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Kurzfassung
Die Erfindung des Lasers hatte einen enormen Einfluss auf unsere Gesellschaft – kaum
eine andere Technologie erstreckt sich auf so viele verschiedene Anwendungsbereiche.
Die besonderen Eigenschaften des Laserlichts, welches sich durch hohe Intensität und
Kohärenz auszeichnet, führten zu einem erheblichen technologischen Fortschritt. Wie
sich herausgestellt hat, ist das zugrundeliegende Prinzip des Laserprozesses – die stimu-
lierte Emission – jedoch nicht auf Licht und elektromagnetische Strahlung beschränkt,
sondern kann in ähnlicher Art und Weise auch auf andere Signalformen, wie etwa me-
chanische Oszillationen, angewandt werden. Diese Erkenntnis lieferte die Grundlage
für die Entwicklung von Phononenlasern, welche als das akustische Gegenstück zu
optischen Lasern gesehen werden können. Mit Hilfe dieser neuartigen Laservorrichtun-
gen eröffnen sich zahlreiche faszinierende Forschungsbereiche mit vielversprechenden
Anwendungsmöglichkeiten.

Wie in dieser Arbeit gezeigt wird, verkörpern Phononenlaser eine geeignete Plattform,
um den Einfluss eines sogenannten Ausnahmepunkts (engl. „exceptional point“, EP)
auf die Eigenschaften eines Lasers zu untersuchen. EPs sind eine spezielle Art von
nicht-hermitescher Entartung, bei der mehrere Eigenwerte und auch die dazugehöri-
gen Eigenvektoren miteinander verschmelzen, wodurch wiederum andere interessante
Effekte hervorgerufen werden können. Eine der ersten theoretischen Vorhersagen im
Zusammenhang mit EPs war die extreme Verbreiterung der Laserlinienbreite auf Grund
der nicht-Orthogonalität der Resonatormoden. Während dieser Effekt niemals direkt
in einem optischen Laser beobachtet werden konnte, hat sich die Situation mit der
Verfügbarkeit von Phononenlasern entsprechend geändert. Durch die Untersuchung des
Verhaltens eines Phononenlasers in der Umgebung eines EPs, sowohl theoretisch als auch
experimentell, konnte in der vorliegenden Arbeit diese EP-induzierte Linienverbreiterung
erstmals explizit sichtbar gemacht werden.

Weiters beschäftigt sich diese Dissertation mit der Zeitumkehr des Laserprinzips. Vor
einigen Jahren wurde gezeigt, dass ein bestimmtes monochromatisches Signal perfekt
von einem Objekt absorbiert werden kann, wenn sowohl die exakte Signalform als
auch die Absorptionsstärke genau aufeinander abgestimmt werden. Dieser Vorgang,
der als „kohärente perfekte Absorption“ bezeichnet wird, kann als die zeitumgekehrte
Version des Laserprozesses an der Laserschwelle verstanden werden, weshalb man
in diesem Zusammenhang auch von einem Anti-Laser spricht. Während sich frühe
Ausführungen von kohärenten perfekten Absorbern auf relativ einfache Systeme mit
einem gewissen Grad an geometrischer Symmetrie beschränkt haben, konnte im Rahmen
dieser Dissertation gezeigt werden, wie dieses Konzept auch auf ungeordnete Medien und
komplexe Streusysteme verallgemeinert werden kann. Basierend auf dieser technischen
Verbesserung wird hier die erste experimentelle Umsetzung eines Zufalls-Anti-Lasers
vorgestellt.
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Kurzfassung

In diesem Zusammenhang wird auch das Phänomen der „kohärenten virtuellen Ab-
sorption“ diskutiert, bei dem die Energie eines geeignet geformten einlaufenden Signals
vorübergehend in einem verlustlosen System gespeichert wird und bei Bedarf wieder
freigesetzt werden kann, wenn das einlaufende Signal geändert wird. Dieser Effekt
kann unter anderem dafür genutzt werden, das gestreute Signal von einem unvollkom-
men absorbierenden System temporär zu unterdrücken, um die Resonanz eines idealen
Anti-Lasers zu imitieren. Darüber hinaus werden Methoden zur weiteren Verbesserung
der technischen Anwendbarkeit von Anti-Lasern vorgestellt. Einerseits wird gezeigt,
wie ein System konstruiert werden kann, um ein vordefiniertes Signal mit beliebig
gewählter Frequenz perfekt zu absorbieren, indem die innere Struktur des Systems
optimiert wird. Andererseits wird die kohärente perfekte Absorption von Signalen mit
beliebiger Wellenfront in einer entarteten Kavität besprochen. Letzteres wird dabei
auch mit aktuellen experimentellen Ergebnissen verglichen, welche unsere theoretischen
Vorhersagen bestätigen. Zuletzt wird noch ein Schema für die perfekte Absorption von
elektromagnetischen Pulsen, also von äußerst breitbandigen Signalen, vorgeschlagen.
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Abstract
The invention of the laser had a tremendous impact on our society—hardly any other
technology can be found in so many different fields of applications. The special prop-
erties of laser light, which is characterized by high intensity and coherence, enabled
formidable technological advances. As it turned out, the underlying principle of the
lasing process—stimulated emission—is not limited to light and electromagnetic radi-
ation but can be similarly applied to other signal forms like, for example, mechanical
oscillations. That insight provided the basis for the development of phonon lasers, which
can be considered as the sonic equivalent to optical lasers. This novel type of laser
device opens up many areas of fascinating new physics with promising applications.

As we show in this thesis, phonon lasers represent a suitable platform to study the
influence of a so-called “exceptional point” (EP) on the lasing characteristics. EPs are a
special type of non-Hermitian degeneracy at which some of the eigenvalues and also their
corresponding eigenvectors coalesce, which can in turn induce several other interesting
effects. An early theoretical prediction associated with EPs was the extreme broadening
of the laser linewidth caused by the non-orthogonality of the resonator modes. While
this effect could never be directly observed in an optical laser, the situation changed with
the availability of phonon lasers. Our work demonstrates the first observation of this
EP-induced linewidth broadening by investigating the behavior of a phonon laser in the
vicinity of an EP, both theoretically and experimentally.

Furthermore, this thesis deals with the time-reversal of the lasing principle. Recently,
it was shown that a specific monochromatic signal can be perfectly absorbed by an
object if both the exact waveform and the absorption strength are precisely tuned. This
process, which is called “coherent perfect absorption”, can be considered as the time-
reverse of lasing at threshold and is therefore also referred to as anti-lasing. While early
implementations of coherent perfect absorbers were limited to relatively simple systems
with a certain degree of geometric symmetry, we demonstrate in the framework of this
dissertation how the concept can be extended to the general case of disordered media
and complex scattering systems. Based on this technical improvement, we present the
first experimental realization of a random anti-laser.

In this context, we also discuss the phenomenon of “coherent virtual absorption”,
where the energy of a suitably shaped incident signal is transiently stored inside a
lossless structure and can be released on demand if the incoming waveform is changed.
We further make use of this effect to suppress the scattered signal from an imperfectly
absorbing system temporarily in order to mimic the response of an ideal anti-laser.
Moreover, several methods to improve the versatility of coherent perfect absorbers for
technical applications are presented. On the one hand, we show how specific input
states with predefined frequency can be perfectly absorbed if the system structure is
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Abstract

accordingly engineered. On the other hand, the coherent perfect absorption of signals
with arbitrary wavefront is discussed in the framework of a degenerate cavity anti-laser.
The latter is also compared to recent experimental results which verify our theoretical
predictions. Finally, we propose a protocol for the perfect absorption of electromagnetic
pulses, i.e., highly polychromatic signals.
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Chapter 1

Introduction

The history of physics is strongly characterized by certain milestones which paved the
way for a significant improvement of our understanding of nature or opened up major
opportunities for important technological advancements. One of the most essential
scientific achievements of the past century was the development of the laser [1, 2].

Based on the phenomenon of stimulated emission [3, 4], the coherent amplification of
electromagnetic waves has been first demonstrated in the microwave regime at Columbia
University in 1953 [5, 6]. Only a few years later, the concept was already extended to
infrared and optical wavelengths [1]. During the following decades, however, a large
range of frequencies in the electromagnetic spectrum was covered by applications of the
lasing principle [7]. Simultaneously, a comprehensive laser theory was developed [8–10]
and the better the characteristics of laser light have been understood, the more relevant the
lasing process became in industry and technology. Nowadays, the laser forms an integral
part of our daily life, which is proven by countless applications [7, 11, 12] ranging
from surgical and industrial cutting tools via laser pointers through to transmitters
for optical communication—and probably there are many more to be invented in the
future. Moreover, lasers are used in several scientific disciplines as standard laboratory
equipment, e.g., for high-precision measurements on the nanoscale level, as a coherent
source of electromagnetic signals, or for high harmonic or ultra-short pulse generation.

Over the years, it turned out that the principle of stimulated emission can be gen-
eralized in the sense that it is not limited to electromagnetic waves (i.e., photons) but
can be similarly applied to other signal types like, for instance, mechanical oscillations
(i.e., phonons) [13–17]. This insight gave rise to the development of several “exotic
laser” devices such as phonon lasers [18–28], plasmon lasers [29–33], or polariton
lasers [34–40]. Even the coherent amplification of matter waves has been reported—a
concept which is commonly referred to as atom laser [41–47]. With the advent of these
novel laser variants, a whole new field of research opened up with many interesting new
insights and promising applications [48–50].

Within the scope of laser physics, also the influence of so-called exceptional points
(EPs) is of enormous physical interest [51–55]. Exceptional points are peculiar features in
the parameter space of non-Hermitian matrices where they represent spectral singularities
at which not only some of the eigenvalues but also the corresponding eigenvectors of the
system coalesce. This special type of degeneracy gives rise to a number of intriguing and
often also counter-intuitive features such as the reversal of the pump-dependence of a
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Chapter 1 Introduction

laser [56,57], loss-induced suppression and revival of lasing [58], directional lasing [59],
or asymmetric mode switching [60].

An early theoretical prediction associated with EPs in lasers was the broadening of
the laser linewidth [61, 62] beyond the fundamental Schawlow-Townes limit [1]. This
broadening is induced by the non-orthogonality of resonator modes, which leads to
excess quantum noise, and is quantified by the Petermann factor [63–65]. While such a
linewidth enhancement could already be measured in several experiments [66–68], only
subsequent theoretical work associated this behavior to the presence of a nearby EP [62].
A direct observation of the laser linewidth broadening directly at an EP remained out of
reach because experimentally it is neither straightforward to steer a laser to an EP nor
to measure its extremely narrow linewidth. However, this situation changed with the
availability of phonon lasers, whose linewidth can be measured more easily than in their
optical counterparts. In fact, we could show recently that the linewidth of a phonon laser
is indeed significantly broadened when the system is operated near an EP [24].

While the laser as a source of coherent signals is vital for myriads of scientific and
industrial applications, there is also a large number of technologies which rely on the
absorption of such a signal—for example, any type of signal receiver like mobile phone
antennas or signal detectors. In order to optimize the efficiency of such devices, it
is desirable to maximize their absorption strength for specific signals. The ultimate
limit for this improvement is clearly that of complete (i.e., 100%) absorption, which
implies that the entire incident energy is perfectly focused on the device without any
backscattering. This idealized situation corresponds to the excitation of a zero of the
system’s scattering matrix [69], which means that the incident signal represents an
eigenstate of the scattering matrix with vanishing eigenvalue. In 2010, physicists from
Yale University have shown in a theoretical analysis [70] that this process, which is
called coherent perfect absorption, can indeed be realized if the amount of dissipation
inside the system as well as the properties of the incoming monochromatic signal are
precisely tuned. Already one year later, in 2011, the first experimental realization of
such a coherent perfect absorber (CPA) was reported [71]. Since this effect corresponds
to the time-reversed process of lasing at threshold, a CPA is also referred to as anti-
laser [72, 73].

Due to their promising ability of optimizing absorption processes with potential
applications in sensing, radar cloaking, or signal transmission, CPAs have attracted
considerable scientific interest [74]. Consequently, a remarkable number of theoretical
and experimental realizations has been published during the last years [70,71,75–92]. In
addition, it was demonstrated how the effects of lasing and anti-lasing can be combined
[93–95] within the framework of PT-symmetric optical systems [96–99]. Moreover,
several fascinating CPA-related results have been presented in the context of ultrathin
metamaterials [84], exceptional points [100–102], or sub-wavelength focusing [103–105].
Further, it turned out that even for lossless objects the entire reflection and transmission
can be transiently suppressed by temporal modulation of the incident signal [106]. As
long as the proper input waveform is maintained, the outgoing components destructively
interfere with each other and the impinging energy is temporarily stored inside the object.
This phenomenon is called coherent virtual absorption and opens up interesting new
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lines of research and applications [106–109].
While early implementations of coherent perfect absorption have been realized in

rather simple geometrical structures, this thesis aims to demonstrate how the concept can
also be applied in disordered media and complex scattering environments. Because of
the time-reversal analogy to a random laser [110,111], this kind of device is also referred
to as random anti-laser [91]. In order to make CPAs suitable for actual “real-world” uses
apart from ideal laboratory conditions, however, further improvements of the versatility
of such devices as well as of their theoretical understanding will be required, although
first advances towards customizable applications have already been made [112–115].

This thesis is structured as follows: in chapter 2, an overview of the laser basics is
given and the lasing principle is generalized to signal forms other than electromagnetic
waves. This generalization is discussed in detail by taking the example of a phonon laser.
Chapter 3 shows how a phonon laser can be used to study the influence of an exceptional
point on the lasing characteristics. In particular, the phonon laser threshold and linewidth
are investigated in the vicinity of an EP. The numerical analysis based on the dynamical
system equations is compared to recent experiments performed by our collaborators at
the Micro/Nano Photonics Lab of Washington University in St. Louis.

The time-reversal of the lasing process is introduced in chapter 4, which leads to the
concept of coherent perfect absorption. After a brief review of early implementations
in rather simple geometries, we show how this effect can be generalized to disordered
media and present the first implementation of a random anti-laser, which was realized
in close collaboration with the Institut de Physique de Nice at the Université Côte
d’Azur. Chapter 5 deals with coherent virtual absorption, where we first introduce
the concept in a simple one-dimensional system and then generalize the principle to
one- and two-dimensional disordered media by numerical optimization of the input
signal. Within chapter 6, we present several techniques to improve the usability of
coherent perfect absorption for technical applications. On the one hand, we discuss
the absorption of specific input signals with predefined frequency and wavefront by
customized engineering of the system structure, and on the other hand, we treat the
universal absorption of arbitrary wavefronts in a degenerate cavity setup. The latter
case is also compared to experimental results from a collaboration with the Advanced
Imaging Lab from the Hebrew University of Jerusalem. Furthermore, we propose
the possibility of annihilating the outgoing waves from a detuned CPA by temporal
modulation of the incoming signal amplitude, as well as a concept for the perfect
absorption of electromagnetic pulses.

The thesis ends with a conclusion and outlook in chapter 7, and additional information
about technical details can be found in the Appendix.
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Chapter 2

Lasers

2.1 Laser basics
The acronym LASER was introduced by Gordon Gould [2] and stands for light am-
plification by stimulated emission of radiation. However, the fundamental principle
of the laser was first demonstrated for microwaves [5, 6] and was thus referred to as
MASER1. Although there exist several other “-ASER” acronyms—such as RASER for
radio frequencies, UVASER for ultraviolet, or XASER for X-rays—the term laser has
become a generic expression for all devices which are based on the laser principle.

As already comprised by the acronym, the essential process behind the laser is stimu-
lated emission, which is one of the fundamental quantum processes in the interaction
between electromagnetic fields and matter. Other important types of interaction in this
scope are spontaneous emission or absorption of a photon. The occurrence of these
phenomena is closely related to the quantized nature of the energy levels in atoms or
molecules, which is illustrated schematically in fig. 2.1. For the sake of simplicity,
we consider a two-level system in order to capture the essence of the aforementioned
light-matter interactions. In the case that the system is originally prepared in the lower
energy level E1 (ground state), an incident photon can be absorbed by the system if the
photon energy hω is approximately equal to the energy difference between the upper
and the lower level, i.e., hω ≈ ΔE = E2 - E1. After this process, which is called
absorption, the system ends up in the upper energy level E2 (excited state) as the photon
energy is transformed into internal energy of the system. The excited state is generally
unstable which causes the system to decay into the ground state at a characteristic rate.
The excess energy is thereby spontaneously emitted into the environment in the form
of a photon with frequency ω = ΔE/h (transition frequency). Such a spontaneous
emission produces a photon which travels in a random direction, with random phase
and polarization. However, the decay of the excited state into the ground state can also
be triggered by the interaction with an additional photon with the transition frequency
ω = ΔE/h. In this case, which is referred to as stimulated emission, the emitted photon
is an exact copy of the incident photon that induced the emission, i.e., it features the
same frequency, phase, polarization, and direction of travel. In a subsequent step, these
two photons could interact with other equivalent two-level systems (prepared in the
excited state) and so on and so forth, thus producing more and more identical photons.
1 Microwave amplification by stimulated emission of radiation
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absorption spontaneous emission stimulated emission
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Figure 2.1: Schematic visualization of fundamental light-matter interactions: absorption,
spontaneous emission, stimulated emission.

Therefore, the effect of stimulated emission can be exploited for a coherent amplification
of an electromagnetic wave and hence provides the physical basis for a laser.

For building an actual laser in its simplest form, three major components are essential:
an active medium (gain medium), an energy pump mechanism, and a resonator. The
gain medium usually consists of an ensemble of atoms or molecules featuring different
discrete energy levels, two of which are involved in the stimulated emission process.
Since the effects of stimulated emission and absorption are competing with each other, it
is necessary that the population of the upper energy level exceeds the population of the
lower energy level in order to achieve a net amplification. Due to the fact that excited
states are decaying over time, such a population inversion can be maintained only if
a suitable pump mechanism is implemented, which continuously populates the upper
energy level of the laser transition. The pump energy can be provided by, e.g., an arc or
flash lamp, gas discharge, or another laser. In a two-level system, a population inversion
cannot be achieved because at some point the rates of absorption and emission would
become equal. Consequently, there must be at least three energy levels involved in the
pumping scheme, as shown in fig. 2.2a. In practice, many laser systems are based on
a four-level pumping scheme with energies EG < EL < EM < EP (see fig. 2.2b). In
such a system, electrons are pumped from the ground state EG into the pump band EP,
which has a fast, radiationless decay into the metastable energy level EM. The laser
action (stimulated emission) takes place between the levels EM and EL, where the lower
level EL decays rapidly into the ground state EG. Because of the relatively long lifetime
of the upper energy level EM and the fast depletion of the lower energy level EL, a
population inversion can be achieved more easily than in a three-level pumping scheme.
The magnitude of the population inversion and hence the achievable laser amplification
is determined by the power which is supplied by the pump mechanism. The minimum
pump power at which the gain exceeds all losses due to absorption or energy leakage out
of the system is called the lasing threshold. Pumping above the laser threshold results in
exponential amplification of the laser light as it passes through the active medium, while
the achievable laser intensity is limited, however, due to nonlinear saturation effects
stemming from the depletion of the population inversion with increasing field strength.
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Figure 2.2: Typical laser pumping schemes. Three-level laser pumping (a): electrons are
pumped from the ground state EG into the pump band EP, which decays rapidly into the
metastable energy level EM. If the pumping is strong enough, a population inversion between
EM and EG can be achieved. Four-level laser pumping (b): as compared to the three-level
pumping in (a), there is an additional energy level EL between EM and EG, which now forms
the lower energy level of the laser transition instead of EG. Since the energy level EL decays
rapidly into the ground state EG, a population inversion between EM and EL can be achieved
more easily as the lower level EL is almost empty at all times.

In order to maximize the amplification while keeping the system size reasonably small,
the gain medium is usually embedded in a resonator, which provides feedback of the
laser light. In the simplest case, such a resonator could be a Fabry-Pérot-like cavity as
depicted in fig. 2.3a. Within such a setup, the light is reflected back and forth between
two mirrors, thus dramatically increasing the effective path length that it travels through
the gain medium inside. If the mirrors are partially transparent (at least one of them), part
of the light can be coupled out as a coherent laser beam, given that the system is pumped
above threshold. However, the optical feedback can also be provided in a different
way: if the gain medium is placed inside a disordered medium (see fig. 2.3b), multiple
reflections can trap the light within the gain medium sufficiently long to reach the lasing
threshold. Due to the chaotic character of the scattering inside the disordered medium,
this type of device is called random laser [110, 111]. Laser light which is emitted from
such a random laser typically features a highly complex spatial field pattern.

For pumping below threshold, the laser output is non-vanishing because of (ampli-
fied) spontaneous emission and increases slightly with increasing pump power. Above
threshold, where the laser light is dominated by contributions from stimulated emission
rather than from spontaneous emission, the slope of the power dependence is orders of
magnitude greater than it is below. Furthermore, due to the characteristics of stimulated
emission, the spectral width, i.e., the laser linewidth, is dramatically decreased above
threshold. These properties make laser light—which is characterized by high intensity,
narrow linewidth, and a high degree of coherence—an indispensable component of
modern technology.

More detailed information on laser theory or technical realizations can be found in
numerous relevant textbooks [7–10].
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(a) (b)pump energy

gain medium

𝑅 < 100%

pump energy

gain medium scatterers𝑅 < 100%
Figure 2.3: Different types of optical feedback in lasers. In its simplest form, a laser consists
of a gain medium embedded in a resonator (a), where the optical feedback comes from
multiple reflections between the two mirrors. Laser light can be coupled out of the system if
the end mirrors are partially transparent (R < 1). Alternatively, the optical feedback can be
provided by chaotic scattering in a disordered medium (b), which results in a highly complex
wavefront of the emitted laser signal. In any case, the gain medium must be supplied with
energy by an external pump mechanism in order to maintain the population inversion.

2.2 Generalization of the lasing principle
As explained in section 2.1, the underlying mechanism of the lasing principle is the effect
of stimulated emission. However, this process is not limited to electromagnetic waves
(i.e., photons) but can also occur in a similar manner for certain bosonic quasiparticles
such as phonons or plasmons. This becomes clear if we consider the structure of a
typical laser Hamiltonian [9],

Ĥ = ĤF + ĤA + ĤA-F + ĤB1 + ĤB1-F + ĤB2 + ĤB2-A , (2.1)

in which ĤF denotes the Hamilton operator of the laser field, ĤA corresponds to the
active medium, and ĤA-F describes the interaction between the active medium and the
field. The operators ĤB1 and ĤB2 stand for heat baths which are coupled to the field and
to the active medium, respectively. The corresponding interaction terms are denoted by
ĤB1-F and ĤB2-A.

Particularly, however, we are interested in the interaction term ĤA-F. We assume that
the active medium consists of an ensemble of suitable atoms. Under certain approxi-
mations (e.g., rotating wave approximation) and assuming that only two atomic energy
levels are involved in the laser transition, the interaction between a single atom and the
field can be written as [9, 116]

Ĥa-F = hg
(
â†2â1b̂ + b̂†â†1â2

)
, (2.2)

where â1 and â2 (â†1 and â†2) denote the annihilation (creation) operators of an electron
in the lower (E1) and upper (E2) atomic energy levels, b̂ (b̂†) describes the annihilation
(creation) of a photon in the field mode, and g is a coupling constant. The structure of
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2.3 Phonon lasers

eq. (2.2) reveals two possible atom-field interactions: the first term in the parentheses
represents the absorption of a photon while an electron is excited from the lower energy
level E1 into the upper energy level E2, whereas the second term describes the emission
of a photon while an electron drops from the upper energy level E2 into the lower energy
level E1. Since the active medium consists of a large number of atoms, which are
distinguished by the index μ, the total interaction term ĤA-F is given by the sum over all
individual contributions Ĥaμ-F, i.e.,

ĤA-F =
Σ
μ

Ĥaμ-F = hg
Σ
μ

(
â†2,μâ1,μb̂ + b̂†â†1,μâ2,μ

)
. (2.3)

Under the premise of a population inversion, laser action becomes possible by stimu-
lated emission due to photon-mediated atomic transitions from the upper energy level to
the lower energy level. As already explained in section 2.1, the frequency and hence also
the wavelength of the laser mode is determined by the energy difference ΔE = E2 - E1

between the upper and lower level of the laser transition. Theoretically, this opens
up the whole electromagnetic spectrum for potential laser applications, provided that
a suitable active medium and a corresponding resonator are available. However, this
concept is not limited to photons interacting with atoms. In fact, it could be shown that
the principle of stimulated emission can be similarly applied to other signal types besides
electromagnetic waves, e.g., phonons [13,14,16]. Moreover, the two-level (sub-) system
that is involved in the laser transition can also be realized differently, i.e., other than in
ensembles of atoms or molecules. For example, the two-level system can be represented
by two optical (photon) modes whose transitions are mediated by a mechanical (phonon)
mode, as it is the case in the phonon laser system considered in this thesis [24], which is
explicitly discussed in sections 2.3.1 and 2.3.2.

This insight forms the basis for various “exotic lasing” concepts such as phonon
lasers [18–28], plasmon lasers [29–33], or polariton lasers [34–40]. Similarly, the
principle can even be applied to matter waves in so-called atom lasers [41–47], where a
coherent beam is created out of a Bose-Einstein condensate of atoms.

2.3 Phonon lasers2

As a specific example for the generalization of the lasing principle to signal forms apart
from electromagnetic waves, we want to consider the case of a phonon laser. A phonon
laser can be understood as the sonic equivalent to a conventional photon laser and is thus
also referred to as SASER, which is the acronym for sound amplification by stimulated
emission of radiation. During the last years, phonon lasers have been theoretically
discussed or even experimentally realized in the framework of many different approaches.

One of the earliest theoretical suggestions for a phonon laser scheme is a resonator
filled with a dielectric liquid with gas bubbles as the active medium [15,16]. In a different
approach, phonon-assisted electron hopping between neighboring quantum wells takes

2 Part of the text in this section is based on a preliminary study in the course of my diploma thesis [117].
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place in a doped semiconductor superlattice with an electrical bias applied to it [17],
which is the basis for the coherent phonon amplification in the system presented by
Beardsley et al. [20]. In contrast, the system presented by Vahala et al. consists of a
single trapped ion that is driven by a blue-detuned laser beam [18]. Another possibility to
realize a phonon laser was demonstrated by Grudinin et al., who implemented a system
of two coupled microresonators [19]. Their experiment, which is very similar to the
phonon laser treated in this thesis (see section 2.3.1), makes use of the optomechanical
interaction between two optical modes and one mechanical mode. Kabuss et al. have
suggested a phonon-lasing scheme with an optically driven semiconductor quantum dot
coupled to an acoustic nanocavity [21,22]. Beyond that, many other approaches have
been reported [23, 25–28, 118], while, in fact, any multi-state system where transitions
between the energy levels are phonon-mediated represents a conceivable platform for
the realization of a phonon laser, as already mentioned in section 2.2.

Especially because of the high frequencies available (up to the THz range) and due
to potential applications in, e.g., sensing, probing and manipulating electronic devices
at nanoscale level, or as high precision imaging or measurement instruments, phonon
lasers might play an important role in future technological developments.

2.3.1 Experimental realization
The phonon laser system considered in this thesis was implemented by our collaborators
at the Micro/Nano Photonics Lab of Washington University in St. Louis [24]. It consists
of two coupled silica whispering-gallery-mode resonators (WGMRs)3 of equal size, one
of which also supports mechanical oscillations. Therefore, the system supports two
optical modes, as well as a mechanical mode. Particularly, the first resonator (which
also supports the mechanical mode) supports a high-Q optical mode, whereas the second
resonator supports a low-Q optical mode. The coupling between the two WGMRs results
from the evanescent overlap of the optical modes and hence the coupling strength can
be tuned by varying the distance between the two resonator disks. Besides the intrinsic
optical resonator decay rates, additional loss can be introduced to the second resonator
through a chromium-coated silica nanofiber tip. Light from a tunable external cavity
diode laser in the 1550 nm band is coupled into the system via a tapered fiber which
is evanescently coupled to the first resonator. Through the same fiber, the output field
is sent to a photodetector whose signal is fed into an oscilloscope and an electrical
spectrum analyzer. A sketch of the experimental setup is depicted in fig. 2.4.

The uncoupled resonators exhibit the same resonance frequency, which is ensured by
thermal control of the two microtoroids. Due to the coupling, however, the eigenmodes
of the system are split into two supermodes, which are superpositions of the two cavity
modes (see section 2.3.2 for more details). In the strong coupling regime, i.e., when
the coupling strength is large compared to the optical decay rates, both supermodes are

3 WGMRs consist of miniaturized dielectric structures having circular symmetry, which sustain electro-
magnetic waves that circulate within the structure. They are ideally suited for studying optomechanics
as they combine ultra high finesse and Q-factors (corresponding to giant photon storage times) with
microscale mode volume [119, 120].
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2.3 Phonon lasers

Figure 2.4: Experimental setup of the phonon laser from the Micro/Nano Photonics Lab
at Washington University in St. Louis. Two coupled microtoroid resonators μR1 and μR2
contain the optical modes a1 and a2, where the first resonator μR1 also supports mechanical
oscillations with resonance frequency ωm. The coupling between the two optical modes can
be tuned by changing the distance between the two resonators and additional loss can be
introduced to the second resonator with the help of a chromium-coated nanotip. The system
is driven by a tunable infrared laser in the 1550 nm band that is evanescently coupled to the
first resonator via a tapered fiber.

spatially distributed over both resonator disks and a frequency splitting can be observed
(cf. section 3.1). On the contrary, in the weak coupling regime, they are localized in the
individual resonators such that a high-Q supermode exists in the first resonator and a
low-Q supermode exists in the second resonator. In this case, the supermode spectra have
the same central frequency but different spectral widths corresponding to the respective
resonator decay rates.

The basis for the excitation of the phonon mode is the optomechanical interaction
between the electromagnetic field and the micromechanical motion in the first resonator.
The origin of this interaction, which is the central element in the field of cavity op-
tomechanics [121], lies in the radiation pressure forces induced through the momentum
carried by light. In this context, the possibility of Raman scattering [122, 123] plays an
important role, where one can distinguish between Stokes and anti-Stokes scattering. In
a Stokes scattering event, a photon loses part of its energy which is transferred into the
mechanical mode by creating a phonon. Similar as in the effect of stimulated emission,
this process can be triggered by already existing phonons, such that the vibrational field
is coherently amplified (stimulated Raman scattering). In contrast, anti-Stokes scattering
means that a photon gains energy which is taken from the vibrational field by annihilation
of a phonon. This effect can be used for cavity optomechanical cooling [124].

With our compound microcavity system, phonon lasing can be realized in two different
ways. One possibility is to tune the system parameters—in particular the inter-cavity
coupling strength as well as the additional loss in the second resonator—in such a way
that the supermode splitting matches the resonance frequency of the mechanical mode. In
this case, the optical supermodes form an effective two-level system similar to the atomic
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or molecular energy levels in a conventional optical laser. A corresponding population
inversion can be achieved by resonantly pumping the supermode with the higher fre-
quency. The optomechanical interaction in the first resonator enables phonon-mediated
transitions between the two optical modes, which leads to a coherent amplification of
the mechanical oscillations. If the pump strength is high enough, i.e., above threshold,
the mechanical gain exceeds the loss and phonon lasing can be observed. Another
possibility to realize a phonon laser with this system is to pump one of the supermodes
non-resonantly, where the frequency difference between the blue-detuned pump laser and
the respective supermode frequency must match the mechanical resonance. When the
system is operated in this way, which is similar to the case of a Raman laser [125, 126],
the respective supermode serves as the Stokes mode in a stimulated Raman scattering
process. Analogously to the other mode of operation, phonon lasing occurs when the
pump power is high enough to ensure that the mechanical gain outweighs the cavity
losses.

2.3.2 Theoretical description

In order to gain a deeper understanding of the functionality of the experimental setup
from section 2.3.1 and also to compare the experimental results with numerical sim-
ulations, we need to construct a theoretical framework that captures the essence of
the relevant physics behind our phonon laser system (cf. [117]). Basically, the system
dynamics are governed by the two optical modes a1 and a2, as well as the mechanical
mode b. We can describe these fields in second quantization as harmonic oscillator
modes [121] by means of the corresponding creation (â†1,2 and b̂†) and annihilation
operators (â1,2 and b̂). The Hamiltonian of the free (i.e., uncoupled) field modes is then
given by

Ĥfree = hωcâ
†
1â1 + hωcâ

†
2â2 + hωmb̂†b̂ , (2.4)

where ωc denotes the optical resonance frequency of the uncoupled WGMRs and ωm

represents the mechanical resonance frequency. Since both photons and phonons are
bosons, the operators â1,2 and b̂ satisfy the usual bosonic commutator relations[

m̂ , n̂†
]
≡ m̂n̂† - n̂†m̂ = δmn , (2.5)[

m̂ , n̂
]
=
[
m̂† , n̂†

]
= 0 , (2.6)

where δmn is the Kronecker delta and m̂ and n̂ can be replaced by any of the operators â1,
â2, or b̂.

The evanescent overlap in the gap between the two resonators leads to an energy
exchange between the optical modes, i.e., transitions from a1 to a2 and vice versa.
Correspondingly, the optical interaction part of the Hamiltonian depends on the inter-
resonator coupling strength κ and is given by

Ĥ(opt)
int = hκ

(
â†1â2 + â†2â1

)
. (2.7)
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Besides this pure optical interaction, there is also the optomechanical interaction in
the first resonator, which induces a coupling between the first optical mode a1 and
the mechanical mode b. The resonance frequency of the optical mode is modulated
by the mechanical vibrations and hence is a function of the mechanical displacement
x, which is given by the expectation value of the mechanical displacement operator
x̂ = x0

(
b̂ + b̂†

)
, where x0 =

√
h/ (2mωm) is the zero-point fluctuation amplitude of

a mechanical oscillator with effective mass m. Performing a first order Taylor series
expansion yields

ωc(x) = ωc + x
ϑωc

ϑx
+ O(x2) ≈ ωc - gx , (2.8)

in which we have defined the optical frequency shift per displacement [121]

g = -ϑωc

ϑx
. (2.9)

Replacing ωc for the first optical mode in eq. (2.4) by eq. (2.8) directly leads to the
optomechanical interaction Hamiltonian

Ĥ(om)
int = -hgx0â†1â1

(
b̂ + b̂†

)
, (2.10)

for which a more detailed derivation can be found in ref. [127]. The total interaction
Hamiltonian then reads

Ĥint = hκ
(
â†1â2 + â†2â1

)
- hgx0â†1â1

(
b̂ + b̂†

)
. (2.11)

The external driving of the system is realized by a continuous-wave laser, which is
assumed to be perfectly coherent, such that the driving Hamiltonian can be written as

Ĥd = ih
(
Ωe-iωdtâ†1 - H.c.

)
, (2.12)

where Ω is the driving strength, ωd is the driving frequency, and H.c. denotes the
Hermitian conjugate. Note that eq. (2.12) represents a semi-classical approximation in
which the driving laser is described as a classical field.

The complete system Hamiltonian can be obtained by combining the results of
eqs. (2.4), (2.11) and (2.12):

Ĥsys = Ĥfree + Ĥint + Ĥd

= hωc

(
â†1â1 + â†2â2

)
+ hωmb̂†b̂ + hκ

(
â†1â2 + â†2â1

)
- hgx0â†1â1

(
b̂ + b̂†

)
+ ih
(
Ωe-iωdtâ†1 - H.c.

)
. (2.13)

For our further analysis, we are mainly interested in the comparatively slow dynamics
of the phonon mode rather than the rapidly oscillating optical modes. It is thus convenient
to transform the optical modes to a reference frame rotating at the driving frequency ωd,
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i.e., â(old)
1,2 → e-iωdtâ(new)

1,2 . To this end, we apply the unitary transformation

Û = eiωdt
(
â†1â1+â†2â2

)
, (2.14)

which generates a new Hamiltonian with time-independent driving of the form

Ĥ = ÛĤsysÛ† - ihÛ
ϑÛ†

ϑt
= -hΔ

(
â†1â1 + â†2â2

)
+ hωmb̂†b̂ + hκ

(
â†1â2 + â†2â1

)
- hgx0â†1â1

(
b̂ + b̂†

)
+ ih
(
Ωâ†1 - H.c.

)
, (2.15)

where Δ = ωd - ωc is the detuning between the driving laser frequency and the optical
cavity resonance frequency. With the help of the Hamiltonian eq. (2.15) we are now in
the position to derive the Heisenberg equations of motion for our system, which can be
written for an arbitrary operator ô according to

d
dt

ô =
i
h

[
Ĥ , ô

]
. (2.16)

Up to now, however, we have not taken any fluctuation or dissipation effects into account.
These influences stem from the interaction of the system with heat baths and are treated
within the framework of input-output theory [128, 129] (see appendix A.1 for more
details). As a result, eq. (2.16) needs to be extended by adding terms representing loss
and quantum noise,

d
dt

ô =
i
h

[
Ĥ , ô

]
- γô + Γ̂ , (2.17)

where γ is the decay rate of the operator ô and Γ̂ is a statistical noise operator. The
complete Heisenberg equations of motion for our system are then given by

˙̂a1(t) = (iΔ - γ1) â1(t) - iκâ2(t) + igx0â1(t)
(
b̂(t) + b̂†(t)

)
+ Ω + Γ̂1(t) , (2.18)

˙̂a2(t) = (iΔ - γ2) â2(t) - iκâ1(t) + Γ̂2(t) , (2.19)
˙̂b(t) = (-iωm - γm) b̂(t) + igx0â†1(t)â1(t) + Γ̂b(t) , (2.20)

in which γ1,2 are the optical decay rates, γm is the mechanical decay rate, and Γ̂1,2 and Γ̂b

are the optical and mechanical noise operators. The fluctuations are assumed to represent
a Markovian4 white noise with zero mean and finite variance. Therefore, the statistical
averages5 of the noise operators in eqs. (2.18) to (2.20) are all equal to zero,<

Γ̂1(t)
>
=
<
Γ̂2(t)
>
=
<
Γ̂b(t)
>
= 0 , (2.21)

4 A Markov process is memoryless, i.e., the probability distribution of a future state does not depend on
previous events but only on the current state.

5 Average over many different realizations, denoted by angle brackets.
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and the individual operators are delta-correlated, i.e., satisfying the correlation relations<
Γ̂1(t) Γ̂†1(t,)

>
= 2γ1

(
n̄(opt)

th + 1
)
δ(t - t,) , (2.22)<

Γ̂
†
1(t) Γ̂1(t,)

>
= 2γ1n̄(opt)

th δ(t - t,) , (2.23)<
Γ̂2(t) Γ̂†2(t,)

>
= 2γ2

(
n̄(opt)

th + 1
)
δ(t - t,) , (2.24)<

Γ̂
†
2(t) Γ̂2(t,)

>
= 2γ2n̄(opt)

th δ(t - t,) , (2.25)<
Γ̂b(t) Γ̂†b(t,)

>
= 2γm

(
n̄(mech)

th + 1
)
δ(t - t,) , (2.26)<

Γ̂
†
b(t) Γ̂b(t,)

>
= 2γmn̄(mech)

th δ(t - t,) , (2.27)

with the average number of thermally excited photons n̄(opt)
th ≈

(
ehωc/kBT - 1

)-1
and the

average number of thermally excited phonons n̄(mech)
th ≈

(
ehωm/kBT - 1

)-1
, where T is the

environmental temperature and kB is the Boltzmann constant. For all other combinations
of the noise operators, the correlation functions vanish [129].

In order to perform numerical simulations of our phonon laser system, the operator
equations eqs. (2.18) to (2.20) as well as the noise operator correlations eqs. (2.22)
to (2.27) need to be transformed to corresponding c-number equations, which is elab-
orated in ref. [117]. In addition, technical details about the numerical solution of the
resulting equations can be found there.

Under the assumption that the optomechanical interaction is small as compared to the
optical coupling and decay rates—which is satisfied in good approximation for the system
under consideration (see table 3.1), at least below or only slightly above threshold—the
characteristics of the optical modes are hardly influenced by the mechanical mode. For
this case, it is justified to neglect the optomechanical coupling and consider the two
optical modes alone. The isolated system consisting only of the two optical modes is
then described by the equations

˙̂a1(t) = (iΔ - γ1) â1(t) - iκâ2(t) + Ω + Γ̂1(t) , (2.28)
˙̂a2(t) = (iΔ - γ2) â2(t) - iκâ1(t) + Γ̂2(t) , (2.29)

which can be compactly written as a matrix equation,

d
dt

(
â1(t)
â2(t)

)
= -i

(-Δ - iγ1 κ
κ -Δ - iγ2

)
,......................,,......................,

M

(
â1(t)
â2(t)

)
+

(
Ω + Γ̂1(t)
Γ̂2(t)

)
. (2.30)

As already mentioned in section 2.3.1, the coupling of the two cavity modes induces the
formation of two new eigenmodes (supermodes). Solving the characteristic equation

,,,M - λ✶,,, = ,,,,,,-Δ - iγ1 - λ κ
κ -Δ - iγ2 - λ

,,,,,, = 0 (2.31)
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yields the solutions for the eigenvalues of the system matrix M,

λ± = -Δ - i
γ1 + γ2

2
±
√
κ2 - (γ2 - γ1)2

4
, (2.32)

where the real parts of the complex supermode frequencies represent the new super-
mode resonant frequencies ω± = Re(λ±) and the negative imaginary parts give the
associated dissipation rates γ± = -Im(λ±). Analogously, the corresponding eigenvectors
(supermodes) are defined by the equation

(M - λ±✶) v± = 0 (2.33)

and the solutions read

v± =
1

N±

(......(i (γ2 - γ1) ±
√

4κ2 - (γ2 - γ1)2

2κ

)......) , (2.34)

with the normalization constants

N± =

(,,,,,{,,,,,(
√

8 κ if 4κ2 ≥ (γ2 - γ1)2√
4κ2 +

(
γ2 - γ1 ±

√
(γ2 - γ1)2 - 4κ2

)2
if 4κ2 < (γ2 - γ1)2

. (2.35)

In other words, the supermodes are linear combinations of the cavity modes â1 and â2,

â±(t) =
1

N±

[(
i (γ2 - γ1) ±

√
4κ2 - (γ2 - γ1)2

)
â1(t) + 2κâ2(t)

]
. (2.36)

By rearranging eq. (2.36), the cavity modes can be expressed through the supermodes and
substituting the resulting expressions into eq. (2.15) yields the system Hamiltonian on the
supermode level, which contains terms proportional to â†+â-b̂ and b̂†â†-â+, respectively.
These terms feature the same structure as the corresponding terms in eq. (2.3) describing
the interaction between the active medium and the field in a laser, where here the phonon
mode b̂ plays the role of the laser mode and the two optical supermodes â+ and â-
represent the energy levels of the active medium. Consequently, the occurrence of
phonon laser action in our system can be expected under suitable parameter settings,
subject to a sufficiently high pump strength Ω.

16



Chapter 3

Phonon lasing near an exceptional point

3.1 Exceptional points
An interesting feature of non-Hermitian systems is the possible occurrence of so-called
exceptional points. The term exceptional point (EP) has been introduced by Kato [51]
and it refers to a special type of spectral degeneracy at which not only some of the
eigenvalues of a system but also the corresponding eigenvectors coalesce [52–54]. As a
simple example, let us consider the following non-Hermitian 2 x 2 matrix

M0 =

(
δ - iγ1 g

g -iγ2

)
(3.1)

with real parameters δ, γ1, γ2, and g. The matrix M0 could describe a system of two
modes (in a rotating frame) with intrinsic loss rates γ1 and γ2, which are coupled
with coupling strength g. The parameter δ corresponds to the difference between the
resonance frequencies of the two modes. By tuning these parameters in a proper way,
an EP can be induced in the matrix M0. Figure 3.1 illustrates the topology of the two
eigenvalues as a function of the parameters δ and g, while the values of γ1 and γ2 are
kept constant. As one can see, the eigenvalues form two intersecting Riemann sheets
and the point where both the real and the imaginary parts of the two eigenvalues are
equal represents the EP.

In many cases, the appearance of an EP leads to interesting and often also counter-
intuitive phenomena [55]. For instance, the above-threshold behavior of lasers can be
drastically influenced by EPs, where a counter-intuitive laser turn-off occurs although the
overall pump power deposited in the system is increased [56,57]. Similarly, the opposite
effect can be observed when a laser switches on although the total loss of the system
is increased [58]. Furthermore, the strong asymmetric backscattering in the vicinity of
an EP can lead to chiral behavior and unidirectional emission such that by transiting
from one EP to another one the direction of emission can be completely reversed [59].
Similarly, it is possible to switch between different states in a system of coupled oscillator
modes by an adiabatic encircling of an EP [60, 130]. Next to many other possible
applications, the physics of EPs is also of special interest in the context of parity-time-
symmetric (PT-symmetric) systems. While it was shown that also a non-Hermitian
Hamiltonian can have an entirely real spectrum if the system satisfies the condition of
PT-symmetry [96], a symmetry-breaking, where the eigenvalues become complex, is
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Figure 3.1: Eigenvalues of the non-Hermitian matrix M0 from eq. (3.1) as a function of δ and
g for constant parameters γ1 = 1 and γ2 = 2.5. The left picture shows the real part and the
right picture shows the imaginary part of the two eigenvalues λ±.

always connected with the occurrence of an EP in the system [98, 99, 131, 132].
Since our phonon laser supports only one phonon mode, it is not possible to induce

an EP in the mechanical part of the system. Instead, the optical supermodes, which
represent the energy levels of the gain medium, can be brought to an EP. Actually, the
matrix

M =
(-Δ - iγ1 κ
κ -Δ - iγ2

)
(3.2)

from eq. (2.30) that describes the isolated optical modes (i.e., without optomechanical
interaction) looks very similar to the matrix M0 in eq. (3.1). Having a closer look on its
eigenvalues eq. (2.32) and eigenvectors eq. (2.34), one can immediately see that an EP
occurs if the condition

4κ2 = (γ2 - γ1)2 (3.3)

is satisfied, which can be achieved if either the optical coupling strength κ or one of
the optical loss rates γ1 or γ2 can be adequately controlled. In our experimental setup,
the loss in the first resonator as well as the distance between the two WGMRs and
hence also the optical coupling are fixed. However, the loss in the second resonator
can be tuned with the help of the nanotip (see section 2.3.1), which allows us to steer
the system through an EP by varying the distance between the nanotip and the second
resonator. This behavior is presented in fig. 3.2, which shows the dependence of the
complex eigenvalues eq. (2.32) on the additional loss introduced by the tip (γtip).

Due to these properties, our system can be used to study the influence of an EP on the
lasing characteristics. In particular, an interesting effect on the laser linewidth can be
expected, as outlined in section 3.2.
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Figure 3.2: Frequencies ω± = Re(λ±) (left) and dissipation rates γ± = -Im(λ±) (right) of the
supermodes â± as a function of γtip. The other parameters are taken from table 3.1.

3.2 Laser linewidth

Although lasers are characterized by a high degree of coherence, an important property
of laser radiation is the intrinsic linewidth, which arises because of quantum and thermal
fluctuations. Even before the first laser was experimentally realized, Schawlow and
Townes have found a fundamental limit for the laser linewidth which is given by the
famous Schawlow-Townes formula [1]

ΔωST =
hω0γ

2
0

2P
, (3.4)

where ω0 is the laser frequency, γ0 is the passive cavity resonance width, and P is
the output power of the laser. During the following decades, several multiplicative
correction factors to the Schawlow-Townes formula have been introduced. One of these
corrections is the bad cavity factor γ̃ [133], which arises if the gain linewidth γ- is
on the order of or smaller than the passive cavity resonance width γ0 and causes the
substitution of γ0 in eq. (3.4) with γ̃ = 2γ-γ0

2γ-+γ0
. Another correction results from the

incomplete inversion of the gain medium and is referred to as spontaneous emission
factor nsp =

N2
N2-N1

[134], where N2 and N1 are the spatially averaged populations in
the upper and lower states of the lasing transition. Furthermore, the laser linewidth is
modified by the Henry α factor [135], which is caused by the nonlinear coupling between
the amplitude and phase fluctuations of the laser field. Finally, the laser linewidth is
enhanced by the Petermann factor K [63]. Due to the presence of the gain medium as
well as the openness of the laser cavity, the modes are not power-orthogonal, which
results in an enhancement of the noise power [64, 65, 136]. While such behavior has
already been experimentally verified [66, 137], it was only subsequently associated
with the presence of a nearby EP [62]. Directly at an EP, two or more resonator modes
become completely non-orthogonal (i.e., parallel), which should thus lead to a significant
linewidth broadening.

19



Chapter 3 Phonon lasing near an exceptional point

Altogether, these correction factors lead to an improved linewidth formula of the form

Δω =
hω0γ̃

2

2P
. nsp .

(
1 + α2

)
. K . (3.5)

It should be noted, however, that the correction factors in eq. (3.5) have been derived
under certain approximations and do not fully consider the spatial dependence of the
electric field or nonlinear effects like spatial hole-burning. In recent years, a linewidth
theory which also takes such effects into account has been proposed [138–140]. This
theory is based on the steady-state ab initio laser theory (SALT) [141, 142]. However,
the equations of our phonon laser system eqs. (2.18) to (2.20) have a different structure
as the conventional laser equations treated in the framework of SALT. Therefore, SALT
is not directly applicable and the phonon laser linewidth has to be calculated numerically
as described in ref. [117].

3.3 Experimental and theoretical results6

Our phonon laser system described in sections 2.3.1 and 2.3.2 provides an ideal platform
to study the effects of an exceptional point on the behavior of a laser. In particular,
the effect of such a spectral singularity on the laser linewidth is of enormous interest
to provide insights into the long-debated issue of how a laser is affected when being
operated at an EP. Indeed, we find a significant broadening of the phonon laser linewidth
but also a significant reduction of the lasing threshold in the vicinity of the EP, as
presented in sections 3.3.1 and 3.3.2.

The system parameters as determined from the experiment are given in table 3.1.
These parameter values were also used in the theoretical analysis presented in this
chapter. As opposed to the other parameters, the value for the optomechanical coupling
gx0 was not directly measured but rather estimated from a comparison between the
measured and the numerically determined threshold pump power.

As explained in section 3.1, an EP can be induced in the optical part of the system
by tuning the additional loss introduced by the nanotip, i.e., the loss rate in the second

6 The experimental results presented in this section were generated by the Micro/Nano Photonics Lab at
Washington University in St. Louis. Part of the results and figures are taken from our joint publication
[24] or have been provided by Şahin Özdemir in private communication. The theoretical analysis is
partially based on a preliminary study in the course of my diploma thesis [117].

Table 3.1: Experimentally determined phonon laser system parameters, which were also
used in the theoretical calculations.

ωc: 2π . 1.93 . 1014 Hz ωm: 2π . 17.38 MHz
κ: 2π . 12.63 MHz gx0: 2π . 160 Hz
γ1: 2π . 3.16 MHz γm: 2π . 40 kHz
γ2: 2π . 13.56 MHz
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resonator is changed according to γ2 → γ2,0 + γtip, where γ2,0 is the intrinsic loss of the
second WGMR as given in table 3.1 and γtip is the loss induced by the tip. With the help
of eq. (3.3), we can calculate the value of γtip where the EP arises, which evaluates to
γEP

tip = 2π . 14.86 MHz. In the following, the situation with γtip < γ
EP
tip will be referred to

as the regime before the EP or the strong coupling regime and analogously for γtip > γ
EP
tip

the regime after the EP or the weak coupling regime.

3.3.1 Phonon laser threshold

As a first example of the influence of an EP on the properties of our phonon laser, we
investigate the behavior of the lasing threshold. Just like for any other type of laser, the
output power of our phonon laser features a clear threshold behavior as a function of
the pump power, which was measured for different values of γtip (see fig. 3.3a). For
increasing pump power, the phonon laser output power remains close to zero until
a certain threshold value is reached above which the laser amplification sets in and
the output power increases rapidly. This behavior can also be observed in numerical
simulations [117]. Below threshold, the output power is not exactly zero but rises slowly
with increasing driving strength. The value of the threshold pump power, at which the
slope of the curve increases by several orders of magnitude, strongly depends on the
additional loss γtip. As it turns out, the threshold first slightly increases with growing γtip

but then experiences a sudden drop as the system approaches the EP. Remarkably, the
threshold remains low even if the additional loss through the tip is further increased in
the regime after the EP. This behavior is illustrated in fig. 3.3b.

In order to gain a better understanding of the relevant physics, we have derived an
analytical approximation of the phonon laser threshold. As discussed in appendix A.2,
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Figure 3.3: Experimental results for the phonon laser threshold behavior. The left plot (a)
shows the phonon laser output power as a function of the optical pump power, which is
measured for different values of γtip/(2π): 0 MHz (red), 3.8 MHz (orange), 6.9 MHz (yellow),
11.9 MHz (green), 13.8 MHz (blue), and 17.2 MHz (purple). The right plot (b) depicts the
dependence of the threshold pump power on the value of γtip, where the circles denote
the experimental data points and the solid curve serves as a guide to the eye. The orange
shaded area represents the vicinity of the EP.
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Figure 3.4: Analytical approximation for the phonon laser threshold behavior. The plot
illustrates the dependence of the threshold pump power on the value of γtip based on an
analytical approximation. The blue solid curve represents the result in the regime before the
EP, whereas the red dashed curve corresponds to the regime after the EP.

the threshold pump power in the regime before the EP can be approximated by

Pthr =
4Χhωcγmβ

3
[
4Χ2 + (2β - ωm)2

]
(gx0)2κ2

[
2βΧ + γ (2β - ωm)

] , (3.6)

whereas in the regime after the EP the approximation yields a vanishing threshold pump
power, i.e.,

Pthr ≡ 0 . (3.7)

This result is displayed in fig. 3.4. While the analytical approximation features a certain
similarity to the experimental data, it is conspicuous that the value of the threshold
pump power drops to zero at the EP and in the regime after the EP. The reason for
this observation is a divergence of the effective optomechanical coupling strength in the
vicinity of the EP and a similar behavior in the regime after it, which occurs as a result
of the simplifications that are necessary for an analytical treatment (see appendix A.2
for more details). Such an unphysical divergence is clearly an artifact due to the
approximations made and implies that a more complete model would be required to
describe this parameter regime correctly.

Representing a more realistic theoretical result, we have also performed numerical
simulations to calculate the threshold pump power. For any given set of input parameters
we can numerically determine whether the system is below or above threshold by means
of a linear stability analysis as described in appendix A.3. Thus, it is possible to find
the laser threshold by systematically varying the pump power while keeping all other
parameters constant and simultaneously evaluating the stability of the linearized system
equations. With this method, it is possible to calculate the threshold pump power Pthr

as a function of the additional loss γtip, which is presented in fig. 3.5. The numerical
results reveal that the threshold dependence of the variable loss parameter γtip strongly

22



3.3 Experimental and theoretical results

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20  25  30
P t

hr
[m

W
]

γtip/(2π) [MHz]

ωd = ωm + ω+
ωd = ωm + ω−
ωd = ωm + ωc

Figure 3.5: Numerical results for the phonon laser threshold behavior. The plot illustrates
the dependence of the threshold pump power on the value of γtip for three different driving
frequencies ωd.

depends on the driving frequency ωd. In the first case, we pump the supermode â+
non-resonantly with a frequency offset that corresponds to the mechanical resonance
frequency, i.e., ωd = ω+ + ωm. Therefore, the Stokes sideband lies within the resonance
of the supermode â+ such that phonons can be efficiently created in a stimulated Raman
scattering process. This driving frequency corresponds to the assumptions included in
the analytical treatment leading to eqs. (3.6) and (3.7), and also to the experimental
procedure. Similar to the measured results, the threshold first slightly increases, drops
significantly when the system is steered to the EP, and remains low as γtip is further
increased. Unlike the analytical approximation, however, the numerical result is always
greater than zero. In the second case, we investigate the situation with ωd = ω- + ωm,
i.e., we pump the supermode â- non-resonantly with a frequency offset of ωm. Since
the frequency splitting between the two supermodes in the regime before the EP is on
the order of the mechanical resonance frequency (ω+ - ω- ≈ 2π . 23 MHz for γtip = 0),
the pump mode lies within the frequency band of the upper supermode level with the
Stokes sideband being on resonance with the lower supermode level such that coherent
phonons can be created through stimulated Raman scattering into the lower supermode
level as well as through photon transitions from the upper to the lower supermode level.
In this way, the phonon generation is highly efficient such that the threshold pump power
becomes significantly lower as compared to the first case. In the regime after the EP, both
supermode frequencies and hence also the corresponding threshold curves are identical.
The kink in the curves directly at the EP is not a special feature of the EP but stems
from the fact that already the driving frequency ωd = ω± + ωm features a kink at the
EP in both cases (cf. fig. 3.2). For comparison, we also present the case with constant
driving frequency ωd = ωc + ωm (the same value as in the regime after the EP from the
previous cases), where the threshold decreases monotonously with increasing γtip (in the
investigated parameter range).

The generation of phonons in our system is a result of the optomechanical interaction.
Therefore, the shape of the threshold curves from fig. 3.5 is closely related to the intra-
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Figure 3.6: Intra-cavity field intensity of the optical modes in our phonon laser system below
threshold. The left plot (a) shows the intensity of the optical mode â1 in the first resonator,
whereas the right plot (b) depicts the intensity of the second optical mode â2. In both cases,
the intensity is evaluated for three different driving frequencies ωd with constant driving
strength Ω.

cavity field intensity of the cavity mode â1 in the first resonator, which is displayed
as a function of γtip in fig. 3.6a. For completeness, we also present the intensity of
the cavity mode â2 from the second resonator in fig. 3.6b. In accordance with the
threshold behavior in the regime before the EP, we find that for ωd = ω+ + ωm the
intensity of the optical field in the first resonator is much lower than for the case with
ωd = ω- + ωm. Since the mechanical mode is located in the first resonator, a lower
field intensity of the corresponding cavity mode â1 means that for fixed input power
less energy can be transferred from the optical modes to the phonon mode such that the
threshold of the phonon laser is increased. Apart from other influences like the ratio
between the supermode frequency splitting and the mechanical resonance frequency, the
phonon laser threshold is therefore strongly dependent on the spatial distribution of the
supermodes. In the strong coupling regime (before the EP), each of the supermodes is
distributed over both resonators, as can be directly seen from eq. (2.36). For the special
case γ1 = γ2, the two supermodes would be equally distributed in the first and second
resonator. Increasing the value of γtip beyond the EP into the weak coupling regime
results in a strong localization of one supermode in the first resonator and the other one
in the second resonator, where in the limit γtip → ∞ we have â+ → â1 and â- → â2.

3.3.2 Phonon laser linewidth
While a direct measurement of the laser linewidth broadening at an EP remained out
of reach during the last decades, this situation changed with the availability of phonon
lasers. The reason for that is that the linewidth of mechanical oscillations with MHz to
THz frequencies can be measured more precisely than for their optical counterparts at
the relevant laser frequencies (~1012-1015 Hz).

In fig. 3.7a, we present measured phonon laser power spectra for various values of γtip,
where the pump power was tuned in such a way that all curves have the same peak output
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Figure 3.7: Experimental results for the phonon laser linewidth behavior. (a) Measured
power spectra for different values of γtip. (b) Phonon laser linewidth as a function of the
inverse output power. The different colors correspond to the different values of γtip in (a). (c)
Linewidth enhancement as a function of γtip, where the circles denote the experimental data
points and the solid curve serves as a guide to the eye. The orange shaded area represents
the vicinity of the EP. All frequencies in this figure are divided by a factor of 2π.

power. As one can see, the spectral width of the phonon signal first increases and then
decreases when we tune γtip/(2π) from 0 to 17.2 MHz, i.e., steering the system through
the EP that occurs at 14.86 MHz. Furthermore, we find that the phonon laser linewidth
Δν is proportional to the inverse output power, except for a small phenomenological
shift Δν0 which takes into account all power-independent noise sources that are not
included in our model (see fig. 3.7b). The linear relationship between the linewidth and
the inverse output power is also evident from numerical simulations [117] and represents
the well-known behavior that was already predicted by the Schawlow-Townes formula
eq. (3.4). The slopes of the different curves correspond to the spectral peak widths in
fig. 3.7a. Finally, fig. 3.7c illustrates the normalized linewidth (Δν - Δν0) . Ppeak as a
function of the loss introduced by the tip γtip. It can be clearly observed that the linewidth
first increases in the regime before the EP but then decreases again when the loss is
further augmented to steer the system into the regime after the EP.
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Chapter 3 Phonon lasing near an exceptional point

In order to obtain a physical intuition of the mechanism behind the phonon laser
linewidth broadening in the vicinity of the EP, we investigate the behavior of the optical
modes in this parameter regime. In a very simplified approach, the two coupled optical
modes present in our setup can be modeled by a system of beam splitters [143], which is
schematically illustrated in the left part of fig. 3.8. In this picture, the coupling (without
coupling losses) between the optical modes â1 and â2 is quantified by the reflection
and transmission coefficients r and t. Noise and decay are modeled by coupling each
of the two optical modes to a corresponding loss mode (ĉ1 and ĉ2) via beam splitters
with reflection and transmission coefficients r1,2 and t1,2, respectively. All reflection and
transmission coefficients are assumed to be real and satisfy the relation |ri|2 + |ti|2 = 1.
The influence of the optomechanical interaction is neglected for simplicity. One round
trip in this cavity is then described by the following four-mode unitary scattering matrix:

S =

(.............(
t t1 r t1 r1 0
-r t2 t t2 0 r2

-t r1 -r r1 t1 0
r r2 -t r2 0 t2

).............) . (3.8)

Since we are not explicitly interested in the loss modes, we can reduce our considerations
to the truncated scattering matrix for the cavity modes â1 and â2,

σ =

(
t t1 r t1

-r t2 t t2

)
, (3.9)

which is sub-unitary and in general has non-orthogonal eigenvectors. Following from
eq. (3.9), the input-output relations for the cavity round trip can be derived as

â1,out = t t1 â1,in + r t1 â2,in + r1 â1,s , (3.10)
â2,out = t t2 â2,in - r t2 â1,in + r2 â2,s , (3.11)

where we have introduced the spontaneous emission noise contributions â1,s and â2,s to
preserve unitarity. Under the assumption that after one round trip â2 is completely fed
back onto itself (i.e., â2,out → â2,in), it is straightforward to calculate the factor by which
the noise acting on â1 is enhanced as compared to the noise present in eq. (3.10) alone,
which is given by

K1 = 1 +
r2t2

1r2
2

r2
1 (1 - t t2)2 . (3.12)

This excess noise factor corresponds to the well-known Petermann factor [63] and results
from the non-orthogonality of the eigenmodes of eq. (3.9). Analogously, the noise
enhancement factor for â2 is found to be

K2 = 1 +
r2r2

1t2
2

r2
2 (1 - t t1)2 . (3.13)
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Figure 3.8: Simplified model for the linewidth enhancement due to the non-orthogonality of
the optical modes. The two optical modes â1 and â2 are assumed to be perfectly coupled
without coupling losses, which is characterized by the reflection and transmission coefficients
r and t. Furthermore, each of the two modes is coupled to a corresponding loss mode
denoted by ĉ1 and ĉ2, respectively. This coupling is ensured via partially transparent mirrors
(beam splitters) with reflection coefficients r1 and r2 and transmission coefficients t1 and t2,
respectively. As shown in the plot, this simplified setup gives rise to a significant linewidth
broadening in the vicinity of the EP. The blue solid curve represents the result in the regime
before the EP, whereas the red dashed curve corresponds to the regime after the EP.

By applying the above formalism to the isolated optical modes in our system—without
optomechanical interaction as described by eqs. (2.28) and (2.29)—the optical noise
enhancement factors can be written as

K1 = 1 +
κ2γ2

γ1

(
Δ2 + γ2

2

) , (3.14)

K2 = 1 +
κ2γ1

γ2

(
Δ2 + γ2

1

) . (3.15)

As implied by eq. (2.36), the excess noise of the cavity modes directly affects the
noise in the supermodes. The effective optical noise enhancement factor for our system
parameters from table 3.1 is shown in the right part of fig. 3.8, where a maximum can
be observed at the EP, at which the eigenmodes of the system are identical. Therefore,
the optical noise is clearly enhanced due to the non-orthogonality of the optical modes
that is inherent with the occurrence of an EP. Since, in turn, the mechanical mode in our
phonon laser is driven by these noisy optical supermodes, this increase of the optical noise
power is then transferred to the phonon mode through the optomechanical interaction
mechanism. Together with an EP-enhanced optomechanical coupling strength (see
appendix A.2), this phenomenon leads to a significant phonon laser linewidth broadening
in the vicinity of the EP, in good agreement with the experimental observations (cf.
fig. 3.7c).
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Chapter 4

Coherent perfect absorption

4.1 Time-reversed lasing
The invention of the laser laid the foundation for an overwhelming technological advance-
ment during the past decades. Nowadays, countless applications rely on the generation of
highly coherent signals. However, in many cases, the opposite effect is desired, namely
the absorption of such a signal. While loss and absorption are often considered to be
detrimental, several technologies are based on efficient absorption of electromagnetic
waves such as mobile phone antennas, signal detectors, or microwave ovens. Obviously,
the ultimate limit for the absorption efficiency is complete absorption (i.e., 100%), which
is, however, unattainable in most cases because usually a certain part of the impinging
energy flux is reflected or transmitted instead of being absorbed. In 2010, a team of
scientists from Yale University could show that a coherent signal can be completely
absorbed by a suitable system if both the frequency and the wavefront of the incoming
radiation are precisely tuned [70]. This effect is referred to as coherent perfect absorp-
tion. The operating principle of such a coherent perfect absorber (CPA) is based on a
combination of absorption and interference, which is schematically illustrated in fig. 4.1.
In this simplified picture, a CPA consists of a cavity of two partially reflective mirrors
with an absorbing medium in between. A coherent signal is impinging on this system
from both sides, where part of the incoming radiation is reflected from the mirrors while
another part is transmitted after traveling back and forth through the lossy material inside
the cavity. Under certain conditions, it can be achieved that the reflected and transmitted
contributions of the outgoing waves are canceled out by each other through destructive
interference such that the entire incoming energy is dissipated in the absorbing medium,
where it is converted into heat, electricity, or other forms of energy. A comparison of this
mechanism with the simple laser resonator from fig. 2.3a indicates that coherent perfect
absorption corresponds to the time-reversed process of lasing at threshold. Because of
this analogy, a CPA is also known as anti-laser.

Mathematically, a CPA can be explained with the help of the scattering matrix (or
S-matrix) [69], which describes the scattering properties of a linear system. In particular,
the S-matrix contains all necessary information to calculate the output for any given
input according to the relation

uout = S uin . (4.1)

In Hermitian systems, the energy flux is conserved, which implies that the scattering
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dissipated energy (e.g., heat)

lossy medium

𝑅 < 100% 𝑅 < 100%
Figure 4.1: Basic realization of coherent perfect absorption. The frequency and the relative
phase of the input waves from the left (blue) and from the right (green) are precisely tuned
such that the reflected and transmitted parts are canceled out by destructive interference
and all incoming energy is dissipated in the absorbing medium.

matrix is unitary, i.e., S †S = ✶. Consequently, the S-matrix eigenvalues are of the
form λ = eiφ with φ ε ❘ and thus |λ| = 1. Apart from the geometry and the material
composition of the system, the S-matrix depends on the frequency of the incoming
signal. While being a real quantity in the physical reality, the signal frequency can be
extended into the complex domain in the context of a purely mathematical treatment.
As it turns out, the scattering matrix of an arbitrary system features a set of poles and
zeros in the complex plane of the frequency ν or equivalently the complex wavenumber
k = 2πν/c, where the poles are generally located in the lower half-plane (Im(ν) < 0)
and the zeros are located in the upper half-plane (Im(ν) > 0). The poles correspond to
diverging eigenvalues of the scattering matrix, whereas the zeros correspond to vanishing
eigenvalues. In the absence of gain or loss, the poles and zeros are symmetrically
distributed around the real axis in the complex ν-plane and occur as complex conjugated
pairs ν(±)

j = νR, j ± iνI, j, as it is exemplarily shown in fig. 4.2a. Introducing gain into
the system shifts the poles and zeros upwards in the complex frequency plane. If the
gain becomes large enough so that one of the poles reaches the real axis, the system
starts lasing at the frequency where the pole hits the real axis (see fig. 4.2b). When the
gain is further increased, the pole is kept at the real axis due to nonlinear saturation
effects. However, it is possible that with increasing gain multiple poles reach the real
axis at different points, which gives rise to a multimode laser. On the other hand, adding
loss to the system lets the poles and zeros move downwards in the complex frequency
plane. For specific amounts of introduced loss, it is possible that individual zeros can
hit the real axis, which enables the system to act as a CPA or anti-laser (see fig. 4.2c).
As opposed to a laser, a CPA remains always in the linear regime such that zeros can
also cross the real axis and dip down into the lower half-plane when the loss is increased
above the critical value.

Overall, fig. 4.2 emphasizes again the time-reversal correspondence of a laser and
an anti-laser. However, this analogy is valid only for a laser operating exactly at its
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Im(&)
anti-laser

Figure 4.2: S-matrix poles and zeros for a Hermitian system (a), a laser (b), and an anti-laser
(c). For a Hermitian system, the poles (orange) and zeros (blue) of the scattering matrix are
located symmetrically around the real axis in the complex frequency plane. Adding gain to
the system shifts the poles and zeros upwards in the complex ν-plane, where lasing occurs
as soon as one of the poles reaches the real axis. On the contrary, introducing loss to the
system lets the poles and zeros move downwards in the complex ν-plane, where anti-lasing
or coherent perfect absorption can be realized when one of the zeros hits the real axis. While
in the case of a laser nonlinear saturation effects keep the poles at the real axis when the
pump power is increased above threshold, there are no such effects in an anti-laser such that
zeros can also dip into the lower half-plane when the loss is increased beyond the critical
value.

first threshold, where the system can still be described by the linear scattering matrix.
Correspondingly, coherent perfect absorption works only if the exact right amount of
loss is introduced into the system. Besides that, the proper signal frequency is defined
by the position at which the S-matrix zero crosses the real frequency axis and the signal
wavefront must match the eigenvector corresponding to the zero-eigenvalue in order to
realize a CPA.

As described in the original publication on coherent perfect absorption [70], one pos-
sible realization of a CPA is given by a silicon wafer onto which two normally incident
laser beams are directed on opposite sides. Indeed, a similar setup was experimentally
demonstrated already in 2011 [71]. To illustrate the functionality of this approach, we
want to perform a theoretical analysis of such a system. The propagation of electro-
magnetic waves is described by the wave equation (see appendix B.1 for more details),
which is a partial differential equation involving both spatial and temporal derivatives.
Since coherent perfect absorption works only for signals with well-defined frequencies
in the steady state, the relevant physics can be described with the Helmholtz equation,
whose derivation can be found in appendix B.2. For the simple case of a planar dielectric
slab under normal incidence of a coherent laser beam, the problem can be reduced to
one spatial dimension such that the Helmholtz equation for the scalar electric field E(x)
can be written as [

ϑ2

ϑx2 + n2(x)k2
]

E(x) = 0 , (4.2)

where n(x) represents the spatially dependent refractive index and k = 2π/λ is the
wavenumber. Under the assumption of a dielectric medium of width L surrounded
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by vacuum, the refractive index can be considered as a piecewise constant function
consisting of three different regions with n(x) ≡ n1 = 1 for x < -L/2, n(x) ≡ n2 = n for
-L/2 ≤ x ≤ L/2, and n(x) ≡ n3 = 1 again for x > L/2. The absorption in the system can
be modeled by a complex refractive index n = nR+inI, where the imaginary part nI is also
referred to as extinction coefficient. For constant refractive index, the Helmholtz equation
can be solved analytically and the solution is given by a superposition of forward and
backward traveling plane waves. For the three regions in the aforementioned system we
therefore have

E1(x) = A1 eikx + B1 e-ikx , (4.3)

E2(x) = A2 einkx + B2 e-inkx , (4.4)

E3(x) = A3 eikx + B3 e-ikx , (4.5)

where in our coordinate convention, terms proportional to ein(x)kx correspond to wave
contributions traveling from left to right, and vice versa, terms proportional to e-in(x)kx

represent waves traveling from right to left. By demanding that both the field and also
its first derivative must be continuous at the region borders, the following boundary
conditions can be derived:

E1(-L/2) = E2(-L/2) , (4.6)
E,1(-L/2) = E,2(-L/2) , (4.7)

E2(L/2) = E3(L/2) , (4.8)
E,2(L/2) = E,3(L/2) . (4.9)

Equations (4.6) to (4.9) represent a set of four linear equations for the field amplitudes
Ai and Bi. If only two of them are given—for example the incoming components A1

and B3—all other coefficients (in particular also the outgoing components A3 and B1)
can be straightforwardly calculated. From that result, also the corresponding scattering
matrix can be obtained. Because of the mirror symmetry of the system, the eigenmodes
are parity eigenstates, which gives rise to a symmetric (A1 = B3) and an anti-symmetric
(A1 = -B3) eigenmode. With the help of the corresponding eigenvalues

λ± =

[
(1 + n) einkL ± (1 - n)

]
e-ikL

(1 - n) einkL ± (1 + n)
, (4.10)

the positions of the zeros in the complex frequency plane can be determined and the
results are shown in fig. 4.3a. As a consequence of the intrinsic loss in the medium,
the zeros (as well as the poles) are clearly shifted downwards in the complex frequency
plane as compared to their original positions for the case of a lossless material with n = 3.
For the case under consideration, we have chosen n = 3 + 0.0826 i, which represents an
optimized value in the sense that one of the zeros hits the real axis. Consequently, a CPA
can be realized at this frequency, which is illustrated in fig. 4.3b. As can be seen, the
incoming signal is completely absorbed by the medium such that the outgoing signal
vanishes.
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Figure 4.3: Coherent perfect absorption in a planar dielectric medium (refractive index
n = 3 + 0.0826 i). (a) S-matrix zeros in the complex frequency plane. Due to the intrinsic
absorption of the material, the zeros are shifted downwards in the complex frequency plane
such that a CPA occurs at the real frequency ω = 8.384 (arbitrary units). The original
positions of the zeros correspond to the case with n = 3. (b) Field of the corresponding CPA
state: incoming field (green dashed), outgoing field (red), and total field (blue). The gray
shaded area represents the absorbing medium. (c) S-matrix eigenvalues corresponding to
the symmetric (λ+) and anti-symmetric (λ-) eigenvectors as a function of the signal frequency
for optimized extinction coefficient nI = 0.0826. (d) S-matrix eigenvalues as a function of the
extinction coefficient nI for optimized signal frequency ω = 8.384 (arbitrary units).

The absorption efficiency of a CPA strongly depends on the proper adjustment of the
system parameters and can be quantified by the absolute value of the minimal S-matrix
eigenvalue. In fig. 4.3c, we present the dependence of the eigenvalues on the frequency
of the incoming waves, whereas fig. 4.3d depicts the eigenvalues as a function of the
imaginary part of the refractive index. A comparison with fig. 4.3a confirms that the
absorption efficiency first increases when more loss is introduced into the system until a
critical value is reached where the S-matrix zero crosses the real frequency axis and the
corresponding eigenvalue vanishes. However, a further increase of the loss causes the
zeros to dip down into the lower half-plane and the absorption efficiency decreases again.
Additionally, it turns out that already slight deviations from the optimal frequency value
lead to a significant reduction of the absorption efficiency. Furthermore, the relative
phase between the left and right incoming waves must be precisely tuned in order to
match the CPA eigenstate that belongs to the zero on the real frequency axis. If this
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phase relation is changed, the CPA effect breaks down and a non-vanishing outgoing
signal occurs.

4.2 Random anti-lasing7

Since the first theoretical discussion of coherent perfect absorption [70], various experi-
mental CPA realizations have been reported [71, 74, 77, 81, 83–85, 87, 95, 112]. These
setups have in common that they rely on a special geometric architecture or work only
under very specific conditions. In order to achieve coherent perfect absorption in actual
“real-life” applications, however, it is necessary to implement this effect also in complex
environments. In this section, we consider the generalization of anti-lasing to the case
of a disordered medium in which the incoming waves are subject to chaotic scattering
before they are completely absorbed by an embedded antenna. Due to the fact that co-
herent perfect absorption in disordered media corresponds to the time-reversed process
of random lasing (cf. fig. 2.3b), such a device can be called a random anti-laser.

4.2.1 Experimental realization
Due to complex scattering, the output field of a random laser usually features a compli-
cated wave pattern. Consequently, the time-reversal of random lasing requires a very
challenging level of control over all necessary degrees of freedom. Although consider-
able progress in the field of wavefront shaping has been made recently [69,144,145], the
realization of a random anti-laser remained out of reach so far. This is because not only
the phase and amplitude of all relevant pixels that determine the complex speckle pattern
of such a random anti-laser mode must be properly adjusted, but also the radiation
frequency and the absorption strength of the system have to be precisely tuned to match
one of the discrete pairs of values at which a CPA can be realized. Away from these
isolated CPA points, reaching perfect absorption is impossible in principle.

To tackle this problem, we designed a proof-of-principle experiment in the form of an
innovative microwave setup which is based on an existing experimental platform [146].
Our system—as pictured in fig. 4.4—essentially consists of a rectangular aluminum
waveguide with 10 cm inner width (y-direction), 8 mm inner height (z-direction), and
a total length of 238 cm (x-direction). The waveguide supports a finite number of
transverse modes, which in turn determines the required number of controllable degrees
of freedom in the incoming radiation field. The central scattering region (length 60 cm)
of the waveguide contains a disordered medium that consists of a set of randomly placed
cylindrical Teflon scatterers (refractive index n = 1.44). For our experiments, two
different sizes with diameters 5.1 mm (small) and 22 mm (large) are used. All scatterers

7 The idea for this project was conceived by Stefan Rotter and the experimental setup was designed by
Julian Böhm and Ulrich Kuhl. Measurements and data evaluation were carried out by myself under the
supervision of Ulrich Kuhl. The numerical simulations were performed by Matthias Kühmayer with
theoretical input from Andre Brandstötter and Philipp Ambichl. Part of the results and figures are taken
from our joint publication [91] or have been provided by Matthias Kühmayer in private communication.
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Figure 4.4: Experimental setup of the random anti-laser. Microwaves of a well-defined
frequency are generated by a vector network analyzer and equally distributed through a
power splitter to eight in-phase/quadrature (IQ) modulators, where the amplitudes and
relative phases of the signals can be independently tuned. These signals are injected into an
aluminium waveguide via eight external antennas (four on each side, numbered as indicated).
Absorbers are placed at the waveguide ends to avoid back-reflection of the injected and
transmitted waves. The central scattering region of the waveguide contains a disordered
medium consisting of a set of randomly placed Teflon scatterers. Localized absorption is
introduced to the system by placing a monopole antenna with a 50Ω terminating resistance
in the middle of the disordered region (central antenna). The scattering matrix of the system
is determined by measuring the field in the space between the scattering region and the
external antennas using a movable antenna that can dip into the waveguide through a grid of
holes in the top plate (not shown). The distances from the external antennas to the absorbers
and to the scattering region are not to scale.

have a height of 8 mm and are thus filling the whole waveguide height. In the middle of
the scattering region, localized loss can be introduced by inserting a monopole antenna
with a 50Ω terminating resistance attached through the top plate of the waveguide. This
absorbing antenna is placed at the center of the system regarding the x-direction and
slightly out of the center (±9 mm) regarding the y-direction. The coupling of the central
antenna and therefore its absorption strength can be varied in situ by changing the length
that it ranges into the waveguide.

Both as a signal source and also for the measurements, a vector network analyzer
(VNA) is used. At an operating frequency between 6 GHz and 7.5 GHz, the waveguide
supports four transverse modes, requiring four antennas on each side (left and right) to
fully control the wavefront of the injected signal. Therefore, the microwaves generated
by the VNA are equally distributed by a power splitter to eight in-phase/quadrature
(IQ) modulators, where the relative phases and amplitudes of the injected microwaves
are controlled. Theses signals are then transferred to eight external antennas reaching
about 3 mm into the waveguide (weak coupling), four on each side. Both ends of the
waveguide are equipped with absorbers to avoid back-reflection of the injected and
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transmitted signals. The field inside the waveguide can be measured with the help of
a movable antenna that can dip into the waveguide through a grid of holes (spacing of
5 mm from center to center) in the top plate of the waveguide. Reaching about 4 mm
into the waveguide, this probe antenna is also only weakly coupled to the system and
thus has merely a minor influence on the field that it measures. Optionally, one port
of the VNA can be connected to the central antenna to measure the transmission of an
input state injected by the external antennas into the central antenna. In addition, this
configuration can be used to inject microwaves at the central antenna.

In order to inject a specific input state into the system, the amplitudes and phases
at each of the external antennas have to be properly adjusted by the IQ modulators,
which requires the knowledge of the relation between the IQ modulator settings and
the resulting incoming waves. For that purpose, one can assign to each IQ modulator a
basis vector in the IQ modulator basis, which means that the respective IQ modulator
is set to full transmission and relative phase zero while all other IQ modulators are
set to maximum attenuation. By measuring the field in the space between the external
antennas and the scattering region, the resulting composition of the incoming modes can
be determined. Since the field is a linear superposition of the incoming and outgoing
modes, the measured mode coefficients ameas, j satisfy the following relation with the
coefficients for the incoming and outgoing modes (ain, j and aout, j)

ameas, j(x) = ain, j e-ikx, j x + aout, j eikx, j x , (4.11)

where j is the number of the respective mode and kx, j =
√

k2 - k2
y, j , in which k = 2πν/c,

ky, j = jπ/d, ν is the frequency of the incoming waves, c is the speed of light, and d is
the width of the waveguide. Using that the transverse modes in a rectangular waveguide
feature a sinusoidal shape in y-direction which is given by [147]

Ψ j(y) = sin
[
ky, j (y + d/2)

]
, (4.12)

the coefficients ameas, j(x) can be determined by means of a discrete sine transformation
of the complex measured field. By evaluating eq. (4.11) on both sides of the waveguide
for two adjacent x-positions and for all IQ modulator basis vectors, the coefficients ain, j

of the incoming modes can be calculated. A basis transformation from the IQ modulator
basis to the mode basis then yields the coefficients cm j by which the signals at the IQ
modulators (numbered by m) have to be multiplied to get the desired mode j. As a
test of this procedure, the four possible transverse modes were injected into the empty
waveguide (i.e., without absorbing antenna or scatterers). The resulting microwave field
has been measured along the waveguide width (y-direction) at a distance of about 20 cm
away from the external antennas and the results are presented in fig. 4.5. Apart from
small deviations stemming from unavoidable experimental imperfections, the curves
clearly show the expected mode shapes (fig. 4.5a) with correlation values between
99.7% and 99.9%. Moreover, the analysis of the measured signals in the mode domain
(fig. 4.5b) yields the expected mode composition and proves the functionality of our
injection method.
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Figure 4.5: Injection accuracy analysis of specific states. (a) Field of the four possible
transverse modes injected into the empty waveguide (without absorbing antenna or any
other obstacle). The solid curves describe the expected mode shape, whereas the markers
denote the normalized field values measured over the waveguide width (y-direction). The
gray shaded areas represent the waveguide walls. (b) Analysis of the injected signals from
(a) in the mode domain, where the bars illustrate the fraction of the respective mode in the
incoming signal.

With the availability of the incoming and outgoing mode coefficients, we are further in
the position to calculate the scattering matrix of the system, which satisfies the relation

aout = S ain . (4.13)

Since eq. (4.13) comprises N linearly independent equations for the N2 elements of the
S-matrix, where N is the total number of modes considered (eight in our experiment),
one needs to have at least N linearly independent sets of the incoming and outgoing
mode coefficients ain and aout to obtain N2 coupled equations for the S-matrix elements.
In fact, the same measurement data that is used to calculate the IQ modulator settings
can be taken to explicitly determine the S-matrix at a given signal frequency.

The ability to measure the scattering matrix in the far-field while both the signal
frequency and the absorption strength can be precisely tuned makes our system an
ideal platform to realize coherent perfect absorption in a disordered medium. A crucial
property of a CPA is that the entire incoming signal is absorbed such that the outgoing
signal vanishes, i.e., aout = S ain = 0. This means that a CPA state aCPA is an eigenstate
of the scattering matrix with an eigenvalue of zero (λCPA = 0). Based on this analysis,
we deduce the following expedient and robust approach to realize a random anti-laser
with our experimental setup: the S-matrix of the system is measured in a frequency
interval broad enough to contain many S-matrix zeros and for a number of loss values
of the central antenna that are strong enough to drag some of the zeros down to the
real frequency axis. Subsequently, the eigenvalues of these different scattering matrices
are evaluated and those parameter configurations for which the absolute value of the
smallest S-matrix eigenvalue approaches zero can be identified. The CPA eigenstate
corresponding to this minimal S-matrix eigenvalue is then injected into the system in
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order to determine its properties (in particular the degree of absorption associated with it).
This approach is both scalable in terms of the number of pixels and readily transferable
to other experimental platforms. Moreover, similar setups turn out to be very suitable
for other applications, e.g., in the field of optical micromanipulation [148].

4.2.2 Experimental and numerical results

Coherent perfect absorption in disordered media

To test the functionality of our method, we apply it to a disordered medium consisting of
60 small cylindrical Teflon scatterers (radius 2.55 mm) as shown in fig. 4.4, for which
we measure the scattering matrix in the frequency range from 6 GHz to 7.5 GHz and
for various lengths of the central antenna. Data close to the mode openings (at 6 GHz
and 7.5 GHz) are, however, not taken into account to avoid the influence of evanescent
waveguide modes, which restricts us to the spectral interval between 6.55 GHz and
7.35 GHz. An investigation of the minimal S-matrix eigenvalue λmin reveals a pronounced
dip around the frequency of 7.1 GHz for an absorbing antenna that extends 7 mm into
the waveguide (see fig. 4.6a). As expected, the outgoing power (divided by the incoming
power) of the eigenstate corresponding to this eigenvalue minimum features a similar
dip in the same frequency range, where we achieve more than 99.78% absorption of the
injected power (Pout/Pin < 2.12 x 10-3).

In fig. 4.6, we investigate the sensitivity of the CPA state with respect to deviations
from optimal parameter values. Firstly, one can see (in accordance with the findings
from section 4.1) that perfect absorption occurs only at the CPA frequency νCPA, where
the S-matrix zero crosses the real axis. The minima of the smallest S-matrix eigenvalue
and of the ratio between the outgoing and incoming power of the injected CPA state are
slightly shifted against each other. This effect is a result of experimental imperfections
such as, e.g., the finite step size of the IQ modulator settings, which limits the injection
accuracy of specific states. Secondly, our results confirm that also the exact right amount
of loss must be introduced into the system. The loss in our system can be controlled
by varying the coupling strength of the central antenna, which is done by changing the
length that it extends into the waveguide. In fact, it turns out that not only for smaller but
also for larger coupling strength (corresponding to more loss) the absorption efficiency
is substantially diminished as compared to the optimal antenna length of 7 mm (see right
panels in fig. 4.6a). Finally, we investigate the sensitivity of the absorption efficiency to
deviations from the optimal wavefront of the injected CPA state in fig. 4.6b. For this
purpose, we check what happens if either the amplitude or the phase of just one of the
eight external antennas is detuned away from the configuration of the CPA state while
all other parameters remain at the optimized values. In both cases, the minimum of the
ratio between outgoing and incoming power is considerably increased by factors of up
to approximately 103, which emphasizes how strongly the absorption in the system is
controlled interferometrically rather than by the mere presence of the absorbing antenna
alone.
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Figure 4.6: Absorption analysis of a CPA state for a disordered medium with 60 small
scatterers. (a) Squared absolute value of the minimal S-matrix eigenvalue |λmin|2 together with
the ratio between the outgoing and incoming power Pout/Pin for the CPA state corresponding
to the eigenvalue minimum at the CPA frequency of about 7.1 GHz as a function of the signal
frequency. The panels on the right provide a detailed view around the CPA frequency of
the minimal S-matrix eigenvalue |λmin|2 as well as of the ratio Pout/Pin for the injected CPA
state, each determined for different lengths of the central antenna. (b) Sensitivity of the
CPA minimum to detunings in individual IQ modulators, where either the amplitude or the
relative phase at an exemplary input antenna are changed while all other antennas remain
as required for the CPA state (amplitude ACPA and phase φCPA). The results presented in (b)
were generated by linear superposition of the data from the S-matrix measurement, whereas
the blue curve in (a) represents a direct measurement of the injected CPA state.

With a diameter of 5.1 mm, the small scatterers are much smaller than the operating
wavelength of λ ≈ 43 mm. Therefore, the scattering strength of the small scatterers is
relatively weak. To demonstrate that our approach is generally applicable also for more
strongly scattering configurations, we implement a disordered medium consisting of a
mixture of 28 small and 32 large dielectric disks with diameters of 5.1 mm and 22 mm,
respectively. Also in this case, we can readily find a pronounced CPA state with a ratio
between outgoing and incoming power of Pout/Pin < 2.13 x 10-3 (i.e., again more than
99.78% absorption) at the CPA frequency of 6.9 GHz. The scattering characteristics are
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Figure 4.7: Typical scattering matrices for different scatterer configurations: empty waveguide
(left panel), weakly scattering system of 60 small scatterers (middle panel), and strongly
scattering system with 60 scatterers of mixed sizes (right panel). The labels denote the left
(Lm) and the right (Rm) side of the waveguide, where the subscript represents the respective
mode number.

described by the S-matrix, which can be written as

S =
(
RL TR

TL RR

)
, (4.14)

where TL and TR are the transmission sub-matrices and RL and RR are the reflection
sub-matrices, respectively, with regard to the four modes on the left and right side of the
waveguide, indicated by the subscripts L and R. To visualize the scattering strength of
the configurations with only small scatterers and with mixed-size scatterers, respectively,
we investigate the corresponding scattering matrices (measured at the respective CPA
frequencies of 7.1 GHz and 6.9 GHz) and compare them to the S-matrix of the empty
waveguide (measured at 7.1 GHz) in fig. 4.7. For the empty waveguide, we find that the
transmission sub-matrices are diagonal while all elements of the reflection sub-matrices
are strongly reduced. This is the expected result for an empty waveguide featuring
only a length-dependent scattering phase shift together with a small attenuation due
to absorption in the metallic waveguide material. Minor deviations from this ideal
picture can be attributed to experimental imperfections such as the backscattering at the
weakly coupled external antennas. The situation changes when scattering objects are
embedded into the system and with increasing scattering strength, which is influenced
by the number and sizes of the scatterers, the transmission sub-matrices become more
and more off-diagonal. For the configuration with 60 small scatterers, the S-matrix gets
occupied all over its 8x 8 entries, albeit the diagonal transmission elements remain more
pronounced than the other S-matrix elements. For the strong scattering configuration
with 60 mixed-size scatterers, the S-matrix is more uniformly occupied.

The degree of the scattering strength also influences the interference pattern of the
microwave field inside the scattering region. Since a measurement of the electric field
over the whole waveguide is very time-consuming and the field in the direct vicinity
of the central antenna is inaccessible in our experimental setup, we reconstruct the
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Figure 4.8: Numerical simulation of the field intensity of CPA states injected into a weakly
disordered waveguide with 60 small scatterers (left) and a strongly disordered waveguide
with 60 mixed-size scatterers (right). The linear color scale ranges from low (blue) to high
(red) intensity and the position of the central absorbing antenna is marked by a white arrow.
The insets show the Poynting vector S in the vicinity of the absorbing antenna, where the
scatterers are depicted as semi-transparent white circles and the antenna is represented by
a filled white circle.

entire scattering geometry numerically and perform a numerical simulation of the
microwave field by means of a finite element discretization on a two-dimensional mesh
(see appendix B.2 and ref. [149] for further information). The central antenna is modeled
as an absorbing scatterer with a complex refractive index nant = nR + inI. To find a CPA
state, we set the signal frequency to the experimentally determined CPA frequency and
optimize the refractive index of the antenna scatterer such that the minimal S-matrix
eigenvalue approaches zero. The results of these simulations for the weakly and strongly
scattering systems that were experimentally implemented before are presented in fig. 4.8.
For the configuration with 60 small scatterers, we observe a relatively regular interference
pattern in the microwave intensity with a pronounced intensity peak at the position of
the central antenna. In the case of the configuration with 60 scatterers of mixed sizes,
the interference pattern features a much more irregular character. However, there is still
a sharp intensity maximum at the absorbing antenna. Obviously, a CPA state that is
primarily absorbed by the central antenna features a pronounced focus spot at the central
antenna to optimize the absorption efficiency. To visualize the directional energy flux,
we calculate the Poynting vector in the area around the central antenna (see appendix B.3
for technical details). As shown in the insets of fig. 4.8, the Poynting vector has only
inward-pointing components in the vicinity of the absorbing antenna.

As an experimental signature of this behavior, we measure the transmission of the
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Figure 4.9: Transmission of the investigated CPA states from fig. 4.8 into the central antenna
for configurations with 60 small scatterers (a) and 60 mixed-size scatterers (b), respectively.
The plots compare the squared absolute value of the transmission Tnorm into the absorbing
antenna (normalized with respect to its maximum |Tmax| within the measured interval) with
the ratio between outgoing and incoming power Pout/Pin. As a reference, the plots also show
the transmission T (0)

norm of these CPA states into the absorbing antenna when all scatterers
are removed from the waveguide, where the same normalization |Tmax| as for Tnorm is used.
The vertical dashed line marks the CPA frequency νCPA.

CPA states into the central antenna, which is shown in fig. 4.9. Both for the weak and
for the strong scattering configuration, the transmission into the central antenna features
a maximum at the CPA frequency, where the ratio between the outgoing and incoming
power has its minimum. This confirms again that these CPA states are primarily absorbed
by the central antenna and only weakly affected by the global loss inside the waveguide.
For comparison, we also measure the transmission of the CPA states into the absorbing
antenna for the case when all scatterers are removed from the waveguide (see green
dotted curve in fig. 4.9). Because each CPA state is customized for the specific scatterer
configuration, the removal of the disordered medium leads to a significant reduction of
the transmission into the central antenna.

To study the influence of the absorbing antenna on the microwave field, we perform
numerical simulations of the CPA states for both scatterer configurations with and
without the absorbing scatterer in place. The results, which are depicted in fig. 4.10,
show that the central antenna has a significant effect on the overall intensity and the
interference pattern of the field. One can clearly observe that the removal of the absorbing
scatterer causes considerably higher and differently distributed intensity maxima in the
waveguide stemming from additional interference contributions of the waves that are no
longer absorbed by the antenna.

Finally, to verify that the numerical simulations do in fact describe the actual experi-
ment, we compare the simulated and measured results for the field intensity of the CPA
states in the vicinity of the central antenna, which is shown in fig. 4.11. Experimentally,
we measure the electric field on a grid with a spacing of 5 mm, where the close proximity
around the central antenna and also the field inside the scatterers are inaccessible due
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Figure 4.10: Simulated microwave field of the CPA states for the configurations with 60 small
scatterers and 60 scatterers of mixed sizes, respectively. The plots compare the intensity
distributions of the CPA states injected in the presence (top panels) or absence (bottom
panels) of the absorbing scatterer (i.e., the absorbing antenna). All other parameters and
the linear color scale remain unchanged. The position of the absorbing antenna is indicated
by a white arrow and the white circles represent the scatterers.

to setup-specific restrictions. For a meaningful comparison, the numerical results are
mapped to the same reduced 5 x 5 mm2 grid as in the experiment. Indeed, we find a
good agreement between numerical and experimental data, which is quantified by a
correlation of 95.63% for the configuration with 60 small scatterers and 83.42% for the
configuration with 60 scatterers of mixed sizes, respectively. Small deviations between
simulated and measured data can be attributed to experimental imperfections such as a
slight misplacement of the scatterers8 or inevitable scattering at the external antennas as
well as at the measuring antenna. Furthermore, the effect of global absorption (caused
by the skin effect in the metallic waveguide and by escape through the small holes in the
top plate) is neglected in our simulations. Taking also global absorption into account in
the simulations (following ref. [147] based on material parameters for our aluminum
waveguide), however, the intensity correlation values for the two CPA states from above

8 We expect an uncertainty of about 1 mm in the experimentally realized scatterer positions as compared
to the values used in the simulations. Since the strongly scattering system with mixed scatterers is more
sensitive to such deviations, this also explains why the correlation value is lower here than for the case
of weak scattering.
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Figure 4.11: Comparison between the simulated and measured results for the field intensity
around the central antenna of CPA states for configurations with 60 small scatterers (a) and
60 scatterers of mixed sizes (b). Since the electric field is experimentally inaccessible in the
close proximity of the central antenna and inside the scatterers, these areas are colored black
in the plots. While the numerical simulations have been performed on a much finer mesh,
the simulated data is mapped on the same grid where also the experimental data points are
available such that each pixel corresponds to an area of 5 x 5 mm2 in the waveguide.

remain almost unchanged. Specifically, the correlation values for the configurations
with 60 small and 60 mixed scatterers are then 95.57% and 83.44%, respectively. The
reason why global absorption has a weak effect on the considered CPA states is because
for these states the loss incurred at the central antenna is much more dominant than the
weak dissipation in the waveguide.

Time-reversal correspondence with lasing at threshold

Disregarding global absorption effects, a CPA state in our random anti-laser should be
entirely absorbed by the central antenna. The time-reversed process of this mechanism
would be a microwave signal that is injected at the central antenna and then leaves the
waveguide through the leads without any back-reflection to its source. Therefore, it
would be interesting to explore what happens if a signal is injected at the central antenna.
As mentioned in section 4.2.1, this can be easily realized with our setup if one port of the
VNA is connected to the central antenna, which turns it from an absorber into a source.
For example, in the case of the disordered medium consisting of 60 small scatterers, we
would expect that at the CPA frequency of 7.1 GHz and for an antenna length of 7 mm
the injected signal enters the disordered waveguide system without any back-reflection
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Figure 4.12: Reflection coefficient |R|2 for microwave injection at the central antenna as a
function of the signal frequency for different antenna lengths in the disordered configuration
with 60 small scatterers.

to the central antenna, corresponding to a critical coupling of the central antenna to
the system. Indeed, we find a distinct minimum of the reflection coefficient |R|2 for
microwave injection at the central antenna, which is demonstrated in fig. 4.12. Starting
from a very weakly coupled antenna with a length of 4 mm, one can clearly observe how
the minimum of the reflected signal becomes more and more pronounced if the length of
the central antenna is increased until it reaches the lowest value for an optimal antenna
length of 7 mm and then, as the antenna length is further increased, the antenna coupling
decreases again. This transition corresponds to the movement of an S-matrix zero from
the upper half-plane into the lower half-plane of the complex frequency for the case of
an absorbing antenna. Moreover, we can see that a different S-matrix zero crosses the
real axis at a frequency close to 6.8 GHz for an antenna length of 7.5 mm. A vanishing
reflection coefficient for injection at the central antenna means that the entire injected
energy flux is either absorbed in the waveguide material or leaves the system through
one of the two leads. Since the global absorption in our waveguide is relatively weak,
we can expect that most of the injected signal leaves the system as an outgoing state that
should correspond to the time-reversed CPA state which was perfectly absorbed by the
central antenna.

In the next step, we want to investigate the properties of the resulting signal that
leaves the scattering region when microwaves with the CPA frequency are injected at
the central antenna and compare its time-reversed field with the CPA state that we have
found independently by evaluating the minimal S-matrix eigenvalue. For that purpose,
we measure the field along the waveguide width in the middle of the space between the
scattering region and the external antennas. Featuring a correlation of about 99%, we
find a remarkable coincidence of the time-reversed field from injection at the central
antenna and the independently determined CPA state (see fig. 4.13). Small deviations are
mainly caused by global absorption effects, which cannot be converted into the respective
gain such that the CPA state is not exactly the time-reversed counterpart of the measured
signal for injection at the central antenna. In addition, there is a minor influence from
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Figure 4.13: Time-reversal symmetry analysis of a CPA state. (a) Absolute value of the
normalized incoming field along the waveguide width (y-direction) at one waveguide end
compared for a time-reversed state (TRS) from injection at the central antenna and a CPA
state for a system with 60 small scatterers. The S-matrix eigenstate (SME) is the calculated
eigenstate corresponding to the minimal eigenvalue of the experimentally measured scat-
tering matrix and the experimentally realized CPA state (EXP) is the actually injected SME
(including all experimental imperfections in addition to those already present in the scattering
matrix alone). The gray shaded areas represent the waveguide walls. (b) Mode composition
of the three states from (a), where the bars show the fraction of the respective mode in the
incoming signal.

experimental imperfections such as scattering effects at the external antennas or at the
movable measurement antenna. Furthermore, the limited accuracy of the IQ modulators
leads to a small error in the injected wavefront, although the correlation between the
calculated CPA eigenstate and the actually injected one turns out to be 99.9%, which
certifies again the injection accuracy for a specific state in our experimental setup.

In our numerical simulations, where global absorption is neglected, we can calculate
the time-reversed CPA states by placing a point source in the middle of the scatterer
that represents the central antenna and turn the scatterer’s loss into the corresponding
amount of gain. For this setting, the resulting correlation between the CPA state and the
time-reversed state from input at the central antenna is unity up to 10-14, thus proving
the time-reversal symmetry between a CPA and a laser operating at its first threshold.
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4.2 Random anti-lasing

Global absorption effects

Our random anti-laser is characterized by two different absorption mechanisms: on
the one hand we have a controllable localized absorptive element given by the central
antenna, while on the other hand the injected signal is attenuated by the globally dis-
tributed loss induced, e.g., by absorption in the metallic waveguide walls or by escape
through the small holes in the top plate. Although this global absorption cannot be
controlled as efficiently as the loss introduced by the central antenna, it can still play
a significant role for the total absorption of an injected signal. As an estimate for the
attenuation of the bare waveguide (with the holes in the top plate but without absorbing
antenna), we measured the mean transmission through it, where we found that 85.9%
of the injected power was transmitted (averaged over all modes and frequencies in the
range from 6.55 GHz to 7.35 GHz). In the presence of a disordered medium, however,
the attenuation through global absorption can be much larger, in particular for strongly
scattering configurations in which certain states are efficiently trapped.

The effect of global absorption compared to the impact of the localized absorbing
antenna can be nicely seen in fig. 4.14, where we compare the minimal S-matrix eigen-
value as a function of the signal frequency with or without the absorbing antenna in
place for two different scattering configurations. To illustrate the frequency-dependent
coupling strength of the central antenna, we also show the reflection coefficient |R|2 for
injection at the central antenna. In the case of the weakly scattering configuration with 60
small scatterers, the squared absolute value of the minimal S-matrix eigenvalue without
absorbing antenna is about |λmin|2 ≈ 0.74 (averaged over the range from 6.55 GHz to
7.35 GHz). Only if the absorbing antenna is implemented, we can observe strongly
reduced values of |λmin|2, e.g., around 7.1 GHz in fig. 4.14a. The shape of the curve for
the minimal S-matrix eigenvalue is clearly influenced by the coupling strength of the
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Figure 4.14: Influence of the localized absorbing antenna compared to global absorption
effects. (a) Comparison of the minimal S-matrix eigenvalue |λmin|2 for a weakly scattering
system with 60 small scatterers for the cases without and with the central absorbing antenna
in place. As a reference, the reflection signal |R|2 for injection into the central antenna is
plotted as well. (b) Corresponding measurements for a strongly scattering system with 60
scatterers of mixed sizes.
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Figure 4.15: CPA induced by global absorption for a disordered medium consisting of 75
mixed-size scatterers. (a) Minimal S-matrix eigenvalue |λmin|2 compared to the reflection
signal |R|2 as a function of the signal frequency. The panels on the right show the ratio
between the outgoing and incoming power Pout/Pin for the CPA state corresponding to the
eigenvalue minimum around 6.725 GHz, as well as the reflection coefficient |R|2 at the central
antenna, each determined for different lengths of the central antenna. (b) Sensitivity of the
CPA minimum to detunings in individual IQ modulators, where either the amplitude or the
relative phase at an exemplary input antenna are changed while all other antennas remain
as required for the CPA state (amplitude ACPA and phase φCPA). The results presented in (b)
were generated by linear superposition of the data from the S-matrix measurement, whereas
the blue curve in (a) represents a direct measurement of the injected CPA state.

central antenna, which suggests that the major contribution for the absorption of the
corresponding eigenstate comes from the localized absorbing antenna. In the other case,
when we use 60 scatterers of mixed sizes, the minimal S-matrix eigenvalue can become
very small even without absorbing antenna, as for example in the region around 6.6 GHz
in fig. 4.14b. Nevertheless, the absorbing antenna improves the absorption efficiency
also in this case, in particular at frequency ranges where the minimal S-matrix eigenvalue
without absorbing antenna is rather large, as can be observed at about 6.9 GHz. For
the configuration that also contains the large scatterers, scattering is more efficient and
the longest achievable dwell times within the scattering region become much larger as
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4.2 Random anti-lasing

compared to the case where only small scatterers are used. As a result, global absorption
delivers a more pronounced contribution to the total absorption, especially for those
states that remain strongly trapped in a spatial region that has no overlap with the central
antenna.

In strongly scattering systems, one can also find CPA states that are mainly induced by
global absorption, as we demonstrate for a disordered medium consisting of 75 mixed-
size scatterers. In the left panel of fig. 4.15a, we display the corresponding minimal
S-matrix eigenvalue together with the reflection signal for injection into the central
antenna. As compared to the results for the system with 60 small scatterers (cf. fig. 4.6),
we observe that the resonances of the minimal S-matrix eigenvalue are noticeably sharper
when also the large scatterers are included in the disordered medium. In addition to a
local minimum close to the position of the minimal reflection signal, we also find several
other resonant eigenvalue minima at frequency values where the coupling of the central
antenna to the system is much weaker and not resonant at all. This behavior implies
the presence of CPA states in the system whose absorption is dominated by the global
loss whereas the central antenna plays only a subordinate role. As an example, we inject
the CPA state corresponding to the eigenvalue minimum around 6.725 GHz, where we
find a minimum of the ratio between outgoing and incoming power below 2.1 x 10-3

(corresponding to more than 99.79% absorption of the injected power). As can be seen
in the right panels of fig. 4.15a, the optimal absorption is achieved with an antenna
length of 6 mm. Even though the antenna with a length of 6.5 mm is better coupled to
the system, the minimum of the ratio Pout/Pin is increased for both shorter and longer
antenna lengths. Therefore, the central antenna can still be used to tune a CPA to and
away from the point of maximal absorption, although it is not the dominant source of
loss here. Moreover, the absorption efficiency of the CPA state is also very sensitive to
detunings in the optimal IQ modulator settings (see fig. 4.15b).

Sub-wavelength focusing

Another interesting feature related to coherent perfect absorption is the possibility of
focusing waves beyond the diffraction limit. The radiation of a point source is described
by the causal Green’s function, while its counterpart, the anti-causal Green’s function
represents a spherically converging wave [105]. In free space, however, any converging
wave is followed by a diverging one. Due to their interference, the smallest possible
dimension for a wave’s focal spot is half the wavelength (λ/2) [150]. In the case of our
random anti-laser, a CPA state is perfectly absorbed such that in the vicinity of the central
absorbing antenna the magnitude of the diverging waves is strongly reduced, leaving only
the converging contributions behind. Free from interference with the outgoing waves,
the incoming signal can then be focused to much smaller spot sizes than the ordinary
limit. This effect has already been experimentally demonstrated for both acoustic and
electromagnetic waves [103–105]. While these experiments were not carried out in a
disordered or otherwise complex medium, our system would allow to do that.

To visualize the sub-wavelength focusing property of a CPA, we have slightly modified
the experimental setup to measure the microwave field around the central antenna with a

49



Chapter 4 Coherent perfect absorption

4 2 0 2 4

x [cm]

4

2

0

2

4
y

 [
c
m

]

/2

(a)

Absorbing antenna

4 2 0 2 4

x [cm]

/2

(b)

Reflecting antenna

4 2 0 2 4

x [cm]

4

2

0

2

4

/2

(c)

Without antenna

0 max|E|

Figure 4.16: Focal spot size of a CPA state around the central antenna. The plots show the
absolute value of the measured microwave field |E| of a CPA state for different configurations
of the central antenna: absorbing antenna (a), reflecting antenna (b), and without antenna
(c). For comparison, the size of a half wavelength λ/2 ≈ 2.2 cm is indicated by a scale bar.
The field was measured on a grid with a spacing of 4 mm and interpolated between the grid
points. For (a) and (b), the spacing between the measurement points was reduced to 1 mm
within a square of side length 2 cm around the central antenna.

much finer spatial resolution. The result for a CPA state at a frequency of 6.806 GHz
in a disordered medium consisting of 70 small and 4 large scatterers is presented in
fig. 4.16a. At first glance, the measurement confirms the expected behavior as we find
a pronounced focal spot much smaller than λ/2 at the position of the central antenna.
To check whether the observed sub-wavelength spot size is indeed a feature of the CPA
state, we have replaced the 50Ω terminating resistance by a short circuit termination,
which turns the central antenna from an absorber into a reflector. Surprisingly, when
we inject the same CPA state into the system with the reflecting central antenna, we
measure an equally small focal spot size as compared to the case with an absorbing
central antenna (see fig. 4.16b). Only if the central antenna is completely removed from
the waveguide, the sub-wavelength focusing feature disappears, which can be seen in
fig. 4.16c. The size of the other intensity maxima in the interference pattern is on the
order of the half wavelength λ/2.

As a closer inspection reveals, the observed sub-wavelength focal spot in figs. 4.16a
and 4.16b is due to the emergence of evanescent modes at the edge of the central
antenna. The spatial dependence of the transverse modes along the z-direction is given
by cos(kz,n z) [147], where kz,n = nπ/h, n ε ◆0, and h is the height of the waveguide. Due
to the small height of the waveguide (8 mm), only the modes with n = 0 are propagating
modes. All other modes (in the following referred to as z-modes) with n > 0 can only
exist as evanescent modes which decay exponentially with the radial distance r from

their origin (α e-κr,nr). The decay constant can be calculated as κr,n =
√

k2
z,n - k2 .
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Figure 4.17: Evanescent modes at the central antenna. The plots show a cross section of
the electric field through the central antenna along the x-direction (a) and the y-direction (b),
measured both for an absorbing and for a reflecting configuration of the central antenna. The
green curve depicts the exponential decay of the second transverse z-mode with extinction
coefficient κr,2. The gray shaded area marks the position of the central antenna.

Figure 4.17 depicts a cross section of the microwave field through the position of the
central antenna. Both for the absorbing and for the reflecting configuration of the central
antenna, the measured data points lie clearly on the exponentially decaying curve that is
associated with the second evanescent z-mode. The presence of these evanescent modes
prevents us from measuring the sub-wavelength focus as a result of the CPA.

Reflectionless scattering

For the injection of a CPA state into our system, it is necessary to be in control of all
relevant degrees of freedom (i.e., the complex amplitudes of all transverse modes in the
incoming signal). In principle, however, the parameters could also be optimized in such
a way that only some of the transverse modes are suppressed in the outgoing signal or
that, for instance, a superposition of the first and second mode as input is converted to
an output containing only the third and fourth mode. This phenomenon is referred to as
reflectionless scattering and was recently treated in literature [151].

In the frequency range between 6 GHz and 7.5 GHz, our waveguide supports four
transverse modes, which makes a total of eight modes (four on each side) that have to be
controlled in order to inject a specific state, e.g., a CPA state. With our eight external
antennas, this requirement is fulfilled. In the frequency range between 7.5 GHz and
9 GHz, on the other hand, the waveguide supports five transverse modes such that two
additional external antennas would be necessary to be in full control of the injected
wavefront. Following the same procedure as in the case with four open transverse modes,
one can determine a scattering matrix for up to eight modes (limited by the number of
external antennas). For that purpose, it can be arbitrarily chosen which of the ten modes
(five on each side) should be taken into account, for example modes one through four on
each side. In this case, the S-matrix contains no information about the fifth transverse
mode but only the scattering characteristics of the first four modes. Similar as for a
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Figure 4.18: Reflectionless scattering in a random anti-laser with a disordered medium
consisting of 60 small scatterers. (a) Minimal S-matrix eigenvalue |λmin|2 and ratio between
outgoing and incoming power with respect to all modes (Pout/Pin) and considering only
the first four modes (P(4)
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(4)
in ), respectively. (b) Normalized incoming microwave field Ein

compared to the resulting outgoing field Eout measured along the y-direction on one side of
the waveguide. The shape of the fifth transverse mode E5 is given by the dotted curve. The
gray shaded areas represent the waveguide walls.

CPA, one can identify parameter configurations where the minimal eigenvalue of this
reduced S-matrix almost dips to zero. However, it should be kept in mind that a vanishing
eigenvalue of this 8x 8 S-matrix is not necessarily related to a vanishing outgoing signal.
Instead, it means that the input from the first four modes is either absorbed by the system
or scattered into the fifth mode such that the outgoing signal mainly consists of the fifth
mode.

This behavior, which can be used to implement a mode filter, is illustrated in fig. 4.18
for a disordered medium consisting of 60 small scatterers. The minimal eigenvalue
of the reduced S-matrix features a pronounced dip at a frequency of 7.97 GHz (see
fig. 4.18a). The corresponding eigenstate, however, is not perfectly absorbed by the
system as can be seen from the measured ratio between outgoing and incoming power
(Pout/Pin, taking all five transverse modes into account). At the same time, if only the
first four transverse modes are considered, the ratio between outgoing and incoming
power (P(4)

out/P
(4)
in ) is significantly decreased in the frequency range around the eigenvalue

minimum, corresponding to more than 99% absorption (or scattering into the fifth mode)
of the power contribution from the first four modes. A measurement of the microwave
field outside the scattering region confirms that indeed the signal contributions from the
first four modes are filtered out of the incoming signal such that the outgoing signal
contains only the fifth mode (see fig. 4.18b).
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Chapter 5

Coherent virtual absorption

As discussed in chapter 4, a CPA can be realized if a critical amount of loss is introduced
into a suitable system such that one of the S-matrix zeros hits the real axis in the complex
frequency plane. However, it could be shown that S-matrix zeros can also be directly
addressed by an input signal with a complex frequency [106]. At first glance, a complex
value for the signal frequency appears peculiar, but the meaning becomes clear if we
consider a time-harmonic input with angular frequency ω = 2πν and amplitude E0,
which is given by

E(r, t) = E0(r) e-iωt . (5.1)

Inserting a complex-valued frequency ω = ωR + iωI into eq. (5.1) then yields

E(r, t) = E0(r) eωIt e-iωRt = Ẽ0(r, t) e-iωRt , (5.2)

which represents an input signal oscillating with the real frequency ωR but with a
temporally modulated amplitude Ẽ0 that increases or decreases exponentially in time,
depending on the sign of the imaginary part ωI. Based on this insight, it is possible to
inject a signal with exponentially increasing amplitude into a lossless object without
any backscattering from it (corresponding to a vanishing S-matrix eigenvalue). The
principle behind this behavior is that all backscattered contributions are annihilated
by destructive interference such that only an incoming and no outgoing energy flux
remains. This phenomenon is referred to as coherent virtual absorption, although the
term absorption is somewhat misleading in this context since the incoming energy is not
dissipated but only transiently stored inside the system, and will be released again once
the exponentially growing input signal is stopped.

As shown in appendix B.2, the propagation of electromagnetic waves in the cases
considered in this thesis is described by the Helmholtz equation[

Δ + n2(r)k2
]
Ψ(r) = 0 , (5.3)

in which Ψ(r) represents the electromagnetic field. For the moment, let us assume a
constant refractive index n(r) ≡ nR + inI. For a CPA, the refractive index is complex and
the wavenumber is real, whereas for a coherent virtual absorber (CVA), the refractive
index is real and the wavenumber is complex. Equation (5.3) has the same solutions in
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both cases if the product of the refractive index and the wavenumber satisfies the relation(
n(CPA)

R + in(CPA)
I

)
k(CPA) = n(CVA)

(
k(CVA)

R + ik(CVA)
I

)
. (5.4)

Therefore, the effect of coherent virtual absorption is closely related to the occurrence of
a CPA in a system with uniform global loss because mathematically the two different
variants lead to equivalent equations and hence also to equivalent solutions.

5.1 Basic realization
To illustrate the effect of coherent virtual absorption, we consider the same basic CPA
system that was already analyzed in fig. 4.3, with the difference that we now assume a
real refractive index n = 3. Accordingly, all zeros of the scattering matrix are located in
the upper half of the complex frequency plane (see fig. 5.1a). In fact, it turns out that the
outgoing signal can be completely suppressed if the amplitude of the incoming signal
is exponentially increased in time in such a way that the related complex frequency
corresponds to one of the S-matrix zeros. This behavior is visualized in fig. 5.1b.

Similar as for a CPA, also a coherent virtual absorber (CVA) relies on the precise
tuning of the signal parameters. In contrast to the CPA case, however, it is much easier
for a CVA to absorb multiple modes simultaneously because the zeros are not needed to
be pulled down onto the real frequency axis by introducing the exact right amount of
loss but can be addressed independently of each other9. This becomes clear if we take
a look at fig. 5.1c, where the behavior of the S-matrix eigenvalues as a function of the
real part of the frequency ωR is investigated while the imaginary part is kept constant
at the optimized value ω(CVA)

I where the CVA occurs, which is the same for all zeros of
the scattering matrix in this case. At each resonance frequency, one of the eigenvalues
drops to zero such that the outgoing signal of the corresponding eigenstate vanishes.
Finally, fig. 5.1d shows the dependence of the eigenvalues on the imaginary part of the
frequency ωI for fixed real part ωR = ω

(CVA)
R . As expected, the outgoing signal of the

CVA state vanishes only for the optimized value ωI = ω
(CVA)
I , whereas both smaller and

larger values lead to a non-vanishing outgoing signal.
While theoretically in simulations coherent virtual absorption could be maintained for

arbitrarily long times (if the field values are periodically rescaled to prevent numerical
overflow), real experiments are limited when the system suffers damage due to the
exponentially increasing field intensities or the signal source approaches its power limits.
In such cases, the incident signal would be switched off or at least the exponential
increase would be stopped. In order to explore the response of the system to a sudden
change of the incoming waveform, we perform a full time-dependent simulation by
solving the one-dimensional wave equation (see appendix B.1 for technical details). The
simulation is started in a stationary CVA state with frequency ω = ω(CVA)

R + iω(CVA)
I such

9 This is possible as long as the propagation of electromagnetic waves remains linear such that multiple
signals are simply superimposed. Due to the exponentially increasing field intensities inside the medium,
however, the perfect virtual absorption would break down when nonlinear effects set in.

54



5.1 Basic realization

0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

Re(ω) [arb. u.]

Im
(ω)[

ar
b.
u.
]

(a)

complex
frequency

CVA

-3 -2 -1 0 1 2 3
-3
-2
-1
0

1

2

3

x [arb. u.]

E
(x)[a

rb
.u
.]

(b)

|λ+||λ-|

0 2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re(ω) [arb. u.]

|λ ±|

(c) |λ+||λ-|

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Im(ω) [arb. u.]
|λ ±|

(d)

Figure 5.1: Coherent virtual absorption in a planar dielectric medium (refractive index n = 3).
(a) S-matrix zeros in the complex frequency plane. By injecting a signal whose amplitude
increases exponentially in time (corresponding to a complex frequency), the zeros can be
addressed even without introducing loss. (b) Field of a corresponding CVA state with complex
frequency ω = 8.378 + 0.231 i (arbitrary units): incoming field (green dashed), outgoing
field (red), and total field (blue), with the exponential envelope given by the grey dotted
curve. The gray shaded area represents the (lossless) medium. (c) S-matrix eigenvalues
for the symmetric (λ+) and anti-symmetric (λ-) eigenvectors as a function of the real part of
the signal frequency for optimized imaginary part ωI = 0.231 (arbitrary units). (d) S-matrix
eigenvalues as a function of the imaginary part of the signal frequency for optimized real
part ωR = 8.378 (arbitrary units).

that for negative times t < 0 the input amplitude increases exponentially and the scattered
field vanishes. During this phase, the entire incoming energy flux is stored inside the
system such that the intra-cavity field intensity and hence the stored energy increase
exponentially in time as well. At time t0 = 0, the incoming signal is continuously turned
off within half an oscillation period, which is done by multiplying the incoming field
with the switch-off function f (t) = 1

2[1 + cos(ω(CVA)
R t)] for 0 ≤ t ≤ π/ω(CVA)

R . After that,
the input remains equal to zero. Due to the change of the optimized CVA waveform,
the condition for destructive interference is violated and the output is not suppressed
anymore. As a consequence, the stored energy is released from the system. This result is
presented in fig. 5.2.
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Figure 5.2: Temporal dependence of the field and stored energy from the CVA presented in
fig. 5.1b. (a) Incoming (green dashed) and outgoing (red) field components normalized with
respect to the maximum in the considered time interval. For t < 0, a CVA state with complex
frequency ω = 8.378+0.231 i (arbitrary units) is injected such that the outgoing field vanishes.
At t = 0, the incoming field is switched off within half an oscillation period. (b) Stored energy
within the system as a function of time. For t < 0, the stored energy increases exponentially.
After t = 0, when the incoming field is switched off, the stored energy is released again.

5.2 Disordered media10

Analogously as for coherent perfect absorption, also the effect of coherent virtual
absorption can be generalized to the case of complex scattering environments. To
illustrate this effect, we start with a basic example of a disordered medium consisting of
five randomly placed slices of a lossless dielectric material with refractive index n = 2
and random thickness. This system can be reduced to a one-dimensional scattering
problem which is described by eq. (4.2). Since the refractive index n(x) is a piecewise
constant function for this case, the Helmholtz equation could in principle be solved
analytically, as discussed in section 4.1. However, the optimization of the incoming
signal to realize a CVA must be performed numerically because the requirement that
the outgoing field components vanish leads to a set of transcendental equations for the
complex frequency ω and the field amplitudes AL and AR of the injected signals from
left and right.

For simplicity, we also calculate the solution of the Helmholtz equation by means of
a numerical simulation, which is explained in appendix B.2. The optimization of the
input field is done with the help of the function optimize.minimize from the open-source
Python library SciPy11, where we use the ratio between the outgoing and incoming field
amplitudes |Eout| / |Ein| at the edge of the scattering region as objective function. In
this way, we can readily find a CVA state with frequency ω = 16.06 + 0.37 i (arbitrary
units), which is shown in fig. 5.3a, where we display a steady-state snapshot of the

10 The theoretical framework for the content of this section is based on the Bachelor theses [152, 153] of
Andrea Pupić and Thomas Ranner, whose projects on this topics I supervised. Part of the numerical
code for the simulations was provided by Matthias Kühmayer.

11 https://scipy.org/
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Figure 5.3: Coherent virtual absorption in one-dimensional disordered media. (a) Simulation
of the electric field E(x) of a CVA state for a disordered medium consisting of five layers
of random thickness, made out of a material with refractive index n = 2. Outside the
structure, there is only an incoming signal (Ein) while the outgoing signal (Eout) vanishes. (b)
Corresponding simulation for a disordered medium with a complex material composition.

electric field in the system at an arbitrary time t0. The amplitude ratio between the
left and the right input signal for this CVA state is given by |AL| / |AR| = 0.68 and the
relative phase is calculated as Δφ = φL - φR = -0.34. Although the outgoing field
vanishes for these parameter settings, it should be kept in mind that the incident energy
is only temporarily stored inside the structure and will be released again as soon as the
signal form is changed. To corroborate the robustness of our optimization approach, we
apply it to a more complicated disordered structure with a spatial dependence of the
refractive index n(x) that cannot be treated analytically anymore. Also in this case, we
can immediately find a CVA state (see fig. 5.3b). This CVA state features a frequency of
ω = 21.36 + 0.67 i (arbitrary units) with amplitude ratio |AL| / |AR| = 2.16 and relative
phase Δφ = 0.33.

The CVA states presented in fig. 5.3 represent only one of many possible realizations
and the results depend on the initial values fed into the optimization algorithm. In fact,
there are infinitely many zeros that could be individually addressed by tuning the input
signal to the respective complex frequency with the corresponding amplitude and phase
settings. To illustrate the distribution of the S-matrix poles and zeros in the complex
frequency plane, we perform a parameter scan of the real and imaginary parts of the
frequency and evaluate the determinant of the scattering matrix for each combination
of these values. Due to the fact that the determinant of a matrix can be written as the
product of its eigenvalues, a vanishing determinant corresponds to the presence of a zero
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Figure 5.4: Poles and zeros of the scattering matrix in the complex frequency plane. The
plots show the absolute value of the determinant of the S-matrix for the CVA systems from
fig. 5.1b (top), fig. 5.3a (center), and fig. 5.3b (bottom). The pronounced dots at which the
value of the determinant becomes particularly low (high) suggest the presence of a zero
(pole) at these parameter values.

whereas a diverging determinant indicates a pole of the scattering matrix. The results
for the planar dielectric medium from fig. 5.1 as well as for the disordered systems
from fig. 5.3 are consolidated in fig. 5.4. For the planar dielectric medium we find a
set of equally spaced zeros in the upper half-plane of the complex frequency that was
already presented in fig. 5.1a. Because we are dealing with Hermitian systems, the
corresponding set of S-matrix poles is symmetrically mirrored around the real frequency
axis, as discussed in section 4.1. For the disordered scattering systems, the poles and
zeros are irregularly distributed but still symmetrically arranged around the real axis.

With a slight modification of the optimization procedure, it is possible to generate
input states whose scattered field is suppressed only on one side of the system. In
particular, we can realize one-dimensional reflectionless scattering modes [151] if we
inject a signal only from one side and optimize its complex frequency in such a way that
the outgoing field on the same side is suppressed while a non-vanishing outgoing field
is allowed on the opposite side. This is demonstrated for the example of a disordered
medium consisting of six random layers of different dielectric materials in fig. 5.5. In
the first case, we inject a signal from the left side and get an outgoing field only on the
right side (fig. 5.5a), and vice versa in the second case (fig. 5.5b). Similar as discussed
before for the CVA states, it is possible to realize this behavior with different frequencies.
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Figure 5.5: One-dimensional reflectionless scattering modes for a disordered medium
consisting of six layers of various dielectric materials with different widths. (a) Simulation of a
reflectionless scattering mode injected from the left side with frequency ω = 20.82 + 0.25 i
(arbitrary units). (b) Corresponding simulation for a reflectionless scattering state with
frequency ω = 20.11 + 0.05 i (arbitrary units) injected from the right side.

It should be noted, however, that the reflectionless scattering modes are not related to
S-matrix zeros because they are neither eigenstates of the scattering matrix nor is their
total outgoing field equal to zero.

Finally, we examine the realization of coherent virtual absorption in two-dimensional
disordered media. For that purpose, we consider the weakly scattering system with 60
small scatterers as well as the strongly scattering system with 60 scatterers of mixed sizes
from section 4.2, with the difference that the central absorbing antenna has been removed
to make the system lossless. Numerical simulations prove that the (complex) frequency
of the input state can be optimized in such a way that the outgoing signal vanishes. For
this optimization, we have chosen the respective CPA frequency (from the case where
the central antenna is present) as a start value and varied the real and imaginary parts
of the frequency until the minimal S-matrix eigenvalue became sufficiently small, i.e.,
|λmin| < 10-6. For the weakly scattering system, we find an optimized frequency of
ν = (7.191 + 0.145 i) GHz, and for the strongly scattering system we get ν = (6.972 +
0.048 i) GHz. The intensity of the corresponding CVA states is imaged in fig. 5.6.
Additionally, the Poynting vector of the field is depicted, which is directed inwards into
the scattering region but due to the absence of the central antenna there is no sink for the
energy flux.
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Small scatterers

Mixed scatterers

Figure 5.6: Coherent virtual absorption in two-dimensional disordered media for a weakly
scattering configuration of 60 small scatterers and for a strongly scattering configuration with
60 scatterers of mixed sizes. The plots show the microwave intensity (top panels) as well as
the Poynting vector (bottom panels) of the injected CVA states inside the scattering region.
White circles represent the scatterers.
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Chapter 6

Customized coherent perfect absorption
As discussed in chapter 4, coherent perfect absorption works in a given system only for
specific input states, namely for the eigenstates of the scattering matrix with vanishing
eigenvalue. In order to improve the applicability of the anti-lasing effect for technological
purposes, it would be desirable to construct a system in such a way that a predefined input
signal will be perfectly absorbed. In this chapter we present several methods to realize
perfect absorption for predefined frequencies or wavefronts—either by customized
engineering of the system structure or by temporal modulation of the amplitude of the
incoming signal.

6.1 Perfect absorption of specific states12

In a general system, the frequency as well as the specific wavefront of a possible CPA
state is determined by the inner structure and material composition of the system. Under
certain prerequisites, however, it can be possible to engineer a system in such a way that
a predefined input signal gets perfectly absorbed. For that purpose, it is necessary to be
in control of a sufficiently large number of adjustable degrees of freedom which can be
varied in a suitable range of values compatible to the desired frequency and wavefront.

As a simple example, we investigate the construction of a CPA for a predefined input
state in a one-dimensional system consisting of an absorbing element placed between
two partially reflective mirrors (see fig. 6.1). In the simulations, which are executed
according to appendix B.2, the mirrors are modeled by thin layers of dielectric materials
with real refractive indices n1 (left) and n2 (right). In the first step, we start with an
arbitrary configuration of the system and try to find one of the possible CPA states.
Similar as explained in section 5.2, we perform an optimization of the incoming field
and the loss in the absorbing element and find a CPA state at a frequency of 32.22 arb. u.
with evenly balanced amplitudes from left and right (see fig. 6.1a). In the next step, we
define an incoming state with frequency ω = 40 arb. u., amplitude ratio |AL| / |AR| = 0.8,
and relative phase Δφ = π/2 between the left and the right signal source. To realize
perfect absorption, we optimize the system parameters, where we choose the length and
the loss of the absorbing element, as well as the position and the refractive index of the
12 The theoretical framework for the content of this section is based on the Bachelor theses [154, 155] of

Katharina Hauer and Felix Russo, whose projects on this topic I supervised. Part of the numerical code
for the simulations was provided by Matthias Kühmayer.
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Figure 6.1: Coherent perfect absorption of a predefined input state in a one-dimensional
system. (a) Original system consisting of two partially reflective mirrors (n1 = n2 = 5) with an
absorbing element (nabs = 3 + 0.0406 i) in between. A CPA state can be found at a frequency
of ω = 32.22 (arbitrary units). (b) Optimized system geometry for an arbitrarily chosen input
state with frequency ω = 40 (arbitrary units), amplitude ratio |AL| / |AR| = 0.8, and relative
phase Δφ = π/2. For the refractive index profile, we find the following optimized values:
n1 = 5, n2 = 3.25, and nabs = 3 + 0.0235 i. The dotted black curve shows the original shape
of the refractive index from (a).

right mirror as free parameters with reasonable bounds such that the absorber remains
located between the mirrors and the material parameters stay within a realistic range
of values. The optimized system together with the predefined CPA state is displayed
in fig. 6.1b. The final result of the parameter optimization strongly depends on the
initial guess that is passed to the minimization routine. In fact, there are many different
possible parameter configurations to realize perfect absorption for the given input state.
For example, the position of the right mirror is determined only up to an integer multiple
of the wavelength since it merely causes a phase shift.

For the customization of a multi-dimensional CPA, the utilization of a disordered
medium proves to be very helpful. This can be demonstrated, for instance, with the help
of our random anti-laser system from section 4.2, where we consider the disordered
medium consisting of 60 small scatterers. Due to the large number of scatterers, this
system features a good degree of control if the scatterer positions can be varied deliber-
ately. With the randomly implemented arrangement as displayed in fig. 4.4, we found
a CPA state at a frequency of about 7.1 GHz. Our goal for now is to change the scat-
terer configuration in such a way that a CPA occurs at the arbitrarily chosen frequency
ν = 6.7 GHz. To this end, we implement a numerical gradient descent algorithm to
optimize the scatterer positions for the desired input frequency. For each scatterer, we
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Figure 6.2: Customized two-dimensional coherent perfect absorber for a predefined signal
frequency of 6.7 GHz. Top panel: optimization of the scatterer positions. Blue circles depict
the scatterers, the red circle corresponds to the absorbing antenna, and the black lines show
the paths along which the scatterers have been shifted during the iteration. Middle panel:
microwave intensity of the injected CPA state, where the scatterers and the antenna are
indicated as white circles. Bottom panel: Poynting vector of the injected CPA state.

determine the gradient of the absolute value of the minimal S-matrix eigenvalue |λmin|
with respect to small shifts in x- and y-direction, and then shift the respective scatterer in
the opposite direction. Specifically, we iterate the scatterer positions according to

r(i+1)
n = r(i)

n - δs∆
,,,λmin(r(i)

n )
,,, , (6.1)

where rn is the position vector of the nth scatterer and δs is an adaptive step size. This
is done until the break condition |λmin| < 10-6 is met. In this way, we are able to
achieve coherent perfect absorption with relatively small adjustments in the scatterer
configuration, which is illustrated in fig. 6.2. As already observed in the simulations
for the original configuration (cf. fig. 4.8, left part), we find that the injected CPA state
features a pronounced intensity maximum around the central antenna. Moreover, the
energy flux is directed solely inwards close to the absorber.

In the next step, we go even further and demand that not only the frequency of the
incoming signal is fixed to 6.7 GHz but also the wavefront can be arbitrarily chosen,
e.g., only the fourth transverse mode is injected into the waveguide. Running the same
optimization algorithm as before, it is also in this case possible to realize coherent perfect
absorption by changing the disorder. As can be seen in fig. 6.3, however, larger shifts
than before are necessary because here we have imposed even stronger restrictions on the
incoming signal. Both the field intensity and the Poynting vector now clearly exhibit the
signature of the fourth transverse mode in the outer area of the scattering region, while
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Figure 6.3: Customized two-dimensional coherent perfect absorber for a predefined input
state with given signal frequency (6.7 GHz) and wavefront (only the fourth transverse mode is
injected). Top panel: optimization of the scatterer positions. Blue circles depict the scatterers,
the red circle corresponds to the absorbing antenna, and the black lines show the paths
along which the scatterers have been shifted during the iteration. Middle panel: microwave
intensity of the injected CPA state, where the scatterers and the antenna are indicated as
white circles. Bottom panel: Poynting vector of the injected CPA state.

in the vicinity of the absorbing antenna, there is still a pronounced maximum of the field
intensity and the energy flux has only inward-pointing components. Remarkably, the
iteration procedure causes some of the scatterers to be grouped together. In this way, the
effective scattering strength of the disordered medium can be enhanced, whereas the
isolated small scatterers are relatively weakly scattering. Larger scattering objects would
have more impact on the field such that the optimization could be completed with fewer
iterations or smaller shifts. Additionally, the algorithm could be easily adjusted to allow
a movement only for specific scatterers or to shift only those scatterers which have the
highest impact on the minimal S-matrix eigenvalue.

6.2 Degenerate cavity anti-laser13

The CPA systems which have been considered so far can absorb only a very specific
input state at a time. For actual applications, however, it would be highly desirable to
have the ability of absorbing several input states simultaneously. While recent works

13 The idea for this project was conceived by Ori Katz and Stefan Rotter. The experiments were carried
out by Yevgeny Slobodkin and Gil Weinberg under the supervision of Ori Katz. The numerical
simulations were performed by Helmut Hörner, who treated this topic in detail in the course of his
diploma thesis [156], which I supervised. Results and figures are taken from our joint publication [157].
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Figure 6.4: Concept of a degenerate cavity anti-laser. A weak absorber is located in a
degenerate cavity consisting of two lenses placed between a partially reflective (R1 < 1) and
a perfect mirror (R2 = 1). The lenses are arranged in an imaging telescope configuration
such that after one round trip the field is imaged onto itself. At certain frequencies, input
states with an arbitrary wavefront can be perfectly absorbed such that the reflected power of
the incoming signal vanishes.

have managed to merge two perfectly absorbed modes at an exceptional point [100–102],
all of the possibly many other modes would in such a case be only weakly absorbed
because of the different interference patterns created by them. As we show in this section,
it is possible to remove this limitation of the number of CPA modes entirely to absorb an
incoming signal at a given frequency but with arbitrary wavefront if the system is built
in the form of a degenerate cavity [158], which is a resonator with the property that an
arbitrary ray retraces its own path after a full round trip. Therefore, this kind of cavity
features a degenerate spectrum of resonance frequencies, meaning that a large number
of modes can simultaneously satisfy the resonance condition. One possible realization
of a degenerate cavity is shown in fig. 6.4. It consists of two identical converging lenses
placed between two mirrors forming the resonator. The key property of this system is
that the distance between the lenses is precisely twice the focal length f so that their
focal points coincide in the center. Furthermore, the distance from the surrounding
mirrors to the next lens is equal to one focal length, which makes a total system extent of
four focal lengths. For that reason, this configuration is also referred to as 4 f-cavity. By
placing a critically coupled absorber inside the cavity, it is feasible (at certain resonance
frequencies) to achieve perfect absorption of an input state with arbitrary wavefront and
incident angle to let the outgoing power vanish.

An experimental realization of such a massively degenerate coherent perfect absorber
[157] is illustrated in fig. 6.5a. Light from a wavelength-stabilized helium-neon laser
is directed onto a 4 f-cavity, where the incoming wavefront can be controlled with the
help of a spatial light modulator, and the spatial intensity distribution of the reflected
signal is measured by a camera. A piezo stage nanopositioner is used for a fine tuning of
the cavity length. To demonstrate the versatile absorption capability of this system, a
complex input field in the form of a speckled yin-yang symbol is injected. The intensity
profile of the measured reflection signal when the cavity length is tuned to minimal
absorption is depicted in fig. 6.5b. By adjusting the cavity length, the reflected power can

65



Chapter 6 Customized coherent perfect absorption

0

1

in
te

ns
ity

 [n
or

m
.]

0

1

in
te

ns
ity

 [n
or

m
.]

c

b

reflection at max.
absorption

2
3

1

2
3

1

a reflection at min.
absorption

e
absorption

d

full FOV
mode 1

mode 2
mode 3

-0.02 0.02
0

0.1

0.48 0.52
0

0.1

0 0.5
ΔL [λ]

0

0.5

1

re
fle

ct
ed

 p
ow

er
 [a

.u
.]

f 2f fSLM
beam
splitter

Massively degenerate (multi-mode) MAD-CPA

R1

weak
absorber

Laser

R2

piezo
stage

camera
+ lens 

eb

0 0.5
ΔL [λ]

0

0.5

1

re
fle

ct
ed

po
w

er
[a

.u
.]

-0.02 0.02
0

0.2

0.48 0.52
0

0.2

full FOV exp.
mode 1 exp.

full FOV sim.
mode 1 sim.

Figure 6.5: Experimental setup and results for a degenerate cavity anti-laser. (a) The signal
from a wavelength-stabilized laser is controlled using a spatial light modulator (SLM) and
injected into a degenerate cavity containing a critically coupled weak absorber. The spatial
intensity profile of the reflected light is captured with a camera. (b) Reflected intensity
distribution from an input field in the form of a speckled yin-yang symbol composed of more
than 1000 modes, where the cavity length is tuned for minimal absorption. (c) Dependence
of the reflected power on the cavity length L (in units of the wavelength λ) measured for the
full field of view (FOV) as well as for three individual localized modes (speckle grains) marked
by white squares in (b) and (e). (d) Same experimental measurements as in (c) for the total
reflected power and for a single mode, together with the numerical prediction for an input of
100 modes. (e) Measured reflected intensity distribution of the input signal from (b) when the
cavity-length is tuned for maximum absorption. Scale bars represent a length of 1 mm.

be minimized when the resonance condition L = mλ/2 is met, where L is the single-pass
optical path length and m ε ◆. At these resonant positions, close to perfect absorption is
measured, which is shown in fig. 6.5c for three exemplary modes (i.e., speckle grains) as
well as for the full field of view. In fig. 6.5d, the measured reflected power is compared to
numerical simulations for a 100-mode input, where an excellent agreement between the
experimental data and the theoretical model can be observed. The intensity distribution
for the cavity length being tuned to maximal absorption can be found in fig. 6.5e.

Our numerical simulations, which are thoroughly explained in ref. [156], are based on
scalar Fourier optics. Taking into account the optical elements in the system as well as
the free propagation in the space between them, the transmission matrix Tsrt for a single
round trip can be calculated. The total cavity reflection matrix Rcav is then given by
the sum of the directly reflected portion of light plus the contributions from the infinite
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Figure 6.6: Numerical study of the sensitivity of the degenerate cavity anti-laser to adjustment
errors. The top plots show the effect of deviations from the optimal configuration on the
minimal reflected power when the rear cavity mirror is tilted (a) or shifted (b), or when the
loss of the absorber is detuned from the critical value (c). The bottom plots illustrate the
movement of the degenerate zeros of the CPA reflection matrix in the complex frequency
plane when either the rear cavity mirror is slightly tilted (d), or when the absorption strength
becomes sub-critical (e). Simulation parameters: f = 75 mm, λ = 633 nm, R1 = 70%,
R2 = 100%.

number of round trips inside the cavity, which can be written as

Rcav = r✶ + t2Tsrt

(
✶ + rTsrt + r2T 2

srt + . . .
)
, (6.2)

where r and t are the complex-valued reflection and transmission coefficients of the
partially reflective front mirror. Generalizing the scalar geometric series formula to
matrix calculations finally yields

Rcav = r✶ + t2Tsrt

∞Σ
i=0

(rTsrt)i = r✶ + t2Tsrt (✶ - rTsrt)-1 . (6.3)

To point out the importance of a precise adjustment of the experimental setup, we
perform numerical simulations in which one of the system parameters is detuned while
all others stay at the optimal values as required for perfect absorption (see fig. 6.6).
The results confirm that the absorption efficiency of the system is very sensitive to
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deviations from optimal positions of the cavity mirrors or lenses, as well as from the
critical absorption. Furthermore, it can be seen that tilting one of the cavity mirrors
causes the zeros of the cavity reflection matrix to be spread out on the real axis, whereas
reducing the amount of loss in the absorber lets them move upwards in the complex
frequency plane. This sensitivity, in particular with respect to a mirror tilt, makes the
alignment of all system components to achieve perfect absorption highly challenging.
On the contrary, this property opens up interesting fields of applications, e.g., for sensing
or high-precision measurements.

6.3 Scattering suppression from imperfect absorbers14

The effect of coherent perfect absorption relies on a precise tuning of the system and
signal parameters. Even very small deviations from optimal parameter settings can result
in a significant deterioration of the absorption efficiency. As soon as only one of the
system or signal parameters is detuned from the CPA configuration, the S-matrix zero
corresponding to the CPA state is no longer located at the real frequency axis but rather
shifted upwards or downwards in the complex frequency plane. As we have shown in
chapter 5, however, the S-matrix zeros can also be directly engaged by implementing
complex signal frequencies. This phenomenon can be used to transiently suppress the
scattered signal from an under- or overdamped CPA.

To illustrate the principle of this technique, we apply it to the simple CPA depicted in
fig. 4.3b. In the first case, we decrease the attenuation in the absorber by 50% as com-
pared to the critical value, which results in a non-vanishing outgoing signal. To take the
subcritical loss into account for suppressing the outgoing signal, a corresponding imagi-
nary part is added to the signal frequency, which then has a value of ω = 8.384 + 0.116 i
(arbitrary units). As can be seen in fig. 6.7a, this leads to a completely vanishing out-
going signal again. Since the loss in the absorber is lower than the critical value of the
CPA, only part of the incoming energy is absorbed while another part is temporarily
stored inside the structure as already discussed in the context of coherent virtual absorp-
tion. Therefore, this process can be interpreted as a combination of the CPA and CVA
principles.

Analogously to the case of subcritical loss, one can also suppress the outgoing signal
for the case of supercritical loss. Increasing the absorption in the system by 50% as
compared to the critical value, we find an optimal frequency of ω = 8.384 - 0.116 i
(arbitrary units) for vanishing output (see fig. 6.7b). In this situation, the corresponding S-
matrix zero lies below the real axis in the lower half of the complex frequency plane, i.e.,
the imaginary part of the optimal frequency is negative. In contrast to an underdamped
absorber, however, a system with supercritical loss actually absorbs the entire incoming
energy if the process is maintained for a sufficiently long time. Due to the exponentially
decreasing signal amplitude, the field inside the absober approaches zero with increasing

14 The theoretical framework for the content of this section is based on the Bachelor theses [152, 153]
of Andrea Pupić and Thomas Ranner, whose projects on this topic I supervised. Part of the numerical
code for the simulations was provided by Matthias Kühmayer.
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Figure 6.7: Suppression of the scattered signal from a detuned CPA by temporal modulation
of the signal amplitude, (a) Electric field of a CPA state in a system with subcritical loss, which
is compensated by increasing the signal amplitude exponentially in time. (b) Corresponding
plot for a system with supercritical loss, where the scattering can be suppressed for a signal
whose amplitude decreases exponentially in time.

time. A limiting restriction for an experimental realization is the initially large signal
amplitude, which also means that in the beginning of such an experiment there would be
a large outgoing field during the transient scattering of the first waves impinging on the
absorber until a stationary state is reached.

The approach of suppressing the scattered waves from imperfect absorbers by using
complex frequencies can be easily generalized to multi-dimensional systems. As an
example, we consider again the random anti-laser system from section 4.2 with the
disordered medium consisting of 60 small scatterers. Similar as discussed for the
simple one-dimensional system before, we decrease or increase the loss of the absorbing
antenna by 25% from the critical value and optimize the signal frequency to minimize
the outgoing power. In both cases, it is possible to achieve a vanishing minimal S-matrix
eigenvalue, i.e., |λmin| < 10-6. The variation of the parameter values together with the
resulting minimal S-matrix eigenvalue is documented in table 6.1.
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Chapter 6 Customized coherent perfect absorption

Table 6.1: Suppression of the scattered signal from a detuned CPA by temporal modulation of
the signal amplitude. The table shows the absolute value of the minimal S-matrix eigenvalue
|λmin| for different parameter configurations of the refractive index nant of the absorbing
scatterer (representing the central antenna) and the signal frequency ω.

configuration nant ω [arb. u.] |λmin|
CPA 3.013 + 1.037 i 148.612 < 10-6

subcritical loss 3.013 + 0.778 i 148.612 0.190

suppressed scattering 3.013 + 0.778 i 148.400 + 0.599 i < 10-6

supercritical loss 3.013 + 1.296 i 148.612 0.145

suppressed scattering 3.013 + 1.296 i 149.315 - 0.692 i < 10-6

6.4 Perfect absorption of electromagnetic pulses15

Coherent perfect absorption and coherent virtual absorption are steady-state phenomena
that work only for well-defined signal frequencies. The perfect absorption of an electro-
magnetic pulse, on the other hand, is a highly nontrivial process since the spectrum of a
pulsed signal contains a large number of frequency components which would have to be
perfectly absorbed simultaneously. Although several concepts of enhanced broadband
absorption have been presented [112–114], the complete absorption of a pulsed signal
remained out of reach so far. One possible strategy to optimize the absorption of a poly-
chromatic input state could be to engineer the structure of a disordered medium, similar
to the algorithm explained in section 6.1. However, with a growing number of injected
frequency components, the optimization procedure would become increasingly complex.
Here we propose a scheme to enhance the absorption of specifically constructed pulses
based on a dynamical tuning of the loss in the system.

As a starting point, we recapitulate our findings from chapter 5, where we have seen
that the scattering from a lossless system can be suppressed if the incoming signal
features an exponentially increasing amplitude. Consequently, we demand that the
leading edge of the pulse to be absorbed has an exponentially increasing envelope
(ωI = ω

(CVA)
I > 0) for t < 0. To achieve a complete pulse, we then change the imaginary

part of the signal frequency linearly over time from the CVA value ωI = ω
(CVA)
I to the

negative CVA value ωI = -ω(CVA)
I during the time interval 0 ≤ t ≤ t1. For t > t1, the

imaginary part of the frequency is kept constant at ωI = -ω(CVA)
I such that the trailing

edge of the pulse decreases exponentially in time. To illustrate the effect of such a pulse,
we inject it from both sides into the system from fig. 5.1b, i.e., into a plane layer of a
dielectric material with refractive index n = 3. The incoming and outgoing fields for
this configuration are depicted in fig. 6.8a. As soon as the signal form deviates from
the exponentially increasing wave as required for a CVA (in the example here at t = 0),

15 The theoretical framework for the content of this section was developed together with Andrea Pupić,
who treated this topic in the course of a project work [159] that I supervised.
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Figure 6.8: Absorption of an electromagnetic pulse. (a) Simulation of the incoming and
outgoing field of an electromagnetic pulse impinging on a lossless structure (evaluated right
in front of the edge of the system). For t < 0, the amplitude of the incoming signal increases
exponentially in time such that the outgoing signal vanishes. (b) Corresponding simulation
for an absorber in which the loss is gradually increased while the imaginary part of the signal
frequency is decreased.

the stored energy is released from the structure and leaves the system in the form of an
outgoing pulse. The total outgoing energy equals to the total injected energy as there is
no loss in this system.

As demonstrated in section 6.3, the scattering of an incoming signal can be suppressed
if the imaginary part of the signal frequency is matched to the actual degree of dissipation
in the system. In the next step, we therefore introduce loss into this system in such a
way that the attenuation dynamically increases linearly in time to maintain the critical
value of loss corresponding to the actual value of ωI(t) in the time frame 0 ≤ t ≤ t1. The
simulation results for this simplified dynamical loss adjustment are presented in fig. 6.8b.
As compared to the case without loss, the amplitude of the outgoing pulse is strongly
reduced as part of the signal is absorbed inside the structure. Since the pulse energy is
proportional to the temporal integral of the squared field, it turns out that about 93% of
the injected energy is absorbed by the system.

Although for each time the loss and the imaginary part of the signal frequency are
aligned as required for a vanishing outgoing signal in steady-state operation, the pulse is
not perfectly absorbed. The reason for this behavior is that the system would require a
certain settling time after each parameter change to reach a stationary state again. To deal
with this problem, on could perform the variation of the signal and system parameters
(almost) adiabatically. However, this would heavily increase the pulse duration. Another
possibility to improve the absorption efficiency for an electromagnetic pulse would be
to optimize the exact form of the temporal modulation of the loss in the absorber to
compensate the transient emission. Such an optimization procedure, however, shall be
left as an open task for further studies.
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Chapter 7

Conclusion and Outlook

In summary, we have discussed various effects associated with generalizations of the
lasing principle to novel domains, such as phonon lasing and the time-reversal of lasing
at threshold.

In the first part of this thesis, we have discussed that the principle of stimulated
emission can be extended to quanta beyond photons, which led us to the concept of
a phonon laser. We have explicitly discussed an experimental setup consisting of
two whispering-gallery-mode microresonators, one of which also supports mechanical
oscillations. By tuning the system parameters (specifically by introducing additional loss
in one of the resonators), it was possible to induce an exceptional point (EP) in the two
optical modes, which form the two-level system that underlies the stimulated phonon
emission. With the help of this compound phonon laser system, we could clarify the
long-debated issue of what happens to the linewidth of a laser when it is operated at an
EP [24]. In accordance with early theoretical work on this subject, we found a significant
broadening of the phonon laser linewidth in the vicinity of the EP. This broadening can
be attributed to excess noise due to the maximized non-orthogonality of the two optical
modes when they are steered to an EP, i.e., when they become parallel. Moreover, we
observed a sudden drop of the phonon laser threshold as another signature of the EP in
the optical part of the system. This is a result of the spatial distribution of the two optical
modes over the resonators, whose characteristics change dramatically when the system
is steered through the EP by increasing the additional loss in the purely optical resonator.

The remaining part of this dissertation was devoted to the perfect absorption of
electromagnetic signals. By time-reversing the process of lasing at threshold, the concept
of coherent perfect absorption was introduced. Based on a scattering matrix analysis, we
managed to generalize this effect to disordered media and complex scattering systems.
This was presented in the framework of a microwave experiment which represents
the first implementation of a random anti-laser [91]. Since our approach solely relies
on the accessibility of the scattering matrix, which can be conveniently measured in
the far-field of the scattering system, no information about the exact system structure
nor any near-field measurements are required. This property makes us confident that
our method could be a basis for promising applications in various fields like, e.g.,
telecommunications or radiotherapy. Moreover, we have indicated that coherent perfect
absorbers (CPAs) can also be a relevant tool for focusing beyond the diffraction limit.
Although we could not directly visualize this effect in our random anti-laser experiment,
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the sub-wavelength focusing feature of a CPA could lead to considerable advances in
medical and industrial imaging techniques by significantly reducing the focal spot size.
However, it must be noted that the currently available measuring technologies will also
require further improvement in order to provide the necessary scattering information in
real time, especially for applications in a dynamically changing environment.

Nevertheless, we have developed several methods to enhance the versatility of CPAs
for technical applications. As a first improvement, we have demonstrated how a spe-
cific signal with predefined frequency or wavefront can be perfectly absorbed if the
geometric structure of the system is optimized. While it turned out that in simple (quasi-
one-dimensional) geometries the optimal system parameters can be straightforwardly
calculated, we could also show that even in a disordered medium a customized signal
can be perfectly absorbed if only a few scatterers are properly shifted. Moreover, the
concept of a degenerate cavity anti-laser was introduced [157]. As demonstrated both
theoretically and experimentally, such a device offers the possibility to perfectly absorb
signals with arbitrary wavefront at a given frequency. With the help of the toolbox pro-
vided by the aforementioned methods, we are now in the position to design customized
CPAs for arbitrary monochromatic input signals.

Besides coherent perfect absorption, we have also discussed the phenomenon of
coherent virtual absorption. In this process, where one of the scattering matrix zeros
is directly engaged in the complex frequency plane, the entire energy of the incident
signal is temporarily stored inside the system while all backscattered signal components
are canceled out by destructive interference. Therefore, this effect enables efficient and
flexible energy storage over short periods of time, i.e., as long as the exponential growth
of the incoming signal can be maintained. Similar as for CPAs, however, coherent
virtual absorption has been investigated only in rather simple geometries in previous
publications. In analogy to our random anti-laser, we have demonstrated in this work that
coherent virtual absorption can also be achieved in disordered media. As we have further
shown, the concepts of coherent perfect absorption and coherent virtual absorption can
be combined in order to transiently suppress the scattered signal components from a
detuned CPA. Finally, we have proposed a procedure for the perfect absorption of
electromagnetic pulses by dynamically tuning the system’s absorption strength.

Based on the methods and results presented in this thesis, we believe that we could
contribute another interesting piece in the mosaic of the comprehensive field of non-
Hermitian physics. Nobody knows what fascinating discoveries the future will reveal,
but (exotic) lasers and anti-lasers may very well play an essential role in it.
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A Phonon laser analysis

A.1 Quantum Langevin equations

In real experiments, a system is never completely isolated from its environment but is
always at least weakly coupled to secondary degrees of freedom which are commonly
referred to as a heat bath [128,129]. For many problems in quantum optics, the bath can
be modeled as a continuum of harmonic oscillators. Assuming that both the system and
the bath evolve at a frequency scale of ω0, the Hamiltonian of the bath is given by

Ĥbath =

∫ ω0+Δω

ω0-Δω
dω hωb̂†ωb̂ω , (A.1)

where Δω is the bandwidth of the bath and the bosonic bath operators b̂ω obey the
commutation relation [

b̂ω , b̂†ω,
]
= δ(ω - ω,) . (A.2)

The interaction of the bath with an arbitrary system operator ĉ may be written as

Ĥint = ih
∫ ω0+Δω

ω0-Δω
dω g(ω)

(
b̂†ωĉ - ĉ†b̂ω

)
, (A.3)

where g(ω) is a frequency-dependent coupling parameter. An arbitrary system (with
Hamiltonian Ĥsys) coupled to a heat bath is thus described by the full Hamiltonian

Ĥ = Ĥsys + Ĥbath + Ĥint . (A.4)

From eq. (A.4) we can now derive the Heisenberg equations of motion for the bath
operators b̂ω as well as for an arbitrary system operator â:

˙̂bω =
i
h

[
Ĥ , b̂ω

]
= -iωb̂ω + g(ω)ĉ , (A.5)

˙̂a =
i
h

[
Ĥ , â

]
=

i
h

[
Ĥsys , â

]
-
∫ ω0+Δω

ω0-Δω
dω g(ω)

(
b̂†ω [ĉ , â] -

[
ĉ† , â

]
b̂ω
)
. (A.6)
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Formally integrating eq. (A.5) yields a solution for b̂ω,

b̂ω(t) = b̂ω(0) e-iωt + g(ω)
∫ t

0
ds ĉ(s) e-iω(t-s) , (A.7)

which can be substituted into eq. (A.6) to obtain

˙̂a =
i
h

[
Ĥsys , â

]
-
∫ ω0+Δω

ω0-Δω
dω g(ω)

(
b̂†ω(0) eiωt [ĉ , â] -

[
ĉ† , â

]
b̂ω(0) e-iωt

)
-
∫ ω0+Δω

ω0-Δω
dω (g(ω))2

∫ t

0
ds
(
ĉ†(s) eiω(t-s) [ĉ , â] -

[
ĉ† , â

]
ĉ(s) e-iω(t-s)

)
. (A.8)

While eq. (A.8) is still exact, we can further simplify it with the so-called Markov
approximation. To this end, we assume that the system-bath coupling is independent
of frequency within the bandwidth of the bath, i.e., g(ω) ≡ g(ω0). Further we assume
that the bath correlation time (i.e., the inverse bandwidth) is short enough such that c(s)
contributes only for short times to the last integral in eq. (A.8) and we can replace the
actual system evolution by the free evolution

c(s) ≈ c(t) eiω0(t-s) , (A.9)

which yields integrals of the form

- (g(ω0))2
[
ĉ† , â

]
ĉ(t)
∫ t

0
ds
∫ ω0+Δω

ω0-Δω
dω e-i(ω-ω0)(t-s),........................,,........................,
≈2πδ(t-s)

= - 2π (g(ω0))2
[
ĉ† , â

]
ĉ(t)
∫ t

0
ds δ(t - s),...........,,...........,
=1/2

. (A.10)

By defining the operator decay rate γ = π (g(ω0))2 and the in-field

b̂in(t) =
1√
2π

∫ ω0+Δω

ω0-Δω
dω b̂ω(0) e-iωt , (A.11)

which satisfies the commutator relation[
b̂in(t) , b̂†in(t,)

]
= δ(t - t,) , (A.12)

we can derive the quantum Langevin equations for any system operator

˙̂a =
i
h

[
Ĥsys , â

]
-
[
â , ĉ†

] (
γĉ +

√
2γ b̂in(t)

)
-
(
γĉ† +

√
2γ b̂†in(t)

)
[ĉ , â] . (A.13)
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For the simple example of â being a harmonic oscillator operator, we can identify ĉ ≡ â
in eq. (A.13) and obtain the quantum Langevin equation of a damped harmonic oscillator,

˙̂a = -iω0â - γâ + Γ̂ , (A.14)

where we have defined the noise operator Γ̂ = -√2γ b̂in.

A.2 Derivation of the phonon laser threshold

While the threshold pump power of our phonon laser system can be easily calculated
numerically (see appendix A.3), we want to derive an analytical approximation in order
to gain a better understanding of the relevant physics in the vicinity of the EP. The
starting point for our analysis is the c-number version of the system equations [24, 117]

ȧ1(t) = (iΔ - γ1) a1(t) - iκa2(t) + igx0a1(t) (b(t) + b*(t)) + Ω + Γ1(t) , (A.15)
ȧ2(t) = (iΔ - γ2) a2(t) - iκa1(t) + Γ2(t) , (A.16)

ḃ(t) = (-iωm - γm) b(t) + igx0a*1(t)a1(t) + Γb(t) . (A.17)

As already derived in section 2.3.2, the optical inter-resonator coupling gives rise to the
formation of two supermodes, which can be written as

a±(t) =
1

N±

[
(iγ ± β) a1(t) + κa2(t)

]
, (A.18)

where we have used the abbreviations γ = (γ2 - γ1) /2 and β =
√
κ2 - γ2 , as well as

the normalization constants

N± =

(,,,{,,,(
√

2 κ if κ2 ≥ γ2√
κ2 +
(
γ ± √γ2 - κ2

)2
if κ2 < γ2

. (A.19)

With the help of eq. (A.18), the cavity modes a1 and a2 can be expressed in terms of the
supermodes a+ and a- according to

a1(t) =
1

2β
[N+a+(t) - N-a-(t)] , (A.20)

a2(t) =
1

2βκ
[
(β - iγ) N+a+(t) + (β + iγ) N-a-(t)

]
. (A.21)

By inserting eqs. (A.20) and (A.21) into eq. (2.15), the system Hamiltonian can be
expressed in the supermode basis, from which we can derive the dynamical equations
for the supermodes, where we have to distinguish between the cases before and after the
EP.
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Strong coupling regime

In the regime before the EP (strong coupling, κ2 ≥ γ2), the term β =
√
κ2 - γ2 is real

and the supermodes feature different frequencies ω± = ωc ± β but equal decay rates
γ± = Χ = (γ1 + γ2) /2. The system equations in the supermode representation are
derived as

ȧ+ =
[
i (Δ - β) - Χ] a+ + gx0 (γ - iβ)

2β
a-b +

iγ + β√
2 κ
Ω , (A.22)

ȧ- =
[
i (Δ + β) - Χ] a- - gx0 (γ + iβ)

2β
a+b* +

iγ - β√
2 κ
Ω , (A.23)

ḃ = (-iωm - γm) b - igx0κ
2

2β2 a*-a+ , (A.24)

where we have dropped the temporal dependence for better readability. For the derivation
of eqs. (A.22) to (A.24), we have neglected the self-frequency-shift terms proportional to
â†+â+

(
b̂ + b̂†

)
and â†-â-

(
b̂ + b̂†

)
and also the non-resonant terms proportional to â†-â+b̂

and â†+â-b̂† in the system Hamiltonian, as well as the noise terms. One can already
see from eqs. (A.22) to (A.24) that the effective optomechanical coupling is strongly
enhanced in the vicinity of the EP where β→ 0. In fact, the unphysical divergence of
the effective optomechanical coupling directly at the EP (β = 0) indicates that more
terms are required to describe this parameter regime correctly.

In analogy to the procedure in standard laser theory [9], we introduce the ladder
operators Ĵ+ = â†+â- and Ĵ- = â†-â+ as well as the population inversion operator
Ĵz = â†+â+ - â†-â-. The dynamical equations for these quantities follow directly from
eqs. (A.22) to (A.24) and can be written as

J̇+ = -2 (Χ - iβ) J+ - gx0 (γ + iβ)
2β

Jzb* , (A.25)

J̇- = -2 (Χ + iβ) J- - gx0 (γ - iβ)
2β

Jzb , (A.26)

J̇z = -2ΧJz +
gx0 (γ + iβ)

β
J-b* +

gx0 (γ - iβ)
β

J+b + Λ , (A.27)

ḃ = (-iωm - γm) b - igx0κ
2

2β2 J- , (A.28)

where Λ is the effective driving acting on the two-level system, which is given by

Λ =
[
(β + iγ)

(
ā*+ + ā-

)
+ (β - iγ)

(
ā+ + ā*-

)] Ω√
2 κ
, (A.29)

with the quantities ā± denoting the stationary values of the supermodes a±. Note that
we have omitted the driving acting on the dynamics of J+ and J- because we assume
that the total population of the two energy levels n̂+ + n̂- = â†+â+ + â†-â- is conserved.
After performing a rotating frame transformation by substituting b → b exp(-iωm),
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J- → J- exp(-iωm), and J+ → J+ exp(iωm), and using the fact that γm < Χ, one can
adiabatically eliminate the degrees of freedom of the optical modes by setting J̇- = 0,
which yields

J- =
gx0 (iβ - γ) Jz

2β
[
2Χ + i (2β - ωm)

]b . (A.30)

By inserting eq. (A.30) into eq. (A.28) we obtain the following equation for the phonon
mode in the rotating frame,

ḃ = -γmb +
i(gx0)2 (γ - iβ) κ2Jz

4β3 [2Χ + i (2β - ωm)
]b , (A.31)

from which one can see that the optical modes induce an effective mechanical gain of

G = Re
{

i(gx0)2 (γ - iβ) κ2Jz

4β3 [2Χ + i (2β - ωm)
]} = (gx0)2 [2βΧ + γ (2β - ωm)

]
κ2Jz

4β3
[
4Χ2 + (2β - ωm)2

] . (A.32)

For an effective pumping of the blue-detuned supermode a+ and under the assumption of
complete inversion such that Ĵz ≈ â†+â+, the threshold pump power of the phonon laser is
approximately given by Pthr ≈ Χhω+a*+a+ ≈ ΧhωcJz, where we have also considered that
ωm, β < ωc and hence ω+ ≈ ωc. With these approximations together with the threshold
condition G = γm, the threshold pump power of the phonon laser in the regime before
the EP can be calculated from eq. (A.32) and is given by

Pthr =
4Χhωcγmβ

3
[
4Χ2 + (2β - ωm)2

]
(gx0)2κ2

[
2βΧ + γ (2β - ωm)

] . (A.33)

Weak coupling regime

In the regime after the EP (weak coupling, κ2 < γ2), the term β = iβ̃ = i
√
γ2 - κ2 is

purely imaginary and the supermodes feature equal frequencies ω± = ωc but different
decay rates γ± = Χ ± β̃. The system equations in the supermode representation thus read

ȧ+ =
[
iΔ -

(
Χ - β̃

)]
a+ -

igx0N-
(
γ + β̃

)
2N+β̃

a-b +
i
(
γ + β̃

)
N+

Ω , (A.34)

ȧ- =
[
iΔ -

(
Χ + β̃

)]
a- +

igx0N+
(
γ - β̃

)
2N-β̃

a+b* +
i
(
γ - β̃

)
N-

Ω , (A.35)

ḃ = (-iωm - γm) b - igx0N+N-
4β̃2

a*-a+ . (A.36)

Similar as in the regime before the EP, we can derive the dynamical equations for
the quantities J+, J-, and Jz, introduce the rotating frame b → b exp(-iωm), J- →
J- exp(-iωm), and J+ → J+ exp(iωm), and adiabatically eliminate the optical degrees of
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freedom, which leads to

J- =
igx0N+

(
β̃ - γ

)
Jz

2β̃N- (2Χ - iωm)
b (A.37)

and consequently to

ḃ = -γmb - (gx0)2κ2γJz

4β̃3 (2Χ - iωm)
b . (A.38)

From eq. (A.38) we can again derive the mechanical gain due to the optomechanical
interaction, which results in

G = Re
{
- (gx0)2κ2γJz

4β̃3 (2Χ - iωm)

}
= - (gx0)2κ2γΧJz

2β3 (4Χ2 + ω2
m
) . (A.39)

However, the corresponding threshold pump power

Pthr = -
2hωcγmβ̃

3
(
4Χ2 + ω2

m

)
(gx0)2κ2γ

(A.40)

would then become negative in the parameter regime under consideration, which clearly
indicates that the approximations made for the derivation of eq. (A.40) are not justified
in this case. In fact, one of the most critical approximations is to neglect the allegedly
non-resonant terms proportional to â†-â+b̂ and â†+â-b̂† in the system Hamiltonian. In the
vicinity of the EP and particularly in the regime after the EP, both supermodes feature
the same frequency, which implies that more terms in the system Hamiltonian should be
included in the analysis. Taking into account also the terms proportional to â†-â+b̂ and
â†+â-b̂† results in a situation where the denominator in eq. (A.39) vanishes since all terms
are canceled out by each other, which corresponds to an infinitely high optomechanical
coupling strength. Therefore, we find that the analytical approximation for the threshold
pump power of the phonon laser in the regime after the EP is equal to zero,

Pthr ≡ 0 . (A.41)

A.3 Linear stability analysis
The occurrence of phonon lasing in our system does not only depend on the correct
parameter settings but especially on the pump strength Ω. A standard way to determine
for a given pump power whether the system operates below or above threshold is given
by a technique called linear stability analysis [160]. A particular solution of a nonlinear
system is called linearly stable if the linearization of the equations at this solution is of
the form

d
dt

u(t) = Au(t) , (A.42)

where the spectrum of the linear operator A contains only eigenvalues with negative
real part. Otherwise—if one of the eigenvalues has a positive real part—the system is
called linearly unstable. For our phonon laser, the transition between linear stability and
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instability with increasing pump power corresponds to the laser threshold. In order to
linearize the system equations, the fields a1(t), a2(t), and b(t) are split into a constant
steady-state value and a small time-dependent perturbation16, i.e.,

a1(t)→ ā1 + δa1(t) , (A.43)
a2(t)→ ā2 + δa2(t) , (A.44)
b(t)→ b̄ + δb(t) . (A.45)

Inserting eqs. (A.43) to (A.45) into eqs. (A.15) to (A.17) yields the linearized equations

d
dt

(ā1 + δa1(t)) = (iΔ - γ1) (ā1 + δa1(t)) - iκ (ā2 + δa2(t)) + Ω

+ igx0

[
ā1

(
b̄ + b̄*

)
+ ā1 (δb(t) + δb*(t)) + δa1(t)

(
b̄ + b̄*

)]
,

(A.46)
d
dt

(ā2 + δa2(t)) = (iΔ - γ2) (ā2 + δa2(t)) - iκ (ā1 + δa1(t)) , (A.47)

d
dt

(
b̄ + δb(t)

)
= (-iωm - γm)

(
b̄ + δb(t)

)
+ igx0

(
ā*1ā1 + δa*1(t)ā1 + ā*1δa1(t)

)
,

(A.48)

where we have neglected the noise forces and dropped the terms of higher than first
order in the perturbations. With the aid of the relation

˙̄a1 = ˙̄a2 =
˙̄b = 0 , (A.49)

the zero-order contribution of eqs. (A.46) to (A.48) can be written as

0 = (iΔ - γ1) ā1 - iκā2 + igx0ā1

(
b̄ + b̄*

)
+ Ω , (A.50)

0 = (iΔ - γ2) ā2 - iκā1 , (A.51)
0 = (-iωm - γm) b̄ + igx0ā*1ā1 . (A.52)

Equations (A.50) to (A.52) represent a closed set of nonlinear equations for the steady-
state fields and can be easily solved numerically. The first order equations are then given
by

˙δa1(t) = (iΔ - γ1) δa1(t) - iκδa2(t) + α (δb(t) + δb*(t)) + βδa1(t) , (A.53)
˙δa2(t) = (iΔ - γ2) δa2(t) - iκδa1(t) , (A.54)

δ̇b(t) = (-iωm - γm) δb(t) + α*δa1(t) + αδa*1(t) , (A.55)

where we have introduced the abbreviations α = igx0ā1 and β = igx0

(
b̄ + b̄*

)
. The

values for the steady-state quantities ā1 and b̄ can be directly taken from the solution of
eqs. (A.50) to (A.52).

16 Note that this ansatz is valid only below threshold as it is demonstrated in ref. [117].
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The next step is to define the solution vector

u(t) =
(
δa1(t) δa*1(t) δa2(t) δa*2(t) δb(t) δb*(t)

)T
, (A.56)

which satisfies eq. (A.42) with the matrix

A =

(.......................(

iΔ - γ1 + β 0 -iκ 0 α α
0 -iΔ - γ1 - β 0 iκ α* α*

-iκ 0 iΔ - γ2 0 0 0
0 iκ 0 -iΔ - γ2 0 0
-α* α 0 0 -iωm - γm 0
α* -α 0 0 0 iωm - γm

).......................)
.

(A.57)
By calculating the eigenvalues of the matrix A, it can be decided for any given input
parameter set whether the system is below or above threshold. The exact value for
the threshold pump power can be found by systematically varying the input power and
simultaneously evaluating the eigenvalues of the matrix A.
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B Simulation of electromagnetic waves

B.1 Wave equation
Electromagnetic fields are described by Maxwell’s equations [147, 161], which can be
written (in SI units) for an inhomogeneous, linear, and isotropic medium as

∆ . D(r, t) = ρf(r, t) , (B.1)
∆ . B(r, t) = 0 , (B.2)

∆ x E(r, t) = - ϑ
ϑt

B(r, t) , (B.3)

∆ xH(r, t) = jf(r, t) +
ϑ

ϑt
D(r, t) , (B.4)

with the electric displacement field D(r, t), the electric field strength E(r, t), the magnetic
flux density B(r, t), the magnetic field strength H(r, t), the position vector r = (x, y, z)T,
and the nabla operator denoting the three-dimensional gradient ( ϑ

ϑx ,
ϑ
ϑy ,

ϑ
ϑz )T. The quan-

tities ρf(r, t) and jf(r, t) represent the free charge density and the free current density,
respectively. For isotropic linear materials, the electromagnetic fields are linked by the
constitutive equations

D(r, t) = ε0εr(r, t)E(r, t) , (B.5)
B(r, t) = μ0μr(r, t)H(r, t) , (B.6)

in which ε0 and εr(r, t) represent the (scalar17) vacuum and relative permittivity, whereas
μ0 and μr(r, t) are the vacuum and relative permeability, respectively. In the following,
we consider only static and non-magnetic materials with εr(r, t) = εr(r) and μr(r, t) ≡ 1.
Further, we assume a charge-free medium such that ρf(r, t) ≡ 0. Under these assumptions
and with the help of eqs. (B.4) to (B.6), the application of the curl operator on eq. (B.3)
yields the vector wave equation

∆ x ∆ x E(r, t) +
n2(r)

c2

ϑ2

ϑt2 E(r, t) = -μ0
ϑ

ϑt
ji(r, t) , (B.7)

in which we have introduced the position-dependent refractive index n(r) =
√
εr(r) and

replaced the free current density jf(r, t) by an impressed current density ji(r, t) that acts
as a source for the electric field. The parameter c = 1/

√
ε0μ0 represents the speed of

light in vacuum. Analogously to the derivation of the wave equation for the electric field
strength E(r, t), a similar equation can be derived for the magnetic flux density B(r, t).

For one-dimensional problems, which applies to the time-dependent simulations
presented in chapters 5 and 6, the wave equation eq. (B.7) reduces to

ϑ2

ϑx2 E(x, t) - n2(x)
c2

ϑ2

ϑt2 E(x, t) = f (x, t) (B.8)

17 Note that in general the relative permittivity and permeability are tensorial in nature.
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for the scalar electric field E(x, t) with the source term f (x, t).

In order to solve eq. (B.8) numerically [162], the spatial and temporal derivatives need
to be discretized, which can be done in the following way:

ϑ2E
ϑx2

,,,,,,
( jΔx, nΔt)

=
En

j+1 - 2En
j + En

j-1

Δx2 + O(Δx2) , (B.9)

ϑ2E
ϑt2

,,,,,,
( jΔx, nΔt)

=
En+1

j - 2En
j + En-1

j

Δt2 + O(Δt2) . (B.10)

For that purpose, we assume that both space and time are discretized on equidistant grids
with step sizes Δx and Δt, respectively. The solution for each point in space and time is
then given by En

j , where the subscript j denotes the spatial position and the superscript n
represents the temporal coordinate, i.e., En

j = E(x j, tn). With the initial condition that
the solution and its temporal derivative are given at time t0 or equivalently the solution
is given at the first two time steps t0 and t1, the solution for all future time steps can be
calculated according to the following explicit difference scheme:

En+1
j = R2

j+1En
j+1 + R2

j-1En
j-1 + 2

(
1 - R2

j

)
En

j - En-1
j + c2Δt2 f n

j . (B.11)

The quantity R in eq. (B.11) is known as the Courant number, which is defined by

R j =
c

n(x j)
Δt
Δx
, (B.12)

and a necessary condition for the convergence of eq. (B.11) and hence for the stability
of the solution is the Courant-Friedrichs-Lewy criterion,

R j ≤ 1 . (B.13)

In our simulations we assume an infinitely extended system environment, which is
emulated by the application of absorbing boundary conditions [163] according to

En+1
0 = En

1 +
R0 - 1
R0 + 1

(
En+1

1 - En
0

)
, (B.14)

En+1
Nx
= En

Nx-1 +
RNx - 1
RNx + 1

(
En+1

Nx-1 - En
Nx

)
. (B.15)

Without these boundary conditions, the numerical solution would feature unphysical
reflections from the system boundaries. In order to calculate only the incoming field for
a scattering problem, equivalent boundary conditions can be implemented at the edges
of the scattering region to suppress the backscattering.
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B.2 Helmholtz equation

In many cases, we are not interested in a full time-dependent simulation but only in a
stationary solution for a given system. For that purpose, we assume that the steady-state
solution E(r, t) from eq. (B.7) can be separated in a spatially dependent function E(r)
and a harmonic time-dependence φ(t) = exp(-iωt) with frequency ω, i.e.,

E(r, t) = E(r) . φ(t) = E(r) . e-iωt . (B.16)

Equivalently, we require that also the current density has a harmonic time-dependence,

ji(r, t) = ji(r) . φ(t) = ji(r) . e-iωt . (B.17)

Inserting eqs. (B.16) and (B.17) into eq. (B.7) and canceling out the time-dependence
yields the vector Helmholtz equation

∆ x ∆ x E(r) - n2(r)k2E(r) = -f(r) , (B.18)

with the wave number k = ω/c and the source term

f(r) = -iωμ0
ϑ

ϑt
ji(r) . (B.19)

With the aid of the vector calculus identity

∆ x (∆ x A) = ∆ (∆ . A) - ∆2A , (B.20)

eq. (B.18) can be rewritten as

ΔE(r) - ∆ [∆ . E(r)] + n2(r)k2E(r) = f(r) , (B.21)

where Δ ≡ ∆2 represents the vector Laplacian. Since we assume a charge-free medium
(ρf ≡ 0), we can derive the following relation from eqs. (B.1) and (B.5):

∆ . E(r) = - 1
εr(r)
∆εr(r) . E(r)

= -∆ ln (εr(r)) . E(r) . (B.22)

Inserting eq. (B.22) into eq. (B.21) then leads to the three-dimensional Helmholtz
equation for inhomogeneous media,

ΔE(r) + ∆ [∆ ln (εr(r)) . E(r)] + n2(r)k2E(r) = f(r) . (B.23)

In this thesis, we consider only one-dimensional and effectively two-dimensional
media (waveguides with a low height), for which εr(r) = εr(x, y), i.e., the permittivity
gradient lies in the xy-plane. Furthermore, it can be shown [147] that for rectangular
waveguides with a very low height the propagating modes are z-polarized such that
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E(r) = (0, 0, Ψ(x, y))T. Therefore, we have ∆ ln (εr(r)) . E(r) = 0, which directly leads to
the scalar Helmholtz equation[

Δ + n2(x, y)k2
]
Ψ(x, y) = f (x, y) (B.24)

for the z-component of the electric field Ψ(x, y) ≡ Ez(x, y) with the source term f (x, y) ≡
fz(x, y). For one-dimensional problems, where we consider a scalar electric field E(x),
we find an analogous scalar Helmholtz equation of the form[

ϑ2

ϑx2 + n2(x)k2
]

E(x) = f (x) , (B.25)

which can also be derived by inserting the one-dimensional counterparts of eqs. (B.16)
and (B.17) into eq. (B.8).

Similarly to the procedure in appendix B.1, we need to discretize the spatial variable
(i.e., x→ x j) in order to solve eq. (B.25) numerically, which leads to the approximation
(cf. eq. (B.9))

ϑ2E
ϑx2

,,,,,,
( jΔx)

=
E j+1 - 2E j + E j-1

Δx2 + O(Δx2) (B.26)

for the second derivative as well as to the discretized versions of the solution E j ≡ E(x j),
the source f j ≡ f (x j), and the refractive index n j ≡ n(x j). If the electric field and the
source term for all grid points are encapsulated into the vectors E and f, eq. (B.25) can
be compactly written as a matrix equation,

M . E = f , (B.27)

with the matrix

M = M1 + M2 =
1
Δx2

(....................(
-2 1 0 . . . 0
1 -2 1 . . . 0
0 1 -2 . . . 0
...
...
...
. . .

...
0 0 0 . . . -2

)....................)
+ k2

(....................(
n2

1 0 0 . . . 0
0 n2

2 0 . . . 0
0 0 n2

3 . . . 0
...
...
...
. . .

...
0 0 0 . . . n2

Nx

)....................)
. (B.28)

Transparent boundary conditions—to simulate an infinitely extended system—can be
implemented by modifying the coupling for the first and last grid point. For that purpose,
the term exp(in(x)kΔx)/Δx2 is added to M11 and MNxNx , i.e., the matrix M1 in eq. (B.28)
is replaced according to

M1 → M,1 =
1
Δx2

(....................(
-2 + ein1kΔx 1 0 . . . 0

1 -2 1 . . . 0
0 1 -2 . . . 0
...

...
...
. . .

...
0 0 0 . . . -2 + einNx kΔx

)....................)
. (B.29)
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As already explained in appendix B.1, the incoming field can be calculated by imple-
menting equivalent boundary conditions at the edges of the scattering region.

Finally, a point source at position x j = xS that emits a plane wave with amplitude A
can be realized by setting the corresponding component of the source vector equal to
fS = 2iAnSk/Δx. The solution of the one-dimensional Helmholtz equation is then given
by

E = M-1 . f . (B.30)

Higher dimensional problems which are described by eq. (B.23) or eq. (B.24) can be
solved with the finite element method. The two-dimensional simulations presented in this
thesis were performed with a Python code developed by Matthias Kühmayer. This code
is based on the open-source finite element software package Netgen/NGSolve18 [164,165]
and its functionality is described in detail within his dissertation [149].

B.3 Time-averaged Poynting vector

The directional energy flux of an electromagnetic field is given by the Poynting vector
[147, 166], which is defined as the cross product of the electric and the magnetic field
strength vectors,

S(r, t) = E(r, t) xH(r, t) . (B.31)

For a stationary state, the fields are characterized by a harmonic time-dependence, i.e.,

E(r, t) = E(r) . e-iωt , (B.32)

H(r, t) = H(r) . e-iωt . (B.33)

Since the physical fields are described by the real parts of eqs. (B.32) and (B.33), the
Poynting vector may be written as

S(r, t) = Re
[
E(r) e-iωt

]
x Re

[
H(r) e-iωt

]
= [ER(r) cos(ωt) + EI(r) sin(ωt)] x [HR(r) cos(ωt) +HI(r) sin(ωt)]

= ER(r) xHR(r) cos2(ωt) + ER(r) xHI(r) cos(ωt) sin(ωt)

+ EI(r) xHR(r) sin(ωt) cos(ωt) + EI(r) xHI(r) sin2(ωt) , (B.34)

where the subscripts R and I denote the real and imaginary parts of the respective
fields. Taking the average of eq. (B.34) over one oscillation period T = 2π/ω yields the
time-averaged Poynting vector

S(r) =
ω

2π

∫ 2π
ω

0
dt S(r, t)

=
1
2

[ER(r) xHR(r) + EI(r) xHI(r)] , (B.35)

18 https://ngsolve.org/
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which can be expressed in terms of the total E- and H-fields by adding suitably con-
structed purely imaginary terms and then taking only the real part of the resulting
expression:

S =
1
2

Re (ER xHR + EI xHI + i EI xHR - i ER xHI)

=
1
2

Re [(ER + i EI) x (HR - i HI)]

=
1
2

Re (E xH*) . (B.36)

Note that we have dropped the spatial dependence for better readability. While eq. (B.36)
could be used to calculate the energy flux in a full three-dimensional simulation, the
expression for the time-averaged Poynting vector can be further simplified for the two-
dimensional case described by eq. (B.24), which is treated in this thesis. Considering
a z-polarized electric field E = (0, 0, Ψ)T with a harmonic time-dependence and μr ≡ 1,
the corresponding magnetic field follows from eqs. (B.3) and (B.6) and is given by
H = 1

ωμ0
(-iϑyΨ, iϑxΨ, 0)T. Inserting everything into eq. (B.36) finally delivers

S =
1

2ωμ0
Re
[
Ψ(-i∆Ψ)*

]
=

1
2ωμ0

Re
[
Ψ* (-i∆Ψ)

]
. (B.37)
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for hosting me so nicely during my research stays in their labs and for the fruitful
collaboration. In addition, I want to thank Franco Nori and A. Douglas Stone for inviting
and hosting me to visit their groups.

Further, I would like to thank our collaborators from the Laboratory of Micro/Nano
Photonics in the McKelvey School of Engineering at Washington University in Saint
Louis, who have performed the phonon laser experiments presented in this thesis, as
well as Ori Katz, Yevgeny Slobodkin, and Gil Weinberg for conducting the experiments
related to the degenerate cavity anti-laser project. Additionally, I thank Joachim Krenn
and Martin Belitsch for the experimental collaboration.

Warm thanks go to Heike Höller, Sylvia Riedler, and Ingrid Unger for their helpfulness
and administrative assistance.

Finally, my sincere gratefulness is offered to my family for their continuous support
throughout my entire life.

89





List of Figures and Tables
Fig. 2.1 Fundamental light-matter interactions . . . . . . . . . . . . . . . . . 6
Fig. 2.2 Typical laser pumping schemes . . . . . . . . . . . . . . . . . . . . 7
Fig. 2.3 Different types of optical feedback in lasers . . . . . . . . . . . . . . 8
Fig. 2.4 Experimental setup of a phonon laser . . . . . . . . . . . . . . . . . 11
Fig. 3.1 Eigenvalues of a non-Hermitian matrix . . . . . . . . . . . . . . . . 18
Fig. 3.2 Bifurcation of the optical supermodes in a phonon laser . . . . . . . 19
Tab. 3.1 Phonon laser system parameters . . . . . . . . . . . . . . . . . . . . 20
Fig. 3.3 Measured phonon laser threshold behavior . . . . . . . . . . . . . . 21
Fig. 3.4 Analytical approximation for the phonon laser threshold behavior . . 22
Fig. 3.5 Simulated phonon laser threshold behavior . . . . . . . . . . . . . . 23
Fig. 3.6 Intra-cavity field intensity in a phonon laser . . . . . . . . . . . . . . 24
Fig. 3.7 Measured phonon laser linewidth behavior . . . . . . . . . . . . . . 25
Fig. 3.8 Simplified linewidth model for two coupled optical modes . . . . . . 27
Fig. 4.1 Basic realization of coherent perfect absorption . . . . . . . . . . . . 30
Fig. 4.2 Poles and zeros of the scattering matrix . . . . . . . . . . . . . . . . 31
Fig. 4.3 Simple coherent perfect absorber . . . . . . . . . . . . . . . . . . . 33
Fig. 4.4 Experimental setup of a random anti-laser . . . . . . . . . . . . . . . 35
Fig. 4.5 Injection accuracy analysis of specific states in a random anti-laser . 37
Fig. 4.6 Absorption analysis of a CPA state . . . . . . . . . . . . . . . . . . 39
Fig. 4.7 Typical scattering matrices of a random anti-laser . . . . . . . . . . . 40
Fig. 4.8 Simulated field intensity and energy flux of a random anti-laser . . . 41
Fig. 4.9 Transmission of CPA states into an absorbing antenna . . . . . . . . 42
Fig. 4.10 Field of CPA states with and without absorbing antenna . . . . . . . 43
Fig. 4.11 Simulated and measured field of a random anti-laser . . . . . . . . . 44
Fig. 4.12 Antenna coupling analysis in a random anti-laser . . . . . . . . . . . 45
Fig. 4.13 Time-reversal symmetry analysis of a CPA state . . . . . . . . . . . 46
Fig. 4.14 Comparison of localized and global absorption . . . . . . . . . . . . 47
Fig. 4.15 CPA induced by global absorption . . . . . . . . . . . . . . . . . . . 48
Fig. 4.16 Sub-wavelength focusing of a CPA state . . . . . . . . . . . . . . . 50
Fig. 4.17 Evanescent modes at an antenna . . . . . . . . . . . . . . . . . . . . 51
Fig. 4.18 Reflectionless scattering in a random anti-laser . . . . . . . . . . . . 52
Fig. 5.1 Simple coherent virtual absorber . . . . . . . . . . . . . . . . . . . . 55
Fig. 5.2 Temporal dependence of the field and stored energy in a CVA . . . . 56
Fig. 5.3 Coherent virtual absorption in one-dimensional disordered media . . 57
Fig. 5.4 Poles and zeros of the scattering matrix . . . . . . . . . . . . . . . . 58
Fig. 5.5 One-dimensional reflectionless scattering modes . . . . . . . . . . . 59
Fig. 5.6 Coherent virtual absorption in two-dimensional disordered media . . 60

91



List of Figures and Tables

Fig. 6.1 Customized one-dimensional coherent perfect absorber . . . . . . . 62
Fig. 6.2 Customized two-dimensional coherent perfect absorber for predefined

frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Fig. 6.3 Customized two-dimensional coherent perfect absorber for predefined

frequency and wavefront . . . . . . . . . . . . . . . . . . . . . . . . 64
Fig. 6.4 Degenerate cavity anti-laser . . . . . . . . . . . . . . . . . . . . . . 65
Fig. 6.5 Experimental setup and results for a degenerate cavity CPA . . . . . 66
Fig. 6.6 Sensitivity of a degenerate cavity CPA to maladjustment . . . . . . . 67
Fig. 6.7 Scattering suppression from a detuned CPA . . . . . . . . . . . . . . 69
Tab. 6.1 Scattering suppression from a detuned CPA . . . . . . . . . . . . . . 70
Fig. 6.8 Absorption of an electromagnetic pulse . . . . . . . . . . . . . . . . 71

92



Bibliography
[1] A. L. Schawlow and C. H. Townes. Infrared and Optical Masers. Physical Review

112, 1940 (1958).

[2] R. G. Gould. The LASER, Light Amplification by Stimulated Emission of Radiation.
In P. A. Franken and R. H. Sands (editors), The Ann Arbor Conference on Optical
Pumping, the University of Michigan, June 15 through June 18, 1959, p. 128
(1959).

[3] A. Einstein. Strahlungs-Emission und -Absorption nach der Quantentheorie.
Verhandlungen der Deutschen Physikalischen Gesellschaft 18, 318 (1916).

[4] A. Einstein. Zur Quantentheorie der Strahlung. Physikalische Zeitschrift 18, 121
(1917).

[5] J. P. Gordon, H. J. Zeiger, and C. H. Townes. Molecular Microwave Oscillator
and New Hyperfine Structure in the Microwave Spectrum of NH3. Physical Review
95, 282 (1954).

[6] J. P. Gordon, H. J. Zeiger, and C. H. Townes. The Maser—New Type of Microwave
Amplifier, Frequency Standard, and Spectrometer. Physical Review 99, 1264
(1955).

[7] H. J. Eichler, J. Eichler, and O. Lux. Lasers: Basics, Advances and Applications,
vol. 220 of Springer Series in Optical Sciences. Springer, Cham (2018).

[8] H. Haken. Laser Theory. Springer, Berlin (1984).

[9] H. Haken. Light: Volume II: Laser Light Dynamics. North-Holland, Amsterdam
(1985).

[10] A. E. Siegman. Lasers. University Science Books, Mill Valley, CA (1986).

[11] K. Thyagarajan and A. Ghatak. Lasers: fundamentals and applications. Springer
Science & Business Media (2010).

[12] C. E. Webb and J. D. C. Jones (editors). Handbook of Laser Technology and
Applications: Volume 3: Applications. CRC Press (2020).

[13] W. E. Bron and W. Grill. Stimulated Phonon Emission. Physical Review Letters
40, 1459 (1978).

93



Bibliography

[14] P. A. Fokker, J. I. Dijkhuis, and H. W. de Wijn. Stimulated emission of phonons
in an acoustical cavity. Physical Review B 55, 2925 (1997).

[15] S. T. Zavtrak and I. V. Volkov. Sound amplification by stimulated emission of
radiation (Saser) with cylindrical resonator. Ultrasonics 34, 691 (1996).

[16] I. V. Volkov, S. T. Zavtrak, and I. S. Kuten. Theory of sound amplification by
stimulated emission of radiation with consideration for coagulation. Physical
Review E 56, 1097 (1997).

[17] A. J. Kent, R. N. Kini, N. M. Stanton, M. Henini, B. A. Glavin, V. A. Kochelap,
and T. L. Linnik. Acoustic Phonon Emission from a Weakly Coupled Superlattice
under Vertical Electron Transport: Observation of Phonon Resonance. Physical
Review Letters 96, 215504 (2006).

[18] K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. Hänsch, and
T. Udem. A phonon laser. Nature Physics 5, 682 (2009).

[19] I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala. Phonon Laser Action in a
Tunable Two-Level System. Physical Review Letters 104, 083901 (2010).

[20] R. P. Beardsley, A. V. Akimov, M. Henini, and A. J. Kent. Coherent Terahertz
Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice.
Physical Review Letters 104, 085501 (2010).

[21] J. Kabuss, A. Carmele, T. Brandes, and A. Knorr. Optically Driven Quantum
Dots as Source of Coherent Cavity Phonons: A Proposal for a Phonon Laser
Scheme. Physical Review Letters 109, 054301 (2012).

[22] J. Kabuss, A. Carmele, and A. Knorr. Threshold behavior and operating regimes
of an optically driven phonon laser: Semiclassical theory. Physical Review B 88,
064305 (2013).

[23] I. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi. Phonon Lasing in
an Electromechanical Resonator. Physical Review Letters 110, 127202 (2013).
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Chiral and degenerate perfect absorption on exceptional surfaces. Nature Com-
munications 13, 599 (2022).

[103] J. de Rosny and M. Fink. Overcoming the Diffraction Limit in Wave Physics Using
a Time-Reversal Mirror and a Novel Acoustic Sink. Physical Review Letters 89,
124301 (2002).

[104] G. Lerosey, J. de Rosny, A. Tourin, and M. Fink. Focusing Beyond the Diffraction
Limit with Far-Field Time Reversal. Science 315, 1120 (2007).

[105] G. Ma, X. Fan, F. Ma, J. de Rosny, P. Sheng, and M. Fink. Towards anti-causal
Green’s function for three-dimensional sub-diffraction focusing. Nature Physics
14, 608 (2018).

[106] D. G. Baranov, A. Krasnok, and A. Alù. Coherent virtual absorption based on
complex zero excitation for ideal light capturing. Optica 4, 1457 (2017).

[107] S. Longhi. Coherent virtual absorption for discretized light. Optics Letters 43,
2122 (2018).

[108] G. Trainiti, Y. Ra’di, M. Ruzzene, and A. Alù. Coherent virtual absorption of
elastodynamic waves. Science Advances 5, eaaw3255 (2019).

100



Bibliography

[109] Q. Zhong, L. Simonson, T. Kottos, and R. El-Ganainy. Coherent virtual absorption
of light in microring resonators. Physical Review Research 2, 013362 (2020).

[110] H. Cao. Lasing in random media. Waves in Random Media 13, R1 (2003).

[111] D. S. Wiersma. The physics and applications of random lasers. Nature Physics 4,
359 (2008).

[112] M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and
X. Luo. Ultrathin broadband nearly perfect absorber with symmetrical coherent
illumination. Optics Express 20, 2246 (2012).

[113] V. Romero-García, G. Theocharis, O. Richoux, A. Merkel, V. Tournat, and
V. Pagneux. Perfect and broadband acoustic absorption by critically coupled
sub-wavelength resonators. Scientific Reports 6, 19519 (2016).

[114] Y. Jin and K. Yu. Broadband single-channel coherent perfect absorption with a
perfect magnetic mirror. Optics Express 28, 35108 (2020).

[115] P. del Hougne, K. B. Yeo, P. Besnier, and M. Davy. On-Demand Coherent Perfect
Absorption in Complex Scattering Systems: Time Delay Divergence and Enhanced
Sensitivity to Perturbations. Laser & Photonics Reviews 15, 2000471 (2021).

[116] H. Haken. Light: Volume I: Waves, Photons, Atoms. North-Holland, Amsterdam
(1981).

[117] K. Pichler. Phonon laser linewidth near an exceptional point. Diploma thesis,
TU Wien, Vienna (2016).

[118] M.-S. Ding, L. Zheng, and C. Li. Phonon laser in a cavity magnomechanical
system. Scientific Reports 9, 15723 (2019).

[119] V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko. Quality-factor and
nonlinear properties of optical whispering-gallery modes. Physics Letters A 137,
393 (1989).

[120] A. Schliesser and T. J. Kippenberg. Cavity Optomechanics with Whispering-
Gallery Mode Optical Micro-Resonators. In P. Berman, E. Arimondo, and C. Lin
(editors), Advances in Atomic, Molecular, and Optical Physics, vol. 58, pp. 207–
323. Academic Press (2010).

[121] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt. Cavity optomechanics.
Reviews of Modern Physics 86, 1391 (2014).

[122] C. V. Raman and K. S. Krishnan. A New Type of Secondary Radiation. Nature
121, 501 (1928).

[123] G. Landsberg. Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen.
Naturwissenschaften 16, 557 (1928).

101



Bibliography

[124] Y.-C. Liu, Y.-W. Hu, C. W. Wong, and Y.-F. Xiao. Review of cavity optomechanical
cooling. Chinese Physics B 22, 114213 (2013).

[125] G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J.
Woodbury. Stimulated Raman Scattering From Organic Liquids. Physical Review
Letters 9, 455 (1962).

[126] K. O. Hill, B. S. Kawasaki, and D. C. Johnson. Low-threshold cw Raman laser.
Applied Physics Letters 29, 181 (1976).

[127] C. K. Law. Interaction between a moving mirror and radiation pressure: A
Hamiltonian formulation. Physical Review A 51, 2537 (1995).

[128] C. W. Gardiner and M. J. Collett. Input and output in damped quantum systems:
Quantum stochastic differential equations and the master equation. Physical
Review A 31, 3761 (1985).

[129] C. W. Gardiner and P. Zoller. Quantum Noise: A Handbook of Markovian and
Non-Markovian Quantum Stochastic Methods with Applications to Quantum
Optics. Springer, Berlin (2004).

[130] T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan, S. Rotter, and P. Rabl.
General description of quasiadiabatic dynamical phenomena near exceptional
points. Physical Review A 92, 052124 (2015).
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