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Abstract
The accurate control of inverter-fed Permanent-Magnet Synchronous-Motors is essential
for many industrial applications such as robotics and process automation. In order to
improve to control performance, an accurate model of the system nonlinearities is required.

This thesis investigates methods for online static function approximation from streaming
data and evaluates them based on typical application scenarios form the electric drive
domain. Kernel methods and Bayesian regression methods are investigated in detail since
these models can be trained efficiently using convex optimization and allow to incorporate
prior knowledge. Furthermore, the Bayesian framework provides a prediction uncertainty
and systematic way for model selection. Simulation experiments are performed to evaluate
the performance of the online approximators with artificially generated and measurement
data. The robustness of the approximators against constant and heteroscedastic noise
is tested. Additionally, the performance of the approximators is evaluated with a slowly
time varying function.

It is found that the Bayesian-Kernel-Recursive-Least-Squares (B-KRLS) is best suited
for the considered scenarios since it obtained the most accurate approximations. Fur-
thermore, the computational complexity of the B-KRLS can be defined a priori and it
is able to approximate slowly time varying functions. Additionally, it is robust against
heteroscedastic noise and it provides a predictive variance which can be used to evaluate
the reliability of the prediction.

II



Kurzzusammenfassung
Die genaue Regelung von umrichtergespeisten Permanentmagnet-Synchronmotoren ist
für viele industrielle Anwendungen wie Robotik und Prozessautomatisierung unerlässlich.
Um die Regelgüte zu verbessern, ist ein genaues Modell der Nichtlinearitäten des Systems
erforderlich.

In dieser Arbeit werden Methoden zur Online-Approximation statischer Funktionen auf
Basis von Streaming-Daten untersucht und anhand typischer Anwendungsszenarien aus
dem Bereich der elektrischen Antriebe evaluiert. Kernel-Methoden und Bayes’sche Re-
gressionsmethoden werden im Detail untersucht, da diese Modelle mit Hilfe von konvexer
Optimierung effizient trainiert werden können und es erlauben, Vorwissen miteinzube-
ziehen. Darüber hinaus bietet der Bayes’sche Ansatz eine Prädiktive-Varianz und einen
systematischen Weg zur Modellauswahl. Es werden Simulationsexperimente durchge-
führt, um die Performance der Online-Approximatoren mit künstlich erzeugten Daten
und Messdaten zu bewerten. Die Robustheit der Approximatoren gegenüber konstantem
und heteroskedastischem Rauschen wird getestet. Zusätzlich wird die Performance der
Approximatoren mit einer langsam zeitlich variierenden Funktion bewertet.

Es zeigt sich, dass der Bayesian-Kernel-Recursive-Least-Squares (B-KRLS) am besten
geeignet ist, da er die genauesten Approximationen für die betrachteten Szenarien liefert.
Darüber hinaus kann die Rechenkomplexität des B-KRLS a priori definiert werden und er
ist in der Lage, langsam zeitlich variierende Funktionen zu approximieren. Außerdem ist
er robust gegenüber heteroskedastischem Rauschen und liefert eine Prädiktive-Variannz,
die zur Bewertung der Zuverlässigkeit der Vorhersage verwendet werden kann.
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1 Introduction
Inverter-fed electric drives are the standard drive-solution in many industrial applications,
such as robotics or process automation. In order to control the drive system in an optimal
manner, an accurate mathematical model of the motor and the inverter is needed. How-
ever, an accurate description of all relevant physical quantities is time demanding and
often even infeasible due to complex motor geometries, parameter variations, unavoidable
uncertainties, etc.. Furthermore, for real-time applications and high dynamic control
performance, a computational efficient model is required.

The industrial standard to control AC-drives is based on a fundamental wave or dq-model
[1]. The model assumes a symmetrically constructed motor with an ideal sinusoidal flux
distribution in the air gap. Nonlinear effects such as saturation, hysteresis, asymmetries,
etc., are neglected. The model captures the general behavior in the magnetic linear
operating range with acceptable accuracy. Since the fundamental wave model is linear,
well established linear control methods [2], e. g., proportional integral (PI) control, are
applicable. For many real use cases, the assumption of an unsaturated, magnetic linear
motor is not justified. Thus, the nonlinear relation between the flux-linkage Ψdq and the
currents idq in the the dq-frame has to be modelled, see, e. g., [3–6]. Assuming that the
nonlinear function is known a priori or approximated online during operation, nonlinear
control methods, e. g., differential flatness based two-degrees-of-freedom control [7, 8] allow
to compensate the flux-linkage nonlinearity. Thus, the accurate approximation of static
nonlinearities is crucial for high performance control applications.

When concerning not only the motor, but the whole drive system, the assumption of an
ideal inverter is not valid anymore. Nonlinear effects such as dead times, switching losses,
parasitic effects, etc., produce errors between the desired and the actual output-voltages
and in turn degrade control performance [9]. Thus, in order to improve the control
performance of the whole drive system, the non-ideal behavior of the inverter has to be
modelled as well.

In the last decades the usage of machine-learning methods for function approximation
has gained popularity in the engineering and control domain because accurate approxima-
tions of complex nonlinear functions can be obtained from data only. A recent survey of
machine-learning methods in the field of electric drives is given in [10–12]. In the electric
drive domain, prior knowledge about the function to be modeled is typically available. The
incorporation of such knowledge into the modelling process increases the interpretability
and reliability of the data-driven model and is therefore considered as particular useful for
control applications. However, the quality of the data-based model significantly depends
on the quality of the data. Thus, the generation of data is considered one of the most
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1 Introduction 1.1 Goal of the Thesis 2

crucial steps for data-based function approximation [13].

In order to increase the flexibility and adaptability of the model, online function
approximation during motor-operation is required. In an online setting, the function is
approximated based on a stream of data. This is challenging because the model processes
each sample only once and hence it has to extract the contained information as efficient
as possible without significantly affecting the real-time performance of the control system.
Furthermore, the online approach allows to adapt to changing operation conditions, such
as parameter or temperature drift.

1.1 Goal of the Thesis
In this thesis, data-driven methods for online nonlinear function approximation shall be
investigated and evaluated with a focus on control applications for electric drives. A
literature review of state-of-the-art online function approximators serves as the baseline.
Thereby, approximators which allow to incorporate prior domain knowledge into the ap-
proximation shall be highlighted. To be suitable in a real-time control system, the online
approximator must have a bounded computational complexity per time step. The selected
approximators shall be compared with respect to their computational complexity and
achievable prediction accuracy. Furthermore, methods for model selection, i. e., selecting
the parameters of the model, are mandatory. To cope with parameter changes, online
approximators that allow to model slowly time varying function shall be investigated as
special case.

After the theoretical discussion of suitable online function approximators, they shall be
evaluated with streaming data from two typical application scenarios in the electric-drive
domain. The first scenario deals with the approximation of the magnetic model of a
Permanent-Magnet Synchronous-Motor (PMSM). In order to obtain realistic data, a
typical control strategy of PMSMs shall be discussed. Furthermore, the robustness of the
approximators against measurement noise shall be investigated and the effect of a changing
operating condition shall be analyzed. The second scenario considers the approximation
of an average model of a Voltage Source Inverter (VSI). Here, the dataset is obtained from
online measurements at certain motor operating points. The selection of an appropriate
model which properly interpolates the measurement data shall be discussed and the
performance of the online approximators with streaming data shall be investigated.

1.2 Outline
The structure of the thesis and the main contents of each chapter are as follows. Chapter 2
provides a brief overview of function approximation algorithms and starts by defining
the offline function approximation problem from data. Kernel methods and Gaussian
processes are introduced for non-parametric function approximation. Furthermore, the
online function approximation setting is defined and a literature overview of kernel methods
and Gaussian processes with reduced computational complexity is given. Chapter 3 is



1 Introduction 1.2 Outline 3

dedicated to frequentist function approximation. First, linear basis function models are
reviewed. Moreover, commonly used kernel functions are summarized and hyperparameter-
tuning with cross-validation is introduced. Finally, two online kernel methods from the
kernel adaptive filter framework are discussed. Bayesian regression methods are the key
topic in Chapter 4. First, the linear basis function model is reviewed from a Bayesian
perspective. Furthermore, Bayesian hyperparameter-tuning is discussed and two Bayesian
online approximators are discussed. The selected online function approximators are
evaluated in Chapter 5 based on data from the electric drive domain. In Section 5.1,
the approximation of the flux-linkage, an important physical quantity of a PMSM, is
investigated. This includes the motivation of an typical application scenario, the derivation
of a measurement noise model and the discussion on changing operating conditions. Offline
model selection is discussed. The online approximators are then evaluated based on random
sampled data and artificially generated operating data. In Section 5.2 an average model
of an inverter is approximated based on measurement data. A typical application scenario
is motivated and offline model selection is discussed. The section closes by evaluating the
online approximators based on sequential measurement data.



2 State of the Art Function Approximation
This chapter gives an overview of the field of data-based function approximation. To begin
with, the offline function approximation problem is stated with the theory of statistical
learning in Section 2.1. Section 2.2 motivates kernel methods for non-parametric regression
from the viewpoint of regularization. In Section 2.3, kernel methods are derived from
a Bayesian regularization perspective, leading to the Gaussian process framework. The
online function approximation setting is defined in Section 2.4. Finally, Section 2.5 gives an
overview of scalable kernel methods and Gaussian processes with reduced computational
complexity.

2.1 Statistical Learning Theory
In this thesis, the approximation of a static multiple-input single-output (MISO) function

f(x) : X → Y , (2.1)

with an p-dimensional input-space X ⊆ Rp and an one-dimensional output-space Y ⊆ R,
from data is considered. The assumption of a MISO function is not a strong restriction,
since a function with multi-dimensional output f(x) ∈ Rq can be constructed by combining
multiple MISO functions, according to

fT(x) =
	
f1(x) · · · fq(x)

�
. (2.2)

It is assumed that only noisy observations y of the function f(x) are available. The
relationship between the observations y and the inputs x is described by the statistical
model

y = f(x) + ε , (2.3)

where ε is an additive random error [14, Section 2.6]. In this context, f(x) is referred
to as latent function. The random error ε serves as a model for measurement noise and
potentially unknown inputs which also contribute to y.

The function approximation1 problem from data is stated very generally within the
theory of statistical learning, introduced by Vapnik [16]. The learning framework assumes
that the inputs x and the observations y are related by a probabilistic relationship. This
relationship is modelled with a joint probability distribution p(x, y). The learning problem

1The function approximation setting is referred to as regression in the statistics [14] and as supervised
learning in machine learning [15]. Note the difference between regression and classification.

4



2 State of the Art Function Approximation 2.1 Statistical Learning Theory 5

is defined as minimization2 of the expected risk functional R(f)

f∗ = arg min
f∈F∗

R(f) =
� �

L(y, f(x)) p(x, y) dx dy , (2.4)

with respect to functions f of an arbitrary large function space F∗ [16]. The minimizer f∗

is further referred to as target function and L(y, f(x)) is a loss function which assesses
the quality of approximation. For the special case of the squared-error loss function
L(y, f(x)) = (y − f(x))2, the minimizer of (2.4) is given by the regression function [17,
Section 3.9], according to

f∗ =
�

y p(y | x) dy . (2.5)

In most practical cases the joint probability p(x, y) is unknown and therefore (2.4) cannot
be solved exactly. However, the joint probability can be approximated with independent
and identical distributed samples {(xi, yi) ∼ p(x, y) | i = 1, . . . , N} from p(x, y). This
corresponds to a frequentist view of probability, since it interprets probability as the
relative frequency of events [18, Chapter 2.1]. In an offline or batch setting, all the data
is available at once. Thus, (2.4) can be solved approximately by minimizing the average
loss, given by the empirical risk functional Re(f) according to

f̂ = arg min
f∈F∗

Re(f) = 1
N

N$
i=1

L(yi, f(xi)) . (2.6)

Statistical learning theory studies under which conditions the estimate f̂ converges to the
target function f∗. One of the key statements of the theory is that in order to obtain
an estimate f̂ that performs well on unseen data, i. e., has small generalization error, it
is necessary to properly constrain the function space in which (2.6) is minimized [16].
This can be expressed as the minimization of the constrained empirical risk functional,
according to

f̂F = arg min
f∈F

Re(f) , (2.7)

where F ⊂ F∗ is the constraint function space. However, the restriction to F imposes a
fundamental trade-off between the generalization error and complexity3 of the approxima-
tor. The trade-off can be formalized by expanding the expected generalization error [17,
Section 3.14], according to

E
	
R(f̂F) − R(f∗)

�
= E[R(f∗

F) − R(f∗)]� �� �
approximation error

+E
	
R(f̂F) − R(f∗

F)
�

� �� �
estimation error

. (2.8)

Here, E[·] is the expectation w.r.t. p(x, y) and f∗
F ∈ F is the minimizer of the expected risk

functional (2.4) in the space F [17, Section 3.14]. The approximation error is a measure
of the deviation between the target function f∗ and its approximation f∗

F in a constrained

2In this thesis, the notation x∗ = arg minx J(x) = f(x) is an abbreviation of x∗ = arg minx f(x), where
x∗ is the minimizer and J(x) is a loss function which is defined by the function f(x).

3The complexity or capacity of a function is defined within the theory of statistical learning, see [16].



2 State of the Art Function Approximation 2.1 Statistical Learning Theory 6

function space F. Thus, it quantifies the inability of the function space F to perfectly
represent f∗. The estimation error is introduced since the empirical risk (2.6) is minimized
instead of the expected risk (2.4). A geometric interpretation of the generalization error
is depicted in Figure 2.1. The approximation error is independent of the dataset size
N and decreases as the complexity of the function space F increases. However, for a
fixed N , increasing F also increases the estimation error [17, Section 3.14]. Thus, for
fixed N , it is not possible to minimize both error terms simultaneously. The only way
to minimize both terms is to increase the dataset size N and the function space F [17,
Section 3.9]. For the special case of the squared-error loss function and linear models, the
generalization-complexity trade-off is also know as bias-variance trade-off [17, Section 3.9].

f̂F

f∗
F f∗estim.

error
approx.

error
F

F∗

Figure 2.1: Geometric visualization of the generalization error.

A possible approach to constrain the function space is to restrict the function to a
parametric model f(x) = f(x; w) with parameters w ∈ RM . In this case, the variational
problem (2.10) is transformed to a M -dimensional static optimization problem for the
parameters w, where the optimal parameter vector w∗ is given as

w∗ = arg min
w∈RM

Re(w) = 1
N

N$
i=1

L(yi, f(xi; w)) . (2.9)

In case of a parametric linear basis function model f(x; w) = wTϕ(x) and the squared-
error loss function, the global minimizer w∗ can be efficiently calculated with least-squares
(for more details see Section 3.1). In the parametric nonlinear case (e. g., Deep Neural
Network [19]), the nonlinear optimization problem (2.9) has to be solved with numerical
methods, such as stochastic gradient descent [19, Section 5.9]. However, the approximation
error, according to (2.8), is large if the target function f∗ is not a member of the function
space of the parametric model. Another approach to constrain the function space is based
on regularization theory [20]. The regularization approach will be discussed in detail in
the next section.
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2.2 Regularization Theory
Regularization is commonly used to constrain the function space in (2.7) and thus to
improve the generalization performance of the approximator. Henceforth, the special
class of regularizers, which constrain the norm of the function f in the reproducing kernel
Hilbert space (RKHS) H, are considered. Applying this regularizer to (2.6) leads to the
constrained empirical risk functional

f̂H = arg min
f

= 1
N

N$
i=1

L(yi, f(xi)) (2.10a)

subject to ∥f∥2
H ≤ C , (2.10b)

where ∥f∥H is the norm of the function f in the RKHS and the parameter C > 0 controls
the complexity of the function space. The RKHS is a Hilbert space of functions which
is uniquely defined by a kernel function k(x, x′). Informally, the kernel function may
be interpreted as similarity measure between two inputs x, x′ ∈ X and thus allows to
incorporate prior knowledge into the approximation [21, Section 2]. Commonly used kernel
function and their properties will be discussed later in Section 3.2. The kernel k(x, x′) is
a symmetric and positive semi-definite function which has the reproducing property4 [22]

f(x) = ⟨f , k(x, ·)⟩H , ∀f ∈ H . (2.11)

Here, ⟨·, ·⟩H denotes the inner product in H. A kernel function is positive semi-definite if
and only if

N$
i=1

N$
j=1

cicjk(xi, x′
j) = cTK(X , X ′)c ≥ 0 , (2.12)

holds for any vector c ∈ RN and for arbitrary input sets X = {xi | i = 1, . . . , a} and
X ′ = {x′

j | j = 1, . . . , b}. The a × b dimensional matrix K(X , X ′), with entires�
K(X , X ′)

�
ij = k(xi, x′

j) , with xi ∈ X , x′
j ∈ X ′ , (2.13)

is further referred to as kernel or Gram matrix. Since the RKHS is a Hilbert space with an
inner product, one can compute projections and derive optimization efficient algorithms
[23, Chapter 5]. The constraint optimization problem (2.10) can be reformulated in terms
of a Lagrange function [24] which leads to the regularized empirical risk functional

f̂H = arg min
f∈H

1
N

N$
i=1

L(yi, f(xi)) + λ∥f∥2
H , (2.14)

where λ ≥ 0 is the regularization parameter. The parameter λ trades generalization
performance against the complexity of the function space H. Note that λ should not be
optimized using the training data5, since this leads to poor generalization performance

4With the reproducing property the kernel function behaves in H similar to the delta function δ(x) in L2
spaces, i. e.,

�
f(x)δ(x − a) dx = f(a). The kernel is the representer of evaluation. [20, Section 3].

5The parameter λ can be estimated for example with cross-validation, which will be discussed in Section 3.2
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[18, Section 6.5]. Methods which solve the regularized empirical risk functional (2.14) in
the RKHS are hereafter referred to as kernel methods.

Kimeldorf and Wahba [22] proved that for functions f ∈ H from the RKHS, the
minimizer of the variational problem (2.14) lies in a finite-dimensional subspace which
is spanned by kernel functions k(x, x′

i) evaluated at all training inputs x′
i ∈ X . This

remarkable result is known as the Representer Theorem. It allows to express the minimizer
of (2.14) as linear combination of kernel functions

f̂H(x) =
N$

i=1
vik(x, x′

i) , (2.15)

with data dependent coefficients vi. For special case of the squared-error loss function, the
optimization problem (2.14) can be reformulated using the Representer Theorem (2.15),
according to

v∗ = arg min
v

J(v) = ∥y − K(X , X )v∥2
2 + λvTK(X , X )v (2.16)

where X is a set of training inputs, y ∈ RN are the corresponding observations and v ∈ RN

are the coefficients. The optimization problem (2.16) is further referred to as kernel ridge
regression. Since the problem is convex and quadratic in v, the global minimizer v∗ can
be obtained by solving the linear equation system6

(K(X , X ) + λE)v = y , (2.17)

where E is the identity matrix. Thus, computing the minimizer scales with a compu-
tational complexity of O�

N3�
time and O�

N2�
space [25, Section 2.2]. Note that the

regularization parameter λ > 0 improves the numerical stability when the kernel matrix
K(X , X ) is ill-conditioned.

By virtue of the reproducing property (2.11) it can be shown that any positive semi-
definite kernel function defines an inner product in the RKHS [21, Chapter 2]

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H . (2.18)

This in known as the kernel trick. In this context the function ϕ(x) = k(·, x) ∈ H is
referred to as feature map and the RKHS H as feature space. The kernel trick implies
that every algorithm that is solely based on inner products can be extended to its non-
linear version in the feature space by replacing the inner product with a kernel function.
For certain kernels, the dimension of the feature space can be high- or even infinite-
dimensional. In this cases, the kernel function (2.18) enables to efficiently compute inner
products in high-dimensional H via kernel evaluations in the low dimensional input space X.

6Solving a linear equation system is numerically more stable compared to matrix inversion, see [25,
Section 2.2].
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An introduction to the RKHS and regularization theory is given in [20, 22], whereas
a comprehensive introduction to offline kernel methods can be found in [21]. The later
derives kernel methods within a functional analytic framework. A mathematically more
accessible derivation of kernel methods, based on parametric linear basis functions models,
can be found in [15]. A comprehensive introduction how to construct a kernel is given in
[23]. Here, also elementary algorithms for computing distances, projections and Cholesky
factorization in the RKHS are derived.

2.3 Bayesian Regularization
In this section, the function approximation problem is reformulated within a Bayesian
framework [17, 18]. Although the Bayesian approach is based on a different interpretation
of probability [18, Section 12.2], the Bayesian learning problem can also be cast as the
minimization of the regularized risk functional (2.14), see [20]. Thus, Bayesian learning is
closely related the regularization. However, in contrast to the frequentist approach from
Section 2.2, Bayesian learning aims to infer the probability density of the latent function
f from data [17, Section 3.11]. This is beneficial since from the inferred distribution, a
predictive variance, which allows to quantify the uncertainty of the prediction, can be
computed. Furthermore, the Bayesian framework provides a systematic way to estimate
the hyperparameters, e. g., kernel parameters, from data.

Bayesian inference over functions is performed by introducing a prior distribution p(f)
over the latent function f . The prior reflects the prior knowledge about the function.
Thus, the prior can be interpreted as a regularizer which constrains the function space. A
popular choice is to use a Gaussian Process (GP) prior [25, 26], according to

p(f) = GP�
m(x), k(x, x′)

�
. (2.19)

A GP is completely defined by an arbitrary mean7 function m(x) and a positive semi-
definite covariance or kernel function k(x, x′). A Gaussian process defines a probability
distribution over the function f(x), such that any finite set of latent function values
fT =

	
f(x1) . . . f(xN )

�
with xi ∈ X is a jointly Gaussian distribution [25, Section 2.2].

In order to incorporate the information that a set of inputs X and corresponding
observations y provides, Bayes Theorem is applied to compute the posterior distribution
p(f | X , y) [26], according to

p(f | y , X ) = p(y | f , X ) p(f , X )
p(y , X ) = p(y | f , X ) p(f | X )

p(y | X ) · p(X )
p(X ) . (2.20)

The identity p(y | f , X ) in (2.20) is referred to as likelihood. The likelihood expresses
the probability of observations y, given the latent function values f at training inputs X .
Thus, the likelihood is model of the random error ε in (2.3). Furthermore, p(y | X ) is the

7The mean function m(x) is usually set to zero, since a GP is flexible enough to approximate the mean
arbitrarily well, see [18, Section 15.2]
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marginal-likelihood which can be obtained through marginalization of the latent function
values from the numerator in (2.20) according to

p(y | X ) =
�

p(y | f , X ) p(f | X ) df . (2.21)

The marginal-likelihood is a constant which ensures that the posterior p(f | y , X ) is a
valid probability density and integrates to one. The integral in (2.21) has an analytic
solution only in special cases, e. g., Gaussian prior and Gaussian likelihood. Furthermore,
the marginal-likelihood can be used for hyperparameter tuning (for more details see
Section 4.2).

A prediction8 f∗ = f̂(x∗) at a test input x∗ is made by evaluating the predictive
distribution p(f∗ | y). The distribution is obtained through marginalization of the training
latent function values f from the conditioned joint probability p(f , f∗ | y), according to

p(f∗ | y) =
�

p(f , f∗ | y) df . (2.22)

The conditioned joint probability can be further decomposed using Bayes Theorem, which
yields

p(f , f∗ | y) = p(y | f)
p(y) p(f , f∗) = p(y | f)

p(y) p(f∗ | f) p(f) . (2.23)

The second equality in (2.23) follows by applying the chain rule to the joint probability.
From the definition of a GP follows, that the joint probability p(f , f∗) between the training
f and test f∗ latent function values is a Gaussian distribution, given by

f
f∗

�
∼ p(f , f∗) = N


0,


K(X , X ) K(X , x∗)
K(x∗, X ) k(x∗, x∗)

�
, (2.24)

where K(X , X ) is defined in (2.13) and N (µ, Σ) refers to a Gaussian with mean µ and
covariance Σ. In order to obtain a predictive distribution in closed form, the likelihood
p(y | f) is assumed to be Gaussian9, according to

p(y | f) = N

f , σ2

nE
�

= 1"
2πσ2

n

exp
�

− 1
2σ2

n

∥y − f∥2
2

 
. (2.25)

Finally, a Gaussian process prior and a Gaussian likelihood lead to a predictive distribution
p(f∗ | y), according to (2.22), which is also Gaussian given as

p(f∗ | y) = N

f̂(x∗), σ̂2(x∗)

�
, (2.26a)

f̂(x∗) = K(x∗, X )

K(X , X ) + σ2

nE
�−1

y , (2.26b)

σ̂2(x∗) = k(x∗, x∗) + σ2
n − K(x∗, X )


K(X , X ) + σ2

nE
�−1

K(X , x∗) . (2.26c)

8The notation f and f∗ follows from [25]. The vector f corresponds to the latent function values at
the training inputs X , whereas f∗ is the latent function value at the test input x∗. Therefore, the
conditioning on the inputs is omitted to lighten the notation.

9This corresponds to a zero mean Gaussian noise p(ε) = N
�
0, σ2

n

�
in (2.3).
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Details on frequently applied manipulations for Gaussian distributions are given in the
Appendix A.2.3. The prediction of the mean f̂(x∗) is identical to the solution of the
kernel ridge regression (2.17) with λ = σ2

n. However, the Bayesian derivation addi-
tionally provides a predictive variance σ̂2(x∗). The predictive variance is composed
of two terms: k(x∗, x∗) + σ2

n is the prior covariance and the positive definite term
K(x∗, X )

�
K(X , X ) + σ2

nE
�−1K(X , x∗) represents the uncertainty reduction due to ob-

servations. Since the matrix K(X , X ) + λE is positive definite, the numerically stable
Cholesky decomposition can be used to solve the linear system with a computational
complexity of O�

N3�
time and O�

N2�
space [25, Section 2.2].

A comprehensive introduction to Gaussian process can be found in [25]. Here, a
discussion of commonly used kernel functions and their properties is given and model
selection for Gaussian processes is discussed. The connection of GP and regularization
theory is explained in detail in [20]. A derivation of Gaussian process from linear basis
function models can be found in [15]. Furthermore, the connection between Gaussian
Processes and Neural Networks is discussed in [26].

2.4 Online Function Approximation
In an online function approximation setting, the latent function is approximated from
a stream of potentially infinite input-observation pairs {(xt, yt) | t = 1, . . . , N} with
N → ∞. With each acquired pair, the estimate f̂(x) has to be updated without the need
to store the whole training dataset in memory [17, Section 5.1]. Thus, it is required that
an online algorithm has a bounded time and space complexity per update. Motivated by
the famous Recursive-Least-Squares (RLS) [17, Section 6.6] algorithm, an online algorithm
should have a maximal complexity of O�

m2�
time and space per update, where m ≪ N

is a constant which is independent of the dataset size N . Furthermore, it is assumed that
each input-observation pair is only presented once to the algorithm. Thus, algorithms
which require multiple iterations of the dataset are not considered as online in this thesis.

In contrast to the offline setting, described in Section 2.1, the online setting allows
that the joint distribution from which the data is drawn, may change over time, i. e.,
(xt, yt) ∼ pt(x, y) [21, Section 10.6.3]. In general, a time varying distribution pt(x, y) can
be modeled with a probabilistic state-space model [27, Chapter 3]

st+1 = g(st) + δt , (2.27a)
yt = f(xt, st) + εt , (2.27b)

where the function g defines the dynamics of the states st, f is the observation model, εt

is the measurement noise and δt the process noise. The goal is to obtain an estimate of
the state10 st, given a stream of inputs xt and the observations yt. This setting is known
in the control theory community as state estimation [13, 28]. Assuming the state-space

10The states st may represent the time varying coefficients of a linear basis function model f(x; st) =
sT

t ϕ(x).
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model is known and linear, i. e., f and g are linear functions of s, and the noise is Gaussian,
then the optimal state estimator is the Kalman filter [17, Section 4.10]. For the nonlinear
case, only approximate solutions are available [27].

However, the approximation of arbitrary time varying function is out of scope of this
thesis. Henceforth, the approximation of static functions, characterized by st = st−1, is
considered. As a special case, drifting functions, i. e., time varying functions with slow
dynamics, will be discussed. In order to approximate a static function with an online
kernel method, the regularized empirical risk functional (2.14) has to be minimized from
a stream of data.

2.5 Scalable Kernel and Bayesian Regression
The aim of this section is to give an literature overview of scalable kernel regression and
Gaussian processes regression, with a computational complexity smaller than O�

N3�
time

and O�
N2�

space, where N is the size of the training dataset.

Kernel Matrix Approximation

As discussed in Section 2.2, training the kernel ridge regression model (2.17) involves the
inversion of N × N matrix. An early attempt to reduce its the computational complexity
is based on the following approximation of the kernel matrix

K(X , X ) ≈ KNmKmmKmN , (2.28)
where KNm = KT

mN ∈ RN×m, Kmm ∈ Rm×m and m ≪ N . With this approximation, the
inversion of a N × N matrix is transformed to the inversion of a m × m matrix by using
the matrix inversion lemma (A.1)

(KNmKmmKmN + A)−1 = A−1 − A−1KNm


K−1

mm + KmN A−1KNm

�−1
KmN A−1 ,

(2.29)
where A = λE. Thus, the complexity is reduced to O�

Nm2�
time and O(Nm) space.

Williams and Seeger [29] proposed to use the Nyström approximation to compute (2.28).
The computation of the Nyström approximation additionally scales with O�

Nm2�
time.

Sparse Kernel Matrix

In [30] kernel functions with local support are utilized. These kernels lead to a sparse
kernel matrix. An algorithm is proposed which solves the Cholesky factorization of the
kernel matrix iteratively using Givens rotations. The algorithm scales with O(N) time
and O�

N2�
space complexity.

Kernel Function Approximation

Another approach to reduce the complexity is to approximate the kernel function by a
finite dimensional expansion

k(x, x′) ≈ zT(x)z(x′) , (2.30)
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where z(x) ∈ Rm. For translation invariant kernels, i. e., k(x, x′) = k(r) with r = x − x′,
the approximation can be obtained with Random Fourier Features [17, Section 11.12]

zT(x) =
#

2
m

	
cos


ωT

1 x + b1
�

. . . cos

ωT

mx + bm

��
, (2.31)

where bi are uniform distributed random variables in the range [0, 2π] and ωi is sampled
from p(ω) = F[k(r)], the Fourier transform of a translation invariant kernel. The m
coefficients w of the resulting parametric model

f̂(x) ≈
N$

i=1
vizT(xi)z(x) = wTz(x) (2.32)

can be calculated with parametric online methods e. g., Recursive Least Squares [17] with
O�

m2�
time and O�

m2�
space complexity. This approach fits in the defined online setting

if the kernel can be approximated well with m ≪ N . However, the approach is limited to
translation invariant kernels.

Stochastic Approximation in Function Space

A simple and computationally cheap online kernel method is given in [31]. The algorithm
performs stochastic gradient descent in the reproducing kernel Hilbert space (RKHS)
space

ft+1(x) = (1 − ηλ)ft(x) − η
∂L(ft, yt)

∂ft
k(xt, x) . (2.33)

A forgetting mechanism is implemented by setting the learning rate η < 1
λ . This ensure

that (1 − ηλ) < 1 holds and consequently past samples are given less importance. The
algorithm has a complexity of O(m) time and space. However, the achievable accuracy is
poor because the information of past samples is completely forgotten.

Support Vector Machine

The Support Vector Machine (SVM) [32] obtains a sparse representation by minimizing
(2.14) using the ϵ-insensitivity loss function

L(yi, f(xi)) = max(0, |yi − f(xi)| − ε) . (2.34)

The loss function ignores all errors which are smaller than ϵ > 0. The resulting optimization
problem is usually solved in the dual form by introducing slack variables and Lagrange
multipliers [23, Section 7.3]. This results in constraint quadratic optimization problem
which scales with O�

N3�
time and O�

N2�
space. The problem may be solved more

efficiently with O�
N2�

time and O(N) space complexity with the Sequential-Minimal-
Optimization algorithm, introduced by Platt [33]. As discussed in [34], the problem can
also be solved in the primal formulation. Since the ϵ-insensitivity loss function is not
continuously differentiable, a stochastic sub-gradient algorithm is proposed in [35] to solve
the optimization problem.
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Kernel Adaptive Filters

In the kernel adaptive filters framework [36], popular linear filters, such as the Recursive
Least Squares [17, Chapter 5], are extended to their kernel-based variants using the kernel
trick (2.18). In order to limit the number of kernel functions in (2.15), sparsification
methods are proposed. Sparsification reduces the number of kernel functions in (2.15) by
actively selecting an informative subset or dictionary of m ≪ N inputs D = {x̃i | 1, . . . m},
according to

f̂(x) ≈
m$

i=1
ṽik(x, x̃i) with x̃i ∈ D . (2.35)

The dictionary D is chosen in a way, that the solution of the optimization problem (2.16)
can be approximated with arbitrary accuracy. Training and prediction based on this
dictionary scales with O�

m2�
and O(m) complexity, respectively. The dictionary D can

be selected online in a greedy manner, based on a heuristic sparsification criterion [37]. It
was argued in [38], that sparsity is a desirable property of an learning algorithm because
it improves the generalization ability of the model. An overview of different sparsification
criteria together with a theoretical analysis is given in [37]. Many algorithms from the
kernel adaptive filter family are implemented in Matlab in the Kernel-Adaptive-Filter-
Toolbox [39].

The Kernel Recursive Least Squares (KRLS), introduced by Engel et al. [38], solves
the linear equation system (2.17) with λ = 0 recursively using the matrix inversion lemma
(A.1). The Approximate Linear Dependency (ALD) sparsification criterion was proposed
to limit the number of kernel functions. A similar criterion based on Gaussian processes
was also derived in [40]. Engel et al. proved that the ALD sparsification criterion per-
forms an computational efficient online approximation of Principal Component Analysis
(PCA) in kernel feature space [41]. PCA is a statistical method that can identify a
low-dimensional approximation of the data by computing a set of orthogonal directions of
highest variance [17, Section 19.3]. The KRLS is derived in a Bayesian framework in [42].
The Bayesian-KRLS is able to approximate drifting functions.

The Kernel Affine Projection algorithm (KAP) algorithm [43] provides a unified view to
many kernel adaptive filter algorithms, including the kernel least-mean-squares (KLMS),
the sliding-window KRLS and many others, see [44]. The KAP uses the coherence
sparsification criterion [43] to limit the number of kernel functions. The algorithm updates
its coefficients by a stochastic approximation based on the recent q data points. The
algorithm scales with O�

mq2�
time and O(m + q) space. The KLMS algorithm is a special

case of the KAP where only the most recent sample (q = 1) is used. The KAP is capable
of approximating drifting functions.

Sparse Gaussian Processes

A framework that unifies many sparse approximations of Gaussian processes was proposed
by Quinonero-Candela and Rasmussen [45]. A set of m ≪ N inducing variables fu is
introduced, based on which the full GP is approximated. Thus, the complexity is reduced
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to O�
Nm2�

time and O(Nm) space. The inducing variables correspond to latent function
values f(x) evaluated at a set of inducing-inputs Xu. After observing a set of inputs X
and observation y, a prediction f∗ at a test input x∗ is made through marginalization of
the inducing variables from the joint probability

p(f∗, f) =
�

p(f∗, f , fu) dfu =
�

p(f∗, f | fu) p(fu) dfu , (2.36)

where p(fu) = N (0, K(Xu, Xu)) is the prior of the inducing variables. Sofar, this corre-
sponds to an full GP. A sparse approximation is obtained, by assuming that the joint
prior p(f∗, f | fu) is conditionally independent given fu

p(f∗, f) ≈ p̃(f∗, f) =
�

p(f∗ | fu) p(f | fu) p(fu) dfu , (2.37)

The various sparse GP approximations differ in how they approximate the conditional
distributions p(f∗ | fu) and p(f | fu). Examples of spares approximations are the Subset-of-
Regressor (SoR), the Deterministic-Training-Conditional (DTC) and Fully-Independent-
Training-Conditional (FITC) approximation. Details about these approximations can
be found in [45]. Furthermore, the sparse approximations reduce the computational
complexity for hyperparameter tuning from O�

N3�
time to O�

Nm2�
, see Section 4.2.

Many sparse GP approximations are implemented in Matlab in the GPML-toolbox [46].

As shown in [45], the Nyström approximation (2.28) is not based on a proper probabilis-
tic model and thus may lead to a non-positive predictive variance in the sparse Gaussian
process view.

An early approach to obtain an online GPR was proposed by Csato and Opper [40].
The algorithm is closely related to the KRLS from the Kernel Adaptive Filter framework
[38]. However, Csato and Opper derived the algorithm within a Bayesian framework by
recursive application of Bayes rule. They also suggest to use an variational approach
to handle non-Gaussian likelihoods. Additionally, a greedy sparsification criterion to
include and delete points from the dictionary is proposes. Thus, the algorithm allows to
approximate drifting functions.

An online implementation of the Fully-Independent-Training-Conditional (FITC) sparse
GP approximation is derived in [47]. The FITC uses a set of m inducing inputs Xu and
approximates the conditionals in (2.37), according to

p(f | fu) = N

K(X , Xu)K−1(Xu, Xu)fu, diag(K(X , X ) − Q)

�
(2.38a)

p(f∗ | fu) = p(f∗ | fu) , (2.38b)

with Q = K(X , Xu)K−1(Xu, Xu)K(Xu, X ). An online update rule based on the matrix
inversion lemma is derived which allows to update to model with O�

m2�
time and O�

m2�
space complexity.
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Variational Gaussian Processes

A sparse approximation based on a variational formulation was proposed by Titsias
[48]. Within the variational framework, the kernel parameters as well as the m inducing
inputs Xu are treated as variational parameters which are obtained by minimizing the
Kullback-Leibler divergence (see Section A.2.4) between the sparse approximation and
the exact posterior distribution over the latent function values [48]. Furthermore, it is
shown that the solution of the variational formulation converges to the full GP as the
number of inducing point m increases. The variational problem can also be formulated to
handle non-Gaussian likelihoods. Similar to sparse Gaussian processes, the complexity
is reduced to O�

Nm2�
time and O(Nm) space. A framework that unifies many sparse

inducing input approximations was proposed by Bui et al. [49].

An algorithm based on stochastic variational inference is derived in [50]. The algorithm
scales with O�

m3�
time and O�

m2�
space and enables to tune the hyperparameters and

inducing inputs with each new incoming sample. However, for a reasonable approximation,
many iterations of the dataset may be required. Thus, this algorithm is not suited for the
online setting.

Kalman Filter

In [51], the latent function is inferred based on an a priori defined set of inputs D =
{xi | i = 1, . . . , m}. The location of the inputs is fixed over time, which allows to derive
a Kalman filter [27] update for the predictive mean and variance. The algorithm scales
with O�

m2�
time and O�

m2�
space complexity. Additionally, a strategy for online

hyperparameter-tuning, based on the unscented Kalman filter [27], is proposed.



3 Frequentist Regression
This chapter summarizes the theoretical background for nonlinear function approximation
with kernel methods from a frequentist point of view. Kernel-based algorithms are powerful
non-parametric modelling tools. These algorithms map the input data to a feature space
where the nonlinear function approximation problem can be solved efficiently with linear
algorithms and convex optimization techniques. The kernel function defines the inner
product in the feature space and thus also provides the tool to perform computations in
that space. Moreover, the kernel function allows to incorporate prior knowledge into the
approximation and thus leads to interpretable modelling results.

Section 3.1 gives an introduction to linear basis function models and states the function
approximation problem. The problem can be solved offline with complexity O�

M3�
where

M is the number of basis functions. A discussion about commonly used kernel functions,
how to incorporate prior knowledge and hyperparameter tuning is given in Section 3.2.
Finally, online kernel algorithms with a bounded computational complexity, independent
of the number of training data points N , are introduced in Section 3.3.

3.1 Linear Basis Function Models
A linear basis function model [15, Chapter 3] is defined as linear combination of M basis
functions ϕi(x), in the form

f̂(x) =
M$

i=1
wiϕi(x) = wTϕ(x) , (3.1)

with coefficients wT =
	
w1 . . . wM

�
and basis functions ϕ(x)T =

	
ϕ1(x) . . . ϕM (x)

�
. The

function ϕ : X → H is a map from the input-space X to the feature-space H. If the
basis functions ϕ(x) are nonlinear functions, then the resulting model f̂(x) is a nonlinear
function of the input vector x. Commonly used basis functions are e. g., polynomials
ϕi(x) = xn or the Gaussian basis function ϕi(x) = exp


− 1

2l2 ∥x − µi∥2
�

with center µi

and lengthscale l.

To obtain the coefficients w, the model (3.1) is trained by solving the optimization
problem (2.9). The most basic offline optimization formulation finds an optimal w∗ by
minimizing the squared-error between the observations yi and prediction f̂(xi) over N
training points according to

min
w

1
2

N$
i=1


yi − wTϕ(xi)

�2
. (3.2)

17
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However, minimizing (3.2) is prune to overfitting the training data. In order to improve
the robustness against overfitting, the L2-regularized squared-error loss function Jλ(w)
(or ridge regression) is minimized according to

min
w

Jλ(w) = 1
2

N$
i=1


yi − wTϕ(xi)

�2
+ λ

2 wTw . (3.3)

The regularization term λ
2 wTw with the regularization parameter λ > 0 penalizes compo-

nents of w. Consequently, the coefficients wi of the basis functions ϕi(x) which are not
supported by data are penalized, thus reducing overfitting and improving generalization
performance. Introducing the design matrix Φ ∈ RM×N

Φ =
	
ϕ(x1) . . . ϕ(xN )

�
, (3.4)

a set of training inputs X = {xi | i = 1, . . . , N} with corresponding observations yT =	
y1 . . . yN

�
leads to the compact matrix form

min
w

1
2

&&&y − ΦTw
&&&2

2
+ λ

2 ∥w∥2
2 . (3.5)

Since the loss function in (3.5) is convex, the necessary first-order optimality condition

(∇Jλ)(w∗) = 0 (3.6)

for a local minima is also sufficient for a global minimum [24, Section 4.1]. Hence, taking
the gradient of (3.5) with respect to w

(∇Jλ)(w) = wTΦΦT − yTΦT + λwT , (3.7)

and setting it equal to zero leads to the minimizer

w∗ =

ΦΦT + λE

�−1
Φy , (3.8)

where E is a M × M the identity matrix. From a computational point of view, model
training involves the inversion of an M × M matrix which scales with O�

M3�
time and

due to Φ with O(MN) space. Predicting with the model (3.1) scales with O(M) time.
For large N , maintaining Φ in memory is often not feasible. In this case, online algorithms
with constant computational complexity, independent of the dataset size N , can be used.

Online Learning
A simple online learning algorithm for the model (3.1) is derived by solving the optimization
problem iteratively with stochastic-gradient-descent (SGD) [15, Section 3.1.3]. If the loss
function is defined as a sum over data points Jse(w) = %

t Jt(w), see (3.2), then the SGD
algorithm updates the coefficients according to

wt = wt−1 − η∇Jt−1(wt−1) , (3.9)
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where t denotes the time index and η is the learning rate. The method is also known as
least-mean-squares (LMS) and Jt(wt−1) is referred to as instantaneous loss. The algorithm
scales with O(M) time and O(M) space per time index which is much more efficient
compared to the offline solution. The optimization problem (3.2) can also be solved with
the recursive-least-squares (RLS) algorithm [17]. The RLS solves the matrix inversion in
(3.8) iteratively using the matrix inversion lemma, see (A.1). This leads to the recursion

kt = Pt−1ϕ(xt)
1 + ϕ(xt)TPt−1ϕ(xt)

(3.10a)

Pt = Pt−1 − ktϕ(xt)TPt−1 (3.10b)

wt = wt−1 + kt


yt − ϕ(xt)Twt−1

�
. (3.10c)

The algorithm is usually initialized with w∗
0 = 0 and P0 = αE, with a sufficiently large

α > 0. The RLS algorithm scales with O�
M2�

time and space per update. In general, the
RLS converges much faster than the LMS algorithm [17, Section 6.6]. The RLS is closely
related to Newton’s method, see [17, Section 6.7].

3.2 Model Selection
The kernel function is the essential part in the theory of kernel methods. Since kernel
functions define a similarity measure between data points, they allow to encode prior
knowledge. A well chosen kernel improves generalization performance and interpretability
of the approximation. To begin with, some commonly used kernels for regression and
their properties are discussed. This is followed by the construction of more advanced
kernels from base kernels. Finally, kernel hyperparameter tuning with cross-validation is
described in the end of this section.

Kernel Functions and Kernel Construction
A kernel functions requires two properties in order to be useful for practical applications
[23, Chapter 9]:

• The kernel evaluation should require less computation than the basis function
approach from Section 3.1.

• The kernel should be chosen to capture an appropriate measure of similarity for
the specific application. If prior knowledge is available, then the kernel should be
chosen accordingly.

In the following, commonly used kernels are discussed.

Gaussian kernel

The Gaussian kernel
k(x, x′) = σ2

v exp
�

− 1
2l2

&&x − x′&&2
2

 
(3.11)



3 Frequentist Regression 3.2 Model Selection 20

is one of the most popular kernels. The kernel is shown in Figure 3.1 for different
lengthscales l. For a too small l, all the data looks distinct, i. e., k(x, x′) ≈ 0 and for a too
large l, all the data looks similar, i. e., k(x, x′) ≈ σ2

v . Thus, for small l the kernel is more
likely to overfit the data, while for large l the data is smoothed. The kernel has universal
approximation capability, i. e., any function can be approximated with arbitrarily accuracy
given enough data [52]. A Taylor expansion of the Gaussian kernel shows that it is a
polynomial kernel of infinite degree [23, Section 3.4.1]

exp(x) =
∞$

n=0

1
n!x

n . (3.12)

Thus, the kernel has an infinite dimensional feature space, i. e., dimH = ∞. Further-
more, the kernel is infinitely differentiable, thus resulting in an infinitely differentiable
approximation [25, Section 4.2.1]. As discussed in [21, Section 4.2.2], the kernel acts as a
regularizer which penalizes derivatives of all orders depending on the lengthscale l, and
thus enforces a smoothness of the approximation. The parameter σv scales the magnitude
of the kernel. The magnitude becomes important when multiple kernels are combined
and when predictive variances in the Bayesian framework are considered.

Instead of the Euclidean norm, any weighted norm with a symmetric and positive-definite
weighting matrix Σ can be used

k(x, x′) = σ2
v exp

�
−1

2
�
x − x′�TΣ

�
x − x′� 

. (3.13)

Rational Quadratic Kernel

The rational quadratic (RQ) kernel, defined as

k(x, x′) = σ2
v


1 + ∥x − x′∥2

2
2αl2

−α

(3.14)

is equivalent to summing infinite Gaussian kernels (3.11) with different lengthscales li [25,
Section 4.2]. Like the Gaussian kernel, the RQ kernel the has universal approximation
capability [52]. For α → ∞ the kernel is even equivalent to the Gaussian kernel (3.11).
Again, the parameter l defines the lengthscale of the kernel. Figure 3.1 shows the kernel
for different values α and l = 1.

Mátern Kernels

Mátern kernels are more complex kernels constructed by using the Gamma function Γ(x)
and the modified Bessel function [25, Section 4.2]. The kernel is a function of the distance
d = ∥x − x′∥2 and it is equivalent to a product of exponential and polynomial functions,
according to

k(d)ν=p+ 1
2

= σ2
v exp


−

√
2νd

l


Γ(p + 1)
Γ(2p + 1)

p$
i=0

(p + 1)!
i!(p − 1)!

√
8νd

l

p−i

, (3.15)

in the special case with ν = p + 1
2 . The corresponding function is p-times differentiable

[25, Section 4.2]. The kernel is depicted in Figure 3.1 for different lengthscale l.
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Figure 3.1: Comparison of different kernel functions.
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Piecewise Polynomial Kernels with Compact Support

Piecewise polynomial kernels with compact support (PPKCS) [25, Section 4.2] is a positive
definite kernel for inputs x ∈ RD. A PPKCS of order q = 0 and q = 1 is defined as

k(x, x′)D,0 = σ2
v(1 − d)j

+ (3.16a)
k(x, x′)D,1 = σ2

v(1 − d)j+1
+ ((j + 1)d + 1) (3.16b)

where d = ∥x − x′∥2 is the distance, (x)+ = max(x, 0) and j = ⌊D
2 ⌋ + q + 1. The square

brackets ⌊x⌋ refer to the floor function. Compact support means that the kernel becomes
zero if the distance d exceeds a certain threshold, i.e, d > 1. The kernel corresponding
process is q times mean-square differentiable.

Periodic Kernels

One possible form of prior knowledge is periodicity. Therefore [26] derives a translation
invariant kernel which enforces periodic functions. The kernel is defined as

k(x, x′) = σ2
v exp

�
− 2

l2
sin2

�
π

p

&&x − x′&&2
2

  
. (3.17)

where p defines the periodicity of the function and l its lengthscale. The influence of the
parameter p is depicted in Figure 3.1 for a constant l = 1.

B-Spline Kernels

A one-dimensional Bn-spline kernel [32] can be constructed from a Bn-spline of order n

Bn(x) =
n+1$
r=0

(−1)r

n!


n + 1

r

�
x + n + 1

2 − r

 n

+
(3.18)

with (x)+ = max(x, 0) by solving the integral equation

k(x, x′) = σ2
v

� ∞

−∞
Bn(x − ζ)Bn(x′ − ζ) dζ = σ2

vB2n+1(x − x′) . (3.19)

The kernel is equivalent to a B-spline of order 2n + 1 evaluated for x − x′. Again, the
Bn-spline kernel has compact support. The kernel is shown in Figure 3.1 for different
orders n.

Spline Kernels

A one-dimensional spline Kernel [32] of order d with an infinite number of knots is obtained
by

k(x, x′) =
d$

r=0
xr�

x′�r +
� min(x,x′)

0
(x − t)d

+
�
x′ − t

�d
+ dt . (3.20)

The kernel has dimH = ∞. In the linear case with d = 1 the kernel is given by

k(x, x′) = 1 + xx′ + xx′ min
�
x, x′� − 1

2
�
x + x′� min

�
x, x′�2 + 1

3 min
�
x, x′�3 . (3.21)
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Polynomial kernel

A polynomial kernel [21, Section 2.3] of degree d is defined as

k(x, x′) = σ2
v


xTx′ + c

�d
, (3.22)

where c ≥ 0 and d ∈ N. With an p dimensional input x, the kernel operates in a feature
space with dimension dimH =

�d+p−1
d

�
[21, Section 2.1]. For d = 5 and p = dim x = 2

follows dimH = 15. Thus, for low dimensional inputs p its computational more efficient to
use the linear basis function approach, see Section 3.1, rather than the dual representation.

The computation of the kernel gets more efficient with increasing input dimension p.
Polynomial kernels are mostly used for image processing since the dimension of the feature
space of a p = 16 × 16 pixel image and d = 5 is dimH ≈ 1010.

Constructing Kernels

More advanced kernels can be constructed by combining multiple bases kernels [23,
Section 3.4]. If k1(x, x′) and k2(x, x′) are two valid kernels, than the following operations
lead to a valid kernel k(x, x′):

k(x, x′) = c k1(x, x′) , (3.23a)
k(x, x′) = c1k1(x, x′) + c2k2(x, x′) , (3.23b)
k(x, x′) = k1(x, x′) k2(x, x′) , (3.23c)
k(x, x′) = g(x) g(x′) , (3.23d)
k(x, x′) = k1(h(x), h(x′)) , (3.23e)

where c, c1, c2 ∈ R+ and g(·), h(·) are arbitrary real valued functions. An introduction
how to combine kernels to model complex functions can be found in [53].

The addition of two kernels k1(x, x′) = ⟨ϕ1(x) , ϕ1(x′)⟩ and k2(x, x′) = ⟨ϕ2(x) , ϕ2(x′)⟩
corresponds to a concatenation of the individual feature vectors according to ϕT(x) =	
ϕ1(x) ϕ2(x)

�
[23, Section 3.4].

The multiplication of the kernels corresponds to a product of all pairs of features the base
kernels according to ϕ(x)ij = ϕ1,i(x) ϕ2,j(x) for all i = 1, . . . , M1 and j = 1, . . . , M2 where
M1 and M2 is the dimension of the corresponding feature spaces. For more details see [23,
Section 3.4]. A multi dimensional kernel with e. g., xT =

	
x1 x2

�
and (x′)T =

	
x′

1 x′
2
�

can be constructed from one dimensional kernels according to

k(x, x′) = k(x1, x′
1)k(x2, x′

2) . (3.24)

Hyperparameter Tuning
All kernel functions from Section 3.2 have one or multiple tuning parameters, further
denoted as θ, which determine the shape and approximation behavior of the kernel.
Choosing these hyperparameters is not trivial. In the kernel method framework, the kernel
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parameter are usually tuned with K-fold cross-validation (CV), which is covered in detail
by [36, Chapter 2.3] or [54]. In general, CV is a frequentist approach to estimate the
prediction error of a static model, where the root-mean-square (RMS) error

RMS(e)2 = 1
n

n$
i=1

e2
i with e ∈ Rn (3.25)

is commonly used as performance metric. K-fold CV randomly divides the dataset of
n inputs X = {xi | i = 1, . . . , n} with corresponding observations y into K equal parts
of size nk. The model is trained with combined K − 1 parts, denoted as X−k and y−k.
Then the prediction RMS error based on the remaining part Xk and yk is calculated. The
procedure is repeated K-times and the RMS prediction errors are averaged, according to

CV(f̂θ, X , y) =
K$

k=1

nk

n
RMS


yk − f̂θ(Xk, X−k, y−k)

�
. (3.26)

Henceforth, the notation f̂θ(X∗, X , y) is used to refer to a model with hyperparameters θ
which was trained with the sets X and y and is then evaluated at a set of test inputs X∗,
according to

f̂θ(X∗, X , y) =
	
f̂(xi)

�
with xi ∈ X∗ , (3.27)

where the prediction f̂(x) is defined as in (2.15). A grid-search over the hyperparameters
is usually performed to select those hyperparameters, which correspond to the smallest CV
score (3.26). When many parameters have to be tuned, the computational complexity of
CV with grid-search increases exponentially and thus often hinders the practical usage1. In
Section 4.2 an alternative Bayesian approach for hyperparameter-tuning will be discussed.

3.3 Online Kernel Regression
In this section, two online algorithms from the kernel adaptive filter framework [36] are
introduced. In order to prevent the increasing of the number of kernel functions in (2.15),
two sparsification methods are given in Section 3.3.1. An online kernel method is then
derived by combining a sparsification method with a method to solve the optimization
problem (2.16) online. Motivated by the preliminary literature, see Chapter 2, the kernel
recursive least squares algorithm is derived in Section 3.3.2 and the kernel affine projection
algorithm in Section 3.3.3.

3.3.1 Sparsification Methods
Sparsification reduces the number of kernel functions in (2.15) by actively selecting an
informative subset Dt = {x̃i | i = 1, . . . , mt}, where mt = |Dt| is the cardinality of the
set. At time step t, a training sample xt is added to the dictionary Dt = {Dt−1 ∪ xt} if

1Suppose p hyperparameters should be tuned using CV where each hyperparameter is discretized into d
values. Therefore one has to compute the prediction error with CV dp-times.
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and only if a given sparsification criterion is fulfilled. Two common sparsification criteria,
namely the Approximate Linear Dependency Criterion and the Coherence Criterion, are
discussed next.

Approximate Linear Dependency Criterion

The approximate linear dependency (ALD) criterion [38] computes the minimum distance
δt between the feature ϕ(xt) = k(·, xt) ∈ H and the linear span of the present dictionary,
according to

δt = min
a

&&&&&
mt−1$
i=1

aiϕ(x̃i) − ϕ(xt)
&&&&&

2

2
≤ ν . (3.28)

The parameter ν > 0 controls the level of sparsity of the solution. If δt > ν holds,
then ϕ(xt) is not well approximated by the current dictionary and xt is added to it.
The minimizer a∗

t of (3.28) is obtained by exploiting the first order optimality condition
(∇δt)(a∗

t ) = 0 and applying the kernel trick (2.18) which leads to

a∗
t = K−1(Dt−1, Dt−1)K(Dt−1, xt) . (3.29)

Substituting (3.29) into (3.28) yields to the ALD criterion in terms of kernel functions

δt = k(xt, xt) − KT(Dt−1, xt)K−1(Dt−1, Dt−1)K(Dt−1, xt) ≤ ν (3.30)

The ALD criterion only adds an input to the dictionary if the model is uncertain about
its prediction from the viewpoint of Gaussian process regression [36, Section 4.7]. If the
matrix inversion in (3.29) is performed iteratively using the block matrix inversion identity
(A.2), the ALD criterion can be computed with O�

m2
t

�
complexity.

Coherence Criterion

Richard et al. [43] introduced the coherence criterion

µ = max
x̃∈Dt

|k(xt, x̃)| ≤ µ0 . (3.31)

The criterion calculates the largest cross-correlation in the dictionary. Thus, it is equal to
zero for every orthonormal basis. A new element xt is added to the dictionary if µ ≤ µ0
holds. It was shown in [43] that the coherence criterion is a computationally efficient
approximation of the ALD criterion and scales with O(mt) complexity instead of O�

m2
t

�
.

3.3.2 Kernel Recursive Least Squares
The kernel recursive least squares (KRLS) algorithm, introduced by Engel et al. [38], is
the kernel-based variant of the recursive least squares algorithm [17]. The algorithm uses
the ALD criterion for sparsification and iteratively solves the optimization problem in the
dual representation

v∗
t = arg min

vt

1
2

&&&yt − ΦT
t Φtvt

&&&2

2
, (3.32)



3 Frequentist Regression 3.3 Online Kernel Regression 26

where t indicates the actual time index and

yT
t =

	
y1 . . . yt

�
, vT

t =
	
v1 . . . vt

�
, Φt =

	
ϕ(x1) . . . ϕ(xt)

�
. (3.33)

Note that the dimension of the involved vectors and matrices increases with each time
index t. If the ALD sparsification method from Section 3.3.1 is used, then the full design
matrix Φt can be expressed as the direct sum of the subspace spanned by the dictionary
vectors Φ̃tAT

t , and its orthogonal complement ΦR, according to

Φt = Φ̃tAT
t + ΦR , (3.34)

where Φ̃t =
	
ϕt(x̃1) . . . ϕt(x̃mt)

�
is the design matrix of all elements in the dictionary

x̃ ∈ Dt. The matrix
AT

t =
	
a∗

1, . . . , a∗
t

�
∈ Rmt×t , (3.35)

stores the optimal expansion coefficients, defined by the ALD criterion (3.29). The
resulting kernel matrix is given by

K(Xt, Xt) = ΦT
t Φt = AtK(Dt, Dt)AT

t + ΦT
RΦR , (3.36)

where the cross terms vanish due to orthogonality. By choosing ν in the ALD criterion
(3.28) sufficiently small, the kernel matrix is approximated well by

K(Xt, Xt) ≈ AtK(Dt, Dt)AT
t . (3.37)

Substituting the kernel approximation (3.37) into the optimization problem (3.32) leads to

ṽ∗
t = arg min

ṽt

1
2∥yt − AtK(Dt, Dt)ṽt∥2

2 , (3.38)

where ṽt = AT
t vt. The minimizer ṽ∗

t is obtained by least-squares

ṽ∗
t = K−1(Dt, Dt)


AT

t At

�−1
AT

t yt . (3.39)

A prediction with the model is made according to

f̂t(xt) = KT(Dt−1, xt)ṽ∗
t−1 (3.40)

At each time step t, the algorithm faces either one of the following two cases:

1. The ALD criterion is fulfilled, i. e., δt ≤ ν.
In this case At changes but Dt = Dt−1 and K(Dt, Dt) = K(Dt−1, Dt−1) remain
unchanged. The new expansion coefficients are appended according to AT

t =	
AT

t−1, a∗
t

�
where a∗

t is defined by the ALD criterion (3.29). The unbounded growth
of At is overcome by defining

Pt =

AT

t At

�−1
=


AT

t−1At−1 + a∗
t (a∗

t )T
�−1

(3.41)
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and applying the matrix inversion lemma, see (A.1). Note that the matrix Pt has
dimension mt × mt. This leads to the recursive formula

Pt = Pt−1 − Pt−1a∗
t (a∗

t )TPt−1

1 + (a∗
t )TPt−1a∗

t

. (3.42)

Substituting (3.42) into (3.39) yields the update rule for the coefficients

ṽ∗
t = ṽ∗

t−1 + K−1(Dt, Dt)qt


yt − f̂t(xt)

�
, (3.43)

where the definition
qt = Pt−1a∗

t

1 + (a∗
t )TPt−1a∗

t

, (3.44)

is introduced.

2. The ALD criterion is not fulfilled, i. e., δt > ν.
Thus xt is added to the dictionary Dt = {Dt−1 ∪ xt} and the kernel matrix grows
according to

K(Dt, Dt) =

K(Dt−1, Dt−1) K(Dt−1, xt)
KT(Dt−1, xt) k(xt, xt)

�
. (3.45)

Applying the block matrix inversion identity, see (A.2), leads to the recursive formula

K−1(Dt, Dt) =

K−1(Dt−1, Dt−1) 0

0T 0

�
+ 1

δt


a∗

t

−1

�
a∗

t

−1

�T

. (3.46)

Since a new element is added to the dictionary, the matrix

At =

At−1 0
0T 1

�
(3.47)

has to be augmented as well. The minimizer (3.39) is then given as

ṽ∗
t = δ−1

t


δtṽ∗

t−1 − a∗
t


yt − f̂t(xt)

�
yt − f̂t(xt)

�
. (3.48)

Engel et al. [38] proved that with the ALD criterion, the maximum number of kernel
functions is bounded even for t → ∞. The algorithm is numerically stable because the
ALD criterion δt > ν prevents the inverse kernel matrix (3.46) from being ill-conditioned
[36, Appendix B]. A Matlab implementation of the algorithm can be found in the Kernel
Adaptive Filter Toolbox [39].
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3.3.3 Kernel Affine Projection
The kernel affine projection (KAP) algorithm, introduced by Richard et al. [43], uses
the coherence criterion for sparsification and solves the least squares problem using a
stochastic gradient approach. Instead of solving the optimization problem for all previous
t data points, only the recent q points are considered. Thus, it is assumed that the recent
q points provide a reasonable stochastic approximation of the training data. The resulting
kernel matrix, evaluated at all mt elements of the dictionary Dt and the last q points
Xq = {xi | i = t − q + 1, . . . , t}, is given by

Kq,t = K(Xq, Dt) =

 k(xt, x̃1) · · · k(xt, x̃mt)
... . . . ...

k(xt−q+1, x̃1) · · · k(xt−q+1, x̃mt)

 , (3.49)

where Kq,t is a q × mt matrix. A prediction with the model is made, according to

f̂t(xt) = K(Xq, Dt−1)ṽt−1 . (3.50)

The KAP algorithm updates the coefficients ṽt according to the optimization problem

ṽ∗
t = arg min

ṽt

1
2

&&ṽt − ṽ∗
t−1

&&2
2 (3.51a)

subject to yq − Kq,tṽt = 0 (3.51b)

where yT
q =

	
yt . . . yt−q+1

�
. Each of the q constraints in (3.51) defines a hyperplane in a

mt-dimensional space [17, Section 5.6]. The coefficients ṽ∗
t are obtained by projecting

ṽ∗
t−1 on the q hyperplanes. Thus, ṽ∗

t lies on the intersections of these planes. However,
noise affects the position of the hyperplanes and thus, forcing ṽ∗

t to lie exactly on those
planes is not necessarily good. Therefore a learning rate η will be introduced later on to
improve the robustness against noise.

At each time index t the algorithm faces either one of the following two cases:

1. Sparsification criterion fulfilled, i.e µ > µ0.
In this case xt is not added to the dictionary. The solution of the constrained
optimization problem (3.51) is obtained by minimizing the Lagrange function [24,
Section 5.1]

L(ṽt, λ) = 1
2∥ṽt − ṽt−1∥2

2 + λT(yq − Kq,tṽt) , (3.52)

where λ is the Lagrange multiplier. The necessary first-order conditions for a local
minima are obtained by setting the derivatives of (3.52) with respect to ṽ and λ to
zero

dL

dṽt
(ṽt, λ) = ṽt − ṽt−1 − KT

q,tλ = 0 (3.53a)

dL

dλ
(ṽt, λ) = yq − Kq,tṽt = 0 . (3.53b)
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Solving (3.53a) and (3.53b) for ṽt leads to the update rule for the coefficients

ṽ∗
t = ṽt−1 + KT

q,t


Kq,tKT

q,t

�−1
(yq − Kq,tṽt−1) . (3.54)

The computational complexity of the KAP is O�
mtq

2�
time and O(mtq) space. To

improve the numerical stability of the algorithm a regularization parameter ϵ ≥ 0 is
introduced

ṽ∗
t = ṽt−1 + ηKT

q,t


Kq,tKT

q,t + ϵE
�−1

(yq − Kq,tṽt−1) . (3.55)

Furthermore, a learning rate 0 ≤ η is introduced to cope with noise.

2. Sparsification criterion not fulfilled, i.e µ ≤ µ0.
In this case xt is added to the dictionary, thus mt = mt−1 + 1 and the matrix Kq,t

is updated according to (3.49). To account for the new element in the coefficients,
the optimization problem (3.51) is restated to

min
ṽt

&&ṽ1:mt−1 − ṽt−1
&&2

2 + v2
mt

(3.56a)

subject to yq − Kq,tṽt = 0 (3.56b)

where the notation ṽ1:mt−1 indicates the first mt−1 entries and vmt is the last entry
of the vector ṽt. Thus, the minimizer is

ṽ∗
t =


ṽt−1

0

�
+ ηKT

q,t


Kq,tKT

q,t + ϵE
�−1


yq − Kq,t


ṽt−1

0

�
. (3.57)

A Matlab implementation of the algorithm can be found in the Kernel Adaptive Filter
Toolbox [39].



4 Bayesian Regression
In this chapter, the function approximation problem is reformulated within a Bayesian
framework. In the Bayesian interpretation, a probability distribution reflects the uncer-
tainty of a stochastic quantity. In the context of function approximation, the stochastic
quantities are the parameters of a parametric model or functions. The uncertainty about
these quantities can be reduced by observing data. Bayes Theorem serves as the mathe-
matical tool to incorporate the information that the data provides. Online algorithms
can be derived by recursive application of Bayes Theorem. Compared to the frequentist
approach of Chapter 3, the Bayesian framework allows to quantify the uncertainty of a
prediction and provides a systematic framework for model selection.

This chapter is structured as follows: The linear basis function model is reviewed
in Section 4.1 from a Bayesian perspective. In order to obtain a closed form solution,
a Gaussian prior and Gaussian likelihood is assumed throughout this chapter. The
offline solution of the Bayesian linear regression problem can be calculated with O�

M3�
complexity, where M is the number of basis functions. Bayesian model selection is
discussed in Section 4.2. Finally, Section 4.3 closes with Gaussian process based online
algorithms, with a computational complexity independent of number of training data
points N .

4.1 Bayesian Linear Regression
The linear basis function model (3.1) is now reviewed from a Bayesian perspective [25,
Section 2.1]. In the Bayesian framework, the model coefficients w are not deterministic
any more. Rather, they are described through a probability distribution p(w). The
distribution p(w) is known as the prior distribution because it reflects the prior beliefs
about the model coefficients. After receiving a set inputs X = {xi | i = 1, . . . , N} with
corresponding observations y = {yi | i = 1, . . . , N}, the information that the data provides,
is incorporated by updating the prior p(w) according to Bayes Theorem

p(w | X , y) = p(y | w, X )p(w)
p(y | X ) . (4.1)

Here, p(w | X , y) is the posterior distribution of the model coefficients w conditioned on
the inputs X and the observations y. The likelihood p(y | w, X ) expresses the probability
of observations given the coefficients w and inputs X . The marginal-likelihood p(y | X ) is
obtained through marginalization of the numerator in (4.1) leading to

p(y | X ) =
�

p(y | w, X )p(w) dw . (4.2)

30
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The integral (4.2) has an analytic solution only in special cases, e. g., Gaussian prior and
Gaussian likelihood. In order to make a prediction at a test point x∗, the coefficients are
marginalized out according to

p

f̂ | x∗, X , y

�
=

�
p

f̂ | x∗, w

�
p(w | X , y) dw . (4.3)

The marginalization operation averages the output of all possible models, weighted by
their posterior (4.1) [25, Section 2.1]. The distribution p


f̂ | x∗, w

�
is the likelihood of f̂

conditioned on the model with coefficients w at a test point x∗.

Gaussian Prior and Gaussian Likelihood
For the special case of a Gaussian prior and a Gaussian likelihood the integral (4.3) can
be solved analytically. A common assumption for regression is an additive Gaussian noise
model according to

y = wTϕ(x) + ϵ with p(ϵ) = N

0, σ2

n

�
, (4.4)

where N �
0, σ2

n

�
is the Gaussian or Normal distribution with zero mean and constant1

variance σ2
n. For additive Gaussian noise, the likelihood of a single observation yi, given

the input xi and the coefficients w, is Gaussian and can be described as

p(yi | w, xi) = N

wTϕ(x), σ2

n

�
. (4.5)

For independent Gaussian noise the likelihood factorizes according to

p(y | w, X ) =
N!

i=1
p

yi | w, xi, σ2

n

�
= N


ΦTw, σ2

nE
�

. (4.6)

A Gaussian likelihood together with a Gaussian prior p(w) = N (µ0, Σ0) with mean µ0
and covariance Σ0 leads to a posterior distribution (4.1) over the coefficients, according
to

p(w | X , y) = N (w∗, Σw) , (4.7a)
Σ−1

w = σ−2
n ΦΦT + Σ−1

0 , (4.7b)

w∗ = Σw


Σ−1

0 µ0 + σ−2
n Φy

�
, (4.7c)

which is Gaussian [15, Section 3.3]. For the special case Σ0 = σ2
0E and µ0 = 0 the mean

w∗ is identical to (3.8) with λ =


σn
σ0

�2
. The log of the marginal likelihood (4.2), which is

often used for hyperparameter tuning (see [15, Section 3.5] and Section 4.2), is given as

ln p(y | X ) = − 1
2σ2

n

&&&y − ΦTw∗
&&&2

2
− 1

2σ2
0

∥w∗∥2
2

− 1
2 ln det


Σ−1

w

�
− M

2 ln σ2
0 − N

2 ln

2πσ2

n

�
,

(4.8)

1It is also possible to consider heteroscedastic noise, i. e., noise which depends on the inputs σ2
n = σ2

n(x).
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with w∗ and Σw according to (4.7). Finally, the predictive equation (4.3) is also Gaussian

p

f̂ | x∗, X , y

�
= N


f̂(x∗), σ̂2(x∗)

�
, (4.9a)

f̂(x∗) = ϕ(x∗)Tw∗ , (4.9b)
σ̂2(x∗) = σ2

n + ϕ(x∗)TΣwϕ(x∗) . (4.9c)

For basis functions which converge to zero outside the main influence region, e. g., the
Gaussian basis function, the contribution from ϕ(x∗)TΣwϕ(x∗) in (4.9) will also converge
to zero outside the main influence region of the basis function. Hence, the model becomes
very confident outside the effective region of the basis function [15, Section 3.3.2]. This
quite unintuitive understanding of confidence is avoided in the framework auf Gaussian
processes, introduced in Section 2.3.

4.2 Model Selection
The Bayesian approach provides a systematic framework to infer the hyperparameter of
the model from data [25, Chapter 5]. Hyperparameters, further denoted as θ, are free
parameters like the noise variance σ2

n and kernel parameters, e. g., the length scale of the
Gaussian kernel (3.11). In a fully Bayesian treatment [25, Chapter 5.2], a prior distribution
p(θ) over the hyperparameter is introduced and than marginalized out according to

pθ(y) =
�

p(y | θ) p(θ) dθ , (4.10)

where θ in p(y | θ) indicates the dependency of the marginal-likelihood (2.21) on the
hyperparameters θ. The integral is analytically intractable. Thus, it is usually assumed
that the prior p(θ) is peaked2 around the value θ̂. In this case, the integral (4.10) can be
well approximated by the marginal-likelihood

pθ(y) ≈ p

y | θ̂

�
. (4.11)

Thus, the optimal hyperparameters θ∗ of the Gaussian process are obtained by maximizing
the log-marginal-likelihood (2.21) according to

max
θ

−1
2yTK−1

θ y − 1
2 ln det(Kθ) − N

2 ln 2π . (4.12)

The subscript in Kθ = K(X , X ) + σ2
nE is used to emphasize the dependency on the

hyperparameters. The first term in (4.12) measures the data-fit, while the second is a
complexity penalty term which reduces overfitting. The nonlinear optimization problem
(4.12) can be efficiently solved with gradient-based solvers [24]. This is possible, since
the partial derivatives of the log-marginal-likelihood w.r.t. the hyperparameters can be
obtained in closed form via

∂

∂θi
ln p(y | X , θ) = 1

2yTK−1
θ

∂Kθ

∂θi
K−1

θ y − 1
2 Tr

�
K−1

θ

∂Kθ

∂θi

 
. (4.13)

2For example p(θ) is a Gaussian with small variance.
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The computational overhead of computing the gradients is small because the most expen-
sive operation, the inversion of Kθ, has to be computed anyway in (4.12) with O�

N3�
complexity. Once the inverse is computed, the computation of the derivative requires
O�

N2�
time per hyperparameter. The computational complexity could also be reduced

if a sparse GP, introduced in Section 2.5 is used. From an optimization point of view,
the nonlinear optimization problem (4.12) may have multiple local maxima, each corre-
sponding to a particular interpretation of the data. In [25, Section 5.4] it is empirically
observed that the log-marginal-likelihood gets more peaked with more data, leading to
more robust hyperparameter estimates.

4.3 Online Gaussian Processes
Based on the preliminary introduction to Gaussian processes, this section summarizes two
possible implementations of online Gaussian processes. First, the Kernel Recursive Least
Squares (KRLS) algorithm is derived from a Bayesian perspective. In order to limit the
number of kernel functions in (2.15), a sparsification criterion is introduced. Second, the
recursive GP (rec-GP) algorithm is introduced, which uses an a priori defined dictionary
of fixed size and therefore does not need a sparsification criterion.

4.3.1 Bayesian Kernel Recursive Least Squares
The KRLS algorithm is now derived from a Bayesian perspective [40, 42]. In contrast to
Section 3.3.2, the Bayesian interpretation allows to systematically account for noise and
additionally provides an estimate for the prediction uncertainty. Therefore, a recursive
Bayesian update rule is derived and a sparsification method to limit the number of kernel
functions is introduced.

Suppose that at time step t, the algorithm has processed the inputs Xt = {xi |
i = 1, . . . , t} with corresponding observations yt. The information that a new sample
(xt+1, yt+1) provides is incorporated by recursive application of Bayes rule

p(ft+1 | yt+1) = p(ft, ft+1 | yt, yt+1) = p(yt, yt+1 | ft, ft+1) p(ft, ft+1)
p(yt, yt+1) . (4.14)

The first term in the numerator can be further simplified due to the assumed conditional
independency between the observations and latent function values at time t and t + 1,
according to

p(yt, yt+1 | ft, ft+1) = p(yt | ft) p(yt+1, | ft+1) . (4.15)

After expanding the joint probabilities in (4.14) with the chain rule of probability and
rearranging terms, the recursive update equation is given by

p(ft+1 | yt+1) = p(yt+1 | ft+1) p(ft+1 | ft)
p(yt+1 | yt)

p(ft | yt) , (4.16)

where p(ft | yt) = N (µt, Σt) is the Gaussian posterior of the previous time step t. Specif-
ically, the posterior of the previous estimate can be taken directly as the prior for the
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current estimate. It should be noted that the recursive update rule (4.16) shows resem-
blance to the conditioned joint probability (2.20) of the offline GP.

In general, the recursive update rule (4.16) is valid for arbitrary likelihoods p(yt+1 | ft+1).
However, an analytical solution is only obtained for Gaussian likelihoods like

p(yt+1 | ft+1) = N

ft+1, σ2

n

�
. (4.17)

The conditional distribution p(ft+1 | ft) is obtain by conditioning of the joint probability
(2.24) using (A.5), according to

p(ft+1 | ft) = N

f̂t+1, γ2

t+1
�

, (4.18a)

f̂t+1 = KT(Xt, xt+1)Qtµt (4.18b)
γ2

t+1 = k(xt+1, xt+1) − KT(Xt, xt+1)QtK(Xt, xt+1) , (4.18c)

where Qt = K−1(Xt, Xt) is the inverse kernel matrix. Furthermore, γ2
t+1 is uncertainty of

the projection of ft+1 onto the previous latent function values ft. The marginal-likelihood
p(yt+1 | yt) is obtained by marginalization of the numerator in (4.16), according to

p(yt+1 | yt) =
� �

p(yt+1 | ft+1) p(ft+1 | ft) p(ft | yt) dft dft+1 . (4.19)

The marginal-likelihood is again Gaussian, given by

p(yt+1 | yt) = N

f̂t+1, σ̂2

t+1
�

, (4.20a)

f̂t+1 = KT(Xt, xt+1)Qtµt , (4.20b)
σ̂2

t+1 = σ2
n + k(xt+1, xt+1) + KT(Xt, xt+1)(QtΣtQt − Qt)K(Xt, xt+1) . (4.20c)

The marginal-likelihood (4.20) is used to predict the latent function at an input xt+1,
where f̂t+1 is the mean and σ̂2

t+1 is the variance of the prediction. Finally, the recursive
update rule for the posterior distribution, according to (4.16), is Gaussian with mean and
covariance defined by

p(ft+1 | yt+1) = N �
µt+1, Σt+1

�
, (4.21a)

µt+1 =


µt

f̂t+1

�
+ yt+1 − f̂t+1

σ̂2
t+1


ht+1
σ̂2

f,t+1

�
, (4.21b)

Σt+1 =


Σt ht+1
hT

t+1 σ̂2
f,t+1

�
− 1

σ̂2
t+1


ht+1
σ̂2

f,t+1

�
ht+1
σ̂2

f,t+1

�T

, (4.21c)

with f̂t+1 and σ̂2
t+1 according to the marginal-likelihood (4.20). The abbreviations

ht+1 = ΣtQtK(Xt, xt+1) and σ̂2
f,t+1 = σ̂2

t+1 − σ2
n (4.22)
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are introduced for ease of notation. The inverse kernel matrix Qt can be updated iteratively
for every new observation via a rank-one update based on the block matrix inversion
identity (A.2)

Qt+1 =

Qt 0
0T 0

�
+ 1

γ2
t+1


QtK(Xt, xt+1)

−1

�
QtK(Xt, xt+1)

−1

�T

. (4.23)

Note, that this operation is numerically unstable if γ2
t+1 is close to (numerically) zero. If

γ2
t+1 = 0, there is a deterministic relationship between ft+1 and ft, see (4.18). Thus, there

is no need to perform the recursive update step.

The dimension of the mean vector and the covariance matrix in the recursive update
equation (4.21) increase with every new observation. Thus, similar to the kernel adaptive
filter framework, sparsification methods are necessary to limit the size and therefore
the computational complexity of the model. From now on suppose that at time t, all
informative inputs x̃i are stored in the dictionary Dt = {x̃i | 1, . . . , m}. Thus, one has
to replace Xt by Dt in (4.21) and (4.20). In order to limit the size of the dictionary, an
input is removed whenever the dictionary size gets larger than a predefined budget m [42].
In the Bayesian framework, the optimal way to remove an element from the dictionary
is to marginalize it out from (4.21). For Gaussian distributions the marginalization
operation simply corresponds to the removal of the corresponding row and column
from the mean vector µt+1 and the covariance matrix Σt+1. Furthermore, an optimal
criterion for removal is to select the input, which minimizes the Kullback-Leibler (KL)
divergence (see Section A.2.4) between the exact and approximate posterior distribution.
For Gaussian distributions, the KL-divergence can be computed analytically according to
(A.11). However, the computation the KL-divergence for every element in the dictionary
is computational expensive. Instead, the squared-error between the exact posterior mean
µt+1 and its approximation µ̃t+1 is minimized. According to [40, 42], the index i∗, assigned
to the input which induces the minimal squared-error during removal, is obtained by the
criterion

i∗ = arg min
i

�
Qt+1µt+1

�
i

[Qt+1]i,i

2

, (4.24)

where [b]i denotes the i-th element of the vector b and [A]i,j the i, j-th element of the
matrix A. The derived algorithm has a computation complexity if O�

m2�
time and space

per time step.

The shown algorithm can also be extended to model time varying functions. Following
[42], a forgetting factor β ∈ (0, 1] is introduced and the mean and covariance of the
Gaussian process are updated each time step according to

Σt = βΣt + (1 − β)K(Dt, Dt) , (4.25a)
µt =

"
βµt . (4.25b)

A Matlab implementation of the algorithm can be found in the Kernel Adaptive Filter
Toolbox [39].
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4.3.2 Recursive Gaussian Process
Huber [51] proposed an online GP algorithm which infers the latent function at a fixed
set of m inputs D = {xi | i = 1 . . . m}. This approach differs from the sparsification
approaches insofar, that the dictionary D is not constructed by a sparsification criterion
but rather defined a priori. This enables to derive a Kalman filter update for the mean
and covariance of the latent function at inputs D.

Let fm denote the latent function values at the inputs D. Thus, at time t = 0 a GP
prior p(fm) = N (0, Σ0) with zero mean and covariance

Σ0 = K(D, D) (4.26)

is introduced. Suppose that at time step t, the algorithm has processed the inputs
Xt = {xi | i = 1, . . . , t} with corresponding observations yt. The information, provided
by a new sample (xt+1, yt+1), is incorporated by recursive application of Bayes rule,
see (4.21). In contrary to the B-KRLS, the growth of the dictionary is circumvented
by marginalization of the latent function ft+1 from the conditional joint probability
p(fm, ft+1 | yt+1) according to

p(fm | yt+1) =
�

p(fm, ft+1 | yt+1) dft+1 (4.27)

The marginalization is crucial to maintain a dictionary of constant size. The conditional
joint probability is identical to (4.16) and is given as

p(fm, ft+1 | yt+1) = p(yt+1 | ft+1) p(ft+1 | fm)
p(yt+1 | yt)

p(fm | yt) . (4.28)

Again, p(fm | yt) is the posterior of the previous recursion, which gets updated with every
new sample. Since marginalization for Gaussian processes corresponds to the removal of
the corresponding row and column from the mean vector and the covariance matrix, the
solution (4.27) is obtained by performing the update (4.21) without adding the last row
and column. This leads to the recursive update rule

µt+1 = µt + yt+1 − f̂t+1
σ̂2

t+1
ht+1 (4.29a)

Σt+1 = Σt − 1
σ̂2

t+1
ht+1hT

t+1 , (4.29b)

where f̂t+1 and σ̂2
t+1 is the predictive mean and variance as in (4.20) and ht+1 =

ΣtΣ−1
0 K(D, xt+1).

Huber [51] derived the update rule (4.29) using a different parametrization which is
motivated by the Kalman filter [17]. The Kalman filter recursion performs two steps:
inference and update. During the inference step, a prediction at the new input xt+1 is



4 Bayesian Regression 4.3 Online Gaussian Processes 37

made. This requires the evaluation of the marginal-likelihood p(yt+1 | yt), according to
(4.20), with mean f̂t+1 and covariance σ̂t+1 given as

Jt+1 = K(xt+1, D)Σ−1
0 , (4.30a)

f̂t+1 = Jt+1µt , (4.30b)
σ̂2

t+1 = k(xt+1, xt+1) + Jt+1(Σt − Σ0)JT
t+1 , (4.30c)

where Jt+1 is introduced to simplify the notation. During the update step, the information
of the new sample (xt+1, yt+1) is incorporated. Thus, the conditioned joint probability
(4.28) is calculated and then the marginalization (4.27) is performed. This leads to the
update rule

Gt+1 = ΣtJT
t+1


σ̂2

t+1 + σ2
n

�−1
, (4.31a)

µt+1 = µt + Gt+1(yt+1 − f̂t+1) , (4.31b)
Σt+1 = Σt − Gt+1JT

t+1Σt , (4.31c)

where Gt+1 is known as Kalman gain. Since the dictionary D is fixed over time, the
inverse in (4.30a) can be computed offline. This can be done efficiently by Cholesky
factorization, because the covariance matrix Σ0 is symmetric and positive definite.



5 Evaluation
The online function approximators, introduced in Section 3.3 and Section 4.3, will now be
applied to representative data from the electric-drive domain. The data-based approxima-
tion of the flux-linkage of a permanent-magnet synchronous-motors (PMSM) is discussed
in Section 5.1. The application scenario is motivated in Section 5.1.1. This includes the
introduction of a dynamic PMSM model and a common control approach, know as the
Maximum Torque Per Ampere (MTPA) strategy. Furthermore, a measurement noise
model is derived and the influence of a changing operating condition is discussed. The
offline hyperparameter-tuning of the flux-linkage model is discussed in Section 5.1.2. An
academic comparison of the online function approximators based on random sampled
data is given in Section 5.1.3. A practice-oriented evaluation of the approximators based
on artificial operating data follows in Section 5.1.4. Section 5.2 discusses the data-based
approximation of a average model of a Voltage Source Inverter (VSI). The section starts
by motivating the application scenario. Offline hyperparameter-tuning is discussed in
Section 5.2.2. The section closes by evaluating the performance of the approximators
based on sequential measurement data.

5.1 Permanent Magnet Synchronous Motor
For many industrial applications, PMSMs in combination with a voltage source inverter
(VSI) are the standard drive solution [3, 4]. The VSI supplies the three-phase stator
windings of PMSM with currents of adjustable magnitude and frequency. The currents
generate a rotating magnetic field in the stator which is magnetically linked with the rotor
field, generated by the permanent-magnets in the rotor. The magnetic flux-linkage causes
the rotor to rotate with the stator field. Thus, the magnetic flux-linkage is an important
physical quantity of the PMSM, whose data-based approximation will be discussed in this
section.

5.1.1 Scenario Description
Usually, the dynamics of the PMSM are described in the rotor-fixed dq-reference frame.
When dealing with distinct anisotropy in the stator (e. g., single-tooth winding) or rotor
(e. g., due to burried magnets), the rotor-fixed flux-linkages ΨT

dq(idq, φe) =
	
Ψd Ψq

�
are

nonlinear functions which depend on the rotor position φe and the currents iTdq =
	
id iq

�
in the dq-reference frame [3, 4]. However, in this work, the dependency on the rotor
position φe is neglected and only the effect of current dependent magnetic saturation will
be further discussed. Thus, the dynamics of the rotor-fixed flux-linkages are described by

38
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the nonlinear differential equations [1, Section 4.3]

d
dt

Ψd(id, iq) = −Rid + ωeΨq(id, iq) + vd , (5.1a)
d
dt

Ψq(id, iq) = −Riq − ωeΨd(id, iq) + vq . (5.1b)

Here, R is the stator resistance, ωe = d
dtφe is the electrical speed and vT

dq =
	
vd vq

�
are

the voltages in the dq-reference frame. The generated torque τ(id, iq) of the PMSM is a
nonlinear function of the currents and flux-linkages [1, Section 4.3], given as

τ(id, iq) = 3
2np(Ψd(id, iq)iq − Ψq(id, iq)id) , (5.2)

where np is the number of pole paris. The nominal operating range of the motor is
characterized by ∥idq∥2 ≤ In, where In is referred to as nominal current. In nominal
operating range, the nonlinear torque equation (5.2) is usually linearized at idq = 0, which
leads to the linearized torque model

τ(id, iq) = 3
2np(Ψmiq + (Ld − Lq)idiq) . (5.3)

Here, Ψm = Ψd(0, 0) is the permanent-magnet flux, Ld = ∂
∂id

Ψd(id, iq)|idq=0 is the nomi-
nal inductance in d-direction and Lq = ∂

∂iq
Ψq(id, iq)|idq=0 is the nominal inductance in

q-direction. The nominal parameters of the PMSM are assumed to be known and are
summarized in Table A.1.

The effect of magnetic saturation is modeled by the nonlinear function Ψdq(idq). From
literature and experiments, prior knowledge about the flux-linkage is typically available.
In the nominal operating range the flux-linkages Ψdq are expected to be in good approxi-
mation linear, whereas outside the nominal operating range, the flux-linkages saturate
and thus levels off. In order to improve the quality of the dynamic flux-linkage model (5.1)
as well as the torque model (5.2), an accurate model of the nonlinear function Ψdq(idq) is
desired.

In this study, a Magnetic Equivalent Circuit (MEC) model [3, 4] of a PMSM is used
to generate the training data for the function approximators. From the MEC model the
nonlinear flux-linkages Ψ̃dq(idq, φe) are obtained. The dependency on the rotor position
φe is eliminated by averaging w.r.t. a full electrical revolution, according to

Ψdq(idq) = 1
2π

� 2π

0
Ψ̃dq(idq, φe) dφe . (5.4)

The input-space X of the flux-linkage model Ψdq(idq) is assumed to be constrained by the
maximum current Imax of the PMSM, defined as

X =
�

idq ∈ R2 | ∥idq∥2 ≤ Imax

�
. (5.5)
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Furthermore, the MEC model is used to evaluate the performance of the function approxi-
mators. All experiments will be performed with normalized1 data. A plot of the normalized
flux-linkages Ψd(id, iq) and Ψq(id, iq) from the MEC model is shown in Figure 5.1.

The flux-linkages Ψdq are static functions, hence the order in which the data is presented
to the function approximator, is irrelevant. In order to obtain optimal training results,
random sampling is commonly used to generate data, since it well covers the input-space
X. Therefore, a uniform random sampled set of inputs X and corresponding observation
y is defined, according to

X = {idq,i ∼ UX | i = 1, . . . , N} and y = {Ψd(idq,i) + ϵ | idq,i ∈ X } , (5.6)

where idq,i ∼ UX denotes uniform randoms samples from the input-space X, according to
(5.5), and ϵ is a noise model. However, if the flux-linkage is estimated from measurements
during online operation, random sampling is not possible since the PMSM shall not be
operated at random torques. Furthermore, energy inefficient operating points, where a
large amount of dissipative-power is produced, have to be avoided because the resulting
thermal load may damage the motor. Thus, in practice training data can only be gathered
in a subset Xc ⊆ X of the input space. In order to obtain a realistic subset Xc, a typical
operating strategy of PMSMs will be discussed next.

(a) Flux-linkage Ψd(id, iq). (b) Flux-linkage Ψq(id, iq).

Figure 5.1: Normalized flux-linkages Ψd and Ψq from the MEC model.

Maximum Torque Per Ampere Strategy

For many practical applications, a common objective is to control the generated torque
τ(id, iq) of the motor [8, 55]. In order to obtain a current vector i∗dq for a desired torque τ∗,
the inverse mapping of the torque equation (5.2) has to be computed. This is not trivial
since the inverse map is under-determined, i. e., there are multiple currents vectors which
lead to the same torque. A common approach to obtain an unique current vector is to

1The flux-linkage Ψdq(idq) is normalized to the permanent-magnet flux Ψm and the currents id and iq

are normalized to the maximum current Imax, according to Table A.1.
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minimize the ohmic losses in the machine. This is achieved by formalizing the optimization
problem

i∗dq(τ∗) = arg min
idq

1
2∥idq∥2

2 , (5.7a)

subject to τ(idq) = τ∗ . (5.7b)

This approach is known as the Maximum Torque Per Ampere (MTPA) strategy i∗dq(τ∗).
The MTPA curve is depicted in Figure 5.2 with the nonlinear (5.2) as well for the linearized
(5.3) torque equation. In the nominal operating range of the motor, the nonlinear MTPA
curve is well approximated by the linearized MTPA curve. Outside the nominal operating
range, the effect of magnetic saturation is not negligible, which causes a deviation between
the linearized MTPA curve and the nonlinear MTPA curve.

−1 −0.5 0
−1

0

1

id/Imax

i q
/I

m
a

x

MTPA nonlinear
MTPA linearized
∥idq∥2 = Imax
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τ = τmax

τ = 0
τ = −τmax

Figure 5.2: MTPA curve for the nonlinear (5.2) and linearized (5.3) torque equation.

The computation of the MTPA strategy (5.7) requires knowledge of the nonlinear flux-
linkages, which are often unknown in practice. However, since the nominal parameters are
assumed to be known and the linearized MTPA curve is relatively close to the nonlinear
MTPA curve, see Figure 5.2, training data can be gathered in a region Xc around the
linearized MTPA curve. It is therefore of special interest how to obtain data in the region
Xc and how the online approximators perform with such training data.

The procedure ĩdq = P(τ∗(t)) to generate training inputs ĩdq ∈ Xc in the region Xc

proceeds as follows. The procedure takes a desired torque τ∗ as input and calculates
the corresponding current vector i∗dq(τ∗) according to the MTPA strategy (5.7) using the
linearized torque equation (5.3). Samples near the linearized MTPA curve are obtained
by adding a random term to the current i∗

d, according to

ĩd = i∗
d + ∆id(τ∗)U[−1,1] , (5.8)

where U[−1,1] denotes a uniform-distributed random number in the range [−1, 1]. Outside
the nominal operating range, a larger deviation between the nonlinear and linearized
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MTPA curve is expected, see Figure 5.2. Therefore ∆id(τ∗) is set to small values in the
nominal range and to larger values outside to nominal range. The utilized scaling factor
is depicted in Figure 5.3. Of course, the pair (̃id, i∗

q), would lead to a deviation in the
provided torque τ∗. Therefore, it is necessary to also adjust the set point for iq. This can
be done by using the linearized torque equation (5.3), which leads to

ĩq = τ∗

3
2np


Ψm + (Ld − Lq )̃id

� . (5.9)

In order to obtain representative data from the procedure P(τ∗(t)), a representative torque
trajectory τ∗(t) has to be defined. In practice, the trajectory τ∗(t) differs according to
the considered application scenario. However, independent of the application, a PMSM is
usually operated most of in time in the nominal range and rarely at maximum torque.
Therefore a representative torque trajectory as depicted in Figure 5.4 is defined in which the
torque is continuously varied in the range τ∗ = [−τmax, τmax], according to an exponential
function

τ∗(t) =
exp


t

σ2
τ

�
− 1

exp


Te
4σ2

τ

�
− 1

with t ∈
�
0,

1
4Te

�
. (5.10)

The parameter στ controls the slope of torque trajectory τ∗(t) and Te defines the end time.
In order to generate ≈ 68 % of the torque samples in the nominal range, characterized
by |τ∗| < τn, the parameter στ in (5.10) is set to στ = τmaxτ−1

n . Thus, the dataset with
inputs XP and observations yP is defined as

XP = {idq,i = P(τ∗(ti)) | ti ∈ ΩN [0, T ]} , (5.11a)

yP =
�

Ψd(idq,i) + N

0, σ2

n

�
| idq,i ∈ XP

�
, (5.11b)

where Ωn[a, b] =
�

a + i b−a
n | i = 0, 1 . . . n − 1

�
defines a grid of n equidistant points in the

range [a, b]. Figure 5.5 shows the samples in the region XP generated by the procedure
P(τ∗(t)) and a torque trajectory as in Figure 5.4. Most of the samples are generated in
the nominal operating range. Furthermore, it is visible that the manipulation of set-points
according to (5.8) leads to a good coverage of the nonlinear MTPA curve.

Measurement Model

In practice, the flux-linkages Ψdq have to be calculated from measurements during motor
operation. In order to generate realistic training data, a measurement model which
quantifies the uncertainty in the calculation of Ψdq will be derived next. An approach
to obtain the flux-linkages from measurements is based on the steady-state of the model
(5.1). In the steady-state, i. e., d

dtΨdq(idq) = 0, the flux-linkages can be expressed as

Ψd = −Riq + vq

ωe
and Ψq = Rid − vd

ωe
. (5.12)



5 Evaluation 5.1 Permanent Magnet Synchronous Motor 43

0 τn τmax

0.05

0.10

0.15

|τ∗|

∆
i d

(τ
∗ )

/I
m

a
x

Figure 5.3: Torque dependent scaling factor ∆id(τ∗) according to (5.8).
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Figure 5.4: Torque trajectory and corresponding histogram of torque samples.

For the sake of compactness, the following discussion will solely focus on the d-component of
the flux-linkage. The flux-linkage in d-direction is a nonlinear function Ψd = g(iq, R, ωe, vq)
with arguments xi ∈ {iq, R, ωe, vq}. Suppose that the quantities xi can be measured with a
variance of σ2

xi
. The uncertainty in the measurement variables xi results in an uncertainty

in the estimate of the flux-linkage Ψd. A model of the measurement variance σ2
Ψd

can be
obtained with an error propagation analysis [56, Section 3.3] according to

σ2
Ψd

=
$

i

�
∂g

∂xi

 2
σ2

xi
. (5.13)

Applying (5.13) to (5.12) yields the propagation of uncertainties for the flux-linkage Ψd as

σ2
Ψd

=
�

R

ωe

 2
σ2

iq
+

�
iq

ωe

 2
σ2

R +
�

Riq − vq

ω2
e

 2
σ2

ωe
+

� 1
ωe

 2
σ2

vq
. (5.14)

Obviously, the uncertainties depend on the actual operating point of the PMSM. For
a desired operating point (τ∗, ω∗

e), the currents i∗
d and i∗

q are obtained according to the
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Figure 5.5: Input samples XP in region Xc near the linearized MTPA curve by the proce-
dure P(τ), according to (5.11)

MTPA strategy i∗dq(τ∗). The voltage vq is calculated with the steady-state equation (5.12)
which results in	

i∗
d i∗

q

�T
= i∗dq(τ∗) and vq = ω∗

eΨd(i∗
d, i∗

q) + Ri∗
q . (5.15)

The modelled standard deviation σΨd
as a function of the rotor speed ωe is shown in

Figure 5.6 for different torque set points. The assumed measurement uncertainties σ2
xi

are
defined in Table A.2. Figure 5.6 shows, that the uncertainty decreases with increasing
rotor speed. Thus, in order to obtain a reliable approximation, the flux-linkages should
be determined at the highest possible rotor speed. The slight increase in the modelled
uncertainty for higher torques can be tolerated. In statistics [57], noise which changes
as function of the inputs, i. e., σΨd

= σΨd
(id, iq, ωe), is referred to as heteroscedastic

noise. The noise standard deviation σΨd
(id, iq, ωe) as function of the currents is depicted

in Figure 5.7 for maximum speed ωe = ωe,max. The standard deviation increases with
increasing magnitude |iq| and id.

For all following simulation experiments, it is assumed that for hyperparameter-tuning
and model training only noisy observations y of the latent function Ψd(id, iq) are available.
Thus, the approximators are always trained with data, generated by the MEC model
Ψd(id, iq), with artificially added Gaussian noise, according to the measurement model
(5.14). First, experiments with Gaussian noise of constant standard deviation, according
to

y = Ψd(id, iq) + N

0, σ2

n

�
, (5.16)

will be performed. The standard deviation of the Gaussian noise is set to σn = 20 · 10−3,
which corresponds to the modelled value σΨd

at maximum rotor speed ωe = ωe,max, see
Figure 5.6. Second, an experiment with artificially added heteroscedastic Gaussian noise,
according to

y = Ψd(id, iq) + N

0, σ2

Ψd
(id, iq, ωe)

�
, (5.17)
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will be performed. In order to obtain on average the smallest noise standard deviation
σΨd

(id, iq, ωe), the simulation experiment is performed at maximum normalized rotor
speed ωe = ωe,max.
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Figure 5.6: Modelled standard deviation σΨd
of flux-linage measurement for different

torques τ with varying rotor speed ωe.

Figure 5.7: Heteroscedastic noise standard deviation σΨd
(id, iq, ωe), according to (5.14),

of the flux-linkage measurement Ψd at maximum speed ωe = ωe,max.

Changing Operating Conditions

For use cases, in which the operating condition of the motor is expected to change over
time, an online adaption of the flux-linkage model is required. In order to simulate the
effect of a changing operating condition, the flux-linkage is scaled by a time-varying factor
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c(t), according to

Ψ̃d(t, id, iq) = c(t)Ψd(id, iq) with c(t) ∈ [0.9, 1.1] . (5.18)

The scaled flux-linkage is depicted in Figure 5.8 for a constant scaling factor c(t) =
0.9. Obviously, scaling affects regions of large Ψd values more than region of small Ψd.
Furthermore, scaling slightly changes the curvature of the surface. In order to evaluate test
the approximators with a time varying function, an experiment will be performed in which
the function approximators are trained with inputs Xt and corresponding observation yt,
according to

Xt = {idq,i ∼ UX | i = 1, . . . , N} , (5.19a)

yt =
�

Ψ̃d(t, idq,i) + N

0, σ2

n

�
| idq,i ∈ Xt

�
. (5.19b)

Here, idq,i ∼ UX denotes uniform random samples from the input-space X.

Figure 5.8: Simulated effect of parameter drift according to (5.18). The transparent
surface represents the nominal flux-linkage Ψd. The non-transparent surface
represents the flux-linkage Ψ̃d = c(t)Ψd with a scaling factor c(t) = 0.9.

5.1.2 Offline Model Selection
The selection of an appropriate kernel function as well as the tuning of the kernel- and
noise-parameters will be discussed in this section. Hyperparameter-tuning is performed
with uniform random sampled data, according to (5.6) and constant Gaussian noise (5.16).
This is possible since the data is obtained from the MEC model.
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As discussed in Section 5.1.1, prior knowledge about the flux-linkage is available, which
can be used to guide the selection of an appropriate kernel function2. Since the flux-linkage
Ψd(id, iq) is in good approximation linear in d-direction for the nominal operating range,
a linear kernel, according to (3.22) with d = 1, would be an obvious choice. Outside the
nominal range, the flux-linkage levels off, therefore a quadratic kernel, according to (3.22)
with d = 2, may result in a reasonable approximation. However, from a computational
point of view, the use of a polynomial kernel is not recommended, since a polynomial basis
function model can be trained more efficiently, see Section 3.2. A prediction with the
linear and quadratic kernel is shown in Figure 5.9. Although the quadratic kernel already
results in a prediction error at noise level, the kernel is not flexible enough to approximate
the true underlying function. In order to increase the flexibility of the approximator, a
linear kernel is combined with a Gaussian kernel, according to

k(x, x′) = σ2
v1

�
x1x′

1 + c
�

+ σ2
v2 exp

�
− 1

2l2
&&x − x′&&2

2

 
. (5.20)

The linear-kernel captures the linear trend in d-direction, whereas the Gaussian-kernel
smoothly models the residual errors. Furthermore, the linear kernel improves extrapolation
performance of the model in situations where only few data is available. The resulting
kernel has four hyperparameters θT

k =
	
σv1 c σv2 l

�
, which are tuned with cross-

validation (CV) and maximum marginal-likelihood (MML).

(a) Linear: k(x, x′) = xTx + 1. (b) Quadratic: k(x, x′) =
�
xTx + 1

�2.

Figure 5.9: Predictions of a Gaussian Process with polynomial kernels (3.22) on PMSM
dataset, where f̂(x) is the prediction and f(x) is the latent function.

Hyperparameter-tuning with Cross-Validation

As discussed in Section 3.2, CV is a general approach to tune the hyperparameters of a
static model, which also could be applied to the online function approximators, introduced
in Section 3.3 and Section 4.3. However, this may lead to different hyperparameters for

2The kernel function is introduced as k(x, x′) with inputs xT = [x1 x2] = [id iq]
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each online approximator and thus makes a comparison between them difficult. Therefore,
the argument in [36, Section 4.8] is followed and hyperparameter-tuning is performed
offline with a Gaussian process (GP) according to (2.26). Since all introduced online
approximators are approximations of a GP, it is argued that the optimal hyperparameters
of the GP are also suitable for the online approximators [36, Section 4.8].

The computational complexity of CV to tune four hyperparameter θk is high. In order to
reduce the computational complexity, one hyperparameter can be eliminated by exploiting
that the prediction equation (2.15) is invariant against rescaling of the kernel function [42].
Thus, the scale of the linear kernel (5.20) is set to σv1 = 1. The computational complexity
can be further reduced by fixing some of the remaining hyperparameters. In order to
obtain a smooth solution with less spatial variations, the length-scale of the Gaussian
kernel is set to a large value l = 1. Furthermore, the constant of the linear kernel is set to
c = 1 after some trials. The remaining hyperparameter σv2 is then tuned with K-fold CV.

K-fold CV, as in (3.26) with K = 10, is used to obtain an estimate of the root mean
squared (RMS) prediction error based on random sampled data, according to (5.6). In
order to further reduce the dependency on the choice of dataset, the results of 50 trials
with different uniform sampled datasets are averaged. The median and the 16 % and
84 % percentiles [18, Section 2.2.6] are used to obtain an estimate of the mean and a
68 % confidence interval. The likelihood of the GP, defined as (2.25), is set to a rather
large value of σn = 40 · 10−3 to obtain a smooth approximation. The hyperparameter
σv2 is tuned by a grid search of 50 equally distributed values in the range [0.1, 2]. The
hyperparameters σv1 = 1, c = 1 and l = 1 are fixed.

The results of the hyperparameter-tuning for σv2 are depicted in Figure 5.10, for a
small N = 50 and large N = 700 dataset size. The tight confidence intervals of the RMS
error for N = 700 indicate a reliable estimate of the true noise standard deviation. For
the small dataset, the RMS error is slightly above the true noise level and its minimum
lies in the range σv2 ∈ [0.3, 0.6]. For a large dataset, any σv2 in the range [0.3, 2] results in
an error near to noise level. In order to obtain a good approximation independent of the
dataset size, the hyperparameter is set to σv2 = 0.6. The obtained kernel hyperparameters
are summarized in Table 5.1.

Hyperparameter-tuning with Maximum Marginal Likelihood

The hyperparameters θk of the kernel (5.20) as well as the noise standard deviation σn

are now tuned, using the Bayesian model selection approach, introduced in Section 4.2.
Following the same arguments as for the CV approach, the hyperparameter-tuning is
performed offline with a GP. In the Bayesian framework, the hyperparameters of a GP
are tuned by maximizing the marginal-likelihood (4.12). The optimization is performed in
Matlab using the Conjugate-Gradient solver of the GPML Toolbox [46]. The GPML
Toolbox also provides the required gradients of the marginal-likelihood w.r.t. to the
hyperparameters.
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Figure 5.10: Hyperparameter-tuning with 10-fold cross-validation of GP with kernel (5.20).

The results of the Bayesian hyperparameter-tuning with MML are shown in Figure 5.11
for different dataset sizes N . In order to reduce the dependency on the choice of the
dataset, the results of 50 trials with different uniform sampled datasets are averaged. A
histogram plot is used to investigate the distribution of the obtained hyperparameters.
The obtained hyperparameter distributions are expected to be not normal distributed.
Thus, the median and the 16 % and 84 % percentiles [18, Section 2.2.6] are used to obtain
an estimate of the mean and a 68 % confidence interval. The Conjugate Gradient solver is
initialized at each trial with σn = 1, σv1 = σv2 = 1 and l = 2.

The top graph in Figure 5.11 shows the estimated noise standard deviation σ̂n. For a
dataset size N > 400, the true noise standard deviation σn is estimated accurately with
low variance. The parameter of the linear kernel and the Gaussian kernel are shown in
the middle and bottom graph of Figure 5.11, respectively. For a dataset size N < 400,
the weight σv1 of linear kernel is small compared to the weight of the Gaussian kernel
and the lengthscale l of the Gaussian kernel is larger. Thus, for N < 400 the Gaussian
kernel with large lengthscale is dominant. For a dataset size N > 400, the weight as well
as the lengthscale of the Gaussian kernel decrease and the weight σv1 of the linear kernel
increases. In this case, the linear kernel is more dominant, indicating that the Gaussian
kernel only models the small residual errors.

The confidence intervals of the hyperparameters in Figure 5.11 indicate a reliable
estimates for a dataset size N > 800.Thus, the hyperparameters are set to median values
obtained for N = 1000. A histogram of the hyperparameters for N = 1000 is shown in
Figure 5.12. The distributions of all hyperparameters are fairly peaked, indicating reliable
hyperparameter estimates. The MML-tuned hyperparameters are summarized in Table
5.1.

Comparison

The achievable prediction error of the CV-tuned and MML-tuned kernel is now compared.
Therefore a GP is trained with uniform data of different sizes N , according to (5.6), and
its prediction error is calculated. The true prediction error between the GP prediction f̂
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Figure 5.11: Hyperparameter-tuning with MML of GP with kernel (5.20) for different
dataset sizes N .

and the true flux-linkage Ψd, according to

e = f̂(X∗, X , y) − Ψd(X∗) , (5.21)

is used as evaluation metric. Here, the notation f̂(X∗, X , y) as in (3.27) is used, where X∗
is a independent uniform sampled test set. The likelihood of the GP is set to the noise
level σn = 20 · 10−3 obtained by MML.

As shown in Figure 5.13, for large N both kernels result in a RMS prediction error of
≈ 3 · 10−3, which is almost a magnitude smaller than noise level σn. Furthermore, the
maximum prediction error of both kernels is less than the noise level for N > 300. The
MML-tuned kernel performs slightly better for all training data sizes. Therefore, the
MML kernel is used for all following experiments. The prediction error of the full GP will
further serve as a baseline for the online approximators.



5 Evaluation 5.1 Permanent Magnet Synchronous Motor 51

0.6 0.7 0.8 0.9

0

10

20

30

σv1

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

c
1.9 1.95 2 2.05 2.1

×10−2

0

5

10

15

20

σ̂n

0.1 0.2 0.3 0.4 0.5

0

10

20

30

σv2

0.6 0.8 1 1.2 1.4

0

10

20

l

Figure 5.12: Histogram of MML-tuned kernel hyperparameter (5.20) and estimated likeli-
hood σ̂n for a random dataset of size N = 1000.
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Method Kernel Hyperparameter

CV σv1 = 1.000 c = 1.000 σv2 = 0.600 l = 1.000
MML σv1 = 0.808 c = 0.766 σv2 = 0.166 l = 0.820

Table 5.1: Hyperparameters of kernel (5.20) for PMSM dataset.

5.1.3 Evaluation on Random Sampled Data
In this section, the accuracy of the online function approximators, introduced in Section 3.3
and Section 4.3, is evaluated based on uniform random sampled data, according to (5.6).
Furthermore, the constant noise model, defined in (5.16), is used.

The accuracy of the approximators is evaluated by means of a learning curve. A learning
curve shows the prediction error RMS(e) of an approximator as a function of the processed
training samples t. The true prediction error, as defined in (5.21), is used as metric. The
prediction error is calculated based on large random sampled test set of size NT = 2000.
In order to reduce the influence of the training dataset, the learning curves of 100 trials
with different uniform sampled training datasets are averaged. The mean learning curve is
obtained by an arithmetic mean whereas a 68 % confidence interval is calculated using the
16 % and 84 % percentiles [18, Section 2.2.6]. The parameters of the approximators are
chosen in a way, that the maximum dictionary size of all approximators is |D| ≈ 16. The
parameter settings of the approximators are summarized in Table 5.2. The learning curve
together with the dictionary size |D| is shown in Figure 5.14 as function of the training
samples, whereas the learning curve of the first 200 samples is depicted in Figure 5.15.

The kernel recursive least squares (KRLS) approximator, introduced in Section 3.3.2,
results in the smallest RMS prediction error of ≈ 3 · 10−3 after t = 5000 samples. This
is close to the accuracy of a full GP, see Figure 5.13. However, only ≈ 1.5 % of the GPs
memory is used. The dictionary size of the KRLS can be tuned with the parameter ν,
according to (3.28). For a small ν, the accuracy improves at the cost of a larger dictionary,
for large ν the contrary holds. For a very small ν ≈ 1 · 10−9 the coefficient updates KRLS
are numerically unstable, see (3.46). In this case large prediction errors are obtained.
Although the KRLS results in the smallest mean prediction error after t = 5000 samples,
the error of the first 150 samples is larger compared to the Bayesian-KRLS (B-KRLS)
and the recursive-Gaussian-Process (rec-GP), see Figure 5.15. The larger error in the
initial phase may be caused by the smaller dictionary size. The prediction error reaches
noise level after ≈ 30 trainings samples.

The rec-GP approximator, introduced in Section 4.3.2, uses a predefined dictionary of
size m, defined in (4.26). For each trial, the dictionary is initialized with m = 16 uniform
random sampled inputs x ∈ X. Furthermore, the likelihood (4.17) is set to the estimated
value σ̂n = 20 · 10−3 of MML, see Figure 5.11. After t = 5000 training samples, a mean
RMS error of ≈ 4 · 10−3 is reached. The error is slightly above the full GP and the KRLS.
As shown in Figure 5.15, the prediction error reaches noise level after ≈ 20 trainings
samples, which is roughly 10 samples earlier than the KRLS.
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The B-KRLS, introduced in Section 4.3.1, uses a sparsification criterion which allows to
predefine the maximum size of the dictionary. Whenever the maximum size is reached, the
least significant element, according to criterion (4.24), is removed from the dictionary. The
likelihood (4.17) is again set to the MML estimated value σ̂n = 20 · 10−3. The B-KRLS
reaches mean RMS error of ≈ 7 · 10−3 after t = 5000 training samples. As shown in
Figure 5.15, noise level is reached after ≈ 20 trainings samples.

The kernel affine projection (KAP) approximator, introduced in Section 3.3.3, shows
the worst prediction accuracy with a minimum mean RMS error slightly below noise level.
The KAP updates its coefficients by a stochastic approximation based on q recent training
samples. A value of q = 20 is used, since larger values did not significantly improved the
prediction error. The learning rate η, according to (3.55), is used to control the learning
speed of the KAP. For a large η, the algorithm learns faster, but also becomes more prune
to noise. The coherence parameters µ0, defined in (3.31), controls the size of the dictionary.
For small µ0, the dictionary remains small but the prediction error is large. For larger µ0,
the dictionary size increases. For a too large µ0, the dictionary size increases drastically,
often without significantly improving the prediction performance. As shown in Figure 5.15
noise level is reached after ≈ 540 trainings samples, which is significantly slower compared
to the other approximators.

Approximator Section Parameters

KRLS 3.3.2 ν = 3 · 10−4

KAP 3.3.3 µ0 = 0.5275 q = 20
ϵ = 1 · 10−6 η = 0.05

B-KRLS 4.3.1 m = 16 σn = 20 · 10−3

rec-GP 4.3.2 m = 16 σn = 20 · 10−3

Table 5.2: Parameter settings of online function approximators for the PMSM dataset.

5.1.4 Evaluation on Artificial Operating Data
In this section, the performance of the approximators is evaluated according to the
application specific scenarios described in Section 5.1.1. To begin with, the approximators
are evaluated with training data in the neighborhood of the MTPA curve. Then, an
experiment with heteroscedastic noise is performed and the influence of slowly changing
operating conditions is analyzed. Furthermore, the prediction uncertainty provided by the
Bayesian-based approximators is discussed. For all experiments, the MML-tuned kernel,
with hyperparameter according to Table 5.1 and the same approximator setting as for
random data, see Table 5.2 are used.
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Figure 5.14: Learning curves for uniform random sampled data.
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Figure 5.15: Initial learning curves for uniform random sampled data.
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MTPA Curve

The performance of the online approximators is first evaluated with data near the MTPA
curve according to (5.11). The training data is generated to obtain a torque trajectory as
depicted in Figure 5.4. Since the torque is continuously varied, successive training samples
are expected to be relatively close in the input-space. The effect of such training data on
the performance of the approximators will be studied next.

The performance of the approximators is evaluated with a learning curve, where the
prediction error is defined as

e = f̂(XN , XP , yP) − Ψd(XN ) . (5.22)

Here, XN is an independent set of test inputs, which are Gaussian-distributed in d-direction
around the nonlinear MTPA curve, according to

XN =
�

i∗dq(τ∗) +

N �

0, σ2
m

�
0

�
| τ∗

i ∈ Ωn[−τmax, τmax]
�

. (5.23)

The notation Ωn[−τmax, τmax] refers to a grid of n equidistant points in the range
[−τmax, τmax]. The parameter σm in (5.23) is used to control the spread of the sam-
ples around the MTPA curve. In order to reduce the dependency of noise, the learning
curves of 100 trials with the same dataset but different noisy observations are averaged.
The learning curve for N = 5000 is shown in Figure 5.16 whereas the learning curve of
the first 400 samples is depicted in Figure 5.17.

The KRLS reaches a mean RMS error of ≈ 3 · 10−3 after 5000 samples. Compared to
the experiment with random data, shown in Figure 5.15, the dictionary of the KRLS
grows much slower and only reaches a maximum value of |D| = 11. This is a consequence
of the ALD sparsification criterion (3.28), which only adds elements to the dictionary
whenever the minimum kernel-induced distance between the new input and the present
dictionary exceeds ν. Since the training data covers only a subspace Xc of the input-space
X and successive sample are relatively close, the ALD criterion only slowly increases the
dictionary. Furthermore, it is observed that each time the KRLS adds an element to the
dictionary, the RMS error increases. Roughly 100 samples are needed till the error is
decayed to the previous value. This behavior can be fixed by increasing of ν. However,
increasing ν comes at the cost of a larger final prediction error. Although the RMS error
of the KRLS is slightly larger than the B-KRLS and the rec-GP, the KRLS learns faster,
see Figure 5.17. Noise level is reached after ≈ 200 samples, which is roughly 150 samples
faster than the B-KRLS and the rec-GP.

The rec-GP and the B-KRLS perform best with a mean RMS error of ≈ 2 · 10−3 after
5000 samples, see Figure 5.16. For both approximators, the learning curves shows a
peak after ≈ 500 samples. Besides of the peak, the error of both approximators tends
to decrease as more data is observed. Both approximators reach noise level after ≈ 350
samples, see Figure 5.17.
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The KAP shows the worst performance with a prediction error above noise level. The
prediction error increases and decreases over time and does not converge as more data is
observed. The KAP updates its coefficients by a stochastic approximation based on the
q most recent training samples. Since successive training samples are relatively close in
the input-space, the q most recent training samples are only a poor approximation of the
function in range Xc. Therefore, the KAP is not suited for this scenario. Also for a large
value of q = 200 the performance did not significantly improve.

The absolute prediction error |e(id, iq)| over the input-space X after training with the
MTPA data is shown in Figure 5.18. The KRLS approximates the function in the region of
the training data with errors smaller than noise level σn = 2·10−2. Due to the linear kernel,
the region id ≈ −Imax gets well extrapolated with a maximal error of ≈ 6 · 10−2. However,
the linear kernel is not able to model the saturation of the flux-linkage in the region
id ≈ Imax. Thus, the error is large in this region. Compared to the KRLS, the rec-GP
results in a even better approximation in the region id ≈ −Imax and id ≈ Imax. This may
be explained since the dictionary elements of the rec-GP are uniformly distributed over
the whole input-space and not concentrated in the region of the training data like in the
case of the KRLS. The B-KRLS performs slightly worse than the rec-GP with larger errors
in the region around (id, iq) ≈ (−Imax, 0). However, the B-KRLS extrapolates better than
the KRLS with a maximum error of σn = 4 · 10−2 in the region id ≈ −Imax. The superior
performance of the B-KRLS may be a result of the sparsification criterion which removes
the least significant element from the dictionary whenever its size exceeds a predefined
budget. Therefore, the location of the dictionary elements can be adjusted over time. The
KAP performs worst with large errors over the whole input-space.

Heteroscedastic Noise

Next, the effect of input dependent noise σΨd
(id, iq, ωe) on the prediction accuracy of

the online function approximators is investigated. For model training, uniform random
sampled data, according to (5.6), with heteroscedastic Gaussian noise, according to (5.17),
is used. The learning curve is obtained by calculating the true prediction error, defined in
(5.21), based on an random sampled test set. The learning curves of the online approxi-
mators are shown in Figure 5.19.

The KRLS and the rec-GP approximator result in almost the same prediction error as
for constant noise, see Section 5.1.3. However, learning is slightly slower for heteroscedastic
noise, i. e., both approximators reach a mean RMS error of 20 · 10−3 approximately 15
samples later, compared to the constant noise case, depicted in Figure 5.15.

The performance of the KAP and B-KRLS is more affected by heteroscedastic noise.
Although the mean RMS error of the KAP is only slightly increased, the learning speed
decreased drastically. The KAP reaches mean RMS error of 20 · 10−3 approximately 450
samples later. The learning speed of the B-KRLS is less affected by heteroscedastic noise
but the achievable mean RMS error decreased from 7 · 10−3 to 9 · 10−3.

As discussed in Chapter 4, the Bayesian framework allows to account for heteroscedastic



5 Evaluation 5.1 Permanent Magnet Synchronous Motor 57

10−3

10−2

10−1

100

R
M

S(
e)

Noise σn

KRLS
KAP
rec-GP
B-KRLS

0 1,250 2,500 3,750 5,0000

5

10

15

Number of training samples t

D
ic

tio
na

ry
siz

e
|D

| KRLS
KAP
rec-GP
B-KRLS

Figure 5.16: Learning curves for data in the region Xc near the MTPA curve. The
prediction is obtained according to (5.22).
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Figure 5.17: Initial learning curves for data in the region Xc near the MTPA curve.

noise. Assuming that the input depended noise term σΨd
(id, iq, ωe) is known, it can

be included in the derivation of the B-KRLS as well as the rec-GP by replacing σn in
(4.21) with heteroscedastic noise term σΨd

(id, iq, ωe). Furthermore, when concerning the
prediction variances (4.20), the inclusion of the heteroscedastic noise term is important since
otherwise unreasonable prediction variances are obtained. A comparison of the B-KRLS
and rec-GP with constant noise and B-KRLS-HN and rec-GP-HN with heteroscedastic
noise is shown in Figure 5.20. The accuracy of the B-KRLS is improved with heteroscedastic
noise term, while the accuracy of the rec-GP gets slightly worse.
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near the MTPA curve.
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Figure 5.19: Learning curves for heteroscedastic noise, according to (5.14), for ωe = ωe,max

with uniform random sampled data.

Changing Operating Conditions

In this section, the effect of a changing operating condition on the performance of the
approximators is analyzed. The changing operating condition is simulated using (5.18),
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where a time varying scaling factor c(t), as depicted in Figure 5.21, is used. A learning
curve is used for evaluation. In the time-varying scenario, the prediction error is defined
according to

e = f̂(X∗, Xt, yt) − Ψ̃d(t, X∗) , (5.24)

where Ψ̃d(t, X∗) is the scaled flux-linkage, according to (5.18). The approximators are
trained with random sampled inputs Xt and observations yt, defined as in (5.19), and
constant Gaussian noise (5.16). The learning curves are shown in Figure 5.22.

As expected, the KRLS and the rec-GP are not able to approximate time varying
functions, since both are using a fixed dictionary. Therefore, large amount of data is
needed to adapt their coefficients. If the latent function changes too fast, the coefficients
can not be updated accordingly, thus resulting in a large prediction error.

The B-KRLS and KAP on the other hand, can adapt to the changing operating con-
dition. The B-KRLS changes its dictionary over time, which in turn enables to adapt
to a changing function. Furthermore, a forgetting mechanism, according to (4.25), with
a forgetting factor β = 0.999 is used. The forgetting mechanism further improves the
learning speed of the B-KRLS. The KAP is able to approximate time varying functions
since its coefficients are updated based on the recent q samples. Both approximators
result in an RMS error ≈ 20 · 10−3, which is close to noise level σn. Although the B-KRLS
learns initially faster, the variance of its RMS error is larger compared to the KAP.

Furthermore, its worth mentioning that for scenarios in which the latent function
changes drastically over time, an online adaption of the kernel hyperparameters may be
required for a proper approximation. However, this is not the case for the considered
scenario since the curvature of the flux-linkage changes only slightly through rescaling,
see Figure 5.8.
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Figure 5.21: Time varying scaling factor c(t), according to (5.18).
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Prediction Uncertainty

As discussed in Section 4.3, the Bayesian framework provides an estimate of the variance
σ̂2(x) of the prediction f̂(x). When concerning the prediction variance, the proper scaling
of the kernel function becomes important [42]. In order to obtain a statistically sound
predictive variance, the scale of the kernel has to be calibrated. The calibration of the
kernel may be performed with cross-validation [58]. Although the uncalibrated prediction
variance may not correspond to the true statistical distribution of the prediction, it can
still be used as a relative measure to distinguish between predictions of high and low
uncertainty. As illustrative example, Figure 5.23 shows the predictive standard deviation
of a GP for different numbers of training samples X . The predictive standard deviation is
small in regions where a lot of training data is observed, whereas it is larger in regions
of sparse training data. About 20 random samples are needed to obtain a predictive
standard deviation in the range of noise σ̂(x) ≈ σn over the whole input-space X. Thus,
σ̂(x) can be used to evaluate the coverage of the input-space. Furthermore, the predictive
variance can be used to actively explore the input-space in a sample-efficient manner [59].
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Since the nonlinear MTPA curve is of special interest for practical applications, the
predictive standard deviation σ̂(x) is evaluated at a set of test inputs

XS =
�

i∗dq(τ∗) | τ∗
i ∈ ΩN [−τmax, τmax]

�
(5.25)

along the MTPA curve i∗dq(τ∗). The standard deviation evaluated at inputs XS along the
MTPA curve is then defined as a vector

σ̂(XS) =
	
σ̂(idq,i)

�
with idq,i ∈ XS . (5.26)

For the experiment, the MML-tuned kernel is used, and the function approximators are
trained with uniform sampled data, according to (5.6), with constant Gaussian noise
(5.16). The predictive standard deviation σ̂(x) of the B-KRLS and rec-GP, according to
(4.20) and (4.31) respectively, is compared with the prediction standard deviation of a
full GP, according to (2.26). The mean of the predictive standard deviation mean(σ̂(XS))
as function of the number of processed training samples is shown in Figure 5.24. Both
approximators result in a similar predictive standard deviation as the full GP. Although
the B-KRLS approximates the standard deviation of the GP initially better than the
rec-GP, the rec-GP results in a better approximation after ≈ 40 samples. Noise levels is
reached after ≈ 100 random samples.
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Figure 5.23: Predictive standard deviation σ̂(id, iq) of a GP for different number N of
training inputs X .

5.2 Inverter
The second application scenario from the electric drive domain, considers a voltage
source inverter (VSI). A VSI converts a DC input-voltage to phase-voltages of adjustable
magnitude and frequency. Each of the three phases of the VSI consists of two controllable
electrical switches [1, Chapter 12]. The phase-voltages of the VSI can be controlled by
the duty-cycle, i. e., the fraction of time in which a switch is active. Thus, the PMSM is
controlled by adjusting the duty-cycle of the VSI. In order to improve the performance of
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Figure 5.24: Mean prediction standard deviation mean(σ̂(XS)) at MTPA curve.

the whole drive system, the nonlinear dependency of the duty-cycle on the motor operating
point has to be modeled. Therefore, the data-based approximation of the duty-cycle
nonlinearity will be discussed next.

5.2.1 Scenario Description
A common approach to control an inverter-fed PMSM is a model-based two degrees-of-
freedom (2DoF) controller (e. g. [8]). The aim of the controller is to set the duty-cycle δ
so, that a desired phase-current i∗abc and rotor speed ω∗

e is reached. Thus, the duty-cycle
is a function of the set-point (i∗abc, ω∗

e). If the PMSM shows distinct anisotropies in the
stator or rotor, the duty-cycle is assumed to further depend on the rotor position φe.
Thus, δ = δ(φe, ωe, i∗abc) holds. The 2DoF-controller, depicted in Figure 5.25, utilizes a
model of the PMSM and VSI to calculate a feed-forward duty-cycle δF F . Due to model
uncertainties, external disturbances, measurement noise, etc., these models never exactly
capture the behavior of the PMSM and VSI. Therefore, a feedback controller is used
to stabilize the error between the desired (i∗abc, ω∗

e) and actual (iabc, ωe) set-point via
the feedback term ∆δ. Thus, a single phase of the VSI is controlled with a duty-cycle
according to

δ = δF F + ∆δ . (5.27)

During motor operation, online function approximation can then be used to train a
model δ(φe, ωe, i∗abc) for all operating points of interest. The mechanical and electrical
characteristics of a PMSM are periodic after a full mechanical revolution of the rotor.
Thus, the duty-cycle δ is expected to be periodic w.r.t. the rotor position φe, according to
δ(φe) = δ(φe + 2π). The feed-forward δF F and feedback ∆δ duty-cycle of a single phase
are shown in Figure 5.26 for a set-point i∗abc = 0. Both terms vary periodically as function
of the rotor position φe and increase in magnitude with increasing rotor speed n = ωe/np.
The feed-forward duty-cycle can be precalculated offline since no feedback from the real
PMSM is needed. Therefore, only the approximation of the feedback term ∆δ(φ∗

e, ω∗
e) will

be studied further.
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Figure 5.25: Block diagram of the two degrees-of-freedom controller.

(a) Feed-forward δF F . (b) Feedback ∆δ.

Figure 5.26: Feed-forward δF F and feedback ∆δ duty-cycle of single VSI phase for a
desired set-point iabc = 0.

In this application scenario only noisy measurements y(x) = ∆δ(x) at inputs x are
available to train and test the function approximators. Thus, the latent function f(x) as
well as the measurement noise model ϵ, according to (2.3), are unknown. Furthermore,
the dataset is obtained from measurements at Nn = 8 equidistant rotor speeds ni, see
Figure 5.26, further denoted as

N = {ni ∈ ΩNn [−1, 1]} , (5.28)

where ΩNn [−1, 1] defines an equidistant grid in the range [−1, 1]. Thus, a temporal-
sequence of Nt samples φe(tj) corresponds to each measurement at a certain rotor speed.
A simulation experiment will be performed in which the online approximators are trained
with sequential data, defined according to

Xs = {(ni, φe(tj)) | ni ∈ N , tj ∈ ΩNt [0, T ]} and ys = {y(xi) | xi ∈ Xs} , (5.29)

where tj are equidistant time steps and T is the total measurement time. For hyperparameter-
tuning, it is assumed that the whole dataset is available from which random samples can
be drawn. Thus, a dataset with random samples is defined, according to

Xr =
�

(ni, φe(tj)) | ni ∈ N , tj ∼ U[0,T ]
�

and yr = {y(xi) | xi ∈ Xr} , (5.30)
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where U[0,T ] denotes uniform random time samples in the range [0, T ]. In order to evaluate
the prediction error of the approximators, a random test set with inputs X∗ and outputs
y∗, according to (5.30), is used.

5.2.2 Offline Model Selection
This section discusses the selection of an appropriate kernel function as well as the tuning
of the kernel- and noise-parameters. Hyperparameter-tuning is performed with random
sampled data, according to (5.30).

Again, the kernel function is selected with respect to the available prior knowledge
described in Section 5.2.1. The only available knowledge is the periodicity of ∆δ w.r.t. the
rotor position φe. Periodicity is enforced by mapping the rotor position φe to the interval
(−1, 1]. Furthermore, the mapping preserves continuity at the interval limits. In order to
obtain a smooth approximation, a Gaussian kernel (3.11) with different lengthscales for
each dimension according to

k(x, x′) = σ2
v exp

�
−1

2
�
x − x′�TΣ

�
x − x′� 

, (5.31)

is used3. Here, Σ is a diagonal matrix according to Σ = diag
	

l−2
1 l−2

2

��
. Since only

measurements at discrete speeds are available, the kernel parameters have to be chosen in a
way that the data is properly interpolated. The resulting kernel has three hyperparameters
θT

k =
	
σv l1 l2

�
. As discussed in Section 5.1.2, the hyperparameter-tuning with cross-

validation (CV) and maximum marginal-likelihood (MML) is performed offline with an
Gaussian Process according to (2.26).

Hyperparameter-tuning with Cross-Validation

In order to reduce the computational complexity of the hyperparameter-tuning with CV,
some of the hyperparameters are fixed a priori. Since only a single kernel is used, the
weight is set to σv = 1. In oder to ensure that the region between the measurement is
well interpolated, the lengthscale l2 of the Gaussian kernel is set to a large value l2 = 1.
The remaining hyperparameter l1 is then tuned with CV.

K-fold CV, according to (3.26) with K = 10, is used to obtain an estimate of the
RMS prediction error based on random sampled data, as in (5.30). The dependency
on the choice of dataset is reduced by averaging the results of 50 trials with different
uniform sampled datasets which are defined by (5.30). The median and the 16 % and
84 % percentiles [18, Section 2.2.6] are used to obtain an estimate of the mean and a
68 % confidence interval. The hyperparameter l1 is tuned by a grid search of 50 equally
distributed values in the range [0.01, 0.5]. Furthermore, the likelihood of the GP, defined
as (2.25), is set to a rather large value of σn = 1 · 10−3 to obtain a smooth approximation.

3The kernel function is introduced as k(x, x′) with inputs xT = [x1 x2] = [φe n]
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The RMS error as function of the hyperparameter l1 is shown in Figure 5.27 for different
dataset sizes N . The lengthscale l1 tends to decrease for larger dataset sizes. As more
data is observed, the small variations along the first dimension are not treated as noise
anymore. Thus, the lengthscale decreases to capture the these small variations. However,
for a to small lengthscale the online approximators will need a large dictionary for a
proper approximation. Thus, a trade-off between computational complexity and accuracy
has to be made. The selected kernel hyperparameters are summarized in Table 5.3.
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Figure 5.27: Hyperparameter tuning with 10-fold cross-validation using a GP with kernel
(5.31).

Hyperparameter-tuning with Maximum Marginal Likelihood

As alternative, hyperparameter-tuning is now performed offline by maximization of the
marginal-likelihood (4.12) of a GP. The optimization is performed in Matlab using the
Conjugate-Gradient solver of the GPML-Toolbox [46]. Again, a histogram plot is used to
investigate the distribution of the obtained hyperparameters. Since the hyperparameter
distributions are not normal distributed in general, the median and the 16 % and 84 %
percentiles [18, Section 2.2.6] are used to obtain an estimate of the mean and a 68 %
confidence interval.

The lengthscale l1 of the kernel should not be estimated too small since this would
require a large dictionary. Therefore, the dependency on the dataset size is investigated
first. For a large dataset N > 1000, MML tends to result in a rather small l1. Finally,
a dataset size of N = 800 is used. A histogram plot of the hyperparameter distribu-
tion is depicted in Figure 5.28. All distributions are well peaked, indicating a reliable
estimate. Furthermore, a not to small lengthscale l1 is obtained. The estimated noise
standard deviation σ̂n lies in a similar range as the RMS error obtained by CV, see
Figure 5.27. The hyperparameters are set to the median values in Figure 5.28 and are
summarized in Table 5.3. Since the obtained kernel hyperparameters are very similar to the
CV obtained hyperparameters, the MML-tuned kernel is used for all following experiments.

As baseline for the online approximators serves a GP with the hyperparameters obtained
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by MML. Cross-validation with a random sampled dataset, according to (5.30) with
N = 2000, is used to calculate the prediction RMS error. The GP results in a mean
RMS error of ≈ 600 · 10−6. The value corresponds to the MML estimated noise standard
deviation in Figure 5.28.
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Figure 5.28: Histogram of the MML-tuned hyperparameters for different random datasets
of size N = 800.

Method Kernel Hyperparameter

CV σv = 1.000 l1 = 0.100 l2 = 1.000
MML σv = 0.028 l1 = 0.089 l2 = 1.168

Table 5.3: Hyperparameters of kernel (5.31) for VSI dataset.

5.2.3 Evaluation on Measurement Data
The accuracy of the online function approximators, introduced in Section 3.3 and Sec-
tion 4.3, is now evaluate with sequential measurement data as defined by (5.29). Since
the VSI data is less smooth compared to PMSM data, a larger dictionary size is required
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for a proper approximation. Thus, the parameters of the approximators are chosen in a
way, that the maximum dictionary size of all approximators is |D| ≈ 100. The parameter
settings of the approximators are defined in Table 5.4. The dictionary of rec-GP is
initialized with random points from the dataset.

The learning curve of the approximators is shown in Figure 5.29. The B-KRLS performs
best and reaches an error of ≈ 1.1 · 10−3 after 5700 samples. The KRLS and the rec-GP
perform slightly worse, with RMS error of ≈ 1.4 · 10−3. The KAP shows the worst
performance with an error of ≈ 27 · 10−3.

A plot of the absolute prediction error |e(φe, n)| as function of the rotor position φe

and the speed n is shown in Figure 5.30. The B-KRLS resulted in the best approximation
with only a few region where |e(φe, n)| > 1 · 10−3. The KRLS performed slightly worse.
For both approximators, the maximum approximation error is ≈ 5 · 10−3. The rec-GP
performed similar to the KRLS but obtained large errors of ≈ 9 · 10−3 in some regions.
The KAP shows the worst performance with the largest errors over the whole space and a
maximum error of ≈ 59 · 10−3.

Figure 5.31 shows the predictive standard deviation σ̂(φe, n) of the rec-GP and B-
KRLS. For both approximators, σ̂(φe, n) is high in regions where also the prediction error,
according to see Figure 5.30, is high.
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Figure 5.29: Learning curves of online function approximators on sequential measurement
data, according to (5.29).
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Approximator Section Parameters

KRLS 3.3.2 ν = 5 · 10−5

KAP 3.3.3 µ0 = 650 · 10−6 q = 100
ϵ = 1 · 10−6 η = 0.02

B-KRLS 4.3.1 m = 104 σn = 559 · 10−6

rec-GP 4.3.2 m = 104 σn = 559 · 10−6

Table 5.4: Parameter settings of online function approximators for the VSI dataset.

5.3 Discussion
This section summarizes the main results of previous two sections and discusses which of
the proposed online functions approximators is best suited for the described PMSM and
VSI application scenario.

For random sampled PMSM data with constant noise, the kernel recursive least squares
(KRLS) obtained a prediction error a magnitude smaller than noise. This is close to the
error of a full GP. However, the KRLS uses only a fraction of the GPs computational
resources. In the presence of heteroscedastic noise, the learning speed of the KRLS
decreased slightly, but the prediction error remained almost identical as for constant noise.
Furthermore, the KRLS shows a fast learning speed for random as well as for non-random
data. However, choosing the sparsification parameter ν, according to (3.28), is not trivial
and requires to perform offline trials. For the use in real-time control applications, the
maximum computational complexity per time step has to be defined a priori. Thus, the
KRLS is not suited for such scenarios since the maximum size of its dictionary can not be
fixed a priori. It is concluded, that the KRLS is best suited for scenarios in which a static
function has to be approximated based on a stream of arbitrary sampled data and where
it is possible to perform offline experiments to adjust ν.

The kernel affine projection (KAP) reaches a prediction error at noise level for the
random sampled PMSM data. However, the performance drastically decreased for data
near the MTPA curve and VSI measurement data, since the most recent samples do not
provide information about the function over the whole input-space. Thus, for non-random
data, the KAP is only suited to make local predictions in the neighborhood of the re-
cent samples (e. g. prediction for time-series). The prediction error of the KAP slightly
decreased for heteroscedastic noise, while the learning speed drastically decreased with
heteroscedastic noise. Furthermore, the tuning of the coherence parameter µ0, according
to (3.31), requires offline trials which hinders the usage in a real-time system. Therefore
it is concluded that the KAP is not suited for the PMSM and VSI scenario.

The recursive-GP (rec-GP) performed almost as well as the KRLS for random PMSM
data. However, the rec-GP allows to predefine the size of the dictionary and as a conse-
quence also the maximum computational complexity. Thus, the algorithm is suitable for
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real-time applications. The rec-GP has only one tuning-parameter, namely the likelihood
σn in (4.31), which can be estimated by CV and MML. Thus, the rec-GP can be tuned
easily. Furthermore, heteroscedastic noise did not affect the prediction error significantly.
Although the rec-GP performed slightly better than the KRLS for data near the MTPA
curve, the KRLS resulted in a better approximation for the VSI measurement data. The
rec-GP additionally provides a prediction uncertainty which could be used the evaluate
the reliability of the prediction and the coverage of the input space. The rec-GP can
further be extended to learn the hyperparameters online from data [51]. This is interesting
in scenarios in which the latent function changes drastically over time.

The Bayesian-KRLS (B-KRLS) showed the best performance for data near the MTPA
curve and for the VSI measurement data. For random PMSM data, the prediction error
of the B-KRLS is slightly larger compared to the KRLS and rec-GP. However, this is not
a drawback, since random data rarely occurs in practice. Furthermore, the B-KRLS is
able to approximate drifting functions with a fast learning speed and a prediction error at
noise level. The Bayesian framework further allows to estimate the forgetting factor β in
(4.25) from data [60]. This is especially useful when dynamics of the time-varying function
are unknown. Similar to the rec-GP, the maximum dictionary size of the B-KRLS can
be predefined, which allows to trade accuracy against computational complexity a priori.
The B-KRLS can be easily tuned with the likelihood σn in (4.20). For heteroscedastic
noise the accuracy of the B-KRLS slightly decreased. The B-KRLS additionally provides
a prediction uncertainty. Thus, it is concluded that the B-KRLS is best suited for the
PMSM and VSI application scenario.



6 Summary and Outlook
In this thesis, data-driven methods for online nonlinear function approximation are inves-
tigated and evaluated with focus on representative application scenarios from the electric
drive domain.

A literature review of state-of-the-art function approximators is given in Chapter 2. Ker-
nel methods and Gaussian Processes are introduced as powerful non-parametric modelling
tools. Both approaches allow to incorporate prior knowledge by means of a kernel function.
The Bayesian framework additionally provides a model for the prediction uncertainty
and a systematic framework for model selection. Chapter 3 deals with the mathematical
background for frequentist function approximation. Here, two online kernel methods from
the kernel adaptive filter framework, namely the kernel recursive least squares (KRLS)
and the kernel affine projection (KAP) algorithm are introduced. Both algorithms have a
computational complexity of O�

m2�
, where m ≪ N is a constant which is independent of

the data size N . In Chapter 4, the function approximation problem is stated within a
Bayesian framework. Furthermore, two Bayesian online algorithms, namely the Bayesian-
KRLS (B-KRLS) and the recursive-GP (rec-GP), with a computational complexity of
O�

m2�
are introduced.

An evaluation of the online function approximators based on two application scenarios
from the electric drive domain follows in Chapter 5. The data-based approximation of
the flux-linkage of a Permanent-Magnet Synchronous-Motor (PMSM) was studied in
Section 5.1. For all experiments, a model of the flux-linkage is available. After describing
the specific application scenario, a common control strategy, known as Maximum Torque
per Ampere (MTPA) strategy, is summarized. The MTPA strategy is utilized to artificially
generate training data in a realistic operating range of the motor. Based on stationary
operating points of a dynamic PMSM model, a measurement model, which quantifies
the expected uncertainties in the flux-linkages, is derived. The measurement model
serves as basis to evaluate the robustness of the approximators against constant, as well
as heteroscedastic Gaussian noise. Furthermore, the influence of changing operating
conditions is discussed. Next, an appropriate kernel function is selected based on available
prior knowledge. Since the flux-linkage is a smooth function with linear trend, a Gaussian
kernel in combination with a linear kernel is used. The hyperparameters of the kernel
are tuned offline with cross-validation (CV) and maximum marginal likelihood (MML).
In order to reduce the computational complexity of CV, some hyperparameters are fixed
a priori. For comparison, MML is performed without the use of prior knowledge. The
reliability of the obtained hyperparameters is evaluated with histograms and confidence
intervals. A comparison of the CV- and MML-tuned kernel showed that the MML-tuned
kernel performs slightly better. As a baseline for the online approximators serves an
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experiment with random sampled data and constant Gaussian noise. Thereby, the KRLS
and rec-GP perform best, with a prediction error a magnitude smaller than noise level.
This is close to the prediction error of a GP. However, both approximators require only
a fraction of the GPs computational complexity. This is followed by an evaluation of
the approximators with artificially generated data according the described application
scenarios. For representative operating data, all approximators, except the KAP, resulted
in an prediction error a magnitude smaller than noise level in the region of the training
data. The rec-GP and the B-KRLS performed best and also extrapolated the data properly.
In presence of heteroscedastic noise, the learning speed of the approximators decreased
slightly in general. The accuracy of the KRLS and the rec-GP with heteroscedastic noise
remained almost identical as for constant noise. The KAP and the B-KRLS are able
to approximate drifting functions with an prediction error below noise level. Thereby,
the B-KRLS learned faster and the error is slightly smaller compared to the KAP. The
B-KRLS and the rec-GP further provide a model of the prediction uncertainties.

The data-based approximation of an average model of an voltage source inverter (VSI),
is discussed in Section 5.2. In this application scenario, the data was obtained from online
measurements during motor operation. Thus, the latent function as well as the noise
model are unknown. Since the measurements are performed at discrete rotor speeds, the
kernel hyperparameters are tuned to interpolate the measurement properly. Therefore,
a Gaussian kernel with different lengthscales for each direction is used. The size of the
dataset affected the hyperparameter tuning significantly. Again histograms and confidence
intervals are used to evaluate the reliability of the results. An evaluation based on stream-
ing measurement data was given in Section 5.2.3. The KRLS and the B-KRLS result in
the best approximation. However, the KRLS requires to perform offline trails in order to
find suitable parameter settings, which may hinder its usage in a real-time system.

It is concluded, that the B-KRLS is best suited for both application scenario since it
results in a good approximations for random and representative operating data, allows to
model drifting functions and provides a predictive variance. Furthermore, its computa-
tional complexity can be defined a priori which is often required for the use in a real-time
system control system.

With regards to future work, it would be interesting to implement the online algorithms
in a motor control system and investigate how the use of online function approximation
affects the control performance of the whole drive system.



A Appendix

A.1 Parameters

Name Parameter Value
Stator resistance R 26.6 mΩ
Inductance Ld 60.9 µH
Inductance Lq 89.6 µH
Per. magnet flux Ψm 4.82 mWb
Pole pairs np 4
Maximal current Imax 84.9 A
Nominal current In 34 A
Mechanical speed nn 1400/min
Maximal torque τmax 2.4 N m
Nominal torque τn 1 N m

Table A.1: Parameters of the considered PMSM.

Parameter Value
σR 1 mΩ
σi 10 mA
σv 10 mV
σω 10 rad/s

Table A.2: Assumed standard deviation of measurement variables for error propagation
analysis (5.13).

A.2 Mathematical Background
A.2.1 Matrix Inversion Lemma
If A, C and A + BCD are regular quadratic matrices, then the matrix inversion lemma
[36] states

(A + BCD)−1 = A−1 − A−1B

C−1 + DA−1B

�−1
DA−1 . (A.1)

73



A Appendix A.2 Mathematical Background 74

A.2.2 Block Matrix Inversion Identity
If A and D and are regular quadratic matrices, then the block matrix inversion identity
[36, Appendix A.5] states


A B
C D

�−1

=



A − BD−1C

�−1 −A−1B

D − CA−1B

�−1

−D−1C

A − BD−1C

�−1 �
D − CA−1B

�−1

 . (A.2)

A.2.3 Gaussian Identities
An m-dimensional multivariate Gaussian distribution with mean µ ∈ Rm and covariance
Σ ∈ Rm×m is defined as

N (µ, Σ) = N (x | µ, Σ) = (2π det(Σ))m/2 exp
�1

2(x − µ)TΣ−1(x − µ)
 

. (A.3)

The definition of a Gaussian process [25, 45] implies that, if the two arbitrary finite sets f1
and f2 are jointly Gaussian random vectors

p(f1, f2) = N


µ1
µ2

�
,


Σ11 Σ12
Σ21 Σ22

�
(A.4a)

p(f1) =
�

p(f1, f2) df2 = N (µ1, Σ11) (A.4b)

p(f2) =
�

p(f1, f2) df1 = N (µ2, Σ22) (A.4c)

then the conditional probability p(f2 | f1) of f2 given f1 is also Gaussian

p(f2 | f1) = N (µ, Σ) (A.5a)
µ = µ2 − Σ21Σ−1

11 (f1 − µ1) (A.5b)
Σ = Σ22 − Σ21Σ−1

11 Σ12 . (A.5c)

The product of two Gaussian distributions is also Gaussian

N (x | a, A) N (Px | b, B) = zc N (x | c, C) (A.6)

where Px is a linear projection and

c = C

A−1a + PTB−1b

�
(A.7)

C =

A−1 + PTB−1P

�−1
(A.8)

zc = (2π)− m
2 det


B + PAPT

�− 1
2 exp

�
−1

2(b − Pa)T

B + PAPT

�−1
(b − Pa)

 
(A.9)
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A.2.4 Kullback-Leibler Divergence
The Kullback-Leibler (KL) divergence or relative entropie is a measure how similar two
probability density functions (PDF) are. The KL-divergence between two PDF is defined
as

KL(p(x) , q(x)) =
�

p(x) ln
�

p(x)
q(x)

 
dx ≥ 0 . (A.10)

The KL-divergence is not symmetric KL(p(x) , q(x)) ̸= KL(q(x) , p(x)) and positive. Its
zero if and only if p(x) = q(x). The KL-divergence between two multivariate Gaussian
distributions (A.3) can be obtained in closed form. Suppose p(x) = N


µp, P

�
and

q(x) = N

µq, Q

�
are m-dimensional Gaussian PDFs, then

KL(p(x) , q(x)) = 1
2

�
ln det(Q)

det(P) + Tr

Q−1P

�
+


µp − µq

�T
Q−1


µp − µq

�
− m

 
.

(A.11)

A.3 Gaussian Process with Heteroscedastic Noise
Heteroscedastic noise is noise which depends on the input locations, i.e. σn = σn(x). The
predictive equation of a Gaussian process with heteroscedastic noise [15] is given as

p(y∗ | x∗, y) = N

f̂(x∗), σ̂2(x∗)

�
(A.12a)

f̂(x∗) = K(x∗, X)(K(X, X) + Σn)−1y (A.12b)
σ̂2(x∗) = k(x∗, x∗) + σ2

n(x∗) − K(x∗, X)(K(X, X) + Σn)−1K(X, x∗) . (A.12c)

where Σn = diag
	

σ2
n(x1) . . . σ2

n(xN )
��

is a diagonal matrix.
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