server uses the openfire domain

67

8. Smart-Toolbox - Blockchain Provisioning

Figure 8.22: Class diagram of key management related classes.

certificate for certificate signing and a local LevelDB instance, which ensures all signed
certificates are not lost after the server restarts. The client server communication related
to this feature is handled in section 8.4.7.

The figure 8.22 shows the class diagram of all cryptography related classes. The
CertificateBuilder is responsible for the creation of new certificates and its implementation
follows the builder design pattern. The CertificateHelper class holds all low level cryp-
tographic operations and the KeyStoreManager handles the storage and retrieval from
the keystore. The CertificateHelper and CertificateBuilder are both strongly based on
the bouncycastle library. Each XMPPClient bean has a KeyStoreManager field, which
is initialized by the constructor or, in the case of anonymous XMPPClient instances,
provided in the constructor parameters (see section 8.4.1 for more information). The
figure-8.23 shows how a keystore manager instance is created. The constructor (1.1) has
the following parameters: keyStoreSuffix, password and pepper. The keyStoreSuffix is
appended to the key store file name so that it is possible to distinguish key stores on
the file level. The password and peper parameters are used to unlock the keystore. The
current implementation uses the xmpp password for the password parameter and the
user name provided during the login as the keyStoreSuffix and pepper parameters. The
pepper and password parameters are concatenated with the salt field, creating an input
string used in the hash (1.1.3) function, which repeats the SHA-512 hash 1000 times.
This process takes about 3 seconds on i7-9750H and its purpose is to prevent dictionary
based attacks. This also ensures that the password is not stored in memory in plain text
format and cannot be read using a debugger. Then the loadKeyStore (1.1.4) function
resolves the key store path (1.1.4.1) and loads all keys to memory (1.1.4.3).

68

8.5. Key Management

Figure 8.23: Sequence diagram showing the initialization of a KeyStoreManager instance.

69

CHAPTER 9
Evaluation

This chapter evaluates the features of our XMPP based implementation of Off-chain
services, which are required by permissioned private blockchains and compares them to
related systems presented in chapter 5. The evaluation is based on the requirements
presented in chapter 6.

9.1 Private Data Distribution
The system should be able to distribute private data to authorized users.

• Corda distributes private data automatically between nodes during flow execution.
This is achieved using the AMQP protocol in combination with TLS (see section
5.1 for more information).

• Hyperledger Fabric distributes private data using the gossip protocol, which is
a peer to peer protocol based on epidemic multicast (see section 5.2 for more
information).

• Multichain stores private data directly on the blockchain, secured by cryptography.
Privacy is ensured using three streams (see section 5.3 for more information).

• Tendermint provides an X25519 secured STS protocol, which can be used to
distribute private data (see section 5.4 for more information).

• Quorum uses Constellation or Tessera for private data distribution. Both systems are
peer to peer based and besides private data distribution also handle key management
and synchronization of new nodes (see section 5.5 for more information).

• Our implementations provide the distribution of private data using the Multi User
Chat extension (see section 7.7.4 for more information). Private data is distributed
using chat room messages, which are visible only to authorized users.

71

9. Evaluation

9.2 Offline Capability
All messages transferred within the communication system should be delivered even if
the recipient is offline or not reachable due to network outages.

• The AMQP protocol employed in corda allows offline operations and automatic
re-synchronization after reconnect (see section 5.1 for more information).

• Hyperledger Fabric uses gRpc, which provides only direct communication without
offline support (see section 5.2 for more information).

• Multichain is based on the bitcoin core and does not provide Off-chain messaging
(see section 5.3 for more information).

• Tendermint uses JSONRPC or URI/HTTP, which does not support offline operations
[ten20b].

• Quorum uses Constellation or Tessera for general purpose messaging. Neither
supports offline communication [Con20a].

• Our implementations ensures offline capability for group messages using Multi User
Chat room history (see section 7.7.4 for more information).

9.3 Direct Messages
The message system should facilitate direct message exchange between participants.

• Corda uses AMQP, which supports direct messaging [Fou21].

• The gRPC library employed in Hyperledger Fabric allows direct message exchange
using RPC [Fou20].

• Multichain is based on the bitcoin core and does not provide Off-chain messaging
(see section 5.3 for more information).

• Tendermint uses JSONRPC, which is an RPC mechanism allowing direct message
exchange [ten20c].

• Quorum uses Constellation or Tessera for general purpose messaging, allowing
direct messages [Con20a].

• Our implementation relies on XMPP, which provides direct message support as
basic functionality.

72

9.4. Message Broadcast

9.4 Message Broadcast
The message system should be able to send the same message to a defined set of recipients
at once.

• Corda uses AMQP, which uses the publish subscribe pattern for message broadcast
[Fou21].

• The gRPC library employed in Hyperledger Fabric does not support message
broadcast (see section 5.2 for more information).

• Multichain is based on the bitcoin core and does not provide Off-chain messaging
(see section 5.3 for more information).

• Tendermint uses JSONRPC, which provides message broadcast in websocket mode
[ten20c].

• Quorum uses constellation or Tessera for general purpose messaging, allowing
message broadcast [Con20a].

• Our implementations rely on the Multi User Chat room messaging system (see
section 7.7.4), which ensures that all room messages are delivered to all reachable
participants.

9.5 Synchronous Messages
The system should support synchronous message delivery.

• Corda uses AMQP, which provides a synchronous message api [Fou21].

• The gRPC library employed in Hyperledger Fabric allows for synchronous RPC
calls (see section 5.2 for more information).

• Multichain is based on the bitcoin core and does not provide Off-chain messaging
(see section 5.3 for more information).

• Tendermint uses JSONRPC, which supports synchronous messages [ten20c].

• Quorum uses Constellation or Tessera for general purpose messaging, although
neither provide synchronous communication [Con20b], [CON21].

• Our implementation relies on XMPP, which provides synchronous communication
using iq stanzas (see section 7.5.1 for more information).

73

9. Evaluation

9.6 Asynchronous Messages
The system should support asynchronous message delivery.

• Corda uses AMQP, which provides an asynchronous message api [Fou21].

• The gRPC library employed in Hyperledger Fabric allows for asynchronous RPC
calls (see section 5.2 for more information).

• Multichain is based on the bitcoin core and does not provide Off-chain messaging
(see section 5.3 for more information).

• Tendermint uses JSONRPC, which supports asynchronous messages in websocket
mode [ten20c].

• Quorum uses Constellation or Tessera for general purpose messaging and both
support asynchronous communication [Con20b], [CON21].

• Our implementation relies on XMPP, which provides asynchronous messaging using
message stanzas (see section 7.5.2 for more information).

9.7 Group Support and Dynamic Group Creation
The system should be able to create a group for private data exchange.

• Corda supports dynamic group creation by authorized members, which are able to
create and manage business networks [Ltd20c].

• Hyperledger Fabric provides group functionality using channels, which are overlay
blockchains with separate consensus. Fabric channels can only be created by a
system administrator and are not dynamic [ABB+18].

• Multichain hides the complexity of blockchains into streams, which also provide
group functionality. Depending on configuration either every participant or participants
with a special permission can create a stream dynamically [Ltd20a].

• Tendermint does not provide a group concept [ten20b].

• Quorum provides group functionality on a transaction level using a ’private for’
parameter containing a list of cryptographic keys [Con20a].

• Our implementation uses the Multi User Chat room messaging system as a group
system (see section 7.7.4 for more information), which provides an invite join
mechanism and private communication.

74

9.8. User Query

9.8 User Query
The system should be able to list all registered users, which can then be invited.

• Corda provides Accounts, which might be used to split the corda vault into logical
sub-vaults [Ltd20b].

• Hyperledger Fabric provides a Membership Service, which holds all registered users
[ABB+18].

• Multichain provides a function to list all addresses associated with a node [DGG20].

• Tendermint does not provide user support [ten20b].

• Quorum supports account plugins providing user listing support [Con20a].

• Our implementation relies on XMPP, which provides a user registry and group
management system (see section 7.7.7 for more information).

9.9 User Groups
The system should be able to group users into logical groups (for example departments).
This will allow the invitation of multiple users at once.

• Corda currently does not support account grouping [Ltd20b].

• Hyperledger Fabric can organize users into groups [ABB+18].

• Multichain does not support user grouping [DGG20].

• Tendermint does not provide user support [ten20b].

• Quorum does not support groups [Con20a].

• Our implementation relies on XMPP, which provides a user registry and group
management system (see section 7.7.7 for more information).

9.10 Cryptography Storage
The system should be able to store Cryptographic material.

• Corda provides an identity service implementation, which provides an identity
directory and stores cryptographic keys (see section 5.1 for more information).

• Hyperledger Fabric provides a membership service, which handles key management
and can act as CA [ABB+18].

75

9. Evaluation

• Multichain does not provide an Off-chain mechanism for key management as all
keys and permissions are stored On-chain using special transactions [Ltd20a]

• The Tendermint project provides a key management service called tmkms [ten20b].

• Quorum uses Constellation or Tessera for general purpose messaging. Both of these
systems also provide management, storage and distribution of cryptographic keys
(see section 5.5 for more information).

• Our implementation relies on an Openfire plugin, which provides key management,
storage and distribution of cryptographic keys.

9.11 Non-Functional Requirements
All non-functional requirements defined in chapter 6, including performance, scalability,
availability, encryption and security are essential for every blockchain and are met by
every reference system. Our implementation relies on the features provided by XMPP. If
not configured otherwise XMPP connection uses TLS to encrypt communication and a
password protected keystore for private key storage. Performance, scalability, availability
were out of scope of this thesis and are handled in section 10.2.

9.12 Disadvantages of XMPP
The major disadvantage of XMPP in the context of blockain systems is its centralized
nature, which even with clustering creates a central point of failure in a decentralized
system like a blockchain.

Another problem is that the private data transferred over XMPP might be different from
the data referenced from the blockchain. The validity of this data has to be checked on
the application level.

Additionally, privacy can be jeopardized by an administrator, who has read access to the
server and can read the message author and recipients.

9.13 Summary
The figure-9.1 shows the requirement fulfilment of our implementation and the requirement
fulfilment of different support systems employed in compared private permissioned
blockchains. Our implementation fulfils all requirements defined in chapter 6, which
shows the suitability of XMPP for Off-chain messaging.

76

9.13. Summary

C
or

da

H
yp

er
le

dg
er

Fa
br

ic

M
ul

tic
ha

in

Te
nd

er
m

in
t

Q
uo

ru
m

X
M

PP

Private Data Distribution • • • • • •
Offline Capability • ◦ N/A ◦ ◦ •
Direct Messages • • ◦ • • •
Message Broadcast • ◦ ◦ • • •
Synchronous Messages • • N/A • ◦ •
Asynchronous Messages • • N/A • • •
Group Support • • • ◦ • •
Dynamic Group Creation • ◦ • ◦ • •
User Query • • • ◦ • •
User Groups ◦ • ◦ ◦ ◦ •
Cryptography Storage • • N/A • • •

Table 9.1: This table shows the feature comparison table for different private blockchain
systems and ourXMPP based implementation.

77

CHAPTER 10
Conclusion and Future Work

10.1 Conclusion

This thesis analyzed the suitability of the XMPP communication system for Off-chain
services, which includes key management, private data exchange and dynamic mutable
group creation. We have analyzed existing Off-chain support services employed in various
private permissioned blockchain systems (see chapter 5 for more information) and used
the results to define a list of requirements, which is summarized in chapter 6. This list
was used to define a suitable architecture of our proof of concept implementation and
later to evaluate the results.

Our proof of concept implementation relies on basic XMPP features, especially the
roster (see section 7.7.7 for more information), which provides user management and
grouping, and the Multi User Chat extension (see section 7.7.4 for more information),
which provides an invite join mechanism, private asynchronous message broadcast and
history. These standard extensions fulfill most of the defined requirements including
private data distribution and offline capability. XMPP defines a standard extension for
public key discovery (see section 7.7.11 for more information), but it does not support
CSR and is in a deferred state. Therefore, the key management and cryptography storage
has been implemented using a custom extension in the form of a plugin, which defines
custom stanzas for CSR and public key retrieval (see chapter 8.4.7 for more information).
This shows that XMPP is highly extendable and can be modified as needed, but also
provides all required functionality to be suitable for Off-chain services. Unfortunately,
XMPP is a centralized system based on a client-server architecture and the XMPP server
creates a central point of failure, which contradicts the distributed nature of blockchains.

79

10. Conclusion and Future Work

10.2 Future Work
The aim of this thesis was to analyze the suitability of XMPP for Off-chain services
including private data exchange and cryptographic storage. This section presents
opportunities for future research, which were omitted from this thesis because of low
importance to the suitability analysis.

10.2.1 Library Distribution Service
The contract implementation and other dependent libraries evolve over time and need
to be deployed on the network nodes regularly. Therefore an update mechanism, which
ensures all nodes are using the same version, is needed. This might be implemented
using custom stanzas (see section 7.5 for more information) in combination with the file
transfer extension (see section 7.7.3 for more information), or with an update repository.

10.2.2 Security
Security was addressed in this thesis only partially. The cryptographic keys are protected
in a password protected keystore, and the communication channels are protected
using TLS encryption preventing man in the middle attacks (see section 7.6 for more
information), but there is a possibility of an admin in the middle attack, where an
administrator accesses protected data. This is partially mitigated using anonymous
connections (see section 7.7.8 for more information), which hide the author of a given
message even from an admin, but it is still possible to access the openfire database for
message content. This can be mitigated using additional encryption layers.

10.2.3 Performance
The performance of our implementation was not tested as it is out of scope for this thesis.
We expect that the performance is reasonable as the system relies on a proven XMPP
implementation, but this needs to be verified using a stress test.

10.2.4 Availability
Availability can be achieved using clustering, which is supported by the openfire server.
Our plugin was not tested in this context and it might be needed to modify the current
implementation.

80

List of Figures

2.1 A chain of blocks. This figure is a reprint from [Nak19]. 5
2.2 Transaction workflow of a blockchain. This figure is a reprint from [Nak19]. 6

3.1 Permissioned blockchain systems referenced in recent literature 11
3.2 Fabric network, this figure is a reprint from [ABB+18]. 14
3.3 Quorum architecture, this figure is a reprint from [Cha20]. 17

7.1 Distributed client server architecture. This figure is based on [SA11a]. . . 30
7.2 Bidirectional communication using two streams. This figure is based on

[SA11a]. 33
7.3 Iq stanza example. This figure is based on [SA11a]. 35
7.4 Example of a message stanza. This figure is based on [SA11a]. 35
7.5 Example of a presence stanza. This figure is based on [SA11a]. 36
7.6 Example of a stanza error. This figure is based on [SA11a]. 37
7.7 Xep life cycle. This figure is based on [SAC10]. 38

8.1 Smart-Toolbox application environment. This figure is a reprint from [sma20]. 45
8.2 Contract layout. This figure is a reprint from [sma20]. 46
8.3 Abstract blockchain architecture, this figure is a reprint from [sma20]. . . 47
8.4 Smart-Toolbox application environment. This figure is a reprint from [sma20]. 48
8.5 Deployment diagram of the XMPP integration implemented over the course

of this thesis. 51
8.6 Class diagram of the XMPPClient bean related classes. 52
8.7 Class diagram of the SmartTolboxOffchainProxy bean related classes. . . 53
8.8 Sequence diagram showing the creation of anonymous XMPPClient instances

and the automatic reconnection mechanism. 54
8.9 Sequence diagram showing the createInvitation method of the SmartToolbox-

OffchainProxy bean. 57
8.10 Sequence diagram showing how a invitation is propagated to the Smart-

ToolboxOffchainProxy. 58
8.11 Sequence diagram showing how an invitation can be accepted or declined. 59
8.12 Sequence diagram showing how a proposal is send to the multi user chat. 60
8.13 Sequence diagram showing how a proposal is received from the multi user

chat. 60

81

8.14 Sequence diagram showing the destruction of a ProposalHandler. 61
8.15 Sequence diagram showing group management related methods. 62
8.16 Sequence diagram showing the CSR process. 63
8.17 Sequence diagram showing the key retrieval from server. 64
8.18 Sequence diagram showing the login process. 65
8.19 Sequence diagram showing the reconnection of ProposalHandlers during the

initialziation process. 66
8.20 Sequence diagram showing the initialization process. 67
8.21 Sequence diagram showing how an action can be sent between participants. 67
8.22 Class diagram of key management related classes. 68
8.23 Sequence diagram showing the initialization of a KeyStoreManager instance. 69

82

List of Tables

9.1 This table shows the feature comparison table for different private blockchain
systems and ourXMPP based implementation. 77

83

Acronyms

AMQP Advanced Message Queuing Protocol. 11, 12, 21, 22, 71–74

BFT Byzantine Fault Tolerant. 15, 16, 23

CA Certification Authority. 13, 75

CSR Certificate signing request. 61, 63, 67, 79, 82

EOF End Of File. 23

GUI Graphical User Interface. 44, 46, 47, 51

HTTP Hypertext Transfer Protocol. 23

IOC Invertion Of Control. 55

JID Jabber ID. 29–31, 33, 34, 40, 41

LAN Local Area Network. 42

mDNS Multicast DNS. 42

MSP Membership Service Provider. 13

RPC Remote Procedure Call. 16, 22, 23, 67, 72–74

SASL Simple Authentication and Security Layer. 31, 32, 41, 53

STS Station To Station. 23, 71

TLS Transport Layer Security. 12, 21, 22, 31, 32, 37, 42, 71, 76, 80

URI Uniform Resource Identifier. 23

85

UTXO Unspent Transaction Output. 8

XEP XMPP Extensions Protocol. 29, 38–42, 51

XMPP eXtensible Messaging and Presence Protocol. 1–3, 19, 20, 29–32, 34–39, 41–43,
49–52, 55, 56, 58, 61, 63–67, 71–77, 79–81, 83

XSF XMPP Standards Foundation. 29, 38

86

Bibliography

[AA20] A Averin and O Averina. Review of blockchain frameworks and platforms. In
2020 International Multi-Conference on Industrial Engineering and Modern
Technologies (FarEastCon), pages 1–6. IEEE, 2020.

[ABB+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christopher
Ferris, Gennady Laventman, Yacov Manevich, et al. Hyperledger fabric: a
distributed operating system for permissioned blockchains. In Proceedings
of the Thirteenth EuroSys Conference, pages 1–15, 2018.

[Alr21] Malak Suliman Alrumaih. Introducing contemporary blockchain platforms.
International Journal of Computer Science & Network Security, 21(4):9–18,
2021.

[B+14] Vitalik Buterin et al. A next-generation smart contract and decentralized
application platform. white paper, 3(37), 2014.

[Bal17] Arati Baliga. Understanding blockchain consensus models. Persistent,
2017(4):1–14, 2017.

[Bas18] Imran Bashir. Mastering Blockchain Second Edition. Packt Publishing Ltd,
2018.

[BCGH16] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda:
an introduction. R3 CEV, August, 1:15, 2016.

[BHLC09] Tim Bray, Dave Hollander, Andrew Layman, and J Clark. Namespaces in
xml. World Wide Web Consortium, 2009.

[BKM18] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft
consensus. arXiv preprint arXiv:1807.04938, 2018.

[BVGC21] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia.
A survey on blockchain interoperability: Past, present, and future trends.
ACM Computing Surveys (CSUR), 54(8):1–41, 2021.

87

[C+16] Christian Cachin et al. Architecture of the hyperledger blockchain fabric.
In Workshop on distributed cryptocurrencies and consensus ledgers, volume
310, page 4, 2016.

[Cha20] JP Morgan Chase. Quorum white paper (2016). https:
//raw.githubusercontent.com/ConsenSys/quorum/master/
docs/Quorum%20Whitepaper%20v0.2.pdf, 2020.

[Con20a] ConsenSys. account plugins. https://docs.goquorum.consensys.
net/, 2020.

[Con20b] ConsenSys. Constellation readme. https://github.com/ConsenSys/
constellation, 2020.

[Con20c] ConsenSys. Quorum readme. https://github.com/ConsenSys/
quorum, 2020.

[Con20d] ConsenSys. Tessera private transaction manager. https://docs.
tessera.consensys.net/en/stable/, 2020.

[CON21] CONSENSYS. Tessera api reference (latest-77595415). https://
consensys.github.io/tessera/, 2021.

[CPV+16] Michael Crosby, Pradan Pattanayak, Sanjeev Verma, Vignesh
Kalyanaraman, et al. Blockchain technology: Beyond bitcoin. Applied
Innovation, 2(6-10):71, 2016.

[DGG20] Coin Sciences Ltd Dr Gideon Greenspan. Multichain private
blockchain — white paper. https://www.multichain.com/
download/MultiChain-White-Paper.pdf, 2020.

[DXM+19] Yueyue Dai, Du Xu, Sabita Maharjan, Zhuang Chen, Qian He, and Yan
Zhang. Blockchain and deep reinforcement learning empowered intelligent
5g beyond. IEEE Network, 33(3):10–17, 2019.

[EHM+04] Ryan Eatmon, Joe Hildebrand, Jeremie Miller, Thomas Muldowney, and
Peter Saint-Andre. Xep-0004: Data forms. Jabber Software Foundation,
2004.

[Fou20] Linux Foundation. grpc documentation. https://grpc.io/docs/, 2020.

[Fou21] Apache Software Foundation. Apache activemq artemis documentation.
https://activemq.apache.org/components/artemis/
documentation/latest/book.pdf, 2021.

[Gro13] JSON-RPC Working Group. Json-rpc 2.0 specification. https://www.
jsonrpc.org/specification, 2013.

88

https://raw.githubusercontent.com/ConsenSys/quorum/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://raw.githubusercontent.com/ConsenSys/quorum/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://raw.githubusercontent.com/ConsenSys/quorum/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://docs.goquorum.consensys.net/
https://docs.goquorum.consensys.net/
https://github.com/ConsenSys/constellation
https://github.com/ConsenSys/constellation
https://github.com/ConsenSys/quorum
https://github.com/ConsenSys/quorum
https://docs.tessera.consensys.net/en/stable/
https://docs.tessera.consensys.net/en/stable/
https://consensys.github.io/tessera/
https://consensys.github.io/tessera/
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://grpc.io/docs/
https://activemq.apache.org/components/artemis/documentation/latest/book.pdf
https://activemq.apache.org/components/artemis/documentation/latest/book.pdf
https://www.jsonrpc.org/specification
https://www.jsonrpc.org/specification

[Hea16] Mike Hearn. Corda: A distributed ledger. Corda Technical White Paper,
2016, 2016.

[HKG+21] Saqib Hakak, Wazir Zada Khan, Gulshan Amin Gilkar, Basem Assiri,
Mamoun Alazab, Sweta Bhattacharya, and G Thippa Reddy. Recent
advances in blockchain technology: A survey on applications and challenges.
International Journal of Ad Hoc and Ubiquitous Computing, 38(1-3):82–100,
2021.

[HMESA08] Joe Hildebrand, Peter Millard, Ryan Eatmon, and Peter Saint-Andre. Xep-
0030: service discovery. XMPP Standards Foundation, Tech. Rep, 2008.

[Hyp19] Hyperledger. Private data. https://hyperledger-fabric.
readthedocs.io/en/release-1.4/private-data/
private-data.html, 2019.

[Hyp20] Hyperledger. Ledger. https://hyperledger-fabric.readthedocs.
io/en/release-2.0/ledger/ledger.html, 2020.

[IVBA+14] Antti Iivari, Teemu Väisänen, Mahdi Ben Alaya, Tero Riipinen, and Thierry
Monteil. Harnessing xmpp for machine-to-machine communications &
pervasive applications. 2014.

[Kwo14] Jae Kwon. Tendermint: Consensus without mining. 2014.

[LBSA+09] Scott Ludwig, Joe Beda, Peter Saint-Andre, Robert McQueen, Sean Egan,
and Joe Hildebrand. Xep-0166: Jingle. XMPP Standards Foundation, 2009.

[LD20] IBM Developer Luc Desrosiers, Ricardo Olivieri. Oracles:
Common architectural patterns for hyperledger fabric. https:
//developer.ibm.com/technologies/blockchain/articles/
oracles-common-architectural-patterns-for-fabric/, 2020.

[LSP19] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. In Concurrency: the Works of Leslie Lamport, pages 203–226.
2019.

[Ltd20a] Coin Sciences Ltd. Introducing multichain streams.
https://www.multichain.com/blog/2016/09/
introducing-multichain-streams/, 2020.

[Ltd20b] R3 Ltd. Accounts documentation. https://github.com/corda/
accounts/blob/master/docs.md, 2020.

[Ltd20c] R3 Ltd. Documentation and training for corda developers and operators.
https://docs.corda.net/docs, 2020.

89

https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-1.4/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.0/ledger/ledger.html
https://hyperledger-fabric.readthedocs.io/en/release-2.0/ledger/ledger.html
https://developer.ibm.com/technologies/blockchain/articles/oracles-common-architectural-patterns-for-fabric/
https://developer.ibm.com/technologies/blockchain/articles/oracles-common-architectural-patterns-for-fabric/
https://developer.ibm.com/technologies/blockchain/articles/oracles-common-architectural-patterns-for-fabric/
https://www.multichain.com/blog/2016/09/introducing-multichain-streams/
https://www.multichain.com/blog/2016/09/introducing-multichain-streams/
https://github.com/corda/accounts/blob/master/docs.md
https://github.com/corda/accounts/blob/master/docs.md
https://docs.corda.net/docs

[Mil05] Matthew Miller. Xep-0050: Ad-hoc commands. Standards track, XMPP
Standards Foundation, 2005.

[MJS+14] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz.
Permacoin: Repurposing bitcoin work for data preservation. In 2014 IEEE
Symposium on Security and Privacy, pages 475–490. IEEE, 2014.

[Nak19] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, Manubot, 2019.

[NRP+21] Samudaya Nanayakkara, MNN Rodrigo, Srinath Perera, Geeganage T
Weerasuriya, and Amer A Hijazi. A methodology for selection of a blockchain
platform to develop an enterprise system. Journal of Industrial Information
Integration, 23:100215, 2021.

[RFC11] Extensible RFC6121. messaging and presence protocol (xmpp): instant
messaging and presence. P. Saint-Andre, Cisco, 2011.

[SA08a] Peter Saint-Andre. Xep-0045: multi-user chat. XEP-0045 (Standards Track),
2008.

[SA08b] Peter Saint-Andre. Xep-0174: Serverless messaging. Standards track, XMPP
Standards Foundation, 2008.

[SA08c] Peter Saint-Andre. Xep-0174: Serverless messaging. Standards track, XMPP
Standards Foundation, 2008.

[SA09] Peter Saint-Andre. Xep-0175: Best practices for use of sasl anonymous.
Informational, XMPP Standards Foundation, 2009.

[SA11a] P Saint-Andre. Rfc 6120: Extensible messaging and presence protocol
(xmpp): Core (2011). http://tools.ietf.org/html/rfc6120, 2011.

[SA11b] Peter Saint-Andre. Extensible messaging and presence protocol (xmpp):
Address format. Technical report, RFC 6122, March, 2011.

[SAC10] Peter Saint-Andre and Dave Cridland. Xep-0001: Xmpp extension protocols.
Viitauu, 27:2013, 2010.

[SAD04] Peter Saint-Andre and Russell Davis. Private xml storage. 2004.

[SAS11] Peter Saint-Andre and Lance Stout. Xep-0234: Jingle file transfer. https:
//xmpp.org/extensions/xep-0234.html, 2011.

[SIHC21] Abdurrashid Ibrahim Sanka, Muhammad Irfan, Ian Huang, and Ray CC
Cheung. A survey of breakthrough in blockchain technology: Adoptions,
applications, challenges and future research. Computer Communications,
2021.

90

http://tools.ietf.org/html/rfc6120
https://xmpp.org/extensions/xep-0234.html
https://xmpp.org/extensions/xep-0234.html

[sma] Smart-toolbox for community-blockchains. https://projekte.ffg.
at/projekt/3344680.

[sma20] Technical report – smart-toolbox. Complang research group, 2020.

[SSB16] Florian Schmaus, Dominik Schürmann, and Vincent Breitmoser. Xep-0373:
Openpgp for xmpp. Hämtad juli, 17:2016, 2016.

[Sta12] OASIS Standard. Oasis advanced message queuing protocol (amqp) version
1.0. International Journal of Aerospace Engineering Hindawi www. hindawi.
com, 2018, 2012.

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction
processing in bitcoin. In International Conference on Financial Cryptography
and Data Security, pages 507–527. Springer, 2015.

[Szy04] Michael Szydlo. Merkle tree traversal in log space and time. In International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 541–554. Springer, 2004.

[Tee17] Cale Teete. Quorum consortium network in azure
marketplace. https://entethalliance.org/
quorum-consortium-network-in-azure-marketplace.pdf,
2017.

[ten19] tendermint.com. Amino spec (and impl for go). https://github.com/
tendermint/go-amino, 2019.

[ten20a] tendermint.com. Blockchain. https://github.com/tendermint/
spec/blob/953523c3cb99fdb8c8f7a2d21e3a99094279e9de/
spec/blockchain/blockchain.md, 2020.

[ten20b] tendermint.com. Tendermint. https://docs.tendermint.com/
master/, 2020.

[ten20c] tendermint.com. Tendermint rpc. https://docs.tendermint.com/
master/rpc/, 2020.

[ten20d] tendermint.com. Using tendermint. https://docs.tendermint.com/
master/tendermint-core/using-tendermint.html, 2020.

[Vuk15] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs.
bft replication. In International workshop on open problems in network
security, pages 112–125. Springer, 2015.

[Wan21] Gang Wang. Sok: Applying blockchain technology in industrial internet of
things. Cryptology ePrint Archive, 2021.

91

https://projekte.ffg.at/projekt/3344680
https://projekte.ffg.at/projekt/3344680
https://entethalliance.org/quorum-consortium-network-in-azure-marketplace.pdf
https://entethalliance.org/quorum-consortium-network-in-azure-marketplace.pdf
https://github.com/tendermint/go-amino
https://github.com/tendermint/go-amino
https://github.com/tendermint/spec/blob/953523c3cb99fdb8c8f7a2d21e3a99094279e9de/spec/blockchain/blockchain.md
https://github.com/tendermint/spec/blob/953523c3cb99fdb8c8f7a2d21e3a99094279e9de/spec/blockchain/blockchain.md
https://github.com/tendermint/spec/blob/953523c3cb99fdb8c8f7a2d21e3a99094279e9de/spec/blockchain/blockchain.md
https://docs.tendermint.com/master/
https://docs.tendermint.com/master/
https://docs.tendermint.com/master/rpc/
https://docs.tendermint.com/master/rpc/
https://docs.tendermint.com/master/tendermint-core/using-tendermint.html
https://docs.tendermint.com/master/tendermint-core/using-tendermint.html

[XWS+17] Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass,
Cesare Pautasso, and Paul Rimba. A taxonomy of blockchain-based systems
for architecture design. In 2017 IEEE International Conference on Software
Architecture (ICSA), pages 243–252. IEEE, 2017.

[ZXD+20] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian
Weng, and Muhammad Imran. An overview on smart contracts: Challenges,
advances and platforms. Future Generation Computer Systems, 105:475–491,
2020.

92

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Blockchain Basics
	Blockchain Basics
	Transactions
	Consensus
	Data Structures
	Smart Contract
	Taxonomy

	Permissioned Blockchain Systems
	Corda
	Hyperledger Fabric
	MultiChain
	Tendermint
	Quorum

	Problem Statement
	Related Work
	Corda
	Hyperledger Fabric
	MultiChain
	Tendermint
	Quorum

	Requirement Analysis
	Functional Requirements
	Non-Functional Requirements

	XMPP
	XMPP Architecture
	Jabber Id
	Network and XML Streams
	Namespaces
	Stanza
	XMPP Security
	XMPP Features and Extensions

	Smart-Toolbox - Blockchain Provisioning
	Smart-Toolbox Concept
	Membership and Messaging Service
	Smart-Toolbox Use Cases
	Architecture and Use Cases
	Key Management

	Evaluation
	Private Data Distribution
	Offline Capability
	Direct Messages
	Message Broadcast
	Synchronous Messages
	Asynchronous Messages
	Group Support and Dynamic Group Creation
	User Query
	User Groups
	Cryptography Storage
	Non-Functional Requirements
	Disadvantages of XMPP
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

