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Abstract

The driving dynamics of skid-steered vehicles are difficult to model due to their inherent need

for loss of traction for curvilinear motion, which leads to complex wheel-ground interactions.

However, such vehicles represent well suited platforms for automated robots with their robust,

cost-effective, low maintenance construction and their great off-road performance. One use-

case of them is mobile mapping. Such systems can greatly benefit from precise driving

dynamic models for pose estimation for both georeferencing measurements and navigation as

well as for system control using model predictive control methods.

System identification is a field of applied mathematics for estimating models of dynamical

systems based on measured input and output data of the system. The SINDY (Sparse

Identification of Nonlinear DYnamics) algorithm is a method that utilizes sparse regression

to identify interpretable, parsimonious models in state-space representation, that balance

model performance with complexity.

In this thesis the suitability of the SINDY algorithm to conduct system identification for

the driving dynamics of the Clearpath Husky A200 based on geodetic measurements was

ascertained. The Husky A200 is a medium sized robot for research and prototyping and

represents an example of skid-steered unmanned ground vehicle (UGV) well suited for tasks

such as mobile mapping. A measurement setup around two laser trackers for collecting the

necessary data was created, addressing the challenges of time synchronisation of the different

system components and maintaining an uninterrupted line of sight between the laser trackers

and their target prism during driving operations.

A preprocessing pipeline to calculate the system identification input data was established,

accomplishing time synchronisation, pose calculation and interpolation as well as state vec-

tor calculation and transformation. The system identification was successfully conducted,

utilizing the integral notation of SINDY and employing an extensive hyperparameter tuning.

The point position estimation uncertainty of the best performing model was 14 cm after

a 5 second integration period, with the heading estimation uncertainty being 4.7◦. These

results demonstrate the suitability of identified systems for example for certain applications

of state estimation. Potential shortcomings and areas for improvements of the presented

measurement setup and methodology were identified and discussed.
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Kurzfassung

Die Fahrdynamik von antriebsgelenkten Fahrzeugen ist aufgrund der inhärenten Notwendigkeit

des Traktionsverlusts für kurvenförmige Bewegungen, was zu komplexen Reifen-Boden- Inter-

aktionen führt, schwer zu modellieren. Jedoch sind solche Fahrzeuge aufgrund ihrer robusten,

kostengünstigen und wartungsarmen Konstruktion sowie ihrer hervorragenden

Geländetauglichkeit gut geeignet für automatisierte Roboter. Eine mögliche Anwendung

solcher Roboter ist zum Beispiel Mobile Mapping. Dieses kann von einem präzisen Modell

der Fahrdynamik für genauere Zustandsschätzungen zur Georeferenzierung von Messungen

und Navigation, als auch für die Systemsteuerung profitieren.

Systemidentifikation ist ein Bereich der angewandten Mathematik, der Modelle dynamischer

Systeme auf Basis von gemessenen Eingangs- und Ausgangsdaten des Systems schätzt. Der

SINDY-Algorithmus (Sparse Identification of Nonlinear DYnamics) ist eine Methode, die

sparse Regression verwendet, um interpretierbare und kompakte Modelle zu identifizieren,

die einen Kompromiss aus Modellkomplexität und Prädiktionsgenauigkeit darstellen.

In dieser Arbeit wurde die Eignung des SINDY-Algorithmus für die Systemidentifikation

der Fahrdynamik des Clearpath Husky A200 auf Basis geodätischer Messungen getestet.

Der Husky A200 ist ein mittelgroßer Roboter für Forschung und Entwicklung und stellt ein

Beispiel für ein antriebsgelenktes Roboterfahrzeug dar, welches sich gut für Aufgaben wie

Mobile Mapping eignet. Ein Messaufbau mit zwei Lasertrackern zur Datenerfassung wurde

erstellt, der die Probleme der Zeitsynchronisation der verschiedenen Systemkomponenten

und des Aufrechterhaltens einer ununterbrochenen Sichtlinie zwischen den Lasertrackern und

ihrem Zielpunkt während des Fahrens löst.

Eine Abfolge von Vorverarbeitungsschritten zur Berechnung der Eingangsdaten für die Sys-

temidentifikation wurde etabliert. Zeitsynchronisation, Posen-Berechnung und Interpolation

sowie Zustandsvektor-Berechnung und Transformation wurden dabei durchgeführt. Die Sys-

temidentifikation mit SINDY wurde erfolgreich durchgeführt, wobei die Integralschreibweise

von SINDY und ein umfangreiches Hyperparameter-Tuning eingesetzt wurden. Die Un-

sicherheit der Positionsschätzung des besten Modells betrug nach einer Integrationszeit von 5

Sekunden 14 cm, und die Unsicherheit des Kurswinkels betrug 4,7◦. Diese Ergebnisse zeigen

die Eignung von durch SINDY identifizierter Modelle für bestimmte Anwendungen der Zu-

standsschätzung. Potenzielle Schwächen und Verbesserungsmöglichkeiten des vorgestellten

Messaufbaus und der Methodik wurden identifiziert und diskutiert.
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1. Introduction

1.1 Motivation

Skid-steered vehicles are often used as mobile platforms for achieving different tasks, es-

pecially in off-road environments. Modelling the dynamics of such vehicles is notoriously

difficult as their method of curvilinear locomotion requires the loss of traction of the wheels,

resulting in complex tire-ground interactions that are heavily dependent on the driving sur-

face characteristics (e.g. Dogru and Marques (2021), Ordonez et al. (2017)). However, models

of the driving dynamics are of great importance both for control algorithms in the context of

motion planing and path tracking (e.g. Krishna et al. (2017), Srikonda et al. (2022)) as well

as for use in system state estimation methods such as the Kalman filter (e.g. Thalmann and

Neuner (2016), Yi et al. (2009)).

Traditionally, dynamical systems, for example describing the driving dynamics of a vehicle,

are derived from first principals, decomposing complex systems into small parts with known

physical models. Depending on the system complexity, deducing accurate models using this

approach can be intractable or even impossible. Often many simplifying assumptions need

to be made and not all relevant effects are known. Furthermore, it is often necessary to

estimate parameters of the resulting models empirically regardless. An alternative approach

is system identification which refers to the estimation of system models using data. This

is a field of ongoing scientific development, which greatly profits from recent advances in

computational performance, mathematics and the era of big data. One of the methods for

system identification is SINDY (Sparse Identification of Nonlinear DYnamics), which both

identifies the structure of the model and estimate its coefficient with the goal to obtain sparse,

parsimonious, interpretable models from noisy data (Brunton et al., 2016a).

In case mobile platforms are used for geospatial data acquisition one speaks of mobile mapping

(Li, 2011), which is an important area of ongoing research in geodesy and other fields (e.g.

Lehtola et al. (2022), Hui et al. (2022)). On one hand the increased interest in mobile mapping

platforms is fueled by the emergence of better and less expensive hardware, such as sensors, as

well as better algorithms for path-planning, system control and data analysis. On the other

hand the need for data that satisfies criteria such as high temporal and spatial resolution, large

spatial extent and economical data collection requires the use and development of modern

and efficient measuring approaches.

Accurate models of the driving dynamics of mobile platforms are important for mobile map-

ping systems as, among other benefits, the pose estimation accuracy can potentially be im-

3



4 CHAPTER 1. INTRODUCTION

proved when used with methods such as the Kalman filter. The time series of poses, also

called trajectory, consisting of position and attitude of a mobile mapping platform is of great

importance. On one hand it can be used for path planing and system control as the current

state of the system is crucial for navigation. On the other hand the trajectory is needed

for georeferencing the measurements obtained from the instruments mounted on the mobile

mapping platform.

The Clearpath RoboticsTM Husky A200 is a skid-steered Unmanned Ground Vehicle (UGV)

that is intended as a robotic development platform. Its large payload capacity of 75 kg can

accommodate a wide variety of payloads, for example GNSS receivers, Inertial Measurement

Units, laser scanners, cameras and more. It therefore represents an interesting example of a

platform with difficult to model dynamics that is well suited for mobile mapping applications.

The engineering geodesy research group at the TU Wien uses a Husky A200 as the subject

of several research projects (e.g. Brandstätter (2022)).

The topic of this thesis is to examine the possibility of using the SINDY system identification

algorithm to estimate a dynamical system model representing the driving dynamics of the

Husky A200 based on geodetic measurements. The identification of driving dynamics in this

thesis is limited to cases of driving on level surfaces and only driving on one specific surface

type.

1.2 Aim of the thesis

This theses has the following aims:

• Development of a measurement setup for precise, high frequency 2D pose measurements

of ground based mobile platforms

• Development of a processing pipeline for deriving input data for system identification

based on the obtained measurements

• Evaluation of the suitability of the SINDY algorithm for system identification of the

driving dynamics for the Husky A200 UGV

1.3 Outline of the thesis

This thesis is structured into 8 chapters. Chapter 2 describes important theoretical fundamen-

tals and gives an overview of related work in order to give context for the thesis. It explains

the reason why dynamical systems are useful and introduces the field of system identification.

In chapter 3 the used hardware and software is listed and explained. The methodology for

both calculating the input data for the system identification as well as the system identifi-

cation itself is explained in chapter 5. Chapter 4 details the developed measurement setup

and chapter 6 describes the conducted experiments. Chapter 7 finally presents the obtained

results in form of the estimated system model and its performance, while chapter 8 offers the

conclusion of the thesis along with an outlook of potential improvements and possible future

work.



2. Methodological Fundamentals

This chapter explains theoretical fundamentals in order to aid understanding of the thesis

and introduce nomenclature and notations used throughout the thesis. In section 2.1 the

concept and importance of dynamical systems is briefly explained. Subsequently, in section

2.2 an introduction into the large, multidisciplinary field of system identification is given.

Section 2.3 gives some context of the difficulty modeling of skid steered vehicles, while also

presenting existing methods and models for such vehicles. Sections 2.4 and 2.5 describe the

method of the least squares adjustment and the used transformation notation respectively.

2.1 Dynamical Systems

Dynamical systems concern the analysis, prediction and understanding of systems whose

state evolves over time. They represent a framework for describing dynamic phenomena in

the sciences and engineering and are expressed as either differential equations in the time con-

tinuous case or iterative mapping functions or difference equations in the time discrete case.

Dynamical systems encompass a very broad range of phenomena including classic mechani-

cal systems, fluid dynamics, finance, population dynamics, climate science, epidemiology and

many more.

2.1.1 Use cases

As models of dynamical systems describe the behaviour of a wide variety of real-world systems

they have many practical and critical use cases. These include these major uses of dynamical

system models in modern applications:

• Understanding

• Optimization

• Prediction

• Simulation

• Control

With regard to mobile platforms and especially mobile mapping platforms prediction and

control are of special interest. The usage of dynamical system models for control in the

context of such platforms pertains to path planning and the calculation of control inputs. It

is necessary to understand what actions a system is capable of performing given a certain

5



6 CHAPTER 2. METHODOLOGICAL FUNDAMENTALS

control input and how a certain control input will affect the system. A dynamical system

model can also quantify the controllability of a system in given situations with a precise

system model also enabling the creation of sophisticated control laws which can for example

be used to minimize the energy expenditure.

On the other hand prediction of the system state using a dynamical system model can be

used in sensor fusion algorithms. The Kalman Filter for example is a recursive algorithm,

estimating the state of a dynamic system based on series of noisy measurements obtained

over time (Groves, 2013). The filter uses knowledge of the underlying system in form of a

dynamical system model in order to carry the previously incorporated measurement informa-

tion forward in time. Therefore measurements that pertained to previous, different system

states can be used to improve the estimation of the current system state. Estimating the sys-

tem state at a certain point in time does not require reprocessing all previous measurements

but only updating the previous state vector estimate with the newly arrived measurement

information. The more precise the system model is, the more information contained in the

previous state estimation can be carried forward in time and the better the state estimation

will be over time. This is also apparent in the fact that better models exhibit a better asso-

ciated system noise covariance matrix which describes the errors of effects not captured by

the model on the system state.

2.1.2 Explicit ordinary differential equations

In the case of systems with only one continuous independent variable, most often time, the

system is expressed with ordinary differential equations. If there are one or more additional

continuous, independent variables, for example physical space coordinates in the case of non-

localized, spread-out phenomena, such as heat distribution or any kind of wave, they are

expressed as partial differential equations. In this thesis only ordinary differential equations

(ODE) are of interest, as the driving dynamics of the Husky A200 UGV represent a time

continuous, localized phenomenon.

An explicit ordinary differential equation of the order n is defined as

y(n) = f(x, y′, y′′, ..., yn−1). (2.1)

with f being a function of an independent variable x, a dependent functions variable y and

its derivatives, with y(i) being the i-th order derivative. If y is a vector, f is a vector-valued

function and

y(n) =


y
(n)
1

y
(n)
2
...

y
(n)
m

 = f(x,y′,y′′, ...,yn−1) =


f1(x,y

′,y′′, ...,yn−1)

f2(x,y
′,y′′, ...,yn−1)

...

fm(x,y′,y′′, ...,yn−1)

 (2.2)

is an explicit system of ordinary differential equations of order n and dimension m.
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Reduction of order

The order of differential equations can sometimes be reduced, which usually facilitates easier

solving of the equation. Reducing the order is always possible for explicit ODEs as any

explicit ODE of order n can be written as a system of n first-order differential equations by

introducing n−1 new unknown functions. The explicit order of the ODE in equation 2.1 can

be reduced by defining the new function variables

y(i) = yi+1 (2.3)

for i = 1..n− 1 resulting in the system

d

dt



y1

y2
...

yn−1

yn


=



y2

y3
...

yn

f(x, y1, y2, . . . , yn)


(2.4)

or more compactly as

y′ = f(x,y). (2.5)

This concept can be extended to systems of m ODEs of order n, resulting in a system of m ·n
first-order ODEs.

2.1.3 State space representation

The state-space representation is a mathematical model, especially used in control engineer-

ing, which expresses a dynamical system as a system of first-order differential equations

relating a set of input, output and state variables. The representation may in some cases

be obtained using order reduction as described above. The state of the system is explicitly

and fully described by a set of so called state variables. They evolve over time in a way that

depends on the values they have at any given time and on the externally imposed forcing

described by the ODEs. The number of state variables is the minimum number required to

fully describe the dynamical system state at any given point. Together they form the state

vector which is a point in the state space. In equation 2.4 the vector y would be the state vec-

tor. The state space has the state variables as the basis axes and encompasses every possible

system state as individual point. The state space representation is not unique as the choice

of state variables fully describing the system is ambiguous and amounts to selecting a basis

for the state space. In the case that the state space is continuous and finite-dimensional, as

is the case for the majority of physical systems including the driving dynamics of a vehicle

discussed in this thesis, it is referred to as phase space.

For unforced dynamical systems the vector-valued function describing the system of ODEs
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assigns each point in phase space a vector pointing in the direction the system state repre-

sented by that point evolves over time. The progression of a system in time therefore traces a

trajectory in phase space that is tangential to the vector field. For forced systems the phase

space may be seen as being extended by control input space in which every point, describing

the current state and control input, is mapped to the change of the state vector.

As the concept of state space representation stems from control engineering the independent

variable is virtually always time, denoted t, and the state vector is commonly denoted x.

This notation is adopted henceforth. The general state space representation relevant for this

thesis, is thus

d

dt
x(t) = f(x(t),u(t)) (2.6)

with u being the optional control inputs representing external forcing.

2.2 System Identification

System identification is a longstanding field in applied mathematics which deals with creating

mathematical models based on data that describe dynamical systems (Ljung, 1998). It has

increasingly become an important tool with applications in many disciplines both in engi-

neering and science. The most prevalent use case is control system engineering, specifically

for model-based feedback control, as more precise models enable the development of better,

more efficient control laws for dynamical systems. However, models created with system

identification can be used for many applications, among which are the five areas listed in

section 2.1.1.

The traditional approach for creating models of dynamical systems is analytical modelling

where the system is split into components for which an analytical description based on known

natural laws is possible. This technique, also referred to as physical modelling, therefore

requires expertise in the studied field and can be very labor intensive (Ljung, 1998). The

goal of system identification is to automate the model creation and potentially increase the

model accuracy by using machine learning methods to estimate models based on data.

System identification uses measured input and output signals of a system to estimate a model

of the dynamical system relating those signals. The modeling can be conducted in either the

time or frequency domain of the system. While many different methods of system identi-

fication exist, most methods are still restricted by an assumed model form, and sometimes

are even limited to linear dynamics, reducing the obtainable accuracy and still requiring

expert knowledge about the dynamic system in question (Schmidt & Lipson, 2009). Sys-

tem identification that require an assumption for the model form are parametric methods

which can be used to estimate system properties such as physical quantities such as mass,

friction coefficients, moment of inertia etc. Non-parametric or free-form approaches are not

restricted to a predetermined model structure and enable to also identify the structure in ad-

dition to the estimated parameters. They therefore require less knowledge about the system

from domain experts. Some methods are not truly non-parametric as they have a certain
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number of parameters but have so much model capacity that they can model a wide variety

of phenomenons. Among those are neural networks which strictly speaking have a certain

number of parameters but in practice act like nonparametric models due to the universal

approximation theorem.

Usually there is a tradeoff associated with using nonparametric or free-from methods for

system identification which is that the resulting models are hard if not impossible to interpret

and understand. They are therefore also referred to as ”black box” models and occupy

the polar opposite on the spectrum compared to analytical modeling. They are mainly

aimed at precise system state prediction and not the derivation of compact, interpretable

models. However, there have been great efforts for identifying non-linear dynamical systems

using nonparametric methods that result in models that are meaningful, parsimonious and

interpretable.

Schmidt and Lipson (2009) used symbolic regression based on genetic programming to con-

struct families of candidate nonlinear functions in order to deduce inferred natural laws such

as the Hamiltonian, the Lagrangian and equation of motions of mechanical systems in a

”breakthrough in nonlinear system identification” (Brunton et al., 2016a). This method

achieved to recreate actual known physical laws such as conservation equations from data

instead of focusing on pure predictive performance. One potential issue that the usage of

symbolic regression has is that it is computationally expensive and may not scale well to

large data sets or very complex dynamical systems. In Brunton et al. (2016a) the SINDY

algorithm was presented which stands for Sparse Identification of Nonlinear DYnamics. It is

a method for identifying models of non-linear dynamical systems expressed in the state space

representation. The method places an empathises on creating interpretable, parsimonious

models by combining sparsity-promoting techniques and machine learning.

SINDY uses a sparse regression that is linear int the estimated coefficient but non-linear

in the state variables to find the fewest terms that still explain the observed data. The

core assumption thereby is that the sought system model is sparse when expressed in an

appropriate function basis, meaning that only a few terms of a vast function library are active.

This is an assumption that holds true for many natural dynamical systems (Brunton et al.,

2016a). By using a sparse regression the method automatically balances model complexity

as expressed by model terms and model accuracy. It is also more robust against outliers in

the data.

The SINDY framework was subsequently extended by Brunton et al. (2016b) to cover actu-

ated dynamical systems, introducing the possibility to include external forcing in the models.

In Kaiser et al. (2018) the authors used SINDY in a framework for model predictive control

(MPC), comparing the method to neural network based approaches and concluding ”the re-

sulting SINDY-MPC framework has higher performance, requires significantly less data, and

is more computationally efficient and robust to noise than NN models, making it viable for

online training and execution in response to rapid system changes.” Schaeffer (2017) used

the idea of SINDY to discover governing equations for partial differential equations. The

SINDY framework thus represents a universal, well performing method for non-linear system

identification that has been already applied to many problems.
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The SINDY algorithm itself is described in section 5.3.1 with section 5.3.2 detailing the

extension of SINDY to problems with external forcing, which is needed as the Husky A200

UGV experiences such external forcing in the form of motor control inputs. Lastly, section

5.3.4 describes how the method is applied to the specific problem of estimation a model for

the driving dynamics of the Husky A200 UGV.

2.2.1 Sparsity and compressed sensing

SINDY applies the mathematical concepts of sparsity and compressed sensing to the ap-

plication of system identification. Therefore this section, which is predominantly based on

Brunton and Kutz (2019), briefly introduces those concepts.

Most natural signals, such as images, audio data and time series measurement data, exhibit

inherent structures that make the data highly compressible. If observed natural data is

expressed in a well-suited basis, the coordinate vector is sparse with a high probability,

meaning that only a few parameters are required to describe the data by characterizing

which components of the basis are active and in what proportion. This is the fundamental

idea of all data compression algorithms, whereby a signal is represented more efficiently by

transforming it into a different basis.

A compressible signal x ∈ Rn can be expressed as a sparse coordinate vector s ∈ Rn with the

transform basis Ψ ∈ Rn×n using

x = Ψs.

The coordinate vector s is called K-sparse if it contains K non-zero elements. The basis Ψ

can either be a custom basis, for example obtained by means of the Principal Component

Analysis (PCA), or a well suited generic transform basis, such as the Fourier basis or a wavelet

basis. The Fourier and wavelets bases are generic or universal bases as most natural data,

such as images and audio, is sparse in those bases.

The idea of sparsity can not only be used for signal compression but also to reconstruct a full

signal from only a few measurements by reconstructing its sparse representation s given a

chosen basis Ψ, instead of the non-sparse representation x. This method is called compressed

sensing since it relates the measurements to the compressed representation of the data instead

of the full data representation directly.

Furthermore, sparsity can be used for retrieving parsimonious models that avoid overfitting by

acting as a regularization. Such models stay interpretable and have limited model capacity

due to having the minimum active models terms while still explaining the data used for

training the model. A model with fewer terms that explain the data almost as well as a

model with more terms follows the Occam’s razor principle which states that the most simple

explanation is generally the correct one. Sparse optimization has also the benefit of increased

robustness with regard to outliers.
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2.3 Skid-Steered Mobile Robots

Skid-steering is a method for achieving curvilinear locomotion that is used in many kind

of vehicles, especially many all-terrain vehicles such as loaders, farm machinery, mining and

military vehicles. It is also used in mobile robots such as the Husky A200 which is the subject

of this thesis. Skid-steering uses differential thrust between the left and right sides of the

vehicle creating a torque which is turn causes a change in heading. The main benefits of this

method are the compact and robust construction, which makes it also very cost effective,

and low maintenance. It also gives the vehicle very high maneuverability, even allowing for

turning in place (Shamah et al., 2001). The main drawbacks on the other hand are high

power consumption when turning as energy needs to be spend to overcome the friction of the

tires (Ordonez et al., 2017). This is especially true for tight turns at low speeds or turning in

place. The power draw is also hard to predict, which is needed for energy optimizing control

algorithms, as it heavily depends on the surface type and inclination (Shamah et al., 2001).

Kinematic or dynamic modelling of skid-steered locomotion is notoriously difficult as the

dynamics strongly depend on the complex wheel-ground interactions as turning by definition

requires a loss of traction and subsequent sliding and skipping of the wheels over the ground

(Wang et al., 2009). This makes the motion of vehicles using this method dependent on the

surface properties of the floor and also introduces a strong effect of the slope of the driving

surface as the friction of the tires is dependent on normal force of the ground.

In Wang et al. (2009) the authors used a combined kinematic and dynamic modeling approach

for skid-steered mobile robots. They utilized similarities between the skid-steered robot and

tracked vehicles in order to apply existing models for the kinematic model while the dynamic

modeling approach uses existing automotive tire/road interaction models. The result is a

complex analytical model for the locomotion which the authors also used in an extended

Kalman Filter (Groves, 2013) for robot localization. This approach was subsequently refined

in Yi et al. (2009). In Dogru and Marques (2021) a novel, improved kinematic of skid-steered

wheeled platforms was presented which took both the geometric properties as well as the

location of the center of mass into account. The authors tested the new kinematic model

with two different vehicles and on different surfaces.

In order to account for the very strong dependence on the driving surface characteristics many

methods rely at least partially on machine learning to do online learning of a terrain dependent

model. In Thalmann and Neuner (2016) the authors among other things demonstrated the

use of external absolute positioning sensors in the form of a geodetic tachymeter in order to

estimate an additional system parameter and it was successfully shown that this parameter

captured some physical properties of the tire-ground interactions, resulting in improved dead-

reckoning performance. In Ordonez et al. (2017) the authors ”developed a new methodology

to perform online learning of terrain dependent robot models that are highly relevant for

motion planning applications”. The proposed methodology combines dynamic models for

the wheel-terrain interaction with online learning to update the kinematic model and an

neural network to update the dynamic model.

Deep learning approaches are also used in the context of skid-steered robots. In Srikonda et
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al. (2022) a reinforcement learning algorithm was used to obtain a path tracking controller for

the dynamic model of a skid-steered vehicle. The authors show that the controller successfully

adapted to ”the complex nonlinear forces and torques acting at the wheel-ground interface”.

In summary there are many approaches for dealing with modeling and controlling skid-steered

robots among which many use at least partially machine learning.

2.4 Least squares adjustment

As the least squares adjustment is used at multiple points throughout this thesis a short

introduction is presented in this section. This summary is an adoption of Niemeier (2008).

In metrology the least squares adjustment is used to find the most likely parameter estimates

based on redundant, noisy observations. As there are redundant observations the estimation

of the parameters is over-determined and requires an additional optimization criterion. The

least squares adjustment uses the minimization of the sum of squared corrections of the

observations for this, giving it its name.

The n observations li are combined into the observation vector L and the u unknown param-

eters are likewise combined into the parameter vector X:

L =


l1

l2
...

ln

 ; X =


x1

x2
...

xu

 (2.7)

The observations and parameters have to be in a functional relation, called the functional

model, Φ, which is a vector of b functions expressing physical, geometrical or mathemat-

ical modeled relationships between the observations and parameters. Furthermore, b > u

is a necessary conditions for a least squares adjustment as otherwise the problem is not

over-determined with r = b − u denoting the redundancy of the adjustment problem. The

functional model may be written as

Φ(L,X). (2.8)

It is assumed that the true values of the measurements L̃ and the parameters X̃ satisfy the

functional model exactly, thereby assuming that the functional model is correct, yielding

equation 2.9. Furthermore, the estimated parameters X̂ and corrected observations L̂ also

satisfy the functional model as is expressed in equation 2.10.

Φ(L̃, X̃) = 0 (2.9)

Φ(L̂, X̂) = 0 (2.10)
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The least squares adjustment uses a linearization of the functional model in order to be able

to solve the optimization using the methods of linear algebra. For this adequately precise

approximate values of the parameters, X0, are needed in order to linearize the model around

this point. If required, the adjustment is executed iterative until convergence of the parameter

estimates is achieved. However, X0 has to be precise enough for the iteration to converge.

The uncorrected observations L and the approximate values of the parameters X0 do not

satisfy the functional model, resulting in the discrepancies w:

Φ(L,X0) = w (2.11)

The linearization of the functional model is accomplished by terminating a Taylor series

expansion after the first degree as is shown in equation 2.12.

Φ(L̂, X̂)� �� �
=0

≈ Φ(L,X0)� �� �
=w

+
∂ϕ

∂L
|L,X0 · (L̂− L) +

∂Φ

∂X
|L,X0 · (X̂−X0) (2.12)

New variables for the differences between the estimated values L̂ and X̂ to their original

values L and X0 respectively are introduced:

v = L̂− L (2.13)

x = X̂−X0 (2.14)

A =
∂Φ

∂X

##
L,X0

=



∂Φ1
∂X1

##
L,X0

∂Φ1
∂X2

##
L,X0

. . . ∂Φ1
∂Xu

##
L,X0

∂Φ2
∂X1

##
L,X0

∂Φ2
∂X2

##
L,X0

. . . ∂Φ2
∂Xu

##
L,X0

...
...

. . .
...

∂Φn
∂X1

##
L,X0

∂Φn
∂X2

##
L,X0

. . . ∂Φn
∂Xu

##
L,X0


(2.15)

B =
∂Φ

∂L

##
L,X0

=



∂Φ1
∂L1

##
L,X0

∂Φ1
∂L2

##
L,X0

. . . ∂Φ1
∂Ln

##
L,X0

∂Φ2
∂L1

##
L,X0

∂Φ2
∂X2

##
L,X0

. . . ∂Φ2
∂Ln

##
L,X0

...
...

. . .
...

∂Φn
∂L1

##
L,X0

∂Φn
∂L2

##
L,X0

. . . ∂Φn
∂Ln

##
L,X0


(2.16)

With the introduction of the Jacobian matrices A and B containing the partial derivatives

of the functional model with respect to the parameters and the observations respectively, as

is show in equations 2.15 and 2.16, the following compact notation is possible
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Ax+Bv +w = 0 (2.17)

The goal of the adjustment is to alleviate the discrepancies w under the condition that

the sum of the squared corrections to the observations v is minimized. This optimization

condition in vectorized from is

vTPv → min (2.18)

wherein P is an optional weight matrix defining how costly corrections for the different

observations should be for the optimization with respect to each other. Most often a stochastic

model for the observations is used as defined in the form of a covariance matrix Σll. As

only the relative weighting of the observations influences the position of the optimum, the

covariance matrix of the observations is split into the covariance factor σ2
0 and the the cofactor

matrix of the observations Qll:

Σll = σ2
0Qll (2.19)

The value for σ2
0 may be set in order to achieve more favorable values for numerical stability.

Other than that the value may be chosen arbitrarily. The observations are then weighted by

the inverse of the cofactor matrix.

P = Q−1
ll (2.20)

In the case the covariance matrix of the observations is used for the weighing as described

above, the least squares adjustment is a BLUE (Best Linear Unbiased Estimator), guaran-

teeing an unbiased parameter estimate with the smallest possible estimation variance. If the

corrections for the observations follow normal distributions the least squares adjustment is

even a MLE (Maximum Likelihood Estimator), estimating the parameters which maximize

the likelihood of the occurrence of the observations.

The optimization for the estimation of the parameters is carried out using the Lagrange mul-

tiplier method, minimizing the sum of squared corrections while ensuring that the (linearized)

functional model is satisfied:

Ω = vTPv − 2kT (Ax+Bv +w) (2.21)

The solution of the optimization by setting the derivatives of Ω with regard to v, x and k to

zero leads to the equation system

�
k

x

�
=

�
BPBT A

AT 0

�−1 �−w

0

�
. (2.22)
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The corrections for the observations can be calculated using

v = PBTk. (2.23)

The inverse matrix of the equation system describes how the uncertainties of the observations

as given by the weighting matrix P are propagated into the estimated multipliers k and

parameters x based on the functional model:

�
BBT A

AT 0

�−1

=

�
Qkk Qxk

Qxk Qxx

�
(2.24)

The cofactor matrices need to be scaled by the variance factor in order to obtain covariance

matrices. The variance factor may be estimated using the corrections of the observations

estimated during the adjustment, taking into account whether the calculated corrections

which were necessary in order for the functional model to be satisfied are coherent with the

covariance information used for the observations:

s20 =
vTv

nf
(2.25)

whereby nf denotes the degree of freedom which is defined as the difference between the

number of equations and parameters. The covariance matrix of the estimated parameters

can then be obtained with

Cxx = s20Qxx. (2.26)

2.5 Vector and transformation notation

For clarity the following explicit notation for vectors and transformation matrices is adopted

throughout this thesis:

xc
a,b (2.27)

is a vector pointing from point a to point b expressed with regards to the resolving axis of

the frame c. When the name of a laser tracker is used in this context the origin and axis of

its measurement frame are referred to. For transformation matrices the notation

Cb
a (2.28)

is adopted, referring to a transformation from frame a into the b frame.
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3. Hardware and Software

This chapter lists the software and hardware components used for developing the measure-

ment setup and the subsequent processing pipeline, designed for system identification of the

driving dynamics of the Husky A200. The choices of the used components were at least

partially dictated by the availability of equipment at the research department.

3.1 Hardware

3.1.1 Husky A200 UGV

The Husky A200 from Clearpath Robotics is a medium sized, skid-steered unmanned ground

vehicle (UGV) which is intended as a robotic development platform for research and rapid

prototyping. Its large payload capacity and power systems can accommodate a wide range

of payloads such as sensors and make it suitable for a wide variety of tasks, among them

mobile mapping. The Husky A200 is the central subject of this thesis as its driving dynamics

are modeled from data using system identification. Some of its important specifications are

listed in table 3.1.

The Husky A200 utilizes skid-steering featuring two geared 24V DC motors driving the left

and right wheels respectively. The front and rear wheels on either side are mechanically

linked by a drivebelt. While the Husky A200 can be programmed to drive autonomously, it

can also be controller with a wireless joystick controller. High resolution quadrature rotary

encoders are mounted on both motors, delivering precise measurements of wheel position

and speed, suitable for dead reckoning and state estimation. The robot has an onboard

computer running Ubuntu which controls the motors and receives sensor feedback from the

wheel encoders. The Husky A200 is fully integrated into the Robot Operating System (ROS),

which is explained in section 3.2.1.

At the Engineering Geodesy research department at the TU Wien the Husky A200 (serial

number 0584) is used for a variety of research projects regarding mobile mapping applications.

To facilitate this, a frame made out of aluminium extrusions was added to the robot for

mounting different sensors. Figure 3.1 shows the Husky A200 of the research department in

a typical configuration. The frame was also used in this thesis for mounting the motorized

turning hubs, described in section 3.1.7. As the added hardware changes the overall mass of

the vehicle and the position of the center of mass, the generalizability of the estimated model

of the driving dynamics is limited.

17
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Figure 3.1: Husky A200 in a typical configuration used at the Engineering Geodesy depart-
ment of the TU Wien

Coordinate system

The choice of the body frame coordinate system is important because the dynamical system

will be expressed in body frame coordinates. However, the conventional way of defining

vehicle coordinate systems regarding the axis directions is also well suited for this case. The

chosen body frame of the Husky A200 is thus defined as follows:

• The origin is the center point of the four wheel hubs. It therefore lies on the symmetry

axis of the vehicle and is equidistant from both axles.

• The xy plane of the body frame is the plane (redundantly) defined by the two axles.

Table 3.1: Specifications of the Clearpath Robotics Husky A200 UGV (Clearpath Robotics,
2016)

Parameter Value

Dimensions 990 x 670 x 390 mm
Weight 50 kg + additional hardware
Max. payload 75 kg
Max. speed 1.0 m/s
Battery Sealed Lead Acid 24 V, 20 Ah
Encoders Quadrature, 78,000 pulses/m
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• The positive x direction is along the symmetry axis of the vehicle, pointing in the

direction of forwards travel.

• The z axis is normal to the xy plane and thus the two axles, pointing upwards.

• The y axis completes the right handed coordinate system, pointing to the left of the

vehicle when seen in the forward driving direction.

The resulting reference frame is illustrated in figure 3.2.

Figure 3.2: Visualization of the chosen body frame. Blueprint from Clearpath Robotics
(2016) overlayed with the resulting axes: x - red, y - green, z - blue

Tires

The Husky A200 is designed as a rugged all-terrain vehicle and is delivered with lugged

off-road tires. However, the Engineering Geodesy research department at the TU Wien

predominantly uses the vehicle as a mobile mapping platform on paved surfaces. Therefore

the stock tires were replaced by aftermarket indoor tires with much less pronounced tread

pattern. This led to smoother driving dynamics with reduced vibrations of the robot as

the tire-ground-interaction is more uniform throughout the rotation of the wheels. The

reduced vibrations, which were especially present when turning in place on smooth, grippy

surfaces with the original tires, are beneficial for dead reckoning applications using inertial

measurement units as well as for the system identification of the driving dynamics discussed

in this thesis. Figure 3.3 depicts the original lugged off-road and the smooth aftermarket

tires side by side.
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Figure 3.3: Comparison of the original lugged off-road tire (left) and the smooth aftermarket
tire which was used for this thesis (right)

3.1.2 Laser trackers

Laser trackers are precise 3D point measurement devices. They measure the spherical coor-

dinates of a retro reflector by means of laser distance measurement and angular encoders.

Furthermore, they automatically track the measured target by measuring the returning laser

beam on a biaxial Position Sensing Device. The readings of this sensor are used in a closed-

loop control loop driving motors (Leica Geosystems, 2020). This capability and their high

measurement frequency makes laser trackers suitable for dynamic measurement tasks. In this

thesis two Leica laser trackers, the LTD800 and the AT960, were used for collecting a time

series of pose data of the Husky A200 during driving as well as for preparatory measurements.

The trackers are depicted in figure 3.4 and some of their important properties are listed in

table 3.2.

One of the largest error sources for laser tracker measurement are the meteorological influ-

ences on the refractive index of the surrounding atmosphere Joeckel et al. (2008). The AT960

features a meteo station integrated in its controller with the possibility of an additional exter-

nal probe. The station measures air temperature, pressure and humidity and calculates the

current refractive index, correcting its influence on the measured distance (Leica Geosystems,

2020). The LTD800 can be connected to an external meteo station working in the same way.

However, due to a technical defect this was not possible for the specific unit used and the

meteorological measurements were periodically manually performed with a Meteo Station

HM30 from Huber Instrumente. The measurements were input in the control software of the

LTD800 in order to be used for the corrections.

Both trackers provide a trigger input interface at their respective controller in order to enable

external triggering and synchronization of their measurements. This was utilized in the

measurement setup in order to synchronize the different system components. They can

accept both balanced RS-422 and single wired input signals via their trigger input connector,
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which is a 15 pin DSUB connector. The trigger signal does not alter the measurement process

itself as the different sensors within the laser trackers are polled at regular, predetermined

intervals. Instead the trackers register the time stamp of the incoming trigger signal in their

internal time system and interpolate the measurements of the individual system components

at the trigger time stamp based on the two closest internal measurements (on prior and one

past) (Leica Geosystems, 2013). A timestamp of the trackers internal system time is supplied

with each measurement based on the internal clock of the tracker controllers. The internal

clocks of the trackers can drift with the manuals stating that a drift of 10-20 ppm is ”not

unusual” and their crystal oscillator has an overall stability of ±100ppm (Leica Geosystems,

2008).

In contrast to the LTD800, the AT960 features a dual-axis Orient-to-Gravity sensor located

within the rotating head of the instrument (Leica Geosystems, 2020). This was used in the

thesis in order to obtain poses of the Husky A200 with regard to a horizontal local reference

frame.

Figure 3.4: The Leica AT960 laser tracker (left) and the Leica LTD800 laser tracker (right)

3.1.3 Red Ring Reflector

The Leica Red Ring Reflector (RRR) is a retro reflector used as a target for Leica laser

trackers. It is comprised of an optical corner cube reflector (CCR) housed in a spherical ball

made of surface-hardened steel. The reference point of the reflector is designed to coincide

with the center of the ball, which enables to turn the target so that the reflector faces the laser

tracker without altering the measured point. The ball is ferromagnetic and is often held in

consoles with magnets, facilitating easy orientation adjustments. The technical specifications

of the used RRR are listed in table 3.3 and a RRR in a magnetic console is depicted in figure

3.5.
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Table 3.2: Important parameters of the two trackers from (Leica Geosystems, 2020), (Leica
Geosystems, 2003) and (Leica Geosystems, 2013)

Parameter AT960 LTD800

Tracking

Maximum target speed
At right angles to the beam 160gon/s > 4m/s

In beam direction 6m/s > 6m/s
Maximum Acceleration

At right angles to the beam 1500gon/s2 > 2g
In beam direction 180m/s2 unlimited

Angular
Measurements

Angular Resolution 0.07” 0.14”
Repeatability

Near (0 – 2.5 m) ±7.5µm+ 3µm/m
±12µm

Far (2.5 m to max distance) ±5µm/m
Absolute accuracy

Stationary target (0 – 2.5 m) ±15µm+ 6µm/m
±25µm

Stationary target (2.5to max) ±10µm/m
For slow moving target

N/A
±20µm/m

For fast moving target ±40µm/m

Laser
Interferometer

Distance resolution 0.4µm 1.26µm
Reproducibility of a coordinate N/A ±5µm/m

Absolute accuracy
Wave length stabilization ±0.4µm+ 0.3µm/m

±0.5µm/m
Initial distance ± 10 micron

Absolute Distance
Measurement

Resolution 0.3µm 1µm
Accuracy ±10µm ±25µm

Triggering
Internal Clock Resolution 0.1µs 1µs
Trigger time accuracy 5µs
Max Data output 1000 points / s

Table 3.3: Specifications of the Leica Red Ring Reflector 1.5 inch (RRR) (Hexagon Metrology,
n.d.)

Parameter Value

Size 38.1mm (1.5′′)
Radius tolerance ±2.5 µm
Centering of reflector ±3 µm
Roundness ≤ 3 µm
Acceptable incident angle ±30◦
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Figure 3.5: RRR in a magnetic console in the measurement laboratory

3.1.4 T-Probe

The Leica T-Probe is a wireless measuring device for probing of hidden, hard-to-reach points,

that is used in conjunction with a Leica laser tracker in combination with a T-Cam. It features

a long and thin probe whose tip is held against the object that is to be measured. A corner

cube retro reflector in the T-Probe is used as a target for the laser tracker, in the case of

this thesis the LTD800. In order to obtain the coordinates of the probe tip the leverarm

between the corner cube reflector and the tip has to be applied. The T-Probe features

multiple infrared LEDs whose positions are measured by the T-Cam, an optional accessory

of the LTD800. Those measurements are used to calculate the attitude of the T-Probe which

enables to perform a coordinate transformation between the sensor frame of the T-Probe, in

which the leverarm is expressed, and the sensor frame of the laser tracker. Thus the position

of the probe tip in the sensor frame of the laser tracker can be calculated. As both the

position and attitude of the T-Probe are measured it is called a 6 DOF (degree of freedom)

measurement technique. In this thesis the T-Probe was used in the context of the Husky

A200 body frame realization.

3.1.5 Raspberry Pi 4B

Raspberry Pi is a family of small single-board computers developed by the Raspberry Pi

Foundation. Originally intended as learning platforms, their low cost, modularity, and open

design has made it popular for other use-cases such as robotics. The Raspberry Pi 4B is the

newest version of the computer, originally released in 2019, of which two are utilized in the

measurement setup of this thesis. One is used for controlling the motorized turning hubs

described in section 3.1.7 and one for the generation of an external trigger signal for the laser

trackers.

Raspberry Pis offer a low power draw, which enabled powering one of them directly of an

USB port of the onboard computer of the Husky A200. Furthermore, they feature a J8

header consisting of 40 pins amongst which so called general purpose input output (GPIO)
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Table 3.4: Selection of specifications of the Raspberry Pi 4B (Ltd, n.d.)

Parameter Value

CPU
Broadcom BCM2711, Quad core Cortex-A72
(ARM v8) 64-bit SoC @ 1.5GHz

RAM 4 GB (the model used)

Network connectivity
2.4 GHz and 5.0 GHz IEEE 802.11ac wireless
Gigabit Ethernet

pins facilitate low-level communication such as with the I²C and SPI interfaces. GPIO pins

can also be controlled individually as outputs or read incoming signals as inputs by software

running on the Raspberry Pi. Therefore Raspberry Pis enable easy interaction between low

level hardware and high level programming languages such as Python. In this thesis GPIO

pins were utilized for precise GNSS time synchronisation using a pulse per second (PPS)

signal as well as for creating an external trigger signal for both laser trackers as is described

in section 4.2.

3.1.6 GNSS equipment

GNSS repeater

In order to provide GNSS signals to receivers in the measurement laboratory, located in the

second basement of the TU Wien university building at Gußhausstraße 27/29, 1040 Vienna,

the GNSS signals received by a GNSS receiver on the roof are transmitted via cable to a

transmitter on the ceiling of the laboratory, which can be seen in figure 3.6. There the signal

is re-transmitted and reaches GNSS receivers in the laboratory. The additional propagation

time through the cable and though the air in the laboratory is equal for the signal from all

GNSS satellites. This additional delay is thus absorbed by the estimated receiver clock offset

and a GNSS receiver utilizing this setup will behave as being at the location of the receiver

on the roof at the point in time of signal reception there.

Septentrio receiver

The Septentrio AsteRx SB3 is a multi-frequency, multi-constellation GNSS receiver. It was

used in conjunction with the Septentrio PolaNt-x MF antenna which is a high-precision

antenna for geodetic, surveying and machine control application that incorporates low-noise

amplifiers, enabling multi-frequency GNSS signal reception. The receiver can communicate

via Ethernet (TCP/IP, UDP, LAN 10/100 Mbps) over a hosted web server. Besides position

information the receiver can also provide an NTP server for time synchronization. This

feature was used to synchronize the onboard computer of the Husky A200. The receiver can

be powered by supplying 5 to 36 V DC via the power connector, which made it possible to

power it from one of the Husky A200 onboard power outlets.

u-blox receiver

The u-blox C94-M8P is an application board for prototyping which features the u-blox NEO-

M8P-2 GNSS module which is a compact, high precision multi GNSS receiver. As interfaces
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Figure 3.6: GNSS signal repeater on the ceiling of the measurement laboratory

it offers one USB port which is used for GNSS data transmission and to supply power to the

receiver. Furthermore is features connection pins for UART communication in the form of a

20-pin J8 connector. One of this pins transmits a pulse-per-second (PPS) timepulse signal.

In this thesis the u-blox C94-M8P is used for time synchronization of a Raspberry Pi utilizing

the GNSS data via USB port in conjunction with the PPS signal.

3.1.7 CCR Turning Hub

In order to constantly maintain a line of sight between the laser trackers and their respective

prism during driving operations of the Husky A200, two motorized turning hubs were designed

and built. They consist of a 3D printed hub mounted on the shaft of a NMEA17 stepper

motor. The motor was afixed to the alumium extrusions o the husky with a 3D printed

mounting plate. The hub and mounting plate were designed using Autodesk Fusion 360 and

printed with PLA using a original Prusa i3 MK3S+ 3D printer. The RRR is held in place in

the hub by an embedded magnet held in place by a circlip, securing the ferromagnetic RRR

while still allowing for quick adjustments of the orientation during the setup process. The

assembly can be seen in figure 3.7 and table 3.5 lists important characteristics of the used

stepper motor. The stepper motors were driven by two DRV8825 stepper motor drivers on

breakout boards which were in turn controlled by an Arduino Nano micro controller board.

The control curcuit was realized using a perfboard which is depicted in figure 3.7 and its

wiring schematics used are depicted in figure 3.8.
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Figure 3.7: The turning hub mounted on the Husky (left) and the the control electronics for
the turning hub mounted on the Husky (right)

Table 3.5: Specifications of stepper motors used for the turning hub

Parameter Value

Step size 1.8◦

Size standard NEMA17
Maximum torque 42Ncm
Maximum current draw 1.5A
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Figure 3.8: Wiring diagram of the controller for the motorized turning hub

3.1.8 Sensor network

The sensor network is a computer network created and used by the geodesy department at

the TU Wien to enable the communication between different sensors and computers. It is

a multi-building network that is accessible by both Ethernet and WiFi for example in the

measurements laboratory where the experiments for this thesis were conducted. The network

was used to control different system components such as Raspberry Pis, laser trackers and

the Husky A200 remotely, to relay measurement data in real time as needed for the motorized

turning hub and to collect and record the measurement data.

3.2 Software

3.2.1 Robot Operating System

The Robot Operating System (ROS) is an open-source robotics software framework providing

libraries, visualizers, message-passing, package management, hardware abstraction, low-level

device control and more (Stanford Artificial Intelligence Laboratory et al., 2018). It is not a

true operating system but a meta-operating system running atop an operating system such

as Linux. ROS applications run in a graph network with different program parts running in

nodes. The resulting peer-to-peer network of processes communicate among other methods

via asynchronous streaming of data as so called messages over topics. ROS features the

capability to record the data streams on these topics as so called rosbags. This was used for

recording the data needed for this thesis.

The Husky A200 is fully integrated into the ROS framework and its control algorithms are

realized as ROS nodes. Therefore ROS was used in order to tab into and record the stream
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of control inputs given to the robot. Furthermore, the measurement data from the two laser

trackers were also recorded as rosbag files and also used to calculate the needed control

inputs for the motorized turning hubs. The rosserial ROS package allows for communication

between ROS running on a computer and a microcontroller (Ferguson, 2022). It was used in

this thesis to relay the calculated control inputs for the motorized turning hubs, described in

section 3.1.7, to the Arduino Nano micro controller.

3.2.2 Network Time Protocol

The network time protocol (NTP) is a network protocol used to synchronize all participating

computers on a network. The system achieves synchronisation of a couple of milliseconds

when synchronizing to a server over the internet and can also achieve sub one millisecond

accuracy in local area networks under ideal conditions.

A client polls one or more NTP server while marking the timestamp of its system time of the

request. The server receives the request and sends the timestamp of its system time back to

the client. The client receives this data and again saving the timestamp of its own system

time. The client must then compute the round trip delay of the signal and using this its time

offset to the time system of the NTP server. The client then gradually adjust its system time

and estimates parameters of a clock correction model.

Accurate synchronization is achieved if the signal propagates from and to the NTP server

take the same amount of time. If this is not the case, there will be a systematic bias of

half the difference between the to and from travel times. Such asymmetric travel times and

network congestion can cause errors of 100 ms or more.

In this thesis the implementations chrony and the Network Time Protocol daemon (ntpd) are

used on two Linux machines. Chrony is used on a Raspberry Pi to synchronize the system

clock using GNSS data and ntpd is used on the Husky A200 onboard computer to synchronize

it with the NTP server supplied by the Septerntrio receiver.

3.2.3 SpatialAnalyzer

SpatialAnalyzer (SA) is a proprietary 3D graphical software for using metrology instruments

and analysing the created measurements (New River Kinematics, 2020). SA offers interfaces

to a wide range of instruments such as Laser Trackers, GNSS, Total Stations, Laser Scanners

and more. It can also interface with multiple instruments simultaneously. The software

can fit different geometrical objects to measured data, calculate transformation parameters

between different reference frames, compare measurements to reference models and more. The

software is intended predominately for large-scale applications of manufacturing, maintenance

and inspection in engineering sectors such as automotive, aviation, ship building, etc.

In the context of this thesis is was used for controlling the two laser trackers during the

measurements needed for estimating the transform parameters between the trackers and for

realizing the Husky A200’s body frame. Subsequently it was used to calculate the transfor-

mation parameters between the two laser tracker sensor frames, using the USMN (Unified

Spatial Metrology Network) function.
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Additionally, SA was used to take the necessary measurements for the realization of the Husky

A200 body frame and the determination of the leverarms to the two CCRs. The fitting of

shapes was then used in conjunction with SA ability to construct frames based on measured

points or derived geometric objects to realize the vehicles body frame.

3.2.4 Python

Python is a high level, multi-paradigm programming language. It ranks as one of the most

popular languages and is especially used in scientific computing. Its version 3.10.8 was used

for the majority of data analysis both with regard to preprocessing the data, creating input

data for system identification and conduction the system identification itself. A variety of

packages were used in the context of these tasks, the most important of which are listed

below.

• Numpy (1.23.5): Provides a multidimensional array object and accompanying derived

objects and an assortment of functions for working with matrices, including mathemat-

ical, logical, shape manipulation, sorting, selecting, discrete Fourier transforms, basic

linear algebra, basic statistics and more (Harris et al., 2020).

• Matplotlib (3.6.2): Data visualization library for creating static, animated, and inter-

active plots (Hunter, 2007). All plots in this thesis were creating using this package.

• Scipy (1.9.3): SciPy provides fundamental algorithms for scientific computing amongst

which are optimization, integration, interpolation, eigenvalue problems, algebraic equa-

tions, differential equations, statistics and more (Virtanen et al., 2020). In this thesis it

was used for data interpolation, numerical integration and numerical solutions of initial

value problems.

• Sympy (1.11.1): Package for symbolic mathematics (Meurer et al., 2017). It was used

for symbolically calculating Jacobian matrices in the context of linearized least-square

adjustments.

• PySINDy (1.7.2): PySINDy implements the sparse system identification method SINDY

used in this thesis along with several supporting features (de Silva et al., 2020a), (Kap-

tanoglu et al., 2022).

• RPi.GPIO python library enables python scripts to easily interface with the GPIO pins

of Raspberry Pis (Croston, n.d.).

• Scikit-learn (1.2.2): Library for facilitating machine learning in Python (Pedregosa et

al., 2011). It was used to conduct a gridsearch with k-fold cross validation during the

tuning of the hyperparameters.
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4. Measurement Setup

In this chapter the measurement setup of this thesis is described. The goal of this setup

was to measure the necessary data in order to conduct system identification of the driving

dynamics of the Husky A200. As will be explained in section 5.3.4 this amounts to a time

series of poses of the vehicle, also called a trajectory, along with a time synchronized recording

of the control inputs given during driving.

A pose, consisting of the position and attitude of a reference frame with regard to another,

represents the parameters for transforming between the two. Transformation parameters, or

poses, may be estimated from measured points whose coordinates are given in both reference

frames, with a two dimensional pose requiring two points and a three dimensional pose

requiring three. As the experiments and calculation in this thesis are only conducted for

driving on level ground, assumptions about one rotation parameter of the vehicle could be

made, enabling to estimate a reduced three dimensional pose based on two points. This

process will be explained in section 5.2.4. Furthermore, the system identification of the

driving dynamics also requires the control input given to the vehicle during driving.

Thus the goal of the measurement setup was to measure a time series of two points on the

vehicle during driving and simultaneously log the control inputs given to drive the vehicle.

The coordinate measurements of the two reference points on the vehicle were accomplished

using the two laser trackers, Leica AT960 and Leica LTD800, described in section 3.1.2. The

reference points were realized as two CCRs mounted on the vehicle, for which RRR, described

in section 3.1.3, were used.

The measurement setup was then designed to solve the following challenges:

• Time synchronization of the two laser trackers

• Time synchronisation of the Husky onboard computer for the timestamps of the recorded

control inputs

• Creation of a geodetic network in order to obtain the relative orientation of the laser

trackers

• Maintaining a line of sight between the two laser trackers and their respective target

CCR during driving of the vehicle

31
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Figure 4.1: Overview of the measurement laboratory with the two laser trackers and the
Husky A200 with an illustrated driving path used during the experiments

4.1 Physical layout

All measurements were conducted in the measurement laboratory of the Engineering Geodesy

department of the TU Wien, located at Gußhausstraße 25-27, 1040, Vienna, Austria. The

two laser trackers were set up around 9 meters apart with an area dedicated to driving of

the Husky A200 during experiments between them. Figure 4.1 shows an overview of the

measurement laboratory with the two laser trackers and the Husky A200 along with an

illustrated driving path. The AT960 laser tracker was leveled using the built in dual-axis

Orient-to-Gravity sensor mentioned in section 3.1.2. Both trackers were connected to the

sensor network, described in section 3.1.8, via Ethernet in order to be controlled over the

network and also to transmit their measurement data. The measurement laboratory features

multiple wall mounted magnetic hubs for CCR to be held in, one of which is depicted in figure

4.3. They were used to measure identical points with both laser trackers in order to establish

a geodetic network and to calculate transformation parameters between the sensor frames of

the two laser trackers. The magnetic hub made it easy to turn the CCR for facing one of the

two trackers without changing the reference point. The locations of the used magnetic hubs

along with the location of the trackers and the ares used for driving during the experiments

are depicted in map in figure 4.2.

4.2 Time synchronization

Three system components of the measurement setup needed to be time synchronized: the two

laser trackers AT960 and LTD800 and the onboard computer of the Husky A200. For this

the two laser trackers were triggered simultaneously by the same trigger signal created by a

Raspberry Pi, described in section 3.1.5. In order to synchronize the tracker measurements

with the data recorded by the Husky A200 onboard computer both it and the Raspberry

Pi used for creating the trigger signal for the trackers were synchronised to the UTC time

system using two different GNSS receivers. Figure 4.4 depicts an overview of the different
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Figure 4.2: Schematic map of the measurement setup in the measurement laboratory

Figure 4.3: RRR in a magnetic console in the measurement laboratory

components to be synchronized and how different signals were used to accomplish this.

4.2.1 Laser tracker triggering and time stamp generation

The measurements of the two laser trackers needed to be synchronised as simultaneous point

coordinate measurements of the two reference points on the Husky A200 are required in order

to perform the pose calculations. Additionally, the measurements needed precise time stamps

for synchronizing them to the recorded control inputs and because the time series of poses is

used to calculate the derivatives of its component numerically for the system identification.

In order to synchronise the two laser trackers a Raspberry Pi was utilized to create a square

wave trigger signal on one of its GPIO pins, going from 0V to 3.3V. This is accomplished by

a custom ROS Python node which runs at 50 Hz and switches the pin high and low using

the RPi.GPIO Python library. After the trigger signal is set to high, the script in the node

immediately saves the current system time of the Raspberry Pi in a variable and subsequently

publishes a timestamp as a ROS message on a dedicated ROS topic. After this is done the
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Figure 4.4: Overview of the time synchronization of the different system components

script waits for 1 ms before the pin is set to low again. This led to a slightly varying duty

cycle of the trigger signal as the time needed to execute the script varies slightly with the

publishing of the ROS message likely contributing most to the variations.

The trigger signal generated by the Raspberry Pi was then transmitted to the controllers of

both trackers via cables which were connected to the corresponding pins of the trigger input

connectors. The laser trackers were configured to accept external interrupts according to their

manuals using custom command line tools utilizing the provided programming interfaces of

the two laser trackers. The Raspberry Pi was located close to the the controller of the LTD800

so the cable for its connection was about 1 m long while the cable to the AT960 controller

was about 15 m long and was laid around the driving area illustrated in figure 4.2. Both

laser trackers can accept a trigger signal in the form of a balanced RS-422 signal. This is a

standard of a digital signaling circuit designed for signal transmission over wire that is more

robust against interference. Due to missing of the required supporting hardware to create

such a signal and time constraints the trigger signal was transmitted as a single wired signal

instead. However, the long cable to the AT960 controller picked up noise from interference

caused by other devices and signals around it. This led to some trigger events not being

recognized by the tracker and some erroneously triggered measurements. It is thus highly

recommended to use the RS-422 standard for the transmission of the trigger signal along

with the appropriate shielded, twisted pair wires. Such an upgrade is planed for further work

using this measurement setup.

As the assignment between the time stamps published by the Raspberry Pi and the laser

tracker measurements could not be made using their respective indices, because of the afore-

mentioned interference caused problems, the ROS node script was programmed to skip a

trigger event every three seconds. This resulted in easily identifiable gaps in the time line of

the trigger events of all three systems which could be used for the synchronisation of their

time systems as is described in section 5.2.2.

In order to guarantee an accurate system time of the Raspberry Pi and by extensions the
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time stamps of the trigger events associated with the trigger signal for the laser trackers the

Raspberry Pi was synchronized using GNSS signals. For this the u-blox C94-M8P GNSS

receiver development board, described in section 3.1.6, was connected to the Raspberry Pi

via USB for the GNSS data and using jumper cables in order to connect the ground and

PPS pin of the receiver with the GPIO pins of the Raspberry Pi. As the measurement

laboratory is located in the second basement normally no GNSS signals are available there

and the GNSS repeater located on the ceiling of the laboratory was used. It relays the GNSS

signals received at the roof of the building and it is described in section 3.1.6. The chrony

software, described in section 3.2.2, was then used to synchronise the Linux system time of

the Raspberry Pi using the GNSS data, utilizing additional Linux packages with the most

notable being pps-tools, gpsd and gpsd-clients. By using the PPS signal from the receiver

the a sub microsecond synchronization could be achieved. Thus the timestamps published

by the Raspberry Pi, corresponding to every rising edge of the created trigger signal, were

sufficiently accurate for the measurement task.

4.2.2 AT960 synchronization setup error

Due to an unfortunate user error the AT960 laser tracker was configured to be triggered at

the falling edge of the trigger signal instead of the rising edge. Therefore its measurements

did not correspond to those of the LTD800 tracker and also not to the recorded time stamps

of the Raspberry Pi. The variable duty cycle of the square trigger signal further exacerbated

this problem as the offset between the measurements and the time stamps was not constant.

Due to a technical defect of the Husky A200 and time limitations further measurements with

a corrected measurement setup were not feasible. However, the time stamps of the AT960

could be corrected during the processing of the data as is described in section 5.2.2.

4.2.3 Husky GNSS synchronization

The control inputs for the Husky A200 are recorded using its onboard computer. In order to

synchronize this data with the laser tracker measurements the computer system time needs

to be synchronized. For this the Septentrio AsteRx SB3 GNSS receiver and the Septentrio

PolaNt-x MF GNSS antenna, both described in section 3.1.6, were mounted to the vehicle.

Like the GNSS receiver of the Raspberry Pi described above, it also received the GNSS

signals from the GNSS repeater mounted on the ceiling of the measurement laboratory. The

receiver was connected to the onboard computer using a router also mounted to the Husky

A200. The receiver was powered using one of the onboard power outlets. On the onboard

computer running Linux the NTP software ntpd, described in section 3.2.2 was configured to

only use the NTP server hosted by the GNSS receiver to be used. With the system time of the

computer being synchronized the time stamps of the data recorded were also synchronized.

4.3 CCR turning hub

In order to maintain a constant line of sight between the laser trackers and their respective

CCR prism, which represent the reference points for the pose calculations, the prisms were

seated in the custom designed and manufactured motorized turning hubs. The hubs are
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Figure 4.5: The Husky A200 with aluminum extrusions and the two motorized CCR turning
hubs (left and right) and their control board (center) highlighted

described in section 3.1.7 and were mounted on the Husky with screws using the aluminum

profiles on the vehicle. Figure 4.5 shows the the used setup with the turning hubs in the front

and rear of the vehicle. The control PCB for the hubs can also be seen, having likewise been

mounted to an aluminium extrusion. The stepper motors of the turning hubs were powered

using an 12V onboard power outlet of the Husky A200 while the control PCB received power

and the control signals for the motors from a Raspberry Pi on the vehicle via a USB cable.

The Raspberry Pi was connected to the sensor network via WiFi and was powered using a

USB C cable connected to one of the USB ports of the onboard computer. A custom ROS

node running on the Raspberry Pi received the tracker measurements in real time as ROS

messages via the sensor network and used them to calculate the required azimuth command

value for both turning hubs. This data was then relayed as ROS message to the Arduino

Nano of the control PCB of the turning hub assembly using the rosserial package (see section

3.2.1).

A separate computer in form of the Raspberry Pi was employed for calculating and relaying

the azimuth control commands for the turning hubs in order to avoid any potential inter-

ference with the ROS nodes running on the onboard computer for driving the Husky A200.

While the roscore, which is a software acting as a central hub for interactions of nodes and

data transfer between them, for the laser trackers, their time synchronization Raspberry Pi

and the Raspberry Pi controlling the turning hubs was run on an offsite server, a completely

separate roscore running on the Husky’s onboard computer was used on the Husky A200

ROS nodes. This ensured that the data traffic and other activity of the measurement setup

did not affect the Husky A200 during the measurements.
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Figure 4.6: Illustration of the turning hub azimuth calculation

As the used CCR can accept a wide range of incidence angles of ±20◦ (see section 3.1.3)

there were no strong requirements for the accuracy of the calculated target azimuth and how

quickly the commands were executed by the turning hubs. Thus the assumption of no roll or

pitch movements of the vehicle during driving could be made without issues.

The set point for motorized turning hubs was calculated using the laser tracker measurements

arriving over the sensor network at the Raspberry Pi in real-time. The measured points are

xLT1
LT1, CCR1 and xLT2

LT2, CCR2 which denote the position vector from the origin of the measure-

ment frame to the respective CCR reference point expressed using the axes of the sensor

frame of one of the laser trackers. The subscripts of 1 and 2 are used in this section for

the laser trackers and their respective CCR as they can be used interchangeably. Also for

this reason the calculations are shown only for one prism with the second calculations being

completely analogous.

For the calculation of the turning hub azimuths the position of the reference point of one

laser tracker needs to be known in the sensor frame of the other laser tracker, thus requiring

a transformation between the two sensor frames. The estimation of the parameters for this

transformation and the transformation of the points is described in section 5.2.1. Therefore

the transformed points, xLT2
LT1, CCR1 and xLT1

LT2, CCR2, are seen as given for the purpose of the

explanations in this section.

A geometric representation of the relevant geometry for calculating the azimuths is given in

figure 4.6. The two reference points form a baseline vector, here given with respect to the

sensor frame of laser tracker 1:

bLT1
CCR1, CCR2 = xLT1

LT1, CCR2 − xLT1
LT1, CCR1 (4.1)
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which was projected into the xy-plane for the calculations resulting in

b̃LT1
CCR1, CCR2 =

xbyb
0

 (4.2)

The vector perpendicular to this vector and the z-axis is calculated using

nLT1
CCR1, CCR2 = −b̃LT1

CCR1, CCR2 ×

00
1

 . (4.3)

Subsequently the vector from the prism to its measuring laser tracker sensor frame origin is

projected onto the baseline vector and its normal vector resulting in its components in those

two directions using

lb̃ = −xLT1
LT1, CCR1 ·

b̃LT1
CCR1, CCR2

∥b̃LT1
CCR1, CCR2∥

(4.4)

and

ln = xLT1
LT1, CCR1 ·

nLT1
CCR1, CCR2

∥nLT1
CCR1, CCR2∥

. (4.5)

With those values the azimuth for the motorized turning hub could be calculated using

φ = atan2(ln, lb̃) (4.6)

whereby atan2 is a function that calculates the arc-tangent while taking the quadrant in

which the points lies into account and it is defined as

atan2(y, x) =



arctan( yx) x > 0

π/2− arctan( yx) y > 0

−π/2− arctan( yx) y < 0

arctan( yx) + π x < 0

undefined x = 0 and y = 0

(4.7)

This calculation was conducted for both laser tracker and the obtained azimuth angles were

used as set points for the turning hubs. For initialization the CCRs were manually turned

in the magnetic hubs to face in the direction of their respective laser tracker. The system

calculated the azimuths and set the first calculated values as the current rotation angle of

the turning hubs.



5. Methodology

In this chapter the employed methodology for the different tasks is described. There are

three main areas that need to be covered. First, the method of determining the leverarms of

the CCR on the Husky A200 with regard to its body frame and by extension the necessary

realization of the body frame is described in section 5.1. Subsequently the preprocessing

of the driving experiments measurement data for obtaining the input data for the system

identification is presented in section 5.2. Lastly the system identification itself using the

SINDY algorithm is described along with the methodology of hyperparameter tuning and

model evaluation in section 5.3.

5.1 Body frame realization & CCR leverarm determination

Determining the pose of the Husky A200 equates to estimating the transform parameters

between the body frame of the robot and the chosen local reference frame. For this, the

coordinates of two points need to be known in both reference frames. While their coordinates

in the local reference frame are ever-changing and are constantly measured by the laser

trackers during driving, the coordinates with regard to the body frame are assumed to be

constant and are determined beforehand. The position vector of the reflectors with regard

to the body frame are henceforth also referred to as leverarms.

In order to measure the position of the reference points with regard to the body frame if first

had to be realized. The realization of the Husky A200 body frame, as defined in section 3.1.1,

was accomplished by measuring the coordinates of the heads of the hex key screws used for

mounting the wheels to their wheel hubs. As the four screw holes of every wheel are arranged

circularly around the axle in the wheel hub, the measured points theoretically lie on a circle

with its center on the center line of the axle. With the measurements of the screw heads, the

two end points of the center-lines of both axles are thus defined and due to the definition of

the chosen body frame, it can be fully constructed using those points.

The measurements, described in section 6.2, were conducted with the software Spatial Anal-

yser (SA), which is described in section 3.2.3. Its functions were also used to fit a circle to the

four measured points per wheel hub. Subsequently a plane was fitted to the four resulting

center points of the circles. The body frame was then created in SA using its frame wiz-

ard function with the fitted plane defining the xy-plane, the center of the four center points

defining the origin position with that plane and the connection of the center points of the

left front and rear tire defining the direction of the x axis.

39
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The measured coordinates of the reference point could then be transformed into the newly

created reference frame in SA and thus represented the required lever arms.

5.2 Preprocessing

5.2.1 Transformation into common coordinate system

The instrument reference frame of the AT960 laser tracker was used as local reference frame

for the calculations of this thesis. The measurements of the LTD800 therefore had to be

transformed into the measurement frame of the AT960.

The estimation of the needed transform parameters was accomplished by measuring identical

points with both laser trackers (see sections 4 and 6.1) and subsequently using the USMN

(Unified Spatial Metrology Network) function of the Spatial Analyser software, described in

section 3.2.3. This function yielded the transformation parameters between the instrument

frames.

With the notation introduced in section 2.5 the transformation of the measured points of the

LTD800 laser tracker to its respective CCR target into the measurement frame of the AT960

laser tracker may be expressed as

xAT960
AT960, CCR = tAT960

AT960, LTD800 +CAT960
LTD800 xLTD800

LTD800, CCR (5.1)

with tAT960
AT960, LTD800 being the translation vector of the transformation. The transformation

matrix CAT960
LTD800 is a 3D rotation matrix that is defined in equations 5.2 to 5.5.

Rx(α) =

1 0 0

0 cosα − sinα

0 sinα cosα

 (5.2)

Ry(β) =

 cosα 0 sinα

0 1 0

− sinα 0 cosα

 (5.3)

Rz(γ) =

cosα − sinα 0

sinα cosα 0

0 0 1

 (5.4)

CAT960
LTD800 = Rz(γ)Ry(β)Rx(α) (5.5)

5.2.2 Time synchronization

Due to both missed and erroneous trigger events of the laser tracker measurements caused by

interference on the trigger cable (see section 4.2), the measurements could not be matched

with the time stamps provided by the GNSS synchronized Raspberry Pi by their index.
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Therefore a synchronisation of the time systems of the Raspberry Pi and the two laser trackers

was necessary. Furthermore, the triggered laser tracker measurements have a timing accuracy

of 5µs with respect to the incoming trigger signal, see section 3.1.2, and a synchronisation of

the time systems may improve the timing accuracy regardless of the presence of interference

caused issues. The trigger events and the measurements recorded by the two laser trackers

have time stamps in their respective time system and are denoted t
(RPi)
r,i , t

(AT960)
r,i and t

(LTD800)
r,i ,

whereby t
(LT 1/2)
r,i is used to refer to the time stamps of either one of the two trackers. The

indices r and i refer to the i-th event during the r-th run. It is important to note that the

indices of the events, i, do not correspond with each other over the different time systems

due to the aforementioned reasons.

The synchronisation was performed in three steps, whereby they were performed for each

experimental run, r, as well as for both trackers individually. First a discrete cross correlation

was used in order to coarsely align the individual laser tracker time system with that of the

Raspberry Pi. Then a linear clock drift model was fitted which mapped the corrected laser

tracker time stamps onto the raspberry time system. Lastly a correction step, that was

necessitated by the measurement setup error described in section 4.2.2, was applied to the

time stamps of the AT960 measurements.

As is described in section 4.2 a trigger event of the 50 Hz trigger signal was skipped every

three seconds. This resulted in distinctive gaps in the series of time stamps of all three

systems that could be utilized for the time synchronisation. A discrete signal was created

based on those gaps by mapping the time of a timestamp tr,i to the time difference to the

subsequent time stamp ∆tr,i:

fr : tr,i 	→ ∆tr,i = tr,i+1 − tr,i (5.6)

This signal was created for the time stamps of the Raspberry Pi and both laser trackers and

are denoted f
(RPi)
r , f

(AT960)
r and f

(LTD800)
r respectively whereby f

(LT 1/2)
r is used to refer to

either one of the two laser trackers signals. The resulting signals are well suited for discrete

cross correlation due to the sharp changes in the time differences of subsequent time stamps.

They also enable easy and robust detection of the gap locations by thresholding with a value

of 35 ms, resulting in the time stamps of the gap locations in the different time systems t
(RPi)
r,gapj

and t
(LT 1/2)
r,gapj respectively, whereby the latter one is again used to refer to either one of the

two laser trackers. An illustrative example of the signal based on actual measurement data

along with the detected gap locations is depicted in figure 5.1.

A discrete cross correlation between the signal of the Raspberry Pi timestamps, f
(RPi)
r , and of

the laser trackers, f
(LT 1/2)
r , was performed. As the signals f of the different components are

not strictly equidistant, they were linearly interpolated at 1000 Hz using the interp numpy

function, resulting in the signals f̄
(RPi)
r and f̄

(LT 1/2)
r . The interpolation also increased the

time resolution of the cross correlation result. The equation for the discrete cross correlation

is given in equation 5.7 and the calculations were performed using the scipy Python package.

The location of the maximum of the cross correlation function gives the shift between the

time system of the laser tracker and the Raspberry Pi. The shift is denoted τ
LT 1/2
r and was
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Figure 5.1: The created signal used for time synchronisation and the detected gap locations
of the LTD800 (top) and the Raspberry Pi (bottom)

calculated using equation 5.8. An exemplary results of the cross correlation for one run is

depicted in figure 5.2.

�
f̄
(LT 1/2)
ts ∗ f̄ (RPi)

ts

�
[n] =

N!
m=1

f̄
(LT 1/2)
ts [m]f̄

(RPi)
ts [m+ n] (5.7)

τ (LT 1/2)
r = argmax

n

�
f̄
(LT 1/2)
ts ∗ f̄ (RPi)

ts

�
[n] · 1

1000Hz
(5.8)

The coarse alignment of the different time systems using the cross correlation is performed

in order to aid the matching of corresponding gap locations in the different time systems. It

only results in an coarse alignment because the internal clocks of the laser trackers exhibit

a drift as is mentioned in section 3.1.2 that had not yet been corrected at this stage. The

timestamps of the identified gap locations in the time systems of the two laser trackers were

shifted using

t∗(LT 1/2)
r,gapj

= t(LT 1/2)
r,gapj

− τ (LT 1/2)
r . (5.9)

After this correction correspondences between the timestamps of identified gap locations in

the time systems of the Raspberry Pi and laser trackers were identified. This was done by

searching for the closest laser tracker gap timestamp to each Raspberry Pi gap timestamp. In

order to eliminate incorrect matches every correspondence where the timestamps of the two

time systems were further than 4 ms apart were discarded. The resulting lists of corresponding

time stamps of gap locations in both the Raspberry Pi and laser trackers time systems were

used to estimate the parameters of a linear clock drift model:
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Figure 5.2: Example of the cross correlation output for the coarse alignment of the laser
tracker time systems with that of the Raspberry Pi for one driving experiment

t(RPi) = k · t(LT 1/2) + d (5.10)

The estimation of the parameters was conducted using a least squares estimation and was

accomplished using the polyfit() function of the numpy Python package. The used model

equation is

t(RPi)
r, gapi

= k(LT 1/2)
r · t(LT 1/2)

r, gapi
+ d(LT 1/2)

r + ϵr, gapi (5.11)

wherein k
(LT 1/2)
r and d

(LT 1/2)
r denote the clock drift and clock offset of the first or second

laser tracker during the r-th run. t
(RPi)
r,gapi and t

∗(LT 1/2)
r, gapi refer to the i-th corresponding gap

time stamp of the r-th run in the time system of either the Raspberry Pi or either one of

the laser trackers. ϵ
(LT 1/2)
r, gapi denotes the remaining error at the i-th gap location of the r-th

experimental run for the first or second laser tracker. Figure 5.3 shows an example of the

linear clock model fit for both trackers for one of the driving experiment runs.

After the estimation of the clock model parameters, the time stamps of the measurements of

both laser trackers were corrected using the linear model, resulting in the time stamps of the

measurement within the time system of the Raspberry Pi t
(RPi)
LT 1/2:

t
(RPi)
LT 1/2 = k(LT 1/2)

r ·
�
t(LT 1/2) − τ (LT 1/2)

r

�
+ d(LT 1/2)

r (5.12)

The synchronisation of the LTD800 tracker was completed at this point. For the AT960 an

additional correction was necessary.
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Figure 5.3: Example of the fitted linear clock models for the two internal laser tracker clocks
for one driving experiment

Correction of AT960 measurement setup error

Due to the measurement setup error described in section 4.2.2 the measurements of the AT960

and their time stamps did not correspond to the trigger timestamps of the Raspberry Pi and

by extensions to the measurements and timestamps of the LTD800. The AT960 time system

still had an unknown offset with regard to the Raspberry Pi time system of about 1 ms after

the corrections described above, which corresponds to the average duty cycle length of the

trigger signal. Said offset could not be estimated using solely the timestamps of the different

system or the signals f created from them described in equation 5.6. The variations in the

offset caused by the varying duty cycle of the trigger signal, as explained in section 4.2.2,

are accounted for by the measurement timestamps in the time system of the AT960. Figure

5.4 depicts the remaining differences between the laser tracker time stamps transformed into

the time system of the Raspberry Pi. While the magnitude of the discrepancies of the

LTD800 timestamps are as expected (see section 3.1.2), the AT960 time stamps exhibit large

deviations caused be the measurement setup error (see section 4.2.2) and the varying duty

cycle length of the trigger cable (see section 4.2.1). However, this means that once the time

system of the AT960 is correctly mapped onto that of the Raspberry Pi, the variations in

time offsets to the trigger times is also solved.

The two reference points on the Husky A200 which are realized using CCRs and measured

with the two laser trackers form a baseline. The baseline length is constant besides flexing

of the physical structure the reference points are mounted upon. If the measurements of

the laser trackers are synchronised correctly and interpolated at common time stamps, the

distance between the measured points should only vary in accordance with the measurement

uncertainty. During preliminary calculations variations of the measured baseline length over

time were discovered. A strong correlation of this variation with the forwards velocity of the

vehicle with a Pearson correlation coefficient of about 0.9 led to the discovery of the time

synchronisation issue. However, the variations of the observed baseline length could in turn

also be used to estimate the remaining clock offset of the AT960 time system. This was
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Figure 5.4: The remaining time difference between the measurement time stamps of the laser
trackers transformed into the Raspberry Pi time system and the Raspberry Pi trigger time
stamps for the AT960 (top) and LTD800 (bottom)

accomplished by minimizing the observed base line length variations for the different runs

individually by shifting the AT960 measurements in time.

The laser tracker point measurement for any point in time can be obtained by interpolating

the measured coordinates with their time stamps in the Raspberry Pi time system t
(RPi)
LT 1/2 at

point t, resulting in the point coordinate vectors xAT960(t) and xLTD800(t). The observed

baseline length l(t) can hence be calculated using

l(t) =

��
xLTD800(t)− xAT960(t)

�T �
xLTD800(t)− xAT960(t)

�
. (5.13)

Introducing an offset for the AT960 measurements denoted ∆t the observed baseline length

becomes

l(t,∆t) =

��
xLTD800(t)− xAT960(t+∆t)

�T �
xLTD800(t)− xAT960(t+∆t)

�
. (5.14)

For the calculation the timestamps of the Raspberry Pi, t
(RPi)
r,i , were used as the values for t

which resulted in the baseline length of the i-th timestamp during the r-th run, see equation

5.15. As the additional offset of the AT960 is calculated for every run individually, the

subscript r is also introduced to the offset resulting in ∆tr.
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l(t
(RPi)
r,i ,∆tr) =

��
xLTD800(t

(RPi)
r,i )− xAT960(t

(RPi)
r,i +∆tr)

�T �
xLTD800(t

(RPi)
r,i )− xAT960(t

(RPi)
r,i +∆tr)

�
(5.15)

The standard deviation was used as a metric for quantifying the variability of the observed

baseline length during the r-th run:

sr(∆tr) =
1

Nr − 1

�  � Nr!
i=1

(l(t
(RPi)
r,i ,∆tr)− l̄(t

(RPi)
r,i ,∆tr) (5.16)

whereby l̄(t
(RPi)
r,i ,∆tr) denotes the average observed baseline length calculated from the used

samples:

l̄(t
(RPi)
r,i ,∆tr) =

1

Nr

Nr!
i

l(t
(RPi)
r,i ,∆tr) (5.17)

The additional clock offset of the AT960 tracker could then be calculated by using sr as a

minimization criteria as follows

∆tr = argmin
∆tr

sr(∆tr). (5.18)

In order to accomplish this the function sr was sampled at multiple values for ∆tr. It

was found that the function could be approximated very well with a quadratic polynomial

around the minimum. This approximation is defined in equation 5.19. The estimate of the

time offset ∆tr for each run could then be calculated analytically as is shown in equation 5.20.

The coefficient for each run, ar, br and cr were estimated using a least squares adjustment

based on ten samples around the minimum using the numpy function polyfit. Figure 5.6

shows an exemplary plot of the approximation of one of the experimental runs.

sr(∆t) ≈ hr(∆t) = ar ·∆t2 + br ·∆t+ cr (5.19)

∆tr ≈ argmin
∆t

hr(∆t) = − br
2ar

(5.20)

The covariance information about the estimated parameters obtained from the least squares

adjustment in an error propagation in order to calculate the variance of the calculated mini-

mum:

s∆tr = FCxxF
T (5.21)

with Cxx being the estimated covariance matrix of the parameters and F being the Jacobian

of the calculation in equation 5.20 given as
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Figure 5.5: Example of the baseline length over time before and after the correction of the
AT960 offset for one driving experiment

F =
�

b
2a2

− 1
2a 0

�
. (5.22)

Figure 5.5 depicts an example of the baseline length variations prior and after the correction

of the AT960 offset.

Application of synchronisation

Lastly, the measurements of both the LTD800 and AT960 could be brought into the time

system of the Raspberry Pi.

t
(RPi)
LTD800,r,i = k(LTD800)

r · (t(LTD800)
r,i − τ (LTD800)

r ) + d(LTD800)
r (5.23)

t
(RPi)
AT960,r,i = k(AT960)

r · (t(AT960)
r,i − τ (AT960)

r ) + d(AT960)
r +∆tr (5.24)

In order to get simultaneous point coordinates of the two reference points on the Husky A200

the time synchronised laser tracker measurements were interpolated at the time stamps of

the Raspberry Pi. Due to the high measurement frequency and the relatively slow speed of

the vehicle a linear interpolation of the coordinate time series was sufficient. The resulting

point coordinates are henceforth referred to as xl
l,AT960(tr,i) and xl

l,LTD800(tr,i).

5.2.3 Turning hub error model

During the estimation of the additional time offset of the AT960 time system the variations

in the base line length over time were used as a minimization criteria. However, even after
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Figure 5.6: Example of the cubic spline fit of the base line length variability as a function of
time offset for one driving experiment

this correction step there remained significant variations of the observed base line lengthm

as can be seen in figure 5.5. One potential source of such variations is an eccentricity of

the motorized turning hubs, described in section 3.1.7, on which the CCRs are mounted. In

order to ascribe a source to the cause of the remaining variations and preclude potentially

remaining large time synchronisation errors, a model for the eccentricity caused baseline

length variation was created and its parameters fitted to the data:

l(ti) + ϵi = c+ r1 cos (φ1(ti) + Φ1) + r2 cos (φ2(ti) + Φ2) (5.25)

The model assumes a circular motion of both measured CCR reference points with the turn-

ing hub azimuths acting as the phase angles. The azimuths, φ1 and φ2, were calculated

as already described in section 3.1.7. The baseline length variations were modeled by an

constant length c and two variations caused by the two circular motions with radii r1 and

r2. Phase offsets Φ1 and Φ2 had to be introduced into the model as the initial position of

the turning hub is not consistent between the different runs as the CCRs were manually

adjusted to face the laser trackers before every run. Additionally they were occasionally

adjusted during the experimental runs, limiting the achievable fit quality. These are also the

reasons why the estimation of the parameters were conducted for every run individually and

subsequently compared. However, while the phase offset parameters had to be estimated

for every run individually the radii and the constant term of the model could be estimated

for all runs simultaneously in a future improvement. Equation 5.25 gives the used model.

The estimation of the parameters was conducted with a least squares estimation using the

scipy.optimize.curve_fit function. Figure 5.7 shows an example of the remaining baseline

length variations after the time synchronisation and the modeled variations for one experi-
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Figure 5.7: Example of the turning hub error model for one driving experiment with the
observed baseline length variations along with the resulting model (top) and the turning hub
azimuths used as input for the model (below)

mental run. Alongside the calculated azimuths used as independent variables in the model

are also shown. The azimuths are not treated as stochastic quantities in the estimation.

However, they exhibit systematic errors because the calculated azimuth is not identical to

the true turning angle of the turning hub due to delays in the transmission and processing

of the data, the reaction time of the PD controller and the deadband implemented in the

controller of the turning hubs.

The model generally showed good agreement with the data so that other sources of large errors

could be precluded. However, the model was not used to adjust the measured coordinates

of the CCR reference points. The main reason for this is that the measurements for the

determination of the leverarms of the CCRs were conducted with an unknown phase angle.

The information obtained from the correction model of the baseline length is not sufficient to

determine at what angle the turning hubs were during the measurement and how to adjust the

measurements of both CCRs in all three dimensions. Therefore it was elected to not change

the measurements as one systematic effect would be replaced with different, potentially larger,

systematic errors. Nevertheless, the model could be used to ascribe an error source to the

remaining observed base line length variations and to quantify the limits of the turning hubs.
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5.2.4 Pose calculation

Based on the time synchronized laser tracker measurements the poses of the Husky A200

could be calculated which equates to estimating the transformation parameters between the

vehicle’s body frame and the local reference frame which was chosen to be the measurement

frame of the AT960 laser tracker. The estimation had to be conducted for each data sample

point individually. For clarity the calculations in the following section are presented for a

single pose, omitting any time or pose indices.

2D Pose calculation

In a first step the roll and pitch movements of the Husky A200 during the driving experiments

were assumed to be neglectable and the problem was reduced to two dimensions in order to

obtain adequate initial parameter estimates for a subsequent iterative linearized least squares

adjustment. This was accomplished by projecting the coordinates of the measured CCR

points into the xy plane of both the local reference frame and the vehicle body frame. The

transformation equation for either one of the two reference points thus becomes

�
xll,ccr 1/2

yll,ccr 1/2

�
=

�
tlx

tly

�
+

�
cosα − sinα

sinα cosα

��
xbb,ccr 1/2

ybb,ccr 1/2

�
(5.26)

with tlx and tly being the components of the 2D translation vector from the origin of the local

reference frame to the origin of the vehicle’s body frame and α denoting the heading of the

vehicle in the simplified 2D case. The variables x and y are the coordinates of either one of

the measured reference points on the Husky A200 in either the local reference frame l or the

body frame b, adopting the notation introduced in section 2.5.

This transformation is non-linear in the parameters. However, by utilizing overparametriza-

tion by introducing the parameters a = cosα and b = sinα the equation system becomes

linear:

�
xll,ccr 1/2

yll,ccr 1/2

�
=

�
tlx

tly

�
+

�
a −b

b a

��
xbb,ccr 1/2

ybb,ccr 1/2

�
(5.27)

Combining the transformation equations of the two reference points and rearranging the equa-

tion system in order to combine the four parameters of the overparameterized transformation

into one vector yields


1 0 xbccr1 −ybccr1
0 1 ybccr1 xbccr1
1 0 xbccr2 −ybccr2
0 1 ybccr2 xbccr2



tlx

tly

a

b

 =


xlccr1
ylccr1
xlccr2
ylccr2

 (5.28)

which is a linear equation system of the form
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Ax = b (5.29)

which can be solved by inverting the matrix A

x = A−1b. (5.30)

The parameter α may be obtained approximately using

α ≈ atan2(b, a) (5.31)

whereby atan2 is a function that calculates the arc-tangent while taking the quadrant in

which the points lies into account and it is defined as

atan2(y, x) =



arctan( yx) x > 0

π/2− arctan( yx) y > 0

−π/2− arctan( yx) y < 0

arctan( yx) + π x < 0

undefined x = 0 and y = 0

(5.32)

3D Pose least squares adjustment

After the 2D poses were calculated a subsequent calculation of 3D poses was conducted. A

full 3D coordinate transformation which equates to a 3D pose has 6 parameters, three for

translation and three for rotation. Despite the two measured reference points on the Husky

A200 representing 6 observations the estimation of the 6 parameters is underdetermined.

This is because the observed coordinates are invariant to a rotation around the axis that is

represented by the baseline. One of the six observations is redundant because the length of

the baseline is known from the leverarms in the body frame of the vehicle. Therefore a full

3D pose could not be calculated from the observations. Instead a 3D pose with only two

rotations, corresponding to the yaw or heading and the pitch of the vehicle was used. Those

two rotations are around the z and y axis of the vehicle body frame respectively, see section

3.1.1. The resulting transformation equation is given in equations 5.33 to 5.35.

xl
ccri = tl +Rz(ψ)Ry(θ)x

b
ccri (5.33)

Ry(θ) =

 cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 (5.34)
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Rz(ψ) =

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (5.35)

The rational behind the choice of this parametrization is that the vehicle does experience some

noticeable pitch movements, especially during acceleration and braking. If not accounted for

by a own parameter and rotation those changes would alter the estimated position and could

adversely affect the system identification of the driving dynamics. Furthermore, the length of

the projection of the xy plane of the local reference frame is altered by a pitch movement. The

estimated uncertainties of the parameters resulting from a least squares adjustment would

therefore not be representative as the corrections for the observations would have to increase

in order to account for the inadequate functional model used.

The parameters of the pose were calculated using a least squares adjustment, which is de-

scribed in section 2.4. The functional model Φ consists of the transformation equation given

in equation 5.33 for both reference points on the Husky A200. The functional model for one

point is thus

Φccr 1/2 = tl +Rz(ψ)Ry(θ)x
b
ccri − xl

ccr 1/2 (5.36)

The functional model is non-linear and is thus linearized. While calculating the derivatives of

the functional model are trivial they are lengthy which makes working with them cumbersome

and error-prone. Therefore they were calculated analytically using the sympy Python package

(see section 3.2.4). For this the 2D pose information obtained in the previous section was

used as approximate values of the parameters. For the pitch angle θ zero was used as an

approximate value. For the z component of the translation vector likewise no pitch was

assumed an the z coordinates of the leverarms in the body frame were subtracted from the

measured CCR points in the local reference frame and subsequently averaged. The vector of

approximate values for the parameters to be estimated then becomes

X0 =


x0

y0

z0

θ0

ψ0

 =


x2D

y2D
1
2(z

l
ccr1 − zbccr1 + zlccr2 − zbccr2)

0

ψ2D

 (5.37)

with the suffix 2D denoting the values obtained from the 2D pose estimation described in

the previous section. During the analysis of the data it was found that these approximate

values were sufficiently accurate for the iterative linearized least squares adjustment to con-

verge quickly, typically within one or two iterations. For the adjustment all measurements

were assumed to have the same uncertainties as the uncertainty estimates were not recorded

from the laser trackers during the experiments and the systematic effects of the turning hub

eccentricity (see section 5.2.3) has a much larger effect than the measurement uncertainties
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of the trackers.

5.3 System identification

5.3.1 The SINDY Algorithm

The SINDY algorithm is a dynamical system identification algorithm that both identifies the

active terms in the differential equations from a potentially very large library of candidate

functions and estimates their coefficients. It therefore represents a quasi non-parametric

estimation approach, as the maximum number of active terms is predetermined and the form

of the dynamical system model is determined by setting the coefficients of inactive terms

to zero. SINDY stands for Sparse Identification of Non-linear DYnamics and the algorithm

was first published in Brunton et al. (2016a). It utilizes concepts of sparsity and compressed

sensing, which were introduced in section 2.2.1, to find the active terms by means of a sparse

regression. The SINDY algorithm places an emphasis on parsimonious models that balance

accuracy and model complexity witch in turn avoids overfitting. The sparse regression also

make the method more robust against outliers in the data used for training the model. In

particular SINDY uses the fact that most physical dynamical systems only exhibit a few

relevant terms in their governing equations (Brunton et al., 2016a). A dynamical system in

state space representation, as explained in section 2.1, is given as

ẋ(t) = f(x(t)) (5.38)

whereby x ∈ Rd is the state vector fully describing the system at time t. The vector-valued

function f : Rd → Rd expresses the dynamics of the system and for many systems will only

consist of a few terms, making the function sparse in a suitable high-dimensional function

basis.

Pairs of input and output data in the form of the state vector x(ti) and its derivative ẋ(ti)

of the dynamical system are needed for the system identification. The sampling of the data

can be done in arbitrary fashion and subsequent samples do not need to lie on the same

trajectory through the phase space. However, a uniform sampling of the whole phase space

representing relevant and realistic system states is desirable for improved model performance

and generalizability. Furthermore, data based on observations of a real physical system

automatically represent a time series of the state vectors and their derivative of a trajectory

through phase space as the state of the dynamical system by definition evolves along such

a trajectory. In case the derivative of the state vector were not measured directly they may

be calculated by means of numeric differentiation. In this case the state vector data must

consist of a densely sampled time series.

The measured state vectors and their derivatives are combined to form the data matrices

X ∈ Rm×n and Ẋ ∈ Rm×n respectively, as is shown in equations 5.39 and 5.40.
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X =


xT (t1)

xT (t2)
...

xT (tm)

 =

State variables−−−−−−−−−−−−−−−−−−−−−−−−→
x1(t1) x2(t1) . . . xn(t1)

x1(t2) x2(t2) . . . xn(t2)
...

...
. . .

...

x1(tm) x2(tm) . . . xn(tm)


�

Time (5.39)

Ẋ =


ẋT (t1)

ẋT (t2)
...

ẋT (tm)

 =


ẋ1(t1) ẋ2(t1) . . . ẋn(t1)

ẋ1(t2) ẋ2(t2) . . . ẋn(t2)
...

...
. . .

...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)

 (5.40)

A feature library matrix Θ(X) ∈ Rm×p of non-linear candidate functions of the columns of

X is constructed. The choice of candidate functions is basically unlimited and the choice of

the family of functions may be informed from domain expertise of the specific problem at

hand. However, polynomials and trigonometric functions represent a function basis that is

well suited for many problems as many functions are either sparse when expressed in those

bases or may be approximates well using them. As an example a feature library containing

constant terms, polynomial terms and trigonometric terms is shown in equation 5.41.

Θ(X) =

 1 X XP2 XP3 . . . sin(X) cos(X) sin(2X) cos(2X) . . .

 (5.41)

XPi is used to denote all monomials of degree i that can be constructed with all possible

combinations of the state variables.

Every column of Θ(X) represents one candidate function, evaluated at all system states

represented as state vectors in the data. SINDY then uses a model consisting of a linear

combinations of the candidate functions, resulting in a non-linear dynamical system model

that is linear in its parameters. In vector notation the model is given as

Ẋ = Θ(X)Ξ (5.42)

with Ξ ∈ Rp×n being the matrix containing the model parameters. Each column represents

the coefficients for the model of one equation of the differential equation system. The model

of the i-th equation can be written as

ẋi = fi(x) ≈
p!

k=1

θk(x)ξk,i = Θ(x)ξi (5.43)
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whereby θk(x) denotes the k-th candidate function that was used to generate the data matrix

Θ and ξi denotes the i-th column of the coefficient matrix with ξk,i referring to k-th element

of that column.

SINDY uses sparse regression in order to solve for Ξ. For this the model equation is aug-

mented by a normal distributed noise term allowing for discrepancies between the regression

target and achieved model output:

Ẋ = Θ(X)Ξ+ ηZ (5.44)

with Z being is a matrix of independent identically distributed normal distributed entries

with zero mean, and η being the noise amplitude.

There exist multiple options to achieve sparse regression such as the least absolute shrinkage

and selection operator (LASSO) (Tibshirani, 2011) which is an ℓ1-regularized regression. An

alternative is sequential thresholded least-squares estimation which is computationally less

expensive and thus scales better to large amount of data. In the case of this thesis the SINDY

algorithm implementation pysindy (Silva et al., 2020b), see also section 3.2.4, was used, which

is an open source project developed by the team that developed the SINDY algorithm. The

sequentially thresholded least-squares optimization function of this library was used for the

calculation. This functions internally uses a sequentially thresholded Ridge regression (Hoerl

& Kennard, 1970) which is a method for estimating the coefficients of models from data

where the independent variables might be highly correlated.

The optimization criterion for this optimisation is given by

ξk = argmin
ξ′k

"""Ẋ−Θ(X)ξ′k
"""
2
+ α

""ξ′k""2 (5.45)

whereby α is a regularization parameter which represents a hyperparameter that has to be

tuned. The Ridge regression then estimates the parameters by

ξk = (Θ(X)TΘ(X) + α2I)−1Θ(X)T Ẋ (5.46)

with I denoting the identity matrix. In order to promote sparsity a sequentially thresholded

Ridge regression is used. Thereby the regression is performed repeatedly while all parameters

with an amplitude below the threshold T are set to zero. This is done until convergence of

the parameters is achieved or the maximum number of iterations is reached. The threshold

T constitutes an additional hyperparameter to be tuned.

The SINDY framework has four major aspects important for the user:

• Choice of state vector coordinates

• Choice of candidate function in the feature library
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• Differentiation method in case the derivative of the state vector was not observed di-

rectly

• Type of sparse regression method

5.3.2 SINDY with control input

The SINDY framework has been extended to be applied to problems with external forcing

(Brunton et al., 2016b), (Fasel et al., 2021). The differential equation of such problems has

the form

ẋk = f(x,u) (5.47)

whereby u denotes a vector with control inputs that actuate the system. For the system

identification of such a system the control inputs are also needed which have to be recorded

during the data acquisition. The SINDY model is extended to incorporate the external forcing

influence by augmenting the feature matrix to contain not only the candidate functions based

on the state vector but also the control input vector u and combinations of elements of the

two.

As done with the state vector and its derivative the control input vectors for the different

data points are combined to form the control input data matrix U ∈ Ru×k:

U =


uT (t1)

uT (t2)
...

uT (tm)

 =


u1(t1) u2(t1) . . . uk(t1)

u1(t2) u2(t2) . . . xk(t2)
...

...
. . .

...

u1(tm) u2(tm) . . . uk(tm)

 (5.48)

Continuing the example for the feature library from equation 5.41, the matrix becomes

Θ(X,U) =

 1 X U X⊗X X⊗U . . . sin(X) sin(U) sin(X⊗U) . . .


(5.49)

whereby x ⊗ y denotes the vector with all possible product combinations. The model then

becomes

Ẋ = Θ(X,U)Ξ (5.50)

with the optimization for the estimation of the parameters being exactly identical to the case

without external forcing:
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ξk = argmin
ξ′k

"""Ẋ−Θ(X,U)ξ′k
"""
2
+ α

""ξ′k""2 (5.51)

ξk = (Θ(X,U)TΘ(X,U) + α2I)−1Θ(X,U)T Ẋk (5.52)

5.3.3 SINDY with integral notation

For better numerical stability in the presence of noisy data, the integral notation of the SINDY

algorithm was used. This concept was published in Schaeffer and McCalla (2017). The nota-

tion enables to avoid the differentiation of the state vector in order to get its derivative in use

cases where the derivative was not measured directly but had to be calculated numerically.

There exist many methods for numerical differentiation, for example using spline interpola-

tion or numerical derivative processes that utilize total variation regularization Chartrand

(2011). Nevertheless, numerical differentiation in the presence of noise remains difficult. Ad-

ditionally there might be high frequency components in the time series data used for system

identification that are not part of system dynamics of interest, but get amplified during the

differentiation process and influence the estimated model parameters. In the context of this

thesis this might be vibrations caused by flexing of the physical structure on which the CCRs

are mounted to or by the steps taken by the stepper motors of the turning hub. Such effects

can largely cancel out using the integral notation.

The model introduced in the previous section

ẋi(t) =

p!
k=1

θk(x,u)ξk,i (5.53)

is integrated over a time span τ from a start time tj :� tj+τ

tj

ẋi(t) dt =

� tj+τ

tj

n!
k=1

ξi,kΦk(x(t),u(t))dt (5.54)

Due to the linearity of the model with regards to the parameters only the feature library

terms have to be integrated. Furthermore, the state vector derivative is replaced by the

difference of the state vector variables at the integral bound times:

xi(tj + τ)− xi(tj) = ∆xi,j =
n!

k=1

ξk

� tj+τ

tj

Φk(x(t),u(t))dt (5.55)

The estimated parameters are the same as for the differential notation. Therefore this

methodology can be used to estimate the same differential equations of a dynamical sys-

tem with the added benefit of more numeric stability due to the usage of differences in the

state variables instead of their derivative and partial cancellation of high frequent noise such

as caused by vibrations due to the integration of the feature library terms. A new variable

for the integrated feature matrix is introduced:
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Θ′(X,U) =



� t1+τ
t1

Θ1(x(t),u(t))
� t1+τ
t1

Θ2(x(t),u(t)) . . .
� t1+τ
t1

Θk(x(t),u(t))� t2+τ
t2

Θ1(x(t),u(t))
� t2+τ
t2

Θ2(x(t),u(t)) . . .
� t2+τ
t2

Θk(x(t),u(t))

...
...

. . .
...� tp+τ

tp
Θ1(x(t),u(t))

� tp+τ
tp

Θ2(x(t),u(t)) . . .
� tp+τ
tp

Θk(x(t),u(t))


(5.56)

The parameter estimation can then be done as described previously. The regression problem

becomes

∆X = Θ′(X)Ξ+ ηZ (5.57)

with the optimization problem being

ξk = argmin
ξ′k

""∆Xk −Θ′(X,U)ξ′k
""
2
+ α

""ξ′k""2 (5.58)

and the parameters being estimated using a sequentially thresholded Ridge regression as

described in section 5.3.1. The regression of one iterations step then becomes:

ξk = (Θ′(X,U)TΘ′(X,U) + α2I)−1Θ′(X,U)T∆Xk (5.59)

For this thesis the integrals were approximated numerically using the trapezoidal rule.

5.3.4 Applying SINDY to Husky A200

For the application of SINDY for modeling the driving dynamics of the Husky A200 the

state vector coordinates describing the system had to be defined. The choice of state vector

coordinates is very restricted as they are only a few possible ways to fully describe the

system. Furthermore the choice is partly dictated by the likely use cases of such a model.

Applications of the model such as navigation or path planing usually operate on position and

velocity as description of the system state. The used state vector representation of the system

therefore contains the pose of the vehicle, consisting of its position and attitude. As only 2D

dynamics on level driving surfaces is discussed in this thesis, the pose has three values with

two coordinates and the heading angle. In order to fully describe the state of the vehicle the

first derivative, representing the linear and angular velocities, is also included in the state

vector. This is consistent with the reasonable assumption that the control inputs for robot

which direct the motor drivers affect the robot in the form of accelerations. This leads to a

system of second order differential equations in order to relate the vehicle’s pose and control

inputs with the acceleration which represents the second derivative of the pose. By including

the first derivative of the pose in the state vector the order of the differential equations is

reduced, as is explained in section 2.1. The resulting state vector is then



5.3. SYSTEM IDENTIFICATION 59

x =



x

y

ψ

ẋ

ẏ

ψ̇


=



x

y

ψ

vx

vy

ω


. (5.60)

Due to the state vector containing the pose and its derivative, estimating a model for the

derivative of the pose based on the state vector is trivial, as the state vector by definition

contains the sought values:

d

dt



x

y

ψ

ẋ

ẏ

ψ̇


=



ẋ

ẏ

ψ̇

ẍ

ÿ

ψ̈


=



f1(x,u)

f2(x,u)

f3(x,u)

f5(x,u)

f5(x,u)

f6(x,u)


=



ẋ

ẏ

ψ̇

f5(x,u)

f5(x,u)

f6(x,u)


(5.61)

This also results directly from the reduction of order of the differential equation system. Ad-

ditionally the driving dynamics to be modeled are assumed to be homogeneous and isotropic

which means that the system response is invariant with regard the position and heading of

the vehicle. A dependence of the driving dynamics model on the attitude and position within

the measurement laboratory is undesirable as the training data was collected while driving

on level ground with the same surface over the whole test area. Even if small changes in the

driving dynamics over the measurement area were to exist, including these effects into the

system model is undesirable as the location and orientation of the used local reference frame

is arbitrary and the model would not generalize. Thus the state vector is truncated for the

system identification to only contain the first derivatives of the pose:

x̃ =

ẋẏ
ψ̇

 (5.62)

The system identification problem then becomes

d

dt
x̃ = f(x̃,u) (5.63)

However, this differential equation system still depends on the orientation of the used local

reference frame as the linear velocity and by extension the linear acceleration is expressed

with regard the the frame’s axes. Under the assumption of homogeneity and isotropy it is

self-evident that the driving dynamics are inherently a body frame phenomenon as the the

control inputs effect changes in the body frame. Therefore the state vector representation

is transformed from a local reference frame into the vehicle’s body frame. Without this
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transformation the model resulting from system identification would have to discover the 2D

transform relationship between the body frame and the local reference frame in addition to

the actual driving dynamics.

Following the notation introduced in section 2.5 the transformation of the linear velocities is

given by

vb =

�
vbx

vby

�
= Cb

lv
l = R(ψ)

�
vlx

vly

�
(5.64)

wherein the superscript b denotes the body frame of the Husky A200 and l denotes the local

reference frame. The transformation matrix R(ψ) is a 2D rotation matrix given by

R(Ψ) =

�
cos(θ) − sin(θ)

sin(θ) cos(θ)

�
. (5.65)

The angular velocity and acceleration of the vehicle’s heading is invariant to this transforma-

tion. The state vector expressed in the body frame is then given by

xb =

v
b
x

vby

ψ̇

 . (5.66)

This representation was ultimately used to conduct the system identification of the driving

dynamics.

The Husky A200 represents a dynamic system with external forcing as it is actuated by

its drivetrain. Therefore SINDY with control, described in section 5.3.2, is employed to

estimate the governing equations that incorporate the control inputs given to the vehicle

during driving. For the system identification in this thesis the inputs from the handheld

controller which the Husky A200 received were used as the control input u. This input

consists of the two values which controlled the forwards/backwards and turning motion of

the vehicle respectively. Both inputs have a range of [−1, 1]. How these values are interpreted

and used to drive the two motors was seen as part of the dynamical system to be identified.

An input that corresponds more closely to the real motor driver output may improve the

model performance as the control algorithm which calculates those signals would not have

to be discovered by the system identification in addition to the driving dynamics. Future

experiments regarding this possibility are planned. However, the input signals from the hand

held controller used are those that end users of the vehicle would find readily available. The

Husky supports two drive modes which correspond to different maximal driving speeds and

can be controlled by pressing different buttons on the controller for ”arming” the robot. Only

the mode with the higher maximum driving speed is treated in this thesis.

For the feature library only polynomials up to degree three were used for the system iden-

tification in this thesis as the combination of polynomials and trigonometric functions was
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found to lead to ill-conditioned equation systems. An investigation using a broader range of

non-linear candidate functions is needed to assess its impact on the model performance for

the driving dynamics in this specific use case.

The need for numeric calculation of the state vector derivatives was circumvented by using

the integral notation of SINDY which is described in section 5.3.3.

5.3.5 Calculation of input data

For the system identification three types of input data are required. On one hand the system

input both in form of the state vector and optionally the control vector describing the external

forcing is required. On the other hand the system output which represents the regression

target is needed. In the case of the integral notation explained in section 5.3.3 the output is

not the derivative of the state vector but the difference between two state vectors a certain

integration length τ apart in time.

As shown in the previous section the system to be identification in this thesis uses the first

derivative of the 2D pose of the Husky A200 expressed in the vehicles body frame, representing

the linear and angular velocities, as the state vector. Without the integral notation the

second derivative of the 2D pose, constituting the linear and angular accelerations would also

be needed.

In order to obtain this the components of the pose data calculated as described in section

5.2.4, x, y and ψ, were interpolated using cubic splines. Cubic splines are a localized, C2

continuous interpolation and therefore well suited for the calculation of the pose derivatives.

Differentiating a spline approximation is also straight forward and computationally efficient.

The interpolation was conducted using the UnivariateSpline function from the SciPy pack-

age (see section 3.2.4). The resulting spline approximation functions were then evaluated at

the trigger timestamps, resulting in a approximately 50 Hz time series of the state vectors:

xl(ti) =

ẋ
l(ti)

ẏl(ti)

ψ̇l(ti)

 (5.67)

These state vectors when then transformed into the body frame as described in the previous

section while using the current azimuth of the pose as a transformation parameter.

The recorded control inputs for the robot were linearly interpolated at the times of the

Raspberry Pi trigger time stamps as they are needed at the same times as the state vector

data. This resulted in the data points u(ti).

Despite the high measurement frequency and precise measurement method minute, high

frequency variations in the calculated pose time series persisted and got amplified by the

differentiation. These high frequency components likely are not part of the desired macro-

scopic driving dynamics and are caused by vibrations, the flexing of the physical structure the

CCRs are mounted to, the discrete steps taken by the stepper motor and other phenomena.

Therefore it was tested whether a smoothing of the interpolation resulting in an approxi-
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mation would result in a better model predictive performance with regard to the multi-step

trajectory prediction in a local reference frame. For the smoothing the employed Scipy func-

tion UnivariateSpline increases the number of knots of the spline interpolation until the

smoothing condition

1

N

N!
i=1

1

σ2
i

(yi − f(xi))
2 ≤ s (5.68)

is met. yi denotes the i-th data point and f(xi) the corresponding approximation value.

The the individual data points were weighted by the inverse of their variance σ2
i obtained by

the least squares adjustment during the pose estimation explained in section 5.2.4. Different

values for s, the smoothing parameter, were tested. If s is zero the data is interpolated

exactly, with the spline going through all data points.

The smoothing has an effect that is complimentary to that of the usage of the integral

notation for the SINDY algorithm. It was found to be particularly important in preliminary

calculations that used the differential notation of the SINDY algorithm. However, it was

found to also have an effect on the parameter estimation with the integral notation, so

different values for the smoothing parameter s were tested.

Figure 5.8 depicts a short sample of the time series of the three pose components and their

first and second derivative. With the exception of the approximation using the largest amount

of smoothing with s set to 0.01, the approximations follow the pose data points quite closely.

However, the derivatives resulting from the different interpolations are very different. The

blue curves are based on the exact interpolation and demonstrate that the second derivatives

of the pose components have large, high frequency oscillations resulting on very hard to

model regression targets with alternating sign over even very short time frames during smooth

driving operations. Figure 5.9 highlights this by showing the amplitude spectrum of the three

state vector components and of their derivatives for the four tested smoothing values for s.

The amplification of noise and likely also other effects such as vibrations can be clearly seen

in the second derivative, showcasing the benefits of using the integral notation of SINDY,

introduced in section 5.3.3, as it alleviates the necessity of calculating the second derivative.

5.3.6 Hyperparameter tuning

There are four hyperparameters that may be tuned in the methodology outlined above. Two

of them pertain to the data preprocessing in the form of the smoothing factor s used in the

pose interpolation for the derivative calculation (see section 5.3.5) and in the form of the

integration window length τ (see section 5.3.3). The other two concern the sparse regression

in the context of SINDY and are the regularization parameter α and the coefficient threshold

T (see section 5.3.1). Table 5.1 lists the tested values for each hyperparameter.

The first class of hyperparameter is more difficult to tune because they alter the regression

target itself whereby a better prediction performance in the body frame may not translate to

a more accurate prediction in a local reference frame which ultimately is the most important

performance metric. A full grid search with cross validation for all four hyperparameter si-
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Figure 5.8: Short (≈ 1.5 s) sample of the pose data along side with their interpolations using
different smoothing values as well as the resulting first and second derivative

Table 5.1: List of all tested values for the four different hyperparameters during tuning

Hyperparameter Value

s 0, 0.0005, 0.005, 0.01
τ 3 s
α 0, 1, 5, 10, 30, 50
T 0, 0.25, 0.50 1, 3

multaneously evaluated on the multi-step predictive performance in the local reference frame

was computationally intractable given the available computational hardware and time con-

straints. Therefore a selection of values for s were selected and used to create different data

sets with the preprocessing steps. For the parameter τ 3 seconds were used for all experi-

ments. Subsequently a gridsearch for the parameters α and T using 5-fold cross validation was

conducted for the different data sets individually using the functionality of the GridSearchCV

class of the sklearn Python library. The gridsearch used the predictive performance of the

body frame model with regard to ∆x as a performance metric. The values and by exten-

sion the results of this step are not comparable across the different data sets resulting from

the different preprocessing parameters. This is because the preprocessing alters the data on

which the grid search operates. For example a longer integration window length τ will cause

larger predictions errors as a longer integration causes more errors to accrue. Likewise a

stronger smoothing indicated by a larger smoothing factor s will lead to smaller prediction

errors. Therefore resulting models based on different data sets can only be compared based

on their multi-step prediction of the trajectory in the local reference frame when compared
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Figure 5.9: Amplitude spectra of the first and second derivative of the spline interpolation
of the pose data in the body frame for different smoothing values

to the ground truth of measured poses.

Therefore some models were selected for each data set individually based on the associated

gridsearch results. Those models were trained on the whole training data set and subsequently

used to make predictions for the pose trajectory in local reference frame. Those results were

ultimately compared. For this the different experimental runs are split into a training and

test data set with an training-test split of about 75%-25%.

5.3.7 Using model in multi-step prediction

As the driving dynamics are modeled with regard to the vehicle’s body frame an additional

step is necessary when using the model in order to predict the path of the vehicle. The model

resulting from the system identification predicts the derivative of the state vector in the body

frame of the vehicle:

ẋb ≈ f(xb,u) (5.69)

Using a numerical integration method, such as the Runge-Kutta family of methods, discrete

points along an approximate trajectory through phase space can be calculated. For example

using the Runge-Kutta method of order 4 would be applied to the problem like this:
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xb
n+1 = xb

n +
1

6
(k1 + 2k2 + 2k3 + k4)h

tn+1 = tn + h
(5.70)

whereby
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��
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�
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�
xb(tn) + hk3,u (tn + h)

�
.

(5.71)

In this thesis the explicit Runge-Kutta method of order 5(4) (Dormand & Prince, 1980)

is used as implemented by the integrate.solve_ivp function of the Scipy Python library

(Virtanen et al., 2020). This function adapts the step size automatically for smaller time

steps where needed to maintain adequate precision.

The control inputs u are interpolated linearly in order to evaluate the function f . The result

of the calculation is a list of state vectors in the body frame xb
n with n = 0..N . An initial

condition xb
0 is needed for the initial value calculation. In many applications of the model the

initial condition will be given as a state vector with respect to the local reference frame. The

initial condition with regard to the body frame is then calculated using the transformation

introduced in section 5.3.4.

The obtained state vectors are truncated state vectors, as is described in section 5.3.4. They

therefore only contain the linear and angular velocities in the body frame. Their transforma-

tion into the local reference frame depends on the current pose which is constantly changing

based on the estimated derivatives. Therefore the transformation of the results of the numeric

model integration and calculation of the trajectory of the vehicle in the local reference frame

represents a differential equation itself. The body frame state vector may be transformed

into the local reference frame using the inverse of the transform introduced in section 5.3.4,

resulting in the truncated state vector with respect to the local reference frame written here

as

x̃l
n = Cl

b(ψl)x
b
n. (5.72)

The full, not truncated state vector expressed in the local reference frame introduced in

equation 5.3.4 is now explicitly denoted xl in order to highlight the difference between it and

the state vector of the driving dynamics expressed in the body frame. The initial condition

of this state vector is then denoted
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xl
t0 =



xlt0
ylt0
ψl
t0

ẋlt0
ẏlt0
ψ̇l
0


. (5.73)

The state vector time series in the local reference frame is then calculated one step at a time

by transforming the current xb
n using the current heading estimation ψn with equation 5.72

and subsequently updating the full state vector with regard to the local reference frame:

xl
n+1 =


xlk + ẋlk∆t

ylk + ẏlk∆t

ψl
k + ψ̇l∆t

x̃l
n

 (5.74)

This equates to the explicit Euler method. A possible improvement is the creation of a new,

combined differential equation which contains the transformation from the body to the local

reference frame:

g(xl,u) = Cl
b(ψ

l
n)f(C

b
l (ψ

l
n)x

l,u) (5.75)

This approach could potentially improve the estimation by enabling a combined numerical

integration using high order methods, such as the Runge-Kutta methods, instead of the two

step approach presented above. The evaluation of this multi-step prediction method for the

dynamical model was not inside the scope of this thesis and requires additional investigations.

5.3.8 Evaluation of model performance

For the evaluation of the model predictive performance it is used in a multi step prediction

and the estimated poses are compared to the ground truth provided by the laser tracker

measurements. The testing data set was divided into 5 second long integration intervals

whereby subsequent intervals overlapped by 50% in order to calculate more integration runs

an thus get a more reliable result. Figure 5.10 shows an example of a run from the testing

data set being used for the evaluation with the different integration periods illustrated. The

first datapoint of every interval was used as an initial value for the numerical integration of

the model as was described in the previous section. This estimated trajectory for the robot

was then compared to the poses obtained from the laser tacker measurements which resulted

in the errors of the 2D pose estimates denoted ϵx, ϵy and ϵψ. As the location and orientation

of the local reference frame in which those quantities are expressed is arbitrary the coordinate

errors where combined to form the point position error defined as

ϵp =
�

ϵ2x + ϵ2y. (5.76)
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Figure 5.10: Example of the model evaluation using a multi-step prediction w.r.t the local
reference frame

The time series of point position error and absolute heading error of the different 5 second

intervals are then stacked. Based on this the standard deviation of the position and heading

estimation as a function of integration time can be calculated:

sp(ti) =

�  � 1

N

N!
j=1

ϵp,j(ti)2 (5.77)

sh(ti) =

�  � 1

N

N!
j=1

ϵh,j(ti)2 (5.78)

Figure 5.11 shows an example of the evaluation of a specific model.
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Figure 5.11: Example of the stacked deviations of the predicted trajectory and derived metrics

5.3.9 Least squares adjustment of model

The possibility of adjusting the estimated parameters of the active terms identified and

estimated using SINDY using a subsequent least squares adjustment was tested. The concept

of a least squares adjustment was introduced in section 2.4. There are three possible ways

to introduce corrections into the functional model. The simplest way is to only consider the

difference of state vectors ∆x as stochastic quantities and thus only introducing correction

for those terms. This results in

∆xi + v∆x,i =

p!
k=1

θ′
k(x)ξk,i = Θ′(x)ξi. (5.79)

The next step would be to also apply corrections for each integrated library term which

results in

∆xi + v∆x,i =

p!
k=1

(θ′
k(x) + vk,i)ξk,i = (Θ′(x) + ϵΘ′)ξi. (5.80)

The most rigorous way is to introduce corrections for the components of the state vectors used

in the integration used for constructing the feature library matrix for the integral notation

of SINDY (see section 5.3.3). This results in

∆xi + vi =

p!
k=1

θ′k(x+ v)ξk,i =

p!
k=1

� tj+τ

tj

θk(x+ vx)dt ξk,i = Θ′(x+ vx)ξi. (5.81)

It was found that the equation system for solving the least squares adjustment was badly
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conditioned and that there was a very high correlation between estimated parameters. This

issue was circumvented during the system identification process with SINDY by the Ridge

regression. The cross correlation matrix resulting from the adjustment using the functional

model described in equation 5.79 is still presented in section 7.9 for the discussion of the

results.

The use of a least squares adjustment for improving the coefficients estimated using SINDY

with rigorous stochastic modeling of the observations is highly desirable and needs further

investigations. The conditioning problem may be alleviated by reducing the potential can-

didate functions in the feature library or perhaps by targeted subsampling of the training

data.
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6. Experiments

This section details the experiments conducted for obtaining the data needed for the system

identification. The three major steps were geodetic network measurements, leverarm determi-

nation and the driving experiments. All data was collected on 21.12.2022 in the Engineering

Geodesy measurement laboratory located at Gußhausstraße 25-27, 1040 Vienna, Austria.

6.1 Geodetic network

In order to calculate the transformation parameters between the two laser trackers a geodetic

network was created with seven points realized as CCRs in the magnetic hubs mounted to the

walls. Those points were measured with both laser trackers while being controlled through the

Spatial Analyzer software. The ”Precise Point” preset was utilized with a 5 second averaging

period. The CCR for the measurements with the LTD800 was initialized in the bird bath for

interferometric measurements.

Figure 6.1 shows the measured points forming the geodetic network and the two laser trackers

along with their sensor frames. The resulting coordinates along with their uncertainties are

listed in tables 6.1 and 6.2 for the AT960 and LTD800 respectively.

6.2 Body frame realization and leverarm determination

The position of the CCR reference points on the Husky A200 had to be known with respect

to its body frame. For this the body frame, following the definition introduced in section

3.1.1, had to be realized and the position vectors of the two reference points, referred to

as leverarms, calculated. The screw heads of the screw of the wheel hubs were used as

measurement points in order to estimate the axle endpoint position. This allowed for the

Table 6.1: Measurement data of the geodetic network points from the AT960

Points x [m] y [m] z [m] σx[µm] σy[µm] σz[µm]

31 11.83188391 15.66555826 1.11614100 83.5 76.13 93.1
41 7.68306683 9.96930859 -1.05500903 53.8 45.95 59.4
43 11.55237925 7.14983024 0.84172574 48.6 59.55 66.1
53 7.44493518 2.26783293 -1.06306672 28.6 36.82 38.2
63 3.83942444 -1.99454397 0.85086516 19.1 19.93 21.2
61 -0.20351163 1.38697634 -1.02545438 8.3 11.03 10.0
51 3.62148080 5.92743913 1.30458020 33.1 29.17 34.3

71
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Figure 6.1: Overview of the measured network points and the sensor frames of the two laser
trackers

Table 6.2: Measurement data of the geodetic network points from the LTD800

Points x [m] y [m] z [m] σx[µm] σy[µm] σz[µm]

43 -2.81484982 -3.93203020 0.86077272 22.0 20.8 24.1
31 2.11812526 -10.88127131 1.07420271 53.7 36.3 53.4
41 1.96576801 -3.82171493 -1.05034765 21.1 19.4 21.6
53 -2.50638871 2.45261077 -1.00324475 17.5 17.0 17.5
63 -2.21038951 8.01523260 0.94620957 39.8 29.0 40.0
61 3.04863959 7.78313096 -0.94827391 41.2 29.9 41.5
51 2.75969342 1.83857674 1.34382657 16.8 17.0 18.0

realization of the body frame as is described in section 3.1.1. The measurements were taken

using the laser tracker LTD800, described in section 3.1.2, and the T-Probe, described in

section 3.1.4, utilizing the ’Precise Stable Point’ preset in Spatial Analyzer with a five second

averaging period. The Husky A200 was placed about five meters away from the laser tracker,

with its x-axis pointing towards the tracker. This enabled to measure the bolt heads of all

four wheels with the same vehicle and instrument position. The ball tip of the T-Probe was

slightly pressed into the screw heads for the measurements, where it rested securely due to

the shape of the hex key screw head. The measurement process is depicted in figure 6.2.

Subsequently, the CCR reference points were measured using the LTD800 and a CCR seated

in the respective turning hub, using the ’Precise Stable Pt’ preset in Spatial Analyser with a

five second averaging period. The resulting coordinates are listed in table ??.

As the T-Probe and CCR measurements were conducted with the same vehicle and laser

tracker positioning, the collected wheel hub coordinates could be used to construct the Husky

A200 body frame in the measurement frame of the LTD800. The coordinates of the CCR

could subsequently be transformed from the measurement frame of the LTD800, in which
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Figure 6.2: Measuring process of the wheel hub screw heads for the body frame realization

they were measured, into the constructed body frame, resulting in the required leverarms to

the reference points on the Husk A200.

Table 6.3: Measurement data along with uncertainties for the body frame realization and
leverarm determination

Points x [m] y [m] z [m] σx[µm] σy[µm] σz[µm]

Front left wheel

1.7458041 4.1128551 -1.1781067 20.6 18.4 20.7
1.7466556 4.1301023 -1.1958863 21.1 18.9 21.0
1.7459489 4.1122499 -1.2130364 20.9 19.1 20.7
1.7451135 4.0950384 -1.1954413 20.1 18.5 20.2

Rear left wheel

1.7687535 4.6175709 -1.1724643 23.0 19.5 23.4
1.7697480 4.6406026 -1.1822952 24.1 21.4 23.9
1.7696002 4.6306282 -1.2048744 23.6 20.0 22.8
1.7685448 4.6078053 -1.1949982 23.2 20.4 22.9

Rear right wheel

1.1874569 4.6530965 -1.1691820 22.8 19.9 23.0
1.1862731 4.6328405 -1.1833869 22.5 20.2 24.1
1.1877104 4.6673030 -1.1897254 23.3 19.7 23.1
1.1865796 4.6471386 -1.2037590 23.3 19.2 23.3

Front right wheel

1.1622637 4.1299999 -1.1765262 21.8 19.1 21.1
1.1613931 4.1241303 -1.2005666 20.9 19.2 20.1
1.1624256 4.1480904 -1.2065659 21.1 18.8 20.1
1.1632388 4.1539587 -1.1824637 21.4 18.4 21.0

CCR front 1.5132630 3.9057401 -0.6796971 19.7 17.7 19.1

CCR rear 1.3182130 4.6406633 -0.5319953 21.9 18.9 22.4

6.3 Driving experiments

In order to collect the needed data for the system identification there were nine driving

experiment runs conducted, totalling about 45 minutes of driving time with the breakdown

of the different run lengths given in table 6.4. During those runs the Husky A200, controlled
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Table 6.4: Duration (rounded) of the different driving experiment runs and their allocation
to either training of testing data

Run Length [s] Training data Testing data

1 100 ✓
2 390 ✓
3 340 ✓
4 300 ✓
5 100 ✓
6 470 ✓
7 125 ✓
8 440 ✓
9 460 ✓

Sum 45.4 min 34.4 min 11.0 min
75.8% 24.2 %

Figure 6.3: Density of the control inputs and driving states during all driving experiment
runs

manually via the controller, was driven in between the two laser trackers within the area

illustrated in figure 4.2.

It is important to sample the combined space of phase space and control input space as

completely as possible for good system identification results that generalize well beyond the

training data. Therefore many different driving scenarios including sharp changes in control

input along with different system driving states were used during the experiments. Figure 6.3

depicts the density of different control inputs of all measured data as a heatmap. Alongside

it the density of the distribution of driving state, in form of the velocity in driving direction,

ẋb and the rate of heading change, α̇, is shown. It is can be seen that the maximum forwards

velocity of the vehicle and is decreased during cornering which is to be expected. The same

is likewise true for the maximum turning speed depending on the forward velocity. The

limitations might either be due to power limitations of the motors or limitations imposed by

the driving control algorithm steering the motors.
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Figure 6.4: Example of a driving path during one of the driving experiment runs in the AT960
sensor frame which was used as local reference frame

The NTP software (see section 3.2.2) running on the Husky A200 onboard computer and the

Raspberry Pi for the laser tracker triggering (see section 4.2.1) was given an one hour ”warm-

up” period for synchronising their respective system clock. In order to avoid battery drainage

of the Husky A200 during this process a Y-splitter was used to connect the vehicle with its

battery and its wall charger simultaneously. This was necessary as the system computer

could not be powered down as otherwise the system synchronization would had to start over

again. The same configuration was also used in between different driving experiment runs

in order to recharge the battery and slow down the battery depletion over the course of all

experiments.

The vehicle could not be driven to complete a full rotation as this would lead to a loss of line

of sight between the trackers and their respective prism as parts of the vehicle would obscure

the view. This necessitated the alternating forward and backwards driving within the driving

zone. An example of a driving path followed during one of the driving experiment runs is

depicted in figure 6.4.

Before every driving experiment run the laser tracker beams were captured with their respec-

tive prism in case the line of sight was previously lost. Subsequently the prisms, placed in the

motorized turning hubs, were oriented such that the laser beam would enter the prism with

a central incidence direction. After this step the ROS node for the turning hub calculation

was started and the first calculated turning hub azimuths were used as initial values for the

turning hub position. At the beginning of every driving run the recording of rosbags for

the relevant data in form of ROS messages was started both on the Husky A200 onboard

computer for the control inputs and on the ROS server for the laser tracker data and the

associated timestamps from the Raspberry Pi. After this step the driving experiment could

commence, after which the data recording was stopped.
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7. Results

7.1 Leverarm determination

Based on the measurements described in section 6.2 the body frame of the Husky A200 could

be realized using the methodology described in section 5.1. Figure 7.1 depicts the measured

points, the geometric objected fitted to them and the resulting body frame. Table 7.1 gives

the leverarms of the two CCR reference points with regard to this frame. As the constructed

body frame is seen as exact and not stochastic, the leverarm uncertainties only reflect the

uncertainties of the CCR measurements.

Table 7.1: Resulting leverarm vectors of the two CCR reference point in the body frame

Points x [m] y [m] z [m] σx[µm] σy[µm] σz[µm]

Front (LTD800) 0.4671355 0.0655364 0.5167336 17.7 19.6 19.1
Rear (AT960) -0.2600713 -0.1627405 0.6546911 18.9 22.0 22.4

7.2 Laser tracker transformation parameters

The parameter for the transformation from the sensor frame of the LTD800 into that of the

AT960 could be calculated using the USMN function of Spatial Analyzer as described in

Figure 7.1: Visualization of the fitted geometry of the wheel hubs and plane through their
centers along with the resulting body frame

77
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section 5.2.1 based on the measurements described in section 6.1. The resulting parameter

values are listed in table 7.2 along with their uncertainties. The uncertainties are of limited

use as the mathematical model employed by Spatial Analyzer to combine the measurements

of different sensors into one common frame is not transparent. The manual states ”Instead

of using a best-fit, USMN takes an intelligent weighted bundle approach. USMN examines

each common measurement and considers the characteristics of the instruments that mea-

sured them and their positions in space.” (New River Kinematics, 2020). In Lettner (2022)

discrepancies between the estimated uncertainties estimated by the USMN function and a

least squares adjustment of the same network were ascertained. The values are still useful

for pertaining strong systematic errors in the data and are of the expected magnitude given

the measurement uncertainties of the laser trackers.

Table 7.2: Parameters for the transformation from the sensor frame of the LTD800 into that
of the AT960

Translation Rotation
tx ty tz Rx Ry Rz

Value -2.050360 m -8.757229 m -0.086725 m -0.374896° -0.180820° 142.749476°
1σ 20.2 µm 25.9 µm 36.1 µm 1.058” 1.205” 0.700”

7.3 Time synchronization

The measurements of the two laser trackers obtained during the driving experiments, as

described in section 6.3, were synchronized using the methodology outlined in section 5.2.2.

The results from the cross correlation is omitted here as the found offset depends on the

initial system clock offset which is not meaningful for the discussion.

7.3.1 Linear clock model

Table 7.3 lists the results of the linear clock model fit for the individual driving experiment

runs. The estimated clock drift of the two internal laser tracker clocks are very stable over

the whole measurement campaign and could be very well estimated using the model as is

Table 7.3: Estimated parameters of the linear clock model for the two laser tracker internal
clocks for each driving experimental run

Run
LTD800 AT960

Drift Drift STD Offset STD Drift Drift STD Offset STD
[ppm] [µs] [ppm] [µs]

1 16.2078 0.007 0.47 -28.6908 0.1524 10.08
2 16.2395 0.001 0.26 -28.4536 0.0191 4.26
3 16.2986 0.001 0.19 -28.4882 0.0293 5.71
4 16.2387 0.001 0.21 -28.5271 0.0321 5.58
5 16.2179 0.005 0.70 -28.6187 0.2333 33.51
6 16.2666 0.001 0.19 -28.5428 0.0156 4.21
7 16.2801 0.002 0.15 -28.6317 0.0826 6.09
8 16.2976 0.001 0.18 -28.5384 0.0205 5.31
9 16.3236 0.001 0.15 -28.5425 0.0184 4.98
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Table 7.4: Estimated parameter for the additional AT960 offset caused by the measurement
setup error along with the reduction in base line length variability

Run
Additional offset Baseline length RMSE

Offset [ms] Offset STD [ns] Before [mm] After [mm] Reduction [%]

1 1.3180 2.95 0.452 0.193 57
2 1.3179 7.82 0.455 0.122 73
3 1.3537 5.29 0.479 0.137 71
4 1.3312 4.24 0.532 0.131 75
5 1.3247 4.29 0.515 0.149 71
6 1.3536 9.36 0.534 0.099 81
7 1.4718 2.45 0.461 0.136 70
8 1.3454 13.03 0.550 0.093 83
9 1.3517 17.18 0.741 0.094 87

evident by the corresponding standard deviations. However, the uncertainty of the estimated

parameters if significantly worse for the AT960 clock. This is due to the measurement setup

error described in section 4.2.2 in combination with the varying duty cycle of the trigger

signal which is explained in section 4.2.1. The varying offset caused by this error caused the

data points to not only be influenced by an offset and a linear click drift. However, despite

the uncertainties of the estimates being higher as the functional model is not strictly fulfilled,

the model parameters could still be estimated reliably due to the high number of data points

used. Furthermore, errors in the estimated offset parameter would be counteracted by the

estimated additional offset for the AT960 (see section 7.3.2).

The offset estimated is not listed for the same reason as for the cross correlation and be-

cause the offset of the linear clock model is completely complementary to that of the cross

correlation.

7.3.2 Additional AT960 offset

The estimation of the additional offset of the AT960 time system that was necessitated by the

measurement setup error described in section 4.2.2 was conducted as is explained in section

5.2.2. The estimated offset parameters for the different driving experiment runs are listed in

table 7.4 alongside with the associated change in base line length variability.

The observed baseline length variability could be strongly reduced for all driving experiment

runs. The lower reduction of the first run is likely because this run consisted of mainly

of slower driving which reduced the effect an error in the time synchronisation of the laser

trackers has on the observed baseline length.

The listed standard deviation of the estimated additional offset pertain to the minimum

calculation of the interpolating quadratic polynomial function. As they are very small the

baseline length variability could be interpolated very well and the additional time offset of the

AT960 laser tracker could be eliminated based on the chosen methodology. However, these

standard deviations are not reflective of the overall time synchronisation quality between the

two laser trackers.
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Table 7.5: The estimated coefficients of the turning hub error model along with their uncer-
tainties

Run
Model parameters Parameter STD [µm] Baseline length RMSE

c [cm] r1 [mm] r2 [mm] σc σr1 σr2 before [mm] after [mm]

1 77.46361 0.23 0.09 1.45 2.97 3.34 0.192 0.063
2 77.46268 0.26 0.11 1.07 2.96 2.93 0.121 0.068
3 77.46231 0.22 0.13 0.97 2.95 2.77 0.136 0.071
4 77.46118 0.19 0.12 1.16 4.16 3.71 0.130 0.080
5 77.46313 0.27 0.12 1.46 4.09 4.09 0.148 0.067
6 77.46290 0.19 0.09 0.87 2.08 2.09 0.098 0.080
7 77.46578 0.09 0.17 1.29 3.42 3.65 0.136 0.068
8 77.46210 0.19 0.10 1.04 3.09 3.18 0.091 0.079
9 77.46241 0.21 0.11 1.70 3.49 3.52 0.092 0.082

Mean 77.46290 0.21 0.12 1.23 3.25 3.25 0.127 0.073
STD 0.00128 0.053 0.02 0.27 0.64 0.60 0.032 0.007

7.4 Turning hub error model

The parameters of the turning hub error model introduced in section 5.2.3 were estimated

for each driving experiment run individually. The results are listed in table 7.5. As can be

seen the model resulted in a reduction of the unaccounted variations in the observed baseline

length for all runs. The estimated constant term of the model is very consistent between the

different runs, exhibiting a standard deviation of about 13µm between the different estimates.

The estimated radii are with values of approximately 0.21 and 0.12 mm within the expected

tolerance of the manufactured turning hub (see section 3.1.7). The results of the turning

hub error model highlight the need for a improved measurement setup. Improved nests for

the CCR on the motors of the turning hub were manufactured out of turned aluminum.

However, a technical defect unrelated to this thesis rendered the Husky A200 inoperable and

no experiments utilizing the improved version of the turning hub could be conducted. The

”Super cateye reflector” from Leica could alleviate the need for the motorized turning hubs

alltogether as it offers 360° incidence angle of the laser beam of the laser trackers.

7.5 Pose calculations

After the laser tracker measurements were transformed into a common local horizontal refer-

ence frame, for which the sensor frame of the AT960 laser tracker which had been previously

leveled was used, and the measurements were synchronised the poses of the Husky A200 could

be calculated. The used methodology is described in section 5.2.4. Figure 7.2 and 7.3 show

the time series of the pose parameters for one driving experiment along with their standard

deviation obtained from the least squares adjustment as an example.

The estimated uncertainties of the pose component are larger than would be expected based

solely on the uncertainties of the laser tracker measurements. This points to systematic

effects being present which is also corroborated by smooth progression of the uncertainties

over time. The variations in baseline length caused by turning hub error described in section

5.2.3 is likely the biggest cause. However, remaining time synchronisation issues may still
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Figure 7.2: Example of the positional components of the Husky A200 poses for one driving
experiment run

persist. The uncertainties of the z, θ and ψ components are very stable over time, as they

are less sensitive to coordinate errors due to the geometry. It is important to note that the

adjustment has a degree of freedom of only one (see section 5.2.4), making the estimation of

the parameters and their uncertainties not very reliable.

The estimated parameter uncertainties highlight the potential and need to improve the mea-

surement setup both in terms of eliminating the time synchronisation setup error and reducing

the systematic effects caused by the turning hub eccentricity.
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Figure 7.3: Example of the attitude components of the Husky A200 poses for one driving
experiment run

7.6 Hyperparameter tuning

The time series of calculated pose data was used to calculate the required input data for

the system identification, as is described in section 5.3.5. Thereby different values for the

smoothing factor of the interpolation (see section 5.3.5) were used for creating different data

sets. The other two hyperparameters α and T , pertaining to the sparse regression employed

as part of the SINDY algorithm (see section 5.3.1), were tuned using individual grid searches

using 5-fold cross-validation as is described in section 5.3.6. Figures 7.4 through to 7.7 show

the grid search results for the different data sets. As metrics for evaluating the gridsearch the

mean absolute error, the coefficient of determination (also referred to as R2 score), the model

complexity and the R2 score per model complexity were chosen and are plotted in the figures.

The mean absolute error was chosen in accordance with the sparsity promoting principle of

SINDY. It is less sensitive to outliers which otherwise could potentially skew the results

towards less restrictive hyperparameterization with more model terms not representative of

the true system dynamics. The R2 score describes how much of the variations in the data

were captured by the model. It is defined as

R2 = 1− SSres

SStot
(7.1)
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with

SSres =
N!
i=1

(f(xi)− yi)
2 (7.2)

SStot =
N!
i=1

(yi − ȳ)2 (7.3)

whereby ȳ denotes the average of all yi. The best possible R2 score is 1 with 0 denoting no

predictive power.

Based on the different metrics multiple models from each data set were selected to be eval-

uated. The goal of the selection was to pick models with a good balance between predictive

performance and model complexity. Ultimately 14 models were selected, which are high-

lighted in the grid search result plots, covering a large span of model complexities of 12 to

60 terms. With exception of the extreme cases of either none or all potential model terms

being active, the progression of the different performance metrics is rather smooth with only

small differences between neighbouring parametrisations. The parametrisation of α = 50 and

T = 3, resulting in model with fewer than 10 terms, was so restrictive that no terms for the

equation for ẋb were estimated regardless of which smoothing parameter was used. Those

models were therefore not further investigated.

The examined hyperparameter space was broad enough that some parametrization resulted

in either all terms available in the feature library (see section 5.3.1) being active or all terms

being eliminated, as can be seen in the plots. Furthermore, none of the selected models

resulted from hyperparameter values that are at the edge of the tested parameter space.

Thus the selected models are around a perceived optimum in the hyperparameter space.

It is important to note that the values of the different gridsearch results pertaining to different

smoothing factor values can not be compared amongst each other as the different smoothing

parameters altered the target of the regression for both the training of the models as well

as for their evaluation during the gridsearch, as is eluded to in section 5.3.6. However, it is

notable that the hyperparameters α = 30 and T = 1 resulted in promising gridsearch results

for all evaluated smoothing parameters and the associated models were all selected to be

investigated.
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Figure 7.4: Grid search result for the data set created using a smoothing factor of s = 0

Figure 7.5: Grid search result for the data set created using a smoothing factor of s = 0.0005



7.6. HYPERPARAMETER TUNING 85

Figure 7.6: Grid search result for the data set created using a smoothing factor of s = 0.005

Figure 7.7: Grid search result for the data set created using a smoothing factor of s = 0.01
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7.7 Model comparison

The 14 models which were selected based on the gridsearch results, as is described in the

previous section, were evaluated based on their predictive performance with regard to the

local reference frame, as is described in section 5.3.8. For this the three driving experiment

runs reserved as testing data (see table 6.4), were partitioned into 126 5 second integration

windows with 50% overlap. The resulting estimated standard deviation of the position and

heading estimation as a function of integration length for all evaluated models are depicted

figure 7.8. As can be seen despite there being a trend of more complex models exhibiting

better predictive performance, the models with the most terms do not perform the best. This

reinforces the validity of the use of sparsity promoting techniques for the system identification

as it avoids overfitting.

All of the 14 evaluated models did not exhibit any active terms in the equation for ẏb. This

could have multiple reasons amongst which are that the movements along this axis are not

predictable given the available input data. Potential small variations in the driving surface

properties or variations in tire temperature and dust accumulation on the contact patches

of the tire could have led to varying driving dynamics that presented themselves dispropor-

tionally in the side-to-side movements of the vehicle. Figure 6.4 depicts the components of

the body state vector components for one of the driving experiment runs. While ẋb and ψ̇

Figure 7.8: Estimates standard deviation of the position and heading estimation of the dif-
ferent models as a function of integration time based on the prediction errors on the testing
data set
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Figure 7.9: Body frame state vector components over time of one driving experiment run for
different smoothing values

exhibit a strong signal with gradual changes, ẏb has rapid sign changes and appears to be

more random and noise-like. This is corroborated by the fact that the different smoothing

parameters greatly alter the course of the function, indicating a poor signal to noise ratio.

Another possibility is that the measured data was not of sufficient quality, either due to

systematic effects, the pose component uncertainties or the measurement frequency, to infer

this aspect of the dynamics.

While the examined models estimate the rate of change of ẏb to be zero, some use this quantity

as input for their other equations. This does not disqualify those models as values for ẏb can

still be updated in the context of using the models for a state estimation via Kalman filter.

Furthermore, the value ẏb may simply be initialized to 0 for solving initial value problems.

Figure 7.10 depicts the standard deviation of the position and heading estimation after a five

second integration period as a function of model complexity. Furthermore, the data points

are color coded to show which value for the smoothing factor s was used in the training of

the model. The results show that a the smoothing of the pose component interpolations led

to an improved model performance, with the smallest smoothing value for s, except for 0,

performing the best. The especially bad heading prediction performance of the models with

more complexity that were trained on the unsmoothed data strongly suggest that the pose

data contains some effects, such as perhaps vibrations or flexing of the physical structure etc.,

that are not part of the desired driving dynamics of the Husky A200. It can also be seen that

the models estimated with very restrictive hyperparameters, resulting in only 13 terms being

active, suffer significant in terms of prediction performance when compared to more complex

models. However, it can also be seen that too loose hyperparameters give the model to much

capacity and lead to overfitting and in turn worse predictive performance with regard to the

vehicle trajectory in the local reference frame. Models with around 30 terms exhibit both
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Figure 7.10: Comparison of the multi-step prediction uncertainties after a five second inte-
gration period

good performance and a reasonable model complexity. These results highlight the need for

thorough hyperparameter tuning during the system identification process with the SINDY

algorithm.

Table 7.6 lists the 14 evaluated models along with their complexity and the associated used

hyperparameters ordered according to their position prediction accuracy after a five second

integration duration. Models 11 trough to 14 enable an easy comparison of the influence

of the smoothing parameter as the other hyperparameters are the same for those models.

The model trained on unsmoothed data performs the worst, with the model based on very

lightly smoothed training data with s = 0.0005 performing the best. This value for the

smoothing parameter is also presented in the models 1 and 2, beating models with other

hyperparameterisations with comparable or higher model complexity.

Overall the model performance as measured by the multi-step prediction in a local reference

frame are promising. A standard deviation of 14 cm after 5 second integration period strongly

suggests that the obtained model would be beneficial in use-cases such as state estimation

with for example imprecise GNSS receivers. In this context of compensating intermittent loss

of GNSS signals the model may also be beneficial.
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Table 7.6: List of evaluated models along with their respective hyperparameter, model com-
plexity and position and heading errors after 5 seconds

Hyperparameters
Complexity

Position error
after 5 s [cm]

Heading error
after 5s [deg]s α T

1 0.0005 10 0.25 30 14.0 4.2
2 0.0005 1 0.5 46 14.4 4.5
3 0.005 10 0.25 30 16.5 4.3
4 0.01 1 0.5 53 17.1 4.6
5 0 1 0.5 45 17.9 6.0
6 0 5 0.5 26 18.0 5.8
7 0.01 10 0.25 30 18.0 4.8
8 0 1 0.25 62 19.1 5.5
9 0.0005 30 0.5 20 19.1 4.1
10 0.005 1 0.5 44 21.3 5.2
11 0.0005 30 1 13 30.6 4.7
12 0.005 30 1 13 31.0 4.8
13 0.01 30 1 13 31.2 5.1
14 0 30 1 13 31.9 4.7

Figure 7.11: Most prevalent terms over all evaluated models and the percentage with which
they appear in them
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7.8 Model interpretation

The core idea of the SINDY algorithm is to identify compact, interpretable and parsimonious

models of dynamical systems (Brunton et al., 2016a). Therefore it was attempted to ascribe

the identified model terms a meaning or cause. For this, the best performing model with

13 terms (number 11 in table 7.6) and the best performing model overall (number 1 in the

table), as measured by the point position error, were used. The model number 11 is referred

to as model A and the model with number 1 is referred to as model B for the purposes of

this discussion.

Model A has the equations

v̇x = − 4.812 vx + 4.356 u1 + 3.065 v3x − 2.204 u31 (7.4)

v̇y = 0.000 (7.5)

ω̇ = − 6.551 ω + 7.473 u2 + 2.978 v2xω + 2.914 ω3 − 4.298 ω2u2 − 0.720 ωu21

+ 2.654 ωu22 − 2.799 u21u2 − 1.856 u32
(7.6)

while model B has the equations

v̇x = − 7.770 vx + 7.190 u1 − 0.369 vxω + 0.312 ωu1 + 6.780 v3x − 6.357 v2xu1

+ 7.730 vxω
2 − 5.104 vxωu2 + 3.459 vxu

2
1 − 3.752 ω2u1 + 1.125 ωu1u2

− 3.129 u31 − 0.435 u1u
2
2

(7.7)

v̇y = 0.000 (7.8)

ω̇ = − 6.951 ω + 7.900 u2 + 7.690 v2xω − 3.251 v2xu2 + 1.394 vxω
2

− 0.817 vxu1u2 − 0.907 vxu
2
2 + 2.315 vyω

2 − 4.976 vyu
2
1 + 2.896 ω3

− 1.409 ω2u1 − 4.349 ω2u2 − 3.143 ωu21 + 3.226 ωu22 − 0.795 u21u2

+ 0.838 u1u
2
2 − 2.322 u32

(7.9)

whereby u1 and u2 denote the throttle and steering input respectively.

The equation for v̇bx from model A is very simple. The terms vx and v3x can be ascribed

to friction forces, stemming from motor resistance, rolling resistance from tire deformations

etc., The terms u1 and u31 represent the throttle response. Model B also exhibits those four

terms while also exhibiting a cubic term u31 for the throttle response. Furthermore, model B

introduces dependencies of the forwards acceleration on both angular velocity and steering

input. Those dependencies are present in the true driving dynamics of the Husky A200.

In figure 6.3 a limitation of the maximum forwards velocity based on the angular velocity

can be seen. Therefore the forward acceleration needs to be lower when turning so that the

equilibrium of propulsion and friction forces is at a lower speed, depending on the turning

speed. A dependence on the steering input is also expressed in the terms u1u
2
2. Such a

dependency is to be expected as the motors need to create differential thrust and therefore

not all of their potential torque is used for linear acceleration. Of special interest are the
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terms −0.369vxω+0.312ωu1, −5.104vxωu2 and +1.125ωu1u2 as they introduce asymmetries

in the dynamics as the acceleration is dependent on which direction the vehicle turns and in

which direction the steering put is. However, due to strong correlations between the linear

and angular velocities and their associated control input, described in the next section, those

asymmetries may largely cancel out. The need for the system identification to use quadratic

terms of certain inputs in order to maintain symmetry showcases the potential benefits of

augmenting the feature library with the absolute values of the input values. Likewise, the

introduction of the terms like a · |a| would allow to use quadratic terms that maintain the sign

of the input values. The tuning of the feature library therefore requires additional research.

It appears that the rotational component of the driving dynamics is more complex than the

translational component as both model exhibit considerably more terms for the ψ̈ equation

than for the ẍ equation. This is expected as turning requires the overcoming of traction,

resulting in complex tire-ground interactions especially compared to driving in a straight line

where virtually no slippage occurs.

Regarding the angular acceleration model A and B both exhibit terms likely representing

friction forces analogous to that of the linear case: ω and ω3. The steering input response

is modeled with many terms even in the simpler model A, introducing dependencies on the

current rotation speed as well as the linear velocity despite the more restrictive hyperparam-

eterisation. Model B exhibits additional cross terms for example a product term with the

linear velocity and the steering input. Overall the interpretation of the terms in the equations

for p̈si proves to be more difficult which is to be expected as the driving dynamics are so

difficult that analytical modeling remains challenging for skid-steered robots. The terms vyω

and vyu1 are of special interest as they introduce a dependency of the lateral movement of

the vehicle, despite the rate of change of this state variable being estimated as zero by all

models. Further investigations into whether this is overfitting to the data or truly a part of

the underlying driving dynamics need to be conducted.

In figure 7.11 the 15 most prevalent terms in all elevated models for the equations for both

ẍ and ψ̈ are presented, ordered by the percent of models they appear in. For the linear

acceleration four terms relating to the throttle response and friction forces were discovered

by all examined models, regardless of the hyperparameterisation. Models with less restrictive

regularizations introduced dependencies on the turning speed and steering input. For the

angular acceleration equation all models identified more terms, highlighting the complex

dynamics, exhibiting terms for linear velocity and throttle input. A significant amount of

models exhibit a dependence of the lateral movement of the vehicle.

7.9 Least squares model adjustment

As described in section 5.3.9 it was attempted to refine the estimated model coefficients

using a least squares adjustment (see section 2.4) after the relevant terms were identified

by SINDY. However, early experiments revealed that the resulting equation system had

insufficient separability of parameters based on the data, high resulting correlations and poor

conditioning. Therefore the coefficients were not updated using the least squares adjustment
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Figure 7.12: Correlation matrices of the model coefficients resulting from a least squares
adjustment

estimates. This issue showcases the benefit of using the Ridge regression which can estimate

parameters in cases with strong correlation between parameters.

The correlation matrix of the adjustment for model number 1 in table 7.6 using the simplest

functional model introduced in section 5.3.9 is depicted in figure 7.12. The correlation matrix

was split for the different equations for better readability. There were no correlations between

the parameters of different equations using the simplest functional model. It can be seen that

there are some very strong correlations between certain parameters. Table 7.7 lists the terms

with 15 strongest correlations. The strongest correlations are between the term with the

forwards velocity of the vehicle and the throttle input and the rotation rate and the steering

input. While it is clear that those quantities correlate during driving they are independent

and important for the system identification. The other strong correlations listed are just

variations of terms that contain the aforementioned strongly correlated terms.

The refinement of the model parameters using a least squares adjustment is highly desir-

able due to the possibility to incorporating the measurement uncertainties as well as for the

covariance information for the estimated parameters. The issue of the correlation could be

circumvented with targeted subsampling of the collected data so that the amount of data

representing driving states with low acceleration, both linear and angular, is limited. Fur-

thermore it might be possible to design input sequences that are targeted for producing data

that is well suited for system identification by sampling the phase-input-space as uniformly

and completely and avoiding correlations. This was also envisioned by the authors of Brun-

ton et al. (2016b), writing ”[...] likely possible to design input sequences that optimally

probe complex systems to extract high-value information that will be useful to characterize

the system”. The possibilities of targeted data collection or subsampling for obtaining data

well suited for system identification using SINDY and subsequent least square adjustments

needs additional research. Furthermore, an augmentation of the used feature library with
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Table 7.7: The 15 strongest correlation between parameters estimated using a least squares
adjustment

Correlation Term A Term B

1 -0.99 u1 vx
2 -0.98 u2 ω
3 -0.98 ωu1 vxω
4 -0.97 u1u

2
2 vxu

2
2

5 -0.96 ω2u1 vxω
2

6 -0.93 ωu1u2 vxωu2
7 -0.93 vxωu2 vxω

2

8 -0.93 v2xu1 v3x
9 -0.92 ω2u1 vxω

2

10 -0.91 u21u2 ωu21
11 -0.90 ωu21 v2xω
12 0.89 u1u

2
2 vxω

2

13 0.88 ωu1u2 vxω
2

14 -0.86 ω2u2 ω3

15 -0.86 ωu1u2 ω2u1

absolute values of the inputs as well as quadratic terms retaining the sign of the input value,

as discussed in the previous section may reduce restrictions imposed by the feature library

and also reduce correlations.
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8. Conclusion

The aim of this thesis was to evaluate the suitability of system identification in the form of

the SINDY algorithm for estimating a model of the driving dynamics of the Husky A200

UGV based on geodetic measurements. This resulted in the three major tasks of creating

a suitable measurement setup, establishing a preprocessing pipeline for obtaining the input

data for the system identification task and ultimately conducting and evaluating the system

identification.

The measurement setup was realized using two laser trackers measuring two reference points

on the vehicle represented as CCRs in specifically designed and manufactured motorized

turning hubs in order to maintain a line of sight. The two laser trackers were synchronized

using a common trigger signal generated using a Raspberry Pi which in turn was synchro-

nized with the Husky’s onboard computer by synchronizing their respective system clocks

using GNSS receivers. The different system components were integrated into measurement

setup using ROS. The resulting measurement setup was capable of collected the needed data

with adequate accuracy for successful system identification of the driving dynamics. The

shortcomings of the measurement setup were an eccentricity of the motorized turning hubs

and a configuration error pertaining to the time synchronisation which could be compensated

during the analysis. Possible improvements are among others the use of a RS-422 signal for

interference robust transmission of the laser tracker trigger cable and the use of 360° laser

tracker prisms for eliminating the need for the motorized turning hubs.

In order to obtain the input data for the system identification the time series of prism co-

ordinates were time synchronised using a linear clock model for the internal laser tracker

clocks. Subsequently the poses of the Husky A200 were calculated in a two-step progress

utilising an overparameterisation to calculate the 2D pose which was used for the lineariza-

tion in the context of a least square estimation for a pose with three translation and two

rotation parameters. Those pose components were interpolated using cubic splines while

being weighted by the inverse of their variance obtained from the adjustment. A smoothing

of the interpolation was shown to be beneficial for the performance of the identified model.

For this different values for the smoothing parameter were tested. The spline interpolation

was analytically differentiated to obtain the linear and angular velocities needed for the state

vector representation of the system state.

The system identification of the driving dynamics was successfully conducted using the

SINDY algorithm utilizing the integral notation which eliminated the need of differentiat-

ing the pose interpolation a second time. The state vector of the system consisting of the

95
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pose and its first derivative was truncated under the sensible assumption that the driving

dynamics are homogeneous and isotropic, eliminating the possibility of a dependence on the

position or heading to be included in the models. The driving dynamics were then estimated

with regard to the vehicle’s body frame, greatly simplifying the complexity of the model to be

estimated and aiding the sparse identification as the dynamics to be identified are only sparse

with regard to appropriate state vector bases. The tuning of the hyperparameters proved

to be of critical importance for generating well performing yet interpretable and compact

models that avoid overfitting. In this thesis this was accomplished using a grid search with

5-fold cross-validation.

The best performing model resulted in a point position estimation uncertainty of 14 cm and

a heading estimation uncertainty of 4.2◦ after a five second integration window. This is a

promising result, suggesting beneficial uses of the model in the context of state estimation

using the Kalman filter, especially when utilizing low-cost GNSS receivers. Furthermore, two

models have been interpreted, trying to ascribe meaning to identified model terms, as the

core idea and strength of the SINDY algorithm is identifying interpretable and parsimonious

models.

The generalizability of the final model resulting from this thesis is strongly limited. As

the tire-ground interaction is of critical importance for the driving dynamics of skid-steered

robots, the predictive power of the model in all likelihood is greatly diminished for different

kind of surfaces. Furthermore, the model assumes driving on horizontal ground. The different

weight distribution on the tires in slanted driving positions would also likely influence the

dynamics and therefore reduce the validity of the model and its predictions.

An attempted least squares adjustment for improving the coefficients of the identified model

terms revealed strong correlation between parameter, highlighting the benefit of the employed

Ridge regression during the SINDY process. Potential solutions in the form of targeted

subsampling of the training data as well as generating control input signals for intelligent

sampling of the phase-input-space have been proposed.

Overall the application of SINDY for the identification of the driving dynamics of the Husky

A200 using geodetic data shows promising results with many areas of potential improve-

ments. Besides improvements in the measurement setup they pertain to more extensive

hyperparameter tuning, testing different feature libraries, better numerical evaluation of the

resulting model and the aforementioned methods for sampling training data for improved

parameter separability.

8.1 Outlook

A logical next step is the utilization of the estimated model in a Kalman filter state estimation,

possibly by simulating GNSS data based on the laser tracker measurements with different

measurement frequencies and precision levels. A direct comparison of the chosen approach

using SINDY for the system identification of the drivings dynamics of the Husky A200 with

other approaches such as neural networks in this context would be very insightful.
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Another very exciting prospect for further development is the extension to more surface

types with different friction coefficients. Data from multiple different driving surfaces could

be collected and used for system identification using a state vector augmented by one or

more non-changing state variables describing the surface characteristics. Here, the enhanced

generalizability of the SINDY approach, when compared to black box methods such as neural

networks (Brunton et al., 2016b), could lead to better performance on a wide range of sur-

faces based on measurements on only a few surface types. When used in a state estimation

algorithm such as the Kalman Filter the variables describing the surface could be updated

using measurement data based on the contradiction of the model predictions. Similarly, the

model could be extended to non-level driving surfaces.
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